The dynamics organization of the nuclear genome is essential for many biological processes and is often altered in cells from diseased tissue. In the presence of double-strand break (DSBs) in S. cerevisiae and some mammalian cell lines, DNA mobility is dramatically altered. These changes in DNA mobility act as a double-edged sword since they promote homologous pairing in diploid yeast for example, but in some cases, they lead to potentially mutagenic DNA repair event and are the source of chromosomal translocations. In this chapter, we will present the state of the art in the field of chromosomes mobility in response to DNA damage. After introducing the importance of genome organization and dynamics, we will present in a clear and accessible manner several methods used in the literature to measure and quantify chromatin mobility inside living cells. We will then give an overview of the important findings in the field, both in yeast and in mammalian cells.
Part of the book: Chromatin and Epigenetics