In robotics, there have been proposed methods for locomotion of nonwheeled robots based on artificial neural networks; those built with plausible neurons are called spiking central pattern generators (SCPGs). In this chapter, we present a generalization of reported deterministic and stochastic reverse engineering methods for automatically designing SCPG for legged robots locomotion systems; such methods create a spiking neural network capable of endogenously and periodically replicating one or several rhythmic signal sets, when a spiking neuron model and one or more locomotion gaits are given as inputs. Designed SCPGs have been implemented in different robotic controllers for a variety of robotic platforms. Finally, some aspects to improve and/or complement these SCPG-based locomotion systems are pointed out.
Part of the book: Cognitive and Computational Neuroscience