Placenta-derived mesenchymal stem/stromal cells (PMSC) present several aspects that make them more attractive as cellular therapy than their counterparts from other tissues, such as MSC from bone marrow or adipose tissue in regenerative medicine. Placenta-derived MSC have been used to treat a variety of disorders, such as, cancer, liver and cardiac diseases, ulcers, bone repair, and neurological diseases. Placenta-derived MSC are relatively new types of MSC with specific immunomodulatory properties and whose mechanisms are still unknown. Placenta-derived MSC secrete some soluble factors that seem to be responsible for their therapeutic effects, i.e., they have paracrine effects. On the other hand, Placenta-derived MSC can also serve as cellular vehicles and/or delivery systems for medications due to their migration capacity and their tropism for injury sites. Nanotechnology is an important field, which has undergone rapid development in recent years for the treatment of injured organs. Due to the special characteristics of placenta-derived MSC, the combination of these cells with nanotechnology will be a significant and highly promising field that will provide significant contributions in the regenerative medicine field in the near future.
Part of the book: Stromal Cells