\r\n\t
",isbn:"978-1-83768-394-9",printIsbn:"978-1-83768-393-2",pdfIsbn:"978-1-83768-395-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"ee9205fd23aa48cbcf3c9d6634db42b7",bookSignature:"Dr. Tao Huang",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12177.jpg",keywords:"DNA Methylation, 3D Genome, RNA Modification, Tumorigenesis, Early Detection Biomarker, Development, Chromatin Dynamics, Hi-C, Topologically Associating Domains, Contact Map, N6-Methyladenosine, Eraser",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 10th 2022",dateEndSecondStepPublish:"July 8th 2022",dateEndThirdStepPublish:"September 6th 2022",dateEndFourthStepPublish:"November 25th 2022",dateEndFifthStepPublish:"January 24th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"9 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A Highly Cited Chinese Researcher with over 200 journal papers published, and a high h index (48). Dr. Huang was included in the World's Top 2% Scientist list (2020, 2021) and is the Vice President of Life Sciences, The Youth Innovation Promotion Association of the Chinese Academy of Sciences.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"461341",title:"Dr.",name:"Tao",middleName:null,surname:"Huang",slug:"tao-huang",fullName:"Tao Huang",profilePictureURL:"https://mts.intechopen.com/storage/users/461341/images/system/461341.jpg",biography:"Tao Huang is an Associate Professor at Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences. He completed his post-doctoral research at the Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York City, USA. His research interests include bioinformatics, computational biology, systems genetics, and big data research. He has published over 200 articles. His works have been cited 10,144 times with an h-index of 48. He has edited books of Computational Systems Biology: Methods and Protocols and Precision Medicine for Methods in Molecular Biology series. He has been Editor or Guest Editor for over 30 journals and a Reviewer for 170 journals. He is a Highly Cited Chinese Researcher (2020) and World's Top 2% Scientist (2020, 2021).",institutionString:"Chinese Academy of Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Chinese Academy of Sciences",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444315",firstName:"Karla",lastName:"Skuliber",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444315/images/20013_n.jpg",email:"karla@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"43075",title:"Single-Needle Hemodialysis on Native Fistulae",doi:"10.5772/52995",slug:"single-needle-hemodialysis-on-native-fistulae",body:'Single-needle (SN) dialysis was first described in 1964 by Twiss, who used a time-activated mechanism with a pump and a double clamp to alternate blood through a caval catheter [1]. As a result of this publication, the technique of SN-hemodialysis on catheter has been widely disseminated and reported in publications primarily in the context of acute renal failure especially in post-operative cases [2]. In the 1980’s, the work of Belgian authors allowed the development of the chronic hemodialysis technic in unipuncture particularly in the Benelux countries [3-5]. Vanholder and colleagues using a specific canula and a twin pump-head SN system showed that dialysis efficiency was at least as good as with conventional double-needle (DN) hemodialysis, based on Kt/V, the hematocrit and nerve conduction [3-4]. They also showed that the five-year fistula survival rate was 74%, a figure far better than with conventional DN hemodialysis [5]. SN dialysis failed to gain popularity, however, with the exception of the Benelux countries and recently Asia, and has been confined to specific situations such as the use of a single-lumen catheter, and when temporary and reversible problems of vascular access arise [6, 7]. Nevertheless, many nephrologists and dialysis nurses are reluctant to use SN dialysis, even in cases of problematic vascular access for fear of incidents or underdialysis [7]. The technique of SN-dialysis with a double-pump (Figure 1) must be differentiated from the use of an alternating clamp which should be reserved for the exceptional situation of termination of a dialysis session in the event of an incident on the native fistula on a simple-pump generator.
Diagrams of extracorporeal circuits during double-needle hemodialysis and single-needle hemodialysis according to Rostoker G. Short-term single-needle hemodialysis on native fistulae : a general review. Nephrol Ther 2010 ; 6(7) : 591-596
The main potential hazards of SN dialysis are the same as those of conventional hemodialysis, but also include hemolysis from shear stresses between red cells and narrow needles, a higher risk of backfiltration, blood recirculation and underdialysis.
The classical drama of mechanical or chemical hemolysis with violent abdominal pain and hypotension has become a very rare event in DN and SN dialysis with the current lines and pumps of generators as well as with the chemical quality of current dialysates. While subclinical hemolysis is very rare during DN-hemodialysis [8], a purely biological hemolysis can be observed in SN-hemodialysis when a high blood flow is used on a single needle of low diameter and high length, particularly when using Wallace catheters (to be avoided at all costs when unipuncture is scheduled) [8-9]. Dhaene and coworkers using plasma lactico deshydrogenase (LDH), as a marker of mechanical hemolysis observed a significant increase in LDH during 41.6 % of the 245 SN-dialysis sessions (among 52 patients) using a 14 Gauge Wallace’s catheter, as compared with 25% of the 112 SN-dialysis sessions performed with 14 Gauge metal needles [8]. Hemolysis intensity was also increased twofold with the use of Wallace’s catheters [8]. In an "in vitro" hemodialysis system using calf’s blood, Wachter and coworkers have also demonstrated by measuring the rate of free hemoglobin released into the plasma that mechanical hemolysis is inversely proportional to the internal diameter of the Wallace’s catheters [9].
The backfiltration of the dialysate to the blood compartment occurs when the pressure in the dialysate compartment is higher than the pressure of the blood compartment of the dialyzer [10]. It is a phenomenon frequently encountered in conventional DN hemodialysis ; with the use of non ultrapure dialysate, this retrofiltration of the dialysate may favor the entry of bacterial endotoxins into blood, and aggravate the micro-inflammatory state of the dialysis patients through the activation of circulating monocytes [7]. The risk of back filtration is higher with SN than with conventional DN hemodialysis due to increased pressure fluctuations resulting in lower pressure in the blood compartment [10]. This means that SN dialysis should be performed with an ultrapure dialysate [7].
Blood recirculation is defined as the reflux of dialysed blood of the venous line into the arterial line and the contamination of the arterial blood by blood which has been already dialysed thus leading to a reduction in dialysis efficiency [11]. The study of the recirculation in the central venous catheters has been widely covered in the literature [summarized in reference 11]: with double lumen catheters recirculation is estimated to average approximately 5% (with a variation of 2% to 12% depending on the type of catheter) [11]. With single lumen short femoral catheters (13.5 cm) a recirculation as high as 22% is observed; recirculation is lower (12.6 %) with longer catheters of 19.5 cm [11]. In 1993, Hoenich and coworkers observed recirculation rates with SN hemodialysis ranging from 8.8 % to 18% [12]. With modern systems of unipuncture dialysis such as the Fresenius generator 4008, Trakarnvanich and coworkers recently found an average recirculation rate ranging between 10.7 % and 12% [6]. Three factors are involved in the blood recirculation phenomenon in SN dialysis [13]: - a low flow rate in the native fistula, - a substantial dead space in the needle and the connectors, - the compliance of the lines of the dialysis circuit located between the needle and the blood pumps [13]. Blumenthal and coworkers elegantly demonstrated that a significant reduction in the rate of recirculation of single lumen catheters (from 23% to 7%) could be obtained by increasing gradually the time of blood impulse rate up to four seconds [14]. However, with the old systems of unipuncture, there was an inverse relationship between blood inflow time and the speed of pumps which limited the gain in recirculation. These works have led the dialysis industry to optimize the blood inflow time in parallel with the flow of the two blood pumps [14].
Few data are available on short-term SN dialysis and especialy on the dialysis dose measured using a reliable method. Four publications have clearly shown that the technique of hemodialysis in unipuncture delivered an insufficient dose of dialysis [15-18], which fell below the recommendations of the EDTA and KDOQI [19-20]. These four publications quantified the dose of dialysis by the single-pool Kt/V [15-18] and the most recent also studied the ionic dialysance and the Kt/V provided by the dialysis monitor [18]. Wright and coworkers in the year 2000, were the first to draw attention to the importance of the method of blood sampling in relation to the circuit of unipuncture for the determination of post-dialysis urea in the single-pool method and the risk of a "dramatically optimistic" overestimation of the single-pool Kt/V (due to the contamination of the arterial blood by the recently dialysed venous blood) : among their five patients in SN dialysis, the mean Kt/V taken without precautions measured 1.7 instead of a real value of 1 [15, 21]. Vlassopoulos and coworkers have studied in 17 patients, by means of the double-pool Kt/V measured 20 minutes after the dialysis session, the influence of haemoglobin level and dialysate flow on the dose of dialysis delivered in SN and DN dialysis : with a standard dialysate flow at 500 ml/min and a mean hemoglobin of 11.9 g/dl, the Kt/V dropped from 1.26 in bipuncture to 0.82 in unipuncture [16]. Despite the increase in the dialysate flow to 800 ml/min, the increase of the hemoglobin level with Erythropoesis Stimulating Agent at 12.8 g/dl, led to a significant reduction in the double-pool Kt/V to 1.09 in bipuncture and to 0.74 in unipuncture [16]. Toussaint and Beuret studied six patients for two periods of 15 days (six dialysis sessions) and found a decrease in the single-pool Kt/V from 1.20 in bipuncture to 0.93 in unipuncture [17]. We recently reported the results of the evaluation of the dose of dialysis delivered by SN dialysis compared to DN conventional hemodialysis in eight patients studied in a prospective four-period design lasting four weeks[18]. The dialysis dose was measured by single-pool Kt/V with careful blood sampling according to Wright [15], ionic dialysance recorded 45 minutes after the beginning of the dialysis session and 30 minutes before the end of the session and Dialysis monitor-recorded Kt/V [18]. Ionic dialysance is a variable measured online by several dialysis monitors and reflects small-solute clearance during a dialysis session; it is based on conductivity measurements in the inlet and outlet dialysates and is not affected by the use of one versus two needles [22]. Ionic dialysance is as reliable as effective clearance taking into account cardiopulmonary and vascular access recirculation, and has become the preferred quality assurance parameter of dialysis efficiency [22]. The technique of ionic dialysance is also used to determine and optimize the dialysis dose delivered by double and single lumen catheters [23-26]. In unipuncture period on generator Integra, with the blood flow of 180 ml/min as recommended by the manufacturer, the ionic dialysance was measured at 130ml/min in unipuncture, 45 minutes after the beginning of the dialysis session compared to 181ml/min in bipuncture ; the ionic dialysance 30 minutes before the end of the dialysis session was measured at 122 ml/min in unipuncture compared to 171 ml/min in bipuncture ; the monitor-recorded Kt/V was also statistically reduced in unipuncture to 0.74 (versus 1.05 in bipuncture) as the single-pool Kt/V (unipuncture 0.90 versus in 1.35 in bipuncture) [18] (Figures 2, 3, 4, 5).
Ionic dialysance 45 minutes after the beginning of the dialysis session in SN and DN Dialysis according to Rostoker G et al. Improving the efficiency of short-term single-needle hemodialysis. Renal Failure 2009 ; 31 : 261-266. This figure shows the reduced ionic dialysance in SN dialysis performed according to the manufacturer’s recommendations (at 180ml/min) and the improvement of this parameter by increasing the blood flow rate to 250 ml/min.
Ionic dialysance 30 minutes before the end of the dialysis session in SN and DN Dialysis according to Rostoker G et al. Improving the efficiency of short-term single-needle hemodialysis. Renal Failure 2009 ; 31 : 261-266. This figure shows the reduced ionic dialysance in SN dialysis performed according to the manufacturer’s recommendations(at 180 ml/min) and the improvement of this parameter by increasing the blood flow rate to 250 ml/min
Single pool Kt/V in SN and DN Dialysis according to Rostoker G et al. Improving the efficiency of short-term single-needle hemodialysis. Renal Failure 2009 ; 31 : 261-266. This figure shows the reduced Single pool Kt/V in SN dialysis performed according to the manufacturer’s recommendations (at 180 ml/min) and the improvement of this parameter by increasing the blood flow rate to 250 ml/min.
Kt/V provided by the integra monitor in SN and DN Dialysis according to Rostoker G et al. Improving the efficiency of short-term single-needle hemodialysis. Renal Failure 2009 ; 31 : 261-266. This figure shows the reduced Kt/V provided by the dialysis monitor in SN dialysis performed according to the manufacturer’s recommendations (at 180 ml/min) and the improvement of this parameter by increasing the blood flow rate to 250 ml/min.
Although not formally studied, several authors have raised the problem of an increase in the coagulation in the fibers of the dialyser linked to the rheological changes induced by the technique of unipuncture and its intermittent flow and the activation of the coagulation cascade following the mechanical fragmentation of red blood cells [7, 14]. This increased coagulation may reduce the performance of the dialyzer and contribute to the reduction of the delivered dose of dialysis. The appearance of hollow fibers at the end of the dialysis session must therefore be the subject of careful consideration by nurses in the event of SN dialysis. In such circumstances, in particular when programming a transitional period of single-needle dialysis, it may be necessary to increase the dose of anticoagulation of the dialysis circuit or to use either dialysis membranes coated with heparin or vitamin E or a dialysate enriched in citrate. [7].
In 2002, Lafon showed that it was possible to significantly improve the ionic dialysance of patients treated by SN dialysis on generator Integra during the same dialysis session by increasing the flow of the two blood pumps with a vacuum threshold of -180 mmHg for the arterial pump and + 250 mmHg for the venous pump ; the ionic dialysance increased from 110ml/min in the first part of the dialysis session to 140 ml/min at the last hour of the session [27]. We have recently demonstrated in 8 patients (studied on generator Integra during four weeks, depending on four modalities of dialysis), that the increase of the effective blood flow at 250 ml/min (with a venous pressure < 200 mmHg and using a short 15-Gauge stainless steel needle) improved significantly the amount of dialysis delivered by the unipuncture technique and increased the ionic dialysance by approximately 20 %, the monitor-recorded Kt/V and the single-pool Kt/V by approximately 15% (Figures 2, 3, 4, 5)[18]. Trakarnvanich and coworkers have also recently shown in 10 patients, that it was possible to obtain Kt/V identical to those obtained in bipuncture by increasing the time of dialysis from four hours three times per week to 4h30 or five hours (x3/week) and by using in parallel dialysis membranes of a surface area equal to or larger than two square meter [6].
The primary indication of SN dialysis is represented by cannulation-related complications of native fistula or synthetic grafts [7]. In a Dutch study, conducted in 10 dialysis centers in the Maastricht area, 120 patients newly dialysed patients were followed prospectively for the first six months after initiation of hemodialysis to evaluate the frequency of complications caused by cannulation, the frequency of use of transitional venous catheterization or the number of transient SN dialyses ; 74% of the patients had a native fistula and 26% a synthetic graft [28]. The first cannulation of the vascular access using two needles was performed on average 119 days after the creation of native fistulae and 70 days after installation of the synthetic grafts [28]. During the follow up period, only 9% of patients had not presented any accident of cannulation ; a transitional central venous catheterization was necessary in 16% of patients for an average period of 11 days for those with native fistulae and 1.5 days for those with a synthetic graft ; 24% of patients benefited from a transitional SN dialysis [28]. In multivariate analysis, the only predictive factor for successful puncture of the vascular access was the length of the cannulation route [28].
In the prospective Dutch study carried out in dialysis centers in the region of Maastricht, 51% of the cannulation accidents of native fistulae and synthetic grafts occurred during the first three programmed sessions of DN dialysis [28]. Indeed, in this study, the recommended practice was to perform initiation of hemodialysis straightaway, using the bipuncture technique. These data strongly suggest that too early and too brutal cannulation of native fistulae (and synthetic grafts) by two needles, is a source of later dysfunction of the vascular dialysis access. A Canadian team of dialysis nurses recently conducted a prospective study on the interest of the technique of cannulation by unipuncture at the initiation of hemodialysis [29]. Thirty-three new dialysis patients with native fistulae living in the London area of Ontario were therefore allocated for the first six sessions of dialysis to either SN dialysis (n= 22) or DN dialysis (n= 11) ; the criteria of judgment were the number of transitional venous catheterizations and angiographic investigations of the fistulae and number of missed dialysis sessions in the first three months after initiation of hemodialysis [29]. The number of transitional venous catheterization was reduced by 50% in the group treated by SN dialysis (9.1 % versus 18.2 % in the bipuncture group); the number of angiographic investigations of fistulae was reduced by more than 60% (13.6 % unipuncture group versus 36.4 % in the bipuncture group) ; the number of missed dialysis sessions because of problems of vascular access was similar in the two groups [29]. These two recent studies provide compelling evidence to recommend the practice of a transitional period of SN dialysis to allow the maturation of native fistulae at initiation of scheduled hemodialysis.
Single-needle dialysis may be proposed in situations of "rescue dialysis" such as regional dialysis with anticoagulation by citrate [30] or when bringing to term a rare pregnancy in dialysis [31]. SN dialysis has been used with success in North America, in patients in daily night dialysis presenting vascular access problems [32]. The prolonged use of SN dialysis has also been proposed for a period of several months in carefully selected patients on conventional hemodialysis with severe vascular access problems [6, 15] ; in such cases the increase in dialysis time, the use of large surface area membranes and the optimization of the blood flow are typically required [7]. In these situations, the monitoring of the dose of dialysis delivered by ionic dialysance should also be currently the rule [7]. Because data on the long-term use of SN dialysis are scarce, physicians should be cautious when using prolonged SN dialysis in selected patients.
The primary indication of SN dialysis is represented by cannulation-related complications of native fistulae or synthetic grafts. Recent data strongly suggest that the dialysis dose reliably assessed by ionic dialysance and delivered by transient SN dialysis can be improved by increasing the blood flow rate. Increasing the effective blood flow rate from 180 ml/min to 250 ml/min during SN dialysis is possible in most patients using a short 15-gauge arterial stainless-steel needle, without hemolysis, leading to improved ionic dialysance. This latter regime seems acceptable for short periods of one or two weeks. The use of a larger membrane surface area (> 2 m2) and blood flow higher than 250 ml/min, if tolerated by fistulae, can improve the efficiency of SN and increase the dialysis dose to a sufficient level. Nonetheless, careful monitoring of the dialysis dose delivered is required during SN dialysis, as single pool Kt/V, dialysis monitor-recorded Kt/V and ionic diaysance may be far below European Best Practice and KDOQI recommendations. For longer-term SN dialysis, an increase in the dialysis time or a switch to daily dialysis is needed to obtain efficiency similar to that of conventional DN hemodialysis. Since data on the long-term use of SN dialysis are scarce, caution is warranted if SN dialysis is prolonged. Finally, recent studies have also shown that SN dialysis is a valuable option at the start of programmed dialysis on native fistulae allowing their maturation and reducing the risk of stenosis and thrombosis.
Solar activity drives dynamic changes in the atmosphere and ionosphere that can affect the performance and reliability of satellites in near-Earth space environment, as well as ground-based technological systems and services that rely on them. This condition is referred to as space weather. The principal medium through which the Sun’s activity is communicated to the region of the near-Earth space environment, is the solar wind, which occurs in form of a continuous outflow of streams of energized charged particles and/or momentary eruption of large-scale, high-mass plasma known as coronal mass ejections (CMEs). Sources of energised particles and strong magnetic energy also include the solar flares and galactic cosmic ray, originating from outer space. The energetic particles and electromagnetic radiation from these processes form the near-Earth radiation environment and can be divided into (i) trapped radiation environment and (ii) transient radiation environments. The charged particles that are trapped or confined by the Earth’s magnetic field to certain regions in space such as the Van Allen belts form the trapped radiation environment. The transient particles environment consists of energetic particles from solar events, and galactic cosmic radiation that exist in the interplanetary space regions and in the near-Earth regions. Satellites and other space application systems are vulnerable to both trapped and transient energetic particles since they are basically designed to operate in the space plasma environment. The particles can bombard and interact with satellites’ surfaces, and sometimes posses enough energy to penetrate their exposed surfaces with possible access to their electrical, electronic and electrochemical components (EEECs). This scenario can induce sporadic and unexplainable errors in sensitive parts of spacecrafts, degrade the critical properties of their structural materials, jeopardize the flight worthiness of spacecrafts, constitute transient and terminal health hazard to both onboard passengers and astronauts, and even lead to total failure that can end the mission of affected spacecrafts [1, 2].
There are documented cases or evidence of satellites anomaly associated with space weather (or space radiation environment). In their study, Iucci et al. [3] verified and quantified the linkage between a large fraction of spacecraft anomalies and space weather perturbations. They compiled a large database of about 5700 anomalies registered by 220 satellites in different orbits over the period of 23 years (1971–1994). Their findings revealed that very intense fluxes (>1000 particles cm−2 s−1 sr−1 (pfu) at energy >10 MeV) of solar protons are linked to anomalies registered by the satellites in high-altitude (>15,000 km) near-polar (inclination >55°) orbits and to a much smaller extent to anomalies in geostationary orbits. They also reported that elevated fluxes of energetic (>2 MeV) electrons >10 8 cm−2 d−1 sr−1 are observed by the Geostationary Operational Environmental Satellites (GOES) on days with satellite anomalies occurring at geostationary and low-altitude (<1500 km) near-polar (>55°) orbits [3]. On the 22nd and 23rd of March 1991, an intense solar event occurred, which resulted to severe geomagnetic storms. This strong solar flare event with high energetic solar radiation caused disruption in high latitude point-to-point communication, and solar panel degradation on GOES-6 and -7 satellites, and was estimated to have decreased the expected lifetime of GOES-7 by 2 to 3 years. During the event, high energetic solar particles also increased the frequency of single event upsets (SEU) recorded by the spacecrafts; up to six geostationary satellites, including GOES-6 and -7, and the Tracking and Data Relay Satellite (TDRS)-1 had about 37 reported cases of SEU during the main phase of the event. SEU will be explained in detail in Section 3.2. Other impacts associated with this solar activity include the loss of automatic altitude control of the National Oceanic and Atmospheric Administration (NOAA)-11 satellite, increased satellite drag due to the heated atmosphere, which necessitated a massive update of the North American Air Defense Command (NORAD) catalogue of orbiting objects, and the complete failure of the geosynchronous orbiting Maritime European Communication Satellite (MARECS)-1 as a result of critical damage to its solar panels [4, 5].
On September 2009, South Africa’s SumbandilaSat (in low Earth orbit [LEO]) was reported to have experienced a power distribution failure due to radiation shortly after its launch, which rendered the Z- and Y-axis wheel permanently inoperable. However, the satellite continued to work as a technology demonstrator until 25 August 2011 when it failed completely. Its failure was again attributed to solar storm event, which caused the satellite’s onboard computer to stop responding to commands from the ground station [6]. On 5 April 2010, Galaxy 15 spacecraft (at geosynchronous altitudes) was reported to have experienced an anomaly that caused it to stop responding to any ground command [7]. The failure was attributed to an onboard electrostatic discharge (ESD), which led to a lockup of the field-programmable gate array within the spacecraft baseband communications unit. The interaction of the spacecraft with substorm-injected energetic particles caused the ESD after the spacecraft experienced surface and deep dielectric charging. A concise documentation of many other cases of satellite anomalies and losses that have been attributed to space weather can be found in several literatures (e.g., p. 33 of Refs. [8] and [9].
The Sun’s activity varies with time and position on the Sun, and characterized by 11-year cycle, which can be divided into solar minimum and solar maximum phases. The sunspots (and other solar indices such as solar radio flux) are viewed as main indicators of solar activity cycle. They are transient phenomenon seen as dark patches against photospheric bright background on the Sun. Observations made over the past two centuries have shown that the number of sunspots vary periodically, moving from minimum to maximum count approximately every 11 years. Figure 1 show a historic sunspot number. The latest solar cycle (cycle 24) peaked around year 2014. Currently, solar activity is on the decline and has been predicted to reach its minimum in late 2019 or 2020, while the solar maximum is expected to occur between 2023 and 2026 [10].
Historic sunspot number (source: SILSO graphics (
Solar energetic events such as high-speed solar wind streams (HSS), solar flares and CMEs that give rise to solar particle events and geomagnetic storms affecting the space environment are more frequent during solar maximum. Therefore, their impact on the atmosphere and air-based technology are expected to be higher during this phase of the solar cycle than the declining or minimum phase. Solar events and associated phenomena mainly contribute to trapped and transient energetic particles in near space that constitute the space radiation environment, in addition to galactic cosmic ray from outer space. The summary of types of space radiation, their origin or sources, and where they are important is shown in Figure 2.
Summary of types of space radiation, their origin or sources, and where they are important in the outer planets, planetary space and Earth, including the low Earth orbit (LEO), geostationary orbit (GEO), medium Earth orbit (MEO) and high Earth orbit (HEO) (source: Ref. [
When charged particles from the solar wind encounters and interacts with the Earth’s magnetic field, it compresses it sun-ward, forming the magnetosphere (see, Figure 3). This scenario creates a supersonic shock wave known as the Bow Shock. The solar wind drags out the night-side of the inner magnetosphere. This extension is known as the magnetotail. Although the magnetosphere is constantly being bombarded by charged particles, they are being deflected and cannot easily penetrate the region; however, some particles gain entrance through the polar region and become trapped in the Earth’s magnetic field. The trapped particles are contained in one of two doughnut-shaped magnetic rings surrounding the Earth called the Van Allen radiation belts, Figure 3. The inner belt contains a fairly stable population of protons with energies exceeding 10 MeV. The outer belt contains mainly electrons with energies up to 10 MeV. The charged particles which compose the belts circulate along the Earth’s magnetic lines of force. These lines of force are known to extend from the area above the equator to the North Pole, to the South Pole, and then circle back to the Equator. There is a part of the inner Van Allen belt (VAB) that dips down to about 200 km into the upper region of the atmosphere over the southern Atlantic Ocean off the coast of Brazil. This region is known as the South Atlantic Anomaly (SAA). The dip results from the fact that the magnetic axis of the Earth is tilted approximately 11° from the spin axis, and the center of the magnetic field is offset from the geographical center of the Earth by 280 miles. The largest fraction of the radiation exposure received during spaceflight missions has resulted from passage through the SAA. Low inclination flights typically traverse a portion of the SAA up to six or seven times a day (see Figure 3).
(a) The Earth’s magnetosphere showing the Van Allen radiation belt. (b) Outer and inner (proton) belt (source: Ref. [
The transient particles or radiation environments consist of particles from solar events such as solar wind, solar flares, CMEs and galactic cosmic radiation in the interplanetary and near-Earth space regions. The solar wind consists of relatively low energy electrons and protons that can significantly affect externally mounted spacecraft components. Solar flares are also a major contributor to the overall ionizing radiation level. A solar flare can emit and accelerate energetic particles or protons in the interplanetary space that can reach Earth within 30 minutes of the flare’s peak. CMEs can propagate into the solar wind and drive shocks, which in turn accelerates solar energetic particles, and also deflect the galactic cosmic rays (GCRs) entering the heliosphere [13, 14]. CME can cause geomagnetic storms and other associated phenomena, leading to large-scale disturbances with adverse consequences in the geospace environment that can affect satellite systems.
Galactic cosmic radiations (GCR) are not directly connected to our Sun. They originate from outside the solar system. GCR consists of ionized atoms ranging from a single proton up to a uranium nucleus. The flux level of these particles is very low. Notwithstanding, they produce intense ionization as they pass through matter because they travel at a speed that is very close to that of light, and because some of them are composed of very heavy elements such as iron [15]. The energy of cosmic rays is usually measured in units of mega electron volt (MeV), or the giga electron volt (GeV). Most GCRs have energies between 100 MeV and 10 GeV. Cosmic rays include essentially all of the elements in the periodic table; about 85% protons, 14% alpha particles, and 1% heavy nuclei [16]. The Earth’s magnetic field provides natural shielding from both cosmic and solar particles depending primarily on the inclination and secondarily on the altitude. As inclination reaches auroral to polar regions, a satellite is outside the protection of the geomagnetic field lines. At polar orbits intense fluxes of energetic electrons, known as precipitating electrons, propagate down along magnetic field lines (and create the aurora), and as altitude increases, the exposure to these particles gradually increases [12].
When charged trapped or transient particles from solar events or cosmic sources bombards and interacts with the exposed surfaces of spacecraft, their effects can affect the system in a several ways. The effects from the natural space environment include spacecraft charging (SC), single event effects (SEEs), total ionizing dose (TID), and displacement damage (DD). However, the specific effect depends on the type of incident particle, its energy and probably the source. Trapped heavy ions do not have sufficient energy to generate the ionization required to cause SEEs, and they do not make a significant contribution to TID. Galactic cosmic rays and cosmic solar particles, which are heavily influenced by solar flares and trapped protons in the radiation belts, can cause SEEs, but electrons are not known to cause SEEs. Although their physical mechanisms are different, the ionizing radiation of the space environment causes both TID and SEEs. Charged particle effects in the space environment are summarized below according to the particle source.
Spacecraft charging (SC) is the build-up of charge on spacecraft surfaces or in the spacecraft interior; SC causes variations in the electrostatic potential of a spacecraft surface with respect to the surrounding plasma environment, and potential variations in different portions of the spacecraft [17]. The major natural space environments which contribute to SC include the thermal plasma environment, high energy electrons, solar radiation and magnetic fields. Although SC has many effects, electrostatic discharges appear to be the most dangerous of all. Electrostatic discharges can cause structural damage, degradation of spacecraft components and operational anomalies due to damages to electronics. SC can be categorised into two: Surface charging which include differential charging, and internal dielectric charging. Surface charging is caused by low energy plasma (<100 keV) and photoelectric currents. Surface charging can either be absolute or differential. Absolute charging occurs when the satellite potential relative to the ambient plasma is charged uniformly, while differential charging occurs when parts of the spacecraft are charged to different potential relative to one another. Differential charging can also be caused by satellite self-shadowing. The charge control mechanism, and differential charging in spacecrafts are depicted in Figure 4. Differential charging of spacecraft surfaces is more detrimental than the absolute charging (relative to ambient plasma). The former can have a discharge effects that can disrupt satellite operations such as physical materials damage and electromagnetic interference (EMI) generation, and resultant transient pulses. Discharge consequences also include noise in data and wiring, sputtering and attraction of chemically active species [18]. Differential charging has been reported after geomagnetic sub-storms, which result in the injection of keV electrons into the magnetosphere.
(a) Satellite’s charge control mechanism, and (b) differential charging in satellites due to self-shadowing (source: Ref. [
Internal charging is caused by high-energy electrons (>100 keV), which penetrate into the spacecraft equipment where they deposit charge inside insulating materials [8]. Internal discharge is more damaging since it occurs within dielectric materials and well-insulated conductors, which are in close proximity to sensitive electronic circuitry [19]. Based on data from the Combined Release and Radiation Effects Satellite (CRRES) obtained at GEO, most environmentally induced spacecraft anomalies result from deep dielectric charging and the resulting discharge pulses and not from surface insulator charging or single-event upsets [20].
Single event effects (SEEs) are individual events which occur when a single incident ionizing particle deposits enough energy to cause an effect in a device. SEEs are generally caused by two space radiation sources: high energy protons, and cosmic rays. Single event phenomenon can be classified into four: (i) single event upset (SEU), (ii) single event latch-up (SEL), (iii) single event burnout (SEB) and (iv) single event gate rupture (SEGR). SEU is a change of state caused by ions or electromagnetic radiation striking a sensitive node in a micro-electronic device, such as in a microprocessor, semiconductor memory, or power transistors. The state change is a result of the free charge created by ionization in or close to an important node of a logic element (e.g., memory bit). The error in device output or operation caused as a result of the strike is called a soft error. The mechanisms for heavy ion and proton SEU in devices (e.g., dynamic random access memories (DRAM)), and galactic cosmic ray energy deposition in devices are depicted in Figure 5. SEU can cause a reset or re-writing in normal device such as in analogue, digital, or optical components, and may also have effects in surrounding interface circuitry. A severe SEU is the single-event functional interrupt (SEFI) in which an SEU in the device’s control circuitry places the device into a test mode, halt, or undefined state. The SEFI halts normal operations, and requires a power reset to recover [1].
(a) Mechanisms for heavy ion and proton SEU, (b) schematic showing how GCR deposit energy in an electronic device [
SEL is used in integrated circuits (ICs) to describe a particular type of short circuit which can occur in an improperly designed circuit. It is the generation of a low-impedance path between the power supply rails of a MOSFET circuit that can trigger a parasitic structure which disrupts proper functioning of the part and possibly even leading to its destruction due to over-current. SELs are hard errors, and can cause permanent damage. It can results in a high operating current, above device specifications, drag down the bus voltage, or damage the power supply. Latch-up can be caused by protons in very sensitive devices [22]. An SEL is corrected or cleared by a power off–on reset or power strobing of the device. SEL is strongly temperature dependent. If power is not removed quickly, catastrophic failure may occur due to excessive heating or metallization or bond wire failure [23].
SEB is a condition caused by high current state in a power transistor. It is a highly localized phenomenon, and includes burnout of the drain-source in power MOSFETs and BJTs, gate rupture, frozen bits, and noise in charged-coupled devices (CCDs). SEGR is the formation of a conducting path or localized dielectric breakdown in the gate oxide resulting in a destructive burnout. It occurs at MOSFETs, BJTs, and CMOS.
Solar flare particle events pose the most extreme SEU producing environment, especially for spacecraft in interplanetary space [24]. Experiments aboard CRRES showed a significant increase during a solar flare [25]. Based on CRRES’s data, most SEUs come from high energy protons through nuclear interactions and not through direct deposition from either protons or cosmic rays [20]. For LEO satellites, trapped protons, especially in the SAA, are the greatest SEE threat.
Total ionizing dose (TID) refers to the amount of energy that ionization processes create and deposit in materials such as semiconductor or insulator when energized particles pass through it. TID can result in device failure or biological damage to astronauts. Radiation-induced trapped charges can build up in the gate oxide of a MOSFET and cause a shift in the threshold voltage. Such device cannot be turned off even at zero volts applied, if the shift is large enough. Under this condition the device is said to have failed by going into depletion mode [26]. TID is mostly due to electrons and protons, mainly from solar energetic particle event and passage through the SAA. In low Earth orbit, the main dose source is from electrons and inner belt protons, while the primary source is outer belt electron and solar protons in geostationary orbit. The first recorded satellite failure resulting from total dose was the Telstar. The satellite was launched a day after the Starfish nuclear test on 9 July 1962. The nuclear weapon of about 1.4 Megaton was detonated at an altitude of about 400 km above Johnston Island in the Pacific Ocean. The explosion produced beta particles (electrons) that were injected into the Earth’s magnetic field, forming an artificial radiation belt. This artificial electron belt lasted until the early 1970s. Consequently, Telstar experienced a total dose 100 times that expected before its total failure. Up to seven satellites were destroyed by the Starfish nuclear test within 7 months mainly from solar cell damage [12].
When energetic particles are incident on a solid material, they lose their energy to ionizing and non-ionizing processes as they travel through the material. The consequence of the energy loss is in the production of electron–hole pairs and atoms displacement or displacement damage. Vacancies (i.e., absence of an atom from its normal lattice position) and interstitials (i.e., movement of displaced atom into a non-lattice position) are the primary lattice defects that are initially created. The combination of a vacancy and an adjacent interstitial is known as a Frenkel or close pair. Two adjacent vacancies can form a defect known as divacancy. Also, larger local groupings of vacancies may occur in irradiated silicon. A defect resulting from vacancy and interstitials being adjacent to impurity atoms is known as defect-impurity complexes. Once formed by incident radiation, the defects will reorder to form more stable configuration. The extent to which defects alter the properties of bulk semiconductor material and devices depends on nature of the particular defects and the time following the creation of defect at a given temperature.
The effectiveness of radiation-induced displacement damage depends on factors such as bombardment condition, particle type and energy, irradiation and measurement temperature, time after irradiation, thermal history after irradiation, injection level, material type, impurity type and concentration [27]. Displacement damage causes degradation of materials and device properties. Figure 6 depicts the collision between an incoming particle and a lattice atom, causing the displacement of the atom from its original lattice position. Displacement damage can also degrade minority carrier lifetime, and a typical effect would be degradation of gain and leakage current in bipolar transistors [12].
Displacement of atom from its original lattice position by incoming particle through collision [
The review presented here include portion of the work [1], part of which was published in [2]. We analyzed particles, electrons and protons flux of various energies from NOAA database for 3 months (April–June 2010). The mass stopping power, range and possible deposited dose of protons were calculated, and applied to the scenario of possible interaction of the particles with satellite surface and its electrical, electronic and electrochemical components.
Stopping power is the average energy loss of a particle per unit length (measured in MeV/cm) when passing through the material. Charged particles are known to ionize the atom or molecule which they encounter when passing through matter, and they lose energy in the process. The stopping power depends on the type and energy of the particle and on the properties of the material it passes. Although numerical values and units are identical for both quantities, the Stopping power refers to the property of the material while energy loss per unit path length describes what happens to the particle. The density of ionization along the particles path is proportional to the stopping power of the material because the production of an ion pairs requires a fixed amount of energy [28]. The Bethe-Bloch formula for stopping power derived from relativistic quantum mechanics is given by:
where
The mass stopping power of the material is obtained by dividing the stopping power by the density (
The range
where
In previous work we used the empirical relations suggested by [28] to calculate the mass stopping power of particles in spacecraft materials [1, 2]. However, we anticipate limitations in the equations because they were originally formulated for low energy particles. Values obtained using Bethe’s equations are higher and assumed more accurate at higher particle energies.
The total ionizing dose (TID), explained in Section 3.3, can be measured in terms of the absorbed dose; which is a measure of the energy absorbed by matter. Absorbed dose is quantified using either a unit called the rad (radiation absorbed dose) or the SI unit which is the gray (Gy). 1 Gy = 100 rads = 1 J/kg. The total accumulated dose on a satellite depends on orbit altitude, orientation, and time spent in orbit. To compute TID we need to know the integrated particle energy spectrum, ø(
where
Satellite and space probes typically encounter TID between 10 krad (100 Gy) and 100 krad(Si) (1000 Gy(Si)). The time taken,
We performed theoretical calculations to predict the mean time to failure of a model satellite due to TID. The assumption is that the model satellite’s body is made of aluminum alloy and 20 mm thickness (without impact mitigation such as protective coating on the satellite), in which the electrical, electronic and electrochemical components (mainly of silicon (Si) and germanium (Ge) materials) are housed [1, 2]. Our calculations were based on particles with E ≥ 78 MeV. When particles of this energy range bombard and penetrate the satellite, parts of their energies are lost due to the stopping power of the alloy but the reminder constitute significant dose to the components. With continuous exposure, the dose continues to build over time until the threshold is exceeded leading to completed failure of the affected satellite. Our calculations showed that a dose of 10 krad can build up on the model satellite’s component within 3 years and 100 krad within 29 years.
The electrons impinging on spacecraft surface in the space environment are faster than their ion counterpart because of their very small mass (when compared to that of ions). As a result the ambient electron flux is usually more than the ambient ion flux, leading to high level negative charging of the spacecraft. The regions of concern (in space) for internal charging of spacecrafts is illustrated in [29] and shown in Figure 7. Spacecraft charging can be mitigated by the methods of electron emission and ion reception [30]. Electron emission is the method in which a device pulls (or draws) electrons from the spacecraft ground and ejects them into space, while the ion reception is the method in which positive ions arrive at a spacecraft that is negatively charged to neutralize the negative charges. The former method is effective for reducing the negative charge of the spacecraft ground but not effective for dielectric surfaces. As a demerit, the process can lead to differential charging between the dielectric and the conducting ground. The later method is effective for mitigating negatively charged surface (whether dielectric or conductor), and reducing differential charging. However, it has the disadvantage of electroplating the entire spacecraft with extended use. Because each method has advantage (or disadvantage) over the other, the use of a combination of both types has been recommended. Other mitigation methods include plasma emission, partially conducting paint, polar molecule emission, mirror reflection and violet irradiation [31].
Regions of concern for internal charging of spacecrafts in space (source: Ref. [
For memories and data related devices, some of the error mitigation approach or methods include Parity check, cyclic-redundancy check (CRC) coding, Hamming code, Reed-Solomon (R-S) coding, convolutional encoding and overlying protocol (see: Ref. [32] and references therein). Parity is a single bit added to the end of a data structure, such that it states whether an odd or even number of ‘ones’ was in the structure. The parity method counts the number of logic-one states or ‘ones’ that are occurring in a data path. The CRC coding method detects if any errors occurred in a given data structure based on performing modulo-two arithmetic operations on a given stream of data, and interpreting the results as a polynomial. The hamming code method detects the position of a single error and the existence of more than one error in a data structure. The R-S code can detect and correct multiple and consecutive errors in a data structure. The convolutional encoding can also detect and correct multiple bit errors. However, it is distinguishable from block coding (e.g., R-S code) by interleave of the overhead or check bits into the actual stream of data instead of being grouped into separate words at the end of the data structure. Errors in the control-related devices can also be mitigated using some of the above mentioned methods. A more effective mitigation approach for control-related devices with complex difficulties (e.g., large scale integration circuitry or microprocessors) is the software-based mitigation, which includes tasks or subroutines dubbed health and safety (H&S). The H&S tasks can perform memory scrubbing that utilizes parity or other method on either external memory devices or registers that are internal to the microprocessor. In the software mitigation methods, the internal microprocessor timers can also be used to operate a watchdog timer or for passing H&S messages between spacecraft systems (see: Ref. [32] for more detail).
TID on satellites system can be mitigated by methods such as shielding, derating and conservative circuit design [33]. Shielding is the processes of protecting spacecraft (and the occupants) from ionizing radiation using a configuration of appropriate massive materials. Derating refers to techniques usually employed in electrical power and electronic devices in which devices are operated at maximum power dissipation that is less than their rated value, with consideration of the case or body temperature, ambient temperature and the type of cooling mechanism used. This method can increase the safety margin between part design limits and applied stresses, consequently enhancing protection of the part [34]. Hardening of critical components in satellites at design level is also a viable method. This has, however, been the practice of satellite manufacturers. These methods can also be used to mitigate
Other important mitigation approach includes the development of appropriate environmental model that can mimic the perturbed scenarios that are expected under extreme space environmental condition. A well-accomplished or more sophisticated model should account for the individual effects of various solar forcing mechanisms, which cause fluctuations in neutral and ionized density [35]. One other very important mitigation approach to consider is the development of extensive warning system for solar energetic events. Although solar activity can be predicted days in advance but ascertaining their level of impact on the satellite and the Earth environment is quite challenging. Therefore, effective monitoring of solar activity is essential in order to be able to predict atmospheric or ionospheric responses to solar events and their consequence on satellite in orbit. In all, orbit consideration (and satellite’s trajectory) is also important. Satellites in medium Earth orbit (MEO) and geostationary orbit (GEO) are subject to impacts of outer Van Allen radiation belt. LEO satellites encounter the most intense particle fluxes in the SAA [36], which is considered to be the main region where spacecrafts receive the largest fraction of the radiation exposure during spaceflight missions. The schematic diagram of Earth’s radiation belts and their space weather concerns is shown in Figure 8.
Schematic diagram of Earth’s radiation belts and their space weather concerns (from Ref. [
The space radiation environment driven by solar activity (and galactic cosmic rays) poses potent and unequivocal treat to satellites in near-Earth space. Understanding atmospheric and ionospheric dynamic responses to solar-driven particles and radiation, and their space weather implications are critical and of practical importance to satellites design and operation. The specific effects of radiation environment on as satellite depends on the source, type and energy of incident particle, as well as the satellite’s orbit and/or position at the time of solar energetic events. Radiation mitigation measures can increase the safety margin between part design limits and the applied stresses resulting from particles impact, consequently enhancing protection of the part. However, it is important that the solar maximum phase be given more consideration in all mitigation effort because the rate of impact is higher during this interval. Severe solar storms can occur during the solar maximum that can produce huge short-lived increase in radiation levels, as well as high levels of SEEs that current mitigation measures might not be able to bear [37]. Also as dependence on satellites services increase, the economic and societal risk associated with space weather also increases, and likely impact can be unprecedented. In view of this, a contingency plans that include the possibility of switching to or benefitting from other independent satellite services have been recommended [8]. The upcoming multi-constellation GNSS receivers can play a significant role in this regard, such that the individual GNSS receivers will be inherently robust to a satellite service denial. Space weather-induced enhancement of atmospheric drag on satellites and consequent accelerated orbit decay is also a major perturbing force to reckon with, for satellites in low Earth orbit [35, 38, 39, 40, 41, 42]. A concise review of the impact and mitigation of this phenomenon will be published in the future. We note that this review (on the space radiation effects on satellites and their mitigation methods) is succinct when compared to the large body of work in the subject area. Therefore, we encourage readers to also consult other well-accomplished texts for specific space radiation effect and the appropriate mitigation approach.
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\nIMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nLITHUANIA
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nSWITZERLAND
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nMonographs Only
\n\n\n\nLITHUANIA
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nSWITZERLAND
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA. Dr. Stavropoulos received her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a Faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:"Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the 'new normal'. Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.",institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!0,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:null},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:15,paginationItems:[{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",doi:"10.5772/intechopen.105545",signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:1,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"81975",title:"Self-Sustained Communities: Food Security in Times of Crisis",doi:"10.5772/intechopen.104425",signatures:"Kriengsak Chareonwongsak",slug:"self-sustained-communities-food-security-in-times-of-crisis",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11451",title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",hash:"8c918a1973786c7059752b28601f1329",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 4th 2022",isOpenForSubmission:!0,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11453",title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 16th 2022",isOpenForSubmission:!0,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11983",title:"Biomedical Signal and Image Processing - Advanced Imaging Technology and Application",coverURL:"https://cdn.intechopen.com/books/images_new/11983.jpg",hash:"81ebecb28b5cad564075e6f5b2dc7355",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 29th 2022",isOpenForSubmission:!0,editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11984",title:"Current Advances in Nanomedicine",coverURL:"https://cdn.intechopen.com/books/images_new/11984.jpg",hash:"3d98881cc9e323438670710d3aaaf71d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 6th 2022",isOpenForSubmission:!0,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11452",title:"Cryopreservation - Applications and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",hash:"a6c3fd4384ff7deeab32fc82722c60e0",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 12th 2022",isOpenForSubmission:!0,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:1,group:"subseries"},{caption:"Education",value:89,count:4,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Computational Neuroscience",value:23,count:1},{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"28",type:"subseries",title:"Animal Reproductive Biology and Technology",keywords:"Animal Reproduction, Artificial Insemination, Embryos, Cryopreservation, Conservation, Breeding, Epigenetics",scope:"The advances of knowledge on animal reproductive biology and technologies revolutionized livestock production. Artificial insemination, for example, was the first technology applied on a large scale, initially in dairy cattle and afterward applied to other species. Nowadays, embryo production and transfer are used commercially along with other technologies to modulate epigenetic regulation. Gene editing is also emerging as an innovative tool. This topic will discuss the potential use of these techniques, novel strategies, and lines of research in progress in the fields mentioned above.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11417,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Dr.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:null}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:40,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:45,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:74,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:75,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:77,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:97,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:148,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:199,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:317,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"12222",title:"Advances and Challenges in Microplastics",subtitle:null,isOpenForSubmission:!0,hash:"a36734a551e0997d2255f6ce99eff818",slug:null,bookSignature:"Prof. El-Sayed Salama",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",editedByType:null,submissionDeadline:"July 1st 2022",editors:[{id:"347657",title:"Prof.",name:"El-Sayed",middleName:null,surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama",profilePictureURL:"https://mts.intechopen.com/storage/users/347657/images/system/347657.png",biography:"El-Sayed Salama is a professor in the Public Health School,\nLanzhou University, China. He is also a director of the Green Environmental & Energy Laboratory (GEEL) and a distinguished\nexpert of science and technology in the ecological industry, Gansu Province. His GEEL research work focuses on bioenvironmental science and bioenergy. He has several journal publications to\nhis credit.",institutionString:"Lanzhou University, Gansu Academy of Membrane Science and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Lanzhou University",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,submissionDeadline:"July 22nd 2022",editors:[{id:"196849",title:"Dr.",name:"Ahmed",middleName:null,surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez",profilePictureURL:"https://mts.intechopen.com/storage/users/196849/images/system/196849.jpg",biography:"Ahmed A. Abdelhafez, PhD, is an associate professor of the Department of Soils and Water Science, Faculty of Agriculture, New Valley University. He is one of the leading scientists in the field of biochar in the Arab region. He worked as a researcher at the Department of Environmental Researches, Agricultural Research Center (ARC), Egypt, for more than 10 years. Dr. Abdelhafez focuses mainly on agricultural production, environmental contamination control, risk assessment and biochar technology. He is a member of the National Committee of Soil Sciences and the Academy of Scientific Research & Technology, Egypt. He has published several research papers related to environmental contamination, risk assessment and potential remediation technologies.",institutionString:"New Valley University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"c8890038b86fb6e5af16ea3c22669ae9",slug:null,bookSignature:"Dr. Adnan Mustafa and Dr. Muhammad Naveed",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",editedByType:null,submissionDeadline:"June 9th 2022",editors:[{id:"299110",title:"Dr.",name:"Adnan",middleName:null,surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa",profilePictureURL:"https://mts.intechopen.com/storage/users/299110/images/system/299110.jpg",biography:"Adnan has completed his Ph.D in Soil Science from Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China.\nHe is currently working as an Assistant Professor at Institute of Chemistry and Technology of Environmental Protection, Brno University of Technology, Brno, Czech Republic. He is simultaneously working as a Researcher with Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition (FA), Mendel University Brno and Institute of Environmental Studies, Charles University Prague, Czechia. \nHis research is focused on soil organic carbon (SOC) accumulation mechanisms, plant-microbe interactions, biochar production, and utilization for agricultural crop production and environmental remediation. He is actively involved in bioremediation of contaminated soils using organic and inorganic amendments in addition to exploiting plant-microbe interactions. He has published over 50 refereed journal articles, many of which sought to explore the effectiveness of innovative soil amendments and plant growth promoting rhizobacteria (PGPR) for improving crop performance and soil resilience under various abiotic stresses. He has been working for several renowned academic societies and enjoys early career in research.",institutionString:"Brno University of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Brno University of Technology",institutionURL:null,country:{name:"Czech Republic"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:"2753-894X",scope:"\r\n\tThis series will provide a comprehensive overview of recent research trends in business and management, economics, and marketing. Topics will include asset liability management, financial consequences of the financial crisis and covid-19, financial accounting, mergers and acquisitions, management accounting, SMEs, financial markets, corporate finance and governance, managerial technology and innovation, resource management and sustainable development, social entrepreneurship, corporate responsibility, ethics and accountability, microeconomics, labour economics, macroeconomics, public economics, financial economics, econometrics, direct marketing, creative marketing, internet marketing, market planning and forecasting, brand management, market segmentation and targeting and other topics under business and management. This book series will focus on various aspects of business and management whose in-depth understanding is critical for business and company management to function effectively during this uncertain time of financial crisis, Covid-19 pandemic, and military activity in Europe.
",coverUrl:"https://cdn.intechopen.com/series/covers/22.jpg",latestPublicationDate:"June 27th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:2,numberOfPublishedChapters:19,numberOfPublishedBooks:1,editor:{id:"356540",title:"Prof.",name:"Taufiq",middleName:null,surname:"Choudhry",fullName:"Taufiq Choudhry",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000036X2hvQAC/Profile_Picture_2022-03-14T08:58:03.jpg",biography:"Prof. Choudhry holds a BSc degree in Economics from the University of Iowa, as well as a Masters and Ph.D. in Applied Economics from Clemson University, USA. In January 2006, he became a Professor of Finance at the University of Southampton Business School. He was previously a Professor of Finance at the University of Bradford Management School. He has over 80 articles published in international finance and economics journals. His research interests and specialties include financial econometrics, financial economics, international economics and finance, housing markets, financial markets, among others.",institutionString:null,institution:{name:"University of Southampton",institutionURL:null,country:{name:"United Kingdom"}}},subseries:[{id:"86",title:"Business and Management",keywords:"Demographic shifts, Innovation, Technology, Next-gen leaders, Worldwide environmental issues and clean technology, Uncertainty and political risks, Radical adjacency, Emergence of new business ecosystem type, Emergence of different leader and leader values types, Universal connector, Elastic enterprise, Business platform, Supply chain complexity",scope:"\r\n\tThe topic on Economics is designed to disseminate knowledge around broad global economic issues. Original submissions will be accepted in English for applied and theoretical articles, case studies and reviews about the specific challenges and opportunities faced by the economies and markets around the world. The authors are encouraged to apply rigorous economic analysis with significant policy implications for developed and developing countries. Examples of subjects of interest will include, but are not limited to globalization, economic integration, growth and development, international trade, environmental development, country specific comparative analysis, technical innovation and knowledge management, political economy analysis, and banking and financial markets.
",annualVolume:11971,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"104262",title:"Dr.",name:"Chee-Heong",middleName:null,surname:"Quah",fullName:"Chee-Heong Quah",profilePictureURL:"https://mts.intechopen.com/storage/users/104262/images/system/104262.jpg",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},{id:"236659",title:"Prof.",name:"Monica Violeta",middleName:null,surname:"Achim",fullName:"Monica Violeta Achim",profilePictureURL:"https://mts.intechopen.com/storage/users/236659/images/system/236659.jpg",institutionString:null,institution:{name:"Babeș-Bolyai University",institutionURL:null,country:{name:"Romania"}}},{id:"202039",title:"Dr.",name:"Nahanga",middleName:null,surname:"Verter",fullName:"Nahanga Verter",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCwtQAG/Profile_Picture_1643101901237",institutionString:null,institution:{name:"Mendel University Brno",institutionURL:null,country:{name:"Czech Republic"}}},{id:"107745",title:"Emeritus Prof.",name:"Panagiotis E.",middleName:null,surname:"Petrakis",fullName:"Panagiotis E. Petrakis",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRzzaQAC/Profile_Picture_1644221136992",institutionString:null,institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}},{id:"196259",title:"Dr.",name:"Ryan Merlin",middleName:null,surname:"Yonk",fullName:"Ryan Merlin Yonk",profilePictureURL:"https://mts.intechopen.com/storage/users/196259/images/system/196259.jpg",institutionString:null,institution:{name:"American Institute for Economic Research",institutionURL:null,country:{name:"United States of America"}}}]},{id:"88",title:"Marketing",keywords:"Consumer trends, Consumer needs, Media, Pricing, Distribution, Branding, Innovation, Neuromarketing",scope:"