The chemical composition of the investigated magnesium alloys in wt.%.
\r\n\tIn sum, the book presents a reflective analysis of the pedagogical hubs for a changing world, considering the most fundamental areas of the current contingencies in education.
",isbn:"978-1-83968-793-8",printIsbn:"978-1-83968-792-1",pdfIsbn:"978-1-83968-794-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b01f9136149277b7e4cbc1e52bce78ec",bookSignature:"Dr. María Jose Hernandez-Serrano",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10229.jpg",keywords:"Teacher Digital Competences, Flipped Learning, Online Resources Design, Neuroscientific Literacy (Myths), Emotions and Learning, Multisensory Stimulation, Citizen Skills, Violence Prevention, Moral Development, Universal Design for Learning, Sensitizing on Diversity, Supportive Strategies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 14th 2020",dateEndSecondStepPublish:"October 12th 2020",dateEndThirdStepPublish:"December 11th 2020",dateEndFourthStepPublish:"March 1st 2021",dateEndFifthStepPublish:"April 30th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Phil. Maria Jose Hernandez Serrano is a tenured lecturer in the Department of Theory and History of Education at the University of Salamanca, where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. in Education and Training in Virtual Environments by research with the University of Manchester, UK (2009).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"187893",title:"Dr.",name:"María Jose",middleName:null,surname:"Hernandez-Serrano",slug:"maria-jose-hernandez-serrano",fullName:"María Jose Hernandez-Serrano",profilePictureURL:"https://mts.intechopen.com/storage/users/187893/images/system/187893.jpg",biography:"DPhil Maria Jose Hernandez Serrano is a tenured Lecturer in the Department of Theory and History of Education at the University of Salamanca (Spain), where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. on Education and Training in Virtual Environments by research with the University of Manchester, UK (2009). She obtained a Visiting Scholar Postdoctoral Grant (of the British Academy, UK) at the Oxford Internet Institute of the University of Oxford (2011) and was granted with a postdoctoral research (in 2021) at London Birbeck University.\n \nShe is author of more than 20 research papers, and more than 35 book chapters (H Index 10). She is interested in the study of the educational process and the analysis of cognitive and affective processes in the context of neuroeducation and neurotechnologies, along with the study of social contingencies affecting the educational institutions and requiring new skills for educators.\n\nHer publications are mainly of the educational process mediated by technologies and digital competences. Currently, her new research interests are: the transdisciplinary application of the brain-based research to the educational context and virtual environments, and the neuropedagogical implications of the technologies on the development of the brain in younger students. Also, she is interested in the promotion of creative and critical uses of digital technologies, the emerging uses of social media and transmedia, and the informal learning through technologies.\n\nShe is a member of several research Networks and Scientific Committees in international journals on Educational Technologies and Educommunication, and collaborates as a reviewer in several prestigious journals (see public profile in Publons).\n\nUntil March 2010 she was in charge of the Adult University of Salamanca, by coordinating teaching activities of more than a thousand adult students. She currently is, since 2014, the Secretary of the Department of Theory and History of Education. Since 2015 she collaborates with the Council Educational Program by training teachers and families in the translation of advances from educational neuroscience.",institutionString:"University of Salamanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salamanca",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"63487",title:"Microstructure and Properties of Casting Magnesium Alloys Designed to Work in Elevated Temperature",doi:"10.5772/intechopen.80291",slug:"microstructure-and-properties-of-casting-magnesium-alloys-designed-to-work-in-elevated-temperature",body:'Due to chemical composition, casting magnesium alloys are divided into two groups [1]. The first group includes alloys containing from 3 to 10% Al with the addition of Zn and Mn. They are characterized by a low cost of manufacture, good tensile strength, elongation, and resistance to atmospheric corrosion. The most popular representative of this group of alloys is AM50 alloy mainly for die casting and AZ91 that can be cast by sand and die casting method. The main advantage of these alloys is their relatively low price, while their disadvantage is low operating temperature—below 120°C [2]. To increase the operating temperature of Mg-Al alloys, alloying elements are introduced, such as rare earth metals, strontium, calcium, and other. Application of rare earth elements to Mg-Al alloys causes a formation of stable thermodynamic phases at the grain boundaries, which provides motivation for improving creep resistance [3]. In particular, the microstructure is connected by the Al11RE3 phase, which is characterized by a high thermodynamic stability to the temperature of ~180°C. The high thermodynamic stability of this phase uses all the aluminum atoms to form this phase during spheroidization, which prevents the Mg17Al12 phase from forming. Consequently, these alloys may be applied in the automotive industry for engine elements, gearing, oil pans, and other structural materials working at temperatures of ~180°C [4, 5]. High prices of rare earth elements and their small availability oblige us to search for alternative solutions [6]. Some of those solutions are Mg-Al alloys to which strontium is added. The α-Mg solid solution and eutectic, which consists of one or more intermetallic phases, form the microstructure of Mg-Al-Sr alloys. The Al4Sr phase is mainly observed in alloys with no more than 5% Al; however, the undesirable Mg17Al12 phase can be found in alloys with no more than 6% concentration of Al [7, 8].
The second group includes alloys containing mainly Zn, RE, and Y, without the addition of Al, but always with the addition of Zr. These alloys can be used at a temperature higher than 120°C (up to 250°C), but the price of alloy additions increases the cost of their production. They are mainly used as sand castings. In this group, the most widely used alloys are WE54 and the latest EV31A (Elektron 21) [1]. WE54 magnesium alloy reaches high specific strength, creep resistance, and corrosion resistance up to a temperature of 250°C. The strength of this alloy is achieved essentially via precipitation strengthening. Depending on the aging temperature and time, the precipitating sequence in WE alloys has been reported to involve the formation of phases designated β″, β′, and β [9, 10]. EV31A is magnesium-based sand casting alloy containing neodymium, gadolinium, and zinc for used to approximately 200°C. This alloy has high strength, good corrosion resistance, and excellent castability. In as-cast condition, EV31A alloy is characterized by a solid solution structure α-Mg with eutectic α-Mg + Mg3(Nd, Gd) intermetallic phase on grain boundaries. Depending on the aging temperature and time, the decomposition of α-Mg supersaturated solid solution is as follows: α-Mg → β″ → β′ → β(Mg3RE) → Mg41Nd5 [11]. EV31A is being used in both civil and military aircraft and also in the automobile (motorsport) industry [12].
The material used for the research consisted of the AM50, AZ91, AE44, AJ62, EV31A, and WE54 casting magnesium alloys. The chemical composition of these alloys is provided in Table 1.
Alloy | Al | Mn | Zn | Si | Ce | La | Sr | Nd | Gd | Y | Zr | Mg |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AM50 | 4.9 | 0.45 | — | — | — | — | — | — | — | — | Balance | |
AZ91 | 8.9 | 0.24 | 0.6 | 0.1 | — | — | — | — | — | — | — | |
AE44 | 4.25 | 0.18 | — | 2.35 | 1.07 | — | 0.59 | — | — | — | ||
AJ62 | 6.15 | 0.42 | — | — | — | 2.1 | — | — | — | — | ||
WE54 | — | — | — | — | — | — | 1.7 | — | 5.0 | 0.55 | ||
EV31A | — | 0.001 | 0.4 | — | 2.7 | 1.2 | — | 0.49 |
The chemical composition of the investigated magnesium alloys in wt.%.
The chemical composition of investigated alloys was measured on the SPEKTROMAX spectrometer. Sand casting was carried out at 700°C (AM50, AZ91, AE44, and AJ62) and 780°C (WE54 and EV31A) temperature. Hot chamber die casting was performed at 650°C (AM50 and AJ62) and 680°C (AE44) temperature. Long-term annealing of AM50 and AZ91 alloys was conducted at two different temperatures: 180 and 250°C for 500–5000 h with air cooling. For AE44 and AJ62 alloys, annealing at temperature 350°C was additionally applied. The as-cast specimens of WE54 and EV31A alloys were solution treated at 520°C for 8 h and quenched into water. Aging treatments were performed at 200, 250, 350, and 420°C for 4–1000 h with air cooling.
For the microstructure observation, an OLYMPUS GX71 metallographic microscope and HITACHI S-3400 N scanning electron microscope were used. TEM examination was carried out on a Tecnai G2 transmission electron microscope equipped with a high-angle annular dark-field detector (HAADF) and energy-dispersive X-ray (EDX) spectrometer. Metallographic specimens were made in accordance with the methodology developed at the Institute of Materials Engineering at the Silesian University of Technology. X-ray diffraction patterns were collected using an X-Pert Philips diffractometer. Hardness tests have been performed with a Vickers indenter. The examination of the mechanical properties was conducted on an MTS-810 machine at ambient (ca. 20°C) and 200°C.
Sand casting AM50 alloy is characterized by the structure of α-Mg solid solution with precipitates of two types of Mg17Al12 phases (Figure 1a). First one of massive morphology, together with the solid solution, forms partially divorced eutectic (continuous Mg17Al12 + α-Mg) at the grain boundaries. Divorced eutectic Mg17Al12 + α-Mg is characterized by the presence of “islands” of α-Mg solid solution, solidifying due to eutectic reaction, which are surrounded by Mg17Al12 phase precipitates. The second one of plate morphology is created as a result of discontinuous diffusional transformation. Discontinuous precipitation occurs mostly in the α-Mg regions near the massive Mg17Al12 phase on the solid solution α-Mg grain boundaries in regions with higher aluminum. The volume fraction of α-Mg solid solution within Mg17Al12 phase precipitates is much smaller than it appears from the balance system. Moreover, globular precipitates of Al8Mn5 phase occur in the AM50 alloy.
The microstructure of Mg-Al alloys after sand casting, AM50 (a), AZ91 (b), SEM.
Casting magnesium alloy AZ91 is the most popular and relatively cheap in comparison with other magnesium alloys available on the market. Aluminum causes an increase in tensile strength and hardness of the alloy but only to a temperature of 120°C. The AZ91 magnesium alloy, like AM50 alloy in as-cast condition, was characterized by a solid solution α-Mg with discontinuous and continuous precipitates of the Mg17Al12 phase (Figure 1b), with the difference that the volume fraction of the Mg17Al12 phase is higher in the AZ91 alloy. Moreover, the occurrence of Mg2Si and Al8Mn5 phases has been provided.
After die casting, the structure of AM50 alloy is characterized by significant grain refining of the α-Mg solid solution; however, Mg17Al12 phase, together with the α-Mg solid solution, forms fully divorced eutectic on the grain boundaries of α-Mg solid solution (Figure 2).
The microstructure of AM50 alloy after die-casting, SEM.
During annealing, precipitation of Mg17Al12 phase proceeds continuously and discontinuously. In sand casting, firstly, as a result of discontinuous precipitation, precipitates of plate Mg17Al12 phase are formed. The process is started on the grain boundaries of the α-Mg solid solution and consists of cellular growth of plate precipitation of Mg17Al12 phase in the direction of the central part of the solid solution grain. The growth of lamellar precipitates runs continuously until the alloy matrix reaches the equilibrium composition. The volume fraction of lamellar areas and the distance between the lamellas increases with the rise of temperature, aging time, and an aluminum content in the supersaturated areas. The second step is the coagulation of plate precipitates and the beginnings of continuous precipitation of Mg17Al12 phase in zones of increasing content of aluminum. Further annealing causes growth and coagulation of both types of precipitates (Figure 3). The extension of annealing time to 5000 h or increasing temperature of annealing to the 250°C causes continuous growing and coagulation of precipitation of Mg17Al12 phase (Figure 4).
The zones of continuous and coalesced precipitates of Mg17Al12 phase in AM50 alloy, after annealing at 180°C/500 h/air.
The microstructure of sand casting AM50 alloy, after annealing at 250°C/5000 h/air.
The precipitation processes during long-term annealing in die casting AM50 magnesium alloy proceed similarly as in sand casting, but the difference is that discontinuous precipitation of Mg17Al12 phase is not observed in the first step of the process. After 4000 h of annealing, a big, coagulated precipitation of Mg17Al12 phase makes the structure of the alloy on the grain boundaries of α-Mg solid solution (Figure 5). Long-term annealing at 250°C temperature causes growth and coagulation of continuous precipitates of Mg17Al12 phase (Figure 6).
Coalesced continuous precipitates of Mg17Al12 phase in die-casting AM50 alloy after annealing at 180°C/4000 h/air.
Coagulation of continuous precipitates of Mg17Al12 phase in die-casting AM50 alloy after annealing at 250°C/4000 h/air.
The precipitation processes of the Mg17Al12 phase during long-term annealing of sand casts resulted in the growth of the hardness of the alloy alongside with lengthening the annealing time. However, in die casts, the structure of the alloy undergoes degradation in the result of precipitation and the coagulation of Mg17Al12 phase, what reduces hardness significantly (Figure 7).
Influence of temperature and annealing time on the hardness of the AM50 alloy.
AM50 and AZ91 alloys due to very good mechanical properties at an ambient temperature and low at elevated temperature can only be used at up to 120°C. This is connected with the presence of Mg17Al12 phase, which helps to increase the tensile strength at an ambient temperature but decreases the mechanical properties at an elevated temperature.
Addition of rare earth elements (mainly cerium, lanthanum, and neodymium) to an alloy with 4% aluminum increases durability and operating temperature of the alloy. The microstructure of the AE44 alloy after sand casting is dominated by the Al11RE3 phase. Moreover, the Al2RE and Al10RE2Mn7 phases occur (Figure 8a). Die-casting causes grain refining of the solid solution. Diverse morphology of the interdendritic phases occurs at the α-Mg grain boundaries. Needle precipitates of the Al11RE3 phase together with the α-Mg solid solution form a eutectic like–fiber morphology. In contrast to the situation for sand casting, the metastable Al2.12RE0.88 phase forms next to eutectic areas (Figure 8b).
The microstructure of the AE44 alloy after sand casting (a), die casting (b), SEM.
The Al11RE3 and Al2RE compounds are typical in Mg-Al-RE alloys. The Al2.12RE0.88 is not an equilibrium phase in the binary Al-RE (Al-La) system. The presence of this compound is a result of rapid crystallization during die casting and that it is a metastable phase at room temperature. The Al2.12RE0.88 compound was not found in slowly cooled sand cast AE44 alloy.
After long-term annealing at 180°C for 3000 h, the structure of AE44 alloy reveals no significant changes. Continuous precipitation of the Mg17Al12 phase is observed only in aluminum supersaturated areas of the α-Mg solid solution in the sand cast alloy (Figure 9). The morphology of Mg17Al12 phase suggests continuous precipitation from a supersaturated solid solution. These precipitates were occasionally observed in the alloy. Increasing the annealing temperature to 250°C accelerates the process of fragmentation and spheroidization of Al11RE3 phase precipitates (Figure 10).
Precipitates of Mg17Al12 phase in the sand cast AE44 alloy after annealing at 180°C/3000 h.
Fragmentation of Al11RE3 phase precipitates in the die-cast AE44 alloy after annealing at 250°C/3000 h.
During long-term annealing of die-cast AE44 alloy, the metastable Al2.12RE0.88 phase undergoes a transition into the equilibrium Al2RE phase (Figure 11).
X-ray diffractions of the die-casting AE44 alloy after annealing for 1000 and 3000 h at the temperature of 180°C.
An increase in the hardness (only sand cast) after annealing at the temperature of 180°C is caused by the separation of Mg17Al12 phase in the areas of increased aluminum content (Figure 12a). The fragmentation and spheroidization of Al11RE3 phase after annealing at temperatures of 180 and 250°C caused a significant decrease in hardness and tensile strength of die casting AE44 (Figure 12b).
The influence of temperature and annealing time on the hardness and tensile strength of the AE44 alloy after sand casting (a) and die casting (b).
The AJ62 alloy is characterized by the structure of the α-Mg solid solution with precipitates of intermetallic phases of type: (Al, Mg)4Sr, Al3Mg13Sr, and Mn5Al8. The (Al, Mg)4Sr phase and the solid solution form eutectic of α-Mg + (Al, Mg)4Sr. However, the Al3Mg13Sr phase occurs at the grain boundaries of the α-Mg solid solution in the direct surroundings of eutectic areas. Globular precipitates of the Mn5Al8 phase occur at grain boundaries and inside the grains of the α-Mg solid solution. In the thin-wall die casts, eutectic α-Mg + (Al, Mg)4Sr occurs at the grain boundaries. Moreover, for thick-wall casting, which is characterized by a lower cooling rate, the Al3Mg13Sr phase occurs (Figure 13).
The microstructure of AJ62 alloy after sand casting (a), die casting (b), SEM.
The applied casting technology has no influence on the type of changes in the AJ62 alloy microstructure during long-term annealing. The first step occurs at ~180°C (250°C/500 h) and is characterized by precipitation of the Mg17Al12 phase in areas of higher aluminum volume (as in AE44 alloy) and the beginning of Al3Mg13Sr phase decomposition (Figure 14).
Precipitates of Mg17Al12 and initial decomposition of Al3Mg13Sr phase after annealing of sand casting for 500 h at 250°C (a) and die casting for 4000 h at 180°C (b).
Decomposition of this phase results in the formation of plate precipitates of the (Al, Mg)4Sr phase separated by areas of α-Mg solid solution. The second step occurs at ~250°C and consists of complete degradation of the Al3Mg13Sr phase by the reaction Al3Mg13Sr → (Al, Mg)4Sr + α-Mg (Figure 15). The third step occurs above 300°C. In the α-Mg solid solution, there are only precipitates of the primary and secondary (generated from Al3Mg13Sr phase decomposition) (Al, Mg)4Sr phase. Long-term annealing at this temperature leads to fragmentation and coagulation of (Al, Mg)4Sr phase precipitates (Figure 16).
Complete decomposition of Al3Mg13Sr phase in sand-cast AJ62 alloy after annealing for 1000 h at 350°C, SEM.
Coagulation of (Al, Mg)4Sr phase precipitates in die-cast AJ62 alloy after annealing for 4000 h at 350°C, SEM.
The hardness and tensile strength evolution of AJ62 alloy as a function of aging time for isothermal aging at 200, 250, and 350°C is shown in Figure 17.
The influence of temperature and annealing time on the hardness and tensile strength of the AJ62 alloy after sand casting (a) and die casting (b).
Increase in hardness after annealing at the temperature of 180°C as well as in the first stage of annealing at the temperature of 250°C (only sand cast) is caused by the separation of Mg17Al12 phase in the areas of increased aluminum content. The hardness of the die cast, unlike of sand cast, does not decrease after annealing at the temperature of 250°C. It is related to the lower number of Al3Mg13Sr phase precipitates. The decomposition of Al3Mg13Sr phase and coagulation of (Al, Mg)4Sr phase precipitates after annealing at the temperature of 350°C cause a significant decrease in hardness and tensile strength of AJ62 alloy, regardless of applied casting technology.
The WE54 alloy in as-cast condition was characterized by a solid solution structure α-Mg with eutectic α-Mg + β on grain boundaries (Figure 18). Equilibrium β phase is isomorphic to the Mg5Gd phase and is identified as a Mg14Nd2Y phase. Moreover, the occurrence of MgY, Mg2Y, and Mg24Y5 phases has been provided [13]. Also, the zirconium-rich core areas have been observed. Zirconium-rich core areas are ellipsoidal or nearly circular (Figure 19).
The WE54 alloy microstructure in as-cast condition, SEM.
Zirconium-rich core areas in the WE54 alloy.
The high tensile strength of WE54 alloy is related to dispersive precipitations in the microstructure. After 4 hours of aging at 250°C two types of metastable phases, coherent or semi-coherent with the matrix were observed. The first type of precipitates is, coherent with the matrix, β″ phase (Figure 20), characterized by type DO19 structure [14]. The second phase is, semi-coherent with the matrix β′ phase, characterized by an orthorhombic, space-centered structure [15]. Extension of the aging time up to 16 hours (T6 treatment) causes the disappearance of β″ phase. The β′ phase grows and changes its shape from spherical to lamellar one (Figure 21). Extension of the aging time up to 48 h causes the growth and the change of shape of the β′ phase precipitates from spheroidal into lamellar (Figure 22) and the beginnings of the phase transformation β′ → β1. The resulting new phase, identified as β1 phase, nucleates heterogeneously on the β′ phase precipitates. The β1 phase is characterized by a face-centered cubic structure [9]. Further aging (96 h) increases the amount of β1 phase and causes the emergence of equilibrium β phase (Figure 23). Precipitation processes end with the emergence of the equilibrium β phase. It is formed during aging for a long time at 250°C and above (Figure 24).
Fine-dispersed precipitates of β″ and β′ phases in the WE54 alloy after aging at 250°C/4 h, TEM.
β′ phase precipitates in the WE54 alloy after aging at 250°C/16 h, TEM.
β′ phase precipitates in the WE54 alloy after aging at 250°C/48 h, TEM.
β′ and β1 phases in the WE54 alloy after aging at 250°C/96 h, TEM.
Equilibrium β phase in the WE54 alloy after aging at 300°C/96 h—SEM (a) and 420°C/22 h—LM (b).
The evolution of hardness and tensile strength as a function of aging time for isothermal aging at 200 and 250°C is shown in Figure 25. In practice, for this alloy, aging at 250°C for 16 h is applied (T6 treatment), allowing to obtain maximum tensile strength, which is related to the presence of β″ and β′ phases precipitates in the structure.
The influence of temperature and annealing time on the hardness (a) and tensile strength (b) of the WE54 alloy.
The Mg-Y-Zr (WE43 and WE54) alloys are widely used in aircraft and automotive industries. Due to the presence of yttrium, the Mg-Y-Zr alloy belongs to the most expensive of magnesium alloys. This is the main reason for searching other alloys that will fulfill the performance requirements at lower manufacturing costs. One of them is EV31A (Elektron 21) alloy.
The EV31A alloy is characterized by the α-Mg solid solution structure with eutectic α-Mg + Mg3(Nd, Gd) on the grain boundaries and regularly shaped precipitates of a Mg3Gd phase (Figure 26). The Mg3(Nd, Gd) phase is a modification of Mg3Nd phase with neodymium substituted by gadolinium without destroying the crystal structure, due to the reasonably small difference in the atomic radii between gadolinium rGd = 0.1802 nm and neodymium rNd = 0.1821 nm. Phases occurring in the EV31A alloy take the forms (Mg, Zn)3(Nd, Gd) and Mg(Gd, Nd)3.
The EV31A alloy microstructure in as-cast condition, LM (a) and SEM (b).
Similarly, as in the WE54 alloy, high tensile strength is connected with dispersive precipitates produced during aging. In the first stage of the aging process (200°C/4 h and 16 h), the product of the α-Mg decomposition is fully coherent and semi-coherent with the matrix precipitates of β″ and β′ phases, respectively (Figure 27).
β″ phase precipitates coherent with matrix and separate β′ phase precipitates in EV31A alloy after aging at 200°C/4 h (a) and 200°C/14 h (b), HRTEM image.
The β″ phase is characterized by the lattice type DO19 (a = 0.64 nm, c = 0.52 nm), while β′ has a face-centered cubic structure (a = 0.72 nm) [16]. The second stage (200°C/48H) is the formation of a stable equilibrium β(Mg3Nd) phase. The β phase is non-coherent with the α-Mg matrix. The β phase precipitation process is similar to β1 phase precipitation in the WE54 alloy. In the immediate vicinity of the β′ phase (Figure 28), lamellar precipitates of the equilibrium β phase arise. This indicates that the resulting new phase nucleates heterogeneously at the β′ phase precipitates. After 96 h of aging, the volume fraction of equilibrium β phase increases. The β phase is incoherent with the matrix and identified as an Mg3Nd phase with face-centered cubic structure (a = 0.7410 nm). On the other hand, aging of this alloy at 300°C leads to the appearance in the structure, next to the lamellar β phase precipitates, of Mg41Nd5 phase precipitates at the solid solution grain boundaries (Figure 29).
β′ and β phases in the EV31A alloy after aging at 200°C/48 h, TEM.
β and Mg41Nd5 phases in the EV31A alloy after aging at 250°C/48 h, TEM.
In the EV31A alloy, after long-term aging at a temperature 350°C/500–5000 h/air, there are no precipitates of equilibrium β phase (Figure 30).
The microstructure of EV31A alloy after aging at 350°C/1000 h: (a) Mg41Nd5 phase precipitates network at α-Mg solid solution grain boundaries, SEM; (b) TEM image and electron diffraction pattern of MgGd3 phase.
Mg41Nd5 phase creates a characteristic network at the grain boundaries of the α-Mg solid solution. In its vicinity, there are regular Mg(Nd, Gd)3 phase precipitates.
Generally, the investigated alloy showed that the decomposition of α-Mg supersaturated solid solution with increasing aging time is as follows (Eq.(1)):
The evolution of hardness and tensile strength as a function of aging time for isothermal aging at 200, 250, and 300°C is shown in Figure 31. Alloy showed a remarkable hardening at 200°C temperature, and the peak hardness and good tensile strength can achieve after aging 200°C/16 h due to the precipitation of β″ and β′ phases. The peak hardness was shortened with an increase of the aging temperature. There was not any peak hardness in case of an alloy aged at 300°C. The hardness of EV31A alloy decreases to 45 HV after 500 h of annealing due to precipitation of β and Mg41Nd5 phases.
The influence of temperature and annealing time on the hardness (a) and tensile strength (b) of the EV31A alloy.
In practice, for this alloy, aging at 200°C for 16 h is applied (T6 treatment), allowing to obtain maximum tensile strength, which is related to the presence of β″ and β′ phases precipitates in the structure.
Results of the research can help in creating conclusions of experience feature, as follows:
The AM50 and AZ91 alloys are characterized by the structure of α-Mg solid solution with discontinuous and continuous precipitates of Mg17Al12 phase at grain boundaries. The mechanism of precipitation, as well as the volume fraction, morphology, and distribution of Mg17Al12 phase, is dependent on temperature and aging time. The Mg17Al12 phase undergoes decomposition and coagulation at the temperature above 180°C and higher. The precipitation and degradation processes of this phase in sand-cast result in an increase the hardness of the alloys alongside with lengthening the annealing time. However, in die casts, the coagulation of Mg17Al12 phase reduces the hardness of the alloys. The presence of Mg17Al12 phase in the structure limits the use of this alloy to a temperature no higher than 120°C.
Addition of REs to Mg-Al alloy causes the following phases to form: Al11RE3, Al2RE, Al2.12RE0.88, and Al10RE2Mn7 in the matrix of the α-Mg solid solution. The microstructure of AE44 alloy during long-term annealing proceeds via two steps. The first step occurs at ~180°C and is characterized by precipitation of the Mg17Al12 phase (mainly for sand casting) in areas of higher aluminum volume and by the appearance of changing Al2.12RE0.88 → Al2RE (for die casting). The process of precipitation of the Mg17Al12 phase is only the result of continuous precipitation in areas of higher aluminum volume. The Al11RE3 phase is stable up to 250°C. The second step stage takes place at a temperature equal to or higher than 250°C and is characterized by significant degradation of the structure, which is manifested by fragmentation and spheroidization of the Al11RE3 phase. The degradation of Al11RE3 phase caused a significant decrease in hardness and tensile strength of die casting AE44.
The AJ62 alloy is characterized by the structure of the α-Mg solid solution with precipitates of intermetallic phases of type: (Al, Mg)4Sr, Al3Mg13Sr, and Mn5Al8. The (Al, Mg)4Sr phase and the solid solution form eutectic of α-Mg + (Al, Mg)4Sr. Long-term annealing of this alloy at temperatures 180 and 250°C causes decomposition of Al3Mg13Sr phase according to the reaction Al3Mg13Sr → (Al, Mg)4Sr + α-Mg, while at the temperature of 350°C, it leads to fragmentation and coagulation of (Al, Mg)4Sr phase. Observed microstructure changes cause a decrease of mechanical properties of the alloy.
The WE54 alloy is characterized by the structure of the α-Mg solid solution with eutectic α-Mg + β(Mg14Y2Nd). Moreover, the occurrence of MgY, Mg2Y, and Mg24Y5 phases has been provided. During aging, the supersaturated magnesium solid solution decomposes in the following sequence α-Mg → β″ → β′ → β1 → β. The WE54 alloy is widely used in aircraft and automotive industries for components utilized up to a temperature of ~250°C. However, due to its price, there is a search for other alloys, which can fulfill the performance requirements at lower manufacturing costs. One of such alloys is the EV31A alloy.
The EV31A alloy is characterized by the α-Mg solid solution structure with the eutectic α-Mg + (Mg, Zn)3(Nd, Gd) at the grain boundaries of the α-Mg solid solution and regularly shaped, MgGd3 phase precipitates. The precipitation process during aging runs in accordance with the sequence: α-Mg → β″ → β′ → β(Mg3Nd) → Mg41Nd5. The obtained results indicate that the EV31A alloy can be utilized at temperatures up to ~200°C and can be a substitute for the previously used WE54 alloy.
The present work was financed from the research project no. 11/990/BK_18/0057.
The chicken egg is as considered one of the nature’s most complete foods because of its high nutritional value. It is composed of a variety of nutrients, vitamins, minerals, fatty acids, and protein, which makes it one of the most important foods in human nutrition. These nutrients are efficiently absorbed and essential for the proper functioning of the human body. In addition, it has low cost and high availability in most countries, which makes it possible to increase the consumption of a food of high nutritional value by the low-income population [1].
\nThe world consumption of eggs increases each year with a consequent increase in production. In 2014, the world production of eggs was around 1.275 trillion of units. China is the main producer (36%), followed by the United States (7.9%), India (6.0%), Mexico (4.0%), Brazil (3.5%), and Japan (3%). It is noteworthy that these countries are among the world’s top 10 chicken egg-producing nations [2].
\nEggs are composed of approximately 65% water, 12% protein, 11% lipid, and 12% ash; it also has low carbohydrate content and provides only 72 calories [3]. In addition, it is a source of water-soluble and fat-soluble vitamins such as retinol, tocopherol, ascorbic acid, riboflavin, pantothenic acid, and vitamin D and minerals such as calcium, iron, phosphorus, copper, and zinc [4]. Egg is considered as a food of high biological value, because it has all the amino acids required in human nutrition [5].
\nThe egg has three main components: shell (11%), egg white (58%), and yolk (31%). In Figure 1, more details about the structures of the egg can be observed.
\nStructure of the egg. Source: Souza [6].
The egg white, corresponding to 58% of the whole egg, has a main component the water (about 88%), being low in fat and rich in protein. The albumen (egg white) is constituted of around 40 different types of proteins, which are responsible for the functional and antimicrobial characteristics of the egg white. The main proteins present in the egg are egg albumin (corresponding to 50% of the proteins), conalbumin, ovomucoid, lysozyme, ovomucin, avidin, and ovoglobulin [7]. In the egg white, there is also the presence of carbon dioxide, which makes it cloudy, but this substance tends to disappear in aged eggs, making it look more transparent than fresh eggs. The albumen has the ability to form foams; it is fundamental in the formulation of soufflés, meringues, and omelets, which is denatured at temperatures above 58°C [8].
\nThe egg yolk is a central part that lies within the egg white and it is yellow in color, representing 31% of the egg, and contains three-quarters of the total value of calories [7]. Pigmentation of egg yolks may vary depending on the feed of birds; however, this variation has no influence on the quality or nutritional value of the egg. The majority of the egg nutrients are present in the yolk, which is composed mainly of lipids (34%), and proteins, such as lecithin and globular proteins [9]. The lecithin protein is responsible for the emulsification of products such as mayonnaise and Hollandaise sauce [10]. The egg yolk consists of about 50% water, and its denaturation occurs at temperatures above 62.5°C [7].
\nThe term "egg products" refers to eggs that have been removed from their shells to undergo processing operations, whether they are breaking, filtering, blending, stabilizing, pasteurizing, cooling, freezing, drying, and/or packaging. This definition includes whole eggs, yolk, or egg white that have been processed, pasteurized, and can be found in liquid, frozen, or dehydrated form [6].
\nEggs are consumed worldwide because they are highly versatile, allowing them to be used in various culinary preparations. It can be served alone or as an ingredient to provide improvement on texture, flavor, structure, moisture, and increase nutritional value. Eggs also have great importance in the food industry, due to their technological characteristics, such as incorporation of air, gelatinization, and emulsification, which are desirable in meringues, biscuits, bakery products, and meat products [9].
\nThe production route starts on farms, where the eggs are taken to the warehouses for washing, classification, and packaging into packages made with expanded polystyrene or cellulose pulp with capacity for 12 or 30 eggs. Subsequently, they are packed in cardboard boxes and sent to the wholesale trade, in trucks, for retail resales [11].
\nDespite the nutritional value and functional properties of the egg, there are some problems resulting from its storage, which may interfere in quality. The fact that egg is a product rich in nutrients makes it conducive in the development of spoilage and pathogenic microorganisms [4]. Another important fact is that only 5% of the total chicken egg production in Brazil is destined for industrial processing. It is understood that the other 95% are intended for in natural consumption, where the eggs do not undergo quality control before being used in some preparation, as required in food industry [11]. Thus, the storage conditions of eggs, such as time and temperature are essential to ensure safety and quality, since they are packaged in their natural form and where there is a quality problem, it will be visible only to the consumer at the time of use.
\nIn general, the eggs present little contamination at the moment of the posture, which usually occurs after the oviposition [12]. Eggs can be contaminated in contact with feces: by transovarian contamination (when the chicken’s ovaries are infected) or by microorganism penetration through the pores and microscopic cracks in the shell, whether in the washing process, packaging transport, or storage [13]. The genera of bacteria that contribute most to the deterioration of eggs are Pseudomonas, Acinetobacter, Proteus, Aeromonas, Alcaligenes, Escherichia, Micrococcus, Serratia, Enterobacter, and Flavobacterium. Meanwhile, the pathogenic bacteria associated with eggs are Salmonella, Staphylococcus, Campylobacter jejuni, Listeria monocytogenes, and Yersinia enterocolitica [14].
\nIn this way, eggs need to go through some treatment that prolongs their shelf life and also reduces the risk of contamination by foodborne microorganisms. These treatments might be thermal or nonthermal, and the latter are better known as alternative techniques to thermal treatment in eggs.
\nIn order to extend the shelf life of eggs and their products, and to reduce consumer risks related to foodborne pathogens such as Salmonella, it is necessary that these products go through pasteurization. Thereby, to avoid the deterioration of this food, the method with wide application is the thermal pasteurization [4].
\nThe pasteurized egg is preferably used in the food industry, when compared to the product in nature. Besides maintaining flavor, color, nutritional value, and functional properties, this method presents operational advantages, such as reduction of losses and wastes, ease of measuring portions and less space for storage, and it saves time and labor [15].
\nHot water, steam, microwave, radiofrequency (RF), and freeze-drying are some of the thermal methods used for the decontamination of eggs and egg products. Each of the methods use different range of temperature conditions [16].
\nAlthough decontamination methods using heat are efficient for microbial reduction, they can negatively affect the physical-chemical characteristics, nutritional content, and also sensorial properties, such as color and texture, making this type of food and its products less attractive to the consumer [4].
\nCurrently, the use of hot water is the main method of pasteurization in whole eggs, but less than 1% of all shelled eggs are pasteurized [17]. Normally, this processing is carried out in an equipment known as a water bath (Figure 2). In this equipment, the water is heated to a certain temperature, the eggs are placed in the equipment and submitted to heating with defined time intervals [11].
\nWater bath equipment. Source: Pombo [11].
Studies have shown that the load of inoculated Salmonella typhimurium cells was significantly reduced after the pasteurization process of shelled eggs in a circulating water bath at 57°C for 15 minutes [17].
\nWhole eggs submitted to pasteurization in water bath at 57°C for 20 minutes maintained their quality and showed a reduction of the microbial load [18].
\nIn liquid eggs, the efficacy of the circulating water bath for Salmonella enteritidis inactivation at 65°C was verified in an interval of 0–7 minutes, already showing a reduction of the contamination at 3 minutes. This same process exerted less impact on the egg viscosity when compared to the high-pressure treatment, which has a positive effect on functionality and allows the use of liquid eggs in various products [19].
\nDecontamination by this method can also be accomplished by emerging the eggs (without cracking) in water at 95°C for 10 seconds. Studies have claimed that when liquid eggs are subjected to temperatures above 70°C for 1.5 seconds, there is a significant reduction of Salmonella enteritidis [20, 21]. However, despite the efficiency in egg decontamination, this method affected the egg quality, altering the texture, yolk membrane strength, albumin contents, and yolk characteristics [22].
\nHowever, egg washing may decrease or remove the cuticle layer that surrounds the eggshell (responsible for antimicrobial defense), increasing the probability of microbial invasion, reducing the quality and life of the washed eggs [23].
\nSteam pasteurization may be a valuable alternative to egg surface decontamination, also in relation to the ban of the use of water by the European Union in eggs. However, further studies are made on the efficacy of decontamination of this technique on eggs. Among the available studies, there are studies that investigated the applicability of a steam gun treatment to pasteurization of the egg surface. They investigated the temperatures inside and outside the egg and identified that 180°C for 8 seconds as the best treatment corresponding to the surface temperature, the highest that can be achieved without detrimental changes to egg quality. Unfortunately, no microbiological investigation was performed [24].
\nWhole egg pasteurization can be completed by using steam generators with 60°C for 8 seconds, while eggs spin and swirl through the aid of mechanical engineering. Then, the eggs are treated with cold air through hot air generators (20–25°C) for 32 seconds. This treatment was effective in reducing Salmonella enteritidis and Salmonella typhimurium in egg shells and did not affect the egg quality [18, 24].
\nWhole egg pasteurization can be done using steam generators at a temperature lower than previously reported (heating at 60°C for 8 seconds) while the eggs roll through the aid of mechanical engineering. Then, the eggs are treated with cold air through hot air generators (20–25°C) for 32 seconds. This treatment was effective in reducing Salmonella enteritidis and Salmonella typhimurium in egg shells and did not affect egg quality. This method is further recommended for pasteurization of egg yolk, egg white, and whole egg liquid [17, 23].
\nAfter evaluation and comparison of the quality characteristics of eggs treated with steam and eggs in nature, after 28 days of storage at 20°C, it could be observed that the quality parameters (pH and color) were not different, indicating that the treatment of steam does not exert negative effects on the main quality characteristics of the egg. These parameters, along with the microbial results in experimentally inoculated eggs, suggest that the industrial application of steam treatment in eggs prior to the packaging is useful to achieve a reduction of approximately 90% of the population of Salmonella enteritidis, which naturally infects the surface of the eggs [24].
\nMicrowave-assisted thermal method is a new thermal processing technology that provides rapid volumetric heating [25]. Electromagnetic waves are able to reduce Salmonella enteritidis, which is often found in shell eggs. The microwave frequency ranges from 300 MHz to 300 GHz, while the wavelength ranges from 1 mm to 1 m. In order to generate heat, the microwaves interact with dielectric materials and stir the molecules in an alternating electromagnetic field. Generally, foods have excellent microwave absorption capacity due to high water or carbon content, which can result in a faster temperature increase, thus requiring less time to inactivate the present microorganisms [26].
\nMicrowave is an easy and affordable method to heat up food. However, the way absorbed energy is distributed depends on the shape, surface area, and food matrix, besides the type of equipment used. The eggs tend to burst when using this method to warm and sanitize, if the equipment exhibits high levels of energy. Therefore, while using this type of procedure, it is ideal to use low energy levels and slowly heating up the product [27, 28].
\nIn Figure 3, it is possible to visualize a representative microwave scheme adapted at the laboratory level, which enables the measurement and control of the dielectric properties of the equipment from computer software.
\nRepresentative microwave scheme adapted at the laboratory level. Source: Dev et al. [29].
Studies have shown that eggshell and eggshell membrane presented transparency to the microwave. The pasteurization of whole eggs, placed with the largest extremity face up, was achieved, when the shell was heated and the yolk reached the temperature of 61.1°C. A microwave oven with power 9 for 15 seconds showed efficiency in the reduction of previously inoculated Salmonella strains [18]. However, further investigations should be conducted regarding changes in egg rheology, viscosity, emulsifying property, and protein denaturation [16].
\nThe radio-frequency band (RF) of the electromagnetic spectrum covers a wide range of high frequencies, typically in the kHz band (3 kHz < f ≤ 1 MHz) or MHz band (1 MHz < f ≤ 300 MHz) [30].
\nUnlike conventional systems, where thermal energy is transferred from a hot medium to a colder product resulting in large temperature gradients, radio-frequency heating involves the transfer of electromagnetic energy directly to the product, initiating heating due to friction, and interaction between molecules (heat is generated within the product). The RF heating is also known as high-frequency dielectric heating. During RF heating, the product to be heated forms a "dielectric" between two metal capacitor plates (electrodes) (Figure 4), which are alternately charged positively and negatively by a high electric current field [30].
\nSchematic representation of the RF heating process. Source: Marra et al. [31].
RF heating is a promising application in food processing, due to the rapid and uniform spread of heat, better penetration, and low energy consumption. Researchers conducted on eggs using RF heating (10 MHz–3 GHz) using temperatures of 5–56°C indicated the eggshell and eggshell membrane are extremely transparent to this technology. The more transparent is the product investigated and pasteurized, and the more efficient is the decontamination [30, 32].
\nThe immersion of the eggs in deionized water combined with the RF focused on the egg yolk and surface cooling showed a high security potential from the microbiological point of view [33]. The combination of RF (60 MHz) in water at 35°C for 3.5 minutes resulted in a temperature of 61°C inside the egg yolk. After that, the egg was again heated for another 20 min with water at 56.7°C. Performing this two-step process, with a total duration of 23.5 minutes, the Escherichia coli population significantly reduced (6.5 log); however, comparing with pasteurization only with hot water, it took 60 minutes to reduce this microbial population by 6.6 log. The combination of the RF and hot water method was faster than the existing commercial process, using only hot water [34].
\nHowever, there is a disadvantage of RF, if it is not uniform, it can be observing the formation of coagulation rings around the egg air cell, thus damaging the decontamination process due to the impact on product quality [35].
\nDehydration is a successful method of preserving eggs, it presents the advantages as follows: occupies less space in stock, provides ease of transport, good uniformity, easier use (ready-to-use product), and presents stable microbiological quality [36]. One of the main procedures used to dehydrate egg and turn it into powder is the freeze-drying or cryodesiccation method. This process consists of the rapid freezing (−50 to −60°C) of the liquid egg or part previously pasteurized and subsequent dehydration: the water contained in the product passes directly from the solid state to the vapor state by sublimation, under low temperature and vacuum conditions [36, 37].
\nA freeze-dryer or lyophilizer is used for the process of freeze-drying; it consists of a vacuum chamber, a heat source, a condenser, and a vacuum pump (Figure 5). The main function of the vacuum chamber (where the food is contained) is to resist the differences in pressure so the ice melting does not occur, and the pump helps to maintain this difference by removing noncondensable gases. The heat source is responsible for producing the energy that will evaporate the ice and is the type of source that determines the type of freeze-dryer used. The condenser retains moisture from the food and prevents its increase from inside the chamber and returning to the food [15].
\nMain components of the freeze-dryer. Source: Cunha et al. [15]—adaptado.
The freeze-drying method applied on eggs occurs in three stages: (a) initial freezing of egg, (b) primary drying, in which the water is removed by sublimation that takes place under vacuum and the addition of heat and ends when the increase of the temperature of the egg is found in a value close to the environment or when it starts to defrost, and (c) secondary drying (also called desorption), which occurs after all ice has already been removed from the egg, but still retains an amount of liquid water (called tightly bound water), requiring a reduction of moisture to about 2–8%. For moisture reduction, the partially dried egg should be kept in the freeze-drying for about 2–6 hours and heated until its temperature equals that of the plate (20–60°C), maintaining the vacuum and evaporation of much of the wastewater [37, 38].
\nBy going through the freeze-drying process, the egg and its products retain the sensory characteristics and the nutritional quality, because the temperature is not too high. In addition, they have an extended shelf life when packaged correctly. The volatile compounds are not absorbed by water vapor and are retained in the matrix of the products, allowing the retention of the egg aroma of about 80–100% [15, 39].
\nThe main alteration that occurs in egg composition is the alteration in the quaternary and tertiary structures of the proteins. After water removal, changes occur in these structures due to exposure of the hydrophobic parts of the protein, previously protected inside the tertiary and quaternary structures, due to nonaffinity with water. The nutritional content and aroma of the eggs do not present significant changes. In addition, with the removal of water, preservation of egg powder is maintained, due to the low humidity, which reduces microbial proliferation [15, 37].
\nThe main disadvantages of this method is that eggs may be susceptible to oxidation reactions (lipids, carotenoids, fat-soluble vitamins, and aromatic substances) if not packed into a vacuum, oxygen-impermeable, and opaque packaging [37, 39]. The freeze-drying process is time-consuming and may last up to 48 hours, depending on the batch size and the units to be processed, increasing the cost of the process. In addition, the freeze-dryer is a costly equipment [37, 40].
\nConsidering that microorganisms are naturally present in any raw food, there are concerns regarding egg contamination. These products have the potential for contamination with bacteria from the animal’s intestinal tract, feces, and the surrounding environment. In addition, eggs are an ideal growth medium for pathogenic bacteria that are dangerous to humans (Salmonella, Escherichia, and Enterobacter) [41].
\nPasteurization techniques are used to prolong shelf life and maintain the quality of egg products. However, thermal techniques can have negative impact on the functional properties of this food, in the amount of nutrients, taste, and texture. Although heat processes used in egg pasteurization can ensure food safety by eliminating heat-sensitive pathogens, some heat-resistant microorganisms can survive the process, spoiling the product even under refrigerated conditions [42, 43]. In this way, new techniques are being developed and applied in the food industry.
\nNew preservation technologies are an interesting option for producing high-quality food and extend its shelf life [44]. These technologies present a moderate impact on the sensory profile and quality attributes of the processed foods (such as flavor, color, aroma, and nutrients), giving food producers the opportunity to offer safe and high-quality food.
\nHowever, emerging techniques in the egg industry must be further studied, so they can be considered a successful processing and thus produce on a commercial scale. In this way, advantages and safety are provided not only to industry, but also to supermarkets and consumers [15, 45].
\nNew food processing technologies include the use of physical factors to process and preserve food [46]. Among the new technologies, high hydrostatic pressure (HHP), pulsed electric fields (PEF), treatment with ozone, ultraviolet light (UV), and gamma radiation are nonthermal technologies with application in eggs and egg products.
\nThe application of HHP technology has attracted the interest of the food industry due to its microbial destruction capacity at very low or moderate temperatures, the preservation of bioactive nutrients, the improvement of the extraction of bioactive compounds, and the reduction of the allergenic potential of foods, such as eggs [47].
\nThe HHP technology applies high pressures (usually in the range of 100 and 1000 MPa) with or without heat treatments, in order to eliminate different microorganisms and to guarantee the microbiological safety of the final product. This process is operated on a batch system, usually using water as a pressure transmission medium. The food products are packaged, loaded into the pressure vessel, and then pressurized by water [47, 48].
\nThe HHP equipment is generally made of high-strength steel alloys, making it resistant to oxidation and rupture. HHP mainly is applied on batch equipment; however, semicontinuous systems are available. Generally, an HHP batch equipment consists of a pressure vessel (thick wall cylinder), two covers that close the pressure vessel, a yoke which controls the closing cover under the pressure condition, a pump and intensifier to create high pressure, and a process control system for loading and unloading the products [43]. An HHP batch system can be used for liquid and solid foods, while a semicontinuous HHP process can be used only for pumpable foods.
\nDuring the process, the food is packed, sealed, and loaded into a sample basket. The packaging shall consist of flexible materials, which will resist to pressurization. The sample baskets then enter the pressure vessel, which contains the pressure transmitting fluid. Water is usually used as pressure transmitting fluid on industrial scale equipment. The pump and the intensifier provide a desired pressure by compression of the pressure transmitting fluid. Thereafter, the product is maintained under the right time and pressure to achieve the desired treatment. At the end of the treatment, the vessel is depressurized and the product is unloaded from the sample basket [42, 43].
\nThe application of heat combined with HHP can cause physical, chemical, or biological changes on the food product. These changes depend on the applied pressure, treatment time, and temperature and can include protein denaturation, changes in enzyme activities [42].
\nMany attempts have been made to verify if the HHP technique can be used as a substitute for thermal pasteurization, and to identifying the structural changes in the components of the egg as a result of the high pressure [44]. This technique has been evaluated as an alternative to methods already used for liquid eggs, and it has been verified that the processing conditions must be well studied, as this can cause a protein coagulation [45]. It has also been reported that pressure-induced protein denaturation may occur in eggs due to the entry of water into wells of the protein molecule [46]. However, HHP at a pressure between 200 and 350 MPa did not cause detectable protein denaturation in liquid eggs [47]. Other research has shown that HHP treatment on liquid eggs is a successful preservation opportunity. The application of 600 Mpa for a 2 minutes cycle in boiled eggs was able to extend the shelf life of these products during refrigeration [49].
\nHHP present important advantages for food processing, the fact that this technology does not produce deterioration of thermolabile nutrients (such as vitamins) and does not alter low molecular weight compounds, fundamentally those responsible for flavor and aroma. The high pressure does not favor the Maillard reaction or enzymatic browning; thus, it does not alter the natural flavor or color of the food [50, 51].
\nThe application of HHP causes a number of changes in the morphology, cell membrane and biochemical reactions of microorganisms, and all these processes are related to microbial inactivation. In particular, the cell membrane is considered the main target for inactivation of microorganisms induced by pressure, and it is generally accepted that leakage of intracellular constituents across the permeabilized cell membrane is the most direct reason for cell death by high-pressure treatment [50, 52].
\nResearch shows, in addition to the applied pressure level and treatment time, the critical parameters for microbial inactivation are pH, water activity (aw), and treatment temperature: (a) microorganisms become more susceptible to pressure at lower pH [53]; (b) water activity reduction exerts a protective effect on microorganisms against high-pressure treatments [54, 55]; and (c) thermal processing with temperatures above or below room temperature tends to increase the rate of inactivation of microorganisms [56].
\nThe effect of microbiological inactivation on egg products by HHP was reported in a study that showed the low-pressure ranges are used to reduce the microbial load of liquid eggs by 3 log. The study concludes that increased pressure may increase the effectiveness of the treatment and thus lead to the processing of microbiologically safe products [57].
\nThis technology has great potential for use in food processing, since it is efficient in the elimination of microorganisms, thus providing microbiological safety and increased shelf life, maintaining the nutritional and sensorial characteristics of foods [50].
\nPulsed electric field (PEF), or high-intensity electric field (HELP), is one of the nonthermal processing technologies of interest to scientists and the food industry; it is new and alternative method for preserving liquid foods. In addition, it is a promising alternative to traditional heat treatments, which presents good results, not only by enabling the destruction of microorganisms and the inactivation of enzymes, but also by maintaining the flavor, color, texture, vitamins and not only by enabling the destruction of microorganisms and the inactivation of enzymes, but also by maintaining the flavor, color, texture, vitamins, and functional thermolabile components [58].
\nFood processing by applying PEF involves subjecting the product to repeated electric fields (constituting the number of pulses) for short time intervals (microseconds) in order to inactivate enzymes and destroy microorganisms [59].
\nThis method uses high voltage pulses on a treatment chamber containing food between two electrodes. The high electric intensity is acquired by accumulating a large amount of energy in a condenser, which supplies and discharges the energy in the form of pulses, for short periods of time, uniformly and with a minimum increase of temperature [60, 61]. Figure 6 shows two types of treatment chambers used in the PEF process.
\nTypes of treatment chambers used in the PEF process. Source: Fani [62].
The PEF technology can be one of the most suitable methods for liquid food processing. In the last years, the technology received considerable attention from scientists, governments and interested industries as a potential technique to be fully expanded in the future year [45].
\nResearch shows that PEF technology has been used successfully to pasteurize foods such as dairy products, a variety of fruit juices, liquid eggs, and creamy soups [63]. The application of PEF in the control of spoilage or pathogenic microorganisms in different egg products has been highlighted. It has been reported that this method effectively reduces the activity of numerous microorganisms in egg products [64].
\nLiquid egg is widely used by the food industry and other commercial food manufacturers due to the convenience, ease of handling, and longer shelf life compared to shell eggs. Egg is a polyfunctional ingredient because of its thickening, gelling, emulsifying, foaming, coloring, and flavoring attributes, which can be used to modify the organoleptic and technological properties of many food products. In addition, liquid egg products are also valuable because of their high-quality protein content and low cost [65, 66].
\nAlthough thermal treatments represent the most available pasteurization methods for liquid eggs, they can affect their functional properties and degrade the quality of the products. Thus, the application of PEF, as a nonthermal food processing technology, might be an alternative to conventional thermal preservation methods. Combined methods with PEF, such as homogenization, show a great potential to preserve the liquid egg with small modifications of its native color, viscosity, and foaming capacity [45].
\nMicrobial inactivation by electrical pulses depends on several factors that are critical to treatment efficacy. These factors can be classified by process parameters (pulse intensity, treatment time, and temperature), product attributes (pH, ionic compounds, and conductivity), and characteristics of microorganisms (type, concentration, and growth stage) [67].
\nGram-positive bacteria are more resistant to electrical pulsed treatment than Gram-negative bacteria; this factor may be due to the rigidity of the peptidoglycan layers present in its cell wall. Due to their larger size, fungi are more sensitive to this treatment than bacteria [68].
\nThe exposure of a biological cell to a high-intensity pulsed electric field leads to a phenomenon of membrane permeabilization. This leads to pore formation, which is reversible if the electric field is below a certain critical value and for a short period of time. This phenomenon is called electroporation and is used in genetic engineering. However, overcoming certain values of field strength and processing time, this process becomes irreversible, results in loss of cellular material, and inactivation of the cell [69].
\nThis method has advantages such as the treatment time, which is relatively short, provides a low-temperature pasteurization, is efficient in liquid products, maintains the sensorial characteristics of the product, and shows no evidence of toxicity. Thus, this technology can complement a heat treatment, or completely replace it. However, the PEF method is not indicated for solids or liquids containing air pockets [70].
\nIt is not clear whether the food industry will fully accept PEF as a processing technology. However, the PEF is already being used industrially in some fruit juice industries in Europe. However, the PEF method has been used industrially in some fruit juice companies in Europe, presenting a number of applications growing over the year. Nevertheless, its potential to replace or complement conventional methods comes from research related to the use of PEF in all fields of food processing [71].
\nIn 2001, the Food and Drug Administration (FDA) approved the use of ozone (O3), either in gas or liquid form, as a disinfectant to be applied in food processing and product stock. Since then, special attention has been given to the use of O3 as a potent disinfectant to be used in a variety of environments, such as hospitals, candy factories, cheese maturation rooms, and poultry hatcheries. Besides its disinfectant performance, O3 in gaseous form has the same properties for disinfecting eggs, fresh fruits, and vegetables. In liquid form, O3 can be used to wash poultry and fish carcasses in order to reduce or even eliminate the microbial load [72, 73].
\nO3 is a triatomic form of oxygen that has been gaining space on food processing due to its high sanitizing power and rapid degradation, leaving no waste on treated foods, and known as a highly reactive antimicrobial agent. Therefore, a hypothesis to increase the shelf life of eggs would be the exposure of it to O3. In many research, O3 has been shown to be very efficient in the inactivation of microorganisms that could degrade food [74, 75, 76].
\nResearch has shown that the concentration of gaseous O3 between 4 and 6 mg.L−1 could be used to maintain the internal quality of the eggs and extend their shelf life. Concluding, gaseous O3 present great potential as an emerging technology to maintain fresh egg quality and also extend shelf life during storage at room temperature [77].
\nDue to its high instability, O3 must be produced at the place of disinfection and its use must be immediate because it decomposes rapidly into oxygen. O3 is generated by the exposure of air, or other gas containing normal oxygen, to a high energy source. The production forms are by the method of electric discharge (corona discharge method), electrochemical methods, and UV radiation, all of them inspired by its natural formation in atmosphere. The electric discharge method is the most commercially used, even though it has low efficiency (2–10%) and high electricity consumption. The other methods are less cost effective, but the O3 production by the UV method is less than by the electric discharge method because it only produces O3 in a concentration of 0.1% by weight [78].
\nBesides the microbicidal effect, characteristics of lower toxicity and easy handling give the O3 advantages of use. Added to these factors, its decomposition into nontoxic oxygen and rapid degradation characterize O3 as a nonwaste-producing disinfectant [75].
\nThe existence of several methods of measurement of O3 in the environment is also one of the advantages of its use as a disinfectant. Physical, physical-chemical, and chemical methods are available in the market. Physical methods measure the direct absorption in the region of the electromagnetic spectrum UV, visible light, and infrared, while physical-chemical methods are dependent on effects such as heat or chemiluminescence caused by reactions. Chemical methods refer to the quantification of products when O3 reacts with chemical reagents, such as potassium iodide (KI), the Indigo method the most recommended in this case [72].
\nHowever, O3 cannot be considered universally beneficial to food, because in high concentrations, it can promote oxidative rancidity, so it can cause modification on taste and color of the food product. Changes in sensory or physical-chemical attributes depend on the chemical composition of the food, the O3 dosage, and the treatment conditions [79].
\nUV radiation stands out as one of the few technologies that does not generate residue to the environment and is effective in reducing the microbial load when applied correctly. The application of the germicidal effects of UV radiation covers three categories: (a) inhibition of microorganisms on the surface, (b) destruction of microorganisms in the air, and (c) sterilization of liquids. Based on these effects, the use of UV light is widely used for sanitizing water and food processes [44].
\nCharacteristics of practicality and low cost, combined with the advantage of not producing chemical residues, coproducts or radiation at the end of the process give UV-C an excellent alternative for disinfecting environments and products [45].
\nUV radiation comprises the portion of the electromagnetic spectrum ranging from about 100 to 400 nm. UV radiation is composed of different wavelengths greater than the X-ray (200 nm) and smaller than visible light (400 nm). The true UV radiation is actually invisible to the human eye, but its larger portion (around 400 nm) has a violet color, hence the name ultraviolet [44].
\nThe wavelength of UV light can be divided into three bands: long-wave (UV-A, 400–320 nm), which occur in sunlight and has little germicidal value; medium-wave (UV-B, 320–280 nm), also found in sunlight and germicidal effect; while the short-wave (UV-C, 280–100 nm), has the greatest germicidal effects and does not occur naturally, which is produced by the electric energy conversion [46].
\nAs mentioned, sunlight can be a source of UV rays; however, it is known that the range of solar UV-C radiation with greater germicidal potential is blocked by stratospheric ozone. Artificial sources of this radiation are obtained by mercury medium pressure and low pressure lamps, which produce energy in the germicidal region and which are electrically identical to fluorescent lamps, except for the absence of phosphorus cover. These lamps consist of an airtight silica or quartz tube (both UV transmitters), with the ends endowed with tungsten electrodes with a mixture of alkaline earth metal, which facilitates the formation of the electric arc inside the lamp. Inside the tube is introduced a small amount of mercury and an inert gas—usually argon. The voltage between the electrodes produces an excitation of mercury atoms, then when they return to a level of less energy, the excited molecules emit UV light. Low-pressure UV lamps—or monochromatic—emit 85–90% of radiation at the wavelength of 254 nm, with a higher germicidal effect. Thus, in the kinetic studies of UV disinfection, the mean intensity of the germicidal radiation considered is 254 nm. On medium-pressure lamps—or polychromatic lamps—the contributions of each radiation of different wavelength shall be taken into account when determining the dose [44, 47, 48]. Figure 7 shows a model of UV radiator.
\nUV radiation model. Source: Alexandre et al. [80].
There are two ways of applying UV light: pulsed and continuous light. The continuous mode is the conventional method; the light being emitted continuously without interruption. In pulsed UV-light mode, the UV-light is released as intermittent pulses using a capacitor, which allows to increase the energy intensity per pulse. Therefore, the pulsed mode is more effective for microbiological inactivation and the most used method [81].
\nThe extent of UVC radiation to the microorganisms is conditional on the dose of radiation, which they can absorb. The dose required for destruction of the bacterial cell is relatively low and depends on the intensity and time of exposure. The impact of various obstacles can affect the optimum dose of UV light, because the light emitted by the germicidal lamp may not be absorbed by most of the microorganisms. Spores of microorganisms exhibit high UV resistance, and the sublethal dose may favor its growth rather than inhibiting it, so its use is important in environments and products with absence of organic matter and obstacles. In this way, microorganisms present on smooth and regular surfaces are more susceptible to the effects of UV light than those present on irregular surfaces [82, 83, 84].
\nShort-wave ultraviolet radiation (UV-C) has shown prospects for the pasteurization of liquid foods on appropriated reactors. Several studies have shown that the organoleptic properties of UV-treated liquid egg products are comparable to those untreated; therefore, those are excellent candidates for UV-C application. Regarding to the increase of the microbial load, research shows that the long-term microbial stability of liquid eggs was positively influenced by UV-C treatments and the shelf life was extended to 8 weeks in refrigerated storage. Thus, UV-C treatment is a promising technology to prolong the shelf life of liquid egg products [85, 86]. The time-temperature binomial is crucial to produce pasteurized eggs with high microbiological quality [87].
\nThe biocidal effect occurs when UV-C radiation reaches the surface of the microorganism by overcoming the cell membrane and damaging its DNA genetic material. The DNA damage occurs through the formation of thymine dimers. The thymine dimer formation is the process of rupture of the nitrogen bases adenine and thymine (A-T), from the DNA. The rupture establishes a new chemical bond between two thymine, thus constituting the thymine dimers (T-T). The new binding prevents DNA replication and transcription, leading to the death of the microorganism [88, 89, 90].
\nAmong the advantages of using UV-C radiation for food sterilization and disinfection are non-by-product production, does not alter sensory characteristics (taste, color, or odor), does not transmit radioactivity, it is a dry application process, and does not generate heat beyond the equipment and it is of low cost [91, 92, 93].
\nThe main limitation of this technology involves the low degree of penetration that hinders the reach of the radiation by all the microbial load in the food. Thereby, it is more widely used in surface sterilization, for example in food packaging and in edible films. However, in liquid foods, the turbulent flow is recommended during processing [83, 94, 95].
\nIonizing radiation, in the form of gamma rays, is obtained from isotopes or, commercially from X-rays and electrons, and it is applied in food preservation through microbial elimination or inhibition of biochemical changes. It has several advantages, such as low or no heat generation, low energy requirements, food preservation in a single operation, irradiation of packaged or frozen products, besides those it can cause changes in the nutritional value of food similar to other conservation methods [96].
\nGamma rays are a type of electromagnetic radiation produced in nuclear decay processes. These are highly energetic due to their high frequency and consequently low wavelength. Generally, the frequency of the gamma rays is above 1019 Hz, which implies wavelengths below 10–12 m and energies above 0.1 MeV (the energy of the visible radiation ranges from 1 to 4 eV, about 50,000 times smaller) [97].
\nThe irradiation is done in a special processing room or chamber for a certain time. The food is treated in an installation known as an irradiator. This equipment (Figure 8) consists of a cobalt-60 source installed in a bunker, which is an irradiation chamber whose walls are concrete shields, in the form of labyrinths. The radiation source, when the plant is not in operation, is stored in a pool (water well) with treated and demineralized water. The well is lined with a stainless steel coating, inside the shield. The food product to be irradiated is placed in containers and through a monorail are conducted into the irradiation chamber, where they receive the programmed dose of gamma radiation. Qualified operators electronically monitor the source of radiation and the treatment of the products from a console located in a room outside the irradiation chamber [98].
\nIrradiation plant with cobalt-60 source. Source: Caldeira et al. [99]—adaptado.
The gamma radiation sources commonly used on commercial plants are cobalt 60 and cesium 137. These isotope sources cannot be switched off, which is why they are kept in a water tank located below the processing area to allow an approximation of the machine operator. When the irradiator is in operation, the source is elevated and the packed food is transported by an automated conveyor through the irradiation field in a circular route that allows uniformity and efficiency of the process [96].
\nRegarding the inactivation of the microbial load, the efficiency of the treatment on the microorganisms depends on several factors: (a) the number of microorganisms: the higher the amount of microorganisms presents in the food, the higher the radiation dose required; (b) the food composition: microorganisms on rich media are more resistant than in buffer solution; (c) oxygen: the presence of oxygen makes the microorganisms less resistant to radiation; (d) state of matter: dehydrated or frozen cells are more resistant to radiation than in the normal state; (e) the condition of the microorganism: microorganisms in the lag phase are more resistant; and (f) the microorganism radioresistance: overall the more complex the DNA, the greater is the sensitivity of microorganisms to irradiation [96, 100].
\nThe use of ionizing radiation is an alternative method in the reduction of pathogenic microorganism on eggs (such as Salmonella spp.) when the use of heat is impractical or undesirable for food preservation. Irradiation in an appropriate dose eliminates foodborne pathogens in frozen and unfrozen liquid eggs, powder egg white and egg yolk, fresh whole egg with intact peel, and cooked egg [101].
\nThe advantages of the use of irradiation as a method of conservation over the other methods are: (a) time, since the irradiation can be applied in a few minutes; (b) the method does not leave residues in the food, because only the gamma rays come into contact with the food, without any risk of radioactive contamination; (c) it can be applied on a wide range of fruits; (d) it prevents food recontamination, since the product is already packed during the process; and (e) cold process, which avoids damages caused by the temperature increases and enables the irradiation of cooled and frozen products.
\nThe disadvantages of the use of irradiation are high initial cost and difficulty in establishing the right doses [102].
\nAlthough these are all the benefits, there are several barriers that still persist and prevent irradiated foods from reaching a wide commercialization, mainly related to the cost and consumer resistance due to lack of information [103].
\nThe main concern regarding to food safety of eggs is related to the presence of pathogenic microorganism. As an attempt to reduce problems resulting from egg contamination, in addition to prolonging shelf life and ensuring greater safety for consumers, they are subjected to thermal and nonthermal processes. Pasteurization is a thermal method widely used, and it has efficiency in the decontamination of this food, but the use of heat can alter the nutritional quality, flavor, and texture of the products. The alternatives to the traditional pasteurization are the new technologies. In this way, alternative methods of food preservation that minimize the likelihood of outbreaks of food poisoning leading to improvements in food safety are of great importance. The new technologies are efficient in reducing the microbial load, if well used, cause minor alterations in the nutritional and organoleptic properties, contributing to the offer of a fresher product, besides being safe from the microbiological point of view. In addition, the combination of pasteurization methods with other alternative methods needs to be studied in order to provide quality to eggs and their products without affecting their properties and functionalities.
\n\n Food and Drug Administration high hydrostatic pressure high-intensity electric field ozone potassium iodide pulsed electric field radiofrequency short-wave ultraviolet radiation ultraviolet
You have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5717},{group:"region",caption:"Middle and South America",value:2,count:5179},{group:"region",caption:"Africa",value:3,count:1696},{group:"region",caption:"Asia",value:4,count:10260},{group:"region",caption:"Australia and Oceania",value:5,count:890},{group:"region",caption:"Europe",value:6,count:15670}],offset:12,limit:12,total:117458},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:11},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:51},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10062",title:"Forecasting in Mathematics",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"9a3ad05fef0502040d2a238ad22487c0",slug:"forecasting-in-mathematics-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoude",coverURL:"https://cdn.intechopen.com/books/images_new/10062.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoude",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editedByType:"Edited by",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10116",title:"Nano- and Microencapsulation",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"8d92c5999718734b36a0cc3a6af7c7f6",slug:"nano-and-microencapsulation-techniques-and-applications",bookSignature:"Nedal Abu-Thabit",coverURL:"https://cdn.intechopen.com/books/images_new/10116.jpg",editedByType:"Edited by",editors:[{id:"308436",title:"Associate Prof.",name:"Nedal",middleName:null,surname:"Abu-Thabit",slug:"nedal-abu-thabit",fullName:"Nedal Abu-Thabit"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9881",title:"Perovskite and Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"8fa0e0f48567bbc50fbb3bfdde6f9a0b",slug:"perovskite-and-piezoelectric-materials",bookSignature:"Someshwar Pola, Neeraj Panwar and Indrani Coondoo",coverURL:"https://cdn.intechopen.com/books/images_new/9881.jpg",editedByType:"Edited by",editors:[{id:"177037",title:"Dr.",name:"Someshwar",middleName:null,surname:"Pola",slug:"someshwar-pola",fullName:"Someshwar Pola"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9394",title:"Genotoxicity and Mutagenicity",subtitle:"Mechanisms and Test Methods",isOpenForSubmission:!1,hash:"9ee7e597358dbbfb5e33d0beb76e6fff",slug:"genotoxicity-and-mutagenicity-mechanisms-and-test-methods",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/9394.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"275",title:"Social History",slug:"social-history",parent:{title:"Social Sciences",slug:"social-sciences"},numberOfBooks:3,numberOfAuthorsAndEditors:34,numberOfWosCitations:0,numberOfCrossrefCitations:4,numberOfDimensionsCitations:4,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"social-history",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8893",title:"Antiquity and Its Reception",subtitle:"Modern Expressions of the Past",isOpenForSubmission:!1,hash:"6f206aec2c58f403b9f503989afc75ac",slug:"antiquity-and-its-reception-modern-expressions-of-the-past",bookSignature:"Helena Trindade Lopes, Isabel Gomes de Almeida and Maria de Fátima Rosa",coverURL:"https://cdn.intechopen.com/books/images_new/8893.jpg",editedByType:"Edited by",editors:[{id:"202246",title:"Prof.",name:"Helena",middleName:null,surname:"Trindade Lopes",slug:"helena-trindade-lopes",fullName:"Helena Trindade Lopes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8522",title:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe",subtitle:null,isOpenForSubmission:!1,hash:"500f04edfaf31487a6637ec914cff04d",slug:"indigenous-aboriginal-fugitive-and-ethnic-groups-around-the-globe",bookSignature:"Liat Klain-Gabbay",coverURL:"https://cdn.intechopen.com/books/images_new/8522.jpg",editedByType:"Edited by",editors:[{id:"257515",title:"Dr.",name:"Liat",middleName:null,surname:"Klain Gabbay",slug:"liat-klain-gabbay",fullName:"Liat Klain Gabbay"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5866",title:"Indigenous People",subtitle:null,isOpenForSubmission:!1,hash:"855fd54af0a1f830ea8d0ee1519387dc",slug:"indigenous-people",bookSignature:"Purushothaman Venkatesan",coverURL:"https://cdn.intechopen.com/books/images_new/5866.jpg",editedByType:"Edited by",editors:[{id:"198936",title:"Dr.",name:"Purushothaman",middleName:null,surname:"Venkatesan",slug:"purushothaman-venkatesan",fullName:"Purushothaman Venkatesan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"56259",doi:"10.5772/intechopen.69889",title:"Indigenous Knowledge Systems for Appropriate Technology Development",slug:"indigenous-knowledge-systems-for-appropriate-technology-development",totalDownloads:2506,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"indigenous-people",title:"Indigenous People",fullTitle:"Indigenous People"},signatures:"John Tharakan",authors:[{id:"198534",title:"Prof.",name:"John",middleName:null,surname:"Tharakan",slug:"john-tharakan",fullName:"John Tharakan"}]},{id:"56510",doi:"10.5772/intechopen.69890",title:"Role of Traditional Ethnobotanical Knowledge and Indigenous Institutions in Sustainable Land Management in Western Highlands of Kenya",slug:"role-of-traditional-ethnobotanical-knowledge-and-indigenous-institutions-in-sustainable-land-managem",totalDownloads:1904,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"indigenous-people",title:"Indigenous People",fullTitle:"Indigenous People"},signatures:"Chris A. Shisanya",authors:[{id:"200734",title:"Prof.",name:"Chris",middleName:null,surname:"Shisanya",slug:"chris-shisanya",fullName:"Chris Shisanya"}]},{id:"66442",doi:"10.5772/intechopen.85388",title:"The Immutability of the Core Construction of a Chair: The Building Techniques from Ancient Egypt to Contemporaneity",slug:"the-immutability-of-the-core-construction-of-a-chair-the-building-techniques-from-ancient-egypt-to-c",totalDownloads:1572,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"antiquity-and-its-reception-modern-expressions-of-the-past",title:"Antiquity and Its Reception",fullTitle:"Antiquity and Its Reception - Modern Expressions of the Past"},signatures:"André Patrício",authors:[{id:"285154",title:"Dr.",name:"Andre",middleName:null,surname:"Patricio",slug:"andre-patricio",fullName:"Andre Patricio"}]}],mostDownloadedChaptersLast30Days:[{id:"56259",title:"Indigenous Knowledge Systems for Appropriate Technology Development",slug:"indigenous-knowledge-systems-for-appropriate-technology-development",totalDownloads:2506,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"indigenous-people",title:"Indigenous People",fullTitle:"Indigenous People"},signatures:"John Tharakan",authors:[{id:"198534",title:"Prof.",name:"John",middleName:null,surname:"Tharakan",slug:"john-tharakan",fullName:"John Tharakan"}]},{id:"56510",title:"Role of Traditional Ethnobotanical Knowledge and Indigenous Institutions in Sustainable Land Management in Western Highlands of Kenya",slug:"role-of-traditional-ethnobotanical-knowledge-and-indigenous-institutions-in-sustainable-land-managem",totalDownloads:1904,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"indigenous-people",title:"Indigenous People",fullTitle:"Indigenous People"},signatures:"Chris A. Shisanya",authors:[{id:"200734",title:"Prof.",name:"Chris",middleName:null,surname:"Shisanya",slug:"chris-shisanya",fullName:"Chris Shisanya"}]},{id:"56426",title:"Indigenous Resource Management Practices and the Local Social-Cultural Context: An Insight towards Self-Directed Resource Management by People who ‘Coexist’ with Supernatural Agents",slug:"indigenous-resource-management-practices-and-the-local-social-cultural-context-an-insight-towards-se",totalDownloads:1085,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"indigenous-people",title:"Indigenous People",fullTitle:"Indigenous People"},signatures:"Masatoshi Sasaoka",authors:[{id:"198898",title:"Dr.",name:"Masatoshi",middleName:null,surname:"Sasaoka",slug:"masatoshi-sasaoka",fullName:"Masatoshi Sasaoka"}]},{id:"68484",title:"Journey to America: South Asian Diaspora Migration to the United States (1965–2015)",slug:"journey-to-america-south-asian-diaspora-migration-to-the-united-states-1965-2015-",totalDownloads:492,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"indigenous-aboriginal-fugitive-and-ethnic-groups-around-the-globe",title:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe",fullTitle:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe"},signatures:"John P. Williams",authors:[{id:"264648",title:"Prof.",name:"John",middleName:null,surname:"Williams",slug:"john-williams",fullName:"John Williams"}]},{id:"67491",title:"The Role of International Law in Protecting Land Rights of Indigenous Peoples in Nigeria and Kenya: A Comparative Perspective",slug:"the-role-of-international-law-in-protecting-land-rights-of-indigenous-peoples-in-nigeria-and-kenya-a",totalDownloads:408,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"indigenous-aboriginal-fugitive-and-ethnic-groups-around-the-globe",title:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe",fullTitle:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe"},signatures:"Sylvanus Barnabas",authors:[{id:"293764",title:"Dr.",name:"Sylvanus",middleName:"Gbendazhi",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}]},{id:"66675",title:"Legal Statute and Perspectives for Indigenous Peoples in Ukraine",slug:"legal-statute-and-perspectives-for-indigenous-peoples-in-ukraine",totalDownloads:362,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"indigenous-aboriginal-fugitive-and-ethnic-groups-around-the-globe",title:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe",fullTitle:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe"},signatures:"Borys Babin, Olena Grinenko and Anna Prykhodko",authors:[{id:"295584",title:"Dr.",name:"Borys",middleName:null,surname:"Babin",slug:"borys-babin",fullName:"Borys Babin"}]},{id:"56601",title:"Revisiting Indigenous Biotic and Abiotic Weather Forecasting for Possible Integration with Scientific Weather Prediction: A Case from the Borana People of South Ethiopia",slug:"revisiting-indigenous-biotic-and-abiotic-weather-forecasting-for-possible-integration-with-scientifi",totalDownloads:1054,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"indigenous-people",title:"Indigenous People",fullTitle:"Indigenous People"},signatures:"Desalegn Yayeh Ayal",authors:[{id:"198164",title:"Dr.",name:"Desalegn",middleName:"Yayeh",surname:"Ayal",slug:"desalegn-ayal",fullName:"Desalegn Ayal"}]},{id:"67479",title:"Exploring Aboriginal Identity in Australia and Building Resilience",slug:"exploring-aboriginal-identity-in-australia-and-building-resilience",totalDownloads:617,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"indigenous-aboriginal-fugitive-and-ethnic-groups-around-the-globe",title:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe",fullTitle:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe"},signatures:"Clair Andersen",authors:[{id:"296447",title:"Associate Prof.",name:"Clair",middleName:null,surname:"Andersen",slug:"clair-andersen",fullName:"Clair Andersen"}]},{id:"70226",title:"Introductory Chapter: The Importance of Reception Studies for Ancient History",slug:"introductory-chapter-the-importance-of-reception-studies-for-ancient-history",totalDownloads:199,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"antiquity-and-its-reception-modern-expressions-of-the-past",title:"Antiquity and Its Reception",fullTitle:"Antiquity and Its Reception - Modern Expressions of the Past"},signatures:"Helena Trindade Lopes, Isabel Gomes de Almeida and Maria de Fátima Rosa",authors:[{id:"202246",title:"Prof.",name:"Helena",middleName:null,surname:"Trindade Lopes",slug:"helena-trindade-lopes",fullName:"Helena Trindade Lopes"},{id:"203967",title:"Prof.",name:"Isabel",middleName:null,surname:"Almeida",slug:"isabel-almeida",fullName:"Isabel Almeida"},{id:"315029",title:"Dr.",name:"Fátima",middleName:null,surname:"Rosa",slug:"fatima-rosa",fullName:"Fátima Rosa"}]},{id:"67518",title:"Privatised Autonomy for the Noongar People of Australia: A New Model for Indigenous Self-Government",slug:"privatised-autonomy-for-the-noongar-people-of-australia-a-new-model-for-indigenous-self-government",totalDownloads:221,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"indigenous-aboriginal-fugitive-and-ethnic-groups-around-the-globe",title:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe",fullTitle:"Indigenous, Aboriginal, Fugitive and Ethnic Groups Around the Globe"},signatures:"Bertus de Villiers",authors:[{id:"298965",title:"Prof.",name:"Bertus",middleName:null,surname:"De Villiers",slug:"bertus-de-villiers",fullName:"Bertus De Villiers"}]}],onlineFirstChaptersFilter:{topicSlug:"social-history",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/225677/glenda-gay",hash:"",query:{},params:{id:"225677",slug:"glenda-gay"},fullPath:"/profiles/225677/glenda-gay",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()