The forecasting of future value of water consumption in an urban area is highly complex and nonlinear. It often exhibits a high degree of spatial and temporal variability. It is a crucial factor for long-term sustainable management and improvement of the operation of urban water allocation system. This chapter will study the application of two pre-processing phase space reconstruction (PSR) and wavelet decomposition transform (WDT) methods to investigate the behavior of time series to forecast short-term water demand value of Kelowna City (BC, Canada). The research proposes two pre-process technique to improve the accuracy of the models. Artificial neural networks (ANNs), gene expression programming (GEP) and multilinear regression (MLR) methods are the tools that considered for forecasting the demand values. Evaluation of the tools is based on two steps with and without applying the pre-processing methods. Moreover, autocorrelation function (ACF) is used to calculate the lag time. Correlation dimension is used to study the chaotic behavior of the dataset. The models’ relative performance is compared using three different fitness indexes; coefficient of determination (CD), root mean square error (RMSE) and mean absolute error (MAE). The results showed how pre-processing combination of WDT and PSR improved the performance of the models in forecasting short-term demand values.
Part of the book: Wavelet Theory and Its Applications