Formation of phosphorites during Upper Cenozoic phosphogenesis [26].
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"5254",leadTitle:null,fullTitle:"Real-time Systems",title:"Real-time Systems",subtitle:null,reviewType:"peer-reviewed",abstract:"This book is dedicated to Real-time Systems of broad applications, such as autonavigation (Kalman Filtering), real-time reconfiguration of distributed networks, real-time bilateral teleoperation control system over imperfect networks, and uniform interfaces for resource-sharing components in hierarchically scheduled real-time systems. In addition to that, wireless technology and its usage in implementing intelligent systems open a wide spectrum of real-time systems and offer great potential for improving people’s life: for example, wireless sensor networks used in subways, reduced energy consumption in public buildings, improved security through public surveillance, and high efficiency through industrial automation. Furthermore, electric utilities and multi-core CPU architecture, the driving force of modern life, are part of subjects benefited from the topics covered in this book.",isbn:"978-953-51-2397-2",printIsbn:"978-953-51-2398-9",pdfIsbn:"978-953-51-6654-2",doi:"10.5772/61695",price:119,priceEur:129,priceUsd:155,slug:"real-time-systems",numberOfPages:180,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"c2c891fef1bbc433b31b28863c5003af",bookSignature:"Kuodi Jian",publishedDate:"June 8th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5254.jpg",numberOfDownloads:14734,numberOfWosCitations:9,numberOfCrossrefCitations:5,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:6,numberOfDimensionsCitationsByBook:1,hasAltmetrics:0,numberOfTotalCitations:20,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 22nd 2015",dateEndSecondStepPublish:"November 12th 2015",dateEndThirdStepPublish:"February 16th 2016",dateEndFourthStepPublish:"May 16th 2016",dateEndFifthStepPublish:"June 15th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"107214",title:"Dr.",name:"Kuodi",middleName:null,surname:"Jian",slug:"kuodi-jian",fullName:"Kuodi Jian",profilePictureURL:"https://mts.intechopen.com/storage/users/107214/images/727_n.jpg",biography:"Dr. Kuodi Jian holds B.S. degree in Computer Science from the University of Mary Hardin-Baylor, and the M.S. degree in Computer Science and the Ph. D. degrees in Computer Science and Operations Research from the North Dakota State University. He worked as a Computer System Architect at the Banner Health System, Fargo, North Dakota. He is the Associate Professor (ICS Graduate Director) in Metropolitan State University since 2003. His research interests are in the areas of algorithms, programming languages, real-time operating systems, operations research, database systems, web service–oriented architecture (SOA), artificial intelligence, computer hardware, and computer simulation.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Metropolitan State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"753",title:"Operating System",slug:"electrical-and-electronic-engineering-operating-system"}],chapters:[{id:"50496",title:"Introductory Chapter: Real-Time Systems",doi:"10.5772/63443",slug:"introductory-chapter-real-time-systems",totalDownloads:2059,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Kuodi Jian",downloadPdfUrl:"/chapter/pdf-download/50496",previewPdfUrl:"/chapter/pdf-preview/50496",authors:[{id:"107214",title:"Dr.",name:"Kuodi",surname:"Jian",slug:"kuodi-jian",fullName:"Kuodi Jian"}],corrections:null},{id:"50636",title:"Real‐Time Reconfiguration of Distribution Network with Distributed Generation",doi:"10.5772/62632",slug:"real-time-reconfiguration-of-distribution-network-with-distributed-generation",totalDownloads:1920,totalCrossrefCites:2,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter shows a methodology to accomplish the real‐time reconfiguration of distribution networks considering distributed generation in normal operating conditions. The availability of the wind power generation, solar photovoltaic power generation, and hydroelectric power generation is considered in the reconfiguration procedure. The real‐time reconfiguration methodology is based on the branch‐exchange technique and assumes that only remote‐controlled switches are considered in the analysis. The multicriteria analysis, analytic hierarchy process (AHP) method, is used to determine the best switching sequence. The developed algorithms are integrated into a supervisory system, which allows real‐time communication with the network equipment. The methodology is verified in a real network of a power utility in Brazil with different typical daily demand curves and distributed generation scenarios.",signatures:"Daniel Bernardon, Ana Paula Carboni de Mello and Luciano\nPfitscher",downloadPdfUrl:"/chapter/pdf-download/50636",previewPdfUrl:"/chapter/pdf-preview/50636",authors:[{id:"180154",title:"Dr.",name:"Daniel",surname:"Bernardon",slug:"daniel-bernardon",fullName:"Daniel Bernardon"},{id:"181139",title:"MSc.",name:"Ana",surname:"Mello",slug:"ana-mello",fullName:"Ana Mello"},{id:"181140",title:"Dr.",name:"Luciano",surname:"Pfitscher",slug:"luciano-pfitscher",fullName:"Luciano Pfitscher"}],corrections:null},{id:"50400",title:"Uniform Interfaces for Resource-Sharing Components in Hierarchically Scheduled Real-Time Systems",doi:"10.5772/62691",slug:"uniform-interfaces-for-resource-sharing-components-in-hierarchically-scheduled-real-time-systems",totalDownloads:1499,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In literature, several hierarchical scheduling frameworks (HSFs) have been proposed for enabling resource sharing between components on a uni-processor system. Each HSF comes with its own set of composition rules which take into account a specific synchronization protocol for arbitrating access to resources. However, the inventors of these synchronization protocols have also chosen to describe these composition rules with the help of protocol-specific component interfaces. This creates unnecessary framework dependencies on components.",signatures:"Martijn M. H. P. van den Heuvel, Reinder J. Bril, Johan J. Lukkien, Moris Behnam and Thomas Nolte",downloadPdfUrl:"/chapter/pdf-download/50400",previewPdfUrl:"/chapter/pdf-preview/50400",authors:[{id:"116304",title:"Prof.",name:"Johan",surname:"Lukkien",slug:"johan-lukkien",fullName:"Johan Lukkien"},{id:"138504",title:"Dr.",name:"Reinder",surname:"Bril",slug:"reinder-bril",fullName:"Reinder Bril"},{id:"180341",title:"Dr.",name:"Martijn",surname:"Van Den Heuvel",slug:"martijn-van-den-heuvel",fullName:"Martijn Van Den Heuvel"},{id:"181808",title:"Dr.",name:"Moris",surname:"Behnam",slug:"moris-behnam",fullName:"Moris Behnam"},{id:"181809",title:"Prof.",name:"Thomas",surname:"Nolte",slug:"thomas-nolte",fullName:"Thomas Nolte"}],corrections:null},{id:"50459",title:"Real-Time Systems",doi:"10.5772/63278",slug:"real-time-systems",totalDownloads:1355,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Since 2004, most of chip vendors have begun to shift their major focus from single-core to multi-core architecture (W. Wolf. Signal Processing Magazine, IEEE, 26(6):50–54, 2009). One major reason of this shift is that it reaches a physical limit by scaling transistor size and increasing the clock frequency to improve the computing performance on a single-core architecture (Agarwal et al. Proceedings of the 27th International Symposium on, pages 248–259, June 2000), that is, the overall chip cannot be reached within a single clock cycle. Multi-core architecture, however, brings innovative and promising opportunities to further improve the computing performance. By providing multiple processing cores on a single chip, multi-core systems can dramatically increase the computing performance and mitigate the power and thermal issues with the same performance achievement as single-core systems. As multi-core architecture has been more and more dominant in the industrial market, there is an urgent demand for effective and efficient techniques for the design of multi-core systems.",signatures:"Ming Fan",downloadPdfUrl:"/chapter/pdf-download/50459",previewPdfUrl:"/chapter/pdf-preview/50459",authors:[{id:"180345",title:"Dr.",name:"Ming",surname:"Fan",slug:"ming-fan",fullName:"Ming Fan"}],corrections:null},{id:"50666",title:"Multi‐Objective Real‐Time Dispatching Problem in Electric Utilities: An Application to Emergency Service Routing",doi:"10.5772/62849",slug:"multi-objective-real-time-dispatching-problem-in-electric-utilities-an-application-to-emergency-serv",totalDownloads:1460,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter presents a novel application of real‐time dispatching problem to electric utilities when multi‐objective is involved. It is described how the problem related to emergency services in electric utilities is considered, with an aggregated objective function developed to handle the minimization of the waiting time, the total distance traveled, the sum of all delays related to already assigned orders, and the cost of non‐assigned emergency orders. After that, actual cases have shown the effectiveness of the proposed model to be adopted in real‐world applications either as a search for optimal solution or by applying a heuristic‐based algorithm developed.",signatures:"Vinícius Jacques Garcia, Daniel Bernardon, Iochane Guimarães and Júlio Fonini",downloadPdfUrl:"/chapter/pdf-download/50666",previewPdfUrl:"/chapter/pdf-preview/50666",authors:[{id:"110560",title:"Dr.",name:"Daniel",surname:"Bernardon",slug:"daniel-bernardon",fullName:"Daniel Bernardon"},{id:"180657",title:"Dr.",name:"Vinicius Jacques",surname:"Garcia",slug:"vinicius-jacques-garcia",fullName:"Vinicius Jacques Garcia"},{id:"185491",title:"BSc.",name:"Iochane",surname:"Guimarães",slug:"iochane-guimaraes",fullName:"Iochane Guimarães"},{id:"185492",title:"BSc.",name:"Júlio",surname:"Fonini",slug:"julio-fonini",fullName:"Júlio Fonini"}],corrections:null},{id:"50419",title:"Kalman Filtering and Its Real‐Time Applications",doi:"10.5772/62352",slug:"kalman-filtering-and-its-real-time-applications",totalDownloads:3177,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Kalman filter was pioneered by Rudolf Emil Kalman in 1960, originally designed and developed to solve the navigation problem in Apollo Project. Since then, numerous applications were developed with the implementation of Kalman filter, such as applications in the fields of navigation and computer vision's object tracking. Kalman filter consists of two separate processes, namely the prediction process and the measurement process, which work in a recursive manner. Both processes are modeled by groups of equations in the state space model to achieve optimal estimation outputs. Prior knowledge on the state space model is needed, and it differs between different systems. In this chapter, the authors outlined and explained the fundamental Kalman filtering model in real‐time discrete form and devised two real‐time applications that implemented Kalman filter. The first application involved using vision camera to perform real‐time image processing for vehicle tracking, whereas the second application discussed the real‐time Global Positioning System (GPS)‐aided Strapdown Inertial Navigation Unit (SINU) system implementation using Kalman filter. Detail descriptions, model derivations, and results are outlined in both applications.",signatures:"Lim Chot Hun, Ong Lee Yeng, Lim Tien Sze and Koo Voon Chet",downloadPdfUrl:"/chapter/pdf-download/50419",previewPdfUrl:"/chapter/pdf-preview/50419",authors:[{id:"162863",title:"Dr.",name:"Lim",surname:"Chot Hun",slug:"lim-chot-hun",fullName:"Lim Chot Hun"},{id:"162864",title:"Dr.",name:"Lim",surname:"Tien Sze",slug:"lim-tien-sze",fullName:"Lim Tien Sze"},{id:"162865",title:"Prof.",name:"Koo",surname:"Voon Chet",slug:"koo-voon-chet",fullName:"Koo Voon Chet"},{id:"181409",title:"Ms.",name:"Lee Yeng",surname:"Ong",slug:"lee-yeng-ong",fullName:"Lee Yeng Ong"}],corrections:null},{id:"50530",title:"A Real-Time Bilateral Teleoperation Control System over Imperfect Network",doi:"10.5772/63033",slug:"a-real-time-bilateral-teleoperation-control-system-over-imperfect-network",totalDownloads:1551,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Functionality and performance of modern machines are directly affected by the implementation of real-time control systems. Especially in networked teleoperation applications, force feedback control and networked control are two of the most important factors, which determine the performance of the whole system. In force feedback control, generally it is necessary but difficult and expensive to attach sensors (force/torque/pressure sensors) to detect the environment information in order to drive properly the feedback force. In networked control, there always exist inevitable random time-varying delays and packet dropouts, which may degrade the system performance and, even worse, cause the system instability. Therefore in this chapter, a study on a real-time bilateral teleoperation control system (BTCS) over an imperfect network is discussed. First, current technologies for teleoperation as well as BTCSs are briefly reviewed. Second, an advanced concept for designing a bilateral teleoperation networked control (BTNCS) system is proposed, and the working principle is clearly explained. Third, an approach to develop a force-sensorless feedback control (FSFC) is proposed to simplify the sensor requirement in designing the BTNCS, while the correct sense of interaction between the slave and the environment can be ensured. Fourth, a robust-adaptive networked control (RANC)-based master controller is introduced to deal with control of the slave over the network containing both time delays and information loss. Case studies are carried out to evaluate the applicability of the suggested methodology.",signatures:"Truong Quang Dinh, Jong Il Yoon, Cheolkeun Ha and James\nMarco",downloadPdfUrl:"/chapter/pdf-download/50530",previewPdfUrl:"/chapter/pdf-preview/50530",authors:[{id:"168437",title:"Prof.",name:"Cheolkeun",surname:"Ha",slug:"cheolkeun-ha",fullName:"Cheolkeun Ha"},{id:"181747",title:"Dr.",name:"Truong Quang",surname:"Dinh",slug:"truong-quang-dinh",fullName:"Truong Quang Dinh"},{id:"185978",title:"Dr.",name:"Jong Il",surname:"Yoon",slug:"jong-il-yoon",fullName:"Jong Il Yoon"},{id:"185979",title:"Prof.",name:"James",surname:"Marco",slug:"james-marco",fullName:"James Marco"}],corrections:null},{id:"50267",title:"Wireless Real-Time Monitoring System for the Implementation of Intelligent Control in Subways",doi:"10.5772/62679",slug:"wireless-real-time-monitoring-system-for-the-implementation-of-intelligent-control-in-subways",totalDownloads:1713,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"This chapter looks into the technical features of state-of-the-art wireless sensors networks for environmental monitoring. Technology advances in low-power and wireless devices have made the deployment of those networks more and more affordable. In addition, wireless sensor networks have become more flexible and adaptable to a wide range of situations. Hence, a framework for their correct implementation will be provided. Then, one specific application about real-time environmental monitoring in support of a model-based predictive control system installed in a metro station will be described. In these applications, filtering, resampling, and post-processing functions must be developed, in order to convert raw data into a dataset arranged in the right format, so that it can inform the algorithms of the control system about the current state of the domain under control. Finally, the whole architecture of the model-based predictive control and its final performances will be reported.",signatures:"Alessandro Carbonari, Massimo Vaccarini, Mikko Valta and\nMaddalena Nurchis",downloadPdfUrl:"/chapter/pdf-download/50267",previewPdfUrl:"/chapter/pdf-preview/50267",authors:[{id:"10486",title:"Dr.",name:"Alessandro",surname:"Carbonari",slug:"alessandro-carbonari",fullName:"Alessandro Carbonari"},{id:"150738",title:"Dr.",name:"Massimo",surname:"Vaccarini",slug:"massimo-vaccarini",fullName:"Massimo Vaccarini"},{id:"185509",title:"Dr.",name:"Mikko",surname:"Valta",slug:"mikko-valta",fullName:"Mikko Valta"},{id:"185510",title:"Dr.",name:"Maddalena",surname:"Nurchis",slug:"maddalena-nurchis",fullName:"Maddalena Nurchis"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5438",title:"Operations Research",subtitle:"the Art of Making Good Decisions",isOpenForSubmission:!1,hash:"788338a326fcfe39265211c29138ba7a",slug:"operations-research-the-art-of-making-good-decisions",bookSignature:"Kuodi Jian",coverURL:"https://cdn.intechopen.com/books/images_new/5438.jpg",editedByType:"Edited by",editors:[{id:"107214",title:"Dr.",name:"Kuodi",surname:"Jian",slug:"kuodi-jian",fullName:"Kuodi Jian"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"correction-to-chemical-composition-and-biological-activities-of-mentha-species",title:"Correction to: Chemical Composition and Biological Activities of Mentha Species",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/57158.pdf",downloadPdfUrl:"/chapter/pdf-download/57158",previewPdfUrl:"/chapter/pdf-preview/57158",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/57158",risUrl:"/chapter/ris/57158",chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]}},chapter:{id:"54028",slug:"chemical-composition-and-biological-activities-of-mentha-species",signatures:"Fatiha Brahmi, Madani Khodir, Chibane Mohamed and Duez Pierre",dateSubmitted:"June 7th 2016",dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"March 15th 2017",book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"193281",title:"Dr.",name:"Fatiha",middleName:null,surname:"Brahmi",fullName:"Fatiha Brahmi",slug:"fatiha-brahmi",email:"fatiha.brahmi@univ-bejaia.dz",position:null,institution:{name:"University of Béjaïa",institutionURL:null,country:{name:"Algeria"}}},{id:"199693",title:"Prof.",name:"Khodir",middleName:null,surname:"Madani",fullName:"Khodir Madani",slug:"khodir-madani",email:"madani28dz@yahoo.fr",position:null,institution:null},{id:"199694",title:"Prof.",name:"Pierre",middleName:null,surname:"Duez",fullName:"Pierre Duez",slug:"pierre-duez",email:"pduez@umons.be",position:null,institution:null},{id:"203738",title:"Prof.",name:"Mohamed",middleName:null,surname:"Chibane",fullName:"Mohamed Chibane",slug:"mohamed-chibane",email:"chibanem@yahoo.fr",position:null,institution:null}]},book:{id:"5612",title:"Aromatic and Medicinal Plants",subtitle:"Back to Nature",fullTitle:"Aromatic and Medicinal Plants - Back to Nature",slug:"aromatic-and-medicinal-plants-back-to-nature",publishedDate:"March 15th 2017",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/5612.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10765",leadTitle:null,title:"Environmental Management",subtitle:"Pollution, Habitat, Ecology, and Sustainability",reviewType:"peer-reviewed",abstract:"Environmental Management - Pollution, Habitat, Ecology, and Sustainability includes sixteen chapters that discuss pressing environmental issues in diverse locations around the world. Chapters discuss methods, technologies, analyses, and actions that may enlighten and enable decision-makers and managers in their quests for control of environmental problems. The authors present the facts and the challenges behind the assorted issues and offer new perspectives for contending with natural, social, economic, and political aspects of management.",isbn:"978-1-83962-547-3",printIsbn:"978-1-83962-546-6",pdfIsbn:"978-1-83962-548-0",doi:null,price:139,priceEur:155,priceUsd:179,slug:"environmental-management-pollution-habitat-ecology-and-sustainability",numberOfPages:308,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",bookSignature:"John P. Tiefenbacher",publishedDate:"March 23rd 2022",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",keywords:null,numberOfDownloads:2840,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:2,numberOfTotalCitations:3,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 12th 2021",dateEndSecondStepPublish:"February 9th 2021",dateEndThirdStepPublish:"April 10th 2021",dateEndFourthStepPublish:"June 29th 2021",dateEndFifthStepPublish:"August 28th 2021",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:"A geospatial scholar working at the interface of natural and human systems, collaborating internationally on innovative studies about hazards and environmental challenges. Dr. Tiefenbacher has published more than 200 papers on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher",profilePictureURL:"https://mts.intechopen.com/storage/users/73876/images/system/73876.jfif",biography:"Dr. John P. Tiefenbacher (Ph.D., Rutgers, 1992) is a Professor of Geography and Environmental Studies, at Texas State University. His research has focused on various aspects of hazards and environmental management. Dr. Tiefenbacher has published on a diverse array of topics that examine perception and behaviors with regard to the application of pesticides, releases of toxic chemicals, environments of the US–Mexico borderlands, wildlife hazards, and the geography of wine. More recently his work pertains to adaptation to climate change, spatial responses of wine growing to climate change, the geographies of viticulture and wine, and artificial intelligence and machine learning to predict patterns of natural processes.",institutionString:"Texas State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"Texas State University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"130",title:"Environmental Management",slug:"environmental-sciences-environmental-management"}],chapters:[{id:"77471",title:"Design and Development of Air Quality Monitoring System for Solapur City Using Smart Technologies: WSN and IoT",slug:"design-and-development-of-air-quality-monitoring-system-for-solapur-city-using-smart-technologies-ws",totalDownloads:296,totalCrossrefCites:0,authors:[{id:"292284",title:"Dr.",name:"Tabbsum",surname:"Mujawar",slug:"tabbsum-mujawar",fullName:"Tabbsum Mujawar"},{id:"300961",title:"Prof.",name:"Lalasaheb",surname:"Deshmukh",slug:"lalasaheb-deshmukh",fullName:"Lalasaheb Deshmukh"},{id:"350411",title:"Prof.",name:"P.",surname:"Prabhakar",slug:"p.-prabhakar",fullName:"P. Prabhakar"},{id:"414488",title:"Dr.",name:"Vijendra",surname:"Chaudhari",slug:"vijendra-chaudhari",fullName:"Vijendra Chaudhari"}]},{id:"78036",title:"An Analysis of Remote Sensing Data to Evaluate the Problem of Atmospheric Aerosol Pollution in Africa",slug:"an-analysis-of-remote-sensing-data-to-evaluate-the-problem-of-atmospheric-aerosol-pollution-in-afric",totalDownloads:198,totalCrossrefCites:0,authors:[{id:"346239",title:"Dr.",name:"Gerard",surname:"Rushingabigwi",slug:"gerard-rushingabigwi",fullName:"Gerard Rushingabigwi"},{id:"346241",title:"Dr.",name:"Celestin",surname:"Twizere",slug:"celestin-twizere",fullName:"Celestin Twizere"},{id:"346242",title:"Dr.",name:"Jean De Dieu",surname:"Ntawangaheza",slug:"jean-de-dieu-ntawangaheza",fullName:"Jean De Dieu Ntawangaheza"},{id:"346243",title:"Prof.",name:"Liguo",surname:"Sun",slug:"liguo-sun",fullName:"Liguo Sun"},{id:"428987",title:"Dr.",name:"Philibert",surname:"Nsengiyumva",slug:"philibert-nsengiyumva",fullName:"Philibert Nsengiyumva"}]},{id:"77472",title:"Managing Non-Sewered Sanitation for Achieving Sustainable Development Goal 6 in India",slug:"managing-non-sewered-sanitation-for-achieving-sustainable-development-goal-6-in-india",totalDownloads:203,totalCrossrefCites:1,authors:[{id:"345914",title:"Mr.",name:"Shubhagato",surname:"Dasgupta",slug:"shubhagato-dasgupta",fullName:"Shubhagato Dasgupta"},{id:"348405",title:"M.Sc.",name:"Neha",surname:"Agarwal",slug:"neha-agarwal",fullName:"Neha Agarwal"}]},{id:"77369",title:"Reducing Pollution of Stabilized Landfill Leachate by Mixing of Coagulants and Flocculants: A Comparative Study",slug:"reducing-pollution-of-stabilized-landfill-leachate-by-mixing-of-coagulants-and-flocculants-a-compara",totalDownloads:213,totalCrossrefCites:0,authors:[{id:"348130",title:"Dr.",name:"Abdelkader",surname:"Anouzla",slug:"abdelkader-anouzla",fullName:"Abdelkader Anouzla"},{id:"348450",title:"Dr.",name:"Mlika",surname:"Kastali",slug:"mlika-kastali",fullName:"Mlika Kastali"},{id:"348451",title:"Dr.",name:"Latifa",surname:"Mouhir",slug:"latifa-mouhir",fullName:"Latifa Mouhir"},{id:"348452",title:"Dr.",name:"Abdelaziz",surname:"Madinzi",slug:"abdelaziz-madinzi",fullName:"Abdelaziz Madinzi"},{id:"348749",title:"Prof.",name:"Salah",surname:"Souabi",slug:"salah-souabi",fullName:"Salah Souabi"},{id:"348750",title:"Dr.",name:"Abdeslam",surname:"Taleb",slug:"abdeslam-taleb",fullName:"Abdeslam Taleb"}]},{id:"80590",title:"Plastic Pollution in the Mediterranean and Public-Private Partnerships to Manage It - A Case Study in Lebanon",slug:"plastic-pollution-in-the-mediterranean-and-public-private-partnerships-to-manage-it-a-case-study-in-",totalDownloads:81,totalCrossrefCites:0,authors:[{id:"108542",title:"Dr.",name:"Michel Soto",surname:"Chalhoub",slug:"michel-soto-chalhoub",fullName:"Michel Soto Chalhoub"}]},{id:"79986",title:"The Impacts of Air Pressure Differences on Microclimatic Wind Comfort among Low-Rise Buildings in the Historical Urban Landscape of the Bay of Kotor Region, Montenegro",slug:"the-impacts-of-air-pressure-differences-on-microclimatic-wind-comfort-among-low-rise-buildings-in-th",totalDownloads:83,totalCrossrefCites:0,authors:[{id:"185967",title:"Associate Prof.",name:"Enes",surname:"Yasa",slug:"enes-yasa",fullName:"Enes Yasa"},{id:"440813",title:"Mr.",name:"Kadir",surname:"Özdemir",slug:"kadir-ozdemir",fullName:"Kadir Özdemir"}]},{id:"79157",title:"Trajectories of RNA Virus Mutation Hidden by Evolutionary Alternate Reality Thermodynamic Endpoints in Transformations in Response to Abiotic Habitat Stresses",slug:"trajectories-of-rna-virus-mutation-hidden-by-evolutionary-alternate-reality-thermodynamic-endpoints-",totalDownloads:126,totalCrossrefCites:0,authors:[{id:"337363",title:"Ms.",name:"Farida Hanna",surname:"Campbell",slug:"farida-hanna-campbell",fullName:"Farida Hanna Campbell"}]},{id:"76399",title:"Hunting and Deforestation: A Threat to the Existence of the Niger Delta Red Colobus Monkey (Procolobus epieni)",slug:"hunting-and-deforestation-a-threat-to-the-existence-of-the-niger-delta-red-colobus-monkey-em-procolo",totalDownloads:243,totalCrossrefCites:0,authors:[{id:"142349",title:"Dr.",name:"Lameed",surname:"Gbolagade Akeem",slug:"lameed-gbolagade-akeem",fullName:"Lameed Gbolagade Akeem"},{id:"460721",title:"Dr.",name:"Lateef",surname:"Funmilayo Lewiska",slug:"lateef-funmilayo-lewiska",fullName:"Lateef Funmilayo Lewiska"}]},{id:"77847",title:"Implications of Ethnoecological and Phytoecological Studies for the Sustainable Management of the Mozogo-Gokoro National Park (Cameroon)",slug:"implications-of-ethnoecological-and-phytoecological-studies-for-the-sustainable-management-of-the-mo",totalDownloads:178,totalCrossrefCites:0,authors:[{id:"143856",title:"Dr.",name:"Adamou",surname:"Ibrahima",slug:"adamou-ibrahima",fullName:"Adamou Ibrahima"},{id:"316426",title:"Dr.",name:"Rodrigue Constant",surname:"Sandjong Sani",slug:"rodrigue-constant-sandjong-sani",fullName:"Rodrigue Constant Sandjong Sani"},{id:"318179",title:"Dr.",name:"Mama",surname:"Ntoupka",slug:"mama-ntoupka",fullName:"Mama Ntoupka"},{id:"318180",title:"Prof.",name:"Toua",surname:"Vroumsia",slug:"toua-vroumsia",fullName:"Toua Vroumsia"}]},{id:"78728",title:"Ecological Restoration of Degraded Habitats of Jajang Iron and Manganese Ore Mines, Keonjhar, Odisha, India",slug:"ecological-restoration-of-degraded-habitats-of-jajang-iron-and-manganese-ore-mines-keonjhar-odisha-i",totalDownloads:177,totalCrossrefCites:0,authors:[{id:"347126",title:"Dr.",name:"Rabindra Kumar",surname:"Mishra",slug:"rabindra-kumar-mishra",fullName:"Rabindra Kumar Mishra"},{id:"350537",title:"Mr.",name:"Barun",surname:"Behera",slug:"barun-behera",fullName:"Barun Behera"},{id:"427428",title:"Dr.",name:"Anita",surname:"Dash",slug:"anita-dash",fullName:"Anita Dash"},{id:"429598",title:"Dr.",name:"Bidyut",surname:"Kumar Patra",slug:"bidyut-kumar-patra",fullName:"Bidyut Kumar Patra"}]},{id:"76073",title:"Integrating Ecological Site Descriptions with Soil Morphology to Optimize Forest Management: Three Missouri Case Studies",slug:"integrating-ecological-site-descriptions-with-soil-morphology-to-optimize-forest-management-three-mi",totalDownloads:212,totalCrossrefCites:0,authors:[{id:"185895",title:"Dr.",name:"Michael",surname:"Aide",slug:"michael-aide",fullName:"Michael Aide"},{id:"269286",title:"Dr.",name:"Christine",surname:"Aide",slug:"christine-aide",fullName:"Christine Aide"},{id:"269287",title:"Dr.",name:"Indi",surname:"Braden",slug:"indi-braden",fullName:"Indi Braden"}]},{id:"78370",title:"Economic Value of Cultural Ecosystem Services in India: A Review",slug:"economic-value-of-cultural-ecosystem-services-in-india-a-review",totalDownloads:158,totalCrossrefCites:0,authors:[{id:"275432",title:"Dr.",name:"Muniyandi",surname:"Balasubramanian",slug:"muniyandi-balasubramanian",fullName:"Muniyandi Balasubramanian"}]},{id:"78342",title:"The Challenges of Managing Water for Wetland Ecology, Flood Mitigation and Agriculture in the Upper Lunan Water, an Intensive Arable Catchment in Scotland",slug:"the-challenges-of-managing-water-for-wetland-ecology-flood-mitigation-and-agriculture-in-the-upper-l",totalDownloads:141,totalCrossrefCites:0,authors:[{id:"347738",title:"Dr.",name:"Andy",surname:"Vinten",slug:"andy-vinten",fullName:"Andy Vinten"},{id:"415973",title:"Mr.",name:"Iain",surname:"D.M. Gunn",slug:"iain-d.m.-gunn",fullName:"Iain D.M. Gunn"}]},{id:"77826",title:"Ensuring Water Availability in Future through Revival of Indian Traditional Water Culture",slug:"ensuring-water-availability-in-future-through-revival-of-indian-traditional-water-culture",totalDownloads:180,totalCrossrefCites:0,authors:[{id:"346148",title:"Dr.",name:"Yogranjan",surname:"Singh",slug:"yogranjan-singh",fullName:"Yogranjan Singh"},{id:"421094",title:"Mr.",name:"Sarthak",surname:"Pandey",slug:"sarthak-pandey",fullName:"Sarthak Pandey"},{id:"421095",title:"Dr.",name:"Amit Kumar",surname:"Goswami",slug:"amit-kumar-goswami",fullName:"Amit Kumar Goswami"}]},{id:"77233",title:"Necessity, Principle and Technique of Evaluation Model to Assess Sustainability of Oil Palm Plantation in Indonesia",slug:"necessity-principle-and-technique-of-evaluation-model-to-assess-sustainability-of-oil-palm-plantatio",totalDownloads:46,totalCrossrefCites:0,authors:[{id:"348631",title:"Associate Prof.",name:"Latief Mahir",surname:"Rachman",slug:"latief-mahir-rachman",fullName:"Latief Mahir Rachman"}]},{id:"77199",title:"The Increasing Importance of Environmental, Social and Governance (ESG) Investing in Combating Climate Change",slug:"the-increasing-importance-of-environmental-social-and-governance-esg-investing-in-combating-climate-",totalDownloads:306,totalCrossrefCites:0,authors:[{id:"346150",title:"Dr.",name:"Percy",surname:"Jinga",slug:"percy-jinga",fullName:"Percy Jinga"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"418641",firstName:"Iva",lastName:"Ribic",middleName:null,title:"M.Sc.",imageUrl:"https://mts.intechopen.com/storage/users/418641/images/16830_n.png",email:"iva.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"600",title:"Approaches to Managing Disaster",subtitle:"Assessing Hazards, Emergencies and Disaster Impacts",isOpenForSubmission:!1,hash:"e97caba8487382025a1e70eb85e4e390",slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/600.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3054",title:"Approaches to Disaster Management",subtitle:"Examining the Implications of Hazards, Emergencies and Disasters",isOpenForSubmission:!1,hash:"0d6576de4f4c7fc7b8db5e91cba6dc28",slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/3054.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"865",title:"Perspectives on Nature Conservation",subtitle:"Patterns, Pressures and Prospects",isOpenForSubmission:!1,hash:"4a4d39cf2a0c2a9416049331b508aa88",slug:"perspectives-on-nature-conservation-patterns-pressures-and-prospects",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/865.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9846",title:"Spatial Variability in Environmental Science",subtitle:"Patterns, Processes, and Analyses",isOpenForSubmission:!1,hash:"cfa4fa7b982bbff46ffbe6fbdbffbdf1",slug:"spatial-variability-in-environmental-science-patterns-processes-and-analyses",bookSignature:"John P. Tiefenbacher and Davod Poreh",coverURL:"https://cdn.intechopen.com/books/images_new/9846.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8011",title:"Natural Hazards",subtitle:"Risk, Exposure, Response, and Resilience",isOpenForSubmission:!1,hash:"43ca8c43ab0963f6c43350764f696b63",slug:"natural-hazards-risk-exposure-response-and-resilience",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/8011.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9389",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!1,hash:"435d35b33ec04fe921640a514feb19e4",slug:"global-warming-and-climate-change",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7477",title:"Advances in Environmental Monitoring and Assessment",subtitle:null,isOpenForSubmission:!1,hash:"23d6e3704efd9ff5940bbbefc54d3b86",slug:"advances-in-environmental-monitoring-and-assessment",bookSignature:"Suriyanarayanan Sarvajayakesavalu",coverURL:"https://cdn.intechopen.com/books/images_new/7477.jpg",editedByType:"Edited by",editors:[{id:"237021",title:"Dr.",name:"Suriyanarayanan",surname:"Sarvajayakesavalu",slug:"suriyanarayanan-sarvajayakesavalu",fullName:"Suriyanarayanan Sarvajayakesavalu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8834",title:"Managing Wildlife in a Changing World",subtitle:null,isOpenForSubmission:!1,hash:"a27827009edc70af81e12c10aa3e51dd",slug:"managing-wildlife-in-a-changing-world",bookSignature:"Jafari R. Kideghesho",coverURL:"https://cdn.intechopen.com/books/images_new/8834.jpg",editedByType:"Edited by",editors:[{id:"280695",title:"Prof.",name:"Jafari R.",surname:"Kideghesho",slug:"jafari-r.-kideghesho",fullName:"Jafari R. Kideghesho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49984",title:"Phosphate Rocks",doi:"10.5772/62214",slug:"phosphate-rocks",body:'\n
Apatite [Ca5(PO4,CO3)3(OH,F,Cl)] is the most abundant phosphate mineral, which accounts for more than 95% of all phosphorus in the Earth’s crust and is found as an accessory mineral in most rock types A rock may be best defined as any mineral or aggregate of minerals that forms an essential part of the Earth [10]. Apatite is found in all classes of rock: igneous, metamorphic and sedimentary [2]. Also, much of phosphorus in coal is present in the form of apatite [7]. Phosphorus is the 10th most abundant element on Earth, with an average crustal abundance of 0.1% [8].
However, exploitable deposits of apatite are mainly found in igneous rocks and also in sedimentary and metamorphic rocks. The former comprises the stratiform phosphorite deposits in shelf-type shale-carbonate sequences, which contain high phosphorus ores of microcrystalline CO2-rich fluorapatite (francolite) and cryptocrystalline collophane. The igneous deposits comprise fluorapatite ores, which mostly accommodate carbonatites and other types of alkaline intrusions. The magmatic ores are generally of lower grade but give higher-quality beneficiation products with low contents of unwanted contaminants (Cd, Pb, As, U, Th, Mg and Al) [11],[12].
\nThe average distribution of trace elements in phosphate rock [
The beneficiation products of apatite ores as a commodity are traded as phosphate rock. It is the only significant global resource of phosphorus used dominantly in the manufacturing of nitrogen-phosphorus-potassium (NPK) fertilizers for food-crop nutrition and in the production of animal feed supplements. Only 10 – 15% of the world’s production of phosphate rock has other applications (e.g. pharmaceuticals, ceramics, textiles and explosives) and represents an important alternative source of rare-earth elements (REE) [12],[13]. The REE contents in apatites are useful in paleoceanographic studies to identify the seawater masses and circulation patterns or to quantify the redox state of the ocean [14].
\nThe composition of phosphate rocks varies from one deposit to another. Therefore, phosphate rocks from different sources may be expected to behave differently in beneficiation and acidulation processes. Phosphate rocks are primarily composed of the apatite group in association with a wide assortment of accessory minerals, mainly fluorides, carbonates, clays, quartz, silicates and metal oxides [13],[15],[16].
\nSi, Ca, Fe and Al are the most common companion elements in phosphate rocks, with the median abundances of 53.3 wt.%, 30.0 wt.%, 13.6 wt.% and 8.0 wt.%, respectively, compared with P2O5. In some low-grade phosphate rock mines, the content of Fe and Al is even higher than that of P2O5, and it is usual that the P2O5 content in phosphate rock is less than the Si and Ca content. In addition, some elements that are very rare in the Earth’s crust are found to be relatively abundant (Fig. 1) in phosphate rocks [17].
\nWhen rock contains phosphate components between 5 and 50% (by volume), then it is phosphatic, and the name of the main lithology is used as a suffix (phosphatic limestone, phosphatic claystone, etc.). In addition, the dominant textural form of the phosphate components in a phosphorite can be used in defining the rock name (e.g. peloidal Peloid is a comprehensive descriptive term for polygenetic grains composed of micro- and polycrystalline carbonate. The term was proposed in order to replace the widely used name “pellet,” which for many authors had become a synonym for pelletal coprolites (fossilized faces). Peloids differ from ooids and oncoids by the absence of centrosymmetric or radial internal structures [19].
There are two main kinds of phosphate rocks deposits in the world [10],[20],[21],[22],[17],[23]:
Depending on their origin (igneous or sedimentary), phosphate rocks have widely varying mineralogical, textural and chemical characteristics [23]. The locations of the major phosphate rocks deposit and producers are shown in Fig. 2\n [20],[24].
\nSedimentary phosphate deposits are exploited to produce about 80% of the total world production of phosphate rocks. Igneous phosphate deposits are often associated with carbonatites Igneous rocks (intrusive or extrusive) that contain carbonates in the amount higher than 50%.
The distribution of the world’s phosphate resources [
The atom ratio of P:N = 1:15(16) in the oceans is not greatly different from that found in living organisms. The availability of soluble phosphate from weathering of apatite-containing rocks may initially has been the rate-determining factor in early live development. In most ecological systems, the phosphate content is the limiting factor for growth. Nearly all igneous rocks contain some phosphate, even if it is only ~0.1% (0.2% P2O5 on average in lithosphere), with nearly all of it in the form of apatite. Sedimentary rocks generally contain rather less (~0.1% P2O5 on average). Sedimentary phosphorite is believed to originate from widely dispersed apatite mainly in igneous rocks [25].
\nMost marine sediments and rocks contain less than 0.3% of P2O5. However, periodically through geological time, phosphorites (with the content of P2O5 of 5% or greater) formed on the seafloor in response to specialized oceanic conditions and accumulated in sufficient concentrations to produce major deposits of regional extent Most of the world’s phosphate production comes from marine phosphorites [27].
Marine phosphate formation and deposition represent the periods of low rates of sedimentation in combination with large supplies of nutrients. Phosphorus is then concentrated by various mechanisms, possibly bacterial (refer to discussion of Fig. 7), at either the sediment-water interface or within interstitial pore waters. This process leads to primary formation and growth of phosphate grains, which remain where they were formed or are transported as clastic particles within the environment of formation. During subsequent periods of time, some primary phosphate grains may be physically reworked into another sediment unit in response to either changing or different environmental processes [26].
\nStratigraphic distribution of phosphorites based on 1982 production data (a) and distribution of major Proterozoic-Cambrian phosphorites (b) [
The stratigraphic distribution Since the Earth is stratified, in a broad sense, all rocks and classes of rocks (sedimentary, igneous and metamorphic) fall within the scope of stratigraphy and stratigraphic classification. Rocks can be classified according to lithology, fossil content, magnetic polarity, electrical properties, seismic response, chemical or mineralogical composition, etc. Rocks can be also classified according to time of their origin or environment of genesis. Rock bodies can be classified into many different categories of stratigraphic classification, including lithostratigraphic units (1), biostratigraphic units (2), chronostratigraphic units (3), unconformity-bounded units (4) and magnetostratigraphic units (5). Please see work [29] for further details. Phosphate occurs as concentrated in stromatolite columns, laminar algal (stromatolitic) phosphorite, reworked fragments of stromatolites forming silicified conglomeratic or brecciated phosphorite, massive-bedded phosphorite with sandy and clayey laminate and disseminate pellets and nodules in dolomite [30].
Some phosphates were formed during all major sea-level transgressions during 67 million years of Cenozoic history; however, some periods were more important than others with respect to producing large volumes of phosphorites and preserving them in the geologic column. During the Paleocene and Eocene, several major episodes of phosphogenesis occurred within the major episodes of phosphogenesis in the major east-west ocean, which included Tethys [31], The Tethys Ocean divided the continental masses into northern and southern groups. It merged at both ends with the Panthalassa or proto-Pacific Ocean. The remnants of Tethys are now located within Alpine mountain belts from the Caribbean in the west to recent collision zone between Australia and Eurasia in the east and within still-growing Central Atlantic Ocean between Africa and North America [31].
Geological period | \nAge | \nDuration | \n|||
---|---|---|---|---|---|
258 | \n0.0117 | \n<3 | \n10 | \n||
2.58 – 0.0117 | \n|||||
23.03 – 2.58 | \n5.333 – 2.58 | \n5 – 4 | \n1 | \n||
23.03 – 5.333 | \n19 – 13 | \n6 | \n|||
\n | \n | 66 – 23.03 | \n33.9 – 23.03 | \n29 – 25 | \n4 | \n
Formation of phosphorites during Upper Cenozoic phosphogenesis [26].
Phosphorites and phosphatic sediments are known on the floor of the Pacific, Indian and Atlantic oceans. They occur in a number of inshore areas (the shelves and upper part of the continental slopes) and in pelagic zones, chiefly on seamounts. Most of the shelf phosphorites are localized in four very large oceanic phosphorite provinces [32],[26],[33]:
Sedimentary rocks with the content of 18 – 20 wt.% of P2O5 are termed as phosphorites. The main phosphate mineral in phosphorites is carbonate-fluorapatite (CAF, francolite): Ca10−a−b−cNaaMgb(PO4)6−x(CO3)x−y−z(CO3,F)y(SO4)zF2, where
Continental margins in association with terrigenous;
Submerged mountains in association with calcareous and volcanogenic rocks.
Phosphorites consist mainly of phosphate cement enveloping small grains of phosphatic and non-phosphatic materials. Phosphate in the cavities of foraminifera is purer than that enveloping the grains [37].
\nThe largest phosphorite-bearing regions are situated along the west coasts of Africa and America, at the east coast of the USA, off New Zealand and in the central part of the northern Pacific. The phosphatic matter of phosphorites consists of carbonate-fluorapatite and is intermixed with variable amounts of terrigenous, biogenic and diagenetic non-phosphatic components, which are the cause of a wide range of fluctuations in their chemical compositions. The age of sea-floor phosphorites varies from Cretaceous to Recent. Recent phosphorites are localized in the south west of Africa and at Peru-Chile shelves, which are the areas influenced by strong upwelling of nutrient-rich waters (Fig. 4(a)), resulting in high biological productivity, intensive biogenic sedimentation and diagenetic redistribution of geochemically active, mobile, organic-derived phosphorus in sediments. This phosphorus is accreted in the form of initially soft and friable nodules undergoing gradual lithification [27],[37].
\nThe surface currents in an idealized ocean, showing the areas of ascending nutrient-rich water (a) and the distribution of upwelling water and related phenomena in modern oceans (b) [
Pronounced climatic, biological and geologic effects accompany upwelling, especially where it is produced by the divergence in coastal areas (Fig. 4(b)). The presence of cold waters along the coasts produces the coastal fogs and humid-air deserts, such as those of northern Chile and southwest Africa. The nutrient-rich waters that lie alongside these deserts are the lushest gardens of the sea, as the upwelling cold waters there support tremendous quantities of organisms. Most of large accumulations of guano (
Sedimentary deposits usually contain varieties of carbonate-fluorapatite called francolite (described in
Since a wide range of very different particles and processes of formation complicates the simple classification of phosphorites, there is not any unified phosphorite classification The nature and origin of phosphorites have been a matter of much speculation since they were first discovered more than 150 years ago [38], and there is not any commonly accepted nomenclature [39].
Micrite (the abbreviation for microcrystalline calcite) is characterized by crypto- to microcrystalline crystal texture. As the synonym of micrite, the names as lime mud, lime ooze, lime mudstone, calcimudstone and calcilutite are also used. The original definition sets a grain-size limit to < 4 μm, but current terminology distinguishes between minimicrite (<1 μm), micrite I (1 – 4 μm) and micrite II (4 – 30 μm). Furthermore, primary micrites (orthomicrites and nannoagorites), secondary micrites and pseudomicrites are recognized. Orthomicrites consist of subhedral polygonal calcite grains meeting at the interfaces. Nannoagorites are composed of calcareous pelagic biota. Secondary and pseudo micrites result from the diagenetic processes [19].
Some nodules of phosphatized limestone are coated with a discontinuous layer of secondary phosphate with the thickness up to 1 cm.
The investigation of the microstructure of phosphorites by electron microscopy enables to recognize the following varieties [33]:
With regard to their texture and petrographic character, phosphorites can be classified according to the predominant size of the phosphorite component into four types [40]:
Although the types are named on the structural basis, the phosphate grains do not always have the dimensions given above. At the same time, the classified types fairly differ in many features, such as the association with various geological formations, the phosphate mineralogy and the stratigraphic sequence, thus being of lithologic character [40].
\nMost attempts to classify the phosphorite rocks adopt and modify the classification scheme for carbonates [36]. In 1962, Dunham [41] published the classification scheme for limestone. This scheme for carbonate rocks was modified for non-genetic classification of phosphorites (Fig. 5) [28].
\nThe classification scheme of carbonate rocks modified for phosphorites [
The macroscopic classification scheme for phosphate sediments suggested by Riggs [42] is shown in Fig. 6(a). The ancient deposits are better characterized via the scheme in Fig. 6(b), which was proposed by Kastern and Garrison [43]. In this model, three types of phosphates were recognized [39],[43]:
F-phosphates are friable, light-colored micronodules and peloids of carbonate-fluorapatite (CFAP); they were formed by the precipitation of CFAP in laminated diatom muds deposited within the oxygen-minimum zone.
Phosphatic sands, termed as P-phosphates, consist of phosphatic peloids, coated grains and fish debris, often having an admixture of fine siliciclastic grains. These sands occur in thin layers and burrowed beds up to 2 m thick.
Dark and dense phosphates, herein called D-phosphates, are the most abundant. They occur as nodules, gravels and hard grounds. These phosphates were formed through complicated cycles of CFAP precipitation during early diagenesis, erosion and exhumation and reburial and rephosphatization processes associated with changing energy conditions, which may reflect the effects of changes in the sea level.
CFAP cements in P- and D-phosphates are often replaced microbial structures, but our data do not reveal whether this microbial involvement was passive or active. F-phosphates are most common in deeper water, outer-shelf/upper-slope sites, whereas D- and P-phosphates tend to predominate at shallower shelf sites more subjected to episodic high-energy conditions, especially during the low stands of sea level. This concept reveals the paleoenvironmental and time relationships of various phosphate sediments [39],[43].
\nThe classification scheme of phosphorites proposed by
Phosphorites can be formed in nature
Making reactive phosphate available;
Making reactive calcium available;
Generating or maintaining the pH and redox conditions, which favor the precipitation of phosphate.
The schematic presentation of formation of phosphorite in marine environment [
The models of authigenic phosphorite genesis (Fig. 7) assume the occurrence of mineralization of organic phosphorus in biologically productive waters, such as at ocean margins, that is, at shallow depths on continental slopes, shelf areas or plateaus [44].
\nHere, detrital accumulations may be mineralized at the sediment-water interface and in interstitial pore waters, liberating phosphate, some of which may then interact chemically with calcium in seawater to form phosphorite grains. These grains may be subsequently redistributed within the sediments units. The dissolution of fish debris (bones) is also considered an important source of phosphate in authigenic phosphorite genesis. The upwelling probably also plays an important role in many cases of authigenic formation of phosphorite. During non-upwelling period in winter, the phosphate-sequestering bacteria of oxidative genera
Authigenic phosphorite formation at some eastern continental margins, where upwelling, if occurred at all, was a weak and intermittent process that may have been formed more directly as a result of intracellular bacterial phosphate accumulation, which became transformed into carbonate-fluorapatite upon the death of cells accumulated in sediments in areas where the sedimentation rate was very low [44].
\nThe model of diagenetic formation of phosphorite generally assumes the exchange of phosphate for carbonate in accretions that have the form of calcite and aragonite. The role of bacteria in this process is to mobilize phosphate by mineralizing detrital organic matter. The demonstration of this process in marine and freshwater environment under laboratory conditions leads to the hypothesis that the diagenesis of calcite to form apatite explains the origin of some deposits in the North Atlantic. The phosphorite deposits of Baja California and in the core of eastern Pacific Ocean seem to have formed as a result of partial diagenesis [44].
\nApatites of igneous origin include hydrothermal veins and disseminated replacements, marginal differentiations near the boundaries of intrusions and pegmatites, but the largest deposits are intrusive masses or sheets associated with carbonatite, nepheline-syenite and other alkalic rocks [27]. Igneous rocks are classified on the basis of their [21],[45]:
The name for fully (100%) crystallized igneous rock [45]. The matrix is defined as interstitial material between larger (skeletal) grains [46]. The texture is characterized by many cavities (vesicles), which were formed by bubbles of volatile gasses during the decrease of pressure at extrusion of magma to the surface. Lava solidifies before bubbles of gases can escape to the atmosphere [46]. The name for igneous rocks where the ratio of crystals to glassy phase is higher than 3:5. Rocks containing higher amount of glass are termed as hypohyaline or holohyaline [45].
Rocks that crystallize partly at depth and partly near the surface are called Denotes the intrusions of magma at shallow depths in the crust, often directly related to overlying volcanic edifices [45].
Term mafic is the abbreviation of names of elements Term felsic is the abbreviator of names of minerals
An acidic rock contains > 60% SiO2, whereas a basic rock is characterized by silica content ranging from 44 to 52% of SiO2. Many of ultramafic rocks are ultrabasic with the content of silica < 44%, but such ultramafic rocks as pyroxenites and amphibolites are not ultrabasic, but they are rather basic [21].
Igneous rocks are formed by the solidification of silicate melt from high temperatures. Since the sequence of crystallization follows the liquidus-solidus phase relationships, the minerals of low content will normally crystallize the least, but diorite and granodiorite melts may have enough phosphorus present for the FAP phase field to intersect the liquidus and to allow early formation of fluorapatite. Later-crystallizing phases should form in the interstices between early-crystallizing phases of alkali-rich igneous rocks and should form an immiscible phosphate-rich liquid phase, which leads to large late-stage segregations of FAP, some of which are associated with magnetite [47].
\nWhere the content of phosphorus is very low, phosphorus may remain in the fluid phase, and apatite will form during the time at which the rock re-reacts with this fluid. This reaction is termed as pneumatolitic, and formed crystals will be small and often euhedral (with crystal facets). They may be included inside preexisting mineral grains. This situation is often encountered in granites and other related siliceous igneous rocks. The concentration of apatite minerals in igneous rocks is rarely sufficient to yield the source for mining the deposits for the phosphorus content [47].
\nThe biogenic (endogenous) mineral deposits form in surface environments as the transformation of primary organic aggregates or as a result of biochemical processes. Since the organism produces many of the same substances that form inorganically in rocks, the biogenic minerals are not minerals in the conventional sense1. Biogenic minerals originate from living organisms or with their assistance (Table 2). These compounds are crystallized within living organisms as a result of cell activity and are surrounded by organic matter. Classical examples are the bones of vertebrates. The bones and teeth consist of fine fibers or platy crystals (
Composition | \nPlant or animal examples | \n|
---|---|---|
Silica (opal, chalcedony, quartz) | \nRadiolaria, siliceous sponges, diatomic algae | \n|
Carbonate | \nCalcite | \nArcheocyatha, foraminifera, stromatoporoids, carbonate sponges, echinoderms, brachiopods, belemnites, ostracods, coccolithophora, cyanophycerae, purple algae, some mollusk shells, eggshells or birds and reptiles | \n
Calcite crystals | \nEyes of trilobites and brittle star | \n|
Aragonite | \nCorals, shells of mollusks and cephalopods | \n|
Aragonite transforming to calcite | \nCorals, bryozoa, gastropods, pelecypods | \n|
Phosphate | \nApatite | \nBones, teeth, scales of vertebrates, brachiopods | \n
Barite, gypsum | \nEar stones of animals | \n|
Struvite | \nKidney and gall stones | \n|
Oxalates | \nWhewellite, weddellite | \nKidney and gall stones | \n
Phosphate-bearing carbonates | \nBrachiopods | \n|
Magnetite | \nIn brain tissue of birds and insects (carrier pigeons, bees, etc.), bacteria ( | \n|
Fe-hydroxides | \nShells of diatoms, pediculates of Protozoa | \n
Mineralogical composition of solid plant and animal tissues [48].
In addition to the occurrence within the bones and teeth of vertebrates, mineral-organic aggregates are also found in mollusk shells, solid tissues of foraminifera corals, trilobites and other arthropods, echinoderms, some algae, etc. Some other biogenic processes involve bacteria. Large deposits of native sulfur, manganese oxides and hydroxides and iron are attributed to bacterial activity. Bacterial activity is also involved in the weathering processes of sulfide oxidation and transformation of kaolinite into bauxites [48].
\nBiogenic apatite is one of the most promising authigenic phases in this respect, as it is present in most siliciclastic deposits and is strongly enriched in a large suite of trace elements. Biogenic (fish teeth and bones) and diagenetic apatites are essential repositories of sedimentary phosphorus. They occasionally form huge deposits, as in West Africa, which are actively mined to provide agricultural fertilizers. Some of these deposits, found in particular in the Late Precambrian of China, after chemical precipitates seem to be associated with the episodes of global glaciation. In low-temperature waters, phosphates form numerous complexes. The concentration of phosphorus in sea and river water is limited by very low solubility of apatite. Phosphate radicals often attach to the surface of iron oxyhydroxide colloids when they precipitate in estuaries [49].
\nThe genetic classification proposed by Egorov [50] includes three types of apatite ores according to the mineral assemblages [6],[51],[52],[53],[54],[55]:
Ijolite, theralite and teschenite belong to phanerites (prelenic rocks characterized by equal or nearly equal amounts of femic components) [55]. Urtite is medium-grained and light gray rock composed of about 70% nephelite, 25% aegirite or aegirite-augite [55].
In the work [58], the name camaforite, i.e. Russian neologism [59], denotes the calcite-magnetite-forsterite assemblage, used as a synonym with phoscorite.
The location of upper mantle on the cross-section of the Earth, core and mantle drawn to scale [
The endogenous apatite deposits can be classified The classification according to Dybkov and Karyakin.
The Earth’s crust contains about 0.27% of P2O5. About 200 minerals are known, which contain 1% or more P2O5. Minable concentrations of phosphate, containing from 5 to 35% of P2O5, are formed in all phases of the phosphate cycle (
In general, phosphate rock reserves are non-metallic ores Ores of economic value can be classified as metallic or non-metallic according to the use of the mineral. Certain minerals may be mined and processed for more than one purpose. In one category, the mineral may be metal and non-metallic ore, e.g. bauxite used for the production of aluminum and ceramics, respectively [62].
The grades of apatite deposits from the economic point of view are introduced in Table 3\n. The locations of the world’s phosphate deposits are shown in Fig. 9\n and the average content of P2O5 is listed in Table 4\n.
The most known Miocene phosphate deposits (Table 1) are in North Carolina, Florida, Venezuela, California, Baja California and Peru. In several cases, these emerged deposits are only the up dip limit of a larger Miocene section that extends seaward beyond the coastal plain and constitute large portions of the upper sediment regime that built the modern continental shelves [26].
\n\nGrade | \nP2O5 [wt.%] | \nBLP [%] | \nLocation | \n|
---|---|---|---|---|
1 | \nEconomic | \n20 | \n40.70 | \nFlorida and Moroccan sedimentary phosphorites, Kola and Palabora crystalline igneous apatites | \n
2 | \nSub-economic | \n5 – 20 | \n10.93 – 40.70 | \nWestern USA phosphoria, Russia nepheline-apatites | \n
3 | \nNon-economic | \n1 – 5 | \n2.19 – 10.93 | \nLow-grade ores, phosphatic limestones | \n
4 | \nNon-phosphatic | \n0.1 – 1.0 | \n0.22 – 2.19 | \nWidely distributed apatite in almost all igneous rocks | \n
Grades of apatite deposits [25].
The overview of the world’s phosphate deposits (a) [
Locally, these Miocene sediments are exposed on the seafloor; however, generally, they are buried below thin covers of Plio-Pleistocene and Holocene surface sediments. Thus, there is high potential for discovering new phosphate deposits within the Miocene sediments on the world’s continental shelves, because [26]:
Phosphate genesis is known to occur throughout the shelf in upper slope environments.
Thicker and more extensive sequences of Miocene sediments occur on the shelves than on adjacent coastal plains.
The shallow subsurface Neogene geology of most of the world’s shelves is poorly known.
Source | \n% | \nSource | \n% | \nSource | \n% | \n
---|---|---|---|---|---|
Fluorapatite | \n42 | \nTunisia (sedimentary) | \n28 | \nBasic slag | \n10 – 20 | \n
Kola (igneous) | \n40 | \nWest USA (phosphoria) | \n18 – 30 | \nBone meal | \n20 | \n
Nauru (phosphorite) | \n39 | \nQueensland | \n16 – 30 | \nGuano | \n12 – 15 | \n
Florida (sedimentary) | \n35 | \nVenezuela | \n20 | \nCalifornia (seabed) | \n30 | \n
Kazakhstan | \n23 | \nChina (Yunnan) | \n32 – 36 | \nAustralia (Queensland) | \n24 | \n
Morocco (sedimentary) | \n35 | \nKola (nepheline) | \n12 – 20 | \n— | \n— | \n
Grades of apatite deposits [25].
Two important sediment relationships were developed concerning reworked phosphate in surficial sediments on the North Carolina continental shelf [26],[63]:
The distribution of phosphate in surface sediments closely reflects the distribution within underlying Miocene sediments units.
The process of reworking significantly dilutes the concentration of phosphate in the surficial sediments.
The history of the discovery of the world’s phosphate resources [
These relationships were also recognized on the shelves of northwest and southwest Africa and could represent important exploration tools for richer Tertiary The term Tertiary (geologic period from 66 to 2.58 ma) is no longer recognized by the International Commission on Stratigraphy.
The deposits of apatite of igneous origin occur as intrusive masses or sheets, as hydrothermal veins or disseminated replacements, as marginal differentiations along or near the boundaries of intrusions or as pegmatites. Intrusive masses are the largest of these deposits. They are commonly associated with alkalic igneous rock complexes, many of which such as those in Africa, Brazil and Sweden are associated with the rift valley structures. Carbonatite, ijolite, nepheline-syenite and pyroxenite are common members of the rock assemblage. Many of these complexes have a ring like structure, with carbonatite as the central core [27].
\nPhosphate deposits have been discovered within the past 100 years at the rate far greater than the rate of consumption (Fig. 10). Since new phosphate deposits are expected to be discovered in the future, the oil exploration programs have probed most of the coastal sedimentary basins of the world during the past 20 – 30 years, and any large-scale discoveries of phosphate rock would probably have occurred in conjunction with these activities [22].
\nOther important commercial sources of phosphorus (Table 4) include [25]:
It is estimated that marine birds may take out as much as 5.1010 g of phosphorus from the ocean each year [67]. The Spanish name “guano” has an origin in Quechua word “huanu” (i.e. dung). Guano is composed of bird droppings, and although birds existed as early as the mid-Mesozoic, their major development did not occur until the Cenozoic era, probably in the Eocene period. It follows that some seamount deposits are too old to have originated from bird droppings [64]. Most of large accumulations of guano are formed on the surface by seafowl, but smaller quantities are formed by bats and to a lesser extent by other cave-dwelling mammals and birds [27].
It was known that bird dung was utilized by the Carthaginians as early as 200 BC in order to improve crop yields. The content of P2O5 in guano can vary in dependence on the age of the deposit, Recent guano contains 10 – 12% of P2O5, but leached guano contains 20 – 32%. The mineralogy of guano is complex. Slightly decomposed deposits contain soluble ammonium and alkali oxalates, sulfates and nitrates and a variety of magnesium and ammonium-magnesium phosphates. Deeply decomposed guano consists chiefly of calcium phosphates (for example, monetite or whitlockite) [27].
Guano is used almost exclusively as fertilizers. The Nauru and Christmas Island phosphorite deposits may be guano in origin, but they are of very limited extent. It is believed that rainwater can carry soluble phosphate from guano and trickle over rocks, where phosphate interacts to form phosphatic layers, e.g. phosphatized coral rock. Bird guano, mainly from Peru, achieved the greatest importance in about the middle of the 19th century, shortly before the phosphate rock industry began to establish itself.
Other important commercial sources of phosphorus are casein and lecithin. Casein is obtained from bovine milk. Lecithin was extracted from soy bean oil [25].
\nWeathering (
The Tennessee “white rock” and Florida “hard rock” deposits were formed by the redeposition of phosphate derived from the decomposition of apatite under more advanced weathering. The same decomposition-phosphatization process accounts for the formation of calcium aluminum phosphate and aluminum phosphate in the “leached zone” of the Bone Valley field and deeply weathered Cretaceous and Eocene deposits of west Africa [27].
\nAs was described above, the number of different elements can substitute into the structure of apatite, The tools based on the isotope composition of apatite were already described in
Apatite was also used to determine the characteristics of metamorphic fluids within the mantle. For example, O’Reilly and Griffin [69] and Douce et al [70] classified apatite within Phanerozoic mantle material into two geochemically distinct types:
This classification is based on halogen content, presence or absence of structural CO2, Sr and trace elements (especially U, Th and light rare-earth) and association with either metasomatized mantle wall-rock peridotites (Apatite A) or high-pressure magmatic crystallization products (Apatite B) [4],[69],[70].
\nIn addition, apatite can be used as a probe to determine the petrogenetic evolution of granites, and significant amounts of research were devoted to the use of apatite in granitic rocks to distinguish between S- and I-type granites [4],[71].
\nThe chemical composition of apatite is also a useful guideline for the petrogenetic and metallogenic history of magmas for the following reasons [4]:
Apatite Eu and Ce anomalies provide the evidence of the redox state of the magmas that formed the host granitic rocks, with Eu enrichment and Ce depletion being indicative of oxidized magma and Eu depletion and Ce enrichment being indicative of reduced magma.
Apatite 87Sr/86Sr ratios reflect the Sr isotopic composition of the host granitic rocks.
Apatite F and Cl concentrations can reflect the enrichment or depletion of halogens within the host granitoids, with apatite associated with slab dehydration containing more Cl and less F, whereas apatites related to magmas formed by partial melting of the crust contain less Cl and more F.
In recent sedimentary systems, the major phosphorus deposition occurs within upwelling zones at continental margins. Upwelling of deep ocean waters rich in phosphorus triggers high biological production in the photic zone and eventually high concentration of phosphorus in organic-rich sediments, as in recent Namibian and Peruan shelves [72],[73], [74],[75].
\nIn the Earth’s crust, phosphorus takes the second place after carbon, and in comparison with all known elements, it takes about 12th place in natural abundance [25]. The phosphorus cycle is quite different from the nitrogen and sulfur cycles in which phosphorus is present in only one oxidation state and it forms no gases stable in biosphere or atmosphere. Also, in contrast to nitrogen and sulfur, substantial proportions of phosphorus in soil appear in inorganic form [76],[77].
\nAbout 10 Mt of phosphorus are released by weathering of apatite annually. In soil, monobasic (H2PO4\n−) and dibasic (HPO4\n2−) phosphates are generally available to plants. Phosphates are precipitated by calcium in alkaline soils and most of phosphate is adsorbed on aluminum and iron oxides in acidic soils. Phosphates are most readily available in slightly acidic to neutral soil. Much of such phosphorus in surface soils appears in organic matter. This phosphorus is used repeatedly by recycling in plants and organisms that decompose the plant detritus. Little amount of phosphorus is lost by leaching through soils, but the erosion losses of soil particles and the plant detritus carried off to aquatic systems may be substantial [76].
\nMajor natural cycle of phosphorus (a) and the contribution of the man to the cycle (b) [
The availability of phosphorus is a major factor limiting the biomass production in both terrestrial and aquatic ecosystems. Mycorrhizas are efficient scavengers of phosphorus for plants growing in soils with limited availability of this element. The phosphorus fertilization in agricultural lands can have detrimental effect, as it increases phosphate amounts in the runoff soil resulting in the accumulation of phosphate in aquatic plants and algal growth. If the decomposers of plants and algae use practically all oxygen from water, the habitat becomes unsuitable for fish and other aquatic animals. The process of abundant nutrient-induced biomass production in lakes and rivers and its decay to deplete the water oxygen is called the eutrophication [25],[76],[78].
\nDespite the advantage for which phosphorus is used, it is doubtful that man has significant contribution to the Earth’s cycle of phosphorus (Fig. 11). The 2·109 tons of mined phosphate rock is less than 0.15% of known reserves of phosphorus ore and less than 1·10−5% of the Earth’s cycle of phosphorus [78].
\nAt least 100 millions years before humankind exerted any influence on the cycles of phosphorus, the pattern had already been established (Fig. 12). Phosphorus was continuously leached from igneous rocks as the rocks were weathered to sedimentary deposits and this released phosphorus flowed to the seas, which had long since become saturated with phosphorus. Each new addition causes a similar quantity of phosphorus to precipitate as sediment. If the precipitate formed when an island sea had invaded a land area, the new sediment became landlocked. The new landlocked sedimentary deposits are more easily leached than igneous rocks from which they are derived. When the seas recede sufficiently to expose the new sediments to the greater solvent action of fresh water, the sediments begin to weather and the cycle is complete. Best estimates of the cycle time of phosphorus in the oceans today are in the range of 50,000 years. This is a short period compared to 3·109 years, which were required for the saturation of oceans for the first time [78].
\nThe establishment of the Earth’s cycle pattern of phosphorus [
Natural and artificial cycles of phosphorus [
Recently, man has only a slightly stronger influence on the total amount of the Earth’s phosphorus than his prehistoric ancestors. If man made a significant alteration in the cycles of phosphorus, it had an impact on the cycles of fresh surface waters. The detergent phosphates have been blamed for degrading freshwater lakes and there is no doubt that several lakes have been overabundant with phosphates and sewage. Sewage treatment will alleviate most of the problems associated with point-source loading of lakes [78].
\nThe overall natural and artificial cycles involving phosphorus are introduced in Fig. 13\n.
\n\nWeathering and leaching processes from millions of years ago led to the transfer of phosphate to rivers and oceans where it was concentrated in shells, bones and marine organism that were deposited on the sea floor. Subsequent uplift and other geological movements led to these accumulations becoming dry land deposits [25],[78].
\nGenerally, weathering of apatite occurs synergistically through biotic and abiotic processes and leads to the release of mineral phosphate. Inorganic phosphate cannot be assimilated by plants, but it can be converted to the bioavailable form orthophosphate (HPO4\n2−, H2PO4\n−) by some species of phosphate-solubilizing fungi and bacteria. The main mechanism underlying the microbial phosphate solubilization is the secretion of organic acids that, by changing the soil pH and acting as chelators, may induce the dissolution of phosphorus from minerals and its release into the pore water of soils [79],[80]. The dissolution of apatite is described in
Apatite represents an important source of inorganic P for natural ecosystems and may favor the establishment of microbial communities able to exploit it [79]. The microorganisms can cause the fixation or immobilization of phosphate, either by promoting the formation of inorganic precipitates or by the assimilation of phosphate into organic cell constituents on intracellular polyphosphate granules. Insoluble forms of inorganic phosphorus, e.g. calcium, aluminum and iron phosphates, may be solubilized through the microbial action. The mechanisms by which the microbes accomplish this solubilization vary [44]:
The first mechanism may be the production of inorganic or organic acids that attack the insoluble phosphates.
The second mechanism may be the production of chelators such as gluconate and 2-ketogluconate, citrate, oxalate and lactate. All these chelators can complex the cation portion of insoluble phosphate salts and thus force their dissociation.
The third mechanism of phosphate solubilization may be the reduction of iron in ferric phosphate, e.g. strengite (Fe3+PO4·2H2O [81]), to ferrous iron by enzymes and metabolic products of nitrate reducers such as
The fourth mechanism is the production of hydrogen sulfide (H2S), which can react with iron phosphate and precipitate it as iron sulfide, thereby mobilizing phosphate, as in the reaction [44]:
The phosphate-solubilizing ability is a feature of many free-living and plant-symbiotic bacterial taxa, such as [79]:
Microbial rock weathering is common in all climate zones and usually acts very slowly [80].
\nThe fission-track (FT) dating is a radiometric dating method Radiometric dating techniques are, in general, complementary to one another, and each method produces an age with the special meaning, such as the last outgassing, the last melting accompanied by mixing with isotopically separate material and the last heating to remove the track. Fission-track dating is conceptually the simplest of several dating techniques that provide absolute measures of time from slow but statistically steady decay of radioactive nuclides [86]. Most radiometric dating processes are based on the statistical regularity of the decay of one parent radionuclide into a daughter nuclide, for example, 40K into 40Ar, 87Rb into 87 Sr or 238U ,235U and 232Th into 206 Pb, 207Pb and 208Pb, respectively. The age of sample can be then determined by measuring relative abundance of parent and daughter in any pair. The major isotope of uranium (238U) decays at a spontaneous rate of ~10−16 per year [86]. Fission track can also be created artificially (induced track) by irradiating the mineral specimen with thermal neutrons in a nuclear [88]. The mineral grain is ground and polished to expose a flat surface inside the crystal. It is then immersed in a chemical etchant that preferentially attacks the regions of damage, widening them and making them visible under optical microscope. The track appears in the apatite torch readily in 20 to 30 s when immersed in diluted nitric acid [88].
This unique sensitivity of the apatite fission-track system is now of considerable economic importance due to the coincidence between the temperature range over which annealing occurs and that over which liquid hydrocarbons are generated. Other applications include the determination of timing of emplacement and the thermal history of ore deposits. There is abundant literature on both fission-track dating and its use in evaluating the tectonic and thermal history of rocks [6],[89],[90],[91].
\nApatite is the most frequently used material for fission-track dating [92]. Apatite fission-track (AFT) analysis serves as a thermochronological tool to investigate the low-temperature thermal history of rocks below ~120°C [93],[94]. The estimates of closure temperatures for fission-track retention in apatite are usually in the range from 75 to 120°C at cooling rates between 1 and 100°C/m.y. [6].
\nThermochronology may be described as the quantitative study of the thermal histories of rocks using temperature-sensitive radiometric dating methods such as 40Ar/39Ar and K-Ar, fission track and (U-Th)/He. Among these different methods, apatite fission track and apatite (U-Th-Sm)/He (AHe) are now, perhaps, the most widely used thermochronometers, as they are the most sensitive to low temperatures (typically between 40 and 125°C for the durations of heating and cooling in the extent of 106 years). They are ideal for investigating the tectonic and climate-driven surficial interactions that take place within the top few (<5 km) kilometers of the Earth’s crust. These processes govern the landscape evolution, influence the climate and generate the natural resources essential to the well-being of mankind [85],[95].
\nOn Earth, magmatic volatiles (i.e. H2O, F, Cl, C-species and S-species) play an important role in the physicochemical processes that control thermal stabilities of minerals and melts, in magma eruptive processes and in the transportation of economically important metals. On the Moon, magmatic volatiles in igneous systems are poorly understood, and the magmatic volatile inventory of lunar interior, aside from being very low, is not well constrained. Although the Moon is a volatile-depleted planetary body, there is evidence indicating that magmatic volatiles have played a role in igneous processes on the Moon. Specifically, magmatic volatiles were implicated as the propellants that drove fire-fountain eruptions, which produced the pyroclastic glass deposits encountered at the Apollo 15 and 17 sites [96]. That is supported by recent discoveries of water-rich apatite from lunar mare basalts [97],[98].
\nApatite was found in a large number of samples of igneous lunar rocks, although it typically occurred in only trace amounts and is typically reported as coexisting with REE-merrillite [(Mg,Fe)2REE2Ca16P14O56], and those two minerals make up the primary mineralogical budget for P on the Moon [96]. Merrillite, also known as the mineral whitlockite (or more precious and dehydrogenated whitlockite) [99], is one of the main phosphate minerals, along with apatite, which occur in lunar rocks, in Martian meteorites and in many other groups of meteorites. Significant structural differences between terrestrial whitlockite and lunar (and meteoritic) varieties require the use of “merrillite” name for the H-free extraterrestrial material, and the systematic enrichment of REE in lunar merrillite requires the use of “REE-merrillite”. Lunar merrillite, ideally (Mg,Fe2+,Mn2+)2[Ca18−x(Y,REE)x] (Na2−x)(P,Si)14O56, contains high concentrations of Y + REE [100],[101].
\nThe structure of lunar merrillite (a) [
Lunar merrillite (Fig. 14(a), trigonal, the space group R3c with the cell parameters
A number of sources potentially contributed to the overall inventory of lunar water, including primary indigenous water acquired during lunar accretion, late addition of water through asteroidal and cometary impacts and solar wind implanting H into lunar soils. The average D/H ratios of apatite in norite (Apollo sample 78235) and in the granite clast (14303) are consistent with the estimates for the H isotopic composition of recent bulk-Earth and terrestrial mantle. By contrast, the average H isotopic composition of apatites in norite 77215 is lower. The content of water in norite parental melts provides strong evidence that the magmas involved in secondary crust production on the Moon were hydrated, in agreement with recent findings of water in lunar ferroan anorthosites. Water they contain, locked in the crystalline structure of apatite, is characterized by an H isotopic composition similar to that on Earth and in some carbonaceous chondrites [103].
\nApatite preserves a record of halogen and water fugacities that existed during the waning stages of crystallization of planetary magmas, when they became saturated in phosphates. The thermodynamic formalism based on apatite-merrillite equilibria that makes it possible to compare the relative values of halogen and water fugacities in Martian, lunar and terrestrial basalts, accounting for possible differences in pressure, temperature and oxygen fugacities among the planets, was described by Douce and Roden [104].
\nThey showed that planetary bodies have distinctive ratios among volatile fugacities at apatite saturation and that these fugacities are, in some cases, related in a consistent way to volatile fugacities in the mantle magma sources. Their analysis shows that the Martian mantle parental to basaltic SNC meteorites was dry and poor in both fluorine and chlorine compared to the terrestrial mantle. Limited data available from Mars show no secular variations in mantle halogen and water fugacities from ~4 Ga to ~180 Ma. Water and halogens found in recent Martian surface rocks have thus resided in the planet’s surficial systems since at least 4 Ga and may have been degassed from the planet’s interior during the primordial crust-forming event. In comparison to the Earth and Mars, the Moon, and possibly the eucrite parent body too, appear to be strongly depleted not only in H2O but also in Cl2 relative to H2O. The chlorine depletion is the strongest in mare basalts, perhaps reflecting an eruptive process characteristic with large-scale lunar magmatism [104].
\nMars does not recycle crustal materials via the plate tectonics. For this reason, the magmatic water reservoir of the Martian mantle has not been affected by the surface processes, and the deuterium/hydrogen (D/H) ratio of this water should represent the original primordial Martian value. Following this logic, hydrous primary igneous minerals on the Martian surface should also carry this primordial D/H ratio, assuming no assimilation of Martian atmospheric water during the crystallization and no major hydrogen fractionation during the melt degassing. Hydrous primary igneous minerals, such as apatite and amphibole, are present in Martian meteorites here on Earth. Provided these minerals have not been affected by terrestrial weathering, Martian atmospheric water or shock processes after the crystallization, they should contain a good approximation of the primordial Martian D/H ratio. As Nakhla was seen to fall on the Egyptian desert in 1911, the terrestrial contamination is minimized in this meteorite. The nakhlites are also among the least shocked Martian meteorites. Therefore, apatite within Nakhla could contain primordial Martian hydrogen isotope ratios. The similar D/H ratios indicate that the Earth and Mars, and possibly the other terrestrial planets, accreted water from the same source [105].
\nVesta, as the second most massive asteroid, has long been perceived as anhydrous. Recent studies suggesting the presence of hydrated minerals and past subsurface water have challenged this long-standing perception. The volatile components indicate the presence of apatite in eucrites. Eucritic apatite is fluorine rich with minor chlorine and hydroxyl (calculated by difference) [106],[107],[108].
\nThe biochemist and sci-fi author Izaak Asimov said [60]: “In the future coal will be probably substituted by nuclear energy, wood by plastics, meat by yeast and suspecting solitude by friendship, but there is no substitute for phosphorus.”
\nThe search for phosphate rock deposits became a global effort in the 20th century as the demand for phosphate rocks increased. The development of deposits further intensified in the 1950s and 1960s. The world production reached its peak in 1987 – 1988 and then again in 2008 with over 160 million metric tons (mmt) of the product. Phosphate rock mining has evolved over time, and worldwide, it relies on high volume and advanced technology using mainly open-pit mining methods and advanced transportation systems to move hundreds of millions of tons of overburden to produce hundreds of millions of tons of ore, which are beneficiated to produce approximately 160 mmt of phosphate rock concentrate per year. The concentrate of suitable grade and chemical quality is then used to produce phosphoric acid, the basis of many fertilizer and non-fertilizer products [23]. The world phosphate production rate since 1850 according to Jasinski [109] and Abouzeid et al [20] is shown in Fig. 15.
\nThe estimates of the world’s phosphate reserves and availability of exploitable deposits vary greatly and the assessments of how long it will take until these reserves are exhausted vary also considerably. Furthermore, it is commonly recognized that the high-quality reserves are being depleted expeditiously and that the prevailing management of phosphate, a finite non-renewable source, is not fully in accordance with the principles of sustainability. The depletion of current economically exploitable reserves is estimated to be completed in some 60 to 130 years. Using the median reserve estimates and under reasonable predictions, it appears that phosphate reserves would last for at least 100+ years [20].
\nWorld phosphate production rate [
Preliminary estimates of phosphate rock reserves range from 15,000 mmt to over 1,000,000 mmt, while the estimates of phosphate rock resources range from about 91,000 mmt to over 1,000,000 mmt. Using available literature, the reserves of various countries were assessed in the terms of reserves of concentrate. The IFDC International Fertilizer Development Center.
Phosphate rock prices will increase when the demand approaches the limits of supply. When the phosphate rock prices increase, some resources will become reserves, marginal mining projects will become viable and the production will be stimulated. In the future, fuel and fuel-related transportation costs may become even more important components in the world phosphate rock production scenario. The political disruption is always an unknown factor, and it can profoundly influence the supply and demand for fertilizer raw materials on a worldwide basis [22].
\nApart from those in the supergroup of apatite minerals, the well-known phosphate minerals include [25]:
The examples of forms and the structure of mineral atunite [
The mineral was named by Henry J. Brooke and William H. Miller in 1854 after the typical locality at Saint Symphorien, Autun District, Saône-et-Loire, France. Autunite dehydrates rapidly in air (except for high relative humidity) to tetragonal meta-autunite (P4/nmm, The examples of forms and the structure of mineral meta-atunite [Fig. 17.
The structure of mineral crandallite [Fig. 18.
The form and the structure of lazulite [
The structure of monazite-(Ce):
Monazite (Fig. 20) and xenotime dimorphs One chemical compound is capable of crystallizing in two different systems, e.g. CaCO3 can occur as calcite or aragonite [119].
The classification diagram of AXO4-type compounds. The monazite stability domain is colored by gray [
The structure of tobernite and isostructural zeunerite [
These minerals contain the autunite-type sheet, of the composition of [(UO2)(PO4)]−, which involves the sharing of equatorial vertices of uranyl square bipyramids with phosphate tetrahedra. In each of these structures, Cu2+ cations are located between the sheets in Jahn-Teller According to the Jahn-Teller theorem, any nonlinear molecule in a degenerate electronic state will be unstable and will undergo some kind of distortion that will lower its symmetry so as to remove the degeneracy of the electronic state and also to attain lower energy. The Jahn-Teller effect is termed as static when there is permanent distortion in the structure of molecule [122].
The structure of turquoise viewed along the b-axis [Fig. 23.
The structure of vivanite viewed along the b-axis [Fig. 24.
The structure of wavellite viewed along the b-axis (a) and stereoscopic view of the wavellite structure (b) [Fig. 25.
The structure of xenotime-(Y):
Isostructural arsenate analogues of many phosphate minerals are known, and in some cases, vanadates too. Some orthophosphates capable of forming complete ranges of solid solutions with the corresponding orthoarsenates are [25]:
Phosphate minerals, like silicate minerals, are found with a great variety of cations. Unlike the latter group that contains numerous types of condensed silicate anions, almost all phosphate minerals are orthophosphates that contain PO4\n3− anion. Non-phosphorus anions, such as O2−, OH−, F−, Cl−, SO4\n2−, SiO4\n4− and AsO4\n3−, may also be present in these stoichiometric (or as occluded) materials [25].
\nThe use of electronic devices in our daily lives is growing constantly; therefore, it is no real surprise that electronic wearable devices are nowadays a big hit. Smart jewelry, smartwatches, fitness trackers, etc. are getting smaller and more capable due to the improvement of sensors, batteries, and microprocessors. Wearable technology has been in use a long time by the military and medical professionals, but the market for smart wearables for private consumers has only recently started to grow. The market for smart wearables is on a rise. In the smart wearables segment, smartwatches are the most valuable, accounting for 60% of market value, followed by fitness and health trackers, smart jewelry and smart fashion [1]. Many solutions and products in the smart wearables industry are developed by young companies and start-ups, which are competing against large international companies for their piece of the smart wearables market. Smart wearables have found their use in several sports applications, for example, for athlete’s performance monitoring in sports like swimming, boxing, golf, soccer, tennis, basketball, baseball, etc. Measuring performance, tracking motion, and monitoring biometric data usually includes many metrics (acceleration, temperature, angular speed, pulse rate, etc.). Sensor miniaturization, small power consumption, and low power wireless communication technologies have enabled researchers and engineers to design miniature, lightweight wearable embedded devices that can be placed in a shoe, worn on a wrist, or are incorporated into the sports equipment (like racket handle). Such devices are also popular for fitness tracking, potential injury prevention, or health monitoring. For example, a miniature wearable device is used for linear and angular head accelerations monitoring in football for detecting the potentially dangerous head impacts. The device is mounted in the player’s helmet, and it records the amplitude and frequency of the player’s head impacts [2, 3]. A miniature swing tracker was presented in Lightman [2], which can be used for monitoring different swing metrics for baseball and softball. It can monitor information about power, speed, and hitting zone of the swings.
\nWith the popularity of the smartwatches and other smart wearable devices with integrated sensors, there is less need for the application-specific hardware development for specific tasks. Smartwatches generally have built-in MEMS (microelectromechanical systems) accelerometers and gyroscopes, pulse-rate (PR) sensors, etc. Therefore, only software applications for these devices need to be developed. One of these applications was developed for aiding an athlete with baseball pitching action and tennis serve action [4]. The personal sport skill improvement support application is running on Sony’s SmartWatch SWR50. Comparative research was made by using the proposed sport skill improvement support and very encouraging results were achieved. Similar to the abovementioned system, authors in Viana et al. [5] proposed an application called GymApp, which is a real-time physical activity trainer. It runs on Android-supported smartwatches, and it supervises physical activities, for example, in fitness. It has two modes of operation: training mode and practice mode. In training mode, an athlete is advised to perform an exercise with lighter weight and with the supervision of a fitness instructor, to guarantee the correctness of the performed exercise. The application then gathers sensory data and builds a model for the performed exercise (e.g., biceps curl). In the practice mode, the recorded sensory data are compared with the previously acquired data and similarity distance is calculated. By evaluation of the similarity distance result, the application estimates how many repetitions of the exercise were performed correctly.
\nSeveral systems were developed also for boxing. They provide punch analysis and type statistics. Usually, a small embedded device is fitted into the boxing glove where different punchers are detected and distinguished based on accelerometer data [6]. Small embedded devices for tracking, analysis, and statistics were proposed also for basketball and soccer. A shot/pass classification system for activity analysis during a match was presented by Schuldhaus et al. [7]. The proposed system uses a miniature IMU for movement tracking. They developed a low-cost embedded system for a shot and pass statistics, which is especially suitable for use during training and competition. A system for counting shots made or missed was proposed for basketball. It uses double sensor-node principle, where the first sensor is attached on the player’s wrist. The wrist sensor records and detects each shot attempt. The second sensor is located on a basket’s net where it monitors the statistics of made and missed shots [2].
\nAlthough smart wearable devices are nowadays being very popular and are in use by amateur and professional athletes a daily basis, the majority of the sports leagues still do no approve smart wearable devices for in-game use. A safety factor is also an issue, and on the other hand, some athletes expressed their concern about privacy matters. The International Tennis Federation (ITF) was one of the first Sports Federations, which allowed the use of smart wearables. From January 1, 2014, tennis players are allowed to wear sensors during the matches, and they can freely check important information during set breaks [8]. One of the sports associations, that also approved the use of wearable biometric devices during the game, is Major League Baseball. In their case, players are allowed to wear a special biometric baseball sleeve, which can monitor strain on pitching arm, and a body harness, which can detect and track players’ movements on the pitch [9].
\nThe way in which the smart wearable device is designed and the way it performs, it is especially suitable for swing-based sports, like golf or tennis. Although various systems and devices are commercially available, there is not much publicly available information on how they are constructed. In the area of tennis stroke recognition based on a visual approach, much has been previously published [10, 11]. For major tennis competitions, like Grand Slams and others, the ITF approved the use of a sophisticated video system, called Hawk-Eye. The system uses several calibrated high-speed video cameras, which are stationed around the court [12]. The drawback is that it is very expensive, and it takes a lot of time to set up and calibrate. Other systems and principles are more appropriate for everyday use, such as using a device with IMU.
\nSimilar systems, that are IMU based, are also available for other sports. Swing motion detection using an inertial-sensor-based portable instrument was proposed for golf [13]. The miniature device is mounted on a golf club to measure swing motion signals. Procedures for signal collection, signal pre-processing, and swing motion segmentation has been developed. Results show that the instrument can be a promising tool for serving as a training assistant tool for golfers. Authors in Jensen [14] presented a device for golf put analysis. The device uses a removable sensor, and it is built solely from off-the-shelf components. It supports automatic putt detection and parameter calculation in real time.
\nFour different principles, that are used for smart embedded solutions integration, exist for tennis: (a) a device is placed in a tennis racket handle [15]; (b) a device is mounted on the racket strings (like a string vibration dampener); (c) a device is attached on the racket grip (at the bottom end); and (d) a device is worn on tennis player’s wrist. The option with a sensor being integrated into the racket handle is also the most expensive because one must buy a special tennis racquet. Well-known tennis equipment manufacturer Babolat produces such rackets. The electronic device installed in the racket’s handle monitors players’ motion and swings. It connects with smart devices via Bluetooth for communication with a mobile app. The data from the device are then synchronized with the mobile app via Bluetooth. The mobile app is used for visualization of most common game statistics and some details regarding basic tennis strokes. The embedded electronics in the racquet handle uses IMU and piezoelectric sensors to detect the strokes [2].
\nBüthe et al. in their work proposed a system for complete movement monitoring during a tennis match [16]. The system uses three IMU devices. They are attached to each foot and to the tennis racquet. The proposed solution supports the detection and classification of leg and arm movements. Gesture recognition for the active arm based on the longest common subsequence (LCSS) is also supported. The proposed system was tested with four different players, where the results showed highly user-dependent performance. The proposed method achieved 87% recall and 89% precision for stroke detection. Regarding step recognition, the proposed algorithm was able to detect 76% of the steps. The step classification accuracy was 95%.
\nTennis serve analysis system with a wearable motion sensor was presented by Sharma et al. [17]. The player gets the feedback from the analytics engine for enhancing their serve performance while preventing potential injuries. Samsung smartwatch Gear S2 was used for sensing and hand movement tracking. It has six-axis IMU with a measuring range of ±8 g m/s2 (accelerometer) and ± 2296°/s (gyroscope). The IMU was sampled with the frequency of 100 Hz. For tests and experiments, a database of 1844 serves from various players (professionals, amateurs, and children) was used. The videos and sensor data are synced timewise and further prepared for correctness validation of the developed algorithms. The tennis serve is partitioned into key phases (start, trophy pose, cocking position, impact, and finish), and later features like consistency, pronation, backswing type, and follow-through are derived from inertial sensor data. Quaternion distance is used for serve consistency evaluation between medoid (general swing model) and the individual stroke.
\nAuthors in Connaghan [18] presented a multi-sensor tennis stroke classification. For tennis stroke recognition, they used a single IMU attached to a player’s forearm. Experiments were made during a competitive match. A two-level classification method was used for tennis stroke classification. Firstly, non-stroke events are filtered and after that stroke candidates are classified into three most common tennis strokes: serve, backhand, and forehand. Experiments showed that sensor fusion approach yielded the best tennis stroke classification. Ninety percent accuracy was achieved.
\nTennis ball speed estimation using a motion sensor was presented in [19]. TennisEye, as the authors call it, is a system with racket-mounted motion sensor. It senses linear and angular accelerations and sends them to the smartphone device via BLE (Bluetooth low energy) wireless connection. Tennis strokes are detected using a threshold-based method and divided into three categories: serve, groundstroke, and volley. Authors compared the performance of their system against Zepp [20], which is a similar device mounted on the racket handle. To estimate the serve ball speed, a regression model is proposed. For groundstroke or volley, two models are proposed: a regression model and a physical model. For estimating the ball speed for advanced players, authors use the physical model and regression model for beginners. Using the leave-one-out cross-validation test, the evaluation results show that TennisEye performs better than its competitor.
\nTennis stroke detection and classification is motion detection and classification problem, which can be observed also as a hand-gesture classification case [21]. For this type of tasks, some popular methods are widely used, like hidden Marko models (HMM) or dynamic time warping (DTW) and similar (like QDTW) [22].
\nIn the following section, we will present a miniature wearable device for tracking tennis swings and strokes. The presented system supports athlete’s arm movement tracking, where individual hand gestures can be detected (like strokes etc.), and biometric data monitoring like skin temperature and pulse rate (PR) or even pulse rate variability (PRV). This additional information can be helpful for estimating the physical and mental state of an athlete. The system can work in continuous sampling or in gesture recognition mode, depending on the firmware. The system is presented in Figure 1. The system for movement and biometric data acquisition is composed of two parts: (1) a smart wearable module for tracking movement and gathering biometric data and (2) cloud service for detailed data analysis and visualization. A PC or smartphone device with a special application is used to download the gathered information from the wearable device to the cloud via the Internet. The main parts of the system will be presented in more detail further below.
\nArchitecture of the movement and biometric data acquisition system. The gathered information is uploaded to a cloud service via the Internet.
The main objective of the hardware design of the proposed wearable device was to develop a lightweight device for tracking a player’s movement and sensing its biometric information. The device should be attached to the player’s wrist, and it should not influence the player’s abilities for sports performance. One of the better places for device’s attachment on the hand is right above the wrist (ulnar head), where there is enough soft tissue between the bones (the ulna and the radius) to successfully detect and measure pulse rate using photoplethysmography (PPG) method. The spot of attachment of the smart wearable device on the sportsman’s forearm and the orientation of the individual IMU’s axes are visible in Figure 2. The axes of the gyroscope are pointing in such a way that the angular rate is positive in a counter-clockwise direction if the accelerometer arrow is facing toward you.
\nSmart wearable device position and IMU orientation. The device is attached above the wrist.
We developed the wearable device with the wish for independent operation and the possibility to detect and classify basic strokes in real time. For this task to be successful, the sampling rate of the IMU unit must be high enough. We estimated that a sample rate of 1000 sps should suffice, after studying literature on racket body and racket strings vibration [23]. To be able to handle such amount of data, the wearable device must have large memory space to be able to store movement and biometric information reading for at least an average tennis match. An average tennis match lasts for about 2 h, and we rarely can see a match longer than 5 h. The record for the longest tennis match is held by Isner and Mahut. Their match lasted for 11 h and 5 min. It happened in Wimbledon in 2010. The percentage of total playing time for a tennis match is around 23–30% on clay and 10–15% on fast courts [24]. For maximum battery life, we implemented wired USB connection (instead of wireless, e.g., Bluetooth) for movement and biometric readings. The USB connection is also faster, and the USB connector can at the same time be used for battery charging. Detailed composition with the presentation of individual subsystems of the smart wearable device is presented in Figure 3.
\nBlock representation of the smart wearable device with connections to individual subsystems.
The physical presentation of the smart wearable device is depicted in Figure 4. The device is implemented on a four-layer FR4 PCB (printed circuit board) with 1 mm thickness. The physical dimensions are 20 × 29.5 × 7.2 mm (W × L × H) including the battery. It weighs 5.8 g, and because of its miniature size, it can easily be placed under a sweatband. The top layer of the PCB is populated by a microcontroller, IMU unit, FLASH memory, and battery charger. On the bottom side, the power supply, temperature sensor, and the LEDs for pulse rate sensing are placed. Opposite to the USB connector, the RGB LED and the push button are placed. The heart of the smart wearable module is a low power high-performance 8/16-bit RISC microcontroller. It supports 128 kB of FLASH memory, 8 kB of SRAM memory, and 2 kB of EEPROM. It can run with 32 MHz clock (it has an internal calibrated clock source), and it supports various peripheral and communicational interfaces (ADC, SPI, I2C, USB etc.).
\nThe physical implementation of the smart wearable module (top and bottom sides of the PCB).
To detect and sense tennis strokes, a MEMS inertial measurement unit is used. It incorporates a three-axis accelerometer and a gyroscope, and together, they form a 6-DOF unit (DOF—degrees of freedom). Linear accelerations are measured by MEMS digital accelerometer. It supports measuring ranges from ±2 to ±16 G, and it supports 16-bit resolution of output readouts. For angular velocity sensing, MEMS digital gyroscope is used. It supports angular several measuring ranges, from ±125 to ±2000 dps and 16-bit resolution. Due to the integrated 8 kB FIFO memory, burst mode reading of the measured data is possible. This type of readout also helps to reduce the power consumption of the device. For communication with the microcontroller, the SPI digital bus is used. The accelerometer is capable of maximum 6664 sps data rate, and the gyroscope is capable of 1666 sps data rate. Current consumption of the IMU unit is 0.9 mA in normal operation mode and 1.2 mA in high-performance mode. It is placed in a miniature LGA-16L package and because of its miniature dimensions, it is ideal for implementation in the presented smart wearable device.
\nFor sensing the pulse rate of a player wearing the smart wearable device, a pulse rate sensor with integrated analog front-end part is implemented. It has a low-noise receiver with an integrated ADC for reflected signal detection and a LED transmitter. For pulse-rate measurement, it uses a photoplethysmography (PPG). More about the PPG method is presented in Refs [25, 26].
\nTo measure the skin temperature during the sports activity, a contactless temperature sensing is used. The principle is based on IR (infrared) thermopile sensor, which measures the temperature of the surface by detecting the passive infrared radiation with a wavelength from 4 to 16 μm. The accuracy of the used thermopile temperature sensor is ±1°C in the temperature range between 0 and +65°C. Similar integrated circuits are used also in medical contactless temperature measuring devices. The temperature sensor also supports calibration. For this, it has NV-MEM (non-volatile memory), which is used for storing the calibration coefficients. Calibration is necessary in the case when the default emissivity factor is not correct.
\nFor storing the recorded accelerometer and gyro information, external NV-MEM is used with the capacity of 512 Mbits. It is used also for storing the temperature measurements and saving the timestamp data. The memory is large enough to store approximately 1.5 h of non-stop sports activity. When in stroke detection mode (only stroke actions are detected, timestamped, and recorded), it can store approximately 8000 events. This is enough for storing almost 6 h of an average tennis play, where an average of 20 strokes per player per minute is considered [27].
\nAs already mentioned, a USB is used for the connection between the smart wearable module and a personal computer. The connector used must be water-proof due to the exposure to moisture and sweat. For battery management, a dedicated integrated circuit is used. It charges the batter to correct levels, and it also monitors and protects the battery from getting too discharged. This can happen because we use Li-Po battery type, which is sensitive to discharge voltages below 2.7 V (can get damaged). The batter has a capacity of 155 mAh. The charging current is set to 100 mA, which suffices for the battery to be fully charged in approximately 1.5 h.
\nFor more efficient power consumption and achieving longer battery autonomy, power supply switches are implemented. They are used to cut off power to individual subsystems and can reduce the overall current consumption of the smart module. Power switches are P-type MOS-FET transistor with low serial resistance. They are used to distribute power to the IMU unit, PPG measuring subcircuit, the temperature measuring subcircuit, and the external FLASH memory. More about the miniature wearable movement and biometric data acquisition device can be found in [28].
\nFor downloading recorded data from the smart wearable device, a custom PC application was developed. The USB reader is also capable of erasing the module (it erases the internal memory for storing the recorded info), for clock synchronization, uploading the data to the cloud, and for eventual firmware upgrades. When the wearable module is connected to the PC, it is detected as a generic HID device. The graphical user interface of the PC application is presented in Figure 5 (left side).
\nPC application graphical user interface (left) and cloud service graphical web interface (right).
When the recorded smart wearable data is uploaded to the cloud, it is visualized and processed. Due to the larger processing power being available and bigger memory space, more complex analyses on the recorded data are possible. Comparison of individual athletes is also possible. Because data from several different players and from different events can be stored in the cloud, big data analytics can be performed, and even more, information can be extracted. The visual representation of the proposed cloud service web interface is depicted in Figure 5 (right side).
\nDetails regarding the motion detection and tracking, as well as biometric data acquisition, are covered in the following section. As mentioned earlier, the proposed smart wearable device could be used for several different sport applications, but due to being so miniature and lightweight plus with the battery autonomy of more than 5 h, it is especially suitable for sports like golf or tennis. We chose tennis to test the performance of the proposed system in a real environment. Tests were performed during competitive training. Challenges on tennis stroke detection and classification will also be addressed in this section.
\nFor successful tennis stroke classification process, individual tennis strokes must first be accurately detected. We focused on detecting and classifying the three most common tennis strokes: forehand, backhand, and serve.
\n\nFigure 6 presents the accelerations of individual axes during the tennis game. As expected, there are spikes in accelerometer data for every tennis stroke, where the maximum values of acceleration are usually higher than 10 G (for more powerful strokes like serve the maximum values can reach up to the 16 G). For stroke detection, one could easily compare the acceleration spike values with the predefined threshold. The stroke would then be detected if the acceleration values would surpass it. This is one of the most common methods that researches use for stroke detection. The problem with this method is that it can produce false positives because the accelerometer values can be high even during the swing part of the stroke before the ball touches the racket. Therefore, we decide to use a different method for tennis stroke detection. We focused on the point of contact, where abrupt changes in the acceleration readings happen.
\nGraphical representation of the accelerometer data (x-axis = red, y-axis = green, z-axis = blue). The second subplot represents the average derivative of accelerometer data with a predefined threshold for tennis stroke detection.
The moment of contact can most effectively be detected by calculation a two-point derivative of the acceleration values. We calculate the derivative average for all three axes because rotation normalization is not used. Rotation normalization is usually performed to normalize the acceleration readings orientation between individual players due to the fact that different players hold the racket differently and therefore the axes of the IMU unit are not aligned to the racket in the same way. The following expression is used for derivative average calculation:
\nwhere
We worked on the problem of tennis stroke classification in one of our previous works presented in [29], where we proposed a classification method which is especially suitable for use with small embedded systems with low processing power because it is very simple but effective. The tests were performed on the strokes gathered from several different tennis players. In Kos and Kramberger [28], we extended the database and slightly modified the algorithm for tennis stroke classification. For test and experiments, we used our tennis stroke database (TSD). The database is composed of tennis stroke recordings of seven different players with different levels of tennis knowledge. The recordings were performed on several different occasions and in different conditions (different court surfaces, different tennis balls, and rackets). The recordings are a mix of individual stroke sequences during warm-up and recordings made during competitive training. Overall, the database is composed of 446 strokes. For easier TSD annotation, for each tennis player, a video was recorded in parallel with the wearable embedded device recordings. Other types of tennis strokes are also included in the recordings (e.g., slices, volleys, smashes, etc.), which are not used for tests and in the evaluation.
\nThe main starting point for the tennis classification is that the accelerometer information alone does not have enough discriminative information for the tennis stroke classification task. Therefore, we looked at the gyroscope readings and analyzed them for different tennis strokes. It happens that there is enough difference for simple bit successful implementation for the classification algorithm. The algorithm works in such a way that it first looks for minimum and maximum gyroscope values around the point of contact event (the ball touches the tennis racket strings), and it searches for the axes in which the extreme values occur. The observation interval for minimum and maximum searching is 50 ms before the point of contact event. The gyroscope values for all three axes are sampled and stored in a buffer for maximum and minimum search. When the stroke detection event occurs, the buffer with gyroscope readings is swept for extreme values. Based on the information for which axis and in which direction the extreme value was found, the decision on which stroke happened, is made. For example, if the maximum angular velocity during the swing happened along Y-axis, the stroke is classified as a backhand. If the maximum corresponds to the X-axis, and the minimum is found in the Z-axis, the stroke is classified as a serve. If the maximum and minimum gyroscope values correspond to the X and Y axes, an additional condition is checked for the minimum Z-axis angular rate. If the angular rate is lower than −1500 dps, the stroke is classified as a serve; otherwise, the stroke is classified as a forehand. This condition was added to the classification algorithm because some tennis players tend to rotate the hand differently during the execution of the serve. If none of the abovementioned combinations is true, the detected stroke is classified as unknown (UNKN). This was introduced because sometimes the players make the shots very close to the body or out of balance and are therefore difficult to categorize as one of the basic strokes. The algorithm described is for a right-hand player. For a left-hand player, the accelerations of Y-axis and angular velocities of X and Z axes must be inverted.
\nTo evaluate an athlete’s physical and mental levels, pulse rate and pulse rate variability information is recorded during the athlete’s activity. For monitoring the pulse rate, we selected the reflective photoplethysmography. The method is noninvasive, and it still gives a good result. Two different light sources with different light wavelengths (RED and IR LED) were used for tissue illumination. The receiving photodiode detects the reflected light. The intensity of the reflection is modulated by the difference in the blood flow; therefore, minimal ripple is present from which the pulse rate can be evaluated. The signal is sampled with 100 Hz. Every heartbeat is represented with a so-called R wave and the distance between individual R waves is called the R-R interval. PR and PRV can be calculated by measuring this interval. Some PR and PRV experiments were performed in our previous work, and the results are presented in [26]. R-R intervals from RED and IR LED illumination are depicted in Figure 7.
\nGraphical representation or R-R intervals obtained with the PPG method. The upper plot represents a signal obtained with red LED tissue illumination and the lower plot represents a signal obtained with IR LED tissue illumination.
The player’s skin temperature was measured with a contactless thermopile sensor. For accurate temperature measurements, the local temperature of the cold-junction temperature reference is measured. This is necessary because this type of sensors can only sense the temperature difference, not absolute temperatures. Figure 8 presents the skin and module temperature readings during a short practice. For high precision, the sensor must be calibrated because different surfaces have different emissivity (even different skin tones have influence). Plots in Figure 8 show that the wearable module was slightly heating over time because of the LEDs for pulse rate measurement (they are close to the sensor and they generate heat). This could be the reason that the module achieved a temperature higher than 37°C.
\nTemperature readings during a short (20 min) tennis practice. The upper graph represents the temperature of the skin, while the lower plot represents the sensor’s internal cold-junction temperature readings.
Readings of the smart wearable module, if they are stored and properly analyzed, can be used also for the analysis of how consistent a player is when hitting a stroke. This kind of analysis can be very useful for tennis coaches and other experts on the evaluation of the tennis player’s current shape and performance ability. If combined with the information of which stroke was a winner or a fault, even more valuable information can be extracted [30].
\nFor the task of tennis stroke consistency evaluation, we made a general forehand stroke model. A separate model was built for each individual player. The model was made by calculating an average of acceleration sample bins for every accelerometer axis separately. We paid special attention that the accelerometer readings were aligned fairly good with the stroke detection point. About 150 ms before and after, the point of contact was used for making the model. That interval corresponds to 248 sample bins in total. An individual player’s forehand stroke model for one axis is determined by using the following expression:
\nwhere
General forehand stroke model for a tennis player. For each axis, a separate model is presented.
By observing the acceleration plots, we can notice that the trajectories are quite sparse. If the plots are closer together, then the ability of the player, to hit the strokes in a repeating manner, is very high. In this case, consistency is also very high. From a closer observation of the graphical plots of the individual axis, we can conclude, that the player, whose strokes are presented in Figure 9, is the most consistent via Y-axis, where the X-axis is the one with the most scattered plots. This estimation is made on observing the scatter thickness around the thick middle line, which represents the general axis stroke model. Plots show us also the three most obvious swing segments, where at the beginning of the plot from bin 1 to bin 120 is the swing segment. From the bins 120 till 140, the ball impact segment occurs. The last segment, called follow-through is from bins 140 till 248. The thick emphasized line plotted in the middle of the axis’s acceleration curves is the graphical representation of a stroke model.
\nTo evaluate the tennis player’s forehand stroke consistency, the general player’s forehand model is compared to the players’ recorded forehand strokes. To be able to derive the forehand stroke models, a database of forehand strokes was built. For estimation of the individual player’s forehand consistency, an average distance between individual acceleration bins of stroke recordings and stroke model is calculated. The mathematical expression is:
\nwhere
After that, average value of distances for all the three axes is calculated to get the common distance between the model and the individual stroke recording. Some valuable information is lost by doing that, but the reason for doing it this way is that the sign of the bin differences gets preserved. This is a piece of valuable information which tells us if the player is making the swing “under” or “over” compared to the forehand model. If we would use some other distance metrics (like Euclidean distance) to calculate the distance between acceleration bins of the strokes and the model, the outcome would have an only positive sign and the information about the error direction would be lost. A box plot is used for results presentation. Figure 10 shows the statistical representation of the forehand stroke consistency for players P1–P9.
\nBox-plot representation of the tennis stroke consistency evaluation. Lower and upper lines of the boxes represent the 25th and 75th percentile of the deviation interval, respectively.
A comment on the presented data is necessary to properly interpret the provided information. As mentioned, we used a box plot to represent the consistency analysis. A rectangle (box) is presenting each player. The red line in the box represents the average (median) value of the forehand stroke deviation from the model. Players P2 and P8 have near 0 deviation. The upper line of the box represents the 75th percentile of the deviation interval, and the lower line of the box represents the 25th percentile of the deviation interval. His distance (between lower and upper box border) is known also as the interquartile range. Each box is also extended by a line, called a whisker. Whisker is a dotted line that is drawn from the box border to the far border of the observation interval. They are determined beforehand, and in our case, they represent the border for the outlier values. In our case, they are set to 1.5 of the interquartile range. Values of the deviation that exceed this range are represented by red crosses and are called outliers. Box plots in Figure 10 show that the players P2, P3, and P8 are the most consistent among the tested group because their box plots are the smallest. They have some outliers, but they can be a consequence of an off-balance/close-to-body forehand stroke made. Regarding stroke consistency estimation, the worst player is the player P7. It has the biggest box plot and the red line (average value) is also off center, which suggests that the stroke deviation distribution is somewhat skewed to the positive values.
\nA more detailed stroke consistency estimation can be made for individual players. In Figure 11, detailed segmental stroke analysis is presented, also using a box plot.
\nSegmental forehand swing consistency analysis presentation for players P4 and P7. Player P7 is inconsistent in the swing phase of the tennis stroke.
As we can conclude from Figure 11, detailed segmental stroke analyses for players P4 and P7 are presented. The analyses presented in Figure 10 gave us the overall forehand swing consistency estimation. On the other hand, the segmental analysis presented in Figure 11 gives us the insight in which part of the forehand stroke the players are the most or the least consistent. We can see that player P4 has the highest box plots at segments 12–14, which are the segments, where the racket contacts the tennis ball. This deviation in this segment is to be expected and is common because of the oscillations and vibrations due to the ball contact. But the player P7 has the least inconsistent forehand around the segments 7–10, which is a swing stage of the tennis stroke. This information can be valuable for the player and the tennis coach. Based on such analyses, they can make a strategy on how to improve the training and performance of a tennis game.
\nIn this chapter, smart wearables in sport were presented, using a case of a system for tennis game analysis. A miniature wearable device for detecting and recording the movement and biometric data is presented in detail, along with the procedures and algorithms for tennis stroke detection and classification. The presented system also incorporates a cloud service for information visualization and possibly more sophisticated game/athlete’s performance analysis. The performance of the proposed system was tested for tennis. The wearable device supports tennis stroke detection and classification of the three most basic strokes: forehand, backhand, and serve. It also supports pulse-rate measurements and skin temperature measurements. A principle of tennis stroke consistency evaluation was also presented. The smart wearable device with cloud processing support and presented stroke analyses can give an athlete or a coach a good insight into an athlete’s skills and abilities and can be a great tool for sport performance improvements.
\nCustomer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"16"},books:[{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11818",title:"Uveitis",subtitle:null,isOpenForSubmission:!0,hash:"f8c178e6f45ba7b500281005b5d5b67a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11818.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11871",title:"Aortic Surgery",subtitle:null,isOpenForSubmission:!0,hash:"6559d38b53bc671745ac8bf9ef2bd1f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11871.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12092",title:"Pancreatic Cancer",subtitle:null,isOpenForSubmission:!0,hash:"934ff1479446e52efd8d675a113fca63",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12092.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12093",title:"Germ Cell Tumors",subtitle:null,isOpenForSubmission:!0,hash:"a86ceba1cc2eddfb98df1f0bdd7970f3",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12093.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12114",title:"Bone Fractures",subtitle:null,isOpenForSubmission:!0,hash:"78d9847691b6f1a8454480e7c0dbaef4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12114.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12095",title:"Radiation Therapy",subtitle:null,isOpenForSubmission:!0,hash:"a4c8ee34ddd31ad65f143459a8f5300b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12095.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:41},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:16},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:66},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:145},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"988",title:"Neuroendocrinology",slug:"cardiology-and-cardiovascular-medicine-neuroendocrinology",parent:{id:"170",title:"Cardiology and Cardiovascular Medicine",slug:"cardiology-and-cardiovascular-medicine"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:44,numberOfWosCitations:22,numberOfCrossrefCitations:20,numberOfDimensionsCitations:43,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"988",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5504",title:"Renin-Angiotensin System",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"66b46ee5dfa426cb08d97d2f261e5e0e",slug:"renin-angiotensin-system-past-present-and-future",bookSignature:"Anna Naidenova Tolekova",coverURL:"https://cdn.intechopen.com/books/images_new/5504.jpg",editedByType:"Edited by",editors:[{id:"143727",title:"Prof.",name:"Anna",middleName:"Naydenova",surname:"Tolekova",slug:"anna-tolekova",fullName:"Anna Tolekova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"55894",doi:"10.5772/intechopen.69513",title:"The Function of Renin and the Role of Food-Derived Peptides as Direct Renin Inhibitors",slug:"the-function-of-renin-and-the-role-of-food-derived-peptides-as-direct-renin-inhibitors",totalDownloads:1521,totalCrossrefCites:2,totalDimensionsCites:10,abstract:"Food proteins contain active peptide fragments encrypted within their structure that can exert beneficial effects on human health above and beyond their expected nutritional value. Among many types of food-derived peptides, peptides with antihypertensive activity have received the most significant attention due to the prevalence of hypertension and its associated complications with pharmacological interventions. One strategy for the selection of potential food-derived antihypertensive peptides is to search for in vitro renin inhibitory activity. Thus far, various food protein-derived peptides and protein hydrolysates have shown in vitro renin inhibitory capacity. Many of these peptides have induced antihypertensive effects when orally administered to spontaneously hypertensive rats, and also, antihypertensive effects in hypertensive humans have been reported. Indeed, the results indicate that antihypertensive food protein-derived peptides may be acting at the same time via multiple pathways at the protein level as well as at the gene level modulating the renin-angiotensin system. Important knowledge on structure-function parameters of peptides is increasing constantly, which can greatly enhance the production and processing of peptides with high physiological efficacy. By means of novel nutrigenomic approaches, it is possible and, in future, perhaps essential to investigate the impact of peptides on the expression of genes and hence endeavor to optimize the nutritional and health effects delivered by peptides. Novel technologies are available to standardize and stabilize the concentrations of active peptides in the products in down-stream processing. The existing data provide strong potential for developing new added-value products with scientifically approved health effects for consumers. This review provides an overview of food-derived peptides that may mediate the antihypertensive activities through inhibiting renin, one of the key enzymes in renin-angiotensin system, and reviews also the safety and applicability aspects of the these peptides.",book:{id:"5504",slug:"renin-angiotensin-system-past-present-and-future",title:"Renin-Angiotensin System",fullTitle:"Renin-Angiotensin System - Past, Present and Future"},signatures:"Anne Pihlanto and Sari Mäkinen",authors:[{id:"191941",title:"Ph.D.",name:"Anne",middleName:null,surname:"Pihlanto",slug:"anne-pihlanto",fullName:"Anne Pihlanto"},{id:"192566",title:"Dr.",name:"Sari",middleName:null,surname:"Mäkinen",slug:"sari-makinen",fullName:"Sari Mäkinen"}]},{id:"53100",doi:"10.5772/66076",title:"Signaling Pathways of Cardiac Remodeling Related to Angiotensin II",slug:"signaling-pathways-of-cardiac-remodeling-related-to-angiotensin-ii",totalDownloads:1799,totalCrossrefCites:6,totalDimensionsCites:8,abstract:"Heart failure affects more than 23 million people worldwide, and its prognosis remains poor. Hypertension is one of the most prominent human health problem and places individuals at a higher risk for heart failure. Several factors interplay the development of hypertension contributing for decompensated heart hypertrophy. The renin-angiotensin system (RAS) has been shown to be the foremost regulator of blood pressure. Many evidences have pointed out the importance of RAS and its key mediator, angiotensin II (Ang II), on signaling pathways involved in cardiac remodeling. The Ang II-induced hypertrophic effects seem to be related to increased reactive oxygen species (ROS). Under oxidative stress conditions, as those observed in hypertension and heart failure, the matrix metalloproteinases (MMP) is activated. Ang II is connected with TNF-α and TGF-β by ROS-NF-κB-MMP mechanisms, which are involved in heart failure. The rationale of the present chapter is structured on the progression of heart failure related to Ang II, TNF-α and TGF-β by common signaling pathways. Pharmacotherapeutics approaches to the heart failure abound, but the mortality rates remain high. This chapter will also describe molecular mechanisms involved in heart failure highlighting that TGF-β and/or TNF-α inhibitors could contribute to treatment to this serious clinical condition.",book:{id:"5504",slug:"renin-angiotensin-system-past-present-and-future",title:"Renin-Angiotensin System",fullTitle:"Renin-Angiotensin System - Past, Present and Future"},signatures:"Carolina Baraldi Araujo Restini, Arthur F. Engracia Garcia, Henrique\nMelo Natalin, Guilherme Melo Natalin and Elen Rizzi",authors:[{id:"178144",title:"Dr.",name:"Carolina",middleName:null,surname:"Baraldi A. Restini",slug:"carolina-baraldi-a.-restini",fullName:"Carolina Baraldi A. Restini"},{id:"193457",title:"Dr.",name:"Henrique",middleName:null,surname:"Melo Natalin",slug:"henrique-melo-natalin",fullName:"Henrique Melo Natalin"},{id:"193458",title:"Dr.",name:"Arthur",middleName:null,surname:"Feierabend Engracia Garcia",slug:"arthur-feierabend-engracia-garcia",fullName:"Arthur Feierabend Engracia Garcia"},{id:"193459",title:"Dr.",name:"Guilherme",middleName:null,surname:"Melo Natalin",slug:"guilherme-melo-natalin",fullName:"Guilherme Melo Natalin"},{id:"193460",title:"Dr.",name:"Elen",middleName:null,surname:"Rizzi",slug:"elen-rizzi",fullName:"Elen Rizzi"}]},{id:"54072",doi:"10.5772/65919",title:"Local Renin-Angiotensin System at Liver and Crosstalk with Hepatic Diseases",slug:"local-renin-angiotensin-system-at-liver-and-crosstalk-with-hepatic-diseases",totalDownloads:1821,totalCrossrefCites:3,totalDimensionsCites:7,abstract:"The systemic renin-angiotensin system mainly regulates blood pressure and maintains kidney function. Recent studies have realized that renin-angiotensin system (RAS) has been found in many tissues, such as heart, liver, and kidney. Although RAS in heart and kidney has been well documented, the RAS in the liver has been evaluated in a few studies. Therefore, this chapter will be assessed it. Based on findings, RAS in the liver has presented almost all of its components, such as angiotensin-I (Ang-I), angiotensin-II (Ang-II), angiotensin-converting enzyme (ACE), angiotensin type-1 receptor (AT1), angiotensin type-2 receptor (AT2), named as classical RAS. Expect these components, the local RAS has had alternative pathway components, including angiotensin-converting enzyme 2 (ACE2) and chymase. Classical RAS has an opposite effect of alternative RAS. Although these local RAS might not be such a crucial for the tissue, it could be a more vital function under pathophysiologic conditions. The chapter the local RAS in the liver the under both physiologic and pathophysiologic conditions is highlighted.",book:{id:"5504",slug:"renin-angiotensin-system-past-present-and-future",title:"Renin-Angiotensin System",fullTitle:"Renin-Angiotensin System - Past, Present and Future"},signatures:"Eylem Taskin and Celal Guven",authors:[{id:"192567",title:"Prof.",name:"Eylem",middleName:null,surname:"Taskin",slug:"eylem-taskin",fullName:"Eylem Taskin"},{id:"195229",title:"Dr.",name:"Celal",middleName:null,surname:"Guven",slug:"celal-guven",fullName:"Celal Guven"}]},{id:"54082",doi:"10.5772/67016",title:"Regulation of the Renin-Angiotensin-Aldosterone System by Reactive Oxygen Species",slug:"regulation-of-the-renin-angiotensin-aldosterone-system-by-reactive-oxygen-species",totalDownloads:1921,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"Angiotensin II (Ang II), the major effector of the renin-angiotensin-aldosterone system (RAAS), stimulates the production of reactive oxygen species (ROS) which are critically involved in Ang II-induced effects. Noteworthy, accumulating evidence indicates that ROS also regulate the activation of RAAS, contributing to the fine-tuning of this system under physiological conditions or to the amplification of the deleterious signaling in several pathologies. This chapter aims at giving an overview of the role of ROS in the regulation of expression, secretion and/or activity of several RAAS components.",book:{id:"5504",slug:"renin-angiotensin-system-past-present-and-future",title:"Renin-Angiotensin System",fullTitle:"Renin-Angiotensin System - Past, Present and Future"},signatures:"Manuela Morato, Marta Reina-Couto, Dora Pinho, António Albino-\nTeixeira and Teresa Sousa",authors:[{id:"140800",title:"Prof.",name:"António",middleName:null,surname:"Albino-Teixeira",slug:"antonio-albino-teixeira",fullName:"António Albino-Teixeira"},{id:"142410",title:"Prof.",name:"Teresa",middleName:null,surname:"Sousa",slug:"teresa-sousa",fullName:"Teresa Sousa"},{id:"193340",title:"Prof.",name:"Manuela",middleName:null,surname:"Morato",slug:"manuela-morato",fullName:"Manuela Morato"},{id:"193341",title:"M.D.",name:"Marta",middleName:null,surname:"Reina-Couto",slug:"marta-reina-couto",fullName:"Marta Reina-Couto"},{id:"193342",title:"Prof.",name:"Dora",middleName:null,surname:"Pinho",slug:"dora-pinho",fullName:"Dora Pinho"}]},{id:"53588",doi:"10.5772/66997",title:"Renin-Angiotensin System on Reproductive Biology",slug:"renin-angiotensin-system-on-reproductive-biology",totalDownloads:1375,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"In the female reproductive system, angiotensin II (ANG II) is a potential signaling molecule involved in ovarian follicle development, which acts through two transmembrane receptors. Within the ovarian follicle, there appear to be species differences in the precise pattern of localization of AGTR2 protein and it has an important role in in vitro maturation of oocytes in mammals. The infusion of ANG II induced ovulation in rabbits and the use of ANG II antagonists inhibited ovulation in rabbits, rats, and cattle. In fetal ovaries, AGTR2 protein was detected in ovigerous cords and preantral follicles throughout porcine and bovine gestation. In the oviduct, ANG II is responsible for the orchestration of the transport of gametes. In the male reproductive system, there is considerable evidence for the local synthesis of components of renin-angiotensin system (RAS) in male reproductive tissues. The roles of RAS in local processes at these sites are still uncertain, although there is evidence for involvement in tubular contractility, spermatogenesis, sperm maturation, capacitation, acrosomal exocytosis, and fertilization.",book:{id:"5504",slug:"renin-angiotensin-system-past-present-and-future",title:"Renin-Angiotensin System",fullTitle:"Renin-Angiotensin System - Past, Present and Future"},signatures:"Anthony C.S. Castilho, Patrícia K. Fontes, Fernanda F. Franchi,\nPriscila H. Santos and Eduardo M. Razza",authors:[{id:"191450",title:"Associate Prof.",name:"Anthony",middleName:"César Souza",surname:"Castilho",slug:"anthony-castilho",fullName:"Anthony Castilho"},{id:"191848",title:"M.Sc.",name:"Patricia",middleName:"Kubo",surname:"Fontes",slug:"patricia-fontes",fullName:"Patricia Fontes"},{id:"191860",title:"MSc.",name:"Fernanda",middleName:null,surname:"Franchi",slug:"fernanda-franchi",fullName:"Fernanda Franchi"},{id:"191862",title:"MSc.",name:"Priscila",middleName:null,surname:"Santos",slug:"priscila-santos",fullName:"Priscila Santos"},{id:"191906",title:"MSc.",name:"Eduardo",middleName:null,surname:"Razza",slug:"eduardo-razza",fullName:"Eduardo Razza"}]}],mostDownloadedChaptersLast30Days:[{id:"53100",title:"Signaling Pathways of Cardiac Remodeling Related to Angiotensin II",slug:"signaling-pathways-of-cardiac-remodeling-related-to-angiotensin-ii",totalDownloads:1799,totalCrossrefCites:6,totalDimensionsCites:8,abstract:"Heart failure affects more than 23 million people worldwide, and its prognosis remains poor. Hypertension is one of the most prominent human health problem and places individuals at a higher risk for heart failure. Several factors interplay the development of hypertension contributing for decompensated heart hypertrophy. The renin-angiotensin system (RAS) has been shown to be the foremost regulator of blood pressure. Many evidences have pointed out the importance of RAS and its key mediator, angiotensin II (Ang II), on signaling pathways involved in cardiac remodeling. The Ang II-induced hypertrophic effects seem to be related to increased reactive oxygen species (ROS). Under oxidative stress conditions, as those observed in hypertension and heart failure, the matrix metalloproteinases (MMP) is activated. Ang II is connected with TNF-α and TGF-β by ROS-NF-κB-MMP mechanisms, which are involved in heart failure. The rationale of the present chapter is structured on the progression of heart failure related to Ang II, TNF-α and TGF-β by common signaling pathways. Pharmacotherapeutics approaches to the heart failure abound, but the mortality rates remain high. This chapter will also describe molecular mechanisms involved in heart failure highlighting that TGF-β and/or TNF-α inhibitors could contribute to treatment to this serious clinical condition.",book:{id:"5504",slug:"renin-angiotensin-system-past-present-and-future",title:"Renin-Angiotensin System",fullTitle:"Renin-Angiotensin System - Past, Present and Future"},signatures:"Carolina Baraldi Araujo Restini, Arthur F. Engracia Garcia, Henrique\nMelo Natalin, Guilherme Melo Natalin and Elen Rizzi",authors:[{id:"178144",title:"Dr.",name:"Carolina",middleName:null,surname:"Baraldi A. Restini",slug:"carolina-baraldi-a.-restini",fullName:"Carolina Baraldi A. Restini"},{id:"193457",title:"Dr.",name:"Henrique",middleName:null,surname:"Melo Natalin",slug:"henrique-melo-natalin",fullName:"Henrique Melo Natalin"},{id:"193458",title:"Dr.",name:"Arthur",middleName:null,surname:"Feierabend Engracia Garcia",slug:"arthur-feierabend-engracia-garcia",fullName:"Arthur Feierabend Engracia Garcia"},{id:"193459",title:"Dr.",name:"Guilherme",middleName:null,surname:"Melo Natalin",slug:"guilherme-melo-natalin",fullName:"Guilherme Melo Natalin"},{id:"193460",title:"Dr.",name:"Elen",middleName:null,surname:"Rizzi",slug:"elen-rizzi",fullName:"Elen Rizzi"}]},{id:"54072",title:"Local Renin-Angiotensin System at Liver and Crosstalk with Hepatic Diseases",slug:"local-renin-angiotensin-system-at-liver-and-crosstalk-with-hepatic-diseases",totalDownloads:1816,totalCrossrefCites:3,totalDimensionsCites:7,abstract:"The systemic renin-angiotensin system mainly regulates blood pressure and maintains kidney function. Recent studies have realized that renin-angiotensin system (RAS) has been found in many tissues, such as heart, liver, and kidney. Although RAS in heart and kidney has been well documented, the RAS in the liver has been evaluated in a few studies. Therefore, this chapter will be assessed it. Based on findings, RAS in the liver has presented almost all of its components, such as angiotensin-I (Ang-I), angiotensin-II (Ang-II), angiotensin-converting enzyme (ACE), angiotensin type-1 receptor (AT1), angiotensin type-2 receptor (AT2), named as classical RAS. Expect these components, the local RAS has had alternative pathway components, including angiotensin-converting enzyme 2 (ACE2) and chymase. Classical RAS has an opposite effect of alternative RAS. Although these local RAS might not be such a crucial for the tissue, it could be a more vital function under pathophysiologic conditions. The chapter the local RAS in the liver the under both physiologic and pathophysiologic conditions is highlighted.",book:{id:"5504",slug:"renin-angiotensin-system-past-present-and-future",title:"Renin-Angiotensin System",fullTitle:"Renin-Angiotensin System - Past, Present and Future"},signatures:"Eylem Taskin and Celal Guven",authors:[{id:"192567",title:"Prof.",name:"Eylem",middleName:null,surname:"Taskin",slug:"eylem-taskin",fullName:"Eylem Taskin"},{id:"195229",title:"Dr.",name:"Celal",middleName:null,surname:"Guven",slug:"celal-guven",fullName:"Celal Guven"}]},{id:"54082",title:"Regulation of the Renin-Angiotensin-Aldosterone System by Reactive Oxygen Species",slug:"regulation-of-the-renin-angiotensin-aldosterone-system-by-reactive-oxygen-species",totalDownloads:1921,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"Angiotensin II (Ang II), the major effector of the renin-angiotensin-aldosterone system (RAAS), stimulates the production of reactive oxygen species (ROS) which are critically involved in Ang II-induced effects. Noteworthy, accumulating evidence indicates that ROS also regulate the activation of RAAS, contributing to the fine-tuning of this system under physiological conditions or to the amplification of the deleterious signaling in several pathologies. This chapter aims at giving an overview of the role of ROS in the regulation of expression, secretion and/or activity of several RAAS components.",book:{id:"5504",slug:"renin-angiotensin-system-past-present-and-future",title:"Renin-Angiotensin System",fullTitle:"Renin-Angiotensin System - Past, Present and Future"},signatures:"Manuela Morato, Marta Reina-Couto, Dora Pinho, António Albino-\nTeixeira and Teresa Sousa",authors:[{id:"140800",title:"Prof.",name:"António",middleName:null,surname:"Albino-Teixeira",slug:"antonio-albino-teixeira",fullName:"António Albino-Teixeira"},{id:"142410",title:"Prof.",name:"Teresa",middleName:null,surname:"Sousa",slug:"teresa-sousa",fullName:"Teresa Sousa"},{id:"193340",title:"Prof.",name:"Manuela",middleName:null,surname:"Morato",slug:"manuela-morato",fullName:"Manuela Morato"},{id:"193341",title:"M.D.",name:"Marta",middleName:null,surname:"Reina-Couto",slug:"marta-reina-couto",fullName:"Marta Reina-Couto"},{id:"193342",title:"Prof.",name:"Dora",middleName:null,surname:"Pinho",slug:"dora-pinho",fullName:"Dora Pinho"}]},{id:"54743",title:"Role of the Renin-Angiotensin System in Healthy and Pathological Pregnancies",slug:"role-of-the-renin-angiotensin-system-in-healthy-and-pathological-pregnancies",totalDownloads:1384,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Introduction: Pregnancy is a physiological process that necessitates many cardiovascular and hemodynamic adaptations to ensure the survival of the foetus and well‐being of the mother. The renin‐angiotensin system (RAS) has been suggested as key player in many of these changes as it is critical for blood pressure control as well as fluid and salt homeostasis in the non‐pregnant state.",book:{id:"5504",slug:"renin-angiotensin-system-past-present-and-future",title:"Renin-Angiotensin System",fullTitle:"Renin-Angiotensin System - Past, Present and Future"},signatures:"Émilie Pepin, Shahin Shabanipour Dehboneh, Nozha Raguema,\nMaedeh Talebi Esfandarani and Julie L. Lavoie",authors:[{id:"191471",title:"Dr.",name:"Julie",middleName:"L.",surname:"Lavoie",slug:"julie-lavoie",fullName:"Julie Lavoie"},{id:"197626",title:"Dr.",name:"Émilie",middleName:null,surname:"Pépin",slug:"emilie-pepin",fullName:"Émilie Pépin"},{id:"197627",title:"MSc.",name:"Shahin",middleName:null,surname:"Shabanipour Dehboneh",slug:"shahin-shabanipour-dehboneh",fullName:"Shahin Shabanipour Dehboneh"},{id:"197628",title:"MSc.",name:"Nozha",middleName:null,surname:"Raguema",slug:"nozha-raguema",fullName:"Nozha Raguema"},{id:"197629",title:"MSc.",name:"Maedeh",middleName:null,surname:"Talebi Esfandarani",slug:"maedeh-talebi-esfandarani",fullName:"Maedeh Talebi Esfandarani"}]},{id:"53588",title:"Renin-Angiotensin System on Reproductive Biology",slug:"renin-angiotensin-system-on-reproductive-biology",totalDownloads:1374,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"In the female reproductive system, angiotensin II (ANG II) is a potential signaling molecule involved in ovarian follicle development, which acts through two transmembrane receptors. Within the ovarian follicle, there appear to be species differences in the precise pattern of localization of AGTR2 protein and it has an important role in in vitro maturation of oocytes in mammals. The infusion of ANG II induced ovulation in rabbits and the use of ANG II antagonists inhibited ovulation in rabbits, rats, and cattle. In fetal ovaries, AGTR2 protein was detected in ovigerous cords and preantral follicles throughout porcine and bovine gestation. In the oviduct, ANG II is responsible for the orchestration of the transport of gametes. In the male reproductive system, there is considerable evidence for the local synthesis of components of renin-angiotensin system (RAS) in male reproductive tissues. The roles of RAS in local processes at these sites are still uncertain, although there is evidence for involvement in tubular contractility, spermatogenesis, sperm maturation, capacitation, acrosomal exocytosis, and fertilization.",book:{id:"5504",slug:"renin-angiotensin-system-past-present-and-future",title:"Renin-Angiotensin System",fullTitle:"Renin-Angiotensin System - Past, Present and Future"},signatures:"Anthony C.S. Castilho, Patrícia K. Fontes, Fernanda F. Franchi,\nPriscila H. Santos and Eduardo M. Razza",authors:[{id:"191450",title:"Associate Prof.",name:"Anthony",middleName:"César Souza",surname:"Castilho",slug:"anthony-castilho",fullName:"Anthony Castilho"},{id:"191848",title:"M.Sc.",name:"Patricia",middleName:"Kubo",surname:"Fontes",slug:"patricia-fontes",fullName:"Patricia Fontes"},{id:"191860",title:"MSc.",name:"Fernanda",middleName:null,surname:"Franchi",slug:"fernanda-franchi",fullName:"Fernanda Franchi"},{id:"191862",title:"MSc.",name:"Priscila",middleName:null,surname:"Santos",slug:"priscila-santos",fullName:"Priscila Santos"},{id:"191906",title:"MSc.",name:"Eduardo",middleName:null,surname:"Razza",slug:"eduardo-razza",fullName:"Eduardo Razza"}]}],onlineFirstChaptersFilter:{topicId:"988",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:27,paginationItems:[{id:"83092",title:"Novel Composites for Bone Tissue Engineering",doi:"10.5772/intechopen.106255",signatures:"Pugalanthipandian Sankaralingam, Poornimadevi Sakthivel and Vijayakumar Chinnaswamy Thangavel",slug:"novel-composites-for-bone-tissue-engineering",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",subseries:{id:"8",title:"Bioinspired Technology and Biomechanics"}}},{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82388",title:"Epigenetics: Science of Changes without Change in DNA Sequences",doi:"10.5772/intechopen.105039",signatures:"Jayisha Dhargawe, Rita Lakkakul and Pradip Hirapure",slug:"epigenetics-science-of-changes-without-change-in-dna-sequences",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Chemical Biology",value:15,count:2,group:"subseries"},{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"July 27th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.png",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:3},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:245,paginationItems:[{id:"196707",title:"Prof.",name:"Mustafa Numan",middleName:null,surname:"Bucak",slug:"mustafa-numan-bucak",fullName:"Mustafa Numan Bucak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196707/images/system/196707.png",biography:"Mustafa Numan Bucak received a bachelor’s degree from the Veterinary Faculty, Ankara University, Turkey, where he also obtained a Ph.D. in Sperm Cryobiology. He is an academic staff member of the Department of Reproduction and Artificial Insemination, Selçuk University, Turkey. He manages several studies on sperms and embryos and is an editorial board member for several international journals. His studies include sperm cryobiology, in vitro fertilization, and embryo production in animals.",institutionString:"Selçuk University, Faculty of Veterinary Medicine",institution:null},{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",biography:"Yusuf Bozkurt has a BSc, MSc, and Ph.D. from Ankara University, Turkey. He is currently a Professor of Biotechnology of Reproduction in the field of Aquaculture, İskenderun Technical University, Turkey. His research interests include reproductive biology and biotechnology with an emphasis on cryo-conservation. He is on the editorial board of several international peer-reviewed journals and has published many papers. Additionally, he has participated in many international and national congresses, seminars, and workshops with oral and poster presentations. He is an active member of many local and international organizations.",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",country:{name:"Turkey"}}},{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",biography:"Dr. Sergey Tkachev is a senior research scientist at the Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia, and at the Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia. He received his Ph.D. in Molecular Biology with his thesis “Genetic variability of the tick-borne encephalitis virus in natural foci of Novosibirsk city and its suburbs.” His primary field is molecular virology with research emphasis on vector-borne viruses, especially tick-borne encephalitis virus, Kemerovo virus and Omsk hemorrhagic fever virus, rabies virus, molecular genetics, biology, and epidemiology of virus pathogens.",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",country:{name:"Russia"}}},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",biography:"Amlan K. Patra, FRSB, obtained a Ph.D. in Animal Nutrition from Indian Veterinary Research Institute, India, in 2002. He is currently an associate professor at West Bengal University of Animal and Fishery Sciences. He has more than twenty years of research and teaching experience. He held previous positions at the American Institute for Goat Research, The Ohio State University, Columbus, USA, and Free University of Berlin, Germany. His research focuses on animal nutrition, particularly ruminants and poultry nutrition, gastrointestinal electrophysiology, meta-analysis and modeling in nutrition, and livestock–environment interaction. He has authored around 175 articles in journals, book chapters, and proceedings. Dr. Patra serves on the editorial boards of several reputed journals.",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",country:{name:"India"}}},{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",biography:"László Babinszky is Professor Emeritus, Department of Animal Nutrition Physiology, University of Debrecen, Hungary. He has also worked in the Department of Animal Nutrition, University of Wageningen, Netherlands; the Institute for Livestock Feeding and Nutrition (IVVO), Lelystad, Netherlands; the Agricultural University of Vienna (BOKU); the Institute for Animal Breeding and Nutrition, Austria; and the Oscar Kellner Research Institute for Animal Nutrition, Rostock, Germany. In 1992, Dr. Babinszky obtained a Ph.D. in Animal Nutrition from the University of Wageningen. His main research areas are swine and poultry nutrition. He has authored more than 300 publications (papers, book chapters) and edited four books and fourteen international conference proceedings.",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"201830",title:"Dr.",name:"Fernando",middleName:"Sanchez",surname:"Davila",slug:"fernando-davila",fullName:"Fernando Davila",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201830/images/5017_n.jpg",biography:"I am a professor at UANL since 1988. My research lines are the development of reproductive techniques in small ruminants. We also conducted research on sexual and social behavior in males.\nI am Mexican and study my professional career as an engineer in agriculture and animal science at UANL. Then take a masters degree in science in Germany (Animal breeding). Take a doctorate in animal science at the UANL.",institutionString:null,institution:{name:"Universidad Autónoma de Nuevo León",country:{name:"Mexico"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",slug:"miguel-quaresma",fullName:"Miguel Quaresma",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309250/images/9059_n.jpg",biography:"Miguel Nuno Pinheiro Quaresma was born on May 26, 1974 in Dili, Timor Island. He is married with two children: a boy and a girl, and he is a resident in Vila Real, Portugal. He graduated in Veterinary Medicine in August 1998 and obtained his Ph.D. degree in Veterinary Sciences -Clinical Area in February 2015, both from the University of Trás-os-Montes e Alto Douro. He is currently enrolled in the Alternative Residency of the European College of Animal Reproduction. He works as a Senior Clinician at the Veterinary Teaching Hospital of UTAD (HVUTAD) with a role in clinical activity in the area of livestock and equine species as well as to support teaching and research in related areas. He teaches as an Invited Professor in Reproduction Medicine I and II of the Master\\'s in Veterinary Medicine degree at UTAD. Currently, he holds the position of Chairman of the Portuguese Buiatrics Association. He is a member of the Consultive Group on Production Animals of the OMV. He has 19 publications in indexed international journals (ISIS), as well as over 60 publications and oral presentations in both Portuguese and international journals and congresses.",institutionString:"University of Trás-os-Montes and Alto Douro",institution:{name:"University of Trás-os-Montes and Alto Douro",country:{name:"Portugal"}}},{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"283019",title:"Dr.",name:"Oudessa",middleName:null,surname:"Kerro Dego",slug:"oudessa-kerro-dego",fullName:"Oudessa Kerro Dego",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/283019/images/system/283019.png",biography:"Dr. Kerro Dego is a veterinary microbiologist with training in veterinary medicine, microbiology, and anatomic pathology. Dr. Kerro Dego is an assistant professor of dairy health in the department of animal science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. He received his D.V.M. (1997), M.S. (2002), and Ph.D. (2008) degrees in Veterinary Medicine, Animal Pathology and Veterinary Microbiology from College of Veterinary Medicine, Addis Ababa University, Ethiopia; College of Veterinary Medicine, Utrecht University, the Netherlands and Western College of Veterinary Medicine, University of Saskatchewan, Canada respectively. He did his Postdoctoral training in microbial pathogenesis (2009 - 2015) in the Department of Animal Science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. Dr. Kerro Dego’s research focuses on the prevention and control of infectious diseases of farm animals, particularly mastitis, improving dairy food safety, and mitigation of antimicrobial resistance. Dr. Kerro Dego has extensive experience in studying the pathogenesis of bacterial infections, identification of virulence factors, and vaccine development and efficacy testing against major bacterial mastitis pathogens. Dr. Kerro Dego conducted numerous controlled experimental and field vaccine efficacy studies, vaccination, and evaluation of immunological responses in several species of animals, including rodents (mice) and large animals (bovine and ovine).",institutionString:"University of Tennessee at Knoxville",institution:{name:"University of Tennessee at Knoxville",country:{name:"United States of America"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",country:{name:"Spain"}}},{id:"309529",title:"Dr.",name:"Albert",middleName:null,surname:"Rizvanov",slug:"albert-rizvanov",fullName:"Albert Rizvanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309529/images/9189_n.jpg",biography:'Albert A. Rizvanov is a Professor and Director of the Center for Precision and Regenerative Medicine at the Institute of Fundamental Medicine and Biology, Kazan Federal University (KFU), Russia. He is the Head of the Center of Excellence “Regenerative Medicine” and Vice-Director of Strategic Academic Unit \\"Translational 7P Medicine\\". Albert completed his Ph.D. at the University of Nevada, Reno, USA and Dr.Sci. at KFU. He is a corresponding member of the Tatarstan Academy of Sciences, Russian Federation. Albert is an author of more than 300 peer-reviewed journal articles and 22 patents. He has supervised 11 Ph.D. and 2 Dr.Sci. dissertations. Albert is the Head of the Dissertation Committee on Biochemistry, Microbiology, and Genetics at KFU.\nORCID https://orcid.org/0000-0002-9427-5739\nWebsite https://kpfu.ru/Albert.Rizvanov?p_lang=2',institutionString:"Kazan Federal University",institution:{name:"Kazan Federal University",country:{name:"Russia"}}},{id:"210551",title:"Dr.",name:"Arbab",middleName:null,surname:"Sikandar",slug:"arbab-sikandar",fullName:"Arbab Sikandar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210551/images/system/210551.jpg",biography:"Dr. Arbab Sikandar, PhD, M. Phil, DVM was born on April 05, 1981. He is currently working at the College of Veterinary & Animal Sciences as an Assistant Professor. He previously worked as a lecturer at the same University. \nHe is a Member/Secretory of Ethics committee (No. CVAS-9377 dated 18-04-18), Member of the QEC committee CVAS, Jhang (Regr/Gen/69/873, dated 26-10-2017), Member, Board of studies of Department of Basic Sciences (No. CVAS. 2851 Dated. 12-04-13, and No. CVAS, 9024 dated 20/11/17), Member of Academic Committee, CVAS, Jhang (No. CVAS/2004, Dated, 25-08-12), Member of the technical committee (No. CVAS/ 4085, dated 20,03, 2010 till 2016).\n\nDr. Arbab Sikandar contributed in five days hands-on-training on Histopathology at the Department of Pathology, UVAS from 12-16 June 2017. He received a Certificate of appreciation for contributions for Popularization of Science and Technology in the Society on 17-11-15. He was the resource person in the lecture series- ‘scientific writing’ at the Department of Anatomy and Histology, UVAS, Lahore on 29th October 2015. He won a full fellowship as a principal candidate for the year 2015 in the field of Agriculture, EICA, Egypt with ref. to the Notification No. 12(11) ACS/Egypt/2014 from 10 July 2015 to 25th September 2015.; he received a grant of Rs. 55000/- as research incentives from Director, Advanced Studies and Research, UVAS, Lahore upon publications of research papers in IF Journals (DR/215, dated 19-5-2014.. He obtained his PhD by winning a HEC Pakistan indigenous Scholarship, ‘Ph.D. fellowship for 5000 scholars – Phase II’ (2av1-147), 17-6/HEC/HRD/IS-II/12, November 15, 2012. \n\nDr. Sikandar is a member of numerous societies: Registered Veterinary Medical Practitioner (life member) and Registered Veterinary Medical Faculty of Pakistan Veterinary Medical Council. The Registration code of PVMC is RVMP/4298 and RVMF/ 0102.; Life member of the University of Veterinary and Animal Sciences, Lahore, Alumni Association with S# 664, dated: 6-4-12. ; Member 'Vets Care Organization Pakistan” with Reference No. VCO-605-149, dated 05-04-06. :Member 'Vet Crescent” (Society of Animal Health and Production), UVAS, Lahore.",institutionString:"University of Veterinary & Animal Science",institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}},{id:"311663",title:"Dr.",name:"Prasanna",middleName:null,surname:"Pal",slug:"prasanna-pal",fullName:"Prasanna Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311663/images/13261_n.jpg",biography:null,institutionString:null,institution:{name:"National Dairy Research Institute",country:{name:"India"}}},{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",country:{name:"United Kingdom"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",biography:"Samir El-Gendy is a Professor of anatomy and embryology at the faculty of veterinary medicine, Alexandria University, Egypt. Samir obtained his PhD in veterinary science in 2007 from the faculty of veterinary medicine, Alexandria University and has been a professor since 2017. Samir is an author on 24 articles at Scopus and 12 articles within local journals and 2 books/book chapters. His research focuses on applied anatomy, imaging techniques and computed tomography. Samir worked as a member of different local projects on E-learning and he is a board member of the African Association of Veterinary Anatomists and of anatomy societies and as an associated author at local and international journals. Orcid: https://orcid.org/0000-0002-6180-389X",institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"246149",title:"Dr.",name:"Valentina",middleName:null,surname:"Kubale",slug:"valentina-kubale",fullName:"Valentina Kubale",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246149/images/system/246149.jpg",biography:"Valentina Kubale is Associate Professor of Veterinary Medicine at the Veterinary Faculty, University of Ljubljana, Slovenia. Since graduating from the Veterinary faculty she obtained her PhD in 2007, performed collaboration with the Department of Pharmacology, University of Copenhagen, Denmark. She continued as a post-doctoral fellow at the University of Copenhagen with a Lundbeck foundation fellowship. She is the editor of three books and author/coauthor of 23 articles in peer-reviewed scientific journals, 16 book chapters, and 68 communications at scientific congresses. Since 2008 she has been the Editor Assistant for the Slovenian Veterinary Research journal. She is a member of Slovenian Biochemical Society, The Endocrine Society, European Association of Veterinary Anatomists and Society for Laboratory Animals, where she is board member.",institutionString:"University of Ljubljana",institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",biography:"Dr. Fonseca-Alves earned his DVM from Federal University of Goias – UFG in 2008. He completed an internship in small animal internal medicine at UPIS university in 2011, earned his MSc in 2013 and PhD in 2015 both in Veterinary Medicine at Sao Paulo State University – UNESP. Dr. Fonseca-Alves currently serves as an Assistant Professor at Paulista University – UNIP teaching small animal internal medicine.",institutionString:null,institution:{name:"Universidade Paulista",country:{name:"Brazil"}}},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",biography:"María de la Luz García Pardo is an agricultural engineer from Universitat Politècnica de València, Spain. She has a Ph.D. in Animal Genetics. Currently, she is a lecturer at the Agrofood Technology Department of Miguel Hernández University, Spain. Her research is focused on genetics and reproduction in rabbits. The major goal of her research is the genetics of litter size through novel methods such as selection by the environmental sensibility of litter size, with forays into the field of animal welfare by analysing the impact on the susceptibility to diseases and stress of the does. Details of her publications can be found at https://orcid.org/0000-0001-9504-8290.",institutionString:null,institution:{name:"Miguel Hernandez University",country:{name:"Spain"}}},{id:"350704",title:"M.Sc.",name:"Camila",middleName:"Silva Costa",surname:"Ferreira",slug:"camila-ferreira",fullName:"Camila Ferreira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/350704/images/17280_n.jpg",biography:"Graduated in Veterinary Medicine at the Fluminense Federal University, specialist in Equine Reproduction at the Brazilian Veterinary Institute (IBVET) and Master in Clinical Veterinary Medicine and Animal Reproduction at the Fluminense Federal University. She has experience in analyzing zootechnical indices in dairy cattle and organizing events related to Veterinary Medicine through extension grants. I have experience in the field of diagnostic imaging and animal reproduction in veterinary medicine through monitoring and scientific initiation scholarships. I worked at the Equus Central Reproduction Equine located in Santo Antônio de Jesus – BA in the 2016/2017 breeding season. I am currently a doctoral student with a scholarship from CAPES of the Postgraduate Program in Veterinary Medicine (Pathology and Clinical Sciences) at the Federal Rural University of Rio de Janeiro (UFRRJ) with a research project with an emphasis on equine endometritis.",institutionString:null,institution:null},{id:"41319",title:"Prof.",name:"Lung-Kwang",middleName:null,surname:"Pan",slug:"lung-kwang-pan",fullName:"Lung-Kwang Pan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41319/images/84_n.jpg",biography:null,institutionString:null,institution:null},{id:"125292",title:"Dr.",name:"Katy",middleName:null,surname:"Satué Ambrojo",slug:"katy-satue-ambrojo",fullName:"Katy Satué Ambrojo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/125292/images/system/125292.jpeg",biography:"Katy Satué Ambrojo received her Veterinary Medicine degree, Master degree in Equine Technology and doctorate in Veterinary Medicine from the Faculty of Veterinary, CEU-Cardenal Herrera University in Valencia, Spain.Dr. Satué is accredited as a Private University Doctor Professor, Doctor Assistant, and Contracted Doctor by AVAP (Agència Valenciana d'Avaluació i Prospectiva) and currently, as a full professor by ANECA (since January 2022). To date, Katy has taught 22 years in the Department of Animal Medicine and Surgery at the CEU-Cardenal Herrera University in undergraduate courses in Veterinary Medicine (General Pathology, integrated into the Applied Basis of Veterinary Medicine module of the 2nd year, Clinical Equine I of 3rd year, and Equine Clinic II of 4th year). Dr. Satué research activity is in the field of Endocrinology, Hematology, Biochemistry, and Immunology in the Spanish Purebred mare. She has directed 5 Doctoral Theses and 5 Diplomas of Advanced Studies, and participated in 11 research projects as a collaborating researcher. She has written 2 books and 14 book chapters in international publishers related to the area, and 68 scientific publications in international journals. Dr. Satué has attended 63 congresses, participating with 132 communications in international congresses and 19 in national congresses related to the area. Dr. Satué is a scientific reviewer for various prestigious international journals such as Animals, American Journal of Obstetrics and Gynecology, Veterinary Clinical Pathology, Journal of Equine Veterinary Science, Reproduction in Domestic Animals, Research Veterinary Science, Brazilian Journal of Medical and Biological Research, Livestock Production Science and Theriogenology, among others. Since 2014 she has been responsible for the Clinical Analysis Laboratory of the CEU-Cardenal Herrera University Veterinary Clinical Hospital.",institutionString:null,institution:null},{id:"201721",title:"Dr.",name:"Beatrice",middleName:null,surname:"Funiciello",slug:"beatrice-funiciello",fullName:"Beatrice Funiciello",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201721/images/11089_n.jpg",biography:"Graduated from the University of Milan in 2011, my post-graduate education included CertAVP modules mainly on equines (dermatology and internal medicine) and a few on small animal (dermatology and anaesthesia) at the University of Liverpool. After a general CertAVP (2015) I gained the designated Certificate in Veterinary Dermatology (2017) after taking the synoptic examination and then applied for the RCVS ADvanced Practitioner status. After that, I completed the Postgraduate Diploma in Veterinary Professional Studies at the University of Liverpool (2018). My main area of work is cross-species veterinary dermatology.",institutionString:null,institution:null},{id:"291226",title:"Dr.",name:"Monica",middleName:null,surname:"Cassel",slug:"monica-cassel",fullName:"Monica Cassel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/291226/images/8232_n.jpg",biography:'Degree in Biological Sciences at the Federal University of Mato Grosso with scholarship for Scientific Initiation by FAPEMAT (2008/1) and CNPq (2008/2-2009/2): Project \\"Histological evidence of reproductive activity in lizards of the Manso region, Chapada dos Guimarães, Mato Grosso, Brazil\\". Master\\\'s degree in Ecology and Biodiversity Conservation at Federal University of Mato Grosso with a scholarship by CAPES/REUNI program: Project \\"Reproductive biology of Melanorivulus punctatus\\". PhD\\\'s degree in Science (Cell and Tissue Biology Area) \n at University of Sao Paulo with scholarship granted by FAPESP; Project \\"Development of morphofunctional changes in ovary of Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae)\\". She has experience in Reproduction of vertebrates and Morphology, with emphasis in Cellular Biology and Histology. She is currently a teacher in the medium / technical level courses at IFMT-Alta Floresta, as well as in the Bachelor\\\'s degree in Animal Science and in the Bachelor\\\'s degree in Business.',institutionString:null,institution:null},{id:"442807",title:"Dr.",name:"Busani",middleName:null,surname:"Moyo",slug:"busani-moyo",fullName:"Busani Moyo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Gwanda State University",country:{name:"Zimbabwe"}}},{id:"439435",title:"Dr.",name:"Feda S.",middleName:null,surname:"Aljaser",slug:"feda-s.-aljaser",fullName:"Feda S. Aljaser",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"423023",title:"Dr.",name:"Yosra",middleName:null,surname:"Soltan",slug:"yosra-soltan",fullName:"Yosra Soltan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"349788",title:"Dr.",name:"Florencia Nery",middleName:null,surname:"Sompie",slug:"florencia-nery-sompie",fullName:"Florencia Nery Sompie",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sam Ratulangi University",country:{name:"Indonesia"}}},{id:"428600",title:"MSc.",name:"Adriana",middleName:null,surname:"García-Alarcón",slug:"adriana-garcia-alarcon",fullName:"Adriana García-Alarcón",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428599",title:"MSc.",name:"Gabino",middleName:null,surname:"De La Rosa-Cruz",slug:"gabino-de-la-rosa-cruz",fullName:"Gabino De La Rosa-Cruz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428601",title:"MSc.",name:"Juan Carlos",middleName:null,surname:"Campuzano-Caballero",slug:"juan-carlos-campuzano-caballero",fullName:"Juan Carlos Campuzano-Caballero",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}}]}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular Economy, Contingency Planning and Response to Disasters, Ecosystem Services, Integrated Urban Water Management, Nature-based Solutions, Sustainable Urban Development, Urban Green Spaces",scope:"