The ideal phenotype to cope with P deficiency is suggested to be a larger root system, both in terms of length and foraging area, coupled with a high capacity for P solubilization from compounds exuded from roots. Greater soil exploration results in a large number of roots in the top soil, longer roots in general with more cortical aerenchyma, more and longer root hairs, and a shift in mycorrhizal and bacterial colonization. However, these assumptions often result from experiments in highly controlled, sterile and soil-free conditions using model plants or single ecotypes where results are then extrapolated to all genotypes and plant species. In recent years this generalization has been questioned. Here, we summarize recent rice research analyzing the natural diversity of rice root systems under P deficiency. Interestingly, while some of the high yielding genotypes do show the expected, large root system phenotype, some have a surprisingly small root system—as little as a quarter of that of the large root system varieties—but achieve similar yield and P uptake under P deficiency. This effect has recently been termed root efficiency, which we discuss in this chapter in conjunction with root foraging traits.
Part of the book: Rice Crop