Potential applications of biofunctional (BF) - curcumin (cc) based electrospun (ES) NFs (reprinted with permission from ref. [1]. Copyright 2020 IOP publishing).
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"6637",leadTitle:null,fullTitle:"Differential Equations - Theory and Current Research",title:"Differential Equations",subtitle:"Theory and Current Research",reviewType:"peer-reviewed",abstract:"The editor has incorporated contributions from a diverse group of leading researchers in the field of differential equations. This book aims to provide an overview of the current knowledge in the field of differential equations. The main subject areas are divided into general theory and applications. These include fixed point approach to solution existence of differential equations, existence theory of differential equations of arbitrary order, topological methods in the theory of ordinary differential equations, impulsive fractional differential equations with finite delay and integral boundary conditions, an extension of Massera's theorem for n-dimensional stochastic differential equations, phase portraits of cubic dynamic systems in a Poincare circle, differential equations arising from the three-variable Hermite polynomials and computation of their zeros and reproducing kernel method for differential equations. Applications include local discontinuous Galerkin method for nonlinear Ginzburg-Landau equation, general function method in transport boundary value problems of theory of elasticity and solution of nonlinear partial differential equations by new Laplace variational iteration method. Existence/uniqueness theory of differential equations is presented in this book with applications that will be of benefit to mathematicians, applied mathematicians and researchers in the field. The book is written primarily for those who have some knowledge of differential equations and mathematical analysis. The authors of each section bring a strong emphasis on theoretical foundations to the book.",isbn:"978-1-78923-157-1",printIsbn:"978-1-78923-156-4",pdfIsbn:"978-1-83881-607-0",doi:"10.5772/intechopen.71745",price:119,priceEur:129,priceUsd:155,slug:"differential-equations-theory-and-current-research",numberOfPages:182,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"c5af67a2181408773d29a118452dbef2",bookSignature:"Terry E. Moschandreou",publishedDate:"May 23rd 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6637.jpg",numberOfDownloads:10263,numberOfWosCitations:5,numberOfCrossrefCitations:8,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:12,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:25,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 24th 2017",dateEndSecondStepPublish:"November 14th 2017",dateEndThirdStepPublish:"January 13th 2018",dateEndFourthStepPublish:"April 3rd 2018",dateEndFifthStepPublish:"June 2nd 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"146196",title:"Dr.",name:"Terry E.",middleName:null,surname:"Moschandreou",slug:"terry-e.-moschandreou",fullName:"Terry E. Moschandreou",profilePictureURL:"https://mts.intechopen.com/storage/users/146196/images/system/146196.jpg",biography:"Dr. Terry E. Moschandreou is a professor in applied mathematics at the University of Western Ontario in the School of Mathematical and Statistical Sciences where he has taught for several years. He received his PhD degree in Applied Mathematics from the University of Western Ontario in 1996. The greater part of his professional life has been spent at the University of Western Ontario and Fanshawe College in London, Ontario, Canada. Dr. Moschandreou is also currently working for Goode Educational Services where he teaches students advanced calculus and linear algebra. For a short period, he worked at the National Technical University of Athens, Greece. Dr. Moschandreou is the author of several research articles in blood flow and oxygen transport in the microcirculation, general fluid dynamics, and theory of differential equations. Also, he has contributed to the field of finite element modeling of the upper airways in sleep apnea as well as surgical brain deformation modeling. More recently, he has been working\nwith the partial differential equations of multiphase flow and level set methods as used in fluid dynamics.",institutionString:"London International Academy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Western University",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"162",title:"Analysis & Calculus",slug:"analysis-and-calculus"}],chapters:[{id:"60553",title:"Fixed Point Theory Approach to Existence of Solutions with Differential Equations",doi:"10.5772/intechopen.74560",slug:"fixed-point-theory-approach-to-existence-of-solutions-with-differential-equations",totalDownloads:1856,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"In this chapter, we introduce a generalized contractions and prove some fixed point theorems in generalized metric spaces by using the generalized contractions. Moreover, we will apply the fixed point theorems to show the existence and uniqueness of solution to the ordinary difference equation (ODE), Partial difference equation (PDEs) and fractional boundary value problem.",signatures:"Piyachat Borisut, Konrawut Khammahawong and Poom Kumam",downloadPdfUrl:"/chapter/pdf-download/60553",previewPdfUrl:"/chapter/pdf-preview/60553",authors:[{id:"191850",title:"Dr.",name:"Poom",surname:"Kumam",slug:"poom-kumam",fullName:"Poom Kumam"},{id:"241908",title:"Mr.",name:"Piyachat",surname:"Borisut",slug:"piyachat-borisut",fullName:"Piyachat Borisut"},{id:"241909",title:"Mr.",name:"Konrawut",surname:"Khammahawong",slug:"konrawut-khammahawong",fullName:"Konrawut Khammahawong"}],corrections:null},{id:"60295",title:"Existence Theory of Differential Equations of Arbitrary Order",doi:"10.5772/intechopen.75523",slug:"existence-theory-of-differential-equations-of-arbitrary-order",totalDownloads:860,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"The aims of this chapter are devoted to investigate a system of fractional-order differential equations (FDEs) with multipoint boundary conditions. Necessary and sufficient conditions are investigated for at most one solution to the proposed problem. Also, results for the existence of at least one or two positive solutions are developed by using a fixed-point theorem of concave-type operator for the considered problem. Further, we extend the conditions for more than two solutions and established some adequate conditions for multiplicity results to the proposed problem. Also, a result devoted to Hyers-Ulam stability is discussed. Suitable examples are provided to verify the established results.",signatures:"Kamal Shah and Yongjin Li",downloadPdfUrl:"/chapter/pdf-download/60295",previewPdfUrl:"/chapter/pdf-preview/60295",authors:[{id:"231748",title:"Dr.",name:"Kamal",surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"},{id:"240625",title:"Prof.",name:"Yongjin",surname:"Li",slug:"yongjin-li",fullName:"Yongjin Li"}],corrections:null},{id:"58789",title:"An Extension of Massera’s Theorem for N-Dimensional Stochastic Differential Equations",doi:"10.5772/intechopen.73183",slug:"an-extension-of-massera-s-theorem-for-n-dimensional-stochastic-differential-equations",totalDownloads:998,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this chapter, we consider a periodic SDE in the dimension n≥2, and we study the existence of periodic solutions for this type of equations using the Massera principle. On the other hand, we prove an analogous result of the Massera’s theorem for the SDE considered.",signatures:"Boudref Mohamed Ahmed, Berboucha Ahmed and Osmanov\nHamid Ibrahim Ouglu",downloadPdfUrl:"/chapter/pdf-download/58789",previewPdfUrl:"/chapter/pdf-preview/58789",authors:[{id:"229964",title:"Dr.",name:"Boudref",surname:"Mohamed Ahmed",slug:"boudref-mohamed-ahmed",fullName:"Boudref Mohamed Ahmed"},{id:"236197",title:"Prof.",name:"Berboucha",surname:"Ahmed",slug:"berboucha-ahmed",fullName:"Berboucha Ahmed"},{id:"236198",title:"Prof.",name:"Osmanov",surname:"Hamid Ibrahim Ouglu",slug:"osmanov-hamid-ibrahim-ouglu",fullName:"Osmanov Hamid Ibrahim Ouglu"}],corrections:null},{id:"60232",title:"Phase Portraits of Cubic Dynamic Systems in a Poincare Circle",doi:"10.5772/intechopen.75527",slug:"phase-portraits-of-cubic-dynamic-systems-in-a-poincare-circle",totalDownloads:933,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In the proposed chapter, we are going to outline the results of a study on an arithmetical plane of a broad family of dynamic systems having polynomial right parts. Let these polynomials be of cubic and square reciprocal forms. The task of our investigation is to find out all the different (in the topological sense) phase portraits in a Poincare circle and indicate the coefficient criteria of their appearance. To achieve this goal, we use the Poincare method of central and orthogonal consecutive displays (or mappings). As a result of this thorough investigation, we have constructed more than 250 topologically different phase portraits in total. Every portrait we present using a special table called a descriptive phase portrait. Each line of such a special table corresponds to one invariant cell of the phase portrait and describes its boundaries, as well as a source of its phase flow and a sink of it.",signatures:"Irina Andreeva and Alexey Andreev",downloadPdfUrl:"/chapter/pdf-download/60232",previewPdfUrl:"/chapter/pdf-preview/60232",authors:[{id:"230046",title:"Ph.D.",name:"Irina",surname:"Andreeva",slug:"irina-andreeva",fullName:"Irina Andreeva"},{id:"230057",title:"Prof.",name:"Alexey",surname:"Andreev",slug:"alexey-andreev",fullName:"Alexey Andreev"}],corrections:null},{id:"59445",title:"Differential Equations Arising from the 3-Variable Hermite Polynomials and Computation of Their Zeros",doi:"10.5772/intechopen.74355",slug:"differential-equations-arising-from-the-3-variable-hermite-polynomials-and-computation-of-their-zero",totalDownloads:1e3,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"In this paper, we study differential equations arising from the generating functions of the 3-variable Hermite polynomials. We give explicit identities for the 3-variable Hermite polynomials. Finally, we investigate the zeros of the 3-variable Hermite polynomials by using computer.",signatures:"Cheon Seoung Ryoo",downloadPdfUrl:"/chapter/pdf-download/59445",previewPdfUrl:"/chapter/pdf-preview/59445",authors:[{id:"230100",title:"Prof.",name:"Cheon Seoung",surname:"Ryoo",slug:"cheon-seoung-ryoo",fullName:"Cheon Seoung Ryoo"}],corrections:null},{id:"59898",title:"Reproducing Kernel Functions",doi:"10.5772/intechopen.75206",slug:"reproducing-kernel-functions",totalDownloads:943,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this chapter, we obtain some reproducing kernel spaces. We obtain reproducing kernel functions in these spaces. These reproducing kernel functions are very important for solving ordinary and partial differential equations.",signatures:"Ali Akgül and Esra Karatas Akgül",downloadPdfUrl:"/chapter/pdf-download/59898",previewPdfUrl:"/chapter/pdf-preview/59898",authors:[{id:"231726",title:"Ph.D.",name:"Ali",surname:"Akgul",slug:"ali-akgul",fullName:"Ali Akgul"},{id:"232722",title:"Dr.",name:"Esra",surname:"Karatas Akgül",slug:"esra-karatas-akgul",fullName:"Esra Karatas Akgül"}],corrections:null},{id:"59899",title:"Local Discontinuous Galerkin Method for Nonlinear Ginzburg- Landau Equation",doi:"10.5772/intechopen.75300",slug:"local-discontinuous-galerkin-method-for-nonlinear-ginzburg-landau-equation",totalDownloads:1015,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The Ginzburg-Landau equation has been applied widely in many fields. It describes the amplitude evolution of instability waves in a large variety of dissipative systems in fluid mechanics, which are close to criticality. In this chapter, we develop a local discontinuous Galerkin method to solve the nonlinear Ginzburg-Landau equation. The nonlinear Ginzburg-Landau problem has been expressed as a system of low-order differential equations. Moreover, we prove stability and optimal order of convergence OhN+1 for Ginzburg-Landau equation where h and N are the space step size and polynomial degree, respectively. The numerical experiments confirm the theoretical results of the method.",signatures:"Tarek Aboelenen",downloadPdfUrl:"/chapter/pdf-download/59899",previewPdfUrl:"/chapter/pdf-preview/59899",authors:[{id:"235289",title:"Dr.",name:"Tarek",surname:"Aboelenen",slug:"tarek-aboelenen",fullName:"Tarek Aboelenen"}],corrections:null},{id:"60252",title:"General Functions Method in Transport Boundary Value Problems of Elasticity Theory",doi:"10.5772/intechopen.74538",slug:"general-functions-method-in-transport-boundary-value-problems-of-elasticity-theory",totalDownloads:1033,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The Lame system describing the dynamics of an isotropic elastic medium affected by a steady transport load moving at subsonic, transonic, and supersonic speed is considered. Its fundamental and generalized solutions in a moving frame of reference tied to the transport load are analyzed. Shock waves arising in the medium at supersonic speeds are studied. Conditions on the jump in the stress, displacement rate, and energy across the shock front are obtained using distribution theory. Transport boundary value problem for an elastic medium bounded by a cylindrical surface of arbitrary cross section and subjected to transport loads is considered in the subsonic and supersonic case with regard to shock waves. To solve problems, the generalized functions method is developed. In the space of generalized functions, generalized solutions are constructed and their regular integral presentations are obtained. Singular boundary equations solving the boundary value problems are presented.",signatures:"Lyudmila Alexeyeva",downloadPdfUrl:"/chapter/pdf-download/60252",previewPdfUrl:"/chapter/pdf-preview/60252",authors:[{id:"232525",title:"Prof.",name:"Lyudmila",surname:"Alexeyeva",slug:"lyudmila-alexeyeva",fullName:"Lyudmila Alexeyeva"}],corrections:null},{id:"59832",title:"Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method",doi:"10.5772/intechopen.73291",slug:"solution-of-nonlinear-partial-differential-equations-by-new-laplace-variational-iteration-method",totalDownloads:1625,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Nonlinear equations are of great importance to our contemporary world. Nonlinear phenomena have important applications in applied mathematics, physics, and issues related to engineering. Despite the importance of obtaining the exact solution of nonlinear partial differential equations in physics and applied mathematics, there is still the daunting problem of finding new methods to discover new exact or approximate solutions. The purpose of this chapter is to impart a safe strategy for solving some linear and nonlinear partial differential equations in applied science and physics fields, by combining Laplace transform and the modified variational iteration method (VIM). This method is founded on the variational iteration method, Laplace transforms and convolution integral, such that, we put in an alternative Laplace correction functional and express the integral as a convolution. Some examples in physical engineering are provided to illustrate the simplicity and reliability of this method. The solutions of these examples are contingent only on the initial conditions.",signatures:"Tarig M. Elzaki",downloadPdfUrl:"/chapter/pdf-download/59832",previewPdfUrl:"/chapter/pdf-preview/59832",authors:[{id:"190781",title:"Dr.",name:"Tarig M.",surname:"Elzaki",slug:"tarig-m.-elzaki",fullName:"Tarig M. Elzaki"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:[{id:"65",label:"highly cited contributor"}]},relatedBooks:[{type:"book",id:"2607",title:"Blood Cell",subtitle:"An Overview of Studies in Hematology",isOpenForSubmission:!1,hash:"7c47fe55b6adb4aaadb74f8e977e46e5",slug:"blood-cell-an-overview-of-studies-in-hematology",bookSignature:"Terry E. Moschandreou",coverURL:"https://cdn.intechopen.com/books/images_new/2607.jpg",editedByType:"Edited by",editors:[{id:"146196",title:"Dr.",name:"Terry E.",surname:"Moschandreou",slug:"terry-e.-moschandreou",fullName:"Terry E. Moschandreou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10474",title:"Recent Developments in the Solution of Nonlinear Differential Equations",subtitle:null,isOpenForSubmission:!1,hash:"2c2ede74fb69da638858683eca553cd2",slug:"recent-developments-in-the-solution-of-nonlinear-differential-equations",bookSignature:"Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10474.jpg",editedByType:"Edited by",editors:[{id:"92921",title:"Dr.",name:"Bruno",surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7785",title:"Functional Calculus",subtitle:null,isOpenForSubmission:!1,hash:"9b51d670247ac5496464a21e1e1c5a1d",slug:"functional-calculus",bookSignature:"Kamal Shah and Baver Okutmuştur",coverURL:"https://cdn.intechopen.com/books/images_new/7785.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"80207",slug:"corrigendum-to-aspects-regarding-thermal-mechanical-fatigue-of-shape-memory-alloys",title:"Corrigendum To: Aspects Regarding Thermal-Mechanical Fatigue of Shape Memory Alloys",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/80207.pdf",downloadPdfUrl:"/chapter/pdf-download/80207",previewPdfUrl:"/chapter/pdf-preview/80207",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/80207",risUrl:"/chapter/ris/80207",chapter:{id:"62954",slug:"aspects-regarding-thermal-mechanical-fatigue-of-shape-memory-alloys",signatures:"Petrică Vizureanu and Dragoș-Cristian Achiței",dateSubmitted:"April 12th 2018",dateReviewed:"April 25th 2018",datePrePublished:null,datePublished:"September 26th 2018",book:{id:"7213",title:"Shape-Memory Materials",subtitle:null,fullTitle:"Shape-Memory Materials",slug:"shape-memory-materials",publishedDate:"September 26th 2018",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"12354",title:"Prof.",name:"Petrică",middleName:null,surname:"Vizureanu",fullName:"Petrică Vizureanu",slug:"petrica-vizureanu",email:"peviz2002@yahoo.com",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"209329",title:"Dr.",name:"Mirabela Georgiana",middleName:null,surname:"Minciuna",fullName:"Mirabela Georgiana Minciuna",slug:"mirabela-georgiana-minciuna",email:"mirabela.minciuna@yahoo.ro",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"245668",title:"Dr.",name:"Dragos Cristian",middleName:null,surname:"Achitei",fullName:"Dragos Cristian Achitei",slug:"dragos-cristian-achitei",email:"dragos_adc@tuiasi.ro",position:null,institution:null},{id:"245669",title:"Dr.",name:"Manuela Cristina",middleName:null,surname:"Perju",fullName:"Manuela Cristina Perju",slug:"manuela-cristina-perju",email:"cryss_ela@yahoo.com",position:null,institution:null}]}},chapter:{id:"62954",slug:"aspects-regarding-thermal-mechanical-fatigue-of-shape-memory-alloys",signatures:"Petrică Vizureanu and Dragoș-Cristian Achiței",dateSubmitted:"April 12th 2018",dateReviewed:"April 25th 2018",datePrePublished:null,datePublished:"September 26th 2018",book:{id:"7213",title:"Shape-Memory Materials",subtitle:null,fullTitle:"Shape-Memory Materials",slug:"shape-memory-materials",publishedDate:"September 26th 2018",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"12354",title:"Prof.",name:"Petrică",middleName:null,surname:"Vizureanu",fullName:"Petrică Vizureanu",slug:"petrica-vizureanu",email:"peviz2002@yahoo.com",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"209329",title:"Dr.",name:"Mirabela Georgiana",middleName:null,surname:"Minciuna",fullName:"Mirabela Georgiana Minciuna",slug:"mirabela-georgiana-minciuna",email:"mirabela.minciuna@yahoo.ro",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"245668",title:"Dr.",name:"Dragos Cristian",middleName:null,surname:"Achitei",fullName:"Dragos Cristian Achitei",slug:"dragos-cristian-achitei",email:"dragos_adc@tuiasi.ro",position:null,institution:null},{id:"245669",title:"Dr.",name:"Manuela Cristina",middleName:null,surname:"Perju",fullName:"Manuela Cristina Perju",slug:"manuela-cristina-perju",email:"cryss_ela@yahoo.com",position:null,institution:null}]},book:{id:"7213",title:"Shape-Memory Materials",subtitle:null,fullTitle:"Shape-Memory Materials",slug:"shape-memory-materials",publishedDate:"September 26th 2018",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10673",leadTitle:null,title:"The Psychology of Trust",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tHumans are social creatures. We need each other and so we have had to learn how to trust each other. What goes into developing trust? Are there certain elements that are required? Neural pathways? How do people manipulate another's trust? Are there tricks that they use? Are some individuals more at risk of having their trust betrayed? Once trust is betrayed can it be fully engaged again or is it damaged? Do animals trust similarly to humans or have aspects of trust changed as we have evolved?
\r\n\r\n\tThis volume aims to help in understanding the psychology of trust. Trust is used to sell products and encourage investments. It can be abused and betrayed. Trust has moved from personal interactions to trusting machines and placing our trust in global concepts like the Internet. Does that affect how we view trust? Within circles of trust are there special considerations for certain relationships, such as for our leaders or mental health providers? How do we believe in unknowable concepts and find trust in Universal guidance and religion? This volume aims to provide an understanding of trust from its simple elements to its more profound effect on human society.
",isbn:"978-1-83969-873-6",printIsbn:"978-1-83969-872-9",pdfIsbn:"978-1-83969-874-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"7b45a63e3aadbe8dc8847f5fbbffeb64",bookSignature:"Dr. Martha Peaslee Levine",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",keywords:"Trust, Rules or Elements, Circles or Levels, Cognitive vs Emotional Trust, Characterization, Risk, Conditions of Trust, Personality Types, Neural Patterns, Past Experience, Internet, Types",numberOfDownloads:696,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 27th 2021",dateEndSecondStepPublish:"June 21st 2021",dateEndThirdStepPublish:"August 20th 2021",dateEndFourthStepPublish:"November 8th 2021",dateEndFifthStepPublish:"January 7th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a year",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Martha Peaslee Levine is an associate professor of Pediatrics, Psychiatry, and Humanities at the Penn State College of Medicine and Interim Director of the Office of Professional Mental Health, USA.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine",profilePictureURL:"https://mts.intechopen.com/storage/users/186919/images/system/186919.png",biography:"Dr. Martha Peaslee Levine is an associate professor in Pediatrics, Psychiatry and Humanities at the Penn State College of Medicine. As a psychiatrist, she understands the importance of healthy relationships. She has also witnessed the impact of negative relationships on individuals’ self-esteem. She is the Director of the Office for Professional Mental Health and helps students, residents, fellows, and faculty navigate the stresses of medicine and life. She is blessed to have great relationships with her two children and finds much value and meaning in life through her work with others.",institutionString:"Penn State Milton S. Hershey Medical Center",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Penn State Milton S. Hershey Medical Center",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:[{id:"79335",title:"Trust in the Nonprofit Domain: Towards an Understanding of Public’s Trust in Nonprofit Organizations",slug:"trust-in-the-nonprofit-domain-towards-an-understanding-of-public-s-trust-in-nonprofit-organizations",totalDownloads:128,totalCrossrefCites:0,authors:[null]},{id:"79402",title:"Signaling Trustworthiness: A Self-Regulation Account",slug:"signaling-trustworthiness-a-self-regulation-account",totalDownloads:109,totalCrossrefCites:0,authors:[null]},{id:"79764",title:"Significant Role of Trust and Distrust in Social Simulation",slug:"significant-role-of-trust-and-distrust-in-social-simulation",totalDownloads:132,totalCrossrefCites:0,authors:[null]},{id:"81062",title:"Justice to Generate Trust, Two Aspects of Human Relationships in Management",slug:"justice-to-generate-trust-two-aspects-of-human-relationships-in-management",totalDownloads:14,totalCrossrefCites:0,authors:[null]},{id:"79669",title:"The Psychology of Trust from Relational Messages",slug:"the-psychology-of-trust-from-relational-messages",totalDownloads:56,totalCrossrefCites:0,authors:[null]},{id:"80366",title:"Spoken and Unspoken between Indigenous and Non-Indigenous: Trust at the Heart of Intercultural Professional Collaborations",slug:"spoken-and-unspoken-between-indigenous-and-non-indigenous-trust-at-the-heart-of-intercultural-profes",totalDownloads:63,totalCrossrefCites:0,authors:[null]},{id:"81619",title:"Interpersonal Trust within Social Media Applications: A Conceptual Literature Review",slug:"interpersonal-trust-within-social-media-applications-a-conceptual-literature-review",totalDownloads:17,totalCrossrefCites:0,authors:[null]},{id:"78782",title:"Trust in Leader as a Psychological Factor on Employee and Organizational Outcome",slug:"trust-in-leader-as-a-psychological-factor-on-employee-and-organizational-outcome",totalDownloads:177,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5925",title:"Perception of Beauty",subtitle:null,isOpenForSubmission:!1,hash:"11f483d631557ad26d48b577e23a724f",slug:"perception-of-beauty",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/5925.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde Dorthea Grindvik",surname:"Nielsen",slug:"hilde-dorthea-grindvik-nielsen",fullName:"Hilde Dorthea Grindvik Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"47552",title:"Light-Emitting Devices – Luminescence from Low-Dimensional Nanostructures",doi:"10.5772/59103",slug:"light-emitting-devices-luminescence-from-low-dimensional-nanostructures",body:'Luminescence is the emission of light that does not cause energy loss from the temperature of the emitting material. The emission of light occurs because of an excitation in the material and has different forms like photoluminescence, electroluminescence, thermoluminescence, etc. Reasonable efficiency, high stability, and easy and economical fabrication methods make light-emitting devices a good choice for mass production.
This chapter focuses on the luminescent properties of low-dimensional nanostructures and reviews the principles of luminescence. Different materials for this application and some of the best-known electroluminescent devices are reviewed. In addition, low-dimensional nanostructures, a simple method for preparing them, and the development of these structures for application in light-emitting devices are briefly described.
In this part of the chapter, the basis of radiation from solids that produce visible light is discussed. Luminescence is the emission of light by an excited substance. In order to create an emission, an electron needs to be excited from the ground state (E1). During transition of the electron from the excited (E2) to the ground state, a photon is released. In order to start this transition, we need to stimulate the electron in the excited state. This process is shown in Figure 1:
Transition of an electron from excited (E2) to ground (E1) state in a double-state system that results in the release of a photon.
In semiconductors, the ground state is usually referred to as electrons in the valance band while excited state electrons are known as the conduction band. Unlike the metals in semiconductors, these two states are separated by an energy gap called the bandgap (Eg). Therefore, a minimum energy of the bandgap is necessary to excite an electron from the ground to the excited state. Luminescence from semiconductors can be observed by exciting the electrons to higher states like the conduction band and subsequent decay to the ground state. There are different methods of providing the excitation that cause luminescence from a material. Depending on the excitation origin, there are several types of luminescence such as photoluminescence, electroluminescence, cathodoluminescence, chemiluminescence, thermoluminescence, etc. When an electron is promoted from the valance band to the conduction band, a hole will remain in the valance band [1].
If a semiconductor absorbs the electromagnetic radiation of a photon, an electron in the valance band can be excited to the conduction band. When the excited electron returns to a lower state, it causes the radiation of a photon in a process called photoluminescence (PL). When electrical potential is applied, the conversion of energy from electrical energy into light emission is called electroluminescence and the device that produces it is called a light-emitting diode (LED). Due to the narrow nature of the bandgap in elemental semiconductors, they are not suitable candidates for LEDs. Instead, other semiconductors with wide bandgaps are frequently used for this application. The term ‘wide bandgap semiconductors’ describes those that exhibit light in the visible part of the light spectrum and in the shorter wavelengths of ultraviolet.
Compound semiconductors from group III-V (such as III-nitrides), group II-VI (such as oxides and chalcogenides) are the most important types of wide bandgap semiconductors, although other semiconductors like SiC, Si, and Ge are also studied for light-emitting devices. Figure 2 shows some of the semiconductors that have been used for light-emitting devices. The materials with small lattice constants have stronger interatomic forces and their outer electrons are strongly bound to the lattice, which means that such materials have a large bandgap energy. By changing the structure and doping, many colors can be provided for LED applications. While the infra-red and red LEDs have been studied for 40 years, bright blue, violet, and UV LEDs have been the subjects of research studies in more recent years.
A selection of semiconductors for light-emitting devices. The area between 2 and 3eV are distinguished for visible wavelengths.
Even more recently, light-emitting devices based on polymer materials have been investigated. In the next section, polymer and organic light-emitting devices are discussed briefly.
In this section, different types of light-emitting devices and their working principles are summarized; they are grouped based on the type of material that is applied to create the light emission.
To provide LEDs with different colors, III-V and II-VI materials like GaAlAs, AlinGaP, InGaN, AlN, ZnO, and ZnSe are typically used. The p-n junction is situated between two electrodes, at least one of which should be transparent. Industrial LED applications are highly focused on white color as a light source and as backlighting for electronic devices. New types of LEDs with white color have been developed by mixing luminescent materials in three red-green-blue (RGB) colors. There are two common methods for the generation of white color in LED devices.
The first method uses an individual combination of red, blue, and green LEDs to mix the provided colors and produce the white color shown in Figure 3a, while the second is a combination of different phosphorous materials to generate the white color shown in Figure 3b.
Mechanism of providing light-emitting diode with white color (a) Combination of three red-green-blue (RGB) LEDs (b) Mixing of different luminescent materials to generate the white color.
The first emitting organic material was observed by Pope et. al [2] and led researchers to investigate organic materials as light-emitting devices [3-6]. The working principles of these devices are similar to normal LEDs with the difference that an organic compound is used as an emissive layer. Such devices are called OLEDs (organic light-emitting diodes). A typical OLED consists of at least one emissive layer and one conductive layer which are deposited between two electrodes (anode and cathode). Like semiconductors, these organic materials show other conductivity characteristics under an electrical field between two electrodes. Analogous to p-n junction semiconductors, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are regarded as the valance and conduction bands, respectively, of inorganic semiconductors [7].
Figure 4 shows the basic schematic structure of an OLED, which can also consist of an electron transport layer and hole transport layer. At the first stages of the fabrication of OLEDs by Philips, the devices consisted of simple structures of poly(dialkoxy-p-phenylenvinylene) (dialkoxy–PPV) that were situated between a metallic electrode and tin-doped indium oxide (ITO) as the transparent conductive layer [8]. Glass is extensively used as a substrate to fabricate this type of LED, while polyethylene terephthalate (PET) can also be used for fabrication of flexible devices [9, 10].
The basic schematic structure of an OLED consist of electrodes (cathode and anode), organic luminescence layer, and transparent conductive material.
There has been extensive effort to fabricate OLEDs with primary colors that involved studying different organic materials. H. Fukagawa et. al. [11] reported highly efficient red phosphorescent OLEDs fabricated using platinum complexes as dopants, but most of the studies were performed using iridium complexes and proposed novel complexes of platinum and a useful host/dopant combination. Many host/dopant combinations have been investigated in an effort to provide red OLEDs that show high stability. The optimized device exhibited good color saturation and high efficiency as well as working with low driving voltage. The lifetime of the fabricated devices was estimated to be approximately 10,000 hours.
Green OLEDs with high efficiency, using copper complexes, were reported by S. Igawa et. al. [12]. The copper complexes are an inexpensive emissive choice and exhibit substantial thermal stability compared to other rare earth metals. They exhibit strong green emission at room temperature with a wavelength in the range of 523-544 nm. A conventional OLED structure containing electron and hole transform layers, polymer complex, and electrodes shows the bright green emission with quantum efficiencies between 11.9% and 17.7%.
The complexes that can provide blue colors are more attractive than the red and green complexes for application in OLEDs because of their short wavelength emission. Several organic emissive materials have been used in blue OLEDs. A novel benzofuropyridine complex was synthesized by Chil Won Lee et. al. [13]. These OLEDs were fabricated with two different methods of spin-coating and a vacuum-based route. Both devices exhibited an emission peak at 486 nm, with a strong shoulder peak at 493 nm also observed due to the thickness of prepared thin films. They achieved high quantum efficiencies between 18.0% and 25.0%, but they did not report the lifetime of their fabricated devices.
By mixing these three main colors, white color can be created with OLEDs. The pioneer research study for these LEDs was initiated by Kido et al. [14] by mixing three dyes (blue, green and orange) into the emissive layer to obtain the white color.
In addition to small organic molecules, polymers can also be used as an electroluminescent material. Due to the variety of polymer molecules, there is great variability in the emission wavelength of polymer light-emitting diodes (PLEDs) [15-17]. Most of the conjugated polymers are soluble in water-based solutions and therefore can be deposited with wet chemical coating methods like dip-coating, spin-coating, and printing, which makes them highly suitable for the fabrication of devices on big substrates [18]. Additionally, by using flexible substrates, flexible devices like displays can be created. However, because of the degradation of the polymers by oxygen, such devices should be encapsulated and therefore have shorter lifetimes compared to inorganic LEDs.
A lot of research has been done to increase the stability of PLEDs [19-20]. A. Berntsen et al. [19] improved the stability of polymer LEDs operating at daylight under ambient conditions. The lifetime about 5000 hours is obtained and under higher temperatures (70ºC), they have one tenth of this time. Y. Cao et al. [21] applied an ultra-thin alkaline earth metal as electrodes for PLEDs and increased their stability and invented this method to increase operating life of PLEDs in which the decay of efficiency and light output is substantially postponed.
Due to the diversity of organic materials, PLEDs can also create different colors from blue to red in visible wavelengths. Several polymer emitters can provide the three primary colors. The common approaches to fabricate the white light OLEDs include doping with small fluorescent or phosphorescent combinations, polymer blending, fabrication of devices with multiple emissive layers, and synthesize a single polymer that can provide the white color [22]. In [22], the authors reported new design techniques for high performance white PLEDs. So far the external quantum efficiency more than 20% has been obtained for these devices and the total power efficiency more than 80 lm/W has been achieved. By improving and increasing the lifetime of these structures, they can be used as energy-saving light sources (for general light, because of low energy consumption), back light for electronic devices (because of low thickness), and flat or flexible displays.
Theoretically, the electroluminescence (EL) from phosphor materials is classified into two groups: injection EL and high field EL. The high-field EL can be further grouped into different types in terms of the phosphors (powders vs. thin film) and the voltage (DC vs. AC). Due to the requirements for various applications, injection EL (high intensity lighting-emitting diodes (LEDs), for example,) have a wide application in liquid crystal displays (LCDs) backlighting and are entering the lighting market.
Luminescence is the emission of lights that does not derive energy from the heating of emitting material. Reasonable efficiency, high stability, and an easy and economical fabrication method make these devices a good choice for mass production. Electroluminescent lamps can be made by sandwiching a phosphor material between two conductive electrodes. At least one of these electrodes should be transparent (TCOs like ITO, FTO or AZO layer). An EL lamp consists of phosphor material; Dielectric layer (e.g. barium titanate with a high dielectric constant to increase the electrical field between the electrodes); Conductive layers (e.g. ITO as transparent layer and silver coating as back contact); Barrier layer to keep phosphor from moisture, and dust. A schematic structure on an EL lamp is shown in Figure (5).
Structure of EL lamp.
By applying a high electrical field (provided with an AC voltage through the conductive electrodes) over the phosphor particles, the electrons will be trapped in the interface layer and will be tunneled to the conduction band of the phosphor layer. The accelerated electrons by electrical field (with enough kinetic energies) excite the impurities from the ground state to excited state. When the electrons come back to their ground state, light is emitted. For this purpose, the electrons must be able to localize in the ground state; otherwise, having a high electric field, they do not emit light. The phosphor material for application in EL devices should be an insulator and contain impurities. It also has to be transparent for the emitted wavelength.
Zinc sulfide is one the most important candidates for phosphor material that have been doped with different chemical elements like magnesium, manganese, copper, or vanadium to provide a different range of colors. Due to the simple structure, they can be used for applications in back-lighting but are still not useful for general light applications.
Many physical and chemical properties of materials can be changed effectively by controlling the size of materials between 1 and 100 nm. In such nanostructures, the finite size can generate novel optical, electrical, or magnetic properties that cannot be observed in bulk materials. In other words, the atoms of material on the surface show different properties and therefore by decreasing the dimensions of a material, the high surface-to-volume ratio enables them to exhibit new properties.
Nowadays, semiconducting nanostructures have been the subject of great interest due to their unique optical properties. With more investigation and development into such structures, many optoelectronics devices have been produced. Materials with a large surface area-to-volume ratio can be a good candidate in optoelectronics applications. Applications of devices based on optical properties can include lasers, solar cells, optical detectors and sensors, displays, photo-catalysis, imaging and phosphor devices [23-30].
Various methods have been used for the fabrication of nanostructures, like molecular beam epitaxy (MBE) [31,32], sol-gel [33,34], chemical vapor deposition (CVD) [35,36], lithography [37,38], physical vapor deposition (PVD) [39], and chemical methods [40-41]. Among these methods, the low cost and high efficiency technologies have attracted more attention.
In this section, we present a low-cost and industrial method to obtain such nanostructures with a chemical vapor deposition method by an electrical furnace. In addition, their structural and optical properties are studied. So far, a large number of methods have been used to synthesize wide bandgap semiconductors. Some of the currently used methods have problems regarding high temperature, high vacuum conditions, the necessity of using expensive equipment, and difficulties with quality or commercialization. The focus of this chapter is on development of a low-cost method for producing high quality nanostructures with regard to facilities and experimental conditions.
This method is based on the evaporation of source materials in the hot-zone of a horizontal electrical furnace, reacting with an active gas and finally transporting on the substrates in cold-zone of the furnace using a carrier gas. Despite the simplicity of this method, there are a lot of parameters that can affect a growth mechanism. Among these parameters, the effects of growth conditions such as synthesis temperature, temperature rate, amount of carrier and active gases, source chemical materials, and impurities on the structural properties of these nanostructures are studied.
The variation of these parameters leads us to the systematic modification of one and two dimensional (1D & 2D) nanostructures such as nanowires, nanorods, nanosaws, nanodendrites, nanobelts, and nanosheets. Reasonable emissions of these structures in the blue-green, violet, and ultra-violet (UV) wavelengths can lead us to produce light emitting devices. Also the effect of structural properties and impurities are investigated.
A horizontal furnace is used in this experiment, which is divided into two independent zones: zones (a) and (b), called the hot and cold zones, respectively. Active and carrier gases are introduced through the tube on one side in order to produce the active gas system and carry them to the cold zone of the furnace. The other side of the chamber is evacuated using a vacuum pump. Source materials with the desired molar ratio are inserted into the center of the hot zone. The substrates can be placed at different distances from the source material in the cold zone. Before increasing the temperature, the chamber is flashed with inactive gases (like argon) to remove the residual oxygen from the air. The temperature of the hot zone is increased to, and kept at, different temperatures for various durations. Finally, a thin layer of synthesized material is deposited on the substrates in the cold zone. The distance between the source material and the substrates and also the temperature of the substrates are two important parameters that should be controlled during the deposition. The schematic setup of this furnace with a quartz tube is shown in Figure 6.
The schematic setup for production of low dimensional nanostructures as light emission material.
Low dimensional materials attract more interest these days for applications as opto-electronic devices. They have a high surface-to-volume ratio compared to bulk materials and it causes them to show unique properties. When we talk about the low dimensional materials, they can be categorized as: two-dimensional (2-D) like thin films and quantum wells, one-dimensional (1-D) like nanowires, nanorods or quantum wires, and zero dimensional nanostructures (0-D) like quantum dots. Each category shows interesting optical properties [42]. The emission behavior of such nanomaterials is much more complicated than the bulk materials.
The optical properties of nanomaterials depend on many parameters like dimensions, size, shape, temperature, and other variables like dopants and impurities. Even surface characteristics and the surrounding atmosphere have a strong effect on optical properties of these materials. So by controlling these properties, one can generate optical devices covering the whole visible and UV regions of the optical spectrum. The red-shift or blue-shift of photoluminescence spectra of semiconductor nanoparticles is one the most famous examples of changes in optical properties of the materials. In semiconductors, size is the most important parameter to affect the optical properties.
A. Wolcott et. al [43] studied the optical properties of CdTe quantum dots and the results showed different emission colors from CdTe quantum dots. The emission of different colors changes for the particles with different sizes. Increasing the size of the nanoparticles (that were obtained by changing the refluxing time) causes the emitted light to change from blue to red. Also A.M. Schwartzberg showed different colors emitted by hollow gold nanospheres. By varying the diameters and wall thickness, the samples produce different colors from red to violet [44].
Two kinds of wide bandgap semiconductors, such as zinc oxide (ZnO) and aluminum nitride (AlN), are the main subject of this chapter. These nanostructured wide bandgap semiconductors show good light emitting properties in blue-green, violet and ultraviolet (UV) wavelengths. As we discussed in the last section, by controlling the growth condition in this method, we can have different nanostructures with various sizes, dimensions, defects, shapes, dopants and crystallinities. Changes of the surface-to-volume ratio with size and quantum confinement effects cause dependency of the optical properties on the size and dimension.
ZnO is a wide bandgap semiconductor with a direct bandgap of about 3.2 eV at room temperature. Because of the unique optical properties, this material has been used as a suitable semiconductor for different optical devices like UV light emitters, lasers, and detectors. Because of the wide range of synthesis methods, ZnO can be grown in different shapes and structures like one or two-dimensional nanostructures. Structure and doping are two important parameters that have a strong effect on optical properties of this material. One of the major aspects of growth of ZnO is doping of it with different metals to approach an n-type semiconductor.
ZnO nanostructures with different shapes to study the effect of shape and size on luminescenct properties (Reprinted from [
In the previous work [45] by changing the growth condition, we prepared different ZnO nanostructures. Nanowires with diameters of 20±5 nm are observed in Figure 7(a). In addition, as the amount of oxygen in the carrier gas mixture increases, the nanostructures change from wire structures to nanorods as shown in Figure 7(b). Figures 7(c–e) show the 2D ZnO nanobelts (with a typical width in the range of 100 to 200 nm), nanodendrites, and nanosheets (typically 10–20 nm in thickness and 1–2 μm in width), respectively, grown on the Si substrate.
After the excitation of an electron with an external energy, electrons and holes possess higher energies and they will recombine together and form an exciton which has a lower energy state. The released energy from this recombination can result in the emission of photons or Auger electrons [7]. In photoluminescence, the recombination of electron and hole cause the radiation of a photon. In semiconductors, these radiations may result from the near band emission transitions and from the defects in the structures.
To explain this fact, we will return to the PL emission from the nanostructures in Figure 7. Figure (8) shows the photoluminescence spectra of the crystalline structure at the related spots. Three main peaks are observed. In addition to an emission in the UV region (λ=380 nm), broad visible emission is observed with two main peaks at ~485 and ~530 nm. The origin of UV emission is radiation because of the recombination of electrons near or in the conduction band with a hole near or in the valance band, which is called near band emission. Due to the bandgap of ZnO (3.37 eV at room temperature), this emission is in the ranges of UV wavelengths. The visible emission from the ZnO nanostructures has been investigated in many studies [46] and this green luminescence in ZnO was attributed to oxygen vacancy, zinc vacancies, interstitial oxygen and zinc atoms, substitution of oxygen at zinc atom positions and donor-acceptor complexes.
The intensity of emissions is dependent on the nanostructure’s size. The UV emission was stronger than the visible emission for samples with larger ones. Below a certain size, the luminescent properties of ZnO nanostructures should be dominated by the properties of the surface. An enhanced deep-level emission for thinner nanostructures has been observed and attributed to their larger surface area. As we discussed, the green light emission intensity progressively increases, in proportion to the UV emission, as the nanostructure dimensions decreases. This suggests that there are a large number of oxygen vacancies in the nanowires. Generally, the defects are present at the surface of the ZnO structure. ZnO nanowires with a small diameter have a higher surface area-to-volume ratio, which results in a high level of surface defects. Therefore the visible emission intensity increases.
Photoluminescence spectra of ZnO nanostructure with different shapes and sizes (Reprinted from [
The effect of doping was also investigated on luminescence properties of ZnO nanostrustures. The ZnO nanostructures grown by this method are doped by only a few percent of copper and iron as the details are discussed in [45]. The photoluminescence from ZnO:Cu can generally be similar to pure ZnO nanostructures underlying physical mechanisms as free and defect-bound excitons, deep and shallow donor–acceptor pair recombinations, and deep-defect associated emissions. A low-intensity shoulder peak at about 455 nm has also been observed as shown in Fig. 9(a).
The recombination of donor–acceptor pairs involving Zn2+and Cu+states is known to yield a blue-green emission. This recombination is responsible for the increased defect luminescence in the ZnO nanostructure. The peak centered at 455 nm can be attributed to Cu2+–Cu+transitions where the hole remains localized on the Cu+center [47,48]. In the case of the introduction of iron as a dopant, the UV emission band of ZnO has a red shift (from 385 to 485 nm) as well as the green emission band showing a red shift (from 530 to 542 nm) as shown in Fig. 9(b).
Photoluminescence spectra of ZnO nanostructure with a few percent of (a) copper (b) iron as dopant (Reprinted from [
III-nitrides are also interesting materials for application as light emitting materials. As another wide bandgap semiconductor, AlN, with a bandgap of about 6.1 eV at room temperature, will be introduced. AlN is a direct bandgap semiconductor with a bandgap of about 6.1 eV at room temperature, the largest among semiconductors. Thus, AlN emitters are expected to be good candidates for ultraviolet and blue-violet optoelectronics devices [49]. This work emphasizes novel results on the growth and optical properties of an aluminium nitride (AlN) nanostructure by direct nitridation. The nitridation process was done in a horizontal tube furnace at different temperatures by introducing an N2 gas flow. Most of the last efforts for synthesizing AlN nanostructures [50, 51] are performed using ammonia gas as this gas is toxic and corrosive.
Among the synthesis methods for AlN nanowires, the direct nitridation of metallic aluminium powder has been attractive because of the low cost of raw materials and the simple nitridation setup. At the beginning of growth, the reaction temperature is higher than the aluminium melting point, so the Al is in liquid form. These liquid droplets cause the aggregation of obtaining nanostructures into spherical islands. However, we have overcome this problem by using ammonium chloride (NH4Cl). The addition of NH4Cl to the starting Al powder produced many pores because of the decomposition of NH4Cl [52-54]. Therefore, the introduction of porosity during the synthesis can enhance the nitridation rate because N2 gas easily has more access to the pores, which causes the formation of nanostructures AlN powders with low agglomeration. Different AlN nanostructures (Figure (10)) were synthesized and analyzed by scanning electron microscope.
SEM images of AlN nanostructures grown by direct nitridation of aluminium powder. (a, b) AlN nanowires with diameters less than 50 nm (c) AlN nanotips, and (d) long AlN nanowires with diameters about 1 micrometer.
The photoluminescence (PL) spectra were obtained by a 325nm He-Cd laser as the excitation source measured. The results show high intensity light emitting emissions in blue and violet-blue wavelengths for these structures at room temperature. As shown in Fig (11), a typical PL spectrum of these nanostructures shows a peak at 450 nm. Photoluminescence properties of these structures are investigated aiming at the potential application in the field of blue and violet-blue light emitting diodes (LEDs) [55].
Photoluminescence spectra of AlN nanostructure which shows a broad peak at 450 nm.
This chapter was focused on light emitting materials and devices. The working principles of light emitting devices are discussed and different materials for this application are introduced. Different types of light emitting devices, including inorganic light emitting diodes (LEDs), organic light emitting diodes (OLEDs), polymer light emitting diodes (PLEDs), and electroluminescence (EL) lamps are compared.
Different types of the inorganic semiconductors from group III-V (such as GaN, AlN), group II-VI (such as ZnO, ZnS) are the most important wide bandgap semiconductors, for light-emitting devices. In addition, several organic and polymer complexes that can provide the main three colors have been used in OLED and PLED deives. Due to the wide applications of white color LEDs, different methods and different studies for fabrication of these devices are discussed. Stability of light emitting devices is one the most concerns of the providers. A lot of research has been done to increase the stability of these structures under ambient conditions. The lifetime about several thousand hours is obtained. Electroluminescent lamps are other applications of light emissive materials. Luminescence is the emission of lights that does not derive energy from the heating of emitting material. Therefore due to their efficiency and high stability, these devices are good choices for mass production.
A simple chemical method based on vapor transport is applied for fabrication of semiconductor nanostructures. Nanostructures with different shapes and structures offer several advantages for light emitting devices and are receiving increasing attention as a light emissive material to improve the efficiency of the optical devices. These structures could be developed to overcome the problems for fabrication of UV and blue-violet light emitting devices.
ZnO is a wide bandgap semiconductor which because of the unique optical properties, has been used as a useful semiconductor for the optical devices like light emitters, lasers, and optical detectors. Because of the wide range of synthesis methods, it can be grown in different shapes and structures from one-dimensional structures like nanowires and nanorods to two dimensional nanostructures like nanosheets and nanodendrites. AlN with a direct bandgap semiconductor of 6.1 eV at room temperature, the largest among semiconductors, is one the most applicable semiconductors for application in light emitting device and the AlN nanostructures with different shapes and sizes are expected to be good candidates for optoelectronics devices. ZnO and AlN nanostructures are synthesized using a chemical vapor condensation method and their luminescent properties are investigated at roon temperature.
The impact of new revelations in the field of nanotechnology widespreadly affects the wellbeing sciences (Table 1). In biomedical field, the possible parts of NFs applications which resemble drug delivery and tissue science and medicine have been researched in the article. In spite of the fact that electrospinning (ESPNG) was considered as a reasonable system for the polymer nanofibers that were polymeric, biodegradable or non-biodegradable, manufactured or common and so on, which were with uniform distances across ranges from 5 nm to a few hundred nanometers [2, 3, 4]. The ESPNG procedure was favored over other regular strategies in published papers for the synthesis of polymer nanofibers [5, 6, 7, 8]. The requirements for the biopolymers such as their restricted dissolvability in natural solvents due to high particle size, as well as their expensive purifying steps and their suitable polymeric solutions because of their inclination to frame hydrogen bonds, were controlled subsequent to mixing with engineered polymers in any case these restrictions may limit their ESPNG process for nanofibrous mats (NMs) [9].
Few ES - NFs loaded with Cc | Potential application in wound healing/ dressing, so on |
---|---|
Few Cc loaded NFs including (a) polycaprolactone-polyethylene glycol; (b) poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV); (c) poly(lactic acid)hyperbranched polyglycerol; (d) | Potential wound healing application |
Few Cc loaded NFs including tragacanth/ poly(ε-caprolactone) NFs | Potential application in dressing of diabetic wound based on |
Few Cc loaded NFs including almond gum/ polyvinyl alcohol (PVA) NFs | Therapeutic capacity and bioavailability |
Few Cc loaded NFs including Zinc-Cc with coaxial NFs | Orthopedic applications |
Few Cc loaded NFs including (a) zinc NFs; (b) cellulose acetate/ polyvinylpyrrolidone NFs; (c) polyurethanes NFs; (d) gelatin (G) NFs; and so on | Antibacterial application |
Few Cc loaded NFs including chitosan/ poly (vinyl alcohol) (PVA) NFs; and so on | Sustained drug release |
Potential applications of biofunctional (BF) - curcumin (cc) based electrospun (ES) NFs (reprinted with permission from ref. [1]. Copyright 2020 IOP publishing).
The nanofibrous mats (NMs) which were prepared from ES collagen nanofibers were utilized for applications of tissue science and medicine [8]. Additionally,
Due to their considerable tensile strength compared to traditional fibers (with diameters ranging over 100 nm), the low profile NFs can serve as a suitable material while healing and act as barriers to protect the wound (Figures 1 and 2) [11, 12, 13, 14]. Gelatin is also noted for its high water absorption and fluid affinity, making it an ideal option for the moist healing process. In methanoic acid, gelatin (a natural biopolymer that is a denatured form of collagen) is quite soluble. Collagen is a protein found in the extracellular matrix (ECM) of humans and animals, but it is costly due to its production processes [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. The properties of these nanofibers can also be regulated according to requirements by optimizing input process parameters (PMs) such as high potential power supply, solution’s resistance to the flow, length between the NFs collector and emitter, and feed rate, according to the authors. Methanoic acid was clearly used as a natural unstable dissolvable in the ESPNG to disintegrate gelatin (G) at room temperature. Recently, the use of G-nanofibers with sufficient tensile strength for fabricating NMs has got a lot of attention for antimicrobial applications [26, 27, 28, 29, 30]. In addition to their light weight (LW), effective spinning of minimum diameter nanofibers provides a large surface area of these nanofibers. It was fundamentally required for the purpose of dressing the wounds and for other BAs (Table 1). Mindru et al. [31] succeeded in synthesizing NMs of sufficient strength for BAs using methanoic acid. Rather than cytotoxic solvents, Maleknia et al. [32] utilized HCOOH/water to get ready solutions for the ESPNG of G-nanofibers which can be utilized for BAs such as dressing of wounds, delivery of pharmaceuticals, and for tissue science and medicine. They were successful in synthesizing G-nanofibers with 197 nm diameter. Chen et al. [33] utilized methanoic acid and ethanol to have the improvement in the volatility of the dissolvable rather than cytotoxic solvents while setting up the dissolvable for preparing ES G-nanofibers. For medication conveyance, the nanofibrous mats broke in a rapid manner in fluid polymeric solutions. Aytac et al. [23] research suggests that ES G-NFs exemplified with ciprofloxacin/hydroxypropyl-beta-cyclodextrin incorporating complex will break down quicker in water than ES G-nanofibers stacked with ciprofloxacin. Using a dialysis process, Yabing et al. [21] synthesized drug-loaded micelles (poly(ethylene glycol)-block-caprolactone copolymer) and integrated these pharmaceuticals into ES G-NFs. The NMs developed using ES NFs have considerable surface regions and such NFs have a significant contribution in tissue science and medicine. The solvent utilized here was the methanoic acid for ESPNG BF-nanofibers which leads to different BAs such as enzyme immobilization, materials for bone recovery, antifungal and antibacterial exercise in the release of medications, bioactive materials encapsulation during packaging of food and dressing of wounds [34].
The BF - ES NFs were crosslinked to improve tensile strength of the NMs (reprinted with permission from ref.
The event of cc discharge was shown with time (reprinted with permission from ref.
The turmeric extracted from
Preparation of cc loaded ES NFs for sustained release of pharmaceuticals for potential healing process (reprinted with permission from ref.
Xinyi et al. [12] synthesized curcumin/gelatin (Cc/G) nanofibrous mats and studied the arrival of Cc on rodent models (intense injury) by means of an in vitro approach. The healing process was tested by treating rodents utilizing the Cc/G nanofibrous mats (investigations done on the third, seventh, and fifteenth days subsequent to injuring). It inspired us to create Cc-loaded gelatin NFs suitable for the fabrication of NMs for the application of Cc and oxygen to the wound on a long-term basis (during healing) [13]. These NMs will then have antioxidant and anti-inflammatory properties, making them ideal for the healing process [13, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66].
The process of electrospinning (ESPNG) utilizes an electric field applied to the emitter and a ground terminal to pull back a thread of polymeric solution out of the opening of the emitter. In the process of ESPNG, the Maxwell electrical pressure was set as per ratio,
Eq. (1),
In the above Eqs. (2) and (3), velocity of the radial feed,
Here Eq. (4), the radius of the jet initially was
Furthermore, the response of
The model discussed above so far was found fit for foreseeing the conduct of the PMs of the ESPNG [67].
In the present investigation, we utilized set-up for ESPNG (Figure 4(a)). The prominent four parts that were related to the ESPNG – PMs such as spinning gap between the emitter and drum collector, high potential power supply, rate of feed, and solution’s resistance to the flow of a polymeric solution (taken in a 2 ml needle syringe). For the ESPNG process, a high potential power supply has been set across the length of the moving cylindrical drum collector (covered with an aluminum sheet) to pull NFs from Taylor’s cone formed at the tip of the syringe’s needle. The NFs were stretched up from the polymeric solution containing a polar natural solvent and a polymer solute in a definite proportion. After that, these NFs were collected over the moving cylinder which was turned with a speed of around 1000 rpm so that the NFs with UT - diameters could be synthesized across by extending them and adjusting them directly as well as improving their mechanical properties. The four PMs were the spinning gap between the collector and needle’s tip, rate of feed, solution’s resistance to the flow, and the high potential power supply were considered [1, 69, 70].
The (a) ESPNG set up was used to synthesize (b), and (c) the UT - and BF - Cc/G NFs (Reprinted with permission from Ref. [
For synthesizing the BF - NFs parameters were considered. The polymeric solution was prepared after blending 1 percent curcumin (Cc) (0.1 g) with 1.5 percent G (0.15 g) in 10 ml of methanoic acid (98 percent concentrated). Other than that, each other polymeric solution was prepared by mixing 1.2 percent Cc (0.12 g) with 2 percent G (0.2 g) in 10 ml of methanoic acid (98 percent concentrated), both at room temperature. The examinations were done at room temperature, in encompassing air which had moisture around 80 percent.
The synthesis of NFs was done by varying the spinning gap between the tip of the needle (10 cm and 15 cm), the rate of feed (0.1 ml h−1 and 0.15 ml h − 1), the possible high potential power supply (15 KV and 20 KV), and the solution’s resistance to the flow (65 cP and 70 cP, on account of the additional substances obsessions). For 48 hours, the mats were dried at room temperature to completely remove the methanoic acid. The diameters of the NFs were then examined using scanning electron microscopy (SEM) (Figure 4(b), and (c)).
The diameter (nm) of the NFs was synthesized during the process of electro spinning measures (Table 2). The differences in the outcomes (as far as the diameters of the NFs) synthesized were as per the following: at a high potential power supply such as 15 KV (at 15 cm distance, 0.1 ml h−1 rate of feed and 65 cP solution’s resistance to the flow) utilizing a solution having 1.5 percent G, 1 percent Cc in 10 ml of 98 percent concentrated methanoic acid, NFs with diameters around 254 nm (254 ± 28 nm) which was quite larger than the 181 nm (181 ± 66 nm) (Figure 4(b)) spinning gap across got at 10 KV using similar polymeric solution and keeping PMs at same levels. At a higher rate of feed such as 0.15 ml h−1 (at 10 cm distance, 15 KV high potential power supply, and 65 cP solution’s resistance to the flow) utilizing a solution having 1.5 percent G, 1 percent cc in 10 ml of 98 percent concentrated methanoic acid, the diameter across of NFs were prepared around 147 nm (147 ± 34 nm) (Figure 4(c)) which was quite smaller than 260 nm (260 ± 26.5 nm) as the diameter synthesized at 0.1 ml h−1 rate of feed utilizing similar polymeric solution and keeping PMs at same levels. At a higher rate of feed such as 0.15 ml h−1 (at 15 cm distance, 10 KV power supply, and 70 cP solution’s resistance to the flow) utilizing an solution having 2 percent G, 1.2 percent Cc in 10 ml of 98 percent concentrated methanoic acid, the diameter of NFs were prepared around 206 nm (206 ± 56 nm) which was smaller than 229.5 nm (229.5 ± 60 nm) as the diameter synthesized at 0.1 ml h−1 (at 15 cm distance, 15 KV high potential power supply and 70 cP solution’s resistance to the flow) utilizing a similar polymeric solution. For a higher concentration (2 percent G, 1.2 percent Cc in 10 ml of 98 percent concentrated methanoic acid), the solution’s resistance to the flow was prepared (utilizing a solution’s resistance to the flow - measurement set up) to be 70 cP and afterward the diameter of the NFs increased to 235 nm (235 ± 47 nm) at 10 cm distance, 0.15 ml h−1 rate of feed and 15 KV high potential power supply, from 147 nm (147 ± 34 nm) (Figure 4(c)) (prepared at 1.5 percent G, 1 percent Cc in 10 ml of 98 percent concentrated methanoic acid) at 10 cm distance, 0.15 ml h−1 rate of feed, 15 KV high potential power supply and 65 cP solution’s resistance to the flow. At a spinning gap between the collector and needle’s tip such as 15 cm (0.15 ml h−1 rate of feed, 15 KV high potential power supply, and 70 cP solution’s resistance to the flow) utilizing an solution having 2 percent G, 1.2 percent Cc in 10 ml of 98 percent concentrated methanoic acid, the diameters of NFs were prepared around 274 nm (274 ± 53 nm) which was larger than the 235 nm (235 ± 47 nm) diameter obtained for 10 cm spinning gap utilizing similar polymeric solution and keeping PMs at same levels [1, 69, 70].
Runs | Spinning gap (cm) A | Feed Rate (ml/h) B | High potential power supply (KV) C | Solution’s resistance to the flow (cP) D | Mean Diameter (nm) |
---|---|---|---|---|---|
1 | Low - 10 | Low - 0.1 | Low - 10 | Low - 65 | |
2 | High - 15 | Low - 0.1 | Low - 10 | Low - 65 | |
3 | Low - 10 | High - 0.15 | Low - 10 | Low - 65 | |
4 | High - 15 | High - 0.15 | Low - 10 | Low - 65 | |
5 | Low - 10 | Low - 0.1 | High - 15 | Low - 65 | |
6 | High - 15 | Low - 0.1 | High - 15 | Low - 65 | |
7 | Low - 10 | High - 0.15 | High - 15 | Low - 65 | |
8 | High - 15 | High - 0.15 | High - 15 | Low - 65 | |
9 | Low - 10 | Low - 0.1 | Low - 10 | High - 70 | |
10 | High - 15 | Low - 0.1 | Low - 10 | High - 70 | |
11 | Low - 10 | High - 0.15 | Low - 10 | High - 70 | |
12 | High - 15 | High - 0.15 | Low - 10 | High - 70 | |
13 | Low - 10 | Low - 0.1 | High - 15 | High - 70 | |
14 | High - 15 | Low - 0.1 | High - 15 | High - 70 | |
15 | Low - 10 | High - 0.15 | High - 15 | High - 15 | |
16 | High - 15 | High - 0.15 | High - 15 | High - 70 | |
The effect of PMs on diameters of cc/G NFs (reprinted with permission from ref. 1. Copyright 2020 IOP publishing).
The 2k factorial design algorithm was run to test the basic variables or PMs such as the gap between collector and needle’s tip, rate of feed, high potential power supply, and solution’s resistance to the flow (each changed at two unique levels such as low (−) and high (+)) [71, 72, 73]. Accordingly, the total number of runs or trials were 24 i.e., 16. Each of the 16 examples was inspected under scanning electron microscopy (SEM) for characterization of diameters in
Analysis was performed to find the effects of PMs on the diameter of BF nanofibers. Correction factor, CF (to calculate the sum of squares of PMs) was evaluated using relationship (7).
For diameter (nm), the correction factor (CF) was calculated as
Where the gross total of observed diameters
The effect of the factors can be assessed using Eq. (8).
Where
1. Sum of squares, spinning gap variable (cm),
The sum of the square of any interaction was assessed using Eq. (9).
For any interaction such as AB, the
2. Sum of squares for interaction AB,
Out of all interactions, the
The errors were added together and the ratio,
Where, representation of the number of errors was done by
Every process parameter here has two levels such as low (−) and high (+) levels and a degree of freedom (DOF), in this way we utilized a common regression model to compute the minimum diameter of NFs based on the effects of interactions such as
Where,
Furthermore, the influence of each process parameter,
Therefore, the percentage contribution for
The general form of the regression equation was formulated and shown in Eq. (12). Using Eq. (12), the minimum diameter of curcumin/gelatin (Cc/G) NFs (nm) for sustained release of Cc could be evaluated after determination of the coefficients (such as
The above model Eq. (12) was valid for the boundary conditions such as (a)
The mean diameters (nm) of Cc/G NFs were varied with respect to PMs as shown in Figure 5(a). It was observed that (a) with an increase in spinning gap (cm), and high potential power supply (KV), the mean diameters (nm) of BF - NFs were reduced; and (b) with the increase in the rate of feed (ml h−1), and the solution’s resistance to the flow (cP), the mean diameters (nm) of the NFs were increased. The influence of ABC - Interaction between spinning gap (cm), rate of feed (ml h−1) and high potential power supply (KV), AD - Interaction between spinning gap (cm) and solution’s resistance to the flow (cP), D-Solution’s resistance to the flow (cP), BC - Interaction between rate of feed (ml h−1) and high potential power supply (KV), and AC - Interaction between spinning gap (cm) and high potential power supply (KV) were quite significant.
Electrospining PMs optimization (reprinted with permission from ref.
The contour plots (2D plots) of the mean diameters of NFs with respect to basic PMs were shown in Figure 5(b) and (d) [1]. Figure 5(c) and (e) [1] show the fitted model’s predicted 3D response surface plots of the mean diameters (nm) of Cc/G NFs formed. The contributions of ABC-Interaction between spinning gap (cm), feed rate (mL/h), and power supply (KV), AD-Interaction between spinning gap (cm) and solution’s resistance to the flow (cP), D-Solution’s resistance to the flow (cP), BC-Interaction between feed rate (mL/h) and power supply (KV), and AC-Interaction between spinning gap (cm) and power supply (KV) had significant effects of 24 percent, 15.5 percent, 12 percent, and 11.5 percent, respectively, over the preparation of Cc/G NFs with minimum diameters. Figure 5(f) shows the optimized parameter settings. Shifting the red lines to find the optimum results of PMs within the range may be used to estimate the effects of important PMs on the mean diameter (nm) of Cc/G NFs. The composite desirability, D, in our case is 0.8129, which is similar to 1. The current response results are represented by the horizontal blue line (Figure 5(f)).
The mean diameter of UT - Cc/G NFs was predicted to be 189.6563 nm using a configured setting of 1.5 percent G and 1 percent Cc in 10 mL of 98 percent concentrated methanoic acid, with an electrospining unit with a power supply of 10 KV, a spinning gap from the emitter to collector drum of 15 cm, a feed rate of 0.1 mL/h, a solution’s resistance to the flow of 65 cP, and a drum collector speed of 1000 rpm. The SEM image of Cc/G NFs with an mean diameter of 181 nm (181 ± 66 nm) synthesized under similar conditions using the same solution was shown in Figure 4(b). As a result, the approximate diameter (nm) of Cc/G NFs in the optimization phase only differs by 8 percent from the prepared diameter, demonstrating the efficacy of the current study. Due to their high surface area to volume ratio in relation to length and diameter, we believe these LWs and UT - NFs with sufficient film porosity could be used in the healing process.
The optimum conditions for synthesizing the minimum mean diameter (181 ± 66 nm) of UT - Cc/G NFs were achieved (Figure 4(b)) in the study, which could be ideal for dressing diabetic chronic ulcers due to its specific properties such as LW, not harmful to living tissues, water absorbent, and fluid affinity.
Using the optimized environment of a polymeric solution, Sharjeel et al. [72] were effective in ESPNG, novel and hybrid polymeric nanofibrous mesh for dressing burn wounds after integrating gabapentin (a neuropathic pain killer) into polyethylene NFs and acetaminophen (a class of analgesics) into sodium alginate NFs (mixed in 80:20 blend proportion). In the healing process, the hybrid mechanism may be a safe option. Sharjeel et al. [73] synthesized ES - polyethylene oxide and chitosan NFs of 116 nm diameter (with a standard deviation of only 21 nm) using the response surface methodology with acetic acid and water (50:50, v/v) as the solvent (each dissolved separately in acetic acid and water solution in a 5 percent weight-to-volume ratio) (the ratio of polyethylene oxide and chitosan in the polymeric solution was 80:20).
It is still a challenge to investigate the use of curcumin (Cc) loaded nanofibers (NFs) for efficient drug release during different stages of the healing process. Specific polymers for ES Cc NFs must be chosen based on the types of pharmaceutical to be released and the different stages of the healing process. That being said, the application of cytotoxic chemicals in drug delivery, especially during skin treatment, can negatively impact recent research findings. Current reviews of Cc in NFs have revealed a new area of research for the development of possible biomaterials for use in bone tissue science and medicine, diabetic chronic ulcer treatment, cancer treatment, and other applications [74, 75, 76, 77].
Our analysis of Cc-based electrospun (ES) NFs underlines the importance, such as the relevance and need for BF - NFs and nanofibrous mats (NMs) in healing process, cancer care, tissue science and medicine, and other BAs, to inspire researchers interested in working in this cutting-edge area to solve various BAs with BF - NFs. To ease in the synthesis of UT - Cc/G NFs, the ESPNG mechanism (mathematical investigation of the process) was analyzed in detail in the first paper of the article.
The mechanism behind ESPNG was explored in this study as it was used to prepare curcumin/gelatin (Cc/G) NFs that could be used in the healing process. Gelatin (G) was chosen for the fiber system because it is not harmful to living tissues, as well as being water absorbent (fluid affinity), allowing for a moist healing process in the future. Since gelatin is commercially available at a low cost, it was an obvious option for the current study. The LW-UT and spongy NFs with mean diameter of 147 nm (147 ± 34 nm) were successfully synthesized using ESPNG at a higher power supply, such as 15 KV (at 10 cm distance, 0.15 mL/h feed rate, 65 cP solution’s resistance to the flow, and drum collector speed of 1000 rpm) with a solution containing 1.5 percent G and 1 percent Cc in 10 mL of 98 percent concentrated methanoic acid (Figure 4(c) and Table 2).
We came to the following conclusions after deciding the relative effects of the different ESPNG influences: (a) the effects of ABC-Spinning gap (cm), feed rate (mL/h), and higher potential power supply interaction (KV), AD-Interaction between spinning gap (cm) and solution’s resistance to the flow (cP), D-Solution’s resistance to the flow (cP), BC-Interaction between feed rate (mL/h) and high potential power supply (KV), and AC-Interaction between spinning gap (cm) and high potential power supply (KV) are 24 percent, 16 percent, 15.5 percent, 12 percent, and 11.5 percent, respectively, over the preparation of the Cc/G NFs’ minimum diameters; (b) BCD-Feed rate (mL/h), high potential power supply (KV), and solution’s resistance to the flow interaction (cP), ABCD-Spinning gap (cm), feed rate (mL/h), high potential power supply (KV), and solution’s resistance to the flow interaction (cP), AB-Interaction between feed rate (mL/h) and spinning gap (cm), CD-High potential power supply (KV) and solution’s resistance to the flow interaction (cP), C-High potential power supply (KV), A-Spinning gap (cm), and B-Feed rate (mL/h), BD-Interaction between feed rate (mL/h) and solution’s resistance to the flow (cP) have a major influence on the preparation of Cc/G NFs with a minimum diameter; and (c) the diameter (nm) is affected by the ACD-Interaction between spinning gap (cm), high potential power supply (KV), and solution’s resistance to the flow (cP) by just 0.05 percent, which is not important.
The 2k factorial design of the experiment was used to investigate the effects of all four important PMs on the diameter of the NFs empirically. The MINITAB 17 programme was used to generate the results to investigate the difference in NFs’ diameters as a function of input parameters. The differences in NFs diameters with respect to the critical PMs that were observed included (a) a higher spinning gap yielded lower diameters, (b) a higher potential power supply yielded lower diameters, (c) the diameter of the NFs increased with an increase in feed rate, and (d) the diameters of the NFs increased with an increase in solution’s resistance to the flow.
Using the optimized setting of a solution containing 1.5 percent G and 1 percent Cc in 10 mL of 98 percent concentrated methanoic acid, and the electrospining machine with a high potential power supply of 15 KV, a spinning gap from the emitter to collector drum of 15 cm, a feed rate of 0.1 mL/h, solution’s resistance to the flow of 65 cP, and a drum collector speed of 1000 rpm, the optimum condition for the production of UT - Cc/G NFs with an 189.6563 nm mean diameter was calculated. The approximate mean diameter (nm) of Cc/G NFs in the optimization phase differs by just 8 percent from the prepared mean diameter, i.e., 181 nm (181 ± 66 nm), demonstrating the efficacy of the current study.
Such UT - NFs with sufficient film porosity are not harmful to living tissues in nature, and it was suggested that they could be used in dressing problematic wounds, such as diabetic chronic ulcers, because they have unique properties, such as a high surface area to volume ratio and light weight, that allow for sustained Cc release during healing. The research paper that has been presented thus far is unique in that it covers (a) the entire ESPNG process (numerical investigations of the mechanism) to improve control over the preparation of UT - NFs, and (b) the applications of NMs (incorporating BF - NFs) that are currently in use. Eventually, the ESPNG PMs were optimized (to obtain UT - NFs) to prepare NMs for BAs such as the healing process (through sustained release of Cc during crucial hours of healing).
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"12"},books:[{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",subtitle:null,isOpenForSubmission:!0,hash:"a58c7b02d07903004be70f744f2e1835",slug:null,bookSignature:"Prof. Mohamed Nageeb Rashed and Prof. Wafaa M. Abd El-Rahim",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",editedByType:null,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11457",title:"Forest Degradation Under Global Change",subtitle:null,isOpenForSubmission:!0,hash:"8df7150b01ae754024c65d1a62f190d9",slug:null,bookSignature:"Dr. Pavel Samec",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",editedByType:null,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"27c1a2a053cb1d83de903c5b969bc3a2",slug:null,bookSignature:"Dr. Abhay Soni and Dr. Prabhat Jain",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11665",title:"Recent Advances in Wildlife Management",subtitle:null,isOpenForSubmission:!0,hash:"73da0df494a1a56ab9c4faf2ee811899",slug:null,bookSignature:"Dr. Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",editedByType:null,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"c8890038b86fb6e5af16ea3c22669ae9",slug:null,bookSignature:"Dr. Adnan Mustafa and Dr. Muhammad Naveed",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",editedByType:null,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12180",title:"Wetlands",subtitle:null,isOpenForSubmission:!0,hash:"8957c5c2baaed32223f911a6d4aa5a03",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12180.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12221",title:"Air Pollution",subtitle:null,isOpenForSubmission:!0,hash:"439a018ee0c4960560cb798601f2a372",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12221.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:15},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"366",title:"Mycetology",slug:"mycetology",parent:{id:"41",title:"Plant Biology",slug:"agricultural-and-biological-sciences-plant-biology"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:116,numberOfWosCitations:325,numberOfCrossrefCitations:171,numberOfDimensionsCitations:403,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"366",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9463",title:"An Introduction to Mushroom",subtitle:null,isOpenForSubmission:!1,hash:"989e23dafb2b12c71acfe79ce04c3c2b",slug:"an-introduction-to-mushroom",bookSignature:"Ajit Kumar Passari and Sergio Sánchez",coverURL:"https://cdn.intechopen.com/books/images_new/9463.jpg",editedByType:"Edited by",editors:[{id:"304710",title:"Dr.",name:"Ajit",middleName:null,surname:"Kumar Passari",slug:"ajit-kumar-passari",fullName:"Ajit Kumar Passari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8081",title:"Trichoderma",subtitle:"The Most Widely Used Fungicide",isOpenForSubmission:!1,hash:"fb120bd787a35aeeb72997edc44d0c5d",slug:"trichoderma-the-most-widely-used-fungicide",bookSignature:"Mohammad Manjur Shah, Umar Sharif and Tijjani Rufai Buhari",coverURL:"https://cdn.intechopen.com/books/images_new/8081.jpg",editedByType:"Edited by",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",middleName:null,surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6923",title:"Candida Albicans",subtitle:null,isOpenForSubmission:!1,hash:"b037c09c5e2980ef09b650b87fabb668",slug:"candida-albicans",bookSignature:"Doblin Sandai",coverURL:"https://cdn.intechopen.com/books/images_new/6923.jpg",editedByType:"Edited by",editors:[{id:"179627",title:"Dr.",name:"Doblin",middleName:null,surname:"Sandai",slug:"doblin-sandai",fullName:"Doblin Sandai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"22",title:"Fungicides",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"fungicides",bookSignature:"Odile Carisse",coverURL:"https://cdn.intechopen.com/books/images_new/22.jpg",editedByType:"Edited by",editors:[{id:"14447",title:"Dr.",name:"Odile",middleName:null,surname:"Carisse",slug:"odile-carisse",fullName:"Odile Carisse"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"12733",doi:"10.5772/13032",title:"Environmental Risks of Fungicides Used in Horticultural Production Systems",slug:"environmental-risks-of-fungicides-used-in-horticultural-production-systems",totalDownloads:8345,totalCrossrefCites:33,totalDimensionsCites:86,abstract:null,book:{id:"22",slug:"fungicides",title:"Fungicides",fullTitle:"Fungicides"},signatures:"Adam Wightwick, Robert Walters, Graeme Allinson, Suzanne Reichman and Neal Menzies",authors:[{id:"13708",title:"BSc.",name:"Adam",middleName:"Mark",surname:"Wightwick",slug:"adam-wightwick",fullName:"Adam Wightwick"},{id:"14050",title:"Dr.",name:"Suzanne",middleName:null,surname:"Reichman",slug:"suzanne-reichman",fullName:"Suzanne Reichman"},{id:"14051",title:"Dr.",name:"Graeme",middleName:null,surname:"Allinson",slug:"graeme-allinson",fullName:"Graeme Allinson"},{id:"14052",title:"Prof.",name:"Neal",middleName:null,surname:"Menzies",slug:"neal-menzies",fullName:"Neal Menzies"},{id:"23793",title:"Mr.",name:"Robert",middleName:null,surname:"Walters",slug:"robert-walters",fullName:"Robert Walters"}]},{id:"12393",doi:"10.5772/10482",title:"Propiconazole Toxicity on the Non-Target Organism, the Arbuscular Mycorrhizal Fungus, Glomus irregulare",slug:"propiconazole-toxicity-on-the-non-target-organism-the-arbuscular-mycorrhizal-fungus-glomus-sp-",totalDownloads:4150,totalCrossrefCites:6,totalDimensionsCites:21,abstract:null,book:{id:"22",slug:"fungicides",title:"Fungicides",fullTitle:"Fungicides"},signatures:"Maryline Calonne, Joël Fontaine, Djouher Debiane, Frédéric Laruelle, Anne Grandmougin-Ferjani and Anissa Lounès-Hadj Sahraoui",authors:null},{id:"12394",doi:"10.5772/12959",title:"Fungicides and Their Effects on Animals",slug:"fungicides-and-their-effects-on-animals",totalDownloads:16736,totalCrossrefCites:3,totalDimensionsCites:21,abstract:null,book:{id:"22",slug:"fungicides",title:"Fungicides",fullTitle:"Fungicides"},signatures:"Hasan H. Oruc",authors:[{id:"13562",title:"Dr.",name:"Hasan H.",middleName:null,surname:"Oruc",slug:"hasan-h.-oruc",fullName:"Hasan H. Oruc"}]},{id:"12383",doi:"10.5772/13233",title:"Fungicides for Wood Protection - World Viewpoint and Evaluation/Testing in Slovakia",slug:"fungicides-for-wood-protection-world-viewpoint-and-evaluation-testing-in-slovakia",totalDownloads:8525,totalCrossrefCites:3,totalDimensionsCites:21,abstract:null,book:{id:"22",slug:"fungicides",title:"Fungicides",fullTitle:"Fungicides"},signatures:"Ladislav Reinprecht",authors:[{id:"14159",title:"Dr.",name:"Ladislav",middleName:null,surname:"Reinprecht",slug:"ladislav-reinprecht",fullName:"Ladislav Reinprecht"}]},{id:"12388",doi:"10.5772/13205",title:"The QoI Fungicides, the Rise and Fall of a Successful Class of Agricultural Fungicides",slug:"the-qoi-fungicides-the-rise-and-fall-of-a-successful-class-of-agricultural-fungicides",totalDownloads:6424,totalCrossrefCites:14,totalDimensionsCites:20,abstract:null,book:{id:"22",slug:"fungicides",title:"Fungicides",fullTitle:"Fungicides"},signatures:"Dolores Fernández-ortuño, Juan A. Torés, Antonio De Vicente and Alejandro Pérez-garcía",authors:[{id:"14104",title:"Dr.",name:"Alejandro",middleName:null,surname:"Pérez-García",slug:"alejandro-perez-garcia",fullName:"Alejandro Pérez-García"},{id:"15417",title:"Prof.",name:"Antonio",middleName:null,surname:"de Vicente",slug:"antonio-de-vicente",fullName:"Antonio de Vicente"},{id:"15419",title:"Dr.",name:"Juan A.",middleName:null,surname:"Torés",slug:"juan-a.-tores",fullName:"Juan A. Torés"},{id:"15420",title:"Dr.",name:"Dolores",middleName:null,surname:"Fernández-Ortuño",slug:"dolores-fernandez-ortuno",fullName:"Dolores Fernández-Ortuño"}]}],mostDownloadedChaptersLast30Days:[{id:"71993",title:"Edible Mushroom: Nutritional Properties, Potential Nutraceutical Values, and Its Utilisation in Food Product Development",slug:"edible-mushroom-nutritional-properties-potential-nutraceutical-values-and-its-utilisation-in-food-pr",totalDownloads:1471,totalCrossrefCites:8,totalDimensionsCites:15,abstract:"Edible mushrooms are an excellent source of proteins, minerals, polysaccharides, unsaturated fatty acids, and secondary metabolites. Numerous studies have provided evidence for the protective effects of edible mushrooms against various chronic diseases. In this review, details on the compositions and nutritional values of edible mushrooms were discussed. Furthermore, bioactive compounds such as polyphenolic compounds and antioxidant capacity of edible mushrooms, as well as the application of these edible mushrooms as potential therapeutic agents, were covered. This chapter also endeavoured to review the recent progress on the potential utilisation of edible mushrooms in the development of functional food products and its effects on the nutritional, physical, and organoleptic properties of the developed food products. Based on the recent socioeconomic trends, the substitution of edible mushroom as an essential source of functional ingredients in food products could become a natural adjuvant for the prevention and alleviation of several lifestyle-related diseases. This information could be beneficial for the development of food products with health functionalities, which are of great interest to the medical nutrition industry, which is an industry that emerged from the convergence between the food and pharma industries.",book:{id:"9463",slug:"an-introduction-to-mushroom",title:"An Introduction to Mushroom",fullTitle:"An Introduction to Mushroom"},signatures:"Lee-Hoon Ho, Noroul Asyikeen Zulkifli and Thuan-Chew Tan",authors:[{id:"305265",title:"Dr.",name:"Lee Hoon",middleName:null,surname:"Ho",slug:"lee-hoon-ho",fullName:"Lee Hoon Ho"},{id:"314538",title:"Dr.",name:"Noroul Asyikeen",middleName:null,surname:"Zulkifli",slug:"noroul-asyikeen-zulkifli",fullName:"Noroul Asyikeen Zulkifli"},{id:"314539",title:"Dr.",name:"Thuan-Chew",middleName:null,surname:"Tan",slug:"thuan-chew-tan",fullName:"Thuan-Chew Tan"}]},{id:"65413",title:"Introductory Chapter: Identification and Isolation of Trichoderma spp. - Their Significance in Agriculture, Human Health, Industrial and Environmental Application",slug:"introductory-chapter-identification-and-isolation-of-em-trichoderma-em-spp-their-significance-in-agr",totalDownloads:2950,totalCrossrefCites:2,totalDimensionsCites:4,abstract:null,book:{id:"8081",slug:"trichoderma-the-most-widely-used-fungicide",title:"Trichoderma",fullTitle:"Trichoderma - The Most Widely Used Fungicide"},signatures:"Mohammad Manjur Shah and Hamisu Afiya",authors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",middleName:null,surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}]},{id:"63094",title:"Emerging Pathogens of the Candida Species",slug:"emerging-pathogens-of-the-candida-species",totalDownloads:1858,totalCrossrefCites:4,totalDimensionsCites:4,abstract:"In recent years, opportunistic and nosocomial fungal pathogens have been dominated by yeasts of the genus Candida. Most of the research has focused on Candida albicans since it is the most prominent etiological agent. There are numerous publications that describe the biology, virulence factors, morphology, immunity, genomics, diseases, and laboratory aspects of Candida albicans. In this chapter we offer a historic perspective of C. albicans and focus on other non-albicans candida (NAC) that cause serious disease. We review the current knowledge of emerging NAC pathogens with useful graphics and current references. This chapter is laid out as an overview and is geared for students seeking basic information and may be superficial for an infectious diseases clinician.",book:{id:"6923",slug:"candida-albicans",title:"Candida Albicans",fullTitle:"Candida Albicans"},signatures:"Bo Yang and Reeta Rao",authors:[{id:"261208",title:"Associate Prof.",name:"Reeta",middleName:null,surname:"Rao",slug:"reeta-rao",fullName:"Reeta Rao"},{id:"268249",title:"Ms.",name:"Bo",middleName:null,surname:"Yang",slug:"bo-yang",fullName:"Bo Yang"}]},{id:"12734",title:"Introduction and Toxicology of Fungicides",slug:"introduction-and-toxicology-of-fungicides",totalDownloads:19626,totalCrossrefCites:7,totalDimensionsCites:16,abstract:null,book:{id:"22",slug:"fungicides",title:"Fungicides",fullTitle:"Fungicides"},signatures:"Rachid Rouabhi",authors:[{id:"13583",title:"Dr.",name:"Rachid",middleName:null,surname:"Rouabhi",slug:"rachid-rouabhi",fullName:"Rachid Rouabhi"}]},{id:"65709",title:"A Review Report on the Mechanism of Trichoderma spp. as Biological Control Agent of the Basal Stem Rot (BSR) Disease of Elaeis guineensis",slug:"a-review-report-on-the-mechanism-of-em-trichoderma-em-spp-as-biological-control-agent-of-the-basal-s",totalDownloads:1733,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Trichoderma spp. have been the most common fungi applied as biological control agents (BCA) as an effort to combat a wide range of plant diseases. Its uses have recorded good success rate in controlling major plant diseases. Knowledge on the mechanisms employed by Trichoderma spp. could be further studied to improve its ability as an efficient biocontrol agent. The Trichoderma ability to curb plant diseases were mainly based on the activation of single or multiple control mechanisms. It is known that the Trichoderma-based biocontrol mechanisms mainly rely on mycoparasitism, production of antibiotic and/or hydrolytic enzymes, competition for nutrients, as well as induced plant resistance; numerous secondary metabolites produced by Trichoderma species could directly inhibit the growth of several plant pathogens. These mechanisms may act directly or indirectly against the targeted plant pathogen. This chapter reviews the recent updates on published research findings on mechanisms used by Trichoderma as biological control of plant diseases particularly on basal stem rot disease of oil palm caused by Ganoderma spp.",book:{id:"8081",slug:"trichoderma-the-most-widely-used-fungicide",title:"Trichoderma",fullTitle:"Trichoderma - The Most Widely Used Fungicide"},signatures:"Syed Ali Nusaibah and Habu Musa",authors:null}],onlineFirstChaptersFilter:{topicId:"366",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"319576",title:"Prof.",name:"Nikolay",middleName:null,surname:"Boyadjiev",slug:"nikolay-boyadjiev",fullName:"Nikolay Boyadjiev",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v4b3cQAA/Profile_Picture_2022-06-07T08:30:58.jpeg",institutionString:null,institution:{name:"Medical University Plovdiv",institutionURL:null,country:{name:"Bulgaria"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:41,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:74,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:75,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:77,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:99,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:155,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:120,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:203,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/204467",hash:"",query:{},params:{id:"204467"},fullPath:"/profiles/204467",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()