Two Dimensional (2D) materials has triggered to have transition metal dichalcogenides (TMDCs) emerging as a new class of materials that can control or interact with light to convert the photons to electrical signals for its attractive applications in photonics, electronics and optoelectronics. 2D materials along with gapless Graphene interact with light over the wavelength region of the different spectral regions having the short wavelength of the UV and extreme UV, Visible, near IR, mid IR and THz due to excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors. Next generation photodetectors are possible promising candidates for high sensitivity and TMDCs based photodetectors are the heart of the multitude of technologies to understand the principle of photodetection mechanisms and device performances. Phototransistors/photoconductors show wide varied detection performances with responsivities ranging from 10−7 A/W - 107 A/W on single or few layer TMDCs having response time between 10−5 s to 103 s. The semiconducting TMDCs like MoS2, MoSe2, WS2, WSe2 and ReS2 are gaining suitable applications in optoelectronic devices and the device design, mechanism and enhancing the performance of photodetectors are introduced and discussed systematically in this chapter. In spite of the growing demands on TMDC based devices the origin of the photoresponse characteristics is attractive and encouraging to understand and provide a path to the subject of investigation and guidelines for the future development of this rapidly growing field.
Part of the book: Two-dimensional Materials for Photodetector