Ice resistant oil and gas utilities.
\r\n\tMany tried to define it, and its definition is always related to those who are in power, that being explained by the fact that this power and the abuse of it precisely, gives the access to being corrupted and practicing the acts that fall under corruption.
\r\n\r\n\tWe can find various types of corruption such as bribery, lobbying, extortion, cronyism, nepotism, parochialism, patronage, influence peddling, graft, and embezzlement. Also giving or accepting bribes or inappropriate gifts, double-dealing, under-the-table transactions, manipulating elections, diverting funds, laundering money, and defrauding investors.
\r\n\tNo government is immune to corruption. According to the World Bank, “the causes of corruption are always contextual, rooted in a country's policies, bureaucratic traditions, political development, and social history”.
\r\n\tThis indeed has consequences for increasing inequality, impacts government expenditure and services, shadow economy, and crime.
\r\n\tThis book will be a collection of chapters on Corruption. It welcomes contributions related to the nature of corruption its types and how corruption is undertaken in a certain context and the ways to deal with corruption will be part of this book. We value including materials on Corruption in organizations and ways to solve it. The origins of corruption and the way to deal with corruption, how to provide solutions, and any new insights on corruption will be part of this book.
",isbn:"978-1-80356-696-2",printIsbn:"978-1-80356-695-5",pdfIsbn:"978-1-80356-697-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"9cda6d2feaa52a6d523da74f2e2d7ffb",bookSignature:"Dr. Josiane Fahed-Sreih",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11772.jpg",keywords:"Corruption, Origins, Types, Corporate Governance, Organizational Performance, Solutions, Corruption Index, Private Sector, Lebanon, Accountability, Anti-corruption, Public Policy",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 23rd 2022",dateEndSecondStepPublish:"April 20th 2022",dateEndThirdStepPublish:"June 19th 2022",dateEndFourthStepPublish:"September 7th 2022",dateEndFifthStepPublish:"November 6th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Fahed-Sreih is the director of the Institute of Family and Entrepreneurial Business and a chairperson in the Department of Management. She obtained a Ph.D. from Sorbonne University, France, and received the 2007 FFI International Award for outstanding achievement in furthering the understanding of family business issues between two or more countries. She is on the editorial board of the Journal of Family Business Management and a keynote speaker for corporate governance conferences.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih",profilePictureURL:"https://mts.intechopen.com/storage/users/103784/images/system/103784.jfif",biography:"Dr. Josiane Fahed-Sreih is a full-time associate professor of Management in the School of Business, Lebanese American University. She is the founder and director of the Institute of Family and Entrepreneurial Business and a chairperson in the Department of Management at the same university. She was previously the assistant dean. She obtained a Ph.D. from Sorbonne University, Paris, France. Dr. Fahed-Sreih is the Middle East Coordinator for the Family Firm Institute (FFI), the USA, and a family wealth and family business consultant. She received the 2007 FFI International Award for outstanding achievement in furthering the understanding of family business issues that occur between two or more countries. She has participated in and organized international conferences, workshops, and seminars. She has presented at major conferences locally and internationally and consulted on management issues in many countries, including Saudi Arabia, Dubai, Jordan, Qatar, Kuwait, Syria, Bahrain, Oman, France, Cyprus, and Lebanon. She currently sits on five boards of directors as a shareholder, two as a chairman of the board, and one as an independent director in the private sector. She is also an advisor on boards of community service organizations. \n\nShe speaks regularly to trade and professional groups and presents her research at academic conferences worldwide. She is frequently invited as a keynote speaker to the recognized family business and corporate governance conferences. Her research interests are in management, family business, the functioning of boards of directors, and corporate governance. She has published three books, several book chapters, and academic articles in international journals. She is on the editorial board of the Journal of Family Business Management and is a reviewer for Family Business Review, Corporate Governance, and Journal of Management.",institutionString:"Lebanese American University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Lebanese American University",institutionURL:null,country:{name:"Lebanon"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"440212",firstName:"Elena",lastName:"Vracaric",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/440212/images/20007_n.jpg",email:"elena@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6926",title:"Biological Anthropology",subtitle:"Applications and Case Studies",isOpenForSubmission:!1,hash:"5bbb192dffd37a257febf4acfde73bb8",slug:"biological-anthropology-applications-and-case-studies",bookSignature:"Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/6926.jpg",editedByType:"Edited by",editors:[{id:"313084",title:"Ph.D.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69938",title:"Hybrid Modeling of Offshore Platforms’ Stress-Deformed and Limit States Taking into Account Probabilistic Parameters",doi:"10.5772/intechopen.88894",slug:"hybrid-modeling-of-offshore-platforms-stress-deformed-and-limit-states-taking-into-account-probabili",body:'\nFurther development of the modern international community is going hand in hand with the intensive growth of fuel and energy raw materials consumption in all spheres of activity. Meanwhile, in the majority of on-land oil-and-gas regions, resources of oil and gas are exhausted and the possibilities of further increase of the discovered and usable economically recoverable reserves are complicated.
\nWith this knowledge in mind, lately we can see special, increasing interest in a problem of the seas and oceans’ oil and gas resources development [1, 2].
\nThe gas and oil fields are discovered in 108 countries of the world. Ultimate reserves of gas reached 172 trillion cubic meters, of oil—172 billion tons; at the beginning of the twenty-first century, the world gas production was equal t0 2.6 trillion cubic meters, while oil production was 3.3 billion tons.
\nInitial recoverable hydrocarbon resources of the World Ocean continental shelf (up to 500 m isobathic line) and the inner continental shelf are estimated equal approx. to 370 billion tons of fuel oil equivalent (TFOE), including more than 200 trillion cubic meters of free gas and about 155 billion tons of oil and condensate.
\nThe primal gas resources in water areas are concentrated within the shelf of the Northern Asia—44.5 trillion cubic meters. Its bigger part is located offshore in the Kara Sea. Offshore gas resources of Eastern Europe, North and South America and the Middle East are also comparable and considerable relative to ones in Northern Asia (21–24 trillion cubic meters).
\nIn the world, since the 1940s, the multiple sea platforms (SP) are engineered and operated with a wide range of parameters and are used for offshore petroleum and gas production. The largest of them are five platforms of the USA, Norway and Russia. They provide production at sea depths up to 2.5 km and well-drilling up to 10–13 km. About 10 platforms are in operation in Russia: on Caspian, Okhotsk seas and on the seas of the Arctic Ocean. The most significant of them are the platforms “Piltun-Astokhskaya-A (former Molikpak),” “Piltun-Astokhskaya-B,” “Lunskaya-A,” “Orlan,” “Berkut” and “Prirazlomnaya” (Figure 1). Length of already constructed offshore pipelines is about 300 km. In long term, the need of Russia in offshore projects includes the necessity to provide functioning of about 50 SPs.
\nLarge offshore platforms in Russia.
In the world history of development of the continental shelf, a number of disasters and serious accidents with catastrophic consequences occurred due to lack of attention to measures for identification and mitigation of threats for safe operation is wrote. The 15 most dramatic accidents on drilling vessels and platforms of various types (semisubmersible, submersible, mobile, stationary) happened during the last 40 years were followed by:
great loss of lives (up to 164 people) occurred due to limited space on the platform, evacuation difficulties and vulnerability of personnel to thermal fire impact and toxic effects caused by combustion products;
infilling and destruction of platforms infrastructure;
offshore areas and airspace pollution; and
vegetal and animal life demise.
Most economic direct loss suffered after the disaster on the platform in the Gulf of Mexico (USA) and was more than 20 billion dollars, while indirect losses reached 60 billion dollars; the direct economic loss suffered from flooding of the “Kol’skaya (Kola)” platform (Russia) is about 200 million dollars.
\nReview of accidents with catastrophic consequences (death of great number of people, large-scale ecological contamination or material losses) occurred on oil and gas production platforms demonstrate reduction in number during recent years. This can be explained by the platforms’ technological and design performance improvements and application of modern safety systems (Figure 2).
\nDisasters of large scale platforms in USA (a) and Russia (b).
Evaluation of information about accidents and disasters occurred on offshore drilling rigs of various types makes it possible to combine and classify all accidents in accordance with major, internally connected accidents sources (Figure 3): uncontrolled release of oil and/or gas from the well; damage of integrity of load bearing (or supporting) structures, as well as equipment failing (or malfunctioning); personnel mistakes; external impacts of technogenic (man-induced) nature (allisions with seagoing vessels, helicopters fall, subversive actions); and off-design impacts of the natural environment.
\nCharacteristic of accidents on oil and gas production platforms.
The probability of accident that may occur during a year on the Unit is in the range from 8 × 10−5 up to 1.6 × 10−3 per year, and this conclusion is based on the data in the Declaration of Industrial Safety for four Russian production platforms and nine floating drilling rigs.
\nOne of the first places in the field of strategic planning takes the problem of scientific and methodological frameworks building, while in the field of safe shelf development takes scientifically grounded criterion base. At the same time, it is considered that strategic risks of the Russian continental shelf development can be an essential part of strategic risks of national security.
\nIn view of the foregoing, the main objectives of the Institutes of the Russian Academy of Science (RAS) and the leading security matters sectoral scientific research institutes are as follows [1, 2, 3]:
risks’ theorization based on fundamental risk analysis database collected and studied in the process of research works in social, natural and technical science of fundamental base. Risks function R(t) is analyzed in three main spheres of activity—social (N), natural (S) and technogenic (T), forming the uniform complex social-and-natural-and-technogenic system functioning in time
\n
formulation of the generalized model of the specified complex system with definition of its main components N, S, T role in terms of values of basic risks parameters R(t)—probabilities of occurrence of P(t) negative processes and events (dangers, challenges, threats, crises, disasters and accidents) and consequential losses U(t)
\n
identification of negative events scenarios with regard to a complex system and quantitative risk assessment R(t) through parameters of main triggering and affecting factors—dangerous energies E(t), substances W(t) and information flows I (t)
On the basis of Eqs. (1)–(5), categorization of emergency situations, high-risk objects and dangerous processes in terms of risks R(t) is developed. Objectively, the norm settings, regulation and control in the area of safety provision as per safety and security major components (i.e., social and economic, military, scientific and technical, industrial, environmental and demographic) when using risks nominally comes down to ratio
\nwhere [
The [
individual risks (1 per year) of life and health loss caused by abovementioned negative processes and events; and
economical risks (rubles per year, dollars per year) caused by negative processes and events that are taking into account vulnerability of social
The economic damages due to loss of lives and human health and environmental and technical infrastructure damages are included in the economic risks R(t). Scientific justification of acceptable risks [R(t)] includes development of methodology of definition of critical (limiting, inadmissible) risks Rc (t) and fixing of risks margin
For quantitative assessment of value of risks Rc (t) relevant to accidents and disasters on SP all basic, Eqs. (1)–(7) can be used while the value of risks margin
Based on (1)–(7), actions to provide enhancement of safety and security with the corresponding economic expenses Z(t) shall be developed. The actions directed to reduction of risks R(t) value to the level [R(t)] have to be effective and correlate with the levels of estimated risks R(t)
\nwhere
The general expression for the analysis and the sea platforms safety provision as per risks criteria based on Eqs. (1)–(8) is the following:
\nIn the Eq. (9), practically are represented all set above main:
scientific risks
justification of acceptable risks [
scientific-methodological justification of risks’ tolerance
development of methodological recommendations on formation and implementation of the actions directed to risks R(t) reduction to the acceptable level [R(t)] providing optimal expenses Z(t) with the set efficiency factor
With the progress and complication of engineering of technogenic aspects in the field of sea shelf development the analysis of man-caused (technogenic) offshore accidents and disasters becomes one of the most vital tasks of fundamental, interdisciplinary research; applied scientific and technical developments; development of diagnostic and monitoring systems; and designing of barriers and protection means. The ultimate purpose of such research works and development becomes the problem of evidence-based assessment of comprehensive risks and adjusting these risks to acceptable levels by use of expressions (1)–(9).
\nThe analysis and generalization of the numerous data (in the most developed countries, such data bases amount thousands and tens of thousands facts) make it possible to carry out certain classification of technogenic and natural and man-made accidents and disasters [3]. Classification of accidents can be performed on scales of the countries and territories affected by them, on number of the victims and injured persons and on economic and ecological damage; in such classification, seven general groups can be identified: planetary, global, national, regional, local, object-based and local emergency and catastrophic situations (Figure 4).
\nLosses (damages) and frequency of natural and man-made accidents and disasters.
The events resulting in similar serious accidents within technogenic field can also be classified by potential hazard and in this line can be named objects of the nuclear, chemical, metallurgical and mining industry, unique engineer constructions (dams, platforms), offshore development objects (sea platforms, hydrocarbons storage tanks, LNG plants), the transport systems (airspace, surface and underwater, on-land) that provide transportation of dangerous cargos, large number of people, main gas-, oil pipelines and product lines. In this line, the hazardous objects of defense industry also shall be mentioned.
\nAt the same time, a majority of accidents and disasters are followed by infringement of stress conditions and depletion of lifetime of the most loaded components in routine situations or in emergencies. The probabilities P(t) characterizing frequency of disaster accidents occurrence in peace time ranges from (2–3)⋅10−2 up to (0.5–1)⋅10−1 per year, while damages (losses) U(t) ranges from 1011 to 109 dollars per accident. At the same time, their risks R(t) vary in the limits from 104 dollars per year to 1010 dollars per year ranging from 104 dollars/year up to 1010 dollars/year.
\nIn view of said above, the new fundamental and applied scientific tasks needed to be set at national and international levels, for instance:
mathematical theory of disasters and probabilistic theory of risks;
physics, chemistry and mechanics of emergencies and disasters;
limit states, strength and lifetime theories taking into account accidental and emergency situations;
theory of hardware, functional and integral protection in case of emergency of objects, operators and personnel;
theories of monitoring and forecast of scenarios and technogenic (man-made) disasters consequences (using airspace, airborne and ground-based systems); and
scientific methods, technologies and hardware for mitigation of consequences of emergency situations of technogenic nature.
Based on the level of potential hazard, according to the legislation requirements and taking into account accidents occurrence risks, the abovementioned objects of a technosphere can be split in four (4) main groups (Figure 5) for each of which corresponding safety requirements are provided:
the objects subject to technical regulation (STR) with the main damages to objects themselves;
the hazardous production facilities (HPF) with the main damages to production sites and objects which safe operation is provided under the law on industrial safety—there are hundreds of thousands of such facilities;
the critically important objects (CIO) which damages affect members of the Russian Federation; and
the strategically important objects (SIO) which damages are followed by losses to the country and the bordering states.
Diagram of analysis of potentially hazardous objects of the technosphere.
For the continental shelf infrastructures, the number of the objects to be analyzed is reduced by one or two orders.
\nIn the system of initial standards, specifications and guidelines used for design and calculations of SPs were included the following documents:
Russian regulations database:
GOST 27751-88 “Reliability of structural units and foundations. Basic calculations methodology.”, 1988;
SNiP 2.01.07-85 “Loads and impacts”, 1996;
SNiP 2.06.04-82*, “Loads and impacts on hydrotechnical structures (waves, ice and sea vessels)”, 1995 & 1983;
Marine Registry. FDR/OFR Guidelines, 2001;
VSN 41-88, “Industry Specific Code of Practice for design of offshore ice-resistant fixed platform (OIRFP)”, М., 1988;
Foreign regulations database:
Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms – Load and Resistance Factor Design, АРI Recommended Practice 2A-LRFD, 1993, Washigton;
Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Structures in Ice Environments, АРI Recommended Practice 2N (RP 2N), 1995, Washington;
CAN/CSA-S471-92, “General Requirements, Design Criteria, the Environment, and Loads”, A National Standard of Canada, 1992; Toronto; Commentary to CSA Standard CAN/CSA-S471-92, “General Requirements, Design Criteria, the Environment, and Loads”, 1992, Toronto;
CAN CAN/CSA-S473-92, “Offshore Structures”, A National Standard of Canada, 1992 CAN CAN/CSA-S16.1-94, “Limit States Design of Steel Structures”, A National Standard of Canada, 1992, Toronto;
DnV, “Structural Design, General”, Rules for classification of Fixed Offshore Installations, 1993;
DnV, “Structural Reliability Analysis of Marine Structures”, 1992. DnV, Offshore Standard OS-C101, Design of Offshore Steel Structures, General, 2001;
ISO 19906, 2010 (ISO/DIS 19906 “Petroleum and natural gas industries - Arctic offshore structures”, 2010).
Above documentation was used for definition of the main basic specified characteristic load during design of the sea platforms intended for use at a sea depth from 20 to 70 m to 200–250 m.
Implementation of the proposed recommendations and norms covers the structures with vertical and inclined sides, monopods and multicolumn constructions. In the documents, the rules of definition of the main loads conditioned by action of all potentially dangerous ice features subject to consideration are given. In Figure 6, the various structures design versions are presented.
\nTypes of sea platforms dependent on the sea depth (for standard soil conditions): (a) the artificial pad, depth is up to 5 m; (b) the caisson-island fixed along contour, depth up to 15–20 m; (c) the monopod or monokone, depth is up to 25–30 m; (d) shell support; and (e) the truss-shell type supports, depth 25–30 m and more.
The following loads are subject to analysis:
Broadly speaking, the offshore oil and gas facilities can be classified by the following signs: structural materials; design features; methods of fixing to a bottom; ice resistance indications; and functional features. The design features of offshore oil and gas facilities incorporate the following types: stationary platforms; submersible and semi-submersible platforms; pendulum constructions; tension structures; platforms of SPAR type (with the underwater cylindrical foundation); access bridges and pier sites; and dams and unpaved sites.
\nIce-resistant constructions can be grouped as follows (Table 1).
\nUtility | \nFixed to the bottom | \nFloating | \nIslands | \n||||
---|---|---|---|---|---|---|---|
Design | \nGravity based | \nPile supported | \nIntegrated | \nWith anchor mooring | \nDynamic positionable | \nOutlined | \nNon-outlined | \n
Ice resistant oil and gas utilities.
The Russian continental shelf area exceeds 6 million sq. km that takes about 25% of a shelf zone of all the World Ocean. The Arctic and Far East shelf areas are the areas of the greatest interest.
\nWith respect to environmental, bathymetric, engineering-geological, seismic and other conditions, the shelf of Russia is different from others due to a number of features:
severe ice conditions (large drifting ice fields, ice ridges, floating ice hummocks, etc.);
shallow waters (depths less than 100 m) leading to significant increase in wave loadings;
high level of seismicity (on the Far East shelf); and
difficult engineering and geological conditions.
In designing platforms for the Russian shelf, as a rule, it is necessary to consider a combination of at least three factors from listed above. This is unlike world practice.
\nWhen selecting this or that type of platform jack design along with environmental conditions, it is necessary to take into account the impact of the field development general scheme, production method and hydrocarbons transportation technology as well as terms of platform fabrication and transportation on site.
\nWhen developing scientifically grounded methodology of design of gravitation-type platforms for use on Russia shelf, i.e., design providing the required reliability and safety level and, as much as possible, based on the lessons learned by the international and Russian specialists in design, construction and operation of platforms, it is necessary to:
analyze the Russian and foreign regulating documents;
set up an integral approach to platforms reliability and safety assurance at different stages of their life cycle;
select correct existing and develop new methods of definition of environment loads;
develop the concept of consideration of engineering-geological conditions;
provide consideration of the level, nature and duration of dynamic impacts;
formulate additional requirements to be imposed on sea engineering surveys; and
justify the range of design cases for assessment of bearing capacity and stress-deformed state of the system “construction—foundation.”
The analysis of threats for off-shore oil and gas production platforms is the first stage of the accidents’ risks analysis for the specified objects and provides estimation of their safety level [1, 2]. The threat for SP is the probabilistic characteristic defining a possibility of the impact of affecting factors of specific type, intensity and duration in response to some dangerous (extreme) event that can take place both in the territory of the object and in the external environment. Therefore, the analysis of threats for SP has to be preceded by assessment of dangerous events which can initiate impact of the affecting factors on platforms.
\nThe secondary dangers occur and provoke secondary affecting factors when some object’s process modules – SP parts are damaged. The possibility of initiation of these secondary threats will be defined by vulnerability of an object in relation to the primary threats. Thus, the analysis of threats has to be made in an agreement with assessment of vulnerability of the SP parts in relation to the affecting factors acting on them.
\nThe danger to SP is defined by the pattern of random events or processes (\n
Presentation of accident occurrence and development as a complex event. (a) Probabilities of the elementary events are described with the help of point estimations, and (b) probabilities of the elementary events are described with the help of probabilistic determination.
Threats for SP are characterized by impacts on an object of the affecting factors of dangerous events. The threat is also a random event (process) \n
in earthquake case, the seismic wave will reach the site where object is located; and
loss of the oil tank containment will cause the oil leak.
Vulnerability of SP to threat of this type is defined as the conditional probability in case of the affecting factor’s impact on an object when the latter one will get a certain damage rate \n
If it is required to get more accurate description of danger of an extreme event, it should not be characterized by the point estimation of probability of occurrence of a dangerous event \n
Vulnerability of an object relative to impact of the affecting factor with intensity \n
When making decision on what physical parameter of impact of dangerous process on an object to select for threat intensity evaluation, it is necessary to consider vulnerability of an object relative to action of different components of such impact: for example, in case of seismic impact on the platform, some parts of the equipment and structures are the most sensitive impact from soil vibration accelerations, while the another to vibration amplitudes.
\nWithin that narrative, the accident initiation on SP can be considered as the complex event occurring in case of occurrence of simultaneous random events cascade (Figure 7a or b):
danger: realization of the extreme initiating event \n
threat: impact of affecting factor of dangerous event on SP parts \n
vulnerability: damage of SP’s parts as a result of impact affecting factors of the initiating extreme event \n
SP operation is associated with production, storage and transportation of considerable volumes of dangerous materials, transformation of considerable volumes of energy, running of hazardous technological processes on the platform as well as with presence in areas of SPs’ location of external sources of natural and technogenic nature hazards which are resulting in extreme external impacts on the platform. Depending on the location of danger source (i.e., location of the place where the initiating event starts) outside or inside the platform boundaries, it should be taken into account the external and internal threats damaging and affecting factors. Risks \n
Internal threats for SP are initiated by dangerous process potential of the following [1, 2, 3]:
mass and composition of chemically dangerous substances W which are on the platform; and
amount of the reserved on the object energy \n
Among internal threats to SP are operational loads on parts and components of oil and gas production facility (OGPF), impact of harsh chemical environment, control system failures, etc. The considerable segment of internal threats range for OGPF is caused by human factor action (mistakes at a design stage, construction and operation of the platform, including violation of regulations, etc.).
\nAmong external threats are affecting factors resulting from natural and technogenic events (processes) happening outside SP boundaries. Seismic impacts, hurricane, technogenic accident on the neighboring object, collision with the sea vessel, extreme weather conditions, etc. are between initiating events of the external type. Besides mentioned above, external threats include the events connected with interruptions in work of energy, telecommunication and transportation infrastructures which lead to breakdown of technological processes, damage of platform’s control and supply systems and terrorist attacks which also can be classified as an external threat to the platform.
\nThe probabilistic approaches usually are used for description of the initiating events and affecting factors [1, 2, 3, 4]. The necessity to use the probabilistic methods is determined by lack of knowledge about comprehensive system “SP—the environment,” on the one hand, and by stochastic nature of the processes occurring in a system and environment and by high uncertainty inherent to the examined system (uncertainty of system parameters, materials strength characteristics, external loads, etc. and also the uncertainty explained by limited knowledge of an object) on the other hand.
\nThe threats (affecting factors) H(t) influencing SP (Figure 8a), in general, should be considered not only as the separate and determined processes (a) but also as random events (Figure 8b) and
Presentation of the threat as a random process.
In such problem formulation, the definition of threat for SP will be characterized by the random vector-process which is functional of a vector of internal and external force actions \n
Physical and chemical bases of the analysis of accidents occurrence and evolution conditions are defined both by work processes in technical SP systems, and by external impacts on these processes.
\nIt is important to note that requirements to detailed level of this object threats’ description are defined based on the used destruction mechanisms—external and internal types. The analysis of threats to SP has to be carried out in a manner to provide required data for further calculations of the following:
stress, stiffness and withstandability (with use of material resistance methods);
stress and cyclic life and life time (with use of methods of theory of high- and low-cycle fatigue);
stress and life capability—life time (with use of methods of creep theory and creep-rupture strength theory);
dynamic strength and life time (with use of methods of crash and fracture dynamics); and
crack growth resistance (with use of methods of linear and nonlinear fracture dynamics).
If, on the contrary, the fatigue mechanism of destruction is used, the threat cannot be considered as a separate extreme event and has to be characterized by process of on-stream loading.
\nThe quantitative description of development of accidents initiation on SP can be performed on the basis of fundamental mechanisms of disasters physics, chemistry and mechanics. At the same time, the stages of occurrence and development of emergencies can be characterized by various combinations of physical, chemical and the mechanical affecting and damaging factors.
\nAnalysis of the majority of accidents of technogenic and natural-technogenic nature occurred on SP demonstrates that they are determined by three major dangerous factors according to equation (5):
uncontrolled leak of dangerous substances
uncontrolled hazardous energy
uncontrolled flows of diagnostic and controlled information of
If to take into account (Figure 5) the classification of accidents on critical infrastructure objects as well as parameters
Areas of dangerous and safe states of the system.
Then, radius-vector in space of
where \n
The hazards related to external natural processes in the territory of OGPFs location are evaluated in another way and with use of other criteria (earthquakes intensity degree, force of winds, level of floods, extremeness of climatic temperatures, depths of holes, mass of landslides, volume of rainfall, etc.)
\nThe equation (11) can be accepted as unified for different types of dangers: technogenic, natural and natural-technogenic.
\nIn traditional formulation when performing analysis of threats to OGPD initiated by dangerous processes, the first stage of the analysis or problem solving is assessment of losses and risks relevant to accidents on OGPD objects. The solution of the inverse task making it possible to classify the threats to OGPD coming from known consequences of accident occurred on an (Table 2) is of interest.
\nType of accident | \nThreat causing the accident | \nType of threat | \n
---|---|---|
Hypothetical accidents (Type Т1) | \nCombination of unknown, unlikely and the difficult to predict constructive, technological initiating events and affecting factors of huge intensity, including terrorist attacks. | \nU1 | \n
Beyond-design-basis accidents (Type Т2) | \nThe affecting factors, the initiating events and damages development are not known in full. | \nU2 | \n
Design accidents (Type Т3) | \nThe affecting factors are known and predictable. | \nU3 | \n
Operating mode accidents (deviations from standard conditions) (Type Т4) | \nThe affecting factors are studied and controlled. | \nU4 | \n
Normal (standard) operating conditions (Type Т5) | \nThe affecting factors are well understood and controlled. | \nU5 | \n
Accident and threat types.
At the solution of such tasks, the intensity of threats is subdivided into the following groups:
Group U1: the threats causing hypothetical accidents which can occur at the options and scenarios of development which are not predicted in advance, with the greatest possible damages (total destruction of OGPD) and a large number of the victims.
Group U2 group: the threats causing the beyond-design-basis accidents which are followed by permanent damages of the SP critical components with high level of damages and fatalities.
Group U3: the threats causing the design accidents followed by standard outperformance with predictable and acceptable consequences.
Group U4: the threats causing the SP operating mode accidents followed by deviations from normal operation conditions while OGPD is operating in standard mode.
Group U5: the threats when an object operates in standard mode.
The loading on offshore ice-resistant oil and gas structures can be split in three groups: permanent, temporary and special loads [1, 2]. Among permanent loads are the loads of the structure weight Рs.w. and self-weight of soil and soil pressure on fixed piles. The temporary loads are subdivided into long and short term, namely:
Long-term load:
weight of equipment and drilling rig;
weight of liquids, bulk materials and stocks of drill pipes and tubing;
weight of warehouse equipment and tools; and
weight of drilling cuttings (bore mud, etc.).
Short-term load:
load on drilling rig in and derrick table during drill string trip;
snow loads (used for design of bowl type helicopter deck);
due to structural icing;
wind loads
waves
loads caused by sheet and hummocked ice
docking impact load; and
helicopter impact load.
The special loads are the seismic ones
For definition of seismic loads, it is required to have data on seismological parameters of seismic zones: magnitudes, depths of earthquake sources, the epicentral distances, earthquakes frequency, seismicity of the site and spectral characteristics of seismic impacts depending on engineering-geological conditions on construction sites.
\nVarious types of loads on ice-resistant stationary platforms are schematically presented in Figure 10.
\nSymbolic diagram of application of external loads on ice-resistant stationary platforms: 1—derrick; 2—deck; 3—jack structure; and 4—bottom module. For loads, the following symbols are used: Рsw—gravity force; and Рх, Ру—horizontal (shear) and vertical (transverse) reactions.
When calculating the wind and wave loadings, it is expedient to accept load factor for one of loadings equal to 0.9, and for another equal to 1. This assumption is based on more realistic knowledge (from physical point of view) by reference to correlation between these processes. In the case of basic combination, the calculated values of short-term loadings (wind, wave and current) respectively refer to the reliability factor which is equal to 1. For special combinations, these loadings are calculated with factor 0.8, however, at the same time, as well as in the previous case, two possibilities of wind and wave impacts on ice-resistant structures are taken into consideration.
\nAs an example of the case when simultaneous impact of the wide spectrum random loadings on ice-resistant structures for sea of Okhotsk conditions can use the approach based on factors of loads combination shown in Table 3.
\nTypes of calculated loads | \nCombinations | \n|||||
---|---|---|---|---|---|---|
I | \nII | \nIII | \nIV | \nV | \nVI | \n|
Dead loads | \n1.0 | \n1.0 | \n0.9 | \n1.0 | \n1.0 | \n1.0 | \n
Long-term live loads | \n0.95 | \n— | \n0.8 | \n1.0 | \n0.95 | \n0.95 | \n
Short-term live loads: | \n\n | \n | \n | \n | \n | \n |
• | \n— | \n— | \n0.8 | \n— | \n— | \n1.0 | \n
• | \n1.0 | \n1.0 | \n— | \n— | \n— | \n— | \n
• | \n0.9 | \n0.9 | \n0.8 | \n1.0 | \n0.8 | \n0.9 | \n
• | \n0.9 | \n0.9 | \n0.8 | \n— | \n0.8 | \n0.9 | \n
Special loads: | \n\n | \n | \n | \n | \n | \n |
• | \n— | \n— | \n— | \n— | \n1.0 | \n— | \n
• | \n— | \n— | \n1.0 | \n— | \n— | \n— | \n
Factors of loads combinations.
In the given case, it is proposed to analyze the following loads combinations:
basic combination of loads during ice-free season;
combination of loads during construction and assembling works in ice-free season;
special combination allowing for seismic loads;
combination for calculation of maximum efforts in structures of the topside facilities;
special combination allowing ice loads occurring during freeze-up period; and
basic loads combination during freeze-up period depending on cycles’ number.
In special combinations, the seismic load of calculated earthquake with magnitude 8 is accepted allowing the possible side dynamic effects: liquefaction of soil in the construction bottom and relevant subsidence, additional hydrodynamic loadings from ground shaking in case of open water and impact of ice fields on construction jacks during the winter period. However, depending on the earthquake source location, the specified side effects can happen with considerable time lag with respect to ground shake time, and summation of the caused by them dynamic impacts on a construction with seismic loads does not happen. Impact of the hummocky ice-fields can have very serious consequences for a construction; therefore, such case has to be separated as special loading and be analyzed in other special combination of loads.
\nIn terms of (1)–(5), the total risk
where
Generally, the probability
\n\n
The general damage
\n\n
At the present stage of technical regulation, it is recommended to estimate the quantities of damages
Taking into account expressions of (13) and (14), components of damages and probabilities of accidents can be calculated separately by use of various methods of risk assessment. Also from the expression of the risk (12) presenting the summation of risks of different emergencies, it becomes clear that to define the total risk, the various methods for definition of its components can be used, i.e., the combined approach is applied.
\nCombined risk analysis is based on the systematic approach that provides review of the system of interest in a formalized manner, i.e., by studying of subsystems’ components by considering structural and functional features of this system at the same time.
\nThe damages and losses
where
Damages
Environmental damages
Damages to the personnel and population
Damages and losses quantitatively are defined by two types of parameters:
in physical units—scales (number of damaged objects and injured people, polluted and damaged territories by area); and
in equivalent economic units (rubles, dollars).
In statistical estimation of the above damages, the summarized information about emergencies from the state reports of departments can be used.
\nIn probabilistic estimation of damages, the data from simulation modeling, data on probable areas covered by the affecting factors, and probabilistic and statistical data on vulnerability of objects, the environment and the population at various emergencies are used.
\nIn the analysis and risk assessment, various aspects of accidents and disasters occurrence and development including various dangerous processes, the factors initiating events, scenarios of development, objects and personnel pattern damage function, etc. can be considered.
\nThe variety of issues to be studied in the analysis process and risk assessment requires application of various methods at various stages of the systems analysis of examined object safety, as well as their integrated application.
\nSome methods in nature are integral ones; for example, the logical-and-probabilistic method, which includes a graph method, a probabilistic method, a logical reasoning method, event tree analysis and fault tree analysis are probabilistic methods implementing the graph method.
\nThe main possible events chains for scenarios of accidents on OGPF are presented in Figure 11. The main events (faults) causing accidents are the leak and rupture of technical pipelines. These faults cause development of accidents in various scenarios and corresponding damages. All these possible scenarios and corresponding damages have to be taken into account.
\nBasic scenarious of accident development on sea platform (SP).
When forming a system of classification of ultimate limit states in routine operating conditions of objects and in case of occurrence of accidents and disasters in comprehensive technical systems, it is required to identify various combinations of states for five groups of situations [1, 2, 5]:
ultimate limit states for regular service conditions;
ultimate limit states for abnormal service conditions;
ultimate limit states for designed accident;
ultimate limit states for beyond-design-basis accident; and
ultimate limit states for hypothetical accident.
Ultimate limit stress for normal service conditions have to be in full reflected in design codes of potentially hazardous objects, consider a set of design operating modes and proceed from all previous operating experience of similar objects.
\nIn case of violation of normal (i.e., abnormal) service conditions (at any deviation from planned operating procedure causing the necessity to change operating mode or stop an object without necessity to activate or use all safety systems) the given above types of ultimate limit states can be used, or more extensive and wide. Such expansion is caused by the increase of number of work abnormalities and range of operation parameters changes.
\nWhen analyzing a design accident requiring the stop of an object and activation of safety systems, in addition to mentioned above types, it is necessary to consider those types of ultimate limit states which occur at increased mechanical, thermal, electromagnetic and other loads at scheduled stages of accident development.
\nFor beyond-design-basis accidents followed by full activation of safety systems, it is not possible to exclude considerable damages of the most critical components and the equipment in general; in this case, the ultimate limit states include not only standard ones, but also new ultimate limit states that are object specific at broad variation of load conditions at all stages of accidents development.
\nThe hypothetical accidents are most severe, hardly probable and poorly studied, and the worst combination of the affecting factors and that is why it is necessary not only to provide the analysis of the ultimate limit states stated above but also to analyze the states at which significant changes of conditions of working substances and structural and mechanical conditions of engineering materials are possible.
\nWhen accidents (explosions, destruction, fires, collisions, collapses, chemically dangerous substances release) are occurring in the load bearing structures, the corresponding ultimate limit states are arising. At different stages of accidents development, these limit states can change both in the direction of scaling up of consequences, and in the direction of localization and full stop of the accident development.
\nWhen determining safety of the most important objects, the following types of ultimate limit states have to be considered: plastic deformation and forming; short-duration elastic failure; delayed or fast brittle failure; long-term static fracture; cyclic (low- and multi-cycle) destruction; creep strain accumulation; cyclic strain accumulation; buckling; dangerous vibrations occurrence; coupled units wear; single loading cracks initiation and propagation; cyclic cracks initiation and propagation; corrosion, corrosion and mechanical, cavitation and erosive damages; leakages; and change of structures and a condition of the bearing components.
\nThe ultimate limit states listed above identify methods, structure and criteria of safety analysis by integrated approaches of mechanics, physics and chemistry of disasters.
\nIn the process of design of structure, its components and, at the bottom, the following groups of the ultimate limit states are taken into consideration. The first group with unacceptable plastic strain and damages includes ultimate limit states surpassing of which will cause total unusability of the structure or total (or partial) loss of supporting capacity of the platform substructure. The second group with damages accumulation and development includes the ultimate limit states where surpassing makes impossible the normal operation of the platform substructure.
\nIt should be noted that the above-listed ultimate limit states were taken into account at design of the reinforced concrete support substructure of gravity type for offshore stationary platforms on the sites of the Sakhalin-II project for Piltun-Astokhsky (PA-B) and Lunsky (LUN-A) fields.
\nThe design elements of the platform substructure can be split into criticality categories depending on the external impacts taken into account:
\nBetween high criticality design elements, the following ones shall be listed:
design elements of skirt and skirt interface with caisson bottom;
column walls in areas of their connection with the bottom and top plates of overlapping of a caisson;
parts of walls and columns overlapping subject to significant loads concentration;
design elements contacting with ice;
connection of deck with the column;
outer walls, floor slabs and caisson bottom;
internal waterproof walls;
design elements of supporters of the critical and safety equipment including riser holders; and
structures which damage and destruction will cause dramatic environment contamination including risers.
Between low criticality design elements, the following ones shall be listed:
internal structure not involved in provision of general strength; and
design elements of equipment supporter not identified as elements of critical importance.
Characterization of initial strength, in-service life, risk and safety of the bearing elements of the sea oil and gas production platform in terms of impact of a complex of loads (including such specific service conditions as collisions with the drifting ice floes, impact of storm and gale-force winds, existence of the corrosive environment, low-temperature embrittlement effects, etc.) is the comprehensive problem considering occurrence of the cyclic dynamic loads corresponding to these conditions and, consequently, nonlinear change in time of the kinetic fields of stresses and deformations in these elements of SP under the impact of irregular loads [1, 2, 3, 4]. In this regard in zones of design concentration, the local stresses and deformations have the increased values and the processes of material damage run more intensively leading to appearance of local destructions zones (cracks) eventually developing into macrodestructions (loss of bearing capacity). In such conditions, depending on the nature of loading and the operational environment, various mechanisms of accumulation of damages and destruction are implemented.
\nFor the analysis of operational load of SP (as well as on other objects of energy, transport, oil and gas chemistry) at all stages of the life cycle, curves of the parameters dependent on calculated or real force impact on the bearing elements of the oil and gas production platform (set in the specification or measured during operation) are plotted. Among these parameters are number of loading cycles
Diagram of operational loads and their basic parameters.
These dependences are initial for the analysis of strength, in-service life, risk and safety of elements of engineering designs both for their initial states and for the damaged states. Values P,
At the same time,
In Figure 12 where a block of external and internal technological operational loadings are presented, the following standard modes of loading of the SP elements are highlighted: assembling (
When analyzing the initial and residual strength, service-life, survivability, risk and safety of the oil and gas production platform, the key phase is decomposition of SP and selection and identification of its potentially dangerous critical components, defining the greatest risks of accidents and disasters occurrence. The critical zones of SP components and critical points in them are identified on the basis of experimental and computational studies of stress-deformed and ultimate limit states. In such zones and points, as a rule, processes of local destructions are initiated followed by tramline destructions. At the same time for further experimental and computational evaluations of initial and residual strength, service-life, survivability, risk and safety, the following characteristics of history of loading (Figure 12) are accepted:
maximum rated load
maximum (minimum) rated temperature
time of standard load conditions
With the help of this history of loading set are additional design parameters:
peak-to-peak range of forcing Δ
peak-to-peak range of temperature variations Δ
peak-to-peak range of vibration loads \n
From the analysis of all
For quantitative evaluation of static and cyclic strength, as well as in-service life [1, 2, 5], experimental and computational diagram in coordinates of “
where \n
Diagram that is used for identification of static, cyclic and long-term initial strength and in-service life parameters: I—AS, SU, TS, PS, SD; II—SO; III—PA; and IV—V (vibration
On Figure 13:
When making stress assessment, the characteristics
As it was noted above, the solution of fundamental problems of provision of safety, risks and security of critically and strategically important infrastructure facilities is based on the analysis and development of fundamental scientific approaches to issues relevant to strength and in-service life, development of engineering methods of calculations and tests, creation of norms and rules regulating design and fabrication of objects of offshore technosphere, ensuring their functioning within identified limits of the design and beyond-design modes and parameters. Nowadays, the analysis and development of all components of the criterial sequence “Strength → rigidity → consistency → in-service life → reliability → survivability → safety → risk → protection level (security)” became the basic ones, step by step raising requirements imposed on their routine (normal) functioning and ensuring realization of design parameters at all stages of life cycle.
\nThe specified requirements implemented in this knowledge area are imposed on operability of critical structures and expressed by means of the corresponding characteristic parameters of criteria dependences for the above sequence.
\nA “pyramid” of provision of technosphere objects’ operability according to the main criteria (Figure 14) was constructed based on requirements and parameters providing safe operation conditions of these objects.
\nGeneral structure of provision of technosphere objects operability.
From Figure 14, it is clear that every element located above the other one is supported by the lower elements, i.e., it is laid on it as on foundation. It eventually means that the solution of the task of security, risk and safety provision has to rest upon the solution of problems of “survivability → reliability → in-service life → rigidity → consistency → strength” with passing through traditional stages of their interaction I → VIII. Fundamental results of identification and provision of strength (stage I) were obtained in the beginning of the nineteenth century and it took a long time, while complete analysis of rigidity and resistance (consistency) (stage II) came to the end by the end of this century. In the twentieth century, the theory and practice of provision of “in-service life → reliability → survivability” (stages III, IV, V) were formed. At the end of the last century, the fundamental problem of the analysis and safety and risk provision (stage VI) was formulated for all potentially hazardous civilian and defense objects with transition to management (stage VII) of safety and security according to risks criteria. At these stages, safety and security requirements were formulated like governing, and this provoked development of the new line where consequence “VII → I” becomes the basis for the future technosphere development. At the beginning of this century, the new task (stage VIII) was formulated and this is provision of safety and security of crucial objects based on anti-accidents and anti-disasters of technogenic, natural and anthropogenic character performance.
\nAccording to abovementioned and expressions (1)–(9) and Figure 14, the proofness of SP is the function of function (functional) Fz of the basic change in time τ parameters
\nwhere
As it was already mentioned, operational conditions of loads of SP are characterized by a significant amount of various factors and parameters; among them are loading conditions and levels of static and dynamic mechanical loads (Figure 15a) and impact of corrosive environment, of external factors, etc. These factors taken together and each one individually can cause significant change of nature of behavior of material, its mechanical properties, ability to resist cyclic deformation in comparison with standard design loading specifications (stationary application of cyclic load, room temperature, etc.) at which standard experiments are usually conducted to define the corresponding characteristics. They also may contribute changes in the corresponding patterns of damages accumulation in the material of the equipment components experiencing their influence when in operation.
\nMethods of schematization of operational modes of loads. a) Sign-variable and sign-constant service loading mode. b) Random and routine loading modes. c) Service loading modes schematization. d) Modeling mode of random loading with equally probable change of stress amplitude in set range. e) Rainflow technique.
Cyclic loading waveform of random operating modes as a rule has more sophisticated nature than widely used in experimental practice sinusoidal or triangular waveforms of cyclic loadings.
\nIn some cases, it is obviously possible to schematize and replace actual conditions of loadings by more simple, single-frequency modes. However, generally, the patterns of change of the loadings influencing the structural elements have random nature (Figure 15b).
\nThe actual loading modes are schematized (Figure 15c,e) in the process of the loading history tracking (Figure 15e). Approximation of simulated loading conditions of the equipment as accurate, in respect to reality, as possible for each factor occurring during equipment operation and taking into consideration of impact of these factor on parameters of the characteristic equations and equations describing damages accumulation process is an effective step for adjustment of applied methods for calculations of strength, endurance capability and reliability of the oil and gas production platform components’ and hence to identification of really grounded and justified their safe in-service life.
\nCyclic strength \n
where
where value of fatigue limit \n
Because SP is functioning in the conditions of the high level of uncertainty concerning external impacts during operation period and bearing capacity level changing due to structures degradation, the criteria in expressions (21)–(23) have to be probabilistic [2, 3, 4, 5, 6].
\nLet function of ultimate limit states for the considered platform element is defined by a ratio of bearing capacity and loading \n
is written as \n
Probability density functions for bearing capacity and loading. Probability curves for design parameters at assessment of chances of failure.
Conditional probability of failure in case when the element is under load \n
where \n
Let us consider the random variable of margin of safety, in-service life and proofness (safety) \n
The probability of system failure which is equal to the probability of value \n
where \n
If the destruction mechanism relative to excess of maximum permissible load is considered, then equation of the surface of ultimate limit states takes the form
\nwhere \n
Safety (proofness or security) upon the criterion of exceed of maximal permissible load will be presented by the expression:
\nIf to talk about the fatigue mechanism of element destruction, then equation of the surface of ultimate limit states takes the form \n
Because of hostile environment influence on the OGPF elements and relevant degradation processes in them, the function of element ultimate limit states has to depend on time. In the considered statement, the proofness (safety or security) reserve of a critical element is estimated in the form of
In this case, the probability of failure becomes the function of time:
\nwhere \n
The probability of system failure is
\nThe identification of time moment \n
Load and bearing capacity changing in time.
As it was noted above, continuously raising requirements to regular (normal) and abnormal functioning are imposed on modern SP. In modern conditions of the analysis and provision of safe operation of technosphere objects, the new task about identification and safety and security provision upon criteria of actual \n
Operational impacts on the SP elements in general (periodically arising ice loadings, service, wind and seismic loads) are characterized by the following parameters, in particular numbers of loading cycles N, time of loading
External routine and abnormal impacts (including accidents and catastrophic) generate in the analyzed element design stress level
Values of characteristics
fatigue curves (live curve) for stresses “
stress rupture curves for stresses “
crack resistance curve (survivability) for stresses “
temperature resistance curve (cold- and heat resistance) in coordinates of stresses “
stability curves (general or local) in coordinates of stresses “
At relatively low levels of external routine impacts when occurring deformations are elastic, the calculations relevant to stresses and deformations have identical results. At the increased abnormal and stress impacts when occurred are general and local plastic deformations, the calculations made with respect to stresses
In case of the integral analysis of strength, in-service life and safety, the deformation curve in true coordinates (the true stress
where
The strength-duration curves \n
where
In estimating the effect of temperatures
where
For dynamically loaded components of the SP, the values of
Dynamic plasticity performance calculation is done via
The entire system of experimentally defined (
The real bearing SP components have various zones of concentration and various sizes of cross-sections. Performance of the mechanical tests for assessment of sensitivity to a factor of tension concentration (in elastic and inelastic areas) and size factor represents essential methodical difficulties and is time-consuming.
\nFor big group of constructive metal materials due to use of the modified analytical decisions (of Neuber type), it is possible to receive correlation of tension concentration factor
For existing offshore structures 1 ≤
For experimental evaluation of size facto impact (sizes
where
For assessment of survivability characteristics based on crack resistance criteria in presence in the SP bearing structures of cracks like defects, the standard, unified and special tests with variation of cracks sizes
where
At the same time, by numerous experiments, it was shown that at change of
As the first assumption in technical practice use is made of minimal values of
where \n
The value of stress intensity factor in terms of operation at stress
\nExpressions (41) and (44) make it possible to get conditions of local destruction—crack formation (41) and its development according to (43).
\nIn presence of cracks and use of local criterion obtained is expression to plot the fracture diagram connecting increment of the crack length Δ
where \n
If loading process is cyclic, the value Δ
cyclically stable—
cyclically hardening—
cyclically softening—
Expression (46) with regard to expressions (43), (44) is similar to known Paris-Erdogan equation when
Theoretical and practical solutions of the considered problems of strength, in-service life, reliability, crack resistance were already performed for such high-risk objects as nuclear reactors, hydraulic and thermal power stations, aircraft, main pipelines and unique engineering constructions.
\nThe ground for the analysis and risk management directed to quantitative evaluation of critical and acceptable risks is based on the matrix of risks. Qualitative and quantitative risk assessment is based on the standard matrices of criticality determined by probabilities of adverse events occurrence (destructions, failures, etc.) and consequences of these events. However, within risk matrixes, the mechanisms of material and the bearing SP components degradation relevant to the erosion and corrosion processes are considered.
\nThe listed above approaches, methods, criteria, design schemes and calculation dependences give the chance to carry out assessment of SP technical condition and risks monitoring.
\nTaking into account a possibility of reaching in time of the ultimate limit states in the wide range of loading parameters, further it is required to define the following groups of situations occurring during SP functioning as presented in Table 2.
\nEach class of situations corresponds to diminution of safety level of the analyzed objects while diminution of safety level can be estimated on expressions (1)–(9) as per values of risks \n
According to Table 2, the last three abovementioned groups of the situations (T5, T4, T3) occurring during objects functioning can be referred to a kind of the risks which are monotonously increasing up to critical values. Such risks, mainly, are caused by the controlled processes of damages and degradations of physical-mechanical properties of material relevant to its aging. The first two groups (T2, T1) correspond to the occurrence of the most dangerous situations with extreme impact parameters (earthquakes, tsunami, acts of terrorism and military actions). These cases require use of the most difficult calculations, tests, modeling, diagnostics, monitoring and protection. In this case, classic methods of a material consumption justification, constructability and efficiency are insufficient. In such statement, the approaches presented in clauses 2.9–2.12 have to be implemented.
\nIn case of use of foreign and domestic safety standards for risk analysis, the approaches given in [1, 2, 10, 11] can be rather efficient:
flow chart and fault-tree construction techniques (Figure 11);
risk-based inspection (RBI) technique developed by Shell Global Solutions International company for residual life evaluation and planning of the objects’ high-pressure equipment health monitoring frequency with consideration of risks-analysis (Figure 18). Inspections and tests planning is performed upon analysis of data about current technical condition of specified equipment item.
Basic diagram of implementation risk based inspections technique.
In the approach (Figure 19) presented above by analogy with Figure 4, the classes and categories of criticality, consequences of damages from accidents and accidents can be assessed in a similar way to Figure 4.
\nCriticality and risks matrix.
The risks analysis technique is based on information about scenarios of dangerous situations and probabilities of their occurrence received a priory. It is possible for SP for which design and operation experiences are accumulated already. In engineering design performed according to clauses 2.9–2.12, the inspections frequency can be obtained upon calculations as per expressions (18)–(41).
\nOne essentially important question in the problem of protection of objects of offshore and land infrastructures is provision of SP seismic stability; this can be achieved with the help of developed scientific bases of design of self-lubricating, and self-adjusting sliding supports with reverse motion used as seismic-insulators for bridges, industrial and civil constructions. These works are also used for oil and gas offshore platforms on the continental shelf of the Russian Federation on the Sakhalin Island [1, 2, 17, 18].
\nIt was proposed offshore structures protection against earthquakes to use the friction pendulum bearings (FPB) as the seismic-insulators [1, 12, 13, 14]. A calculation method for the service life of a FPB and the method of assessment of friction coefficient were experimentally developed [17, 18].
\nThe real possibility of pendulum sliding supports use as efficient mean for absorption of energy from external force appeared in the last 30–40 years thanks to development of new technologies (in particular in connection with development of space research works in the USSR and the USA) and to introduction of new tribotechnical materials (such as the antifriction self-lubricant weaved fibrous materials).
\nIn the SP pendulum bearings used are pendulum characteristics, providing increase of the natural oscillations (vibrations) period of the isolated structure in a manner to avoid the maximal forces occurring at an earthquake. During an earthquake, the articulation slide block in the bearing moves (slides) along a stainless steel concave surface, forcing a support to move within small pendulum displacements. The schematic view of the bearing is presented in Figure 20. The plate with a spherical concave surface is mounted on the top as viewed from the deck; this is done to arrange convenient operation. At such location of a concave plate, the grease does not get on the slide face. The lower plate of the case is mounted on the jack structure.
\nBearing structure diagram.
If forces occurring during an earthquake do not exceed the level of friction forces, then the structure supported by the bearing corresponds to the standard structure lying on the jack and has its own oscillation (vibration) period without insulator. As soon as the level of friction forces is exceeded, the structure starts oscillate with designed period; at that the dynamic response and damping are defined by bearing properties.
\nThe hemispherical design of the articulation slide block allows getting relatively uniform distribution of pressure under the slide block and this reduces the movement judder and prevents occurrence of high local pressure in the bearing.
\nAs the displacements caused by an earthquake initially occur in bearings that are seismic-insulators, the side loadings and vibration motions transferred to a construction drop significantly.
\nIn Table 4, the mean peak accelerations are presented, influencing, at designed earthquake, on the components of the oil and gas platform Lun-A for cases when friction pendulum bearings are in use and are not in use.
\nPlatform component | \nа | \nb | \n
---|---|---|
Deck | \n0.24 | \n0.73 | \n
Deck, level (+)27 m | \n0.31 | \n0.65 | \n
Deck, level (+)38 m | \n0.25 | \n0.74 | \n
Deck, level (+)47 m | \n0.31 | \n0.84 | \n
Flare unit | \n2.00 | \n4.37 | \n
Drilling module | \n0.61 | \n1.22 | \n
Crane on the North side | \n0.82 | \n1.74 | \n
Crane on the South side | \n1.46 | \n2.27 | \n
Average side accelerations д(m/sec2) of the oil and gas platform components when pendulum bearings are used (a) and without such bearings (b).
Accelerations drop is at 1.5–3 times that leads to significant reduction of wear of bearings and the antifriction self-lubricant film.
\nDevelopment of oil and gas fields, as a rule, is carried out in the seismically active areas (their activity reaches magnitude 8–9 on 1–9 scale), and this is one of the main difficulties to be overcome in the process of such developments execution.
\nSea platforms “Lun–А” and “PA-B” of the Sakhalin-II project are installed on the shelf of the Sakhalin Island in 2007. The weight of the gravity based structure is: for the“Lun–А” platform—103 thousand tons and for the “PA-B” platform—106 thousand tons. The weight of the topsides of “Lun–А” is 28 thousand tons and of “PA-B”—34 thousand tons. Service life of sea platforms “Lun–А” and “PA-B” is 30 years. Their design shall provide operation of equipment without damages and failures and resist loads occurred in the process of earthquake with probable repeatability once in 200 years and keep running without serious damages after impact upon such seldom earthquake that may occur once in 3000 years.
\nFor the first time in world practice on “Sakhalin-II” project were installed frictional pendulum sliding supports (Figure 21) to provide seismic insulation between sea platform concrete gravity based structure and topside.
\nUse of frictional pendulum bearings (sliding supports) on sea oil platforms installed in the top part of four concrete jacks. a) PA-B Platform; b) Lun-A Platform.
Such FPB previously were used for construction of highways, bridges and airports never before they were used in sea platforms.
\nFour bearings—seismic insulators installed in the catwalk of four concrete supports provide damping of extreme horizontal loadings due to isolation of the topside buildings from the most destructive pushes and due to reduction of loads on the topside buildings caused by impact of daily temperature changes, pressure of ice and waves.
\nComprehensive on-line diagnostics and monitoring of sophisticated constructive components of SP equipment as per strength criteria, in-service life and crack resistance takes on greater and greater importance in the course of studies and works with regard to technogenic safety [1, 2, 4, 5, 7, 15, 16]. So far, the solution of these tasks is difficult because of absence of enough nomenclature and number of means for multi-parameter and multi-factor diagnostics of the damaged SP elements with taking into account scenarios of accidents. When looking for methods and diagnostic means and monitoring performance, it is necessary to apply the system concept providing umbrella approach for: the preliminary analysis of the stress-deformed states by analytical and numerical methods; identification of the most loaded and dangerous zones; nondestructive testing and diagnostics at all stages of equipment life cycle; and development of a system of diagnostic data collection and exchange between design offices, manufacturers and operators.
\nOnly based on this understanding, it is possible to provide high system reliability, sufficient depth and validity of diagnosing.
\nAlong with expert evaluation of above-water and above-ice technologies, the feasibility studies and assessment of basic features of subsea systems, including issues of energy security, were carried out. This analysis is made by the community of the specialized sea organizations: RNTs “Kurchatov institute” and Institute of machine science named after A.A. Blagonravov RAS (Moscow) with participation of the National laboratory Sandia (USA).
\nAs a solution acceptable from the economical and technical point of view of above task is related to the transition to the system of underwater and under-ice technology of exploration, production, treatment and transportation of hydrocarbons (oil and liquefied natural gas—LNG (Figure 22) that so far is not available. Higher price of such underwater and under-ice system is compensated by the reduction of the subsequent costs required to provide safety and physical protection. Estimates show that the possible losses caused by technogenic accidents of above-water natural threats and terrorist impacts on the objects of a underwater technologies complex is 10 times less, than from impact of similar risk factors for traditional above-water technologies. The appraisals done by the specialized organizations show the technical capability of Russia to develop for the Arctic shelf the underwater and under-ice atomic technologies (Figure 22).
\nScheme of under-water and under-ice technological complex: 1—ice coverage on the sea surface; 2—underwater LNG carrier or tanker; 3—subsea oil and LNG tank; 4—subsea natural gas liquefaction and oil unit; 5—Field processing unit; 6—subsea power generation unit; 7—subsea condensate storage facility; 8—subsea condensate carrier; 9—LNG terminal; and 10—subsea well.
Calculations done with taking into account information from clause 2 make it possible to obtain the risks values for both traditional (on-land and above-water sea) technologies and for new (underwater) technologies. The following risks’ characteristics are given in Table 5:
Types of risks | \n\n | \n\n | \n\n | \n\n | \n\n | \n\n | \n
---|---|---|---|---|---|---|
1. Risks for on-land infrastructures | \n48.3 | \n48.9 | \n71.5 | \n72.4 | \n59.9 | \n60.6 | \n
2. Risks of above-water sea transportation | \n4.1 | \n4.13 | \n6.1 | \n6.2 | \n5.08 | \n5.12 | \n
3. Risks of on-land and above water technologies | \n52.4 | \n53.0 | \n77.6 | \n78.6 | \n64.0 | \n65.7 | \n
4. Risks of terrorist attacks on on-land infrastructures \n | \n6.0 | \n6.1 | \n55.1 | \n56.1 | \n46.2 | \n46.4 | \n
5. Risks of terrorist attacks in case of above-water sea transportation \n | \n0.8 | \n2.15 | \n3.1 | \n8.29 | \n2.46 | \n6.4 | \n
6. Risks of terrorist attacks on land infrastructures and on sea transportation \n | \n6.8 | \n8.25 | \n58.2 | \n64.4 | \n48.7 | \n52.8 | \n
Risks of the traditional LNG technologies (million dollars per year).
The estimated cost efficiency of new underwater technologies (liquefaction and transportation) increases in comparison with the traditional (on-land and above-water) technologies. Risks of new technologies at an initial stage are (8.6–10.1)⋅106 of dollars/year; and for traditional ones (59.2–61.3)⋅106 dollars/year.
\nThese risks have to be considered at stage of economic assessment of all newly created technologies related to shelf developments.
\nThe person (operator) or an automatic system, when conducting diagnostics and monitoring (Figure 23), closely follow change of parameters and use their abilities to identify and forecast the processes and the phenomena., most actively joins in control processes. The software provides comprehensive processing of the obtained information and active assistance to the operator by performing additional data processing and presenting upon operator’s request necessary information recorded in the computing system memory.
\nDiagnostics and monitoring procedure chart.
A set of the principles, methods and means of defects finding and detection or, in another words, arranging of diagnostic assurance of crack resistance of equipment elements during production and in service, forms the basis for accidents prevention, actuation of the automated protection and safety enhancement.
\nSuch approach was implemented during Sakhalin-II projects execution for protection of SP from earthquakes and tsunami.
\nIssues of development of the world and Russian continental shelf for exploration, drilling, production, treatment, storage and transportation of hydrocarbons become more and more important socioeconomically and in scientific and technical aspects. Unique sea platforms for a temperate and Arctic climate, undoubtedly, fall into group of critically and strategically important objects of infrastructures of life activity and life support. The fundamental studies and applied research works in the field of provision of strength, in-service life, survivability and risks play key role in comprehensive solution of issues relevant to the sea platforms safety, security and protection from accidents and disasters.
\nTheir implementation is focused on scientific justification of classification of continental shelf technosphere objects, classification of routine and abnormal situations, development of methods and systems of diagnostic, monitoring and protection.
\nIn the future-oriented technologies for safe continental shelf development, the results of advanced scientific theoretical and experimental developments in such industries as nuclear, airspace and transport will be used. The specified research works and development have both clearly expressed national and general international character.
\nSecondary metabolites, derived from natural plants, of which polyphenols constitute the grand part, have a wide range of activities [1]: biological (antibacterial, antioxidant [2, 3], anti-inflammatory [4], antidiabetic [5], anti-carcinogenic [6], etc.) and chemical (in connection with their chelating power with metals and their reducing properties generated by the hydroxyl functions of their aromatic rings). These molecules are used in several fields: as preservative food additives (constituting an alternative to the use of synthetic ones, such as buthylhydroxyanisol (BHA) and buthylhydroxytoluene (BHT), which have carcinogenic effects [7]; as flavoring in cosmetology [8]; as additives in electrolytic baths during the metals electrodeposition [9, 10, 11] and as corrosion inhibitors [12, 13, 14].
Even today, these molecules have not revealed all their secrets. Our research aims to understand the power of polyphenols in the field of metal protection against corrosion.
The
We continue in this investigation to focus on the
On the other hand, and in order to better understand the underlying reaction mechanisms of the corrosion phenomena to choose which inhibitors to use to combat it, the prediction of the implementation behavior of effective corrosion control measures is paramount. For this purpose, mathematical simulation was used as a powerful method [12, 22] to evaluate the kinetic parameters of both corrosion rate and inhibition efficiency.
Corrosion, from the Latin “corrodere” (which means “to attack”) is one of the harmful global problems affecting several industrial fields such as maritime installations, petroleum, chemical, civil engineering, electrical, nuclear, sanitary, and other industries, without forgetting the environmental impact [23, 24, 25].
The corrosion of metals and their transformation into various compounds cause an alteration in their appearance, either on the surface or in-depth, thus reducing their effectiveness (parts breakage, the toxicity of the resulting metal oxides, etc.).
Several factors come into play in this phenomenon. They can be chemical (water, oxygen, salinity, acidity, etc.), physical (temperature, pressure, etc.), or biological (marine biological deposit of plants or animals, bacteria, etc.).
This phenomenon has Several definitions:
The ISO 8044 standard defines corrosion as a physicochemical process, which leads to the deterioration of a material (metal or alloy), or degrades its functional properties following its interaction with an aggressive environment, making it unsuitable for supposed application [26].
The National Association of Corrosion Engineers (NACE) outlines this phenomenon as the deterioration of a material, usually a metal, generated by its interaction with its environment [27].
Corrosion control is the set of measures that can protect metallic materials from the harmful effects of the aggressive environment. Many of these methods were reported in the literature [28, 29]. The first protection is the choice of pure metal or alloys resistant to these attacks [30].
After designing the equipment using the appropriate material, it must be protected against corrosion should be considered to avoid many problems and ensure a certain service life. For this, the preferred outlet must comply with environmental protection requirements and allow the recycling or disposal of the various components at the end of their use by applying the following choices [31]:
Prevention by an adapted shape of the parts;
Protection by coatings;
Electrochemical protection;
Protection by corrosion inhibitors.
All these solutions have drawbacks of efficiency over time, cost and environmental pollution, which is why other alternatives are exploited in research for the benefit of sustainable development that respects the environment. To this end, there have recently been some new alternatives products both environmentally friendly and less expensive as the use of inhibitors from naturals origin [32].
Inhibitors have been successfully applied to prevent corrosion and damage in many and varied technical fields for a long time. These products have been frequently studied because they provide simple solutions to protect metals from corrosion in the aquatic environment. With the originality of being the only means of interference of the corrosive environment with steel, these compounds reduce the rate of corrosion of metals when added in appropriate amounts, without apparent change [9, 14].
The vegetable material was collected during May 2017 from the East-North of Tebessa (Algeria). The extraction and purification of the
The tested aggressive medium was a chlorhydric acid solution (1 M), and the investigated inhibitors were freshly prepared solutions of BEEI with different concentrations (from 100 to 500 ppm).
Before each mesurements, the substrates were abraded using emery paper with different grades (from 200 to 2000), cleaned with distilled water and then acetone. The used substrates were carbon steels with the following composition: (by weight%): C (0.26%), Mn (1.35%), P (0.03%), S (0.03%) and Fe (98.33%). Weight loss measurements were performed with specimens with dimensions of 1 cm x 1 cm x 1 cm. For the electrochemical experiments, only an exposed surface of 1 cm2 was used. All measurements were conducted in an aerated area.
All electrochemical measurements were accomplished through a Voltalab (PGZ 301) potentiostat and controlled by software model (Voltamaster 4) under given conditions. The electrochemical characteristics of CS sample in uninhibited and inhibited solutions were realized in conventional three-electrode cell: CS as working electrode, platinum electrode as counter electrode and saturated calomel electrode (SCE) as a reference.
Potentiodynamic polarization curves were recorded after total immersion of the working electrode (CS) in 1 M HCl solution containing different concentrations of the tested inhibitor by changing the electrode potential from +250 to −250 mV vs. open circuit potential (OCP) with a scan rate of 1 mV/s. The linear Tafel segments of anodic and cathodic curves were extrapolated to corrosion potential
where
Electrochemical impedance spectroscopy (EIS) experiments were conducted in the frequency range of 100 kHz–10 mHz with a signal amplitude perturbation of 10 mV at open circuit potential (OCP) measured during 60 min of immersion in the tested solutions. The percentage of the inhibition efficiency
where
For these measurements, the prepared and pre-weighed CS substrates were totally immersed in beakers containing 1 M HCl without and with the addition of diverse concentrations of BEEI. The substrates were taken out after two hours, washed with 20% NaOH solution containing 200 g/l of zinc dust with a brush, rinsed severally with bidistilled water, dried with acetone, washed again with bidistilled water, dried and reweighted [34]. From the weight loss data, the corrosion rate
where
where
A mathematical model is used to correlate variables by fitting an equation to experimental data. When using two variables, one of them is considered as explanatory, whereas the other is considered as a dependent. The linear regression of
where
and
EIS was performed to estimate CS corrosion behavior in the presence of 500 ppm of BEEI at 298 K.
The inspection of Nyquist plots presented in Figure 1 shows only one depressed capacitive imperfect semicircle at the higher frequency range, indicating that the corrosion reaction is controlled by the charges transfer process on a heterogeneous and irregular steel surface electrode [39, 40, 41].
Nyquist spectra for carbon steel in HCl solution in the absence and presence of 500 ppm of BEEI.
The electrical equivalent circuit model (EEC) adjusted by fitting from the resulting impedance diagrams for Nyquist plots is reported in literature [12].
From Table 1, a noticeable increase in Rct values and a decrease in Cdl at 500 ppm of BEEI due to the formation of protective diapers on the CS surface are observed. This phenomenon can be explained by the higher adsorption of phytochemical components above CS upon BEEI addition which ultimately reduces the charge transfer between the CS surface and the corrosion medium [42]. Consequently, we noticed that the
Blank | 232.2 | 21.00 | 0.89 | 142.5 | — |
500 | 889.9 | 09.11 | 0.80 | 47.87 | 73.82 |
EIS parameters of CS in HCl solution in the absence and presence of 500 ppm of BEEI.
To further evaluate the efficiency of the expected green inhibitor, the polarization technique was studied due to its excellent reliability. Figure 2 shows the parameters given in Table 2 and extracted from the CS electrode polarization curves for 500 ppm BEEI in the presence of 1 M HCl solution, at 293 K.
Potentiodynamic polarization curves for carbon steel in HCl solution with and without inhibitor addition.
C (mg/l) | |||||
---|---|---|---|---|---|
Blank | 470.6 | 0.0861 | 72.6 | 117.9 | — |
500 | 483.9 | 0.0216 | 75.8 | 134.2 | 74.91 |
Potentiodynamic polarizations parameters of CS in HCl solution in the absence and presence of 500 ppm of BEEI.
As can be seen in this figure, at 500 ppm of BEEI, the cathodic and anodic corrosion current densities will decrease. This comportment can be attributed to the adsorption of the inhibitor at the carbon steel interface [43] by reducing the dissolution of steel and delaying the hydrogen evolution reaction [44].
In our study, the maximum displacement in Ecorr value for the optimum concentration of BEEI was −13.3 mV (< 85 mV), which exhibits that the inhibitor acts as a mixed type [43, 45]. The highest inhibition efficiency was 75% at a concentration of 500 ppm.
To study the behavior of the steel protection in the presence of an aggressive solution, the weight loss method was used. Based on this approach, the
From Table 3, it can be observed that the
This behavior can be attributed to the removal of some adsorbed molecules contained in the BEEI, through thermal energy-induced mechanical vibration [46]. As the inhibition efficiency is derived from the weight-loss method, the highest inhibition efficiency was 72.88% for 500 ppm of BEEI at 293 K.
The good fitting for experimental data of gravimetric measurements at all measured temperatures supports the applicability of Freundlich adsorption model expressed by the subsequent Equation [47, 48]:
where,
The standard adsorption free enthalpy
where
The standard adsorption enthalpy
where
The
The standard adsorption entropy
The obtained results for
From Table 4, we noticed the following:
A decrease in Kads values with increasing temperatures, indicating that the adsorbent molecules contained in the BEEI adsorbed from the metal surface [54].
Negative
The negative sign of
The positive sign of
Temperature (K) | ||||
---|---|---|---|---|
293 | Blank | 0.1232 | — | — |
500 | 0.0334 | 0.7288 | 72.88 | |
303 | Blank | 0.1681 | — | — |
500 | 0.0548 | 0.6740 | 67.40 | |
313 | Blank | 0.1716 | — | — |
500 | 0.0682 | 0.6025 | 60.25 |
Corrosion parameters obtained from weight loss measurements of CS in 1 M HCl with different concentrations of BEEI at different temperatures.
293 | 0.9809 | −25.44 | −22.22 | 10.99 |
303 | 0.9968 | −25.99 | 12.44 | |
313 | 0.9968 | −25.65 | 10.96 |
Thermodynamic parameters of the adsorption of BEEI on the CS in 1 M HCl at different temperatures.
The Arrhenius-type process was used to calculate the activation energies
Where
The logarithm of the
Blank | 12.75 | 10.23 | −3.2822 |
500 | 27.32 | 24.80 | - 2.7202 |
Activation parameters
For the evaluation of the enthalpy
where
The plot of
The activation energy values were higher in the presence of 500 ppm of BEEI than in its absence, which proved the adsorption of BEEI molecules on the substrate by electrostatic bonds (physisorption) [62, 64]. The positive signs of
The BEEI adsorption process is accompanied by a decrease in its entropy. This can be explained that before the adsorption of the extract on the steel, the disorder degree of the inhibitor molecules is high, but when the molecules are adsorbed on the surface of the substrate, there is a decrease the in the disorder (i.e. a decrease in the entropy) [66].
This investigation focused on how could the used inhibitor (BEEI) decrease the corrosion rate
For that, a mathematical method was employed to predict the influence of a variable
Based on experimental data of the CS behavior in the presence of BEEI at various temperatures, a linear regression relation between
As reported by Khadom et al. [67], when the correlation coefficient of the correlation is < 0.30, the correlation is weak and when this coefficient is between 0.50 and 0.70, the correlation is important, while if it is >0.90, the correlation will be strong.
According to the plots shown in Figure 3, a decrease in the CR with a raise in the ηw, when adding BEEI with various concentrations at different temperatures was distinguished, and based on correlation coefficients
Mathematical relationship between corrosion rate and inhibitory efficiency at different temperatures.
Temperature (K) | ||
---|---|---|
293 | 0.9765 | 0.9625 |
303 | 0.9886 | 0.9775 |
313 | 0.9970 | 0.9890 |
Correlation coefficients evaluated from linear regression of
As we can see from the obtained results, the correlation coefficients were almost >0.90 for considered temperatures. However, as the temperature rises the correlation coefficients go up. The Eqs. (12)–(14) construe the mathematical expression obtained for the relationship between the
This mathematical model exhibits a decrease in the corrosion rate when inhibition efficiency rises, with reducing in temperature. These results indicate the powerful concordance between experimental and predicted results.
T = 293 K
T = 303 K
T = 213 K
In order to estimate the multiple benefits of phenolic compounds, a phenolic
A concordance between the employed evaluating methods, suggesting that the phenolic extract could serve as an effective corrosion inhibitor for CS against corrosion.
Depending on the gravimetric measurements, the investigated phenolic extract was spontaneously adsorbed on the CS surface following a physical model according to Freundlich isotherm.
The prediction of the phenolic extract effect of as a corrosion inhibitor by the mathematical study was in good agreement with the experimental results, which confirms that the corrosion rate is affected by the temperature and the inhibitor concentration.
The generated mathematical model shows a decrease in the corrosion rate with the increase of inhibition efficiency. These results indicate a strong agreement between experimental and mathematical results.
The
For a more extensive valuation of phenolic products, many perspectives are envisaged, namely:
Evaluate the synergy between phenolic extracts extracted from different plants looking for a better efficiency.
The study can be extended to analyze the effect of these phenolic compounds in other corrosive media and on other types of steel.
Perform a theoretical simulation to highlight the active compound (s) responsible for this inhibition.
The authors gratefully acknowledge the support of Tebessa University. We would like also to acknowledge the IntechOpen and the author service manager Dolores Kuzelj for their supports.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6495/images/1947_n.jpg",biography:"Daniel Eberli MD. Ph.D. is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He currently has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. He is a lecturer at the Medical School of Zurich and the Swiss Federal Institute of Technology. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.",institutionString:null,institution:{name:"University Hospital of Zurich",country:{name:"Switzerland"}}},{id:"122240",title:"Prof.",name:"Frede",middleName:null,surname:"Blaabjerg",slug:"frede-blaabjerg",fullName:"Frede Blaabjerg",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalborg University",country:{name:"Denmark"}}},{id:"50823",title:"Prof.",name:"Hamid Reza",middleName:null,surname:"Karimi",slug:"hamid-reza-karimi",fullName:"Hamid Reza Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Milan",country:{name:"Italy"}}},{id:"22128",title:"Dr.",name:"Harald",middleName:null,surname:"Haas",slug:"harald-haas",fullName:"Harald Haas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Edinburgh",country:{name:"United Kingdom"}}},{id:"80399",title:"Dr.",name:"Huosheng",middleName:null,surname:"Hu",slug:"huosheng-hu",fullName:"Huosheng Hu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Essex",country:{name:"United Kingdom"}}},{id:"135796",title:"Prof.",name:"Jim",middleName:null,surname:"Van Os",slug:"jim-van-os",fullName:"Jim Van Os",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Utrecht University",country:{name:"Netherlands"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:17575},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:25},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:30},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1048",title:"Clinical Genetics",slug:"clinical-genetics",parent:{id:"186",title:"Medical Genetics",slug:"medical-genetics"},numberOfBooks:8,numberOfSeries:0,numberOfAuthorsAndEditors:250,numberOfWosCitations:156,numberOfCrossrefCitations:73,numberOfDimensionsCitations:203,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1048",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8303",title:"Gene Regulation",subtitle:null,isOpenForSubmission:!1,hash:"717b32b5becef8d895adf106c5a3099d",slug:"gene-regulation",bookSignature:"Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/8303.jpg",editedByType:"Edited by",editors:[{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6136",title:"Advances in Research on Down Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"cb344b182e5c95b23d749f5ad1f2dcf3",slug:"advances-in-research-on-down-syndrome",bookSignature:"Subrata Dey",coverURL:"https://cdn.intechopen.com/books/images_new/6136.jpg",editedByType:"Edited by",editors:[{id:"31178",title:"Prof.",name:"Subrata",middleName:"Kumar",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4612",title:"Health Problems in Down Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"f5ddeea4d563be8671912a202fd284b0",slug:"health-problems-in-down-syndrome",bookSignature:"Subrata Dey",coverURL:"https://cdn.intechopen.com/books/images_new/4612.jpg",editedByType:"Edited by",editors:[{id:"31178",title:"Prof.",name:"Subrata",middleName:"Kumar",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3298",title:"Down Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"99ef7199bce28e844249e7591894caab",slug:"down-syndrome",bookSignature:"Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/3298.jpg",editedByType:"Edited by",editors:[{id:"31178",title:"Prof.",name:"Subrata",middleName:"Kumar",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"221",title:"Advances in the Study of Genetic Disorders",subtitle:null,isOpenForSubmission:!1,hash:"884a39b5404218e6ea3a6a2f84c371fc",slug:"advances-in-the-study-of-genetic-disorders",bookSignature:"Kenji Ikehara",coverURL:"https://cdn.intechopen.com/books/images_new/221.jpg",editedByType:"Edited by",editors:[{id:"29410",title:"Dr.",name:"Kenji",middleName:null,surname:"Ikehara",slug:"kenji-ikehara",fullName:"Kenji Ikehara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"385",title:"Human Genetic Diseases",subtitle:null,isOpenForSubmission:!1,hash:"ee05b56a8355255883a05d9e647f83f3",slug:"human-genetic-diseases",bookSignature:"Dijana Plaseska-Karanfilska",coverURL:"https://cdn.intechopen.com/books/images_new/385.jpg",editedByType:"Edited by",editors:[{id:"64941",title:"Dr.",name:"Dijana",middleName:null,surname:"Plaseska-Karanfilska",slug:"dijana-plaseska-karanfilska",fullName:"Dijana Plaseska-Karanfilska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"211",title:"Genetics and Etiology of Down Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"25b79c06f3fee34858efd200dd285ca6",slug:"genetics-and-etiology-of-down-syndrome",bookSignature:"Subrata Dey",coverURL:"https://cdn.intechopen.com/books/images_new/211.jpg",editedByType:"Edited by",editors:[{id:"31178",title:"Prof.",name:"Subrata",middleName:"Kumar",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"479",title:"Prenatal Diagnosis and Screening for Down Syndrome",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"prenatal-diagnosis-and-screening-for-down-syndrome",bookSignature:"Subrata Dey",coverURL:"https://cdn.intechopen.com/books/images_new/479.jpg",editedByType:"Edited by",editors:[{id:"31178",title:"Prof.",name:"Subrata",middleName:"Kumar",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"23717",doi:"10.5772/22161",title:"The Multifaceted Complexity of Genetic Diseases: A Lesson from Pseudoxanthoma Elasticum",slug:"the-multifaceted-complexity-of-genetic-diseases-a-lesson-from-pseudoxanthoma-elasticum",totalDownloads:3313,totalCrossrefCites:3,totalDimensionsCites:18,abstract:null,book:{id:"221",slug:"advances-in-the-study-of-genetic-disorders",title:"Advances in the Study of Genetic Disorders",fullTitle:"Advances in the Study of Genetic Disorders"},signatures:"Daniela Quaglino, Federica Boraldi, Giulia Annovi and Ivonne Ronchetti",authors:[{id:"46557",title:"Prof.",name:"Daniela",middleName:null,surname:"Quaglino",slug:"daniela-quaglino",fullName:"Daniela Quaglino"},{id:"46569",title:"Dr.",name:"Federica",middleName:null,surname:"Boraldi",slug:"federica-boraldi",fullName:"Federica Boraldi"},{id:"46570",title:"Dr.",name:"Giulia",middleName:null,surname:"Annovi",slug:"giulia-annovi",fullName:"Giulia Annovi"},{id:"46573",title:"Prof.",name:"Ivonne",middleName:null,surname:"Ronchetti",slug:"ivonne-ronchetti",fullName:"Ivonne Ronchetti"}]},{id:"43394",doi:"10.5772/52807",title:"Genetic and Epigenetic Mechanisms in Down Syndrome Brain",slug:"genetic-and-epigenetic-mechanisms-in-down-syndrome-brain",totalDownloads:2337,totalCrossrefCites:9,totalDimensionsCites:18,abstract:null,book:{id:"3298",slug:"down-syndrome",title:"Down Syndrome",fullTitle:"Down Syndrome"},signatures:"Jie Lu and Volney Sheen",authors:[{id:"40911",title:"Dr.",name:"Volney",middleName:null,surname:"Sheen",slug:"volney-sheen",fullName:"Volney Sheen"},{id:"47427",title:"Dr.",name:"Jie",middleName:null,surname:"Lu",slug:"jie-lu",fullName:"Jie Lu"}]},{id:"23704",doi:"10.5772/18373",title:"Inbreeding and Genetic Disorder",slug:"inbreeding-and-genetic-disorder",totalDownloads:12008,totalCrossrefCites:3,totalDimensionsCites:12,abstract:null,book:{id:"221",slug:"advances-in-the-study-of-genetic-disorders",title:"Advances in the Study of Genetic Disorders",fullTitle:"Advances in the Study of Genetic Disorders"},signatures:"Gonzalo Alvarez, Celsa Quinteiro and Francisco C. Ceballos",authors:[{id:"31292",title:"Dr.",name:"Gonzalo",middleName:null,surname:"Alvarez",slug:"gonzalo-alvarez",fullName:"Gonzalo Alvarez"},{id:"44395",title:"Dr.",name:"Celsa",middleName:null,surname:"Quinteiro",slug:"celsa-quinteiro",fullName:"Celsa Quinteiro"},{id:"44396",title:"MSc.",name:"Francisco",middleName:"C.",surname:"Ceballos",slug:"francisco-ceballos",fullName:"Francisco Ceballos"}]},{id:"21211",doi:"10.5772/33229",title:"Detection of the Most Common Genetic Causes of Male Infertility by Quantitative Fluorescent (QF)-PCR Analysis",slug:"detection-of-the-most-common-genetic-causes-of-male-infertility-by-quantitative-fluorescent-qf-pcr-a",totalDownloads:2931,totalCrossrefCites:2,totalDimensionsCites:8,abstract:null,book:{id:"385",slug:"human-genetic-diseases",title:"Human Genetic Diseases",fullTitle:"Human Genetic Diseases"},signatures:"Dijana Plaseska-Karanfilska, Predrag Noveski and Toso Plaseski",authors:[{id:"64941",title:"Dr.",name:"Dijana",middleName:null,surname:"Plaseska-Karanfilska",slug:"dijana-plaseska-karanfilska",fullName:"Dijana Plaseska-Karanfilska"}]},{id:"17989",doi:"10.5772/18539",title:"Motor Behavior in Down Syndrome: Atypical Sensoriomotor Control",slug:"motor-behavior-in-down-syndrome-atypical-sensoriomotor-control",totalDownloads:2756,totalCrossrefCites:0,totalDimensionsCites:8,abstract:null,book:{id:"479",slug:"prenatal-diagnosis-and-screening-for-down-syndrome",title:"Prenatal Diagnosis and Screening for Down Syndrome",fullTitle:"Prenatal Diagnosis and Screening for Down Syndrome"},signatures:"Regiane Luz Carvalho and Délcia Adami Vasconcelos",authors:[{id:"31796",title:"Prof.",name:"Regiane Luz",middleName:null,surname:"Carvalho",slug:"regiane-luz-carvalho",fullName:"Regiane Luz Carvalho"},{id:"45423",title:"Prof.",name:"Delcia",middleName:null,surname:"Adami Vasconcelos",slug:"delcia-adami-vasconcelos",fullName:"Delcia Adami Vasconcelos"}]}],mostDownloadedChaptersLast30Days:[{id:"57288",title:"Congenital Heart Disease in Down Syndrome",slug:"congenital-heart-disease-in-down-syndrome",totalDownloads:1945,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Down syndrome remains the most common chromosomal abnormality in live-born infants in the world today. The association between Down syndrome and congenital heart disease (CHD) is well known, and it is widely recognized that CHD contributes significantly to the morbidity of children with Down syndrome. The reported incidence of CHD in Down syndrome patients is between 40 and 60%. The most commonly described defect is complete atrioventricular septal defect (AVSD), which comprises 30–40% of all cardiac defects. Complex genetic factors are involved. Routine cardiac screening of all newborn babies with Down syndrome is recommended. Expert groups suggest that the cardiac status of all children with Down syndrome should be established by 6 weeks of age to permit appropriate and timely treatment avoiding the establishment of irreversible pulmonary vascular disease that would make corrective surgery impossible.",book:{id:"6136",slug:"advances-in-research-on-down-syndrome",title:"Advances in Research on Down Syndrome",fullTitle:"Advances in Research on Down Syndrome"},signatures:"Margaret Louise Morrison and Colin J. McMahon",authors:[{id:"218141",title:"Prof.",name:"Colin",middleName:"J.",surname:"McMahon",slug:"colin-mcmahon",fullName:"Colin McMahon"},{id:"218161",title:"Dr.",name:"Louise",middleName:null,surname:"Morrison",slug:"louise-morrison",fullName:"Louise Morrison"},{id:"218162",title:"Dr.",name:"Sophie",middleName:null,surname:"Duignan",slug:"sophie-duignan",fullName:"Sophie Duignan"}]},{id:"18452",title:"First Trimester Screening for Trisomy 21 by Maternal Age, Nuchal Translucency and Fetal Nasal Bone in Unselected Pregnancies",slug:"first-trimester-screening-for-trisomy-21-by-maternal-age-nuchal-translucency-and-fetal-nasal-bone-in",totalDownloads:5480,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"211",slug:"genetics-and-etiology-of-down-syndrome",title:"Genetics and Etiology of Down Syndrome",fullTitle:"Genetics and Etiology of Down Syndrome"},signatures:"Ksenija Gersak, Maja Pohar-Perme and Darija M. Strah",authors:[{id:"53853",title:"Prof.",name:"Ksenija",middleName:null,surname:"Gersak",slug:"ksenija-gersak",fullName:"Ksenija Gersak"},{id:"88543",title:"Dr.",name:"Maja",middleName:null,surname:"Pohar-Perme",slug:"maja-pohar-perme",fullName:"Maja Pohar-Perme"},{id:"88544",title:"M.D.",name:"Darija",middleName:"Mateja",surname:"Strah",slug:"darija-strah",fullName:"Darija Strah"}]},{id:"17997",title:"Non Invasive Prenatal Diagnosis of Down Syndrome",slug:"non-invasive-prenatal-diagnosis-of-down-syndrome",totalDownloads:3608,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"479",slug:"prenatal-diagnosis-and-screening-for-down-syndrome",title:"Prenatal Diagnosis and Screening for Down Syndrome",fullTitle:"Prenatal Diagnosis and Screening for Down Syndrome"},signatures:"Dimitra Kappou, Eleftheria Papadopoulou and Stavros Sifakis",authors:[{id:"33248",title:"Dr.",name:"Stavros",middleName:null,surname:"Sifakis",slug:"stavros-sifakis",fullName:"Stavros Sifakis"},{id:"33250",title:"Dr.",name:"Dimitra",middleName:null,surname:"Kappou",slug:"dimitra-kappou",fullName:"Dimitra Kappou"},{id:"43203",title:"Dr.",name:"Eleftheria",middleName:null,surname:"Papadopoulou",slug:"eleftheria-papadopoulou",fullName:"Eleftheria Papadopoulou"}]},{id:"17991",title:"Oral Health in Individuals with Down Syndrome",slug:"oral-health-in-individuals-with-down-syndrome",totalDownloads:6771,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"479",slug:"prenatal-diagnosis-and-screening-for-down-syndrome",title:"Prenatal Diagnosis and Screening for Down Syndrome",fullTitle:"Prenatal Diagnosis and Screening for Down Syndrome"},signatures:"Ronald H.W. Cheng, Cynthia K.Y. Yiu and W. Keung Leung",authors:[{id:"29992",title:"Dr.",name:"W. Keung",middleName:null,surname:"Leung",slug:"w.-keung-leung",fullName:"W. Keung Leung"},{id:"44673",title:"Dr.",name:"Ronald H. W.",middleName:null,surname:"Cheng",slug:"ronald-h.-w.-cheng",fullName:"Ronald H. W. Cheng"},{id:"44674",title:"Dr.",name:"Cynthia K. Y.",middleName:null,surname:"Yiu",slug:"cynthia-k.-y.-yiu",fullName:"Cynthia K. Y. Yiu"}]},{id:"65592",title:"Introductory Chapter: Gene Regulation, an RNA Network-Dependent Architecture",slug:"introductory-chapter-gene-regulation-an-rna-network-dependent-architecture",totalDownloads:1e3,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"8303",slug:"gene-regulation",title:"Gene Regulation",fullTitle:"Gene Regulation"},signatures:"Payam Behzadi and Lernik Issakhanian",authors:[{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"},{id:"292008",title:"MSc.",name:"Lernik",middleName:null,surname:"Issakhanian",slug:"lernik-issakhanian",fullName:"Lernik Issakhanian"}]}],onlineFirstChaptersFilter:{topicId:"1048",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:18,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:52,paginationItems:[{id:"80761",title:"Extractions Methods and Biological Applications of Essential Oils",doi:"10.5772/intechopen.102955",signatures:"Sonu Kumar Mahawer, Himani, Sushila Arya, Ravendra Kumar and Om Prakash",slug:"extractions-methods-and-biological-applications-of-essential-oils",totalDownloads:1,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:10,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:21,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"18",type:"subseries",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11414,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}}]},publishedBooks:{paginationCount:6,paginationItems:[{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7004",title:"Metabolomics",subtitle:"New Insights into Biology and Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/7004.jpg",slug:"metabolomics-new-insights-into-biology-and-medicine",publishedDate:"July 1st 2020",editedByType:"Edited by",bookSignature:"Wael N. Hozzein",hash:"35a30d8241442b716a4aab830b6de28f",volumeInSeries:16,fullTitle:"Metabolomics - New Insights into Biology and Medicine",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein",profilePictureURL:"https://mts.intechopen.com/storage/users/189233/images/system/189233.jpeg",institutionString:"Beni-Suef University",institution:{name:"Beni-Suef University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6967",title:"Prebiotics and Probiotics",subtitle:"Potential Benefits in Nutrition and Health",coverURL:"https://cdn.intechopen.com/books/images_new/6967.jpg",slug:"prebiotics-and-probiotics-potential-benefits-in-nutrition-and-health",publishedDate:"March 4th 2020",editedByType:"Edited by",bookSignature:"Elena Franco-Robles and Joel Ramírez-Emiliano",hash:"11781d6b1c070edcf204518e632033be",volumeInSeries:8,fullTitle:"Prebiotics and Probiotics - Potential Benefits in Nutrition and Health",editors:[{id:"219102",title:"Dr.",name:"Elena",middleName:null,surname:"Franco-Robles",slug:"elena-franco-robles",fullName:"Elena Franco-Robles",profilePictureURL:"https://mts.intechopen.com/storage/users/219102/images/system/219102.jpg",institutionString:"Universidad de Guanajuato",institution:{name:"Universidad de Guanajuato",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",slug:"oral-health-by-using-probiotic-products",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Razzagh Mahmoudi",hash:"327e750e83634800ace02fe62607c21e",volumeInSeries:5,fullTitle:"Oral Health by Using Probiotic Products",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi",profilePictureURL:"https://mts.intechopen.com/storage/users/245925/images/system/245925.jpg",institutionString:"Qazvin University of Medical Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:289,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/207004",hash:"",query:{},params:{id:"207004"},fullPath:"/profiles/207004",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()