Instrument types and its applications.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"161",leadTitle:null,fullTitle:"Computational Fluid Dynamics Technologies and Applications",title:"Computational Fluid Dynamics",subtitle:"Technologies and Applications",reviewType:"peer-reviewed",abstract:"This book is planned to publish with an objective to provide a state-of-art reference book in the area of computational fluid dynamics for CFD engineers, scientists, applied physicists and post-graduate students. Also the aim of the book is the continuous and timely dissemination of new and innovative CFD research and developments. This reference book is a collection of 14 chapters characterized in 4 parts: modern principles of CFD, CFD in physics, industrial and in castle. This book provides a comprehensive overview of the computational experiment technology, numerical simulation of the hydrodynamics and heat transfer processes in a two dimensional gas, application of lattice Boltzmann method in heat transfer and fluid flow, etc. Several interesting applications area are also discusses in the book like underwater vehicle propeller, the flow behavior in gas-cooled nuclear reactors, simulation odour dispersion around windbreaks and so on.",isbn:null,printIsbn:"978-953-307-169-5",pdfIsbn:"978-953-51-6020-5",doi:"10.5772/686",price:139,priceEur:155,priceUsd:179,slug:"computational-fluid-dynamics-technologies-and-applications",numberOfPages:410,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"d636946634ddf4e48b6e9bc6a0cd615a",bookSignature:"Igor V. Minin and Oleg V. Minin",publishedDate:"July 5th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/161.jpg",numberOfDownloads:62052,numberOfWosCitations:72,numberOfCrossrefCitations:26,numberOfCrossrefCitationsByBook:8,numberOfDimensionsCitations:78,numberOfDimensionsCitationsByBook:9,hasAltmetrics:0,numberOfTotalCitations:176,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 7th 2010",dateEndSecondStepPublish:"November 4th 2010",dateEndThirdStepPublish:"February 9th 2011",dateEndFourthStepPublish:"April 10th 2011",dateEndFifthStepPublish:"June 9th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"3712",title:"Prof.",name:"Oleg",middleName:null,surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin",profilePictureURL:"https://mts.intechopen.com/storage/users/3712/images/1774_n.jpg",biography:"Oleg V. Minin received a B.A. in Physics from the Novosibirsk State University, a PhD in Physics from Tomsk State University in 1987 and a Doctor of science from NSTU in 2002. Currently he is a full Professor in the Department of Information Protection at Novosibirsk State Technical University (NSTU), Russia. From 1982 to 2001 he was Chief Research Scientist at the Institute of Applied Physics, Novosibirsk, Russia. Dr. Minin’s research interests are in the areas of diffractive optics and antenna experiment (including explosive plasma antenna), millimeter wave and THz photonics and nanophotonics, information security, detection of hidden weapons as well as development of antiterrorism devices, experiment technologies, explosive physics. He is a member of SPIE, COST-284 and COST-ic0603 and he is the author of several books and book chapters in technical publications. For his work Dr. Minin was awarded the Commendation for Excellence in Technical Communications (LaserFocusWorld, 2003) and commendation by the Minister of Defense of Russia, 2000.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Tomsk Polytechnic University",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"123258",title:"Dr.",name:"Igor",middleName:null,surname:"Minin",slug:"igor-minin",fullName:"Igor Minin",profilePictureURL:"https://mts.intechopen.com/storage/users/123258/images/1782_n.jpg",biography:"Igor V. Minin is a full Professor in the Department of Information Protection at Novosibirsk State Technical University (NSTU), Russia. Dr. Minin received a B.A. in Physics from the Novosibirsk State University, a PhD in Physics from Leningrad Electro-Technical University in 1986. and a Doctor of science from NSTU in 2002. Dr. Minin has over twenty years of international industrial and academic experience and has played key roles in a number of projects including 3D millimeter wave real-time imaging and antiterrorism applications. He is the author or coauthor of approximately 350 research articles, seven monographers (including Diffractive optics of millimeter waves (IOP Publisher, Boston-London, 2004), Basic Principles of Fresnel Antenna Arrays (Springer, 2008)), and has been awarded 24 patents and inventions. He is the author of several books and book chapters in technical publications and has been the Editor of several books including Microwave and Millimeter Wave Technologies Modern UWB antennas and equipment (InTech, Austria 2010) and Microwave and Millimeter Wave Technologies from Photonic Bandgap Devices to Antenna and Applications (InTech, Austria 2010).",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Novosibirsk State Technical University",institutionURL:null,country:{name:"Russia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"610",title:"Numerical Computing",slug:"numerical-computing"}],chapters:[{id:"16381",title:"Calculation Experiment Technology",doi:"10.5772/22497",slug:"calculation-experiment-technology",totalDownloads:2858,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Vladilen F. Minin, Igor V. Minin and Oleg V. Minin",downloadPdfUrl:"/chapter/pdf-download/16381",previewPdfUrl:"/chapter/pdf-preview/16381",authors:[{id:"3712",title:"Prof.",name:"Oleg",surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin"}],corrections:null},{id:"16382",title:"Application of Lattice Boltzmann Method in Fluid Flow and Heat Transfer",doi:"10.5772/10585",slug:"application-of-lattice-boltzmann-method-in-fluid-flow-and-heat-transfer",totalDownloads:5050,totalCrossrefCites:4,totalDimensionsCites:10,hasAltmetrics:0,abstract:null,signatures:"Quan Liao and Tien-Chien Jen",downloadPdfUrl:"/chapter/pdf-download/16382",previewPdfUrl:"/chapter/pdf-preview/16382",authors:[null],corrections:null},{id:"16383",title:"CFD Applications for Predicting Flow Behavior in Advanced Gas Cooled Reactors",doi:"10.5772/17709",slug:"cfd-applications-for-predicting-flow-behavior-in-advanced-gas-cooled-reactors",totalDownloads:3322,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Donna Post Guillen and Piyush Sabharwall",downloadPdfUrl:"/chapter/pdf-download/16383",previewPdfUrl:"/chapter/pdf-preview/16383",authors:[{id:"29199",title:"Dr.",name:"Donna",surname:"Guillen",slug:"donna-guillen",fullName:"Donna Guillen"},{id:"39875",title:"Dr.",name:"Piyush",surname:"Sabharwall",slug:"piyush-sabharwall",fullName:"Piyush Sabharwall"}],corrections:null},{id:"16384",title:"CFD for Characterizing Standard and Single-use Stirred Cell Culture Bioreactors",doi:"10.5772/23496",slug:"cfd-for-characterizing-standard-and-single-use-stirred-cell-culture-bioreactors",totalDownloads:7158,totalCrossrefCites:3,totalDimensionsCites:36,hasAltmetrics:0,abstract:null,signatures:"Stephan C. Kaiser, Christian Löffelholz, Sören Werner and Dieter Eibl",downloadPdfUrl:"/chapter/pdf-download/16384",previewPdfUrl:"/chapter/pdf-preview/16384",authors:[{id:"52219",title:"MSc",name:"Stephan C.",surname:"Kaiser",slug:"stephan-c.-kaiser",fullName:"Stephan C. Kaiser"},{id:"52439",title:"MSc.",name:"Sören",surname:"Werner",slug:"soren-werner",fullName:"Sören Werner"},{id:"52440",title:"MSc.",name:"Christian",surname:"Löffelholz",slug:"christian-loffelholz",fullName:"Christian Löffelholz"},{id:"52441",title:"Prof.",name:"Dieter",surname:"Eibl",slug:"dieter-eibl",fullName:"Dieter Eibl"}],corrections:null},{id:"16385",title:"Application of Computational Fluid Dynamics (CFD) for Simulation of Acid Mine Drainage Generation and Subsequent Pollutants Transportation through Groundwater Flow Systems and Rivers",doi:"10.5772/16927",slug:"application-of-computational-fluid-dynamics-cfd-for-simulation-of-acid-mine-drainage-generation-and-",totalDownloads:5230,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Faramarz Doulati Ardejani, Ernest Baafi, Kumars Seif Panahi, Raghu Nath Singh and Behshad Jodeiri Shokri",downloadPdfUrl:"/chapter/pdf-download/16385",previewPdfUrl:"/chapter/pdf-preview/16385",authors:[{id:"26701",title:"M.Sc.",name:"Behshad",surname:"Jodeiri Shokri",slug:"behshad-jodeiri-shokri",fullName:"Behshad Jodeiri Shokri"},{id:"33429",title:"Dr.",name:"Faramarz",surname:"Doulati Ardejani",slug:"faramarz-doulati-ardejani",fullName:"Faramarz Doulati Ardejani"},{id:"33918",title:"MSc.",name:"Kumars",surname:"Seifpanah Shabani",slug:"kumars-seifpanah-shabani",fullName:"Kumars Seifpanah Shabani"},{id:"33919",title:"Prof.",name:"Raghu",surname:"Singh",slug:"raghu-singh",fullName:"Raghu Singh"},{id:"33920",title:"Prof.",name:"Ernest",surname:"Baafi",slug:"ernest-baafi",fullName:"Ernest Baafi"}],corrections:null},{id:"16386",title:"Computational Flow Modelling of Multiphase Reacting Flow in Trickle-bed Reactors with Applications to the Catalytic Abatement of Liquid Pollutants",doi:"10.5772/17202",slug:"computational-flow-modelling-of-multiphase-reacting-flow-in-trickle-bed-reactors-with-applications-t",totalDownloads:4145,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Rodrigo J.G. Lopes and Rosa M. Quinta-Ferreira",downloadPdfUrl:"/chapter/pdf-download/16386",previewPdfUrl:"/chapter/pdf-preview/16386",authors:[{id:"27567",title:"Dr.",name:"Rodrigo",surname:"Lopes",slug:"rodrigo-lopes",fullName:"Rodrigo Lopes"},{id:"36527",title:"Dr.",name:"Rosa",surname:"Quinta-Ferreira",slug:"rosa-quinta-ferreira",fullName:"Rosa Quinta-Ferreira"}],corrections:null},{id:"16387",title:"Simulating Odour Dispersion about Natural Windbreaks",doi:"10.5772/19084",slug:"simulating-odour-dispersion-about-natural-windbreaks",totalDownloads:2618,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Barrington Suzelle, Lin Xing Jun and Choiniere Denis",downloadPdfUrl:"/chapter/pdf-download/16387",previewPdfUrl:"/chapter/pdf-preview/16387",authors:[{id:"33530",title:"Prof.",name:"Suzelle",surname:"Barrington",slug:"suzelle-barrington",fullName:"Suzelle Barrington"}],corrections:null},{id:"16391",title:"Simulation of Three Dimensional Flows in Industrial Components using CFD Techniques",doi:"10.5772/19909",slug:"simulation-of-three-dimensional-flows-in-industrial-components-using-cfd-techniques",totalDownloads:6038,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"C. Bhasker",downloadPdfUrl:"/chapter/pdf-download/16391",previewPdfUrl:"/chapter/pdf-preview/16391",authors:[{id:"36752",title:"Dr",name:"C",surname:"Bhasker",slug:"c-bhasker",fullName:"C Bhasker"}],corrections:null},{id:"16392",title:"Computational Fluid Dynamics Analysis of Turbulent Flow",doi:"10.5772/16284",slug:"computational-fluid-dynamics-analysis-of-turbulent-flow",totalDownloads:3727,totalCrossrefCites:1,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Pradip Majumdar",downloadPdfUrl:"/chapter/pdf-download/16392",previewPdfUrl:"/chapter/pdf-preview/16392",authors:[{id:"24596",title:"Dr.",name:"Pradip",surname:"Majumdar",slug:"pradip-majumdar",fullName:"Pradip Majumdar"}],corrections:null},{id:"16393",title:"Autonomous Underwater Vehicle Propeller Simulation using Computational Fluid Dynamic",doi:"10.5772/16297",slug:"autonomous-underwater-vehicle-propeller-simulation-using-computational-fluid-dynamic",totalDownloads:5132,totalCrossrefCites:6,totalDimensionsCites:9,hasAltmetrics:0,abstract:null,signatures:"Muhamad Husaini, Zahurin Samad and Mohd Rizal Arshad",downloadPdfUrl:"/chapter/pdf-download/16393",previewPdfUrl:"/chapter/pdf-preview/16393",authors:[{id:"24646",title:"Mr.",name:"Muhamad Husaini",surname:"Abu Bakar",slug:"muhamad-husaini-abu-bakar",fullName:"Muhamad Husaini Abu Bakar"},{id:"79395",title:"Dr.",name:"Mohd Rizal",surname:"Arshad",slug:"mohd-rizal-arshad",fullName:"Mohd Rizal Arshad"},{id:"128689",title:"Prof.",name:"Zahurin",surname:"Samad",slug:"zahurin-samad",fullName:"Zahurin Samad"}],corrections:null},{id:"16394",title:"Modelling and Simulation for Micro Injection Molding Process",doi:"10.5772/16283",slug:"modelling-and-simulation-for-micro-injection-molding-process",totalDownloads:5754,totalCrossrefCites:7,totalDimensionsCites:13,hasAltmetrics:0,abstract:null,signatures:"Lei Xie, Longjiang Shen and Bingyan Jiang",downloadPdfUrl:"/chapter/pdf-download/16394",previewPdfUrl:"/chapter/pdf-preview/16394",authors:[{id:"24593",title:"Prof.",name:"Lei",surname:"Xie",slug:"lei-xie",fullName:"Lei Xie"},{id:"67005",title:"MSc",name:"Longjiang",surname:"Shen",slug:"longjiang-shen",fullName:"Longjiang Shen"},{id:"87591",title:"Prof.",name:"Bingyan",surname:"Jiang",slug:"bingyan-jiang",fullName:"Bingyan Jiang"}],corrections:null},{id:"16395",title:"Simulation of Liquid Flow Permeability for Dendritic Structures during Solidification Process",doi:"10.5772/19647",slug:"simulation-of-liquid-flow-permeability-for-dendritic-structures-during-solidification-process",totalDownloads:3589,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"S. M. H. Mirbagheri, H. Baiani, M. Barzegari and S. Firoozi",downloadPdfUrl:"/chapter/pdf-download/16395",previewPdfUrl:"/chapter/pdf-preview/16395",authors:[{id:"35684",title:"Dr.",name:"Mohammad",surname:"Mirbagheri",slug:"mohammad-mirbagheri",fullName:"Mohammad Mirbagheri"},{id:"43777",title:"Dr.",name:"sadegh",surname:"firoozi",slug:"sadegh-firoozi",fullName:"sadegh firoozi"},{id:"43778",title:"Dr.",name:"Hossein",surname:"Bayani",slug:"hossein-bayani",fullName:"Hossein Bayani"},{id:"43779",title:"BSc",name:"Mojtaba",surname:"Barzegari",slug:"mojtaba-barzegari",fullName:"Mojtaba Barzegari"}],corrections:null},{id:"16396",title:"Numerical Modelling of Non-metallic Inclusion Separation in a Continuous Casting Tundish",doi:"10.5772/22693",slug:"numerical-modelling-of-non-metallic-inclusion-separation-in-a-continuous-casting-tundish",totalDownloads:4264,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Marek Warzecha",downloadPdfUrl:"/chapter/pdf-download/16396",previewPdfUrl:"/chapter/pdf-preview/16396",authors:[{id:"48788",title:"Dr.",name:"Marek",surname:"Warzecha",slug:"marek-warzecha",fullName:"Marek Warzecha"}],corrections:null},{id:"16397",title:"Numerical Simulation of Influence of Changing a Dam Height on Liquid Steel Flow and Behaviour of Non-metallic Inclusions in the Tundish",doi:"10.5772/23699",slug:"numerical-simulation-of-influence-of-changing-a-dam-height-on-liquid-steel-flow-and-behaviour-of-non",totalDownloads:3171,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Adam Cwudzinski",downloadPdfUrl:"/chapter/pdf-download/16397",previewPdfUrl:"/chapter/pdf-preview/16397",authors:[{id:"24592",title:"Dr.",name:"Adam",surname:"Cwudziński",slug:"adam-cwudzinski",fullName:"Adam Cwudziński"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"163",title:"Ultrasound Imaging",subtitle:"Medical Applications",isOpenForSubmission:!1,hash:"aa3c22596ff5852287143fe66a643289",slug:"ultrasound-imaging-medical-applications",bookSignature:"Igor V. Minin and Oleg V. Minin",coverURL:"https://cdn.intechopen.com/books/images_new/163.jpg",editedByType:"Edited by",editors:[{id:"3712",title:"Prof.",name:"Oleg",surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"162",title:"Microsensors",subtitle:null,isOpenForSubmission:!1,hash:"3d48614c970df4eb00d2d1a4e1bb5cda",slug:"microsensors",bookSignature:"Igor Minin",coverURL:"https://cdn.intechopen.com/books/images_new/162.jpg",editedByType:"Edited by",editors:[{id:"3712",title:"Prof.",name:"Oleg",surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1363",title:"Numerical Analysis",subtitle:"Theory and Application",isOpenForSubmission:!1,hash:"509ce23e2dae5d72c14be89bd9b75004",slug:"numerical-analysis-theory-and-application",bookSignature:"Jan Awrejcewicz",coverURL:"https://cdn.intechopen.com/books/images_new/1363.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"532",title:"Two Phase Flow, Phase Change and Numerical Modeling",subtitle:null,isOpenForSubmission:!1,hash:"331fe87b8edf0e8adf7e6086e4eea81c",slug:"two-phase-flow-phase-change-and-numerical-modeling",bookSignature:"Amimul Ahsan",coverURL:"https://cdn.intechopen.com/books/images_new/532.jpg",editedByType:"Edited by",editors:[{id:"36782",title:"Associate Prof.",name:"Amimul",surname:"Ahsan",slug:"amimul-ahsan",fullName:"Amimul Ahsan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2207",title:"Numerical Simulation",subtitle:"From Theory to Industry",isOpenForSubmission:!1,hash:"1a2002ed6e06f8cb36ad55b57aab57e5",slug:"numerical-simulation-from-theory-to-industry",bookSignature:"Mykhaylo Andriychuk",coverURL:"https://cdn.intechopen.com/books/images_new/2207.jpg",editedByType:"Edited by",editors:[{id:"57755",title:"Dr.",name:"Mykhaylo",surname:"Andriychuk",slug:"mykhaylo-andriychuk",fullName:"Mykhaylo Andriychuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3194",title:"Computational Fluid Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"240e32819f5a408715331a202e7971b4",slug:"computational-fluid-dynamics",bookSignature:"Hyoung Woo Oh",coverURL:"https://cdn.intechopen.com/books/images_new/3194.jpg",editedByType:"Edited by",editors:[{id:"63199",title:"Prof.",name:"Hyoung Woo",surname:"Oh",slug:"hyoung-woo-oh",fullName:"Hyoung Woo Oh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1989",title:"Fluid Dynamics, Computational Modeling and Applications",subtitle:null,isOpenForSubmission:!1,hash:"e7f43d55285a6a3447c62c066f072e8b",slug:"fluid-dynamics-computational-modeling-and-applications",bookSignature:"L. Hector Juarez",coverURL:"https://cdn.intechopen.com/books/images_new/1989.jpg",editedByType:"Edited by",editors:[{id:"65861",title:"Dr.",name:"L. Hector",surname:"Juarez",slug:"l.-hector-juarez",fullName:"L. Hector Juarez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"402",title:"Numerical Simulations",subtitle:"Applications, Examples and Theory",isOpenForSubmission:!1,hash:null,slug:"numerical-simulations-applications-examples-and-theory",bookSignature:"Lutz Angermann",coverURL:"https://cdn.intechopen.com/books/images_new/402.jpg",editedByType:"Edited by",editors:[{id:"13342",title:"Prof.",name:"Lutz",surname:"Angermann",slug:"lutz-angermann",fullName:"Lutz Angermann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2274",title:"Fuzzy Logic",subtitle:"Algorithms, Techniques and Implementations",isOpenForSubmission:!1,hash:"116c1be2754eb60e90b4ad3642546291",slug:"fuzzy-logic-algorithms-techniques-and-implementations",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/2274.jpg",editedByType:"Edited by",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6281",title:"Finite Element Method",subtitle:"Simulation, Numerical Analysis and Solution Techniques",isOpenForSubmission:!1,hash:"9dde55be38d54e4593f142a4a5642f58",slug:"finite-element-method-simulation-numerical-analysis-and-solution-techniques",bookSignature:"Răzvan Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/6281.jpg",editedByType:"Edited by",editors:[{id:"179623",title:"Dr.",name:"Răzvan",surname:"Păcurar",slug:"razvan-pacurar",fullName:"Răzvan Păcurar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",title:"Corrigendum to: Many-Core Algorithm of the Embedded Zerotree Wavelet Encoder",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74512.pdf",downloadPdfUrl:"/chapter/pdf-download/74512",previewPdfUrl:"/chapter/pdf-preview/74512",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74512",risUrl:"/chapter/ris/74512",chapter:{id:"70013",slug:"many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",signatures:"Jesús Antonio Alvarez-Cedillo, Teodoro Alvarez-Sanchez, Mario Aguilar-Fernandez and Jacobo Sandoval-Gutierrez",dateSubmitted:"May 18th 2019",dateReviewed:"August 22nd 2019",datePrePublished:"December 7th 2019",datePublished:"March 11th 2020",book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"118717",title:"Ph.D.",name:"Jesús Antonio",middleName:null,surname:"Álvarez-Cedillo",fullName:"Jesús Antonio Álvarez-Cedillo",slug:"jesus-antonio-alvarez-cedillo",email:"jaalvarez@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305584",title:"Dr.",name:"Teodoro",middleName:null,surname:"Alvarez-Sanchez",fullName:"Teodoro Alvarez-Sanchez",slug:"teodoro-alvarez-sanchez",email:"talvares@citedi.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305586",title:"Dr.",name:"Jacobo",middleName:null,surname:"Sandoval-Gutierrez",fullName:"Jacobo Sandoval-Gutierrez",slug:"jacobo-sandoval-gutierrez",email:"jacobosandoval@hotmail.com",position:null,institution:{name:"Universidad Autónoma Metropolitana",institutionURL:null,country:{name:"Mexico"}}},{id:"305587",title:"Dr.",name:"Mario",middleName:null,surname:"Aguilar-Fernandez",fullName:"Mario Aguilar-Fernandez",slug:"mario-aguilar-fernandez",email:"maguilarf@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}}]}},chapter:{id:"70013",slug:"many-core-algorithm-of-the-embedded-zerotree-wavelet-encoder",signatures:"Jesús Antonio Alvarez-Cedillo, Teodoro Alvarez-Sanchez, Mario Aguilar-Fernandez and Jacobo Sandoval-Gutierrez",dateSubmitted:"May 18th 2019",dateReviewed:"August 22nd 2019",datePrePublished:"December 7th 2019",datePublished:"March 11th 2020",book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"118717",title:"Ph.D.",name:"Jesús Antonio",middleName:null,surname:"Álvarez-Cedillo",fullName:"Jesús Antonio Álvarez-Cedillo",slug:"jesus-antonio-alvarez-cedillo",email:"jaalvarez@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305584",title:"Dr.",name:"Teodoro",middleName:null,surname:"Alvarez-Sanchez",fullName:"Teodoro Alvarez-Sanchez",slug:"teodoro-alvarez-sanchez",email:"talvares@citedi.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}},{id:"305586",title:"Dr.",name:"Jacobo",middleName:null,surname:"Sandoval-Gutierrez",fullName:"Jacobo Sandoval-Gutierrez",slug:"jacobo-sandoval-gutierrez",email:"jacobosandoval@hotmail.com",position:null,institution:{name:"Universidad Autónoma Metropolitana",institutionURL:null,country:{name:"Mexico"}}},{id:"305587",title:"Dr.",name:"Mario",middleName:null,surname:"Aguilar-Fernandez",fullName:"Mario Aguilar-Fernandez",slug:"mario-aguilar-fernandez",email:"maguilarf@ipn.mx",position:null,institution:{name:"Instituto Politécnico Nacional",institutionURL:null,country:{name:"Mexico"}}}]},book:{id:"7623",title:"Coding Theory",subtitle:null,fullTitle:"Coding Theory",slug:"coding-theory",publishedDate:"March 11th 2020",bookSignature:"Sudhakar Radhakrishnan and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/7623.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8912",leadTitle:null,title:"Biochemical Analysis Tools",subtitle:"Methods for Bio-Molecules Studies",reviewType:"peer-reviewed",abstract:"This book explores the role of nucleic acid analysis and the advances it has led to in the field of life sciences. The first section is a collection of chapters covering experimental methods used in molecular biology, the techniques adjacent to these methods, and the steps of analysis before and after obtaining raw DNA data. The second section deals with the principles of chromatography, method development, sample preparation, and industrial applications.",isbn:"978-1-78984-857-1",printIsbn:"978-1-78984-856-4",pdfIsbn:"978-1-83880-903-4",doi:"10.5772/intechopen.82530",price:119,priceEur:129,priceUsd:155,slug:"biochemical-analysis-tools-methods-for-bio-molecules-studies",numberOfPages:206,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"10a6269502e58eda525718afec8e667e",bookSignature:"Oana-Maria Boldura, Cornel Baltă and Nasser Sayed Awwad",publishedDate:"June 24th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8912.jpg",keywords:null,numberOfDownloads:16338,numberOfWosCitations:7,numberOfCrossrefCitations:9,numberOfDimensionsCitations:21,numberOfTotalCitations:37,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 27th 2018",dateEndSecondStepPublish:"January 29th 2019",dateEndThirdStepPublish:"March 30th 2019",dateEndFourthStepPublish:"June 18th 2019",dateEndFifthStepPublish:"August 17th 2019",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"4 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"189429",title:"Prof.",name:"Oana-Maria",middleName:null,surname:"Boldura",slug:"oana-maria-boldura",fullName:"Oana-Maria Boldura",profilePictureURL:"https://mts.intechopen.com/storage/users/189429/images/system/189429.jpg",biography:"Oana-Maria Boldura is licensed in Genetic Engineering with specialization in Molecular Biology (2005), Master\\'s Degree in Genetic Manipulation (2007) and Pharmacy (2014), and PhD in Biotechnology field (2010). From 2015 she has been an Assistant Professor at Banat University of Agricultural Sciences and Veterinary Medicine 'King Michael I of Romania” Timisoara, Faculty of Veterinary Medicine, Department of Chemistry, Biochemistry and Molecular Biology and researcher at ,,Horia Cernescu” Research Unit. Her main scientific competences are in the field of Molecular Biology, Biotechnology, Genomics and Biosecurity with technical aptitudes in manipulation and experimentation with nucleic acid and proteins (purification, sequencing, gene expression studies, SDS-PAGE analysis of proteins fractions, ,,Lab-on-chip” electrophoresis, Immunological Testing). Her areas of interest are Molecular Forensic Methods and Apoptotic Process Pathways.",institutionString:"Banat’s University of Agricultural Sciences and Veterinary Medicine",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Banat University of Agricultural Sciences and Veterinary Medicine",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:{id:"222863",title:"Dr.",name:"Cornel",middleName:null,surname:"Balta",slug:"cornel-balta",fullName:"Cornel Balta",profilePictureURL:"https://mts.intechopen.com/storage/users/222863/images/system/222863.jpg",biography:"Dr. Cornel Baltă, MD, DVM, is a licensed veterinarian with both\na PhD and MD in Veterinary Medicine. He is a researcher at the\nInstitute of Life Sciences, at “Vasile Goldis” Western University\nArad, Romania. Dr. Baltă’s main scientific competences are in\nthe fields of laboratory animals, molecular biology, physiology,\nhistology, and clinical Laboratory. He has technical aptitudes in\nnucleic acid examination by electrophoresis techniques, PCR and\nqPCR, and qualitative and quantitative determination of proteins by Western Blot\nand microelectrophoresis. His areas of interest include molecular mechanisms involved in the evolution of liver and gastrointestinal diseases, and bone regeneration\nand remodeling using different types of polymers.",institutionString:'"Vasile Goldis" Western University of Arad',position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Vasile Goldis Western University of Arad",institutionURL:null,country:{name:"Romania"}}},coeditorTwo:{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad",profilePictureURL:"https://mts.intechopen.com/storage/users/145209/images/system/145209.jpg",biography:"Nasser Awwad received his Ph.D. in inorganic and radiochemistry in 2000 from Ain Shams University . Nasser Awwad was an Associate Professor of Radiochemistry in 2006 and Professor of Inorganic and Radiochemistry in 2011. He has been a Professor at King Khalid University, Abha, KSA, from 2011 until now. Prof Awwad has edited four books (Uranium, New trends in Nuclear Sciences, Lanthanides, and Nuclear Power Plants) and he has co-edited two books (Chemistry and Technology of Natural and Synthetic Dyes and Pigments and Biochemical Analysis Tools). He has also published 205 papers at ISI journals. He has supervised 4 Ph.D. and 18 MSc students in the field of radioactive and wastewater treatment. He has participated in 26 international conferences in South Korea, the USA, Lebanon, KSA, and Egypt. He has reviewed 2 Ph.D. and 15 MSc theses. He participated in 10 big projects with KACST at KSA and Sandia National Labs in the USA. He is a member of the Arab Society of Forensic Sciences and Forensic Medicine. He is a permanent member of the American Chemical Society, and a rapporteur of the Permanent Committee for Nuclear and Radiological Protection at KKU. He is Head of the Scientific Research and International Cooperation Unit, Faculty of Science, King Khalid University.",institutionString:"King Khalid University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"King Khalid University",institutionURL:null,country:{name:"Saudi Arabia"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"43",title:"Biochemistry",slug:"biochemistry-genetics-and-molecular-biology-biochemistry"}],chapters:[{id:"71721",title:"Latest Implications of Next-Gen Sequencing in Diagnosis of Acute and Chronic Myeloid Leukemia",slug:"latest-implications-of-next-gen-sequencing-in-diagnosis-of-acute-and-chronic-myeloid-leukemia",totalDownloads:818,totalCrossrefCites:0,authors:[{id:"189429",title:"Prof.",name:"Oana-Maria",surname:"Boldura",slug:"oana-maria-boldura",fullName:"Oana-Maria Boldura"},{id:"222863",title:"Dr.",name:"Cornel",surname:"Balta",slug:"cornel-balta",fullName:"Cornel Balta"},{id:"316272",title:"Dr.",name:"Cristina",surname:"Petrine",slug:"cristina-petrine",fullName:"Cristina Petrine"},{id:"316273",title:"Dr.",name:"Alin",surname:"Mihu",slug:"alin-mihu",fullName:"Alin Mihu"}]},{id:"66704",title:"Biological Evidence Analysis in Cases of Sexual Assault",slug:"biological-evidence-analysis-in-cases-of-sexual-assault",totalDownloads:1748,totalCrossrefCites:0,authors:[{id:"88480",title:"Ph.D.",name:"Benito",surname:"Ramos-González",slug:"benito-ramos-gonzalez",fullName:"Benito Ramos-González"},{id:"271333",title:"BSc.",name:"Miranda",surname:"Córdova Mercado",slug:"miranda-cordova-mercado",fullName:"Miranda Córdova Mercado"},{id:"271335",title:"BSc.",name:"Juan Carlos",surname:"Hernández Reyes",slug:"juan-carlos-hernandez-reyes",fullName:"Juan Carlos Hernández Reyes"},{id:"271336",title:"MSc.",name:"Mártin",surname:"Guardiola Ramos",slug:"martin-guardiola-ramos",fullName:"Mártin Guardiola Ramos"},{id:"271337",title:"Dr.",name:"Elton",surname:"Solis Esquivel",slug:"elton-solis-esquivel",fullName:"Elton Solis Esquivel"},{id:"271338",title:"BSc.",name:"Gerardo",surname:"Castellanos Aguilar",slug:"gerardo-castellanos-aguilar",fullName:"Gerardo Castellanos Aguilar"},{id:"271339",title:"MSc.",name:"Porfirio",surname:"Díaz Torres",slug:"porfirio-diaz-torres",fullName:"Porfirio Díaz Torres"},{id:"271340",title:"BSc.",name:"Orlando",surname:"Salas Salas",slug:"orlando-salas-salas",fullName:"Orlando Salas Salas"}]},{id:"67852",title:"DNA Sequencing Resolves Misdiagnosed and Rare Genetic Disorders",slug:"dna-sequencing-resolves-misdiagnosed-and-rare-genetic-disorders",totalDownloads:867,totalCrossrefCites:0,authors:[{id:"289784",title:"Dr.",name:"Alice",surname:"Abdel Aleem",slug:"alice-abdel-aleem",fullName:"Alice Abdel Aleem"}]},{id:"69756",title:"Molecular Tools for Gene Analysis in Fission Yeast",slug:"molecular-tools-for-gene-analysis-in-fission-yeast",totalDownloads:931,totalCrossrefCites:0,authors:[{id:"86998",title:"Prof.",name:"Irma",surname:"Herrera-Camacho",slug:"irma-herrera-camacho",fullName:"Irma Herrera-Camacho"},{id:"169522",title:"Dr.",name:"Lourdes",surname:"Millán-Pérez-Peña",slug:"lourdes-millan-perez-pena",fullName:"Lourdes Millán-Pérez-Peña"},{id:"169523",title:"Dr.",name:"Francisca",surname:"Sosa-Jurado",slug:"francisca-sosa-jurado",fullName:"Francisca Sosa-Jurado"},{id:"174538",title:"Dr.",name:"Nora-Hilda",surname:"Rosas-Murrieta",slug:"nora-hilda-rosas-murrieta",fullName:"Nora-Hilda Rosas-Murrieta"},{id:"174818",title:"Dr.",name:"Rebeca D.",surname:"Martínez-Contreras",slug:"rebeca-d.-martinez-contreras",fullName:"Rebeca D. Martínez-Contreras"},{id:"174819",title:"MSc.",name:"Nancy",surname:"Martínez-Montiel",slug:"nancy-martinez-montiel",fullName:"Nancy Martínez-Montiel"}]},{id:"69570",title:"Detection of the Species Composition of Food Using Mitochondrial DNA: Challenges and Possibilities of a Modern Laboratory",slug:"detection-of-the-species-composition-of-food-using-mitochondrial-dna-challenges-and-possibilities-of",totalDownloads:652,totalCrossrefCites:0,authors:[{id:"304480",title:"Dr.",name:"Małgorzata",surname:"Natonek-Wiśniewska",slug:"malgorzata-natonek-wisniewska",fullName:"Małgorzata Natonek-Wiśniewska"},{id:"309474",title:"Dr.",name:"Piotr",surname:"Krzyścin",slug:"piotr-krzyscin",fullName:"Piotr Krzyścin"}]},{id:"68722",title:"Molecular Markers and Their Optimization: Addressing the Problems of Nonhomology Using Decapod COI Gene",slug:"molecular-markers-and-their-optimization-addressing-the-problems-of-nonhomology-using-decapod-coi-ge",totalDownloads:746,totalCrossrefCites:0,authors:[{id:"293863",title:"Dr.",name:"Deepak",surname:"Jose",slug:"deepak-jose",fullName:"Deepak Jose"},{id:"293867",title:"Prof.",name:"Harikrishnan",surname:"Mahadevan",slug:"harikrishnan-mahadevan",fullName:"Harikrishnan Mahadevan"}]},{id:"71889",title:"Ambient Biobanking Solutions for Whole Blood Sampling, Transportation, and Extraction",slug:"ambient-biobanking-solutions-for-whole-blood-sampling-transportation-and-extraction",totalDownloads:807,totalCrossrefCites:0,authors:[{id:"311399",title:"M.Sc.",name:"Shanavaz",surname:"Nasarabadi",slug:"shanavaz-nasarabadi",fullName:"Shanavaz Nasarabadi"},{id:"312331",title:"Dr.",name:"Michael",surname:"Hogan",slug:"michael-hogan",fullName:"Michael Hogan"},{id:"316859",title:"Mrs.",name:"Armaity",surname:"Fouts",slug:"armaity-fouts",fullName:"Armaity Fouts"},{id:"316860",title:"Mr.",name:"Alejandro",surname:"Romero",slug:"alejandro-romero",fullName:"Alejandro Romero"},{id:"316873",title:"Dr.",name:"James",surname:"Nelson",slug:"james-nelson",fullName:"James Nelson"}]},{id:"72074",title:"The Chemistry Behind Plant DNA Isolation Protocols",slug:"the-chemistry-behind-plant-dna-isolation-protocols",totalDownloads:3814,totalCrossrefCites:4,authors:[{id:"74521",title:"Dr.",name:"Rajkumar",surname:"Kishor",slug:"rajkumar-kishor",fullName:"Rajkumar Kishor"},{id:"309357",title:"Prof.",name:"Pranab Behari",surname:"Mazumder",slug:"pranab-behari-mazumder",fullName:"Pranab Behari Mazumder"},{id:"318351",title:"Ph.D. Student",name:"Jina",surname:"Heikrujam",slug:"jina-heikrujam",fullName:"Jina Heikrujam"}]},{id:"69775",title:"Principles of Chromatography Method Development",slug:"principles-of-chromatography-method-development",totalDownloads:4313,totalCrossrefCites:5,authors:[{id:"304950",title:"Prof.",name:"Chandrasekar",surname:"Kuppan",slug:"chandrasekar-kuppan",fullName:"Chandrasekar Kuppan"},{id:"309984",title:"Mr.",name:"Narasimha S",surname:"Lakka",slug:"narasimha-s-lakka",fullName:"Narasimha S Lakka"}]},{id:"68865",title:"Online Automated Micro Sample Preparation for High-Performance Liquid Chromatography",slug:"online-automated-micro-sample-preparation-for-high-performance-liquid-chromatography",totalDownloads:966,totalCrossrefCites:0,authors:[{id:"88155",title:"Prof.",name:"Hiroyuki",surname:"Kataoka",slug:"hiroyuki-kataoka",fullName:"Hiroyuki Kataoka"},{id:"308808",title:"MSc.",name:"Atsushi",surname:"Ishuzaki",slug:"atsushi-ishuzaki",fullName:"Atsushi Ishuzaki"},{id:"308809",title:"Dr.",name:"Keita",surname:"Saito",slug:"keita-saito",fullName:"Keita Saito"}]},{id:"67828",title:"Preparation, Characterization and Ion-Exchange Properties of an Organic-Inorganic Composite Cation Exchanger: Polyaniline-Bi(III) Iodovanadate and Catalytic Properties of Bi(III) Iodovanadate Inorganic Ion Exchanger",slug:"preparation-characterization-and-ion-exchange-properties-of-an-organic-inorganic-composite-cation-ex",totalDownloads:684,totalCrossrefCites:0,authors:[{id:"302929",title:"M.Sc.",name:"Sathiyaseelan",surname:"K",slug:"sathiyaseelan-k",fullName:"Sathiyaseelan K"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247041",firstName:"Dolores",lastName:"Kuzelj",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247041/images/7108_n.jpg",email:"dolores@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6621",title:"Electrophoresis",subtitle:"Life Sciences Practical Applications",isOpenForSubmission:!1,hash:"f56a7cec216143862d31daab30431b44",slug:"electrophoresis-life-sciences-practical-applications",bookSignature:"Oana-Maria Boldura and Cornel Baltă",coverURL:"https://cdn.intechopen.com/books/images_new/6621.jpg",editedByType:"Edited by",editors:[{id:"189429",title:"Prof.",name:"Oana-Maria",surname:"Boldura",slug:"oana-maria-boldura",fullName:"Oana-Maria Boldura"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10111",title:"Apolipoproteins, Triglycerides and Cholesterol",subtitle:null,isOpenForSubmission:!1,hash:"29ed0d776c8e3b2af0e50b3c4cf5e415",slug:"apolipoproteins-triglycerides-and-cholesterol",bookSignature:"Viduranga Y. Waisundara and Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/10111.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10544",title:"Antioxidants",subtitle:"Benefits, Sources, Mechanisms of Action",isOpenForSubmission:!1,hash:"fe6b71d10cd19383975798a81e63e57b",slug:"antioxidants-benefits-sources-mechanisms-of-action",bookSignature:"Viduranga Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/10544.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7004",title:"Metabolomics",subtitle:"New Insights into Biology and Medicine",isOpenForSubmission:!1,hash:"35a30d8241442b716a4aab830b6de28f",slug:"metabolomics-new-insights-into-biology-and-medicine",bookSignature:"Wael N. Hozzein",coverURL:"https://cdn.intechopen.com/books/images_new/7004.jpg",editedByType:"Edited by",editors:[{id:"189233",title:"Prof.",name:"Wael N.",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9057",title:"Cellular Metabolism and Related Disorders",subtitle:null,isOpenForSubmission:!1,hash:"7e65b3987fb8ae8eb483224fadd5fac7",slug:"cellular-metabolism-and-related-disorders",bookSignature:"Jesmine Khan and Po-Shiuan Hsieh",coverURL:"https://cdn.intechopen.com/books/images_new/9057.jpg",editedByType:"Edited by",editors:[{id:"140755",title:"Dr.",name:"Jesmine",surname:"Khan",slug:"jesmine-khan",fullName:"Jesmine Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10220",title:"Metabolomics",subtitle:"Methodology and Applications in Medical Sciences and Life Sciences",isOpenForSubmission:!1,hash:"521fce75254e23855ed5c3ff4a4f1ea1",slug:"metabolomics-methodology-and-applications-in-medical-sciences-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10220.jpg",editedByType:"Edited by",editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9346",title:"Computational Biology and Chemistry",subtitle:null,isOpenForSubmission:!1,hash:"badcbbb6482c3717b111d4a16b1fdac3",slug:"computational-biology-and-chemistry",bookSignature:"Payam Behzadi and Nicola Bernabò",coverURL:"https://cdn.intechopen.com/books/images_new/9346.jpg",editedByType:"Edited by",editors:[{id:"45803",title:"Ph.D.",name:"Payam",surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8176",title:"DNA Methylation Mechanism",subtitle:null,isOpenForSubmission:!1,hash:"1de018af20c3e9916b5a9b4fed13a4ff",slug:"dna-methylation-mechanism",bookSignature:"Metin Budak and Mustafa Yıldız",coverURL:"https://cdn.intechopen.com/books/images_new/8176.jpg",editedByType:"Edited by",editors:[{id:"226275",title:"Ph.D.",name:"Metin",surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editedByType:"Edited by",editors:[{id:"40482",title:null,name:"Rizwan",surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10219",title:"Fundamentals of Glycosylation",subtitle:null,isOpenForSubmission:!1,hash:"f1f82214d3d5460d3b52c4d8e87e3858",slug:"fundamentals-of-glycosylation",bookSignature:"Alok Raghav and Jamal Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10219.jpg",editedByType:"Edited by",editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48796",title:"Ionizing Radiation Detectors",doi:"10.5772/60914",slug:"ionizing-radiation-detectors",body:'
Ionizing radiation has always been present in the natural environment. Sources of ionizing radiation are commonly found in water, air, soil, or manmade devices. However, ionizing radiation is situated in the electromagnetic spectrum outside the region of perception of the human eye - visible region - and it has no smell. Thus, it cannot be detected by the human senses. Since the ionizing radiation is not easily detected and it also possesses high ionizing power and penetration strength, it constitutes a risk to human health when it is found outside of its acceptable limits. The adverse effects of ionizing radiation on human health need to be systematically monitored in order to prevent damage, overexposure, or even death. The ability to identify sources of radiation, specific radioisotopes, and measure quantities of radiation is crucial to environmental monitoring, radiation protection, and development of security programs.
Ionizing radiation cannot be directly measured. The detection is done indirectly using an ionizing radiation sensitive material, which constitutes the basis when developing sensors or detectors of radiation. However, there is not a radiation detector that can measure all types of radiation efficiently. The interaction of radiation with matter depends on the nature of the radiation: the electromagnetic radiation, light charged particles, neutrons, or heavy charged particles. Therefore, a detector which efficiently measures a particular kind of radiation could be completely inappropriate for others. The nature of the sensitive material’s response to the ionizing radiation and its energy range to be measured will determine the type of detector.
When the ionizing radiation interacts with a sensitive material constituting the detector device, it generates a signal, which can be a pulse, hole, light signal, and many others [1]. The detection of the radiation depends on the particular interactions with the sensitive material, and there are three main and well-established possibilities to relate and categorize the induced radiation with the generated signal in the detector, as shown below:
The generated signal from the incident radiation is created by the counting of the number of interactions occurring at the sensitive volume of the detector. In this case, the detector is called
The incident radiation generates a signal that measures the energy that has reached the detector. The detector is named
The detector measures the average energy incident on a specific point of the sensitive volume, that is, the absorbed radiation dose. Such detectors are known as
Radiation detectors have to two key principles: (i) ionization and (ii) excitation. In ionization-based detectors, electron-ion pairs are generated by enough energy when ionizing radiation reaches atoms of a sensitive material and removes orbital electrons (Figure 1).
Ionization Process.
In excitation-based detectors, bounded electrons are raised to an excited state in the atom or molecule when part of the radiation energy is transferred to them (Figure 2). The electron excited to these states returns to its ground state emitting light in the UV-Visible region.
Excitation process.
When a high-energy radiation passes through a medium, it undergoes ionization and releases charges that depend on the excitation radiation energy. In gas detectors, the ionization appears as electron-ion pairs and these charge carriers can be attracted and collected by electrodes [2-4].
In gases, ionized particles can travel more freely than in a liquid or a solid. Therefore, in gas counters the space between the electrodes is filled with a gas and when a voltage is applied an electric field is created by the potential difference between the electrodes. Electrons and positively charged gas atom of each ion pair accelerate to anode and cathode, respectively, resulting in an electric signal (current) in the circuit that can be correlated to radiation exposure and displayed as a value (Figure 3).
Current mode.
Another detection possibility is to acquire the incident radiation signal through pulses (pulse counting mode). In this case, the number of ion-electron pairs generated corresponds to the intensity of the detected pulse (Figure 4). The ionization chamber, proportional counters, and Geiger-Muller counters are examples of gas detectors. Typically, ionization chambers are used in the current mode while proportional counters and Geiger-Muller use the pulse mode to measure the radiation.
Pulse mode counting.
The average energy W required to produce an electron-ion pair varies (20-45eV) depending on the gas used. The average energy W can be expressed as [5]:
where
The number of ion pairs generated varies according to the applied voltage for constant incident radiation. The voltages can vary widely depending upon the detector geometry and the gas type and pressure. The different voltage regions are indicated schematically in Figure 5. There are six main practical operating regions, where three are useful to detect ionizing radiation.
Six-region curve for gas-filled detectors.
Primary ionization
Secondary ionization
where X is the gas atom, p is the charge particle traversing the gas, and e is the electron.
The number of ion pairs collected divided by the number of ion pairs produced by the primary ionization provides the gas amplification factor. For example, if 50, 000 ion pairs are collected and 10, 000 ion pairs were initially produced, the gas amplification factor is 5. The gas amplification factor varies according to the applied voltage across the electrodes and it also varies with the geometry of the detector. However, it is constant at a specific voltage and for any kind of radiation or energy of radiation. Then, if a voltage increases the gas amplification factor increases proportionally, but if a voltage remains constant the gas amplification factor also does not change. Because of this amplification process, proportional counters are extremely sensitive (<10KeV) while ionization chambers are limited by discriminate particles of >10 keV energy.
The pulse height depends on the detected particle energy. Therefore, different energies of radiation can be distinguished by analyzing the pulse height. For instance, the size pulse from an alpha particle, for a fixed applied voltage, will be larger than the signal from a beta particle. Thus, particle identification and energy measurement are possible by using proportional counters.
Scintillators are materials that exhibit luminescence when excited with ionizing radiation. The scintillation mechanism can be explained by means of the energy-band theory. In this model, a band gap separates the valence band (filled band) of conduction band (usually empty). Thus, via the ionization process, an electron can be excited from the valence band to the conduction band or to the energy states located close to the mid-gap (impurities). An exciton is formed when the electron removed remains electrostatically bonded with the hole left in the valence band. The electron excited to these states decays to the ground state emitting light in the visible range of the electromagnetic spectrum [6]. This visible light interacts with the photocathode and electrons are emitted by photoelectric effect and/or Compton scattering, producing a current in the circuit. However, scintillation detectors produce currents of low intensity and only after the advent of photomultiplier tubes has its use become feasible. In this way, the electrons emitted by photocathode are multiplied by the dynodes in the photomultiplier tube and collected in the anode. As a result, a measurable electrical current is acquired. The output pulse of electrons of a scintillation detector is proportional to the energy of the original radiation.
A good scintillator material is highly efficient in converting incident radiation energy into light. The scintillator must also be transparent to its own light emissions and it must have a short decay time because the transparence is important to a good light transmission to reach the electrode, and the short decay time allows fast response.
Decay time is the time required for scintillation emission to decrease to e-1 of its maximum and it can be described as the sum of two exponential components [7, 8]:
where
The fast component is related to the fluorescence and the slow component is related to phosphorescence or afterglow. These two types of radiative processes (photon emission processes) are well-established in the literature and they are illustrated by the Perrin-Jablonski diagram in Figure 6. The fluorescence occurs in the de-excitation process between singlet electronic states (same spin multiplicity), and it is responsible for the majority of emitting radiative processes due to short decay time (10-9s). The phosphorescence occurs in de-excitation process between different multiplicity states (triplet-singlet), in times the order of 10-3s. The singlet states are represented by Sn and triplet states by Tn, where n = 0, 1, 2, 3..., and n = 0 corresponds to the ground state [8, 9]. Other type of delayed emission is the delayed fluorescence (DF), which is a reverse intersystem crossing T1->S1, it is induced thermally or by collisions. Afterglow competes with the scintillation process leading to a decrease of total efficiency of conversion of ionizing radiation into light, and it should be avoided in scintillation detectors [10].
Perrin-Jablonski diagram.
Scintillation detectors are composed of two basic types of detector materials: organic and inorganic. Inorganic scintillators have scintillation properties due to their crystalline structure or due to activators (impurities), which enable scintillation process. Organic scintillators do not need crystal structure or activators because each molecule can act as a scintillation center. The difference in their behavior comes to the different ranges of energy levels excited by the incident radiation. Inorganic scintillators usually respond more slowly than organic scintillators, but they are more efficient than organic materials for detecting ionizing radiation because of their greater density and higher average atomic number. However, organic materials are more flexible and cheaper than inorganic material, leading to numerous scientific efforts to increase their performance in recent decades.
Currently, the scintillation detectors have excellent sensitivity to excitation energy and fast response time. Different types of scintillators, in different physical states (solid, liquid, or gas), are used to measure selective types of ionizing radiation. They are widely used in medical applications for image generation (X-rays and tomography), as well as high-energy physics experiments, plant laboratories, airports security (X-rays machines), and radiation sensing for nuclear installations.
Semiconductors are materials, inorganic or organic, which have the ability to control their electronic conduction depending on chemical structure, temperature, illumination, and presence of dopants. The name semiconductor comes from the fact that these materials usually present an intermediate conductivity between conductors and insulators. Consequently, they have an energy gap less than 4eV [11]. In solid-state physics, energy gap or band gap is an energy range between valence band and conduction band where electron states are forbidden. The valence band is the region where electrons are connected to the lattice atoms. The conduction band is the region that contains the energy levels where free electrons can move through the crystal structure [12, 13]. The width of the forbidden energy band is what categorizes the material as conductor, semiconductor, or insulator (Figure 7).
There are many semiconductors in nature and others synthesized in laboratories; however, the best known are silicon (Si) and germanium (Ge). Silicon has been considered precursor to the revolution that has occurred in recent decades in the electronic area. However, germanium is more used than silicon for radiation detection because the average energy necessary to create an electron-hole pair is 3, 6eV for silicon and 2, 6eV for germanium, which provides the latter a better resolution in energy. In addition, in gamma spectroscopy, germanium is preferred due to its atomic number being much higher than silicon and which increases the probability of γ-ray interaction.
Band structure for electron energies in solids.
In semiconductor detectors, also called solid-state detectors, charge carriers are produced and collected by electrodes as in ionization chambers. However, the charge carriers are electrons and holes and not electrons and ions as in ionization chambers. When semiconductor detectors are subjected to high-energy radiation, electron-hole pairs are produced and converted into electric current.
The electron mobility in a gas counter is thousands of times greater than that of the ions. In fact, the electron mobility in semiconductors is roughly equal that of the holes and both types of carriers contribute to conductivity.
Conductivity is the inverse of resistivity and it is defined by
where
Another expression for the current density is:
where
The following equation is obtained by using Equations 3 and 4:
The ratio
The expression for the conductivity becomes:
where
A small energy is required to create an electron-hole pair in semiconductor materials (~3 eV for germanium) compared to the energy needed to create an electron-ion pair in gases (~30 eV for typical gas detectors) or to create an electron-hole pair in scintillators (~100eV) [14]. As a consequence, a great number of electron-hole pairs are produced and reach the electrodes, increasing the number of pairs per pulse and, then, decreasing both statistical fluctuation and signal/noise in the preamplifier. This generates a big advantage over other detectors and the output pulse provides much better energy resolution. Moreover, the small sensitive area used to detect radiation (few millimeters) and the high speed of charge carriers provide an excellent charge collection time (~10-7 s).
The energy resolution, R, determines the ability of the system to distinguish two energies that are very close to each other, and that constitute an important parameter in the spectral detection of ionizing radiation (Figure 8). It is commonly defined as:
where FWHM is the full-width-at-half-maximum and H0 is the peak centroid.
FWHM for a Gaussian distribution. In this case, the FWHM results related to the σ as FWHM
In order for a semiconductor to act as a radiation detector, the active area to radiation must be free of excess electrical charges (depleted). The depletion region can be formed through the use of very high purity materials like High Purity germanium (HPGe) or PN junctions. PN junctions are obtained when an n-type semiconductor (excess of electrons) is placed in contact with a p-type semiconductor (excess of holes). Then, electrons and holes diffuse from n-region to p-region and from p-region to n-region, respectively, and they recombine around the interface. The ions, which are left behind by electrons and holes that were recombined, create an electric field that will attract more electrons and holes until there is no more charge carriers to recombine (Figure 9).
At this moment, if the ionizing radiation interacts with the semiconductor in this depleted region, electrons are raised to the conduction band leaving behind holes in the valence band and producing a large number of electron-hole pairs. If a voltage is applied across the semiconductor, these carriers are readily attracted to the electrodes and current flows into circuit resulting in a pulse. The size of the pulse is directly proportional to the number of carriers collected, which is proportional to the energy deposited in the material by the incident radiation.
PN junction.
In semiconductors, if the temperature increases, electrons can be thermally excited from the valence band to the conduction band. Consequently, some semiconductor detectors must be cooled so as to reduce the number of electron-hole pairs in the crystal in the absence of radiation. Although solid-state detectors can be manufactured much smaller size than those of equivalent gas-filled detectors and they have short response time, seconds compared to the hours of TLD detectors, they are still expensive because they need to be cooled. Thus, they are used when higher resolution is required; if higher efficiency is necessary, scintillation detectors are used.
Different semiconductor materials and device arrangements are used, depending on the type of radiation to be measured and the aim of application. The types of radiation that can be measured with semiconductor detectors comprise a large range of the electromagnetic spectrum: <1 eV to ~10 MeV for photons and energies above keV for charged particles. Commonly, semiconductor detectors are employed for beta particles or gamma radiation because the heavy charged particles cause more radiation damage. They are widely used in nuclear power station electronic dosimeters and portable survey instruments in gamma spectroscopy systems.
The amount of radiation absorbed by the human body can be determined through radiation dosimetry. A dosimeter has to correlate the absorbed radiation with biological effects induced in humans. The physical quantity that quantifies this relationship is called
where
The SI unit of absorbed dose is the Gray (Gy), defined as: 1Gy = 1 J/kg. The obsolete units for dose are the rad (radiation absorbed dose) and the centigray (cGy): 1rad = 10-2 J/kg = 1cGy.
Thermoluminescent dosimeters (TLDs) are the foremost used devices for personal dosimetry. They are composed of crystal devices that emit light when are heated. The TLD reading device is able to calculate the amount of light released during heating, which can then be correlated with the absorbed dose received and stored by the TLD dosimeter.
A useful model of the thermoluminescence mechanism is provided in terms of the band model for solids. Thus, when a thermoluminescent crystal is exposed to ionizing radiation, electrons are quickly promoted to their conduction band through direct excitation process. However, some electrons are trapped by metastable states and when the material is subjected to thermal stimulation, they have enough energy to leave the trap states and recombine with holes that were left in the valence band. The excess of energy in this process is conserved by radiative deactivations emitting light, which is proportional to the absorbed ionized dose [16].
Figure 10 shows a model of energy bands with electronic transitions in thermoluminescence process.
Model of energy bands in thermoluminescence process. (a) excitation and generation of electron-hole pair, (b) trapping, (c) de-trapping by thermal stimulation, (d) recombination. T is the center of the trap, R is the recombination center, EF is the Fermi level, and Eg is the bandgap.
The heating of the TLD dosimeter to assess the accumulated radiation dose is done in temperature ramps and each temperature value is associated with a value of the light intensity (Figure 11). Thus, through thermoluminescence photons emission it is feasible to establish a curve of thermoluminescence intensity versus temperature that is called TL glow curve. The area under the TL glow curve is directly proportional to the number of emitted photons and, thereby, proportional to radiation dose received.
TL glow curve of LiF:Mg, Ti measured with a TLD reader at a low heating rate.
Thermoluminescent crystals possess good levels of deeper traps that require greater thermal energy to release the carrier, thus they can accumulate energy for a longer period of time. Many materials are purposely doped to create impurity levels; others such as LiF (lithium fluoride) already have natural impurities and intrinsic defects. Other substances are used as materials for thermoluminescent dosimetry, for example, CaSO4:Dy (calcium sulfate doped with dysprosium); the CaSO4:Mn (calcium sulfate doped with manganese); and CaF2 (fluorite).
A thermoluminescent crystal can be used as dosimeter only if it presents high emission efficiency, good stability on temperature ranges of work, high resistance to environmental variations and linear radiation dose-response.
The principal advantages of TLD dosimeters are:
High sensitivity over a wide dosage range.
Small and varied forms.
Can be used several times.
They are equivalent to human tissues.
They have high degree of accuracy and precision in the measurements.
Among the disadvantages are:
Infeasibility of rereading.
The necessary instrumentation for the measurement has high cost.
Sensitivity varies with the time after irradiation.
Readings and the results are not immediate.
They present fading for sensitivity to light and moisture.
In chemical dosimetry, the ionizing radiation produces chemical changes in the medium that can be measured by using a suitable measuring system. Oxidation, reduction, and chemical dissociation are the principal mechanisms of chemical detectors.
The intensity of these changes is characterized by radiation chemical yield (G), which is defined as a number of molecules, ions, atoms, or free radicals of product or dissolved reaction components for 100 eV of absorbed energy, or even defined as the mean number of moles produced/destroyed by mean energy transmitted to the matter [2]:
where
The most widely used chemical dosimetry standard is the Fricke dosimeter. The Fricke dosimetry system provides a reliable means for measurement of absorbed dose to water by ferrous ions oxidation. The dosimeter consists of a solution with 1 mmol/l ferrous sulfate (or ferrous ammonium sulfate), 1 mol/l NaCl, and 0.4 mol/l sulfuric acid. When the Frick solution is irradiated, the ferrous ions, Fe2+, are oxidized by radiation to ferric ions, Fe3+ [17]. The ferric ion concentration is determined by spectrophotometry, which measures absorption peaks at wavelengths of 224 nm and 304 nm. In this case, G-value is defined as the number of moles of ferric ions produced per joule of the energy absorbed in the solution. The usual range of the Fricke dosimeter is from 30Gy to 400 Gy.
Calorimetric methods measure the dose of radiation by measuring the temperature increase in a medium. Although the basic principles of calorimeters are very simple, they have technical problems to ionizing radiation sensing and they have been viewed as complex to make and operate [18]. Small temperature response to low dose of radiation and necessity of extremely thermic isolation are some problems of this type of detector. Therefore, few laboratories use these detectors; however, efforts have been made in order to increase their performance.
Despite the well-established known techniques and detectors for ionizing radiation, the field still has a lack of new materials and sensor devices. The use of ionizing radiation in industrial processes, in clinics, hospitals, universities, and research centers has increased considerably and consistently in the past few years. In addition, the inspection and monitoring of aircrews is a current concern and should be mandatory to all flights in the near future. Thus, the development of new materials sensitive to ionizing radiation and robust devices, faster and more accurate, is of crucial importance to this research field and its direct applications.
In the last two decades, there was an effort to combine the energy sensitivity found in semiconductor devices with the low cost and flexibility of organic semiconductor-based conjugated polymers. In this fashion, oligomers and polymers such as PPV (poly p-phenylene vinylene) [19], MEHPPV (poly (2-methoxy, 5- (2 -ethyl-hexoxy) -p-phenylene vinylene) [20, 21], P3HT (poly 3-hexylthiophene) [22, 23], and pentacene [24] have become the target of research and are potential candidates for new perspectives to ionizing radiation sensing. Use of these materials, which have known properties and have been studied, have played an important role in the study of ionizing radiation effects on polymers (Figure 12).
Chemical structure of polymers: (a) PPV (b) MEHPPV (c) P3HT and (d) pentacene.
In the interaction of high-energy radiation with semiconductors, primarily there occur excitations and ionizations that generate ions and electrons. The electrons generated (primary electrons) will interact again with the environment and generate secondary excitations that will produce electron-hole pairs. Therefore, the efficiency of the material with the highly energetic radiation will depend on its stopping power or absorption efficiency, the limited capacity of producing electron traps and its ability to grow large areas. Semiconductor polymers generally have high efficiency luminescence and absorption in the UV-Vis region; they can also form films producing large areas, and, hence, they constitute a new alternative in the area of radiation detectors.
In the field of electromagnetic radiation, there are several possible interactions of the most energetic radiation with matter: mainly, the photoelectric effect, Rayleigh scattering, Compton effect, and production of electron-positron pairs. Eventually, these interactions can lead to temporary or permanent modifications. These changes are called effects of degradation. They may be superficial when there is change only in the physical appearance (color, transparency, etc.) or they may be structural.
Polymer degradation effects have been reported such as scission [25], cross-linking [26, 27], and photobleaching [28]. In scission, there occurs break of the main chain into smaller molecules, reducing its molecular weight. In cross-linking, due to link between two polymer chains or between two big radicals, there is a formation of an insoluble portion with increasing molecular weight. Decrease in viscosity and increase of ductility are effects of scission. Increase of hardness, viscosity, and brittleness are some of the macroscopic effects of cross-linking. Photobleaching occurs when the fluorescent signal of a fluorophore disappears permanently due to photon-induced chemical damage and covalent modification.
Degradation effects are often considered problems such as the oxidation effects of medical implants based on polyethylene after irradiation sterilization, for example[29]. However, the ionizing radiation degradation effects are not sometimes bad results. Many times they are desirable, as in the creation of integrated circuits, decreasing the molecular weight to make a material compatible with the other, in polysaccharides, for use in health care products, cosmetics, textile and food industry, or even to increase viscosity or resistance materials, for instance [30-32].
Polymer interaction with gamma radiation has been studied since the 1970s and different effects have been observed depending on the chemical structure of the polymer and the energy range used for irradiation process. The mechanisms involved in the interaction of gamma radiation with polymers have not been fully elucidated, but changes in conductivity and optical properties have been reported mainly in polyaniline [33] and on PPV and its derivatives. The results indicate the feasibility of using semiconductor polymers as gamma radiation detectors.
The interest in the use of conductive polymers in this area is due to the adjustability of its luminescence properties and conductivity, and they also have a lower cost than inorganic semiconductors. However, the use of polymers as radiation sensors is recent and few studies are reported in the literature. Among them, the highlighting results are P3HT as the active layer of OLEDs and OFETs for sensing radiation [20], and the MEH-PPV in halogenated solutions for detection of low doses of gamma radiation.
Studies using MEH-PPV have demonstrated that the use of solutions is effectively more sensitive to gamma radiation than solid state. Current knowledge shows that polymeric materials are more sensitive to gamma radiation when solubilized in halogenated solvents [34]. The halogens are well-known to have large cross section for interaction with gamma radiation.
The main results obtained on irradiated P3HT devices were a significant improvement in conductivity with increasing gamma irradiation dose. Polythiophenes irradiated with gamma radiation go to a polaronic state and then stabilized for a bipolaronic and neutral state of the chain, where they remain in the oxidized state. Undoubtedly, the result enables the P3HT as radiation sensor and it leads to a great leap regarding the use of OLEDs and OFETs devices in the space area. However, the order of radiation dose used on P3HT (kGy) is very high for using in personal dosimetry (order of ten grays), for example.
In contrast, studies of MEH-PPV with gamma radiation at this order of dose have shown significant results compatible with personal dosimetry area. However, the results were limited to the use of the polymer in solution, due to the effect being dependent on the solvent. In other words, the effect is indirect: the radiation breaks the solvent chain and the radicals derived from solvent attack break the polymer chain. The attack occurs at the vinylene, breaking the double bond and leading to the conjugation break displayed as blue shift in optical measurements. This experimental result has been corroborated by theoretical studies and the attack mechanism on vinylene is well-established [35]. Figure 13 shows MEHPPV after ionizing radiation interaction.
MEHPPV nonirradiated (0Gy) and irradiated at 30, 60, and 90Gy doses of gamma radiation.
The principal disadvantage of MEH-PPV in the interaction with the gamma radiation is its limitation of use in optoelectronic devices due to the effect of this range of dose not included the utilization in film. Moreover, with the breaking of the chain and the conjugation length, the MEH-PPV has not sufficient extension of conjugation for a good conduction of electrons and neither has any chain doping as P3HT, which is also a limiting factor for their use in optoelectronic devices. Thus, its use is limited as optical sensor radiation in solution and can not be reused. Recalling that, despite limited use, this type of sensor provided an important advance due to measurement method be cheaper and affordable than other types of detectors. Semiconductor detectors based in conjugated polymers do not need be cooled, the instrumentation used for reading is simple, and polymers are cheaper and easier to process.
In short, a radiation detector is a device used to track, detect, or identify high-energy particles or radiation from natural or artificial sources such as cosmic radiation, nuclear decay, particle accelerators, and X-rays.
Since it is not possible for a single detector to measure all types of radiation efficiently, various types of detectors made of different materials are used in the sensing of specific types of radiation. The main types of radiation detectors and applications are summarized in Table 1.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\tIonization of air or other gases (ionization chambers). | \n\t\t\tDirect measurement of exposure or exposure rates. | \n\t\t
Ionization of gas with multiplication of electrons in detector (proportional counters and Geiger-Muller). | \n\t\t\tDetection of individual events, i.e., alpha or beta particles and secondary electrons, for measuring activity (in samples or on surfaces); detecting low intensities of X-rays or gamma radiation. | \n\t\t|
\n\t\t\t\t | \n\t\t\tLight emission (solids). | \n\t\t\tPhotons; energy spectrometry; e.g., NaI (Tl). | \n\t\t
Alpha particles; detection only (ZnS (Ag)). | \n\t\t||
Light emission (liquid). | \n\t\t\tDetection of low-energy gamma and beta emitters, for measuring activity (in low-activity sources). | \n\t\t|
\n\t\t\t\t | \n\t\t\tIonization, excitation. | \n\t\t\tDetection of individual events (alpha and beta particles); e.g., diodes and silicon barrier detectors. | \n\t\t
Detection and energy measurement of photons or particles; primarily for laboratory use; gamma spectroscopy; X-rays; dosimeters; e.g., Germanium detectors. | \n\t\t||
\n\t\t\t\t | \n\t\t\tExcitation of crystal; light release by heating. | \n\t\t\tPersonal and environmental exposure monitoring. | \n\t\t
\n\t\t\t\t | \n\t\t\tIonization of Ag Br. | \n\t\t\tPersonal exposure monitoring. | \n\t\t
Instrument types and its applications.
Despite the variety of sensor devices, the demand for new materials that can detect ionizing radiation efficiently and at as low a cost as possible is essential to the development of this area. In this context, many other materials like polymeric semiconductors, for instance, have been target of research in the last years (section 2). They constitute promising materials for radiation sensing, although no polymeric device for radiation detection is still available for practical use at a large scale.
Unfortunately, the field lacks new sensor devices that are more practical, fast, and accurate for the maintenance and safety of human life in the natural environment as well as in the complex areas of modern civilization.
Sports participation, both at the amateur and professional levels, is widespread among all age groups. However, the rising number of athletes and increasingly intense competition have yielded both positive results, such as better quality of life and performance, and adverse effects, such as a higher risk of sports injuries. The etiology of sports injuries includes a set of intrinsic and extrinsic risk factors, such as the specific characteristics of each athlete and environmental influences. Intrinsic risk factors include biological characteristics, such as gender, age, weight, height, strength and flexibility asymmetries, anatomical asymmetries, incomplete recovery from previous injuries, joint instability, and the athlete’s psychological state. Extrinsic risk factors include the type of sport, environmental conditions, the level of sport (amateur/professional), the athlete’s skill level, training errors, the playing surface, the lack of protective equipment, and the specific kinetic protype of each sport.
Sports injuries are endemic to high-energy sports due to tissues being overloaded during specific sports activities. More specifically, repeated exposure to the high mechanical loads associated with sports activities induces pathological postural adaptations and causes injuries to myofascial structures. Such adaptations and microtraumas alter the physical properties of the connective tissue, leading to myofascial scarring and fibrosis. Furthermore, inflammatory responses to this tissue damage can alter the structure of myofascial tissues, leading to pain and hypersensitivity and thus limiting an athlete’s joint range of motion, strength, and performance. The structural adaptations discussed above can adversely affect an athlete’s functionality, decreasing their performance and increasing the risk for sports injuries.
Various therapeutic strategies have been used to prevent and treat the sports pathologies and dysfunctions associated with biomechanical deficits and overuse. The most popular therapeutic interventions in sports include soft tissue techniques applied directly by the therapists by using their hands (sports massage) or by using specific equipment, as in the case of instrument-assisted soft tissue mobilisation (IASTM) techniques, as well as muscle flossing techniques and cupping therapy. Sports massage, IASTM, flossing, and cupping techniques are applied to an athlete’s soft tissues to treat myofascial dysfunctions, alleviate hypersensitivity in myofascial tissues, release scar tissues and adhesions, decrease pain, improve functional performance and joint range of motion (ROM), reduce delayed-onset muscle soreness (DOMS), and accelerate recovery. This chapter reviews the studies regarding the effectiveness of the aforementioned soft tissue techniques for sports-injury prevention and rehabilitation and for improving athletes’ functional capacities and physical properties.
Sports massage involves performing soft tissue-manipulation techniques on athletes to maximise performance and prevent or repair injuries. The sports massage techniques aimed at maximising performance and preventing injuries are divided into pre-competition (i.e. before the sports event) and post-competition massage techniques. When a sport includes breaks, massage is often performed during such breaks [1].
Massage aimed at repairing sports injuries is mainly applied in the physiotherapy laboratory during rehabilitation. The techniques of applying pressure and mobilising an athlete’s anatomical structures are delivered either by the physiotherapists using their hands or special massage equipment.
Sports massage is predominantly based on the techniques based on the Swedish massage techniques and includes manipulations such as slips-kneading, kneading, twisting, percussion, and vibration [1, 2]. The main difference between sports and classic massage is that the two forms of massage serve different purposes and are therefore applied differently. For example, in most cases, sports massage is applied with more pressure because athletes’ bodies require a more aggressive approach due to sports adjustments. In addition, there are manipulations, such as stripping massage (i.e. special transverse-friction massage), that are used almost exclusively in the rehabilitation of sports injuries [1, 2].
The effects and goals of sports massage are divided according to the mechanical, physiological, nervous, reflexive, and psychological outcomes. The massage goals vary depending on the period when they are applied (before, during, or after the sports event). For example, the massage techniques applied before the sports event are mainly meant to prepare athletes by increasing performance and reducing the risk of sports injuries [3].
The positive effects of pre-game massage on athletic performance are based on the theoretical principles that massage yields the following benefits: (a) increased skin and muscle temperature; (b) increased metabolism; and (c) increased blood circulation, which improves oxygen transport to tissues and leads to a better balance in blood flow [4]. The preventive effects of sports massage in terms of injuries have been attributed to (a) improved passive and active elasticity, (b) increased muscle activation and performance, and (c) the psychological stimulation of the athlete [5]. However, some of these theoretical effects of pre-game massage have not been strongly supported by research as relevant research findings have been limited or yielded conflicting results.
The relationship between massage and an increase in surface temperature has been confirmed by previous research. Several studies have shown that massage via the rubbing of the skin and the subcutaneous tissues increases the local skin and intramuscular temperature and leads to hyperaemia [6, 7, 8, 9, 10, 11, 12, 13, 14]. It has been reported that even a 6-minute massage of the back significantly increased the area’s temperature, which returned to pre-massage levels after 10 minutes [11].
Similar effects were confirmed in a study conducted by the Laboratory of Therapeutic Exercise and Sports Rehabilitation at the University of Patras, Greece, which found that sports massage in the gastrocnemius and quadriceps areas of young basketball players increased the skin temperature of said areas, with the temperature returning to normal after about one hour. This finding is of special clinical interest because increased tissue temperature reduces pain and increases the metabolic rate, which can improve the elasticity of collagen and result in better functionality as well as a possible prevention of musculoskeletal injuries. Finally, increased skin temperature leads to an increase in vascular permeability and better oxygenation [15].
However, although pre-game massage increases surface and intramuscular temperature, such changes may not directly affect local blood and lymph circulation as studies have shown that massage can lead to significant [5, 14, 16, 17], moderate, or even zero increase in blood circulation [18, 19, 20, 21, 22].
The conflicting research findings on the effects of massage on blood circulation can be attributed to several factors. First, the positive effects of massage on skin temperature seem to subside relatively quickly [10]. Second, the increase in intramuscular temperature does not seem to exceed 2.5 points in muscle depth, meaning that it does not significantly affect the main vessels of the muscle [11].
In addition, researchers have mainly investigated deep effleurages rather than other manipulations. Moreover, the main techniques used for evaluating blood circulation (venous occlusion plethysmography, the Xenon-washout technique, Doppler ultrasound) have run into significant validity problems. Another researched factor that clearly influences the effect of massage on blood circulation is the intensity of the pressure applied to the tissues. Evidence supports the academic and sensible theory that classic relaxation massage leads to lower blood pressure, while intense athletic massage leads to increased blood pressure [17].
The relationship between massage and improved elasticity has been confirmed by several studies [23, 24, 25, 26, 27, 28, 29] that have shown positive muscle-elasticity adjustments after the application of massage. Studies have found that pre-game massage is associated with a relatively short-term (up to 24 hours) improvement in the elasticity of hamstrings [23, 24, 25, 29, 30] and plantar flexors of the ankle joint [31] in athletes and non-athletes. Improved muscle elasticity is causally related to the massage techniques applied. Intense and dynamic movements, such as intense deep-friction [30] in combination with eccentric exercise [32, 33], contributes more effectively to a short-term increase in tissue elasticity. This improvement is attributed to the reduction of myotendinous stiffness and increased stretch tolerance [30].
In contrast to elasticity improvements, scholars have not conclusively determined the effects of massage on the production of tension (strength), with some studies reporting a relative increase of post-exercise muscle strength after massage as assessed by various laboratory and functional tests with college students [27] and volleyball athletes [34], and other studies showing a significant reduction in post-exercise strength produced immediately after the application of massage [23, 24, 25, 29, 30, 35].
Finally, pre-game massage seems to significantly improve athlete psychology, with massage being associated with a reduction in pre-game stress in athletes, which contributes to better performance [36] by reducing stress hormones (cortisol and norepinephrine) and increasing serotonin levels [36, 37].
The manipulations performed to prepare an athlete for a sporting event mainly involve effleurages (superficial and deep), petrissage (flat petrissage), stimulating rolling, and kneading. These manipulations are mainly applied to the athlete’s muscular groups that will be overloaded and will receive more use depending on the movement patterns of each sport. Considering that almost all sports, under normal conditions, are related to and depend on the movement of the lower extremities, the pre-game massage is logically focused mainly on the preparation of the muscles of the lower extremities. In addition, pre-game massage should also prepare (a) the body’s central point (trunk), which provides the biomechanical basis for the initiation and proper execution of athletic movements, and (b) the upper limbs in cases of sports whose movement patterns include extensive use of the upper limbs (handball, volleyball, basketball, etc.).
Raising the temperature of the soft tissues before exercise is imperative to prepare the muscles for the intense loads that will follow in the game [38]. Massage can improve the temperature of the superficial muscle tissues, thus better preparing the athlete to enter the sports field [39].
The Laboratory of Therapeutic Exercise and Sports Rehabilitation at the Department of Physiotherapy at the University of Patras, Greece, has obtained positive results when it comes to studying massage and pre-game preparations: Charalampopoulou et al. concluded that soft tissue techniques, including IASTM and massage, can raise the skin temperature in basketball players for 15 minutes after the massage application [15].
In sports that involve a break or breaks between competitive efforts, massage can improve athletic performance by allowing the athletes to temporarily cool-down (physically and psychologically) and preparing (activating) them for the continuation of the competition [4]. The main problems that an athlete faces during intense and competitive exercise are physical as well as psychological. Physical adaptations include muscle pain, increased muscle tone (spasm) of particularly stressed limbs, and edemas-hematomas. Psychological adaptations depend on various factors (the competition’s importance, half-time result, etc.) and may include either personal competitive stress for better individual performance or psychological pressure for better team performance and goal achievement (in the case of team sports).
Depending on the manipulations chosen and the way they are performed (slowly superficially, superficially, in-depth), sports massage during half-time can lead to initial cool-down and reduction of the painful muscle tone and muscle excitability and to neuromuscular readiness as the game recommences [40, 41]. Moreover, massage can also reduce competitive stress and calm the athlete [42, 43, 44].
The research efforts that have examined this parameter have, despite their disadvantages (no control group, small sample of examinees), highlighted a significant correlation between massage and the improvement of the athlete’s psychological parameters [42, 43, 44]. In terms of psychological rehabilitation, massage has been associated with a significant improvement in an athlete’s sense of physical recovery, an outcome that is very important for the continuation of competitive efforts [45, 46, 47].
The main problems that an athlete faces after the competition (depending on its intensity and duration) are (a) fatigue from the accumulation of metabolism and waste products, (b) the accumulation of edemas and possible hematomas resulting from the excessive use of and strain on the athlete’s anatomical structures, and (c) the immediate and delayed onset muscle soreness and the significantly increased muscle tone (spasm) of the limbs. Due to these effects and adjustments, athletes’ physical properties (muscular strength, endurance, elasticity, proprioception) decrease significantly, and recovery should indirectly aim to correct these issues.
Post-competition massage as a means of passive rehabilitation can significantly contribute to an athlete’s recovery and reduce the aforementioned physiological adaptations, but to a lesser extent than active recovery (e.g., aerobic running) [48, 49, 50].
Initially, by increasing blood flow to the muscles [51, 52, 53], massage can speed up the removal of useless metabolism products after exercise and improve the transport of oxygen, protein, and other nutrients necessary for muscle recovery and restart, leading to homeostasis [51, 54, 55, 56]. In addition, massage can significantly reduce feelings of fatigue and muscle pain as massage can help reduce the concentration of carcinogens (lactic acid) after exercise by improving blood flow to the muscles and subsequently increasing oxidation [57, 58, 59]. However, it should be noted that although massage leads to a significant reduction in the levels of lactic acid in the blood after intense exercise (compared to passive rest), active recovery (aerobic running) [49, 50, 59] the combination of massage and active rehabilitation [60] clearly exhibits better metabolic effects. In addition, massage has been shown to contribute positively to athletes’ (soccer players’) recovery in terms of heart rate and blood pressure compared to passive rest, with soccer players exhibiting better heart-rate recovery after lower extremity massage compared to active and passive recovery modes [50].
In summary, increased lymphatic circulation and venous resuscitation resulting from the application of sports massage after intense exercise can reduce the swelling and hematomas created during the exercise. The aforementioned adaptations, together with the local increase in temperature, can contribute to reduced muscle tone and improved relaxation [61, 62, 63]. The reduction of the concentration of hematomas and edemas caused by intense and prolonged exercise leads to a reduction of pain through a corresponding reduction of hydrostatic pressure and irritation of the sensory receptors of pain [64]. These outcomes of post-game massage are well supported by several studies that have shown that massage can reduce the intensity of DOMS in athletes and thus contribute to faster and better recovery [63, 65].
Finally, massage has been found to lead to faster recovery of strength levels compared to passive movement or rest as 5 minutes of massage (rolling, flat kneading) resulted in better grip strength of healthy people (non-athletes) after maximum exercise [16, 66]. Two additional studies examining the recovery of isokinetic power in the quadriceps muscle described improvement and increase of isokinetic power after 6-minute and 10-minute massages [67, 68].
The soft tissue techniques of sports massage used to treat sports injuries are mainly applied in the physiotherapy laboratory during the rehabilitation phase. These techniques are performed by the sports physiotherapists as well as the athletes themselves in the case of self-massage with special equipment, such as a foam roller.
An important difference between therapeutic sports massage and the classic therapeutic massage has to do with the fact that in the case of therapeutic sports massage, the massage is not applied exclusively to the massaged area in a relaxed position but can also be combined with active (concentric-eccentric) or passive movement of the involved muscle group [33].
The main goals of therapeutic sports massage are the mobilisation of hematomas-edemas in the subacute phase of sports injuries, the alignment of injured tissue fibres, the release of adhesions, and the recovery of the elasticity of various tissues [69]. The main techniques used to achieve these objectives are the linear techniques of classic massage, except in the case of regaining elasticity and adhesion release, which requires special massage techniques, such as stripping massage, transverse friction massage, and aggressive forms of myofascial massage-mobilisation, such as foam roller, IASTM, and cupping therapy.
Massage can play an important role in repairing sports injuries by helping to reduce the concentration of both primary edemas caused by the injury and secondary edemas caused by increased hydrostatic pressure in the injured area [3, 70]. In addition, in cases where the injury has damaged several blood vessels and has led to a significant accumulation of hematomas, massage can mobilise this accumulation of blood and drastically reduce the healing time of an injury through the application of mechanical pressure to the vessels and tissues in general and the subsequent increase in local blood and lymphatic circulation [4, 26, 71, 72, 73].
By applying mechanical pressure to the tissues and vessels, massage mobilises the content of the valvular veins and the lymphatic channels in a more central direction (towards the heart), thus facilitating the entry of the interstitial fluid into the vessels [74, 75]. At the same time, vascular congestion can be reduced via the reduction of the median pressure, thus improving the diffusion-supply of the tissues [13].
Improved drainage of fluids in the injured area also restores the normal osmotic pressure of the interstitial fluid, a process that is equally important to the vascular adjustments seen after the application of massage. These theoretical effects of massage on venous return and lymphatic circulation are supported by findings from studies of animals, which have shown that massage significantly increased lymphatic circulation compared to diathermy and active and passive exercise when applied to dogs [76, 77] and pigs [78].
The massage that aims to mobilise fluid elements (edema/hematoma) in athletes has a clearly accelerated-aggressive form, and its execution (pressure, direction, massaging point) can lead to high pain (VAS scale 7–8) during application. This aggressive massage technique uses straight manipulations and mainly deep slips and special massaging techniques (stripping massage) because circular strokes are not allowed in the acute stage of injuries and in the phase when the fibres of the injured tissue are immature or, even worse, have not been restored yet.
The basic manipulations (effleurage-kneading) begin more centrally than the site of the injury. Through the mobilisation-increase of the venous return of large vessels, the massage techniques are meant to “empty” the injured areas and to create and environment (negative pressure) suitable for the mobilisation of the edema-hematoma located in the periphery of the injured area. Immediately afterwards, massage techniques are once again applied directly to the injury using straight manipulations from the periphery towards the centre. Through direct mechanical effect, swelling and hematomas are directed towards the trunk or from deeper to more superficial layers, which ultimately facilitates hematomas removal. These manipulations have been described in a study by the Laboratory of Therapeutic Exercise and Sports Rehabilitation at the University of Patras, Greece, in which aggressive massage techniques were performed to speed up the recovery of a professional football player after a 1st degree hamstring strain. The results of the study were encouraging as recovery time was reduced to almost half of the usual time and the footballer resumed full training and participation in games in 15 days. The soft tissue techniques used to remove the edema were stripping massage, cupping therapy, and IASTM techniques [79].
The application of the manipulations described above leads to significant pain due to pressure on the injured tissues and increased hydrostatic pressure, which, in turn, increases the irritation of the sensory receptors of pain. However, the aggressive approach drastically accelerates the reduction of the accumulation of metabolic substances and blood-hematoma and enables the process of fibre re-adhesion to begin sooner. The application time ranges between 5 and 10 minutes, and the pressure/intensity of the techniques must be alternated (mild to intense/deep-surface) to be more tolerable for the athlete. Immediately after the mobilisation of the edema-hematoma, cryotherapy should be applied to reduce (via vasoconstriction) the amount of the mobile fluids that will return to the massaged-injured area.
In the subacute phase of the injury, when the swelling-hematoma has been removed and tissue re-adhesion and scar tissue deposition begins, massage also plays a critical role in facilitating the proper repair of the injured area. The application of straight manipulations (deep kneading, soothing rolling, tapping linear strokes) in the direction that the fibres of the injured anatomical area are normally arranged in creates a tendency for linear re-adhesion as well as reduction of adhesive deposition and scarring.
Proper alignment and reduction of the amount of hard connective tissue in the injured area reduces the loss of elasticity and strength experienced in the presence of adhesions [1, 2, 80], thus reducing the risk of the recurrence of injury [2]. In addition, massage can “dissolve” fibrous deposits that can impede the flow of interstitial fluid by clogging tiny pores of the fascia, which restores the circulation of interstitial fluid [3].
These significant effects of massage on tissue repair have been supported by research on animals that have technically suffered muscle strain and received massage as basic treatment in randomised studies. The massaged muscles had normal microscopic illustrations in contrast to the non-massaged muscles, which showed histological adaptations such as (a) dislocation of the myofibrils, (b) significant deposition of connective tissue, (c) persistent hematomas, (d) increased number of fibroids in the connective tissue, and (e) enlargement of the blood vessels accompanied by the thickening of their walls [63].
DOMS generally describes the tenderness and pain of muscles that develop hours or even days (24–72 hours) after specialised and demanding sports training (eccentric-plyometric) [81].
This negative adaptation after intense exercise leads to decreased elasticity of the anatomical structures involved (upper and lower extremities) and to clearly reduced muscular strength [5, 65]. Several theories for DOMS have been proposed, including the activation of free nerve endings by (a) lactic acid accumulations, (b) muscle and ligament injuries, (c) exit to the intracellular space of intramuscular enzymes, and (d) prostaglandins [81]. Histological examinations of muscle cells after eccentric loadings have revealed structural cellular adaptations (migration of cellular elements) that cause local edema and inflammation [65, 82].
In addition, connective tissue injury is evidenced by the high concentration of hydroline and hydroxylysine in athletes’ urine after eccentric exercise [81]. Theoretically, and based on the previous chapters, the fact that massage can move fluids from the intercellular and interstitial spaces and reduce the accumulation of metabolic products [48, 51, 54, 55, 56] may have a positive effect on reducing DOMS. This is confirmed by several studies that have shown that massage can significantly reduce muscle sensitivity because of eccentric-plyometric muscle activity and contribute to improving the rate of tissue healing and the reduction of cellular inflammation by improving the supply of nutrients and oxygen to the tissues [34, 56, 65, 83, 84, 85].
Moreover, massage can lead to faster recovery of muscle strength, which is significantly reduced after eccentric exercise [20, 81, 86, 87].
Finally, several studies have recorded reduced muscle soreness, lower perception of fatigue, and improved perceived recovery [16, 20, 45, 88] at variable intervals after the massage, ranging from 24 to 96 hours.
The creation of painful trigger points is one of the painful syndromes and injuries of the musculoskeletal system that have been observed after intense exercise. These points refer to localised areas of high sensitivity that are usually located within a stretched muscle bundle. The clinical feature of these myofascial trigger points is that they cause intense focused pain during compression as well as other symptoms, such as reported pain, muscle dysfunction, and autonomic phenomena.
The causes of such pain triggers include biomechanical body abnormalities, injuries, chronic inflammation, and psychological factors but may also be the result of tissue overuse during exercise [89, 90]. Beyond focused pain, the negative adaptations caused by the existence of areas of excessive tension and ischemia include reduced elasticity and deficient strength production and muscle function in general [89]. In addition, pain triggers have been blamed for causing painful muscle spasms (cramps) during exercise [91].
The treatment of such pathological signs of pain includes, among others, techniques that combine cryotherapy and stretching (stretch and spray), electrotherapy (tens, ultrasound), and massages of various kinds [90, 92].
The treatment of painful trigger points has been part of classic massage techniques and therapy techniques that rely on ischemic compression of trigger points, leading to the deactivation of said points and to the reduction of pain symptoms. In particular, the application of massage in the form of either classic-Swedish massage [93, 94] or ischemic pressure [95] significantly reduced the intensity of pain in patients with painful trigger points in the trunk (lumbar and cervical region) [96] and the thigh muscles (hind thighs) [97].
Ischemic pressure deactivates painful trigger points via two main mechanisms: ischemia and the following hyperaemia as well as local and focused tissue stretching. Ischemic pressure initially creates a reduction in local perfusion; once the pressure is removed, hyperaemia occurs in the area, which can help clear the muscle of inflammatory derivatives and pain metabolites, thus desensitising the nerve endings. In addition, constant local pressure on the trigger points will lead to continuous stretching that can potentially “solve” painful adhesions and reduce muscle spasms [89].
In a study by Fousekis et al. at the University of Patras, ischemic pressure techniques were applied to amateur soccer athletes on painful lower-back trigger points to evaluate the effectiveness of these techniques in pain. From the very first week of application, the participants reported a decrease in pressure sensitivity according to VAS and a pain reduction as ischemic pressure was effective for treating trigger points [98].
Mobilisation techniques using special tools made of stainless steel are a form of aggressive mobilisation of soft tissues. There are several variations of such tools (Myobar, Fibroblaster, Smart Tools, Rockblade, Hawkgrip), but the Graston and ERGON tools are the most prevalent ones in research.
Soft tissue techniques using special equipment require tools designed to adapt to the various tissues, shapes, and curves of the body. These tools are used for the following purposes: (a) to detect and release scar tissue, adhesions, and fascial sclerosis; (b) to increase blood circulation; and (c) to reduce muscle tone and pain [99, 100, 101].
Significant advantages have been reported in using such tools rather than one’s hands when evaluating the abnormalities of tissues, although a stainless-steel tool is inferior to the human hand in the first stage of the standard evaluation, which involves tissue palpation for the assessment of temperature, humidity, edema, and muscle spasms in the superficial tissues of the body [102].
Massaging the tissues with special tools enhances a therapist’s sense and information about the condition of the tissues as the fatty areas of the therapist’s fingers that come in contact with the patient’s body compress the tissues, while the tools have a narrower edge to separate them [102, 103].
According to the manufacturers, the tools act as percussion instruments: when in contact with hard fibrous tissue, they transmit an echo (vibration sensation) to the therapist’s hand, improving their ability to recognise and evaluate adhesions and fibrous deposits [101, 102]. In addition, the use of such tools allows the mobilisation of deep and hard structures without overloading the therapist’s fingers.
In particular, IASTM techniques in conjunction with cross-friction massage can reduce scar tissue deposition after an injury, reduce the hardness of preformed connective tissue deposits, and facilitate the healing of chronic overuse injuries by re-damaging tissues and linearly re-connecting them [96, 101, 104, 105, 106, 107].
IASTM techniques also appear to lead to changes in microvascular morphology and hyperaemia [108] and to increased fibroblastic mobilisation and activation, an adaptation that leads to regeneration and repair of the injured collagen [101, 104, 107]. These adaptations have been supported by studies with animals and individual case studies with humans [100, 101, 103, 104, 105, 106, 108, 109].
For example, a study of mice that underwent controlled rupture of the medial lateral ligament in their knee and were treated with an IASTM treatment showed that the ligaments that received the Graston massage were stronger (43.1%), harder (39.7%), and could absorb up to 57.1% and more load until break point compared to untreated ligaments. In addition, specific ligaments during the microscopic analysis showed better arrangement and alignment of the newly formed collagen [108].
Such findings were attributed by the same researchers to increased perfusion and the change in the microvascular morphology observed after the application of IASTM techniques to the inner lateral ligaments of mice [109].
There are several IASTM techniques, the most well-documented being the Graston and ERGON techniques. ERGON IASTM TECHNIQUE is an innovative therapeutic approach that combines static and dynamic manipulations of the body’s soft tissues with special clinical equipment meant for the treatment of pathological conditions. The technique takes its name from the Greek word “ergon,” which etymologically means “what a person produces with their work, manual or mental, scientific or artistic.”
With the ERGON IASTM TECHNIQUE, the therapist can induce short-term and long-term adaptations to the soft tissues of the human body. The techniques follow specific application rules and parameters. Poor application of techniques and non-compliance with the correct parameters may lead to the opposite result and cause injuries to the treated area.
The general evaluation of the patient is followed by the evaluation of the injured anatomical area using the ERGON TOOLS. A scan of the soft tissue is performed with a special diagnostic application technique, namely the Ergon Technique Scanning Procedure (ETSP). ETSP is based on a specific use of the ERGON TOOLS that allows detecting scar tissue, adhesions, and fascial hardening/shortening.
Several studies have shown the beneficial effects of the ERGON IASTM TECHNIQUE in sports rehabilitation. In recent years, techniques that rely on stainless steel tools have been gradually accepted by therapists. More and more researchers are developing treatment protocols to investigate the usefulness of such techniques in various musculoskeletal and sports pathologies.
A study by the Laboratory of Therapeutic Exercise and Sports Rehabilitation at the University of Patras, Greece, involved performing aggressive massage techniques to speed up the recovery of a professional football player after a 1st degree hamstring strain. The results of the study were encouraging because the combination of stripping massage, cupping therapy, and IASTM techniques reduced the recovery time to a to almost half of the standard recovery time [110].
Myofascial pain reduction after IASTM application has long been theoretically connected to the following three mechanisms: (a) local temperature and blood flow increase, (b) localised tissue manipulation and stretching, and (c) reduction of fascial adhesions and restrictions [111, 112, 113, 114].
The importance of ERGON techniques for reducing pain has been investigated by Fousekis et al. in 2016, who reported an immediate reduction in pain and pressure sensitivity in soccer players with trigger points in the lumbar area [98].
Furthermore, deep pressure may mask the perception of pain, possibly in connection with endorphins [115, 116]. Using IASTM, applying deep pressure becomes easier as the tools’ edges are harder than the tips of a therapist’s fingers.
In sports rehabilitation, increasing blood circulation and tissue temperature are strategic goals for the proper preparation of athletes before a game or a practice session.
The tool angle used when treating tissue should be considered for a more targeted treatment of specific pathologies. Research shows that a greater angle of application results in higher tissue temperature for longer periods of time. More specifically, temperature value and permanence have been examined at 20o, 60o, and 90o application angles. The temperature increased with each application angle but was higher at the 60o and 90o angles. It is worth noting that at 60o and 90o angles, the temperature rise was almost the same. In conclusion, if the goal of the treatment is to maintain increased temperature for a long time, a greater angle, such as a 90o angle, is advisable [79].
In addition, soft tissue techniques using IASTM have been shown to be more effective at raising temperature in basketball players after 15 minutes of application compared to the use of massage and foam rollers [15].
One of the most noteworthy outcomes of ERGON IASTM techniques is the effect that such techniques have in the therapy of remote areas – that is, when techniques are applied in one anatomical area to induce adaptations in a different one.
This therapeutic approach is based on the existence of 12 specific myofascial meridians (fascia lines) that control the human body, as proposed by Thomas W. Myers [116]. Fibres are interconnected along each myofascial meridian collagen, resulting in the continuity of many functions, such as muscle relaxation.
Myofascial release techniques that use the ERGON IASTM TECHNIQUE improve the elasticity of muscles in adjacent areas. Two studies showed improved elasticity in hamstrings and hip abductors following treatments in the trunk and the upper part of the lateral line (ribs and quantratus lumborum), respectively.
One study showed improved elasticity in hamstrings following treatment aimed at the trunk area of the body. More specifically, 60 university students with shortened hind thighs performed the “sit and reach test” once a week for one month. Participants were divided into three groups: in the first treatment group, manipulations were performed on the hamstrings; in the second treatment group, on the trunk; finally, the third group was the control group, with participants receiving no treatment. In each session, the participants from all groups were evaluated in terms of hamstring elasticity using an angle meter in the straight leg raise (SLR) test. Statistical analysis showed that both treatment groups improved hamstring elasticity in four weeks [117].
A second study showed improved hip-abductor elasticity following treatment in the upper part of the lateral line (ribs and quantratus lumborum). Participants received one treatment per week for six weeks to increase the elasticity of hip abductors. The techniques were applied to the upper part of the lateral line (ribs and quantratus lumborum), to the lower part of the lateral line (the iliotibial band), and, finally, to the entire lateral line. Elasticity improved almost to the same degree in all three groups [118].
Furthermore, the effect of soft tissue mobilisation on the remote parts of the myofascial meridian can extend to the interconnection of non-adjacent anatomical areas. As shown in a study conducted by the Laboratory of Therapeutic Exercise and Sports Rehabilitation at the Department of Physiotherapy at the University of Patras, Greece, there was a significant improvement in hip abductor elasticity and an increase in the hip abduction ROM following applications on scalene muscles [111].
Therefore, in their clinical practice, therapists should include the IASTM treatment of remote areas and points that connect through the fascia lines during the acute phase of the injury. Such immediate interventions will ensure that the elasticity of the treatment area is improved or maintained without the pain and discomfort that would otherwise be caused by direct treatment of the actual injured area.
The ERGON IASTM techniques improved the ROM and athletic performance in in 15 professional volleyball athletes, who underwent ERGON treatment once a week for a total of three weeks. The athletes performed specific tests before and after each intervention, which included measuring the ROM of flexion and the internal and external rotation using an angle meter as well as carrying out shoulder functional assessments using the functional throwing performance Index test (FTPI) and the one-hand shot put performance test (OSP). The results showed that the intervention with the ERGON IASTM TECHNIQUE led to better outcomes in improving the ROM compared to the foam roller and the elastic bandage [119].
ERGON techniques can also be combined with neuromuscular exercises aimed at improving the supraspinatus tendinosis. The study by Fousekis et al. in 2017 provided primary evidence that the mobilisation of soft tissue in combination with specialised therapeutic exercise can offer faster therapeutic results in the ROM and in the reduction of pain [120].
In conclusion, the ERGON IASTM TECHNIQUE is a new technique that, based on the latest research evidence, can contribute significantly to sports rehabilitation. More specifically, it enables therapists to improve the ROM, reduce pain, improve the performance of athletes, increase the temperature of the tissues, and improve blood circulation within a few sessions.
The elastic ischemic bandage is another popular tool in the rehabilitation and prevention of sports injuries. Initially, applications of the ischemic bandage were aimed at improving the performance of athletes. The technique involves an elastic band, made of rubber-latex material, with which the therapist applies an ischemic pressure to the treated limb. The size of the bandage depends on the size of the anatomical structure. Techniques are usually performed in combination with kinesiotherapy or joint mobilisation techniques.
The technique results in multiple effects that require further research. Seemingly, it produces several hemodynamic and biomechanical adaptations.
Hemodynamically, there is an immediate reduction in local blood flow. The removal of the bandage is followed by sharp hyperaemia that increases fibroblastic activity. These normal hemodynamic adjustments after the application of the bandage contribute to (a) the regeneration and restoration of the injured collagen, (b) the removal of inflammation derivatives and pain metabolites, and (c) the desensitisation of the nerve endings and thus to the reduction of local pain and sensitivity [121, 122].
Biomechanical adaptations include compressing and decompressing tissues and correcting the position of the joints and the posture of patients [123, 124].
Research has shown that ischemic bandaging has positive impacts on improving the ROM. More specifically, researchers have evaluated the use of the ischemic bandage for the dorsal flexion ROM and noted an immediate improvement [123, 125].
Also, two more studies have found a significant increase in the ROM of the humerus joint after using the ischemic bandage [125, 126]. The use of the ischemic bandage has also been shown to have positive impacts on athletic performance. More specifically, the application of 2′ on the ankle joint brought about an improvement in jumping ability and in acceleration in 52 and 69 athletes, respectively, with this improvement being maintained for 45′ [127, 128]. Finally, a study performed in 2018 found that the use of the ischemic bandage had a positive impact on DOMS [129].
In conclusion, the muscle flossing technique seems to be a basic or additional treatment tool for the rehabilitation and prevention of sports injuries. Although it is a new technique that needs to be researched further, the ischemic bandage seems to improve the peripheral joints ROM, DOMS, and athletic performance.
The negative pressure massage technique involves the use of suction cups, which, when applied to targeted areas of the body, lead to myofascial decompression, in contrast to the adaptation observed during classic massage manipulations, when the soft tissue layers are compressed.
There are various techniques for applying cupping therapy. The most prevalent are the static application, which involves small incisions being made in the skin (wet cupping), and the dynamic application, which involves the suction cups being moved to adjacent tissues after application.
Theoretically, the effectiveness of the technique is based on the decongestion and suction of blood and other components that accumulate in deep tissues, the removal of which leads to increased arterial and lymphatic circulation and relief from painful muscle hypertension. During the application of this technique, the created negative pressure leads to the decompression of the myofascial area and the movement of blood and other components to the superficial tissues. This can help in pathological conditions in which congestion of inflammatory extravasations and toxins, such as deep accumulations of blood and swelling or the presence of myofascial adhesions and fibrosis and the presence of pain trigger points [130, 131].
The main mechanism behind the use of cupping therapy involves vascular-blood adaptations. In particular, the decompression of the injured areas and the removal of inflammatory agents and blood can lead to a local increase in blood and lymphatic circulation and thus to better oxygenation and tissue metabolism [130]. Cupping therapy has also been associated with a decrease in pathological conditions, such as migraines [132] fibromyalgia [133], neck pain, arm pain and back pain [131, 133, 134, 135], and carpal tunnel syndrome [136]. The reduction of pain observed after the application of cupping therapy is based on the reduced irritation of the pain receptors due to the reduced concentration of edema and hematomas in the tissues [5].
In addition, local vasodilation can lead to increased parasympathetic activity and local muscle relaxation [130, 137]. It should also be noted that no research has shown negative adaptations in the human body due to the use of cupping [131, 138]. A study by Liu et al. to control the skin temperature after cupping therapy at acupuncture points in patients with neck pain showed an immediate rise in temperature after the suction cups were removed from the skin. Afterwards, the temperature decreased gradually, with the temperature returning to pre-treatment levels after 30 minutes [139].
For static application, suction cups are placed on the skin to create negative pressure for a period of 5–15 minutes, depending on the athlete’s tolerance. The application is done without using an emollient. The patient will initially feel a superficial discomfort that will gradually change into a feeling of deep heat.
The application can be done for all areas of the human body as there are cups of many sizes.
Cupping therapy can be used either for pain trigger points or for an area of general sensitivity (e.g. back pain).
Local application can help move hematomas-swellings from deeper layers of tissue to the surface and is used in the treatment of muscle strains. This technique is applied in combination with stripping massage (using hands or IASTM tools) and is particularly effective in mobilising post-traumatic edema-hematomas.
Initially, cupping therapy is applied directly to the injured tissues to move the edema-hematomas to the surface. This is followed by deep massage applied from the periphery towards the centre of the body by hand or using special tools, such as the ERGON TOOLS. This step is performed to mobilise accumulations. The research by Fousekis et al. describes in detail the procedure that was used for an athlete with a hamstring strain, which reduced the recovery time by 50% [110].
In addition, the local application of cupping therapy can be used in combination with stretching to increase elasticity. For example, to increase the elasticity of the IT band, 4–5 suction cups can be applied along the band, which allows the band to be stretched. Immediately after the removal of the cups, strong circular signs of ecchymosis appear on the body, pointing to the hyper-circulation of the area and a mild skin injury. Depending on the metabolism of each athlete, these signs take 2–7 days to disappear.
Cupping therapy is also used in combination with kinesiotherapy and simultaneous movement of the cups on the tissue. For example, to increase the elasticity of the hamstrings, the cups can be applied to the treated area, and while the athlete performs a self-stretch, the therapist moves the cup in the area.
Dynamic cupping therapy is becoming increasingly known for improving the elasticity of the injured area and improving the range of motion [140].
In the dynamic treatment, while the suction cup is being moved, it is necessary to use a special massage emollient. Immediate vasodilation leads to increased blood flow, which facilitates healing as well as lengthening and improving short muscle movement [139].
Research conducted to evaluate the elasticity of the hamstrings showed a significant increase in motion range of the hip and the knee via the SLR test, although the strength of knee flexion was not increased according to the tests performed on an isokinetic dynamometer [141].
Scholars have reported that cupping therapy is useful in reducing pain. A study by Fousekis et al. in 2016 demonstrated the effectiveness of cupping procedures in reducing pain in soccer players with painful trigger points in the lumbar area of the spine, with the participants showing an immediate reduction in pain and pressure sensitivity [98].
Massage that involves the use of cups is gradually becoming more widespread in the treatment of myofascial problems in athletes. In addition, it is used as an aggressive approach to reduce swelling and hematomas. For the application of this type of massage, the use of emollient is required so that the cups can be moved smoothly.
The application is done by initially placing the suction cups upon the treatment area. When it comes to areas of intense spasms, suction cups can remain in static application for a few minutes (5–15) before being moved. The application for the reduction of edema and hematomas and their suction towards the surface of the skin can be done either locally as mentioned earlier or by movement. In the latter case, the application must be carried out in two phases, as is done in muscle stripping massage. The first phase involves placing the cups on the periphery of the injury and the moving the suction cups towards the centre at a very slow pace. The second phase involves applying the cups directly on the injured area and again moving the suction cups towards the centre in an attempt to move the deep hematomas and swellings to the centre and towards the surface.
Soft tissue techniques have been used since ancient times for the treatment of various pathologies. Their goal is to promote health and wellness through the body’s response to mechanical effects such as compression, sliding and decompression of tissues. Therapists apply various techniques either manually or with the use of tools to achieve therapeutic goals. Techniques are divided, depending on the goal, in appeasing and stimulating. Mechanisms activated during soft tissue techniques as well as the effects of the techniques on different pathological conditions have been and still are being systematically researched. It is crucial for therapists to select the appropriate technique to evaluate and treat tissues. For this, good knowledge of the parameters of each technique is needed as well as setting specific treatment objectives such as improving elasticity, increasing ROM, reducing pain and spasm, and increasing athletic performance. Massage, ERGON IASTM TECHNIQUE, KINETIC FLOSSING and cupping therapy are commonly used for the rehabilitation of various musculoskeletal conditions. In order to achieve optimal results, these are often part of treatment protocols which include additional techniques and/or therapeutic exercise. All four have been proven to serve well either as basic or secondary treatment options for sports injuries prevention and rehabilitation.
More specifically, sports massage is beneficial before, during and after the game. Before the game, therapists apply specialized techniques to prepare muscles for the intense loads, especially on the limbs, or/and to prepare the central body (trunk) which constitutes the biomechanical basis for the initiation and proper execution of movement. During the game, sports massage mainly serves as psychological support for tackling competitive stress as well as for improving performance at the next phase of the game. Through stimulating aesthetic receptors, it reduces painful muscle tone and muscle excitability while at the same time improving the sense of physical recovery. Massage after the game increases blood circulation, reduces the feeling of fatigue, and muscle pain, reduces the intensity of DOMS in athletes and consequently contributes to faster and fuller recovery. Massage after the game has been found to lead to faster recovery of strength levels compared to passive movement therapy. It can also play an important role in repairing sports injuries through reducing the concentration of edemas caused especially when in combination with cupping therapy, and IASTM techniques. Finally, massage is particularly useful in scar tissue treatment and painful trigger points mobilization.
ERGON IASTM TECHNIQUE allows sports physiotherapists to detect abnormalities of the soft tissue such as scars, adhesions, restrictions, trigger points via the initial scanning procedure. Post injury, ERGON IASTM TECHNIQUE is effective in mobilizing edemas, in combination with aggressive soft tissue techniques, thus speeding up recovery time. It reduces the pain through local increase of the temperature and of tissue elasticity by minimizing adhesions. Its most significant contribution is the increase of elasticity. Research done at the Laboratory of Therapeutic Exercise and Sports Rehabilitation at the Department of Physiotherapy of the University of Patras, Greece, has shown the technique’s effect in elasticity increase throughout an entire myofascial line/meridian in cases of application only in one of its parts. Lastly, ERGON contributes to the restoration of biomechanic function in combination with therapeutic exercise.
KINETIC FLOSSING is a relatively new soft tissue mobilization technique showing multiple benefits for musculoskeletal rehabilitation. Therapeutic mechanisms include hemodynamic and biomechanical adaptations. Its effects include increasing ROM, enhancing athletic performance, and reducing DOMS.
Cupping Therapy is a well-known technique used from ancient times in many cultures which utilizes negative pressure for soft tissue decompression as well as mobilizing blood and superficial tissues. Its clinical value lies in drawing hematomas-edemas from deeper layers of tissue towards the surface and removing these in combination with other forms of aggressive soft tissue techniques. In addition, cupping therapy increases elasticity of tissues and improves ROM of injured joints, and contributes to pain reduction.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22421},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33697}],offset:12,limit:12,total:135704},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",topicId:"23"},books:[{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality - Structure and Social Processes",subtitle:null,isOpenForSubmission:!0,hash:"cefab077e403fd1695fb2946e7914942",slug:null,bookSignature:"Ph.D. Yaroslava Robles-Bykbaev",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11780",title:"Volunteering",subtitle:null,isOpenForSubmission:!0,hash:"008a5fc8005ea6b9228cfe39f9521abe",slug:null,bookSignature:"Ph.D. Diann Kelly",coverURL:"https://cdn.intechopen.com/books/images_new/11780.jpg",editedByType:null,editors:[{id:"325207",title:"Ph.D.",name:"Diann",surname:"Cameron Kelly",slug:"diann-cameron-kelly",fullName:"Diann Cameron Kelly"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",subtitle:null,isOpenForSubmission:!0,hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",slug:null,bookSignature:"Ph.D. Sage Arbor and Dr. Tafline C. Arbor",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",editedByType:null,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Global Crises",subtitle:null,isOpenForSubmission:!0,hash:"5f61f975031e13ee705d8b5853f1aa58",slug:null,bookSignature:"Dr. David Eller",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:[{id:"476616",title:"Dr.",name:"Jack",surname:"Eller",slug:"jack-eller",fullName:"Jack Eller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12250",title:"Citizen Science - Methods, Approaches and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"655a28c11339d0891d964ca336d4e076",slug:null,bookSignature:"Dr. Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/12250.jpg",editedByType:null,editors:[{id:"313084",title:"Dr.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11769",title:"Multiculturalism and Interculturalism",subtitle:null,isOpenForSubmission:!0,hash:"6c4bda24f278d74f943f2155f13f4d73",slug:null,bookSignature:"Dr. Muhammad Mohiuddin, Dr. Tareque Aziz and Dr. Sreenivasan Jayashree",coverURL:"https://cdn.intechopen.com/books/images_new/11769.jpg",editedByType:null,editors:[{id:"418514",title:"Dr.",name:"Muhammad",surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11778",title:"Correctional Facilities and Correctional Treatment - International Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"a933550a6966a04e4677a4c0aea8f5b2",slug:null,bookSignature:"Prof. Rui Abrunhosa Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11778.jpg",editedByType:null,editors:[{id:"198691",title:"Prof.",name:"Rui",surname:"Abrunhosa Gonçalves",slug:"rui-abrunhosa-goncalves",fullName:"Rui Abrunhosa Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:8},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"582",title:"Machine Learning and Data Mining",slug:"information-and-knowledge-engineering-machine-learning-and-data-mining",parent:{id:"92",title:"Information and Knowledge Engineering",slug:"information-and-knowledge-engineering"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:155,numberOfWosCitations:159,numberOfCrossrefCitations:154,numberOfDimensionsCitations:297,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"582",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8141",title:"Social Media and Machine Learning",subtitle:null,isOpenForSubmission:!1,hash:"155aa6c54dc411b5d2a1498f10f9417e",slug:"social-media-and-machine-learning",bookSignature:"Alberto Cano",coverURL:"https://cdn.intechopen.com/books/images_new/8141.jpg",editedByType:"Edited by",editors:[{id:"200724",title:"Dr.",name:"Alberto",middleName:null,surname:"Cano",slug:"alberto-cano",fullName:"Alberto Cano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2746",title:"Theory and Applications for Advanced Text Mining",subtitle:null,isOpenForSubmission:!1,hash:"ed74b8719e654014932e764fe1e57816",slug:"theory-and-applications-for-advanced-text-mining",bookSignature:"Shigeaki Sakurai",coverURL:"https://cdn.intechopen.com/books/images_new/2746.jpg",editedByType:"Edited by",editors:[{id:"150787",title:"Prof.",name:"Shigeaki",middleName:null,surname:"Sakurai",slug:"shigeaki-sakurai",fullName:"Shigeaki Sakurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1358",title:"Knowledge-Oriented Applications in Data Mining",subtitle:null,isOpenForSubmission:!1,hash:"ab9e02a9453e1c7bd85182eb3f322e11",slug:"knowledge-oriented-applications-in-data-mining",bookSignature:"Kimito Funatsu",coverURL:"https://cdn.intechopen.com/books/images_new/1358.jpg",editedByType:"Edited by",editors:[{id:"16715",title:"Prof.",name:"Kimito",middleName:null,surname:"Funatsu",slug:"kimito-funatsu",fullName:"Kimito Funatsu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"30",title:"New Fundamental Technologies in Data Mining",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"new-fundamental-technologies-in-data-mining",bookSignature:"Kimito Funatsu",coverURL:"https://cdn.intechopen.com/books/images_new/30.jpg",editedByType:"Edited by",editors:[{id:"16715",title:"Prof.",name:"Kimito",middleName:null,surname:"Funatsu",slug:"kimito-funatsu",fullName:"Kimito Funatsu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"38735",doi:"10.5772/51066",title:"Biomedical Named Entity Recognition: A Survey of Machine-Learning Tools",slug:"biomedical-named-entity-recognition-a-survey-of-machine-learning-tools",totalDownloads:5134,totalCrossrefCites:23,totalDimensionsCites:46,abstract:null,book:{id:"2746",slug:"theory-and-applications-for-advanced-text-mining",title:"Theory and Applications for Advanced Text Mining",fullTitle:"Theory and Applications for Advanced Text Mining"},signatures:"David Campos, Sérgio Matos and José Luís Oliveira",authors:[{id:"72193",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Oliveira",slug:"jose-luis-oliveira",fullName:"Jose Luis Oliveira"},{id:"152991",title:"Dr.",name:"Sérgio",middleName:null,surname:"Matos",slug:"sergio-matos",fullName:"Sérgio Matos"},{id:"152992",title:"MSc.",name:"David",middleName:null,surname:"Campos",slug:"david-campos",fullName:"David Campos"}]},{id:"65993",doi:"10.5772/intechopen.84856",title:"Automatic Speech Emotion Recognition Using Machine Learning",slug:"automatic-speech-emotion-recognition-using-machine-learning",totalDownloads:4653,totalCrossrefCites:21,totalDimensionsCites:43,abstract:"This chapter presents a comparative study of speech emotion recognition (SER) systems. Theoretical definition, categorization of affective state and the modalities of emotion expression are presented. To achieve this study, an SER system, based on different classifiers and different methods for features extraction, is developed. Mel-frequency cepstrum coefficients (MFCC) and modulation spectral (MS) features are extracted from the speech signals and used to train different classifiers. Feature selection (FS) was applied in order to seek for the most relevant feature subset. Several machine learning paradigms were used for the emotion classification task. A recurrent neural network (RNN) classifier is used first to classify seven emotions. Their performances are compared later to multivariate linear regression (MLR) and support vector machines (SVM) techniques, which are widely used in the field of emotion recognition for spoken audio signals. Berlin and Spanish databases are used as the experimental data set. This study shows that for Berlin database all classifiers achieve an accuracy of 83% when a speaker normalization (SN) and a feature selection are applied to the features. For Spanish database, the best accuracy (94 %) is achieved by RNN classifier without SN and with FS.",book:{id:"8141",slug:"social-media-and-machine-learning",title:"Social Media and Machine Learning",fullTitle:"Social Media and Machine Learning"},signatures:"Leila Kerkeni, Youssef Serrestou, Mohamed Mbarki, Kosai Raoof, Mohamed Ali Mahjoub and Catherine Cleder",authors:[{id:"247090",title:"Ph.D. Student",name:"Leila",middleName:null,surname:"Kerkeni",slug:"leila-kerkeni",fullName:"Leila Kerkeni"}]},{id:"13173",doi:"10.5772/13222",title:"Glucose Prediction in Type 1 and Type 2 Diabetic Patients Using Data Driven Techniques",slug:"glucose-prediction-in-type-1-and-type-2-diabetic-patients-using-data-driven-techniques",totalDownloads:3665,totalCrossrefCites:0,totalDimensionsCites:27,abstract:null,book:{id:"1358",slug:"knowledge-oriented-applications-in-data-mining",title:"Knowledge-Oriented Applications in Data Mining",fullTitle:"Knowledge-Oriented Applications in Data Mining"},signatures:"Eleni I. Georga, Vasilios C. Protopappas and Dimitrios I. Fotiadis",authors:[{id:"14138",title:"Prof.",name:"Eleni",middleName:null,surname:"Georga",slug:"eleni-georga",fullName:"Eleni Georga"},{id:"16827",title:"Dr.",name:"Vasilios C.",middleName:null,surname:"Protopappas",slug:"vasilios-c.-protopappas",fullName:"Vasilios C. Protopappas"},{id:"16828",title:"Prof.",name:"Dimitrios",middleName:null,surname:"Fotiadis",slug:"dimitrios-fotiadis",fullName:"Dimitrios Fotiadis"}]},{id:"13162",doi:"10.5772/13683",title:"Data Mining Using RFM Analysis",slug:"data-mining-using-rfm-analysis",totalDownloads:21801,totalCrossrefCites:17,totalDimensionsCites:26,abstract:null,book:{id:"1358",slug:"knowledge-oriented-applications-in-data-mining",title:"Knowledge-Oriented Applications in Data Mining",fullTitle:"Knowledge-Oriented Applications in Data Mining"},signatures:"Derya Birant",authors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}]},{id:"13261",doi:"10.5772/13124",title:"Parallel and Distributed Data Mining",slug:"parallel-and-distributed-data-mining",totalDownloads:4361,totalCrossrefCites:8,totalDimensionsCites:10,abstract:null,book:{id:"30",slug:"new-fundamental-technologies-in-data-mining",title:"New Fundamental Technologies in Data Mining",fullTitle:"New Fundamental Technologies in Data Mining"},signatures:"Sujni Paul",authors:[{id:"13871",title:"Dr.",name:"Sujni",middleName:null,surname:"Paul",slug:"sujni-paul",fullName:"Sujni Paul"}]}],mostDownloadedChaptersLast30Days:[{id:"65993",title:"Automatic Speech Emotion Recognition Using Machine Learning",slug:"automatic-speech-emotion-recognition-using-machine-learning",totalDownloads:4654,totalCrossrefCites:21,totalDimensionsCites:43,abstract:"This chapter presents a comparative study of speech emotion recognition (SER) systems. Theoretical definition, categorization of affective state and the modalities of emotion expression are presented. To achieve this study, an SER system, based on different classifiers and different methods for features extraction, is developed. Mel-frequency cepstrum coefficients (MFCC) and modulation spectral (MS) features are extracted from the speech signals and used to train different classifiers. Feature selection (FS) was applied in order to seek for the most relevant feature subset. Several machine learning paradigms were used for the emotion classification task. A recurrent neural network (RNN) classifier is used first to classify seven emotions. Their performances are compared later to multivariate linear regression (MLR) and support vector machines (SVM) techniques, which are widely used in the field of emotion recognition for spoken audio signals. Berlin and Spanish databases are used as the experimental data set. This study shows that for Berlin database all classifiers achieve an accuracy of 83% when a speaker normalization (SN) and a feature selection are applied to the features. For Spanish database, the best accuracy (94 %) is achieved by RNN classifier without SN and with FS.",book:{id:"8141",slug:"social-media-and-machine-learning",title:"Social Media and Machine Learning",fullTitle:"Social Media and Machine Learning"},signatures:"Leila Kerkeni, Youssef Serrestou, Mohamed Mbarki, Kosai Raoof, Mohamed Ali Mahjoub and Catherine Cleder",authors:[{id:"247090",title:"Ph.D. Student",name:"Leila",middleName:null,surname:"Kerkeni",slug:"leila-kerkeni",fullName:"Leila Kerkeni"}]},{id:"13162",title:"Data Mining Using RFM Analysis",slug:"data-mining-using-rfm-analysis",totalDownloads:21808,totalCrossrefCites:17,totalDimensionsCites:26,abstract:null,book:{id:"1358",slug:"knowledge-oriented-applications-in-data-mining",title:"Knowledge-Oriented Applications in Data Mining",fullTitle:"Knowledge-Oriented Applications in Data Mining"},signatures:"Derya Birant",authors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}]},{id:"38914",title:"Ontology Learning Using Word Net Lexical Expansion and Text Mining",slug:"ontology-learning-using-word-net-lexical-expansion-and-text-mining",totalDownloads:5464,totalCrossrefCites:6,totalDimensionsCites:6,abstract:null,book:{id:"2746",slug:"theory-and-applications-for-advanced-text-mining",title:"Theory and Applications for Advanced Text Mining",fullTitle:"Theory and Applications for Advanced Text Mining"},signatures:"Hiep Luong, Susan Gauch and Qiang Wang",authors:[{id:"151702",title:"Dr.",name:"Hiep",middleName:null,surname:"Luong",slug:"hiep-luong",fullName:"Hiep Luong"},{id:"162908",title:"Prof.",name:"Susan",middleName:null,surname:"Gauch",slug:"susan-gauch",fullName:"Susan Gauch"},{id:"162909",title:"MSc.",name:"Qiang",middleName:null,surname:"Wang",slug:"qiang-wang",fullName:"Qiang Wang"}]},{id:"38385",title:"Survey on Kernel-Based Relation Extraction",slug:"survey-on-kernel-based-relation-extraction",totalDownloads:7058,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"2746",slug:"theory-and-applications-for-advanced-text-mining",title:"Theory and Applications for Advanced Text Mining",fullTitle:"Theory and Applications for Advanced Text Mining"},signatures:"Hanmin Jung, Sung-Pil Choi, Seungwoo Lee and Sa-Kwang Song",authors:[{id:"152081",title:"Dr.",name:"Hanmin",middleName:null,surname:"Jung",slug:"hanmin-jung",fullName:"Hanmin Jung"},{id:"153590",title:"Dr.",name:"Sa-Kwang",middleName:null,surname:"Song",slug:"sa-kwang-song",fullName:"Sa-Kwang Song"},{id:"153591",title:"Dr.",name:"Seungwoo",middleName:null,surname:"Lee",slug:"seungwoo-lee",fullName:"Seungwoo Lee"},{id:"153592",title:"Dr.",name:"Sung-Pil",middleName:null,surname:"Choi",slug:"sung-pil-choi",fullName:"Sung-Pil Choi"}]},{id:"40461",title:"Automatic Compilation of Travel Information from Texts: A Survey",slug:"automatic-compilation-of-travel-information-from-texts-a-survey",totalDownloads:4710,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"2746",slug:"theory-and-applications-for-advanced-text-mining",title:"Theory and Applications for Advanced Text Mining",fullTitle:"Theory and Applications for Advanced Text Mining"},signatures:"Hidetsugu Nanba, Aya Ishino and Toshiyuki Takezawa",authors:[{id:"153069",title:"Dr.",name:"Hidetsugu",middleName:null,surname:"Nanba",slug:"hidetsugu-nanba",fullName:"Hidetsugu Nanba"},{id:"155243",title:"MSc.",name:"Aya",middleName:null,surname:"Ishino",slug:"aya-ishino",fullName:"Aya Ishino"},{id:"155244",title:"Prof.",name:"Toshiyuki",middleName:null,surname:"Takezawa",slug:"toshiyuki-takezawa",fullName:"Toshiyuki Takezawa"}]}],onlineFirstChaptersFilter:{topicId:"582",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"August 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:6,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:59,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:21,paginationItems:[{id:"83000",title:"Purine and Pyrimidine Pathways as Antimalarial Targets",doi:"10.5772/intechopen.106468",signatures:"Yacoba V.T. Minnow and Vern L. Schramm",slug:"purine-and-pyrimidine-pathways-as-antimalarial-targets",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:5,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:303,paginationItems:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/280338/images/7961_n.jpg",biography:null,institutionString:null,institution:{name:"Fujita Health University",country:{name:"Japan"}}},{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"117248",title:"Dr.",name:"Andrew",middleName:null,surname:"Macnab",slug:"andrew-macnab",fullName:"Andrew Macnab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"322007",title:"Dr.",name:"Maria Elizbeth",middleName:null,surname:"Alvarez-Sánchez",slug:"maria-elizbeth-alvarez-sanchez",fullName:"Maria Elizbeth Alvarez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",country:{name:"Mexico"}}},{id:"337443",title:"Dr.",name:"Juan",middleName:null,surname:"A. Gonzalez-Sanchez",slug:"juan-a.-gonzalez-sanchez",fullName:"Juan A. Gonzalez-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico System",country:{name:"United States of America"}}},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}}]}},subseries:{item:{id:"24",type:"subseries",title:"Computer Vision",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",slug:"serestina-viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",slug:"yalin-bastanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:77,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10652",title:"Information Extraction and Object Tracking in Digital Video",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",slug:"information-extraction-and-object-tracking-in-digital-video",publishedDate:"August 17th 2022",editedByType:"Edited by",bookSignature:"Antonio José Ribeiro Neves and Francisco Javier Gallegos-Funes",hash:"d13718b2d986d058d55cf91e69bf21c0",volumeInSeries:11,fullTitle:"Information Extraction and Object Tracking in Digital Video",editors:[{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"