Composition of biogas and natural gas.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"10738",leadTitle:null,fullTitle:"Update on Malacology",title:"Update on Malacology",subtitle:null,reviewType:"peer-reviewed",abstract:"Update on Malacology is a compilation of high-impact research articles on the frontier areas of molluscan biology, physiology, aquaculture, and paleoecology. Topics covered include effects of dietary intake of shellfish in humans, beneficial effects of herbal compounds on the cognitive ability of molluscs, seasonal variation of molluscs acting as intermediate hosts of human parasites, current understanding of freshwater pearl culture, and the role of environmental parameters on the infectivity of freshwater snails and their paleoecological aspects. This book is an enriched edition of current trends of malacological research and is a useful resource for students, teachers, and researchers working in basic and applied malacology.",isbn:"978-1-83969-744-9",printIsbn:"978-1-83969-743-2",pdfIsbn:"978-1-83969-745-6",doi:"10.5772/intechopen.94710",price:119,priceEur:129,priceUsd:155,slug:"update-on-malacology",numberOfPages:112,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"2a84e581549b3720e44e989c3c0be467",bookSignature:"Sajal Ray and Soumalya Mukherjee",publishedDate:"January 12th 2022",coverURL:"https://cdn.intechopen.com/books/images_new/10738.jpg",numberOfDownloads:833,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:1,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:1,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 25th 2021",dateEndSecondStepPublish:"April 22nd 2021",dateEndThirdStepPublish:"June 21st 2021",dateEndFourthStepPublish:"September 9th 2021",dateEndFifthStepPublish:"November 8th 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"173697",title:"Prof.",name:"Sajal",middleName:null,surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray",profilePictureURL:"https://mts.intechopen.com/storage/users/173697/images/system/173697.jpeg",biography:"Sajal Ray received an MSc in Zoology and MPhil in Environmental Science from Calcutta University, India, and a Ph.D. from Jadavpur University, India. His thesis reported the immunotoxicity of pesticides in an economically important snail of India. As a recipient of the Fogarty Visiting Fellowship, Dr. Ray carried out his postdoctoral research in cardiac pathology at the National Institutes of Health, USA. His research interest is studying the immunological responses of molluscs, sponges, crabs, and earthworms exposed to pollutants. His team is engaged in understanding the evolutionary mechanism of immunity in phylogeny. He has presented his research at various conferences including the World Congress of Malacology, Washington DC. Dr. Ray is currently a Professor of Zoology at Calcutta University.",institutionString:"University of Calcutta",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"University of Calcutta",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"175476",title:"Dr.",name:"Soumalya",middleName:null,surname:"Mukherjee",slug:"soumalya-mukherjee",fullName:"Soumalya Mukherjee",profilePictureURL:"https://mts.intechopen.com/storage/users/175476/images/system/175476.jpeg",biography:"Soumalya Mukherjee obtained his MSc degree in Zoology from the West Bengal State University, India and stood first. He was selected for the DST INSPIRE Fellowship from the Department of Science and Technology, Government of India. He received his Ph.D. from the University of Calcutta, India. Dr. Mukherjee has published several research articles in peer-reviewed scientific journals and books of international repute. He has presented his research findings at various international and national conferences and symposia. He has been actively engaged in research of immunotoxicological effects of environmental pollutants on terrestrial and aquatic invertebrates. He was previously an assistant professor of Zoology, the Directorate of Open and Distance Learning, University of Kalyani, India. Dr. Mukherjee is currently Assistant Professor of Zoology, Brahmananda Keshab Chandra College, West Bengal State University, India.",institutionString:"Brahmananda Keshab Chandra College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"317",title:"Malacology",slug:"malacology"}],chapters:[{id:"79077",title:"The Effects of Shellfish Consumption Frequency for Human Health",doi:"10.5772/intechopen.100405",slug:"the-effects-of-shellfish-consumption-frequency-for-human-health",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Depending on the world population, the importance of water resources and the consumption of aquatic organisms as a food source are increasing day by day. The presence of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are involved in critically important biochemical and physiological processes in the body, emphasizes the importance of seafood consumption. Shellfish are low in calories but rich in protein and omega-3 fatty acids. They also contain high amounts of many micronutrients, including iron, zinc, magnesium and B12. Consuming shellfish regularly can boost immunity, aid weight loss, and support brain and heart health. However, shellfish is one of the common food allergens, and some species may contain contaminants and heavy metals. Aquatic products poisoning occurs with the consumption of unhealthy seafood or fish containing toxins. Symptoms cause severe and fatal poisoning in consumers, depending on the presence and concentration of the toxin. To prevent food poisoning, information on the growing conditions of the species should be provided and regularly inspected for toxins (heavy metal poisoning and allergic reactions).",signatures:"Latife Ceyda Irkin",downloadPdfUrl:"/chapter/pdf-download/79077",previewPdfUrl:"/chapter/pdf-preview/79077",authors:[{id:"357323",title:"Dr.",name:"Latife Ceyda",surname:"İrkin",slug:"latife-ceyda-irkin",fullName:"Latife Ceyda İrkin"}],corrections:null},{id:"78263",title:"Green Tea-Derived Catechins Have Beneficial Effects on Cognition in the Pond Snail",doi:"10.5772/intechopen.99789",slug:"green-tea-derived-catechins-have-beneficial-effects-on-cognition-in-the-pond-snail",totalDownloads:129,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Green tea has been used as a medicine in East Asia for thousands of years. Plant-derived compounds called flavanols, which are included in green tea, may have potentials to help maintain healthy brain function. In this chapter, we review the effects of flavanols, e.g. epicatechin (EpiC), on cognitive ability in the pond snail, Lymnaea stagnalis. In this decade, the Lukowiak’s group has tested the effects of EpiC on cognition ability in Lymnaea. In a Lymnaea model system, they showed that EpiC and EpiC-containing foods have a rapid and activity-dependent effect enhancing the formation of long-term memory (LTM) following operant conditioning of aerial respiratory behavior. In the last part of this chapter, we also introduce our study for the effects of EpiC on LTM formation in another model system in Lymnaea. This study showed that EpiC increases the persistence of LTM formed by classical conditioning of feeding behavior, and suggested that EpiC alters some electrophysiological properties of a neuron in the feeding system.",signatures:"Yoshimasa Komatsuzaki, Ayaka Itoh and Minoru Saito",downloadPdfUrl:"/chapter/pdf-download/78263",previewPdfUrl:"/chapter/pdf-preview/78263",authors:[{id:"200709",title:"Prof.",name:"Minoru",surname:"Saito",slug:"minoru-saito",fullName:"Minoru Saito"},{id:"414608",title:"Prof.",name:"Yoshimasa",surname:"Komatsuzaki",slug:"yoshimasa-komatsuzaki",fullName:"Yoshimasa Komatsuzaki"},{id:"414609",title:"MSc.",name:"Ayaka",surname:"Itoh",slug:"ayaka-itoh",fullName:"Ayaka Itoh"}],corrections:null},{id:"77990",title:"Seasonal Variations of Densities of Biomphalaria pfeifferi, the Intermediate Host of Schistosoma mansoni Parasite at the North of Senegal",doi:"10.5772/intechopen.99217",slug:"seasonal-variations-of-densities-of-em-biomphalaria-pfeifferi-em-the-intermediate-host-of-em-schisto",totalDownloads:97,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Schistosomiasis is becoming more persistent because of the widespread distribution of intermediate host snails in several regions of Africa, including Senegal. The intermediate snail host of the human intestinal schistosome is Biomphalaria pfeifferi and is permanently present in northern Senegal because of the presence of the abundant freshwater habitat throughout the year. Here, we observed the seasonal variation in B. pfeifferi abundance in the Saint-louis region at the North of Senegal in West Africa. We performed snail and environmental parameter sampling across two different seasons described for Senegal: a dry season that runs roughly from mid-October to mid-June and a rainy season that spans approximately from late June to early October. We also split the dry season into two categories representing periods of time when water temperatures were either decreasing (dry1) or increasing (dry2). We used regression analyses to model snail density across the seasons and investigated which environmental variables influenced snail abundance. Results suggested that snails were more abundant and peaked during the rainy season, which lowest abundances during the dry season when temperatures were declining. The above seasonal variations of snail density were positively linked to the environmental drivers including periphyton (food resource for snails), aquatic vegetation abundance, water temperature and dissolved oxygen and negatively to both pH and water conductivity. Our findings may be useful for snail control efforts by targeting specific periods and/or site conditions when snail abundances are greatest.",signatures:"Sidy Bakhoum, Christopher J.E. Haggerty, Cheikh Tidiane Ba, Nicolas Jouanard, Gilles Riveau and Jason Robert Rohr",downloadPdfUrl:"/chapter/pdf-download/77990",previewPdfUrl:"/chapter/pdf-preview/77990",authors:[{id:"415247",title:"Ph.D.",name:"Sidy",surname:"Bakhoum",slug:"sidy-bakhoum",fullName:"Sidy Bakhoum"},{id:"423955",title:"Dr.",name:"Christopher J.E.",surname:"Haggerty",slug:"christopher-j.e.-haggerty",fullName:"Christopher J.E. Haggerty"},{id:"423960",title:"Prof.",name:"Cheikh Tidiane",surname:"Ba",slug:"cheikh-tidiane-ba",fullName:"Cheikh Tidiane Ba"},{id:"423965",title:"Dr.",name:"Gilles",surname:"Riveau",slug:"gilles-riveau",fullName:"Gilles Riveau"},{id:"423968",title:"Mr.",name:"Nicolas",surname:"Jouanard",slug:"nicolas-jouanard",fullName:"Nicolas Jouanard"},{id:"423971",title:"Prof.",name:"Jason",surname:"Robert Rohr",slug:"jason-robert-rohr",fullName:"Jason Robert Rohr"}],corrections:null},{id:"78474",title:"Impacts of Environmental Parameters on the Infectivity of Freshwater Snail",doi:"10.5772/intechopen.99829",slug:"impacts-of-environmental-parameters-on-the-infectivity-of-freshwater-snail",totalDownloads:129,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The successful transmission of the infective stage of the parasite (miracidia) depends on different factors. These free-living stages miracidia rely on their own stored energy and are directly exposed to environmental factors including disturbance resulting from pollution and human activities. There are different environmental factors that affect the cercarial infection of the snail. These include pH, temperature, salinity, dissolved oxygen, water hardness, habitat conditions, presence of predators and competitors, etc. Each of these factors may increase or decrease the freshwater snail’s infectivity. The more hydrogen ion concentration in the aquatic habitat could have an effect on the maturation and physiology of the parasitic stage (miracidia), leading to impaired survival and reduced infectivity. In contrast, high temperature increases snail infectivity. While low dissolved oxygen in the aquatic environment results in low snail infectivity. Regarding the presence of predators can result in low snail infectivity by consuming the schistosome egg and the snails themselves. Total hardness also had a negative impact on the prevalence of snail infection. The hardness of the water results in the shell hardening of snails subsequently leads to low infection of snail by miracidia.",signatures:"Wolyu Korma Erkano",downloadPdfUrl:"/chapter/pdf-download/78474",previewPdfUrl:"/chapter/pdf-preview/78474",authors:[{id:"414238",title:"M.Sc.",name:"Wolyu",surname:"Korma Erkano",slug:"wolyu-korma-erkano",fullName:"Wolyu Korma Erkano"}],corrections:null},{id:"78157",title:"Recent Trends in Freshwater Pearl Farming in India",doi:"10.5772/intechopen.99281",slug:"recent-trends-in-freshwater-pearl-farming-in-india",totalDownloads:221,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Cultured pearls have an important place in international trade. The Vedas, the Bible, and the Koran all mentioned pearls, and they are regarded as one of the highest honours. Pearls are generated in nature when an irritant, such as a sand grain or a parasite, is swept into the pearl molluscs and lodged within it, where it is coated with micro-layers of nacre, a lustrous substance made up of 80–90 per cent aragonite crystals of CaCO3. The ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar, India, has created a base technology for cultivating pearls in freshwater habitats, recognising the scope and value of freshwater pearl production. Indian pond mussel, Lamellidens marginalis is the major species used in freshwater pearl aquaculture. In addition, ICAR-CIFA has pioneered a novel feature of freshwater pearl farming. The Institute has also taken the lead in disseminating freshwater pearl culture technology to the country’s fish farming communities, entrepreneurs, researchers, and students to build a sustainable model for the country’s socio-economic development. In this chapter, we will briefly cover pearls and their types, their historical significance, the spread of pearl mussels of freshwater origin in various countries, pearl biomineralisation, pearl farming techniques, and factors affecting pearl quality, among other things.",signatures:"Shailesh Saurabh, Sweta Pradhan and Sonal Suman",downloadPdfUrl:"/chapter/pdf-download/78157",previewPdfUrl:"/chapter/pdf-preview/78157",authors:[{id:"415795",title:"Dr.",name:"Shailesh",surname:"Saurabh",slug:"shailesh-saurabh",fullName:"Shailesh Saurabh"},{id:"415797",title:"Mrs.",name:"Sweta",surname:"Pradhan",slug:"sweta-pradhan",fullName:"Sweta Pradhan"},{id:"415799",title:"Ms.",name:"Sonal",surname:"Suman",slug:"sonal-suman",fullName:"Sonal Suman"}],corrections:null},{id:"79656",title:"Quaternary Marine Mollusk Associations of the Last Interglacials in North Patagonia (Argentina): Paleoecology and Paleoclimates",doi:"10.5772/intechopen.99221",slug:"quaternary-marine-mollusk-associations-of-the-last-interglacials-in-north-patagonia-argentina-paleoe",totalDownloads:157,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Deposits of different Quaternary marine transgressions are largely exposed in the Argentine north Patagonian littoral (39°15′S–41°02′S), south of the Buenos Aires and north of Río Negro provinces. The malacological associations of 84 sites were studied. Among them, 31 belong to Pleistocene deposits of the interglacials ≥ MIS 9, MIS 7, MIS 5e, 29 to Holocene deposits of the interglacial MIS 1, and 24 sites of modern beaches. These sites yielded 7385 fossils among valves and shells, of 78 species (42 bivalves and 36 gastropods), including 11 micromolluskan species. The record of the bivalves Crassostrea rhizophorae in the south of the Buenos Aires Province, and Anomalocardia brasiliana (both currently inhabiting lower latitudes), and very likely the gastropod Tegula atra (inhabiting today the Pacific Ocean) in the north of Río Negro Province, suggests that interglacials MIS 7, MIS 5e and MIS 1 were warmer than today. However, the associations determined for the studied interglacials have not changed in their composition, but in abundance of species, except for the latitudinal shifts of the three mentioned species, and the presence of cold to temperate water taxa since the MIS 1 in the ecotonal area of the north of Río Negro Province. Changes in the associations of northern Patagonia during the Quaternary derived from global changes (sea surface temperature, salinity, etc.), and the existence of habitat heterogeneity in each of the areas, that enabled the co-existence of different bivalve and gastropod species of the local benthic marine malacofauna.",signatures:"M.P. Charó",downloadPdfUrl:"/chapter/pdf-download/79656",previewPdfUrl:"/chapter/pdf-preview/79656",authors:[{id:"259750",title:"Dr.",name:"M.P.",surname:"Charó",slug:"m.p.-charo",fullName:"M.P. Charó"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5899",title:"Organismal and Molecular Malacology",subtitle:null,isOpenForSubmission:!1,hash:"a7f042a23fd6991a546812db126ef875",slug:"organismal-and-molecular-malacology",bookSignature:"Sajal Ray",coverURL:"https://cdn.intechopen.com/books/images_new/5899.jpg",editedByType:"Edited by",editors:[{id:"173697",title:"Prof.",name:"Sajal",surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6344",title:"Biological Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"ca4f407275697c7cf547debc6b1e85a9",slug:"biological-resources-of-water",bookSignature:"Sajal Ray",coverURL:"https://cdn.intechopen.com/books/images_new/6344.jpg",editedByType:"Edited by",editors:[{id:"173697",title:"Prof.",name:"Sajal",surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6559",title:"Earthworms",subtitle:"The Ecological Engineers of Soil",isOpenForSubmission:!1,hash:"0780208898e98441ccea18ea373c0708",slug:"earthworms-the-ecological-engineers-of-soil",bookSignature:"Sajal Ray",coverURL:"https://cdn.intechopen.com/books/images_new/6559.jpg",editedByType:"Edited by",editors:[{id:"173697",title:"Prof.",name:"Sajal",surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8421",title:"Invertebrates",subtitle:"Ecophysiology and Management",isOpenForSubmission:!1,hash:"524faf733c0ebf32b356f89b2148e6de",slug:"invertebrates-ecophysiology-and-management",bookSignature:"Sajal Ray, Genaro Diarte-Plata and Ruth Escamilla-Montes",coverURL:"https://cdn.intechopen.com/books/images_new/8421.jpg",editedByType:"Edited by",editors:[{id:"173697",title:"Prof.",name:"Sajal",surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6883",title:"Cell Signalling",subtitle:"Thermodynamics and Molecular Control",isOpenForSubmission:!1,hash:"e4e17d85c0643c7f4d274fa9adbcc628",slug:"cell-signalling-thermodynamics-and-molecular-control",bookSignature:"Sajal Ray",coverURL:"https://cdn.intechopen.com/books/images_new/6883.jpg",editedByType:"Edited by",editors:[{id:"173697",title:"Prof.",name:"Sajal",surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8289",title:"Molluscs",subtitle:null,isOpenForSubmission:!1,hash:"875b915098303d4f668c1c81036b9d8c",slug:"molluscs",bookSignature:"Genaro Diarte-Plata and Ruth Escamilla-Montes",coverURL:"https://cdn.intechopen.com/books/images_new/8289.jpg",editedByType:"Edited by",editors:[{id:"198991",title:"Dr.",name:"Genaro",surname:"Diarte-Plata",slug:"genaro-diarte-plata",fullName:"Genaro Diarte-Plata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"81169",slug:"corrigendum-to-sarcopenia-technological-advances-in-measurement-and-rehabilitation",title:"Corrigendum to: Sarcopenia: Technological Advances in Measurement and Rehabilitation",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/81169.pdf",downloadPdfUrl:"/chapter/pdf-download/81169",previewPdfUrl:"/chapter/pdf-preview/81169",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/81169",risUrl:"/chapter/ris/81169",chapter:{id:"79749",slug:"sarcopenia-technological-advances-in-measurement-and-rehabilitation",signatures:"Letizia Lorusso, Luigi Esposito, Daniele Sancarlo and Grazia D’Onofrio",dateSubmitted:"October 7th 2021",dateReviewed:"October 18th 2021",datePrePublished:"December 20th 2021",datePublished:null,book:{id:"11011",title:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",subtitle:null,fullTitle:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",slug:null,publishedDate:null,bookSignature:"Dr. Grazia D'Onofrio and Dr. Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/11011.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"272628",title:"Dr.",name:"Grazia",middleName:null,surname:"D'Onofrio",slug:"grazia-d'onofrio",fullName:"Grazia D'Onofrio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"79749",slug:"sarcopenia-technological-advances-in-measurement-and-rehabilitation",signatures:"Letizia Lorusso, Luigi Esposito, Daniele Sancarlo and Grazia D’Onofrio",dateSubmitted:"October 7th 2021",dateReviewed:"October 18th 2021",datePrePublished:"December 20th 2021",datePublished:null,book:{id:"11011",title:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",subtitle:null,fullTitle:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",slug:null,publishedDate:null,bookSignature:"Dr. Grazia D'Onofrio and Dr. Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/11011.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"272628",title:"Dr.",name:"Grazia",middleName:null,surname:"D'Onofrio",slug:"grazia-d'onofrio",fullName:"Grazia D'Onofrio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"11011",title:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",subtitle:null,fullTitle:"Frailty and Sarcopenia - Recent Evidence and New Perspectives",slug:null,publishedDate:null,bookSignature:"Dr. Grazia D'Onofrio and Dr. Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/11011.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"272628",title:"Dr.",name:"Grazia",middleName:null,surname:"D'Onofrio",slug:"grazia-d'onofrio",fullName:"Grazia D'Onofrio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11254",leadTitle:null,title:"Optical Coherence Tomography",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"a958c09ceaab1fc44c1dd0a817f48c92",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 28th 2021",dateEndSecondStepPublish:"May 19th 2021",dateEndThirdStepPublish:"July 18th 2021",dateEndFourthStepPublish:"October 6th 2021",dateEndFifthStepPublish:"December 5th 2021",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a year",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"54923",title:"Biomass as an Alternative for Gas Production",doi:"10.5772/67952",slug:"biomass-as-an-alternative-for-gas-production",body:'Nowadays, the impact of the climate change around the world is undeniable. Most of the environmental, social, and economic problems that all societies face are associated to the energy consumption and water demand, as well as other services. Crude oil and natural gas have been used for decades, the main energy source in the major economies. Nevertheless, it has been proved that the majority of anthropogenic greenhouse gas (GHG) emissions account to the consumptions of these fossil fuels [1], increasing the global warming.
The concern is not only about the negative impacts on environment; it is also the dwindling of the fossil fuel reserves. This situation is disquieting and has focused the world’s attention on the search and adoption of alternative energy sources. One of them, in this case study, is biogas production. The latter is one of the biofuels in gas form that are made from biological sources and brings an option for sharing the energy demand through the treatment of some biomass residues.
In this perspective, this chapter focuses on the description of biogas production through the use of biomass with the adoption of biological technologies as a promising way for contributing the safe and sustainable energy supply, providing heat, electricity, and biomethane (similar to natural gas).
Energy is manifested by heat or electricity that is derived from fossil fuels. In some countries, not only fossil fuels can be used for this goal; there are other elements like some plants, agricultural residues, and municipal organic wastes that can also provide it.
As the law of conversation of energy states, “energy can neither be created nor destroyed; it can only be transformed from one form to another.” For instance, the chemical energy stored in some organic residues can be converted to other forms of energy.
This is exactly what the bioenergy look for: the use of the stored energy from organic materials. Here is where the concept of
The biomass resources take their energy from the sun, as most of the other renewable energies sources. For example, photovoltaic energy captures the solar radiation in a direct way by specialized equipment providing energy. Also, the solar energy that is transferred through the space causes the moving of air masses by heating results in wind, which can be used through turbines and generates electricity. Energy is also transferred to the water flows. The precipitation of water vapor due to the combination of wind and heat from solar energy causes the rain, which turns rivers on. The force of the water flow also can be exploiting to produce energy (hydroelectricity) and so on.
Energy from biomass is not the exception. The so-called bioenergy can harness solar energy stored in various biomass resources. Plants, for example, use solar energy to convert inorganic compounds assimilated into the organic compounds (Eq. (1)).
Photosynthesis process:
An animal that eats plants takes advantage of the stored energy from these and generates biomass. Biomass works as a type of storage (battery) of solar energy transferred from one trophic level to another. The transfer of energy is evident in all processes of living beings (Figure 1).
Energy from different biomass sources.
Around the world, there are different sources of biomass which can be used for its conversion into energy, which includes material of biological origin, like living plants and animals and resulting residues, crops and forestry residues, sea weeds, agro-industrial residues, sewage, and municipal solid waste. Biomass can be almost all the organic material, excluding fossilized organic material embedded in geological formation [3].
Most of these biomass resources represent an environmental problem if they are not managed, transported, or disposed properly. Consequently, if energy is generated by the use of them, we can contribute for reducing the environmental pollution [4]. Furthermore, this source of energy has the advantage of not releasing CO2 into the atmosphere due to the carbon capture and storage, serving as an effective carbon sink [2].
Moreover, biomass can be multiplied in different forms of energy, that is, heat from wood and forestry residues, chemical energy from hydrogen and some biofuels, and electrical energy from the use of biogas in certain motor engines. In this chapter, we will focus in biogas, which represents a biofuel generated by biomass conversion technologies (anaerobic digestion) and an alternative for gas production.
The answer is no. Natural gas comes from the decomposition of organic material under anaerobic conditions but was exposed to intense heat and pressure, in a process that occurred around 150 million year ago, which allows the gas trapping between rock pore spaces (porous systems). The gas produced during this period of time is located various meters below the surface of the earth. It is not considered a renewable resource. The process for natural gas production considers mainly extraction from the subsurface, collection, treatment, transportation, and distribution services.
On the other hand, biogas is the term employed to refer to the gas obtained in a short time (considering human scale) by the anaerobic digestion of biomass resources. The process occurs sometimes as a spontaneous, continuous, ongoing, or inducing way but always is very sensible to biological process. Indeed, specific microorganisms, in a four-step process (hydrolysis, acidification, acetogenesis, and methanogenesis), achieve the anaerobic digestion of organic material (Figure 2). To do so, certain physico-chemical parameters such as temperature, pH, daily organic load, available nutrients, retention time, agitation, and other inhibitory factors must be adequate or adjusted for generating biogas [5].
Stages of anaerobic digestion process. Source: modified from Ref. [
The main difference between natural gas and biogas is related to the carbon dioxide content. The latter is contained in 25–45% of the total composition of biogas, while natural gas contains less than 1% (Table 1). Moreover, natural gas contains other hydrocarbons rather than methane. The methane content strongly influences the calorific value of these gases. Energy content of biogas similar to natural gas can be obtained if carbon dioxide from biogas is removed in an upgrading process [7]. The presence of hydrogen sulfide (H2S) in biogas must be cleaning or upgrading to methane in order to diversify the end use of biogas in several ways.
Parameter | Biogas from landfill | Biogas from farm-scale AD plant | Natural gas (Danish) |
---|---|---|---|
Lower heating value (MJ/m3) | 10.7–23.3 | 19.7–21.5 | 31–40 |
Methane content, CH4 (%) | 35–65 | 55–70 | 81–89 |
Carbon dioxide, CO2 (%) | 25–45 | 35–55 | 0.67–1.00 |
Hydrogen sulfide, H2S (%) | 30–500 | 25–30 | 0–2.9 |
Nitrogen, N2 (%) | <1–17 | <1–2 | 0.28–14 |
Oxygen, O2 (%) | <1–3 | <1 | 0 |
Other hydrocarbons | 0 | 0 | 3.5–9.4 |
Halogenated compounds (mg/m3) | 0.3–225 | <0.01 | - |
Siloxanes (mg/m3) | <0.3–36 | <0.02–<0.2 | - |
Theoretical combustion air (m3biogas/m3) | 6 | 6.6 | 9.5 |
Natural gas is a fossil fuel often found under the oceans, near oil deposits, trapped between the rock pores spaces (porous systems), and beneath the earth’s surface. Similarly to the oil exploration, there are natural gas reservoirs around the planet classified as proved and undiscovered technically recoverable resources. A reservoir is a location where large volumes of methane can be trapped in the subsurface of the earth. In this respect, proved reserves of natural gas are estimated quantities that analyses of geological and engineering data have demonstrated to be economically recoverable from known reservoir in the future [10]. According to the International Energy Statistics, in 2014 there were 6973 proved reserves worldwide [10], in which the countries of Middle East and Eurasia represent the vast majority of it (Figure 3).
Proved reserves of natural gas worldwide in 2014 (with data from Ref. [10]).
Even though natural gas has become one of the most used fuels around the world and the trends point to increase in number of proved reserves due to the application of new technologies, the world population will continue to grow and still demand more energy, so the amount of fossil fuels is not an enough resource for all the countries. As well as, the ongoing price increase of fossil resources and the visible impacts on the global warming.
Under this scenario, a versatile fuel that comes from a wide variety of biomass is biogas. It can provide a renewable source of energy and can lead to reduce impacts of pollution by inadequate waste disposal. Whereas undiscovered technically recoverable resources of natural gas are still growing, a large quantity of solid waste is also generating. Most of the countries around the world deal with their residues; they represent a social-environmental problem due to the lack of management. This biomass can be a harnessing nature’s potential to produce energy. It is continously produced, free in many countries and widely available.
In this respect, the future role for biogas in the world is related with the availability of different types or organic feedstock which depends on a number of economic, social, technological, environmental, and regulatory factors. Examples of various biomass feedstocks for biogas production by sector are shown in Table 2.
Sector | Type of biomass feedstock | Example of biomass | Biogas yield (m3 CH4/tonnes VS) |
---|---|---|---|
Agricultural | Animal manures and slurries, crops, grass, and other by-products | Pig slurry | 300 |
Cattle slurry | 200 | ||
Maize (whole crop) | 205–450 | ||
Industrial | Organic wastes, by-products and residues from agro-industries, fodder brewery industries, organic load wastewaters, and sludge | Whey | 330 |
Flotation sludge | 540 | ||
Municipal | Household waste, landfill, sewage sludge, municipal solid waste, and food residues | Fruit waste | 300–550 |
Waste water sludge | 400 |
It is predicted that by 2020, renewables will represent the 14% from the total EU energy mix, in which biomass accounts with the 54% of the 251 million tons of oil equivalents (Mtoe) (Figure 4). Unfortunately, most of this biomass is used in a direct way as wood, so biogas potential studies can be evaluated considering certain type of biomass.
EU energy mix 2020 [
For 2010, primary production of biogas in Europe was 10.9 Mtoe, in which 27% of the biogas was produced from landfill, 10% from sewage sludge, and 63% from decentralized agricultural plants, municipal solid waste, methanization plants, co-digestion, and multiproduct plants [13]. This biogas production increases to 31% compared to 2009. Germany is one of the countries that have doubled biogas production in the last years, and it is also one of the main biogas-producing countries for the 2020 in the EU (Figure 5). The acceptance and the rapidly growth of the technology show how biogas can make an important contribution to the energy supply in a short term.
Biogas potential for 2020 in the EU.
Similarly to biomass demand, the biogas demand has a number of end user sectors, which have different characteristics in terms of application, economic value added, customers, social benefits, and environmental impact [14]. If biogas is conditioned or cleaned, it will be an outstanding solution for a variety of applications commonly known for natural gas with the addition of the versatility of its end uses. Some examples include: motor fuel, electricity, heat, combined electricity and heat, and recently replace carbon compound into plastic products [11] and also the generation of by-products that can be used as an organic fertilizer.
There is an important environmental advantage of biomass utilization in terms of reduction of natural resource depletion [15], carbon neutral resource in its life cycle (Asian Biomass Handbook), and sustainable energy systems [16]. It has been estimated that by the year 2020, 50% of the present gas consumption in the Europe Union could be covered by biomethane from digested feedstock [17] contributing to the greenhouse gas capture, like methane. Also the fermentation process is an alternative for wet-bases raw residues treatment, and particularly anaerobic digestion because of the cost-effective [18, 19]. Biogas can be burned directly in boiler for heat or/and engine for cogeneration, while upgrade biogas can be injected in the natural gas grid and used directly at the consumer in boilers and small combined heat and power (CHP) [20].
Since the last century (1897), some Asian countries, like China and India, started their first trials in using biogas [21], through a stabilization process that allows the use in household and farm-scale applications. Similarly, England reported using it in the 1930s for lighting streets [11]. In both cases, the main biomass source to produce biogas was taken from sewage in order provide a fuel for cooking and lighting. In a brief context, the use of biomass to provide energy has been fundamental to the development of societies.
Nowadays, the demand on energy and the impact on climate change have led to calls for an increase in the use of biogas in different ways. In this section, the main process or conversion technologies employed for the biomass are presented with specific regard to biogas production.
The biomass conversion technologies are closely related to the type of biomass, quantity, the availability, the cost-effective, and the end user requirement of the biofuel. The selection of the technology depends on the main interest of the “producer.” For all the cases, the main biomass treatments that can be applied are encompassed in four conversion technologies: direct combustion, thermochemical, biochemical and biotechnology, and nanotechnology (Figure 6).
Conversion technologies of biomass into energy. Source: modified from Ref. [2].
It is important to note that a pretreatment of the biomass is necessary before applying a conversion technology. In some cases, biomass has to be harvested, collected, transported, or stored [22]. Further, resource availability varies from region to region, according to weather conditions, soil type, geography, population density, and productive activities, which makes the choice of technology for processing more complex.
One of the oldest uses in which biomass has been utilized for energy in the world is through the burning wood (combustion). This action represents a traditional use of biomass, particularly in rural zones. It is considered an essential resource to the economic development of societies [23]. Nevertheless, when the wood is burnt in an open fire stove, around 80% energy is lost [24]. Recently, technologies suggest the use of energy efficiency stoves, which not only has a better thermal efficiency but also avoids indoor air pollutions. Other specialized equipment involves furnaces, boilers, steam turbines, and turbogenerator. The combustion of biomass allows the recovery of the chemical energy stored. In general, combustion processes involve direct oxidation of matter in air, that is, ignition or burning of organic matter in an air atmosphere sufficient to react with oxygen fuel.
Thermochemical process, as the direct combustion, has a core axis, the temperature. One of the main differences is an induced atmosphere in which conversion of biomass took place. This oxidation process can occur in the presence or absence of a gasifying medium. The conversion of biomass depends on temperature and pressure variables. For example, if the substrate to transform is in the presence of a gas such as oxygen, water vapor, or hydrogen, producing fuel is performed through gasification. If, however, material degradation occurs in the absence of oxygen, that is, nitrogen, under controlled pressure and temperature, then the process is called pyrolysis.
There are some good experiences in the pyrolysis of certain materials, in which a charcoal, bio-oil, and a fuel gas can be recovered [25].
Biochemical treatment unlike thermochemical process achieves power generation through biological transformation of organic compounds, employing anaerobic digestion, or fermentation of biomass. Fermentation is usually used to produce biofuels, as ethanol, from sugar crops, and starch crops [22]. Nevertheless, there is another route, in which biomass conversion is done, the anaerobic digestion.
Among the general background information about conversion technologies, anaerobic digestion is the main focus in this section due to the direct biogas production. The anaerobic process is analog to ruminant digestion process. The biomass is degraded by a consortium of bacteria within an anaerobic environment, producing a principal product, gas. This gas, called biogas, represents a proven technology and its use is widely spreading through Europe.
For biogas production, there are some types of biomass that are more accurate, like the ones with high moisture content in organic wastes (80–90%) or wet biomass residues as manures, municipal organic solid waste, and sewage sludge [22]. The anaerobic digestion process generally occurs in reactors or tanks in a single, multistage process or dry digestion.
Anaerobic digester can be categorized, designed, and operated by different configurations: batch or continuous, temperature (mesophilic or thermophilic), solid content (high or low solid content), and complexity (single stage or multistage) [26]. Another specific configuration considering the organic rate load, digester, is divided into passive systems (covered lagoons), low rate systems (complete mix reactor, plug flow, and mixed plug flow), and high rate systems (contact stabilization, fixed film, suspended media, and sequencing batch) [27]. All these types of reactors perform the anaerobic digestion, but each one operates for salient features with a variety of applications of the end products.
An experience in the livestock sector in Mexico using covered lagoon anaerobic digestion reactor shows benefits in the use of biogas not only on environmental aspects as improving the quality of wastewater but also economically due to the avoid of penalties for the water discharges and the social acceptance of the livestock activity in the region (Table 3).
Biomass residue (swine manure) | Technical aspects |
---|---|
Number of animals (head of animals) | 32,483 |
Manure produced annually (tonnes/y) | 115,315 |
Biogas production (m3/y) | 2,538,389 |
Energy consumption (kWh/y) | 52,072 |
Energy production (kWh/y) | 255,528 |
Emission reductions (tonnes CO2e) | 14,027 |
Biogas production experience in livestock sector in Mexico.
Source: using data from Ref. [28].
In this example, the different benefits of biogas production in livestock sector highlighted the use of biogas in energy generation. Against other energy sources, in this case, the biogas produced is used in the farm for their own consumption by a gas combustion engine. The heat generated by the motors can be used for heating the reactor or drying waste. Biogas has the quality that does not have to be consumed at the moment of production. The production of this biofuel also impacts in macro- and microeconomic aspects, due to the generation of new sources of employs and access to energy in a remote place. Moreover, the livestock producer is selling an organic fertilizer obtained by high-quality digestate obtained in the biogas production.
Furthermore, odor reduction and the removal of pathogenic organism in livestock residues are achieved. The methane emission of the manures is captured, reducing the release of methane to the atmosphere. Methane (CH4) is considered one of the largest contributors to the GHG emissions by livestock sector, with a global warming potential 25 times more than carbon dioxide (CO2) [29, 30].
In general, the biomass conversion technologies mentioned above can be integrated into the concept of biorefinery. Analog to oil process, the different biomass feedstocks offer a wide range of products that can be used as fuel, including gas, oil, or chemical, offering greater possibility of using cogeneration systems and supply facilities in the transport sector.
When the major end product in a biogas plant is methane, similar to natural gas, this upgraded gas is called biomethane. The methane content determines the energetic value in the biogas [11]. In this respect, one of the main reasons for upgrading biogas to a degree equivalent to natural gas is to inject to the gas distribution network and thus diversify some natural gas sources.
Biomethanization process opens new paths to achieve this goal: first, because the gas storage in an extended way allows the injection into a distribution system and second due to the variety use of fuel in transport stations, mainly.
As we see in the sections above, the main biogas uses in development countries are lighting, cooking, and further in gas turbines. In industrial countries biogas is produced in large-scale digester (biogas plants) with an interest in the concentration of methane from biogas to fulfill natural gas standards. Depending on the end use, different biogas treatments (cleaning or upgrading) are necessary. For example, vehicle gas fuel requires a biogas similar to natural gas quality so a biogas upgrading process is needed. In other words, biomethanization allows biogas to be contained, controlled, and distributable.
There are some undesirable components in biogas that promote corrosion in many materials and engines: H2S, oxygen, nitrogen, water, siloxanes, and particle traces (see Table 1). These impurities can induce or promote corrosion in many parts of the biogas system or equipment in which biogas is used. Overall, these components must be removed in order to allow the concentration of methane in biogas.
Water content in biogas can cause corrosion in pipelines due to the formation of carbonic acid in a reaction derived from water and carbon dioxide [31]. Fortunately, it can be removed by cooling, compression, absorption, or adsorption (activated carbon, sieves, or SiO2). Hydrogen sulfide (H2S), another unwanted component in biogas, is of corrosive nature, leading the damage of motor engine, pipes, etc. It is a highly toxic gas that attempts to destroy the human health. The removal of hydrogen sulfide can be done by precipitation, adsorption on active carbon for H2S removal (US 8669095 B2 patent) [32]. Siloxanes also constitute an impurity in biogas. It can affect combustion equipment, as gas engine, through the formation of silicon oxide. The most common methods for removing siloxane components are adsorption on activated carbon, activated aluminum, or silica gel, mainly [31].
After desulfurization and drying process of biogas, it can generate electricity and heat in cogeneration systems, combined heat and power (CHP), or can be transformed to energy products with higher value, density, and calorific value.
Around the world, the number of upgrading biogas plants has increased, reaching 100 during 2009 [7]. This facility has gained the world’s attention due to the rising oil and natural gas prices.
The biogas obtained during anaerobic digestion of biomass contains important amounts of carbon dioxide that result in lower energy content. In order to improve this characteristic, the separation of carbon dioxide through an upgrading process is requested. Cleaning the gas before upgrading is recommended.
Compared with the common uses of biogas, the upgrading of biogas brings several advantages related to transportation of the gas and offering the chance to increase the overall efficiency of gas utilization. In this part, it is important to clear up that cleaning biogas refers to the separation of impurities, while upgrading refers to the separation of CO2.
Currently, there are several technologies for biogas cleaning and upgrading, commercially available, like pressure swing adsorption (PSA) (US 6340382 B1 patent) [33], water scrubbing, organic physical scrubbing, and chemical scrubbing. Most of them are a combination or one or two processes for biogas cleaning or upgrading (Figure 7).
Different biogas cleaning and upgrading of biogas. Source: adapted from Ref.
If biogas is upgraded to biomethane with approximately 98% of methane content in biogas, it can have the same properties as natural gas [35]. By these standards, biomethane can be fed into the available gas network or be used for any purpose for which natural gas is used. The overall environmental benefits of the use of biogas are, however, highest when the biogas is used as a vehicle fuel replacing oil or diesel [4].
In fact, the selection of the optimal technology for biogas upgrading depends on the quality and quantity of the raw biogas to be upgraded, the desired biomethane quality and the final use of the biogas, the anaerobic digestion system, the continuity of the biomass, as well as the local circumstances [36].
The current leader in the deployment of biogas technology is Germany. In the last decade, the number of digester plant increased ten times compared to 1996 (Poeschl et al., 2010). The German scheme is a clear example for biogas technology promotion; it highlights the employment of key instruments for helping to spread out the technology, that is, economic incentives.
Broadly, biogas production in different countries is still dependent on subsidies for attracting investors, producers, and I&D groups and promoting its scalability. Certification systems, feed-in tariffs, and investment support are examples of measures that are widely applied (Table 4). Some of the policy documents and directives that are related to bioenergy are included in three EU regulatory frameworks: the Renewable Energy Directive (2009/28/EC), the Directive on Waste Recycling and Recovery (2008/98/EC), and the Directive on Landfill (1999/31/EC) [37].
Country | Incentive | Scope of support |
---|---|---|
Germany | Feed-in tariff | Electricity and heat from biogas. Tariff according to system size and fuel |
Market premium | Biogas and biomethane | |
Gas processing bonus | Upgraded biogas for grid injection and transport | |
Flexibility premium | Electricity from biogas | |
The UK | Feed-in tariff | Electricity from biogas |
Renewable obligation order | % RES from electricity production (>5 MW) | |
Climate change levy | Favors any type of renewable energy generation | |
Renewable heat incentive | Biomethane injection and biogas combustion, except from landfill gas | |
Sweden | Certification system | Certificates for electricity from biogas |
Energy taxation | Tax benefits for electricity, heat, and transport from biogas | |
Investment support | Farm-based biogas production |
Most of the countries around the world are still dependent on energy supplies, mainly by fossil fuels. Societies need to secure the energy demand, through social equality and mitigating the environmental impact. In this respect, biogas production is not only a promising way but is currently one of the most renewable technologies capable of offer energy, as such fossil fuel does.
Biogas can play the pivot role in the renewable sustainable energy systems in the near future due to its versatility, availability, storability, and energetic value. In this context, adequate public policy (regulation) for promoting economic, social, and cultural conditions for biogas production is still necessary.
Even though the technology has been adopted by many countries in Europe, there is still a necessity for developing and applying more adequate technology for cleaning and upgrading biogas to biomethane in places in which the use is limited (grid injection), which is becoming a present challenge.
Biogas and biomethane benefits promoting is required to overcome the reliability of the anaerobic process and the use of the by-products, increase the ability of the enterprises to satisfy the market necessities, and involve the government, public, private, and actor in this important task for reaching to a sustainable energy system.
The support and valuable comments from a Master of Science (Latin: Magister Scientiae). Oscar Silván-Hernández and Dr Alejandro Ordáz-Flores are greatly appreciated.
Issues related to Industry 4.0 are constantly discussed among researchers, entrepreneurs, representatives of government agencies, and public organizations. Specifically, the impacts of the Industry 4.0 paradigm in the global and national economies, individual industries, employment, and capital markets are attracting more and more attention from economists. The global industrial environment has transformed dramatically in recent years as a result of technological advances and inventions. Industry 4.0 can be compared to three industrial revolutions that happened in the previous centuries and represent the most significant disruptive shifts in manufacturing as a result of technology advancements [1].
The advent of the steam engine accelerated the First Industrial Revolution, which began in Britain in the middle of the 18th century. The Second Industrial Revolution arose in Europe and the United States in the second mid-nineteenth century. This revolution had characterized by mass manufacturing and the substitution of chemical and electrical energy for steam. Many technologies and mechanization had been developed to meet the increased demand, allowing productivity to increase [2]. The Third Industrial Revolution was sparked by the creation of the Integrated Circuit (microchip). Using electronics and information technology to accomplish increased automation in manufacturing is a significant characteristic of this revolution, which arose in many industrialized countries around the world in the later years of the twentieth century [1].
Every industrial revolution centered around boosting productivity. The first three industrial revolutions had a significant impact on industrial operations, allowing for increased productivity and efficiency by utilizing innovative technological breakthroughs, such as steam engines, electricity, and digital technology [3]. Industry 4.0, which could ultimately be referred to as the fourth industrial revolution, is a highly complex framework that has been commonly debated and discovered. It has a significant impact on the industrial sector because it introduces relevant improvements related to smart and future factories. This developing Industry 4.0 concept is an umbrella term for a new industrial paradigm that includes Cyber-Physical Systems (CPS), the Internet of Things (IoT), the Internet of Services (IoS), Robotics, Big Data, Cloud Manufacturing, and Augmented Reality, etc. [4].
The adoption of these technologies, which will bring together the digital and physical worlds through embracing a set of future industrial developments, is essential in the development of further smart industrial processes. This adoption includes devices, machines, production modules, and products that can exchange information and control each other independently, resulting in a smart manufacturing environment [5]. This new approach will allow the improvement of productivity and efficiency, carrying enormous potential effects, and it will support a set of economic and social opportunities among the companies that are adopting this new manufacturing paradigm [1].
This chapter intends to provide clear insight into the current developments within Industry 4.0 phenomenon, due to the inconsistency within the existing literature, some stress positive effects of Industry 4.0, while others, negative ones. As a result, the purpose of our research is to provide a full explanation of the Industry 4.0 paradigm, as well as to determine whether or not it is appropriate for businesses, stockholders, and countries to adopt this new approach. This chapter gives a review of Industry 4.0 and definitions in the literature, as well as introduces a brief on Industry 4.0’s main components. Additionally, this chapter’s research methodology was based on papers related to Industry 4.0, which are the most recent and cited references. As well as this study differs from past studies in several aspects, as shown in 1) It conducts a comprehensive survey of all Fourth Industrial Revolution technologies or applications, whereas earlier literature focused on one or a few technologies. 2) It performs a case study of KUKA Corporation, a pioneer company in the manufacturing technologies and applications of the Fourth Industrial Revolution.
Thus, this chapter is structured in seven sections. After this introduction about the Industry 4.0 phenomenon. Section 2 answers the question “What is the industry 4.0?”, presenting two points: an overview or background about Industry 4.0, and provides a comprehensive definition of this concept, its visions. The key Industry 4.0 technology enablers or components of Industry 4.0 characteristics are described in Section 3, which is divided into ten parts. The characteristics of Industry 4.0 state in Section 4. Section 5 provides an analysis of the impacts and influence of this new industrial paradigm: industrial sector, business models and markets, work environment, work skills, economy and sustainability, the value chains, and supply chains. While Section 6 presents the key drivers and obstacles or barriers of the Industry 4.0 concept; also, this part presents a pioneering experience in implementing the applications of the Fourth Industrial Revolution technology “KUKA corporation.” Finally, Section 7 draws the main conclusions and findings of the Industry 4.0 vision and implications.
There have been three earlier industrial revolutions that have resulted in a transformation in manufacturing patterns: mechanization via water and steam power, mass production in assembly lines, and automating through computer and information technology [6].
The first industrial revolution
The
All systems are connected, resulting in “cyber-physical production systems” and, as a result, smart factories, in which production systems, components, and people interact through a network and production is almost autonomous. When these enablers are combined, Industry 4.0 has the potential to offer some amazing improvements in manufacturing environments. Machines that can foresee faults and initiate maintenance operations on their own, for example, or self-organized logistics that adapt to unexpected changes in production are examples (Figure 1) [9].
Represents a graphic illustration of the industrial revolutions overall. Source: Constructed by the author.
It also has the ability to alter people’s working habits. Individuals can be drawn into smarter networks by Industry 4.0, which might lead to more efficient working. The manufacturing environment’s digitization provides for more flexible means of providing the appropriate information to the right person at the right time. Maintenance personnel may now receive equipment documentation and service history more quickly and at the point of use, thanks to the growing usage of digital devices inside factories and out in the field. Maintenance personnel prefer to spend their time addressing issues rather than waste time looking for technical knowledge [10].
In a summary, Industry 4.0 is a game-changer in the industrial world. Manufacturing will alter as a result of digitization, including how things are manufactured and delivered, as well as how products are maintained and enhanced. As a result, it may legitimately claim to be the start of the fourth industrial revolution. Industry 4.0 is presently taking shape and its supporting technologies, such as the Internet of Things (IoT) and Cloud Manufacturing (CM), are, nevertheless, poorly defined, and under-researched.
Industry 4.0 is better known as the fourth industrial revolution and describes a future production system’s vision. The idea of Industry 4.0 was established by a group of professionals from several professions (such as business, politics, and academia) as part of an endeavor to integrate all manufacturing industries systems to achieve sustainability. The German government initially officially approved and implemented industry 4.0 for supporting automation in manufacturing, and for boosting German competitiveness in the manufacturing industry. Essentially, as a result of Industry 4.0, operations and manufactures will become further efficient and less expensive. These are accomplished through the simple interchange of information, integrated control of industrial goods and equipment, which work synchronously and intelligently in interoperability [11]. However, several researchers have different perceptions of the meaning of industry 4.0.
Kagermann, et al. [12] stress that industry 4 utilizes the power of communications technology and innovative inventions to boost the development of the manufacturing industry. Corresponding to Kagermann et al., the primary features of the industry 4.0 idea are characterized by three aspects: (1) horizontal integration, (2) vertical integration, and (3) end-to-end digital integration of engineering. Qin, Liu, and Grosvenor [13] emphasize that industry 4.0 encourages manufacturing efficiency by collecting data, making correct decisions. By using the most advanced technologies, the procedures will be easier. The interoperability operating ability to ensure a stable manufacturing environment. This overall consciousness gives Industry 4.0 the most important aspect of artificial intelligent functions.
The Fourth Industrial Revolution, 4IR, or Industry 4.0 conceptualizes rapid change to technology, industries, and societal patterns and processes in the 21st century due to increasing interconnectivity and smart automation [14]. Schwab pointed out that Industry 4.0 is one of the most important concepts in the development of global industry and the world economy, he accentuates that, Industry 4.0 is differentiated by a few characteristics of new technologies, the improvement in technologies is bringing significant effects on industries, economies, and governments’ development plans [15]. Industry 4.0 also denotes a social, political, and economic transformation from the digital age of the late 1990s and early 2000s to an era of embedded connection marked by widespread technological use (e.g., a metaverse). That, in comparison to humans’ inherent senses and industrial ability alone, we have constructed and are entering an augmented social reality [16].
Wang et al., [17] defined the fourth industrial revolution as the modern and more sophisticated machines and tools with advanced software and networked sensors that can be used to plan, predict, adjust, and control the societal outcome and business models. Thus, Industry 4.0 is an advantage to stay competitive in any industry. Also, Industry 4.0 can be perceived as a strategy for being competitive in the future. It is focused on the optimization of value chains due to autonomously controlled and dynamic production [18]. Furthermore, industry 4.0 is possible to indicate three future-relevant themes related to it, such as: dealing with complexity, capacity for innovation, and flexibility [19].
According to the concepts above, the majority of the researchers considered Cyber-Physical Systems (CPS), Internet of Things (IoT), Industrial Internet, and other topics to be part of Industry 4.0. Numerous authors also emphasized Industry 4.0 on the cost and profitability of recently created high-tech information and intelligent services. According to previous research on Industry 4.0, the early focus was mostly on the industrial manufacturing sector, but many industries are now adopting Industry 4.0, including automotive, engineering, chemical, and electronics. As a result, Industry 4.0 is aggregating existing ideas into a different value chain that leads to an improvement in transforming entire value chains of goods life cycles while developing innovative products in manufacturing, involving the connection of systems and things that create self-organizing and dynamic control within the organization.
Industry 4.0, often referred to as the fourth industrial revolution, is the vision or scenario of a future production process characterized by new levels of controlling, organizing, and transforming the entire value chain with the life cycle of products through three types of effective integration: horizontal, vertical, and end-to-end engineering integration, resulting in increased productivity and flexibility, the industry 4.0 leads to cost optimization and reduction [11]. The Cyber-Physical Systems (CPS), Internet of Things (IoT), artificial intelligence (AI), additive manufacturing, cloud computing, and other technologies are then combined to construct dynamic, real-time optimized, and self-organizing cross-company value networks. All of these components are necessary and integral to the futuristic Industry 4.0 concept.
Industry 4.0 is a complicated technical pattern characterized primarily by connection, integration, and industrial digitalization, highlighting the possibilities for integrating all components in a value-adding system. Digital manufacturing technology, network communication technology, computer technology, and automation technology are all included in this approach. Industry 4.0 technology breakthroughs are blurring the lines between the digital and physical worlds by merging human and machine agents, materials, products, production systems, and processes [20]. Industry 4.0 enables rapid technological advancements in a variety of areas; however, the emerging fourth industrial revolution is being shaped largely by the technical integration of Cyber-Physical Systems into manufacturing processes, as well as the use of the Internet of Things and Services in industrial processes [1]. As a result, this section gives a brief overview of each significant technology driver for Industry 4.0. It also is providing information on the basic components of Industry 4.0 or key technologies enablers for Industry 4.0, which consists of 10 components.
Cyber-Physical Systems (CPS) is the combination of computational and physical processes, which are essential components of Industry 4.0 implementations. They integrate imaging and control capabilities into the relevant systems. The ability of these systems to respond to any input generated is a key feature. They provide rapid control and verification of process feedback in order to generate predicted outputs. Bergera et al. (2016) defined cyber-physical sensor systems as part of cyberspace, special types of embedded systems, based on powerful software systems, enable integration in digital networks, and generate whole new system features [21]. Generally speaking, the evolution of a CPS is characterized by three phases. Identification technologies are included in first-generation CPS. Second-generation CPS is equipped with some sensors and actuators with a limited number of functions. In the third-generation CPS, data is kept and analyzed in addition to setting up the equipment. The CPS has many sensors and actuators and is meant to be network compatible. CPSs offer various features [19].
The CPS has several sensors and actuators and is meant to operate with a network. CPSs have features including quicker information access, preventative maintenance, pre-defined decision-making, and optimization processes. Also, CPS can boost consumers awareness and consciousness. Conversely, the CPS has certain security issues, which means that further usage will definitely result in increased dangers. It was pointed out that CPS equipment might cause disruptive societal changes since intelligent assistive or autonomous environments can cause mental illnesses, which can lead to bias toward new technology adoption and usage [21]. Cyber-Physical Systems have consisted of two key components: i) A virtual environment built through computer simulation of items and actions in the actual world, and ii) a network of objects and systems interacting with each other over the internet with a designated address [4].
The term “cloud” is utilized for applications, for instance, remote services, color management, and performance benchmarking applications. It has taken remarkable attention from the IT community, and its role in other business areas will continue to grow. Machines, data management, and functionality will continue to transition away from traditional ways and toward cloud-based solutions as technology improves. The cloud enables significantly faster distribution than standalone systems, as well as quick upgrades, current performance models, and other delivery possibilities [19].
The industry has found a significant shift toward cloud solutions, which will continue to develop and represent a substantial challenge to traditional data storage methods. Cloud technology is the most basic online storage service that gives operational comfort with web-based apps that do not require any installation. Cloud computing refers to the process of storing all applications, programs, and data on a virtual server. It improves efficiency by guaranteeing those input suppliers, employees, and consumers have access to the same information at the same time [22]. Cloud Systems lower costs, simplify infrastructure, expand work areas, safeguards data, and allow for instant access to information. There are four types of the system, mainly: i) Public Cloud; ii) Private Cloud; iii) Hybrid Cloud (combination of public and private cloud); 4) Community Cloud (this refers to the co-operation of any service on the cloud with a few companies) [9].
Cloud systems are an excellent source of Big Data (which might be organized or unstructured) management solutions. Because traditional computers may not be capable of managing large amounts of data, using a cloud system to do the necessary analysis, would be much easier and more efficient. As a result, data analysis and cloud systems should be inescapable components of Industry 4.0. The integration of cloud-connected robots into everyday life, as well as their impact, is considerable [4].
Machine to machine (M2M), refers to the technology that allows direct communication between devices using any channel, wired or wireless. Machine-to-machine communication can include industrial instrumentation and personal communications [23]. M2M is also considered to be an essential component of Industry 4.0. Machine to machine (M2M) is a technology that allows devices to communicate directly with one another over any channel, wired or wireless. Machine-to-Machine Communication can include industrial instrumentation and personal networks. M2M is also considered to be an essential component of Industry 4.0. The apps are geared toward adding value to the enterprises by introducing alternative revenue streams and reducing operational costs [24].
Ackermann (2013) clearly states that M2M operations have to enable aspects with different networked organizations including i) Remote Service and Asset Information Management delivering, which provide information federation and lifecycle support. ii) Connected Vehicles, which creates relationships and interactions. iii) Smart Vending, which includes retail, supply chain, and associated sub-elements [4]. The M2M vision has raised a number of issues, including establishing smart settings, smart architecture, and a smart grid with wireless sensors, as well as developing a communication language between machines and humans, as well as between humans in different locations [23].
The Internet of Things (IoT) is an emerging concept that combines various technologies and techniques, based on the interaction between physical things and the Internet. The advancement of technology in recent decades has enabled the Internet to be expanded into a new level known as “smart objects,” which is the foundation of an IoT vision, for this, the novel pattern consists in awarding ordinary things with intelligence, permitting them not only to accumulate information and cooperate with their surroundings, but also to be interrelated with other items, communicating information, and conducted a preliminary via the Internet. The growing interest in this field, which is widely regarded as one of the primary drivers of Industry 4.0, has produced the development of a number of visions and definitions for (IoT) [1].
The Internet of Things (IoT) refers to the interconnection of physical devices, cars, buildings, and other entities that are equipped with electronics, software, sensors, actuators, and network connections to gather and share data to create a smart manufacturing environment, also known as a smart factory [25]. Additionally, the concept of “The Internet of Services (IoS)” takes a similar approach to IoT but applies it to services rather than physical assets. The Internet of Services (IoS) idea will open up new prospects for the service sector by providing a commercial and technological foundation for the construction of business networks between service providers and clients [4].
The expansion of IoT in industrial contexts and value chains will give several opportunities for users, manufacturers, and businesses, having a significant influence in a variety of industries. The Internet of Things is breaking new ground, with a slew of new applications emerging around three key pillars: i) process optimization; ii) resource optimization, and iii) the building of sophisticated autonomous systems. IoT technology will continue to evolve and spread, allowing objects to become smarter, more dependable, and autonomous, allowing for the supply of higher-value products and services [1]. On the other hand, the effectiveness of Industry 4.0 depends upon existing network infrastructure, the intelligence, and human knowledge embedded into the system [22].
“Dark factories,” “lights off factories,” and “unmanned factories” are all terms used to describe smart factories, this system is integrated with the small intervention of human beings. The individual is entering into these systems mainly in the problem-solving stages. The concept known as Lights out (dark) or unmanned factories nowadays is an automation and autonomy enhanced methodologies including equipment used in factories that actively operate the production [4, 26]. The most famous characteristic of dark factories is that they do need no human power. In unmanned factories, there is not enough time to enter the plant from the raw material to the exit from the factory. That is to say that in these factories, production is carried out entirely with robotic systems [18]. It is self-evident that smart factories will have the characteristics and procedures required by the Fourth Industrial Revolution. And these processes, which are of great importance to our future of production. Furthermore, the essential activity for generating a smart factory running under Industry 4.0 is integrating different other components together, such as big data, CPS, cloud, IoT, M2M, etc. [4]
There are many challenges that determine the formation of smart factories, such as the availability of energy and its supply, the efficiency of the labor, and the availability of the technological infrastructure necessary to shift toward smart factories. On the other hand, these factories will have a negative impact on existing employment and increase unemployment rates [7].
Every day, new goods and systems emerge as a result of technological advancements. Flying automobiles, holographic television, and hundreds of electrical devices to be implanted into the human body are all possibilities [26]. Humanoid robots will be a part of everyday life in the not-too-distant future. Recent innovations have brought about skills that empower robots to control their environment. Artificial intelligence will contribute to the development of having robot teams cooperating and collaborating in achieving certain tasks defined for a specific purpose [28].
Implementing a collaborative robot in a factory will provide several benefits for the company, including i) preventing humans from performing repetitive, non-ergonomic, and dangerous work; ii) producing high-quality products with favorable cost–benefit ratios while also increasing productivity; and iii) increasing competitiveness in comparison to countries with cheap labor [29]. When a robot is used in a productive process, the benefits of the robot utilization are combined with the effort of an operator. There is no teamwork between the man and the robot on the first level. The workplace is totally shared between the man and the robot at the final level [30].
Simulation and augmented reality (AR) is a type of enhanced reality in which live direct or indirect views of physical real-world environments are augmented with computer-generated visuals projected on top of them. Industry 4.0 applications rely heavily on this technology. This innovative technology, which is critical to the industrial revolution, was created by combining real operations and simulation industries [4]. These strategies have a lot of advantages, especially when it comes to creating products and manufacturing processes. One of the cutting-edge technologies included in the Industry 4.0 trend is augmented reality, which is particularly useful in producing smart manufacturing functions [28].
Enterprise resource planning (ERP) refers to information systems that are designed to integrate and efficiently employ all of an organization’s resources. An ERP software is a system that supports an organization in bringing together processes and data that are executed all over the processes (suppliers, production, stock, sales). ERP systems are able to provide an integrated approach to information use, to start forecasting and extracting information, which can use in various departments [4]. There is a connection between big data and Industry 4.0, Manufacturing Executive Systems (MES), cloud systems, and ERP are integrated. It is critical that all procedures in the design stage as well as the customer journey are compatible with the Industry 4.0 approach. The ERP process is also a vital component in this framework [28].
The idea of Industry 4.0 necessitates connection and collaboration criteria. End-user feedback is critical, as is providing immediate additional value to all interested parties. In order for personalization to be possible, network systems must be intelligent [22]. A telecom operator may be able to analyze network performance during fluctuations and use preventive scenarios to reduce client dissatisfaction. A well-structured ERP system can enable these characteristic features. ERP systems can help with Industry 4.0 implementations, especially as a result of the following advantages: i) Real-time data may be evaluated and allow for early detection; ii) ERP systems can provide sales and purchasing transparency; iii) ERP data may be used by mobile applications to communicate; iv) Optimum resource utilization may be achieved under varying job descriptions; v) Clients may be able to track their orders online and receive the necessary information quickly [4].
The Smart Virtual Product Development (SVPD) system is a product development decision support technology that saves, uses, and shares the experiential knowledge of previous decisional events in the form of SOEs. It was created to address the requirement for digital knowledge captured in smart manufacturing product design, production planning, and inspection planning. As a result, product quality and development time will be improved, as required by Industry 4.0 concepts [31].
The core progress from traditional manufacturing toward Industry 4.0 concluded into four key features and characteristics [32]: (1) vertical networking of smart manufacture schemes; (2) horizontal integration through a new generation of global value chain networks; (3) through-life engineering across the entire value chain; and (4) the impact of exponential technologies.
Industry 4.0′s first main characteristic is the vertical networking of smart manufacturing systems. Vertical integration in Industry 4.0 establishes a connection between the many levels of the industry, from the manufacturing floor up, via production monitoring, control, and supervision, quality management, operations, product management, processing, and so on. This interconnectedness across all corporate levels provides for a fluid, transparent data flow, allowing for data-driven strategic and tactical choices [20]. Hence, the main objective behind vertical networking is to utilize Cyber-Physical Production Systems (CPPSs), to enable industries to quickly respond to unexpected order changes resulting from demand fluctuations, equipment failure or stock shortage. Vertical networking improves an organization’s capacity to adequately adapt to changes in market requirements and benefit from new possibilities [22].
Furthermore, it makes it easier to link resources to goods and find supplies and parts at any time. Similarly, processing data, anomalies, and defects from various processing stages of the manufacturing line are automatically captured and registered, allowing for quick responses to order changes, quality variations, and even machinery breakdowns. As a consequence, waste is decreased, and resource efficiency, notably in terms of material usage, energy consumption, and human resources is improved [28].
In the Industry 4.0 concept, horizontal integration refers to the network of diverse processes, companies, and services that make up a product’s global value chain. This can be viewed at the production level as a total consolidation of all associated manufacturing processes. Vertical integration, on the other hand, refers to a high level of coordination between production and top management layers such as quality management, product management, and production control [33].
The horizontal integration in an Industry 4.0 enterprise occurs at different levels: production floor, multiple production facilities, and entire value chain. Each connected machine or production unit becomes a node with well-defined properties within the production network. These nodes continuously communicate their status to respond autonomously to dynamic production requirements cost-effectively and reduce system downtime through predictive maintenance . If an enterprise owns several production sites, the horizontal integration enables to share inventory levels and unexpected delays, and possibly redistribute work among owned facilities to respond to market demand fluctuations rapidly or increase the efficiency and speed of the production process. However, the most critical and global horizontal integration remains the integration across the entire value chain [12].
Industry 4.0 offers a highly automated and transparent collaboration across the complete value chain, using CPPSs, from the inbound assembly, packaging, storing, production, quality control, marketing, and sales, to outbound distribution, logistics, and retail services. The horizontal integration across all these activities creates a transparent value chain that is updated in real-time. Hence, this feature provides a high level of flexibility to respond more rapidly to changing market demands, shortcomings, and problems, facilitates the optimization of the production process, increases its efficiency, and reduces the generated waste [17]. Additionally, the fact that any part or product’s history is logged and can be accessed at any time ensures constant traceability, also known as “product memory” [19].
Among the characteristics of the Fourth Industrial Revolution is also the impact of the ten components of the 4th Industrial Revolution
Innovation and scientific advancements perform an essential role in businesses, sectors, and countries. However, the digital improvements and the increasing interconnectivity will bring additional challenges and upgrades to societies, since, Industry 4.0 (Ir 4.0) will significantly change the manufacturing systems in terms of design, processes, operations, and services. Industry 4.0 will lead to potential deep changes in a variety of fields outside of the industrial sector. Its influence and effect may be divided into six categories: (1) Industry sector, (2) Products and services, (3) Business models, entrepreneurship, and market competition, (4) Economies of nations, (5) Work environment, and (6) Skills development.
The industry sector will be the first to feel the effects of Industry 4.0. This new industrial paradigm will usher in a vision of manufacturing that is decentralized and digitalized, with production elements that can autonomously govern themselves, trigger operations, and adapt to changes in their surroundings. Furthermore, the developing paradigm recommends fully integrating products and processes, altering industrial vision from mass production to mass customization, resulting in increased complexity [35]. Consequently, advanced technologies and the building of smart factories will have a significant impact on production processes and operations, providing for greater operational flexibility, and more efficient utilization of resources. Industry 4.0 will have a considerable effect on the production systems, supply chains, and industrial activities. This new paradigm is changing the current industrial landscape in three ways: (1) production digitization, (2) automation, and (3) integrating the manufacturing site to a larger supply chain. Industry 4.0, in this sense, entails complete network integration and real-time data sharing [1]. Productivity growth is at the core of each industrial revolution. The 4th industrial revolution, on the other hand, will influence the entire supply chain, from product creation and manufacturing to outbound logistics, in addition to enhancing productivity [36].
ROJKO, et al. (2020) used the vector autoregression model forecast for data from the manufacturing sector in the United States over the period (2008−2018) and concluded that, the share of manufacturing output and employment has declined, and that the manufacturing sector has reached a turning point, after which robotization can increase employment and labor productivity of workers while also stimulating further growth of their education levels. They concluded that the shift to Industry 4.0 has a significant impact on the growing demand for new knowledge and skills in order to boost productivity. As a result, anticipated growths of assessed manufacturing indicators imply that the negative effects of robotization in the recent past were only transient, as the Industry 4.0 age has begun. Nonetheless, further policies are needed to enable long-term industry development [37].
This new industrial paradigm has a significant impact on products and services. Rapid changes in the economic landscape and dynamic market demands have resulted in an increased demand for the development of more complicated and intelligent products in recent years [36]. Products will become increasingly modular and configurable, allowing for mass customization to match individual consumer needs [35]. As a result, Industry 4.0 is defined by the emergence of new products and services as embedded systems that can become attentive and interactive, be managed, and tracked in real-time, optimize the entire value chain, and provide pertinent information about their status throughout their lifecycle [37].
In the previous few years, company models and markets have swiftly altered, and new inventive business models will emerge. In the context of Industry 4.0, the introduction of new disruptive technologies has altered the way products and services are sold and delivered, disrupting established enterprises, and introducing new business prospects and models [33]. As a result, value chains are becoming more responsive, as Industry 4.0 encourages integration between manufacturers and customers, allowing for closer customer connection and business model adaption to market demands. The rising digitalization of industrial production, combined with system integration and complexity, will result in the establishment of increasingly sophisticated and digital market models, boosting competitiveness by removing barriers between information and physical structures [1].
Because of technological advancements, the workplace environment is changing fast, and Industrial revolution 4.0 is redefining jobs and key competencies. The most significant transition is the human-machine connection, which includes employee contact and a set of new collaborative work approaches [18]. The number of robots and intelligent technologies is growing, the real and virtual environments are merging, implying the existing work environment is undergoing a considerable transition [13].
The rising importance of human-machine interfaces will encourage interaction between production elements as well as the necessary communication between smart machines, smart products, and employees, which will be aided by CPS’ vision of IoT and IoS. As a result, ergonomic concerns should be considered in the context of Industry 4.0, and future systems should emphasize the relevance of workers. Job profiles, as well as work management, organization, and planning will be affected by the integration of Industry 4.0 in industrial systems and the rising deployment of new technologies [12]. In this scenario, the major task is to avoid technological unemployment by reframing present jobs and taking steps to adapt the workforce to the new jobs that will be generated [28].
One of the most significant fundamental factors for a successful acceptance and implementation of the Industry 4.0 framework is skill development, which will lead to demographic and societal changes. New competencies will be required in the future work vision, and it will be vital to provide opportunities for the acquisition of these abilities through high-quality training. This new industrial paradigm will have a significant impact on the labor market and professional roles, and it will be critical to ensure that more jobs are generated than are lost [26].
Interdisciplinary thinking will be vital, and outstanding abilities in social and technological domains will be desired. The new required competency sectors must be included in schooling. As a result of Industry 4.0’s rising automation of jobs, workers must be prepared to take on new responsibilities [28]. The same can be said for engineering education, which has a lot of promise in terms of training future professionals and informing them about new technical trends and opportunities, as well as managers who need to adapt their management strategies to meet changing market demands. Furthermore, in order to address Industry 4.0, more qualified personnel will be required in technological sectors [1].
In summary, Industry 4.0 has enormous potential in many areas, and its implementation will have an impact across the entire value chain, improving production and engineering processes, improving product and service quality, optimizing customer-organization relationships, bringing new business opportunities and economic benefits, changing educational requirements, and transforming the current work environment.
An economy can be inspired by the introduction of new models and emerging technological improvements. Digitization involves the convergence between physical and virtual worlds and will have a widespread impact in every economic sector [15]. This will be the primary driving force behind innovation, which will be crucial to productivity and costs of production, which is reflected in the competitiveness (companies, sectors, and nations) [17].
Industry 4.0 also, can transform existing relationships in the manufacturing process, allowing the manufacturing sector to join the information age by allowing communication at all stages of the manufacturing process. Some academics anticipate that Industry 4.0 would lead to new economic forms in the industry, agriculture, and services [3]. The majority of businesses expect a two-year payback on their Industry 4.0 investments, which leads to a considerable rise in investment in this area is likely, it’s reflected in economic growth [37].
On the other hand, some experts believe that Industry 4.0 will result in increased inequality due to its threat of disrupting labor markets. It is argued that the continuous growth in automation, robots, and computers will take the jobs of workers in many industries with the most worrying factor being the increased danger of the disappearance of low-skill/low-pay jobs which will cause a lot of challenges for the poor, which will lead to a rise in social tensions [37]. The most concerning fact in Industry 4.0 is that it is not only the transfer of labor from one sector of the economy to another but also the availability of technology that will replace human capital, in other words, taking people’s jobs. The technological revolution will also have an impact on topics such as material or ideological changes brought about by the introduction of new gadgets or systems, all of which will have an impact on redefining humanity’s culture [3].
In general, digitization and interconnection of industrial processes, lead to potentials in all three dimensions of sustainability. However, achieving long-term benefits of sustainability is accompanied by several challenges respectively, especially in the implementation phase of Industry 4.0 [38].
Regarding the social dimension of Industry 4.0, several benefits for employees are named, such as improved human learning through intelligent assistance systems as well as human-machine interfaces that lead to increased employee satisfaction in industrial workplaces [8, 22]. However, current literature cannot provide a unified perspective on whether Industry 4.0 will cause an increase or decrease in employee numbers in the industry. In this regard, concrete numbers named differ to a large extent [3, 15]. In general, a further replacement of simple tasks is expected, whereas tasks such as monitoring, collaboration, and training will still be required [3]. Hereby, new job profiles with novel requirements for training and education are expected to emerge, mostly referring to decreasing importance of manual labor in contrast to IT skills. On the other hand, tasks that include planning and monitoring, as well as decision-making, could fall to autonomous systems, therefore, possibly replacing jobs in this area.
The fourth industrial revolution has a significant impact on supply chain interactions, which is mainly due to the exponential growth of sensible data and the widespread of digitalized processes [40]. To understand the impact of the adoption and exploitation of Industry 4.0 technologies on the value chains and supply chains (SC). Based on the review, the effect of Industry 4.0 implementation on the supply chains (SC) are identified as follows:
Despite the rapid rise of Industry 4.0, research related to the identification of potential drivers and hurdles to its implementation are scarce. To better understand the motivations and challenges to the adoption and use of Industry 4.0 technologies, a literature review was conducted. The following are the primary drivers for Industry 4.0 implementation, as determined by the review:
In this section, we introduce an overview of some applications of the Fourth Industrial Revolution. Also, we provide a case study for these applications by
The “
Similarly, using techniques such as
Another application of industry 4.0 in the
There are several applications for industry 4.0, for example, the KUKA corporation which works in the areas, for instance, smart factories, M-2-M, computing cloud, intelligent robots, e-commerce, and so on.
There are also some intimidating resisting forces, barriers, for implementing Industry 4.0 practices. These obstacles may be classified under the following business dimensions:
Additionally,
This study contributes to bridging the critical gap, by discussing the key components, characteristics, effects on many dimensions, drivers, barriers, and other implementation challenges of Industry 4.0, the fourth industrial revolution describes a future production system’s vision. Industry 4.0 is an inevitable revolution covering a wide range of innovative technologies, such as cyber-physical systems, RFID technologies, IoT, cloud computing, big data analytics, advanced robotics, smart factories, etc. The Industry 4.0 paradigm is transforming business in many industries, e.g., automotive, logistics, aerospace, and energy sectors, etc. Industry 4.0 realizes the development and integration of information and communication technologies into business processes. The capabilities or components of Industry 4.0 bring significant advantages to organizations, including customization of products, real-time data analysis, increased visibility, autonomous monitoring and control, dynamic product design and development, enhanced productivity, and competitiveness.
The key characteristic features of Industry 4.0 are collaboration and integration of schemes, both horizontal and vertical. In vertical integration, Information and Communication Technology (ICT) is integrated into various hierarchical levels of the organization, from floor-level control to production, operations, and management levels. This vertical integration networking empowers the use of components of Industry 4.0 for production to respond to demand disparity or the fluctuations in stock levels. In horizontal integration, ICT is used to exchange information between many players. Integration of these systems for a flawless collaboration, integration, and exchange of data with all the stakeholders is a complicated scenario. Implementation of Industry 4.0 apps support to reduce costs, improves productivity, efficiency, and flexibility, and enhance product customization.
Innovation and technological advancements perform an essential role in organizations, sectors, countries. However, the digital transformation improvements and the rising interconnectivity will bring new challenges to societies, since Industry 4.0 will significantly change the products and manufacturing systems regarding design, processes, operations, and services. Industry 4.0 uses several advanced tools and technologies, thus helping to redefine conventional industrial processes. Industry 4.0 has enormous potential effect in many areas, and its application will have an impact across the entire value chain, improving production and engineering processes, improving product and service quality, optimizing customer-organization relationships, bringing new business opportunities and economic benefits, changing educational requirements, and transforming the current work environment. Digitization and interconnection of industrial processes (Industry 4.0), leading to potentials in all three dimensions of sustainability.
There are several applications for industry 4.0, applied by the KUKA corporation which works in the areas, for instance, smart factories, M-2-M, computing cloud, intelligent robots, e-commerce, etc., these technologies or applications help the industry 4.0 to separate rapidly. On the other hand, there are also some barriers, for implementing Industry 4.0 practices. These obstacles may be classified into many business dimensions: financial constraints, technical competency of the focal, organizational nature, lack of management support and resistance to change, legal issues, lack of policies and support from the government.
Our business values are based on those any scientist applies to their research. The values of our business are based on the same ones that all good scientists apply to their research. We have created a culture of respect and collaboration within a relaxed, friendly, and progressive atmosphere, while maintaining academic rigour.
\n\nPlease check out our job board for open positions.
',metaTitle:"Careers at IntechOpen",metaDescription:"Employee quote to be added",metaKeywords:null,canonicalURL:"/page/careers-at-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\\n\\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\\n\\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\\n\\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\\n\\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\n\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\n\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\n\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\n\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\n\n\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16,19,25 FILLER ads"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11731",title:"Nephrolithiasis - From Bench to Bedside",subtitle:null,isOpenForSubmission:!0,hash:"2ea5ea58b6f360fd378153fe35413100",slug:null,bookSignature:"Prof. M Hammad Ather",coverURL:"https://cdn.intechopen.com/books/images_new/11731.jpg",editedByType:null,editors:[{id:"88868",title:"Prof.",name:"M Hammad",surname:"Ather",slug:"m-hammad-ather",fullName:"M Hammad Ather"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11594",title:"Melanoma - Standard of Care, Challenges, and Updates in Clinical Research",subtitle:null,isOpenForSubmission:!0,hash:"ed8a0af96af7b311ef7f9bbbde152d0f",slug:null,bookSignature:"Dr. Sonia Maciá",coverURL:"https://cdn.intechopen.com/books/images_new/11594.jpg",editedByType:null,editors:[{id:"281982",title:"Dr.",name:"Sonia",surname:"Maciá",slug:"sonia-macia",fullName:"Sonia Maciá"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11703",title:"Fluorescence Imaging - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"728ff3bfc75ad2c9a39c338b52ae1893",slug:null,bookSignature:"Dr. Raffaello Papadakis",coverURL:"https://cdn.intechopen.com/books/images_new/11703.jpg",editedByType:null,editors:[{id:"251885",title:"Dr.",name:"Raffaello",surname:"Papadakis",slug:"raffaello-papadakis",fullName:"Raffaello Papadakis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11729",title:"Circumcision - Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"d4761c03b5694edec9f7fc48092549ce",slug:null,bookSignature:"Dr. Ahmad Zaghal and Dr. Ali El Safadi",coverURL:"https://cdn.intechopen.com/books/images_new/11729.jpg",editedByType:null,editors:[{id:"240621",title:"Dr.",name:"Ahmad",surname:"Zaghal",slug:"ahmad-zaghal",fullName:"Ahmad Zaghal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",subtitle:null,isOpenForSubmission:!0,hash:"3d72ae651ee2a04b2368bf798a3183ca",slug:null,bookSignature:"Prof. Elisa Pieragostini",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",editedByType:null,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11710",title:"Lifestyle-Related Diseases and Metabolic Syndrome",subtitle:null,isOpenForSubmission:!0,hash:"c556d78df6bb93e8e3973ce0a9547ea8",slug:null,bookSignature:"Dr. Naofumi Shiomi",coverURL:"https://cdn.intechopen.com/books/images_new/11710.jpg",editedByType:null,editors:[{id:"163777",title:"Dr.",name:"Naofumi",surname:"Shiomi",slug:"naofumi-shiomi",fullName:"Naofumi Shiomi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11702",title:"Eye Diseases - Recent Advances, New Perspectives and Therapeutic Options",subtitle:null,isOpenForSubmission:!0,hash:"228ecdcbf2ffae4e8cfeedfc7e0fa922",slug:null,bookSignature:"Dr. Salvatore Di Lauro",coverURL:"https://cdn.intechopen.com/books/images_new/11702.jpg",editedByType:null,editors:[{id:"244950",title:"Dr.",name:"Salvatore",surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11881",title:"Ventricular Assist Devices - Advances and Applications in Heart Failure",subtitle:null,isOpenForSubmission:!0,hash:"4c5136113dda974a93f03ba12724b31b",slug:null,bookSignature:"Associate Prof. Enkhsaikhan Purevjav, Dr. Hugo R. Martinez, Dr. Mohammed Absi, Dr. Jeffrey Allen Towbin and Dr. Umar Boston",coverURL:"https://cdn.intechopen.com/books/images_new/11881.jpg",editedByType:null,editors:[{id:"231585",title:"Associate Prof.",name:"Enkhsaikhan",surname:"Purevjav",slug:"enkhsaikhan-purevjav",fullName:"Enkhsaikhan Purevjav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11682",title:"Rare Diseases - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"ad68db8a4109ae3acc0d3f001a2f4fde",slug:null,bookSignature:"Dr. John Kanayochukwu Nduka",coverURL:"https://cdn.intechopen.com/books/images_new/11682.jpg",editedByType:null,editors:[{id:"107866",title:"Dr.",name:"John Kanayochukwu",surname:"Nduka",slug:"john-kanayochukwu-nduka",fullName:"John Kanayochukwu Nduka"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11732",title:"Multiple Pregnancy - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"70396c6f5f2928c422c1eaf6d33c6269",slug:null,bookSignature:"Prof. Hassan S Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/11732.jpg",editedByType:null,editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:135},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4422},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"196",title:"Pharmacology",slug:"medicine-pharmacology",parent:{id:"16",title:"Medicine",slug:"medicine"},numberOfBooks:7,numberOfSeries:0,numberOfAuthorsAndEditors:126,numberOfWosCitations:28,numberOfCrossrefCitations:34,numberOfDimensionsCitations:67,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"196",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8166",title:"Receptors P1 and P2 as Targets for Drug Therapy in Humans",subtitle:null,isOpenForSubmission:!1,hash:"546c9abc8145b3a3ecf13557a03f7590",slug:"receptors-p1-and-p2-as-targets-for-drug-therapy-in-humans",bookSignature:"Robson Faria",coverURL:"https://cdn.intechopen.com/books/images_new/8166.jpg",editedByType:"Edited by",editors:[{id:"79615",title:"Dr.",name:"Robson",middleName:null,surname:"Faria",slug:"robson-faria",fullName:"Robson Faria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7116",title:"Antidepressants",subtitle:"Preclinical, Clinical and Translational Aspects",isOpenForSubmission:!1,hash:"1bd4340dfebb60697e12fc04a461d9ac",slug:"antidepressants-preclinical-clinical-and-translational-aspects",bookSignature:"Olivier Berend",coverURL:"https://cdn.intechopen.com/books/images_new/7116.jpg",editedByType:"Edited by",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6679",title:"Serotonin",subtitle:null,isOpenForSubmission:!1,hash:"9c833c86546ec9d3c38fb24a1072dbd0",slug:"serotonin",bookSignature:"Ying Qu",coverURL:"https://cdn.intechopen.com/books/images_new/6679.jpg",editedByType:"Edited by",editors:[{id:"94028",title:"Dr.",name:"Ying",middleName:null,surname:"Qu",slug:"ying-qu",fullName:"Ying Qu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7256",title:"Dopamine",subtitle:"Health and Disease",isOpenForSubmission:!1,hash:"e46d08f526c35d787be15bcb17126fb8",slug:"dopamine-health-and-disease",bookSignature:"Sarat Chandra Yenisetti",coverURL:"https://cdn.intechopen.com/books/images_new/7256.jpg",editedByType:"Edited by",editors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",middleName:null,surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6404",title:"Drug Addiction",subtitle:null,isOpenForSubmission:!1,hash:"f432d0ab93a06628d3592b4c0fea44ae",slug:"drug-addiction",bookSignature:"Fang Zhao and Meng Li",coverURL:"https://cdn.intechopen.com/books/images_new/6404.jpg",editedByType:"Edited by",editors:[{id:"207525",title:"Dr.",name:"Fang",middleName:null,surname:"Zhao",slug:"fang-zhao",fullName:"Fang Zhao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5894",title:"Neurotoxins",subtitle:null,isOpenForSubmission:!1,hash:"4ed24b0789b6d0bf230c24637f2f7575",slug:"neurotoxins",bookSignature:"J. Eric McDuffie",coverURL:"https://cdn.intechopen.com/books/images_new/5894.jpg",editedByType:"Edited by",editors:[{id:"161246",title:"Dr.",name:"J. Eric",middleName:null,surname:"McDuffie",slug:"j.-eric-mcduffie",fullName:"J. Eric McDuffie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3819",title:"Topics in Spinal Anaesthesia",subtitle:null,isOpenForSubmission:!1,hash:"d7bf34d33972bf5002ed97828eb508ad",slug:"topics-in-spinal-anaesthesia",bookSignature:"Victor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/3819.jpg",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"63723",doi:"10.5772/intechopen.81036",title:"Oxidative Polymerization of Dopamine: A High-Definition Multifunctional Coatings for Electrospun Nanofibers - An Overview",slug:"oxidative-polymerization-of-dopamine-a-high-definition-multifunctional-coatings-for-electrospun-nano",totalDownloads:2021,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"The invention that catecholamines undergo oxidative polymerization under alkaline conditions and form adhesive nanocoatings on wide variety of substrates has ushered their potential utility in engineering and biomedical applications. The oxidative polymerization of catecholamines can be triggered by light, chemical and physical methods, thus representing one of the widely explored surface coating methods. The overall objectives of this chapter are to compile the various methods of accomplishing surface coatings and compare the structural diversity of catecholamines. The progress achieved so far on polydopamine (pDA) coatings on electrospun polymers will be discussed. Finally, we will summarize the research efforts on catecholamine coatings for biomedical applications as well as their potential as a high definition coating method.",book:{id:"7256",slug:"dopamine-health-and-disease",title:"Dopamine",fullTitle:"Dopamine - Health and Disease"},signatures:"Rajamani Lakshminarayanan, Srinivasan Madhavi and Christina Poh\nChoo Sim",authors:[{id:"256023",title:"Associate Prof.",name:"Lakshminarayanan",middleName:null,surname:"Rajamani",slug:"lakshminarayanan-rajamani",fullName:"Lakshminarayanan Rajamani"},{id:"270706",title:"Prof.",name:"Madhavi",middleName:null,surname:"Srinivasan",slug:"madhavi-srinivasan",fullName:"Madhavi Srinivasan"},{id:"270707",title:"Dr.",name:"Christina Poh Choo",middleName:null,surname:"Sim",slug:"christina-poh-choo-sim",fullName:"Christina Poh Choo Sim"}]},{id:"47285",doi:"10.5772/58851",title:"Spinal Additives in Subarachnoid Anaesthesia for Cesarean Section",slug:"spinal-additives-in-subarachnoid-anaesthesia-for-cesarean-section",totalDownloads:5794,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"3819",slug:"topics-in-spinal-anaesthesia",title:"Topics in Spinal Anaesthesia",fullTitle:"Topics in Spinal Anaesthesia"},signatures:"Hala M. Goma, Juan C. Flores-Carrillo and Víctor Whizar-Lugo",authors:[{id:"42540",title:"Dr.",name:"Hala",middleName:"Mostafa",surname:"Goma",slug:"hala-goma",fullName:"Hala Goma"},{id:"170431",title:"Prof.",name:"Amr",middleName:null,surname:"Aboela",slug:"amr-aboela",fullName:"Amr Aboela"}]},{id:"47012",doi:"10.5772/58702",title:"Spinal or Epidural Haematoma",slug:"spinal-or-epidural-haematoma",totalDownloads:3530,totalCrossrefCites:5,totalDimensionsCites:5,abstract:null,book:{id:"3819",slug:"topics-in-spinal-anaesthesia",title:"Topics in Spinal Anaesthesia",fullTitle:"Topics in Spinal Anaesthesia"},signatures:"R. Hakan Erbay, Nimet Senoglu and Habip Atalay",authors:[{id:"169248",title:"Dr.",name:"Rıza Hakan",middleName:null,surname:"Erbay",slug:"riza-hakan-erbay",fullName:"Rıza Hakan Erbay"},{id:"170302",title:"Dr.",name:"Nimet",middleName:null,surname:"Senoglu",slug:"nimet-senoglu",fullName:"Nimet Senoglu"},{id:"170303",title:"Dr.",name:"Habip",middleName:null,surname:"Atalay",slug:"habip-atalay",fullName:"Habip Atalay"}]},{id:"57303",doi:"10.5772/intechopen.70852",title:"Developmental Neurotoxicity of Fluoride: A Quantitative Risk Analysis Toward Establishing a Safe Dose for Children",slug:"developmental-neurotoxicity-of-fluoride-a-quantitative-risk-analysis-toward-establishing-a-safe-dose",totalDownloads:1075,totalCrossrefCites:1,totalDimensionsCites:5,abstract:"A meta-analysis showed that children with higher fluoride exposure have lower IQs than similar children with lower exposures. Circulating levels of fluoride in blood and urine in children have also been linked quantitatively to significantly lower IQ. Other human and animal studies indicate that fluoride is a developmental neurotoxicant and that it operates in utero. Economic impacts of IQ loss have been quantified. The objective was to use data from the meta-analysis and other studies to estimate a daily dose of fluoride that would protect all children from lowered IQ, and to estimate economic impacts. We used two methods: traditional lowest-observed-adverse-effect (LOAEL)/no-observed-adverse-effect level (NOAEL); and benchmark dose (BMD). We used 3 mg/L in drinking water as an “adverse effect concentration,” with reported fluoride intakes from food, in the LOAEL/NOAEL method. We used the available dose–response data for the BMD analysis. Arsenic, iodine, and lead levels were controlled for in studies we used. BMD analysis shows the possible safe dose to protect against a five-point IQ loss is between 0.0014 and 0.050 mg/day. The LOAEL/NOAEL safe dose range estimate is 0.0042–0.16 mg/day. The economic impact for IQ loss among US children is loss of tens of billions of dollars.",book:{id:"5894",slug:"neurotoxins",title:"Neurotoxins",fullTitle:"Neurotoxins"},signatures:"John William Hirzy, Paul Connett, Quanyong Xiang, Bruce Spittle\nand David Kennedy",authors:[{id:"215103",title:"Dr.",name:"J. William",middleName:null,surname:"Hirzy",slug:"j.-william-hirzy",fullName:"J. William Hirzy"},{id:"215105",title:"Dr.",name:"Paul",middleName:null,surname:"Connett",slug:"paul-connett",fullName:"Paul Connett"},{id:"215110",title:"Prof.",name:"Quanyong",middleName:null,surname:"Xiang",slug:"quanyong-xiang",fullName:"Quanyong Xiang"},{id:"215111",title:"Dr.",name:"David",middleName:null,surname:"Kennedy",slug:"david-kennedy",fullName:"David Kennedy"},{id:"221561",title:"Dr.",name:"Bruce",middleName:null,surname:"Spittle",slug:"bruce-spittle",fullName:"Bruce Spittle"}]},{id:"46819",doi:"10.5772/58407",title:"Spinal Anaesthesia for Ambulatory and Short-Stay Plastic Surgery Procedures",slug:"spinal-anaesthesia-for-ambulatory-and-short-stay-plastic-surgery-procedures",totalDownloads:2326,totalCrossrefCites:4,totalDimensionsCites:4,abstract:null,book:{id:"3819",slug:"topics-in-spinal-anaesthesia",title:"Topics in Spinal Anaesthesia",fullTitle:"Topics in Spinal Anaesthesia"},signatures:"Víctor M. Whizar-Lugo, Juan C. Flores-Carrillo, Susana Preciado-\nRamírez, Jaime Campos-León and Víctor Silva",authors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"},{id:"170812",title:"Dr.",name:"Juan C.",middleName:null,surname:"Flores-Carrillo",slug:"juan-c.-flores-carrillo",fullName:"Juan C. Flores-Carrillo"},{id:"170813",title:"Dr.",name:"Susana",middleName:null,surname:"Preciado-Ramírez",slug:"susana-preciado-ramirez",fullName:"Susana Preciado-Ramírez"},{id:"170814",title:"Dr.",name:"Victor",middleName:null,surname:"Silva",slug:"victor-silva",fullName:"Victor Silva"},{id:"170821",title:"Dr.",name:"Jaime",middleName:null,surname:"Campos-León",slug:"jaime-campos-leon",fullName:"Jaime Campos-León"}]}],mostDownloadedChaptersLast30Days:[{id:"47166",title:"Complications in Spinal Anaesthesia",slug:"complications-in-spinal-anaesthesia",totalDownloads:9367,totalCrossrefCites:2,totalDimensionsCites:4,abstract:null,book:{id:"3819",slug:"topics-in-spinal-anaesthesia",title:"Topics in Spinal Anaesthesia",fullTitle:"Topics in Spinal Anaesthesia"},signatures:"Alparslan Apan and Özgün Cuvaş Apan",authors:[{id:"33951",title:"Prof.",name:"Alparslan",middleName:null,surname:"Apan",slug:"alparslan-apan",fullName:"Alparslan Apan"}]},{id:"63723",title:"Oxidative Polymerization of Dopamine: A High-Definition Multifunctional Coatings for Electrospun Nanofibers - An Overview",slug:"oxidative-polymerization-of-dopamine-a-high-definition-multifunctional-coatings-for-electrospun-nano",totalDownloads:2021,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"The invention that catecholamines undergo oxidative polymerization under alkaline conditions and form adhesive nanocoatings on wide variety of substrates has ushered their potential utility in engineering and biomedical applications. The oxidative polymerization of catecholamines can be triggered by light, chemical and physical methods, thus representing one of the widely explored surface coating methods. The overall objectives of this chapter are to compile the various methods of accomplishing surface coatings and compare the structural diversity of catecholamines. The progress achieved so far on polydopamine (pDA) coatings on electrospun polymers will be discussed. Finally, we will summarize the research efforts on catecholamine coatings for biomedical applications as well as their potential as a high definition coating method.",book:{id:"7256",slug:"dopamine-health-and-disease",title:"Dopamine",fullTitle:"Dopamine - Health and Disease"},signatures:"Rajamani Lakshminarayanan, Srinivasan Madhavi and Christina Poh\nChoo Sim",authors:[{id:"256023",title:"Associate Prof.",name:"Lakshminarayanan",middleName:null,surname:"Rajamani",slug:"lakshminarayanan-rajamani",fullName:"Lakshminarayanan Rajamani"},{id:"270706",title:"Prof.",name:"Madhavi",middleName:null,surname:"Srinivasan",slug:"madhavi-srinivasan",fullName:"Madhavi Srinivasan"},{id:"270707",title:"Dr.",name:"Christina Poh Choo",middleName:null,surname:"Sim",slug:"christina-poh-choo-sim",fullName:"Christina Poh Choo Sim"}]},{id:"59036",title:"Nursing Care for Persons with Drug Addiction",slug:"nursing-care-for-persons-with-drug-addiction",totalDownloads:2209,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Persons with drug addiction (PDDs) may exhibit symptoms affecting the central nervous system. Multidisciplinary treatment teams may offer the most updated treatment and care. Pharmacotherapy is one standard treatment, effective in managing psychotic symptoms with supportive psychosocial interventions. As part of the health-care team, nurses deal with PDD on a 24-hour basis. Quality nursing care is essential for improving quality of life, health status, and continued abuse-free status of PDD.",book:{id:"6404",slug:"drug-addiction",title:"Drug Addiction",fullTitle:"Drug Addiction"},signatures:"Ek-uma Imkome",authors:[{id:"219235",title:"Associate Prof.",name:"Ek-Uma",middleName:null,surname:"Imkome",slug:"ek-uma-imkome",fullName:"Ek-Uma Imkome"}]},{id:"59317",title:"Effect of Alcohol on Brain Development",slug:"effect-of-alcohol-on-brain-development",totalDownloads:1234,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In the world, 3.3 million deaths occur every year due to harmful use of alcohol; this represents 5.9% of all deaths. Ethanol metabolites’ production and their post-translation modification are one of the proposed mechanisms that lead to neuronal toxicity. The projected neurochemical changes in chronic alcohol drinkers may be due to an imbalance between excitatory and inhibitory neurotransmitters. Interaction of alcohol with GABA and glutamate receptors (NMDA and AMPA) resulted in diverse adaptive changes in gene expression through neuronal pathways leading to alcohol toxicity. Alcohol consumption in an individual leads to biochemical changes that are correlated with complex inflammatory signaling pathways such as phosphorylation of proteins, synthesis of nitric oxide (NO), NF-kappaB and MAP kinase pathways in certain regions of the brain. Ethanol exposure activates neurons and microglial cells that lead to release of neuroimmune factors like high-mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4) and certain cytokines involved in immune responses leading to neuroimmune signaling in the brain. Epigenetic modification of DNA and histones may lead to neuronal gene expression, thus regulating ethanol toxicity. Researchers attempt to modulate therapies that can help to foil alcohol toxicity and support the development of original neuronal cells that have been injured or degenerated by alcohol exposure.",book:{id:"6404",slug:"drug-addiction",title:"Drug Addiction",fullTitle:"Drug Addiction"},signatures:"Farhin Patel and Palash Mandal",authors:[{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal"},{id:"219333",title:"Ms.",name:"Farhin",middleName:null,surname:"Patel",slug:"farhin-patel",fullName:"Farhin Patel"}]},{id:"61035",title:"Induced Pluripotent Stem Cell-Derived Human Glutamatergic Neurons as a Platform for Mechanistic Assessment of Inducible Excitotoxicity in Drug Discovery",slug:"induced-pluripotent-stem-cell-derived-human-glutamatergic-neurons-as-a-platform-for-mechanistic-asse",totalDownloads:1280,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Since the guiding principles of Replace, Reduce, and Refine were published, wider context-of-use for alternatives to animal testing have emerged. Induced pluripotent stem cell-derived human glutamatergic-enriched cortical neurons can be leveraged as 2- and 3-dimensional platforms to enable candidate drug screening. Uniquely so, 2-dimensional models are useful considering that they exhibit spontaneous firing, while, 3-dimensional models show spontaneous synchronized calcium transient oscillations. Here, the limitations of selected induced acute seizure models as well as the early utilization of fully differentiated glutamatergic neuron models for interrogation of inducible excitotoxicity following exposure to neuromodulators will be described. The context of use for candidate biomarkers of inducible seizure is also discussed.",book:{id:"5894",slug:"neurotoxins",title:"Neurotoxins",fullTitle:"Neurotoxins"},signatures:"Yafei Chen",authors:[{id:"201274",title:"M.Sc.",name:"Yafei",middleName:null,surname:"Chen",slug:"yafei-chen",fullName:"Yafei Chen"}]}],onlineFirstChaptersFilter:{topicId:"196",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"
\r\n\tSustainable development focuses on linking economic development with environmental protection and social development to ensure future prosperity for people and the planet. To tackle global challenges of development and environment, the United Nations General Assembly in 2015 adopted the 17 Sustainable Development Goals. SDGs emphasize that environmental sustainability should be strongly linked to socio-economic development, which should be decoupled from escalating resource use and environmental degradation for the purpose of reducing environmental stress, enhancing human welfare, and improving regional equity. Moreover, sustainable development seeks a balance between human development and decrease in ecological/environmental marginal benefits. Under the increasing stress of climate change, many environmental problems have emerged causing severe impacts at both global and local scales, driving ecosystem service reduction and biodiversity loss. Humanity’s relationship with resource exploitation and environment protection is a major global concern, as new threats to human and environmental security emerge in the Anthropocene. Currently, the world is facing significant challenges in environmental sustainability to protect global environments and to restore degraded ecosystems, while maintaining human development with regional equality. Thus, environmental sustainability with healthy natural ecosystems is critical to maintaining human prosperity in our warming planet.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11978,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:null},onlineFirstChapters:{paginationCount:34,paginationItems:[{id:"81595",title:"Prosthetic Concepts in Dental Implantology",doi:"10.5772/intechopen.104725",signatures:"Ivica Pelivan",slug:"prosthetic-concepts-in-dental-implantology",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80500",title:"Novel Dental Implants with Herbal Composites: A Review",doi:"10.5772/intechopen.101489",signatures:"Gopathy Sridevi and Seshadri Srividya",slug:"novel-dental-implants-with-herbal-composites-a-review",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78320",title:"Implant-Retained Maxillary and Mandibular Overdentures - A Solution for Completely Edentulous Patients",doi:"10.5772/intechopen.99575",signatures:"Dubravka Knezović Zlatarić, Robert Ćelić and Hrvoje Pezo",slug:"implant-retained-maxillary-and-mandibular-overdentures-a-solution-for-completely-edentulous-patients",totalDownloads:64,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79724",title:"Implant Stability Quotient (ISQ): A Reliable Guide for Implant Treatment",doi:"10.5772/intechopen.101359",signatures:"Gaurav Gupta",slug:"implant-stability-quotient-isq-a-reliable-guide-for-implant-treatment",totalDownloads:59,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80223",title:"Bridging the Gap: Nasoalveolar Moulding in Early Cleft Palate Rehabilitation",doi:"10.5772/intechopen.101986",signatures:"Amanda Nadia Ferreira",slug:"bridging-the-gap-nasoalveolar-moulding-in-early-cleft-palate-rehabilitation",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80186",title:"Effects of Various Dentofacial Orthopedic and Orthognathic Treatment Modalities on Pharyngeal Airway",doi:"10.5772/intechopen.101719",signatures:"Tejashri Pradhan and Aarti Sethia",slug:"effects-of-various-dentofacial-orthopedic-and-orthognathic-treatment-modalities-on-pharyngeal-airway",totalDownloads:83,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78834",title:"Current Methods for Acceleration of Orthodontic Tooth Movement",doi:"10.5772/intechopen.100221",signatures:"Mehmet Akin and Leyla Cime Akbaydogan",slug:"current-methods-for-acceleration-of-orthodontic-tooth-movement",totalDownloads:127,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79817",title:"Peri-Implant Soft Tissue Augmentation",doi:"10.5772/intechopen.101336",signatures:"Marko Blašković and Dorotea Blašković",slug:"peri-implant-soft-tissue-augmentation",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Marko",surname:"Blašković"},{name:"Dorotea",surname:"Blaskovic"}],book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79100",title:"Orthodontics and the Periodontium: A Symbiotic Relationship",doi:"10.5772/intechopen.100801",signatures:"Betsy Sara Thomas and Mohan Alexander",slug:"orthodontics-and-the-periodontium-a-symbiotic-relationship",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79680",title:"Digital Workflow for Homemade Aligner",doi:"10.5772/intechopen.100347",signatures:"Dalal Elmoutawakkil and Nabil Hacib",slug:"digital-workflow-for-homemade-aligner",totalDownloads:201,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79611",title:"Growth Factors and Dental Implantology",doi:"10.5772/intechopen.101082",signatures:"Deeksha Gupta",slug:"growth-factors-and-dental-implantology",totalDownloads:103,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79584",title:"Orthodontic Management of Adult Sleep Apnea: Clinical Case Reports",doi:"10.5772/intechopen.101193",signatures:"Lahcen Ousehal, Soukaina Sahim, Hajar Bouzid, Hakima Aghoutan, Asmaa El Mabrak, Mohamed Mahtar and Mohamed El Fatmi Kadri Hassani",slug:"orthodontic-management-of-adult-sleep-apnea-clinical-case-reports",totalDownloads:86,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78791",title:"Surface Modification of Titanium Orthodontic Implants",doi:"10.5772/intechopen.100038",signatures:"Abdulqadir Rampurawala and Amol Patil",slug:"surface-modification-of-titanium-orthodontic-implants",totalDownloads:146,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79334",title:"Orthodontic Therapeutic Biomarkers in Saliva and Gingival Crevicular Fluid",doi:"10.5772/intechopen.100733",signatures:"Sagar S. Bhat, Ameet V. Revankar and Shrinivas M. Basavaraddi",slug:"orthodontic-therapeutic-biomarkers-in-saliva-and-gingival-crevicular-fluid",totalDownloads:127,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78213",title:"A Review of Current Concepts in Full Arch Rehabilitation with Dental Implants",doi:"10.5772/intechopen.99704",signatures:"Leandro Díez-Suárez",slug:"a-review-of-current-concepts-in-full-arch-rehabilitation-with-dental-implants",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Leandro",surname:"Díez Suárez"}],book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:16,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:4,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"40",title:"Ecosystems and Biodiversity",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"