Nanomaterials have been synthesized using several different techniques. Some of these techniques are sophisticated, expensive and need certain training before use. However, there are other highly efficient methods for preparing nanomaterials that are easy to work with and require no specialized equipment, making them relatively inexpensive routes for synthesis. The least expensive routes are those that are classified as solution‐based techniques such as colloidal, sol‐gel and microwave‐assisted synthesis. The focus of this chapter is on a general description of each technique with recent advances in synthesis, doping processes and applications. Specifically, these processes are discussed in connection with the synthesis of ZnO compounds and its related nanomaterials.
Part of the book: Nanostructured Materials
The II-IV semiconductor compound, CdTe, has suitable electrical and optical properties as photovoltaic and high-energy radiation sensor material. As an absorber material for thin-film-based solar cells, CdTe holds the potentiality to fabricate high-efficiency solar cells by means of low-cost technologies. This chapter presents a comprehensive review on the CdTe thin-film deposition techniques as well as on the several configurations for the solar cell structures that have led the best efficiency conversion. Current CdTe thin-film deposition techniques include sputtering, close spaced vapor transport (CSVT), chemical spray pyrolysis, and electrodeposition. These techniques have easily been adapted to deposit polycrystalline CdTe films on various flexible and rigid substrates. In regard to the device structure configuration, a variety of partner materials (transparent contact, optical window, buffer layer) were tested, and CdTe film thickness was varied to develop opaque and semitransparent devices by some techniques mentioned above. In this chapter, we will discuss about each technique used for CdTe thin-film deposition as well as its advantages and disadvantages.
Part of the book: Coatings and Thin-Film Technologies