The modern synthetic routes in organic chemistry, as well as the recent advances in high-resolution spectroscopic and microscopic techniques, have awakened a renewable interest in the development of organic fluorophores. In this regard, boron-dipyrrin (BODIPY) dyes are ranked at the top position as luminophores to be applied in photonics or biophotonics. This chromophore outstands not only by its excellent and tunable photophysical signatures, but also by the chemical versatility of its core, which is readily available to a myriad of functionalization routes. In this chapter, we show that, after a rational design, bright and photostable BODIPYs can be achieved along the whole visible spectral region, being suitable as molecular probes or active media of lasers. Alternatively, the selective functionalization of the dipyrrin core, mainly at meso position, can induce new photophysical phenomena (such as charge transfer) paving the way to the development of fluorescent sensors, where the fluorescent response is sensitive to a specific environmental property.
Part of the book: Photochemistry and Photophysics