Comparison of the three commonly used vasodilator agents
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"4648",leadTitle:null,fullTitle:"Concepts, Compounds and the Alternatives of Antibacterials",title:"Concepts, Compounds and the Alternatives of Antibacterials",subtitle:null,reviewType:"peer-reviewed",abstract:"This edition is intended to provide better understanding of antibacterial drugs and their mechanism, the role of a few metal drug complexes as antibacterials, cross-checking of a few compounds and biomaterials against drug-resistant bacterial strains as well as a few alternative approaches using medicinal plant based formulations in the control of antibiotic-resistant bacteria. The information in this book provides clues for upcoming trends in treating antibiotic resistance problems with which one can explore new approaches in the treatment of common infections with drug-resistant strains.",isbn:null,printIsbn:"978-953-51-2232-6",pdfIsbn:"978-953-51-5417-4",doi:"10.5772/59522",price:119,priceEur:129,priceUsd:155,slug:"concepts-compounds-and-the-alternatives-of-antibacterials",numberOfPages:210,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"ba284c040146d00fdd709cabc4c8cb5a",bookSignature:"Varaprasad Bobbarala",publishedDate:"December 9th 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4648.jpg",numberOfDownloads:19519,numberOfWosCitations:50,numberOfCrossrefCitations:38,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:92,numberOfDimensionsCitationsByBook:3,hasAltmetrics:1,numberOfTotalCitations:180,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 20th 2014",dateEndSecondStepPublish:"November 10th 2014",dateEndThirdStepPublish:"February 14th 2015",dateEndFourthStepPublish:"May 15th 2015",dateEndFifthStepPublish:"June 14th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"90574",title:"Dr.",name:"Varaprasad",middleName:null,surname:"Bobbarala",slug:"varaprasad-bobbarala",fullName:"Varaprasad Bobbarala",profilePictureURL:"https://mts.intechopen.com/storage/users/90574/images/868_n.jpg",biography:"Dr. Varaprasad Bobbarala received his Ph.D. in Faculty of Science from Andhra University in 2008 under the direction of Professor K. Chandrasekhara Naidu and Professor G. Seshagiri Rao. Specialized in Biochemistry, Medicinal chemistry and Microbiology. He has published over 90 original research articles, reviews, book chapters, and edited three books. He is currently Editor In-Chief of International Journal of Bioassays (ISSN: 2278-778X), Associate Editor and member of the editorial boards as well as the reviewer of dozens of high-impact international periodicals. Dr. B. Varaprasad, previously served as the Chief Scientist of Research and Development (R & D) at Krisani Innovations Pvt. Ltd., before his current role as the Chief Scientist and Technical Director of Research and Development of Adhya Biosciences Pvt. Ltd., India. He is actively engaged in scientific research in the areas of Antimicrobial Resistance, Drug Discovery, Isolation of Bio-active metabolites and bio-efficacy studies.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"897",title:"Pharmaceutical Microbiology",slug:"pharmaceutical-microbiology"}],chapters:[{id:"48837",title:"Antibacterial Drugs — From Basic Concepts to Complex Therapeutic Mechanisms of Polymer Systems",doi:"10.5772/60755",slug:"antibacterial-drugs-from-basic-concepts-to-complex-therapeutic-mechanisms-of-polymer-systems",totalDownloads:3311,totalCrossrefCites:2,totalDimensionsCites:10,hasAltmetrics:0,abstract:"Infections caused by diverse bacteria represent a major problem that threats the health of humans. This stimulates the scientists to find new solutions for treating these diseases by clarifying the interactions of antibacterial compounds with the biological medium. In this context, the chapter presents some basic concepts regarding the antibacterial drugs. The synthesis routes of novel compounds and specific design techniques with polymer materials are described in correlation with the in vitro and in vivo activity of antibacterial substances. Essential data about the mechanism of action, selected in vivo efficacy and mechanisms of resistance to the most used antibacterial drugs are reviewed.",signatures:"Andreea Irina Barzic and Silvia Ioan",downloadPdfUrl:"/chapter/pdf-download/48837",previewPdfUrl:"/chapter/pdf-preview/48837",authors:[{id:"93800",title:"Dr.",name:"Silvia",surname:"Ioan",slug:"silvia-ioan",fullName:"Silvia Ioan"}],corrections:null},{id:"49219",title:"Perception and Resistance Mechanism of some Metal-drug Complexes and Their Roles as Antibacterial",doi:"10.5772/61033",slug:"perception-and-resistance-mechanism-of-some-metal-drug-complexes-and-their-roles-as-antibacterial",totalDownloads:1614,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Metal-based drugs have undergone much development and application for therapeutic and diagnostic purposes for many decades since the huge success of cisplatin and other successful metal-drug complexes in the clinical stages. Furthermore, this metal-based drug has come up with a lot of signs of resistance and side-effects in their uses. This review points to some of the resistance natures and mechanisms of previously synthesized complexes in the field of chemistry.",signatures:"Joshua A. Obaleye, Nzikahyel Simon, Olufunso O. Abosede, Mercy\nO. Bamigboye, Abiodun A. Ajibola, Uche B. Eke and Elizabeth A.\nBalogun",downloadPdfUrl:"/chapter/pdf-download/49219",previewPdfUrl:"/chapter/pdf-preview/49219",authors:[{id:"99498",title:"Prof.",name:"Joshua",surname:"Obaleye",slug:"joshua-obaleye",fullName:"Joshua Obaleye"}],corrections:null},{id:"49473",title:"Quinolone Compounds with Activity Against Multidrug- Resistant Gram-Positive Microorganisms",doi:"10.5772/60948",slug:"quinolone-compounds-with-activity-against-multidrug-resistant-gram-positive-microorganisms",totalDownloads:1731,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"The emergence of resistance to antimicrobial agents is a global public health problem. Some microorganisms may develop resistance to a single antimicrobial agent (or related class of agent), while others develop resistance to several antimicrobial agents or classes. These organisms are often referred to as multidrug-resistant or MDR strains. Identification of new molecules that show activity against multidrug-resistant microorganisms and its development on a new antimicrobial drug, would be an important step in the fight against antimicrobial resistance. This paper presents experimental data regarding the synthesis of several quinolones. The novel compounds having quinolone structure were synthesized by Gould-Jacobs method. Their structure has been determined and confirmed by the following physicochemical methods: elemental analysis, IR spectral analysis, H-NMR, C-NMR, UV, thin layer chromatography. The new compounds have been evaluated for „in vitro” activity by determining minimum inhibitory concentration against a variety of bacteria Some of new quinolones, which showed a good activity, have been tested against 30 strains of methicillin resistant Staphylococcus aureus isolated in the Microbiology Laboratory of INBI Prof. “Dr. Matei Bals” during 2012 The minimum inhibitory concentration (MIC) of the isolates have been determined by agar plate Mueller Hinton (bioMerieux) dilution method using the reference strain Staphylococcus aureus ATCC 29213. The 30 strains of isolated have been also tested for susceptibility to ciprofloxacin, levofloxacin and imipenem by Etest method. Base on the “in vitro” studies, the quinolone FPQ-30 appears to be an promising compound, all strains isolates were inhibited at a concentration of 8 μg/ml.",signatures:"Pintilie Lucia",downloadPdfUrl:"/chapter/pdf-download/49473",previewPdfUrl:"/chapter/pdf-preview/49473",authors:[{id:"94504",title:"Dr.",name:"Lucia",surname:"Pintilie",slug:"lucia-pintilie",fullName:"Lucia Pintilie"}],corrections:null},{id:"49246",title:"Chitosan as a Biomaterial — Structure, Properties, and Electrospun Nanofibers",doi:"10.5772/61300",slug:"chitosan-as-a-biomaterial-structure-properties-and-electrospun-nanofibers",totalDownloads:4618,totalCrossrefCites:24,totalDimensionsCites:55,hasAltmetrics:0,abstract:"Chitosan is a polysaccharide derived from chitin; chitin is the second most abundant polysaccharide in the world, after cellulose. Chitosan is biocompatible, biodegradable and non-toxic, so that it can be usedin medicalapplications such as antimicrobial and wound healing biomaterials. It also used as chelating agent due to its ability to bind with cholesterol, fats, proteins and metal ions.",signatures:"H. M. Ibrahim and E.M.R. El- Zairy",downloadPdfUrl:"/chapter/pdf-download/49246",previewPdfUrl:"/chapter/pdf-preview/49246",authors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"},{id:"175694",title:"Dr.",name:"Enas",surname:"El- Zairy",slug:"enas-el-zairy",fullName:"Enas El- Zairy"}],corrections:null},{id:"48931",title:"Nisin",doi:"10.5772/60932",slug:"nisin",totalDownloads:2991,totalCrossrefCites:7,totalDimensionsCites:11,hasAltmetrics:0,abstract:"Antimicrobial peptides (AMPs) are small cationic peptides which protect their hosts against bacteria, protozoa, viruses, and fungi. Bacterial AMPs are called bacteriocins, and are produced by both Gram-positive and Gram-negative bacteria. Because of their high potency and specificity, bacteriocins are considered as promising antimicrobial agents for different applications, including food preservation and infection treatment; specially the ones produced by acid lactic bacteria species (Gram-positive). Nisin is the most intensively studied and used bacteriocin, it is found commercially available and its use is regulated in over 50 countries. Therefore, special attention is given to this bacteriocin.",signatures:"Angela Faustino Jozala, Letícia Celia de Lencastre Novaes and\nAdalberto Pessoa Junior",downloadPdfUrl:"/chapter/pdf-download/48931",previewPdfUrl:"/chapter/pdf-preview/48931",authors:[{id:"82505",title:"Prof.",name:"Adalberto",surname:"Pessoa Jr.",slug:"adalberto-pessoa-jr.",fullName:"Adalberto Pessoa Jr."},{id:"84924",title:"Dr.",name:"Letícia",surname:"De Lencastre Novaes",slug:"leticia-de-lencastre-novaes",fullName:"Letícia De Lencastre Novaes"},{id:"174371",title:"Dr.",name:"Angela",surname:"Jozala",slug:"angela-jozala",fullName:"Angela Jozala"}],corrections:null},{id:"48961",title:"Natural Products as Antibacterial Agents — Antibacterial Potential and Safety of Post-distillation and Waste Material from Thymus vulgaris L., Lamiaceae",doi:"10.5772/60869",slug:"natural-products-as-antibacterial-agents-antibacterial-potential-and-safety-of-post-distillation-and",totalDownloads:2633,totalCrossrefCites:3,totalDimensionsCites:13,hasAltmetrics:1,abstract:"Medicinal plants have a long tradition of use in folk and conventional medicine. In recent years numerous studies confirm various bioactivities of natural products, among them antibacterial activity. Natural antibacterial agents such are essential oils and isolated compounds now represent a notable source for pharmaceutical and food industry and are widely used in cosmetology. They meet standards of 'green consumerism' together with excellent antibacterial activity. Aromatic plants such is Thymus vulgaris L. are the major sources of essential oils. Thyme essential oil, as well as dominant compounds thymol and carvacrol are generally recognised as safe and have been registered by European Commission for use as flavouring agents in foodstuffs. However, essential oil is present in very low amount (0,8-2,6%) in thyme leaves. Thus, the majority of plant material remains unused after the isolation. Nowadays, the biological potential of various plant waste materials are in focus of numerous studies. These investigations also include the antimicrobial activity considering the fact that waste material extracts represent the valuable source of different phenolic compounds. Regarding all this, the aim of the present study was to determine antibacterial potential of chemically characterised extracts obtained from waste material remaining after the preparation of drug (stems) and isolation of thyme essential oil (deodorised leaves, postdistillation decoction) on selected bacterial strains. Also, in order to determine safety of waste extracts their cytotoxicity was investigated. All extracts were prepared with maceration using 45% or 75% ethanol (EtOH) for 24 h at room temperature (1:10 w/v). Total phenolic compounds and flavonoids were determined spectrophotometrically. Extracts were chemically characterized by HPLC/DAD analysis. Antibacerial testing was done with broth dilution method against several bacterial strains (Staphylococcus aureus, Bacillus cereus, Salmonella infantis, Escherichia coli and Campylobacter jejuni). Cytotoxicity and cytoprotection studies were performed by XTT assay. Result of HPLC analysis showed that investigated extracts, especially those obtained from deodorised leaves represent a valuable source of rosmarinic acid and luteolin 7-O-glucuronide. Antibacterial testing indicated that all waste material extracts, except the extract T2, possess similar or even stronger bacteriostatic activity than T1. No cytotoxicity nor cytoprotection were determined. In conclusion, results of this study confirmed antibacterial potential investigated thyme extracts. High concentrations of rosmarinic acid and luteolin 7-O-glucuronide, which both have numerous pharmacological activities, were determined. This indicates that thyme postdistillation waste material extracts could be used for isolation of dominant compounds or as addities in pharmaceutical and food industry.",signatures:"Neda Gavarić, Jasna Kovač, Nadine Kretschmer, Nebojša Kladar,\nSonja Smole Možina, Franz Bucar, Rudolf Bauer and Biljana Božin",downloadPdfUrl:"/chapter/pdf-download/48961",previewPdfUrl:"/chapter/pdf-preview/48961",authors:[{id:"78766",title:"Dr.",name:"Biljana",surname:"Bozin",slug:"biljana-bozin",fullName:"Biljana Bozin"},{id:"174457",title:"Dr.",name:"Neda",surname:"Gavarić",slug:"neda-gavaric",fullName:"Neda Gavarić"},{id:"174458",title:"MSc.",name:"Nebojša",surname:"Kladar",slug:"nebojsa-kladar",fullName:"Nebojša Kladar"},{id:"174460",title:"MSc.",name:"Jasna",surname:"Kovač",slug:"jasna-kovac",fullName:"Jasna Kovač"},{id:"174461",title:"Dr.",name:"Aleksandra",surname:"Mišan",slug:"aleksandra-misan",fullName:"Aleksandra Mišan"},{id:"174462",title:"Prof.",name:"Sonja",surname:"Smole Možina",slug:"sonja-smole-mozina",fullName:"Sonja Smole Možina"},{id:"174463",title:"Prof.",name:"Franz",surname:"Bucar",slug:"franz-bucar",fullName:"Franz Bucar"}],corrections:null},{id:"49693",title:"Phytopharmaceutical Studies of Selected Medicinal Plants Subjected to Abiotic Elicitation (Stress) in Industrial Area",doi:"10.5772/61891",slug:"phytopharmaceutical-studies-of-selected-medicinal-plants-subjected-to-abiotic-elicitation-stress-in-",totalDownloads:2622,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Plants are a source of large amount of drugs comprising antispasmodics, emetic, Anti-cancer, anti microbial and anticancer activities etc. A large number of the plants are claimed to possess the antibiotic properties in the traditional system and today they are extensively used by the people and the metal Components in the plants grown in polluted area seemingly increase the concentration of phytochemicals. Recent times the flora and fauna of any region is directly or indirectly exposed to the all types pollutants which may result into adverse effects rarely the metal pollutants may trigger the production of phytochemicals. The present study deals with Industrial pollution of the area selected for study, metal up take, and their effect on phytochemical, antimicrobial and anticancer activities that explore the research on five medicinal plants namely Adhatoda vasica, Eucalyptus globulus, Hyptis suaveolens, Ricinus communis and Tinospora cordifolia that thrive well and grow luxuriantly in industrial polluted area and the same five plants from natural area of Visakhapatnam District. The aim of this study is to analyze the effect of Metal elements on phytochemical productivity and antimicrobial and anticancer activity of these medicinal plants. Metal analysis is done ICP-MS (PerkinElmer Sciex Instrument, model ELAN DRC II, USA). Alkaloids, flavanoids, terpenoids and phenols screening is done in solvents Hexane, Chloroform and methanol and checked for antimicrobial activity and anti-cancer activity of Eucalyptus globulus and Tinospora cordifolia were determined by XTT assay on MCF-7 cell lines. The results are discussed in comparison of Natural with pollutant grown plants. The plants that showed better production of phytochemicals due to the presence of metal elements could be recommended to phytopharmaceutical industries as they comparatively showed better production of phytochemicals further proposing a definite way to eliminate toxic metals from them.",signatures:"Sr. Prema Kumari Jonnada, Louis Jesudas and Varaprasad\nBobbarala",downloadPdfUrl:"/chapter/pdf-download/49693",previewPdfUrl:"/chapter/pdf-preview/49693",authors:[{id:"90574",title:"Dr.",name:"Varaprasad",surname:"Bobbarala",slug:"varaprasad-bobbarala",fullName:"Varaprasad Bobbarala"},{id:"176247",title:"Dr.",name:"Prema Kumari",surname:"Jonnada",slug:"prema-kumari-jonnada",fullName:"Prema Kumari Jonnada"},{id:"176248",title:"Prof.",name:"Louis",surname:"Jesudas",slug:"louis-jesudas",fullName:"Louis Jesudas"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2129",title:"A Search for Antibacterial Agents",subtitle:null,isOpenForSubmission:!1,hash:"1567c6402f459b018a6aabfd620aa3f7",slug:"a-search-for-antibacterial-agents",bookSignature:"Varaprasad Bobbarala",coverURL:"https://cdn.intechopen.com/books/images_new/2129.jpg",editedByType:"Edited by",editors:[{id:"90574",title:"Dr.",name:"Varaprasad",surname:"Bobbarala",slug:"varaprasad-bobbarala",fullName:"Varaprasad Bobbarala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1406",title:"Antimicrobial Agents",subtitle:null,isOpenForSubmission:!1,hash:"716194563847e4c8e0f4a7c07ff858ed",slug:"antimicrobial-agents",bookSignature:"Varaprasad Bobbarala",coverURL:"https://cdn.intechopen.com/books/images_new/1406.jpg",editedByType:"Edited by",editors:[{id:"90574",title:"Dr.",name:"Varaprasad",surname:"Bobbarala",slug:"varaprasad-bobbarala",fullName:"Varaprasad Bobbarala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8427",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",subtitle:null,isOpenForSubmission:!1,hash:"0fdedc9bf6c23241235a0ae011c0304c",slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",bookSignature:"Sahra Kırmusaoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/8427.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Associate Prof.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6978",title:"Antimicrobial Resistance",subtitle:"A Global Threat",isOpenForSubmission:!1,hash:"949e88946357845e5843b4d7fbc1701f",slug:"antimicrobial-resistance-a-global-threat",bookSignature:"Yashwant Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/6978.jpg",editedByType:"Edited by",editors:[{id:"79718",title:"Dr.",name:"Yashwant",surname:"Kumar",slug:"yashwant-kumar",fullName:"Yashwant Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4759",title:"Antimicrobial Resistance",subtitle:"An Open Challenge",isOpenForSubmission:!1,hash:"04be7bb9b8da174cdb838a38c75236b4",slug:"antimicrobial-resistance-an-open-challenge",bookSignature:"Maria Cristina Ossiprandi",coverURL:"https://cdn.intechopen.com/books/images_new/4759.jpg",editedByType:"Edited by",editors:[{id:"80691",title:"Prof.",name:"Maria Cristina",surname:"Ossiprandi",slug:"maria-cristina-ossiprandi",fullName:"Maria Cristina Ossiprandi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73639",slug:"corrigendum-to-single-photon-emission-computed-tomography-spect-radiopharmaceuticals",title:"Corrigendum to: Single-Photon Emission Computed Tomography (SPECT) Radiopharmaceuticals",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73639.pdf",downloadPdfUrl:"/chapter/pdf-download/73639",previewPdfUrl:"/chapter/pdf-preview/73639",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73639",risUrl:"/chapter/ris/73639",chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:"January 7th 2021",book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]}},chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:"January 7th 2021",book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]},book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12246",leadTitle:null,title:"Retirement",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"006a7132cbe6660a7999e23a3f70a369",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12246.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 9th 2022",dateEndSecondStepPublish:"May 30th 2022",dateEndThirdStepPublish:"July 29th 2022",dateEndFourthStepPublish:"October 17th 2022",dateEndFifthStepPublish:"December 16th 2022",remainingDaysToSecondStep:"10 days",secondStepPassed:!1,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6926",title:"Biological Anthropology",subtitle:"Applications and Case Studies",isOpenForSubmission:!1,hash:"5bbb192dffd37a257febf4acfde73bb8",slug:"biological-anthropology-applications-and-case-studies",bookSignature:"Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/6926.jpg",editedByType:"Edited by",editors:[{id:"313084",title:"Ph.D.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49093",title:"Regadenoson — Overview of Applications in Cardiology",doi:"10.5772/61154",slug:"regadenoson-overview-of-applications-in-cardiology",body:'
Cardiovascular disease remains a leading cause of death in the United States. According to a 2009 report by the Center for Disease Control, one out of four deaths is attributable to coronary artery disease (CAD).[1] The increased morbidity and mortality due to CAD poses a huge economic burden. In 2010, CAD alone accounted for over 100 billion dollars in combined direct and indirect (i.e., loss of productivity) costs. This is projected to more than double by 2030.[2] Hence, diagnosing and risk stratifying CAD in its early stages is vital.
Many invasive and noninvasive tests are available to identify patients at high risk of developing CAD. Functional tests include exercise stress testing, exercise or dobutamine stress echocardiography, nuclear myocardial perfusion imaging (MPI) using stress agents such as dipyridamole, adenosine, dobutamine or regadenoson (REG), and vasodilator stress magnetic resonance imaging. Coronary computed tomography angiography (CCTA) and the traditional gold standard, coronary angiography, serve as the two well-established anatomic modalities used for CAD detection. This chapter will focus on REG, the newest of the pharmacologic stress agents, and its applications in myocardial perfusion imaging. It will conclude with a brief overview of some novel applications of REG in cardiology.
Adenosine receptors are located in the myocardium as well as in smooth muscle cells of the coronary arterioles and the bronchial tree. Various subtypes of adenosine receptors exist including A1 receptors found in the atrioventricular node, A2A receptors present in coronary arteriolar smooth muscle, and A2B and A3 receptors located in bronchial smooth muscle. The different locations and functions of these receptors have been pivotal in the development of newer pharmacologic stress agents (Figure 1). Adenosine directly and dipyridamole indirectly act on adenosine 2A (A2A) G-protein-coupled receptors found on the cell membrane of coronary arteriolar smooth muscle cells. However, both are nonselective and also activate the other adenosine receptor subtypes causing frequent clinically important side effects (e.g., atrioventricular block due to A1 activation and bronchoconstriction due to A2B and A3 receptor activation) as well as other less serious but often unpleasant side effects. In contrast, REG exerts its effect selectively on A2A receptors achieving the coronary dilatation necessary to perform MPI studies while keeping side effects to a minimum.
Types of adenosine receptors, their functions, and activation/inhibition by various pharmacologic agents.
Cardiac stress testing is able to identify as well as risk stratify individuals who are at risk for CAD. Vasodilator stress testing challenges the coronary flow reserve in order to evaluate the hyperemic capacity of the heart, which can be impaired in significant epicardial stenosis or microvascular disease and lead to transient ischemia. Ischemic changes manifest either as perfusion or wall motion abnormalities depending on the imaging modality used. The currently available pharmacologic stress agents with primarily vasodilator function are dipyridamole, adenosine, and REG. While dobutamine also vasodilates, it mainly stresses the heart via its positive inotropic and chronotropic effects.
An ideal cardiac stress agent should cause short-lived but maximal coronary vasodilatation. Both of these can be achieved if the stress agent has low affinity for its receptor and the target tissue has many adenosine receptors. The coronary arterial tree has an abundance of A2A receptors of which only a fraction needs to be activated to elicit the desired coronary vasodilation and produce maximal coronary hyperemia. Given the nonspecific nature of adenosine receptor stimulation by adenosine and dipyridamole leading to undesired side effects, the need existed for the development of an A2A-selective agent largely devoid of significant side effects such as bronchospasm and atrioventricular conduction block. REG (code name CVT 3146) was identified as an agent with A2A selectivity yet with a low affinity for A2A receptors, meaning it dissociates quickly after eliciting maximal coronary vasodilation, thus causing adequate coronary hyperemia for a short period of time. REG underwent preclinical and subsequently randomized clinical studies showing non-inferiority compared to the commonly used vasodilator adenosine. This led to its approval by the Food and Drug Administration in 2008. It is marketed by Astellas Pharma US Inc. under the trade name Lexiscan® in the United States as a cardiac stress agent for MPI studies in patients who are unable to exercise. Following REG administration, coronary hyperemia occurs for approximately 2–5 min, which is adequate for radionuclide uptake and makes it possible to perform stress testing using a single bolus injection.[3]
REG is a 2-[
The molecular structure of REG (CVT-3146; (1-[9-[(4S, 2R, 3R, 5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2yl]-6aminopurin-2-yl]pyrazol-4-yl)-
It is usually given as a single 400-μg (5 mL) intravenous bolus after which it immediately distributes throughout the body. No weight-based dose adjustment is necessary. REG then undergoes three phases of elimination. The first is the phase of maximal coronary hyperemia lasting 2–4 min.[4] The second phase lasts 15–30 min with profound effect on heart rate and blood pressure, and the third phase, which lasts for 33–108 min, is clinically nonsignificant.[5] Much about REG’s metabolism remains unknown; however, its excretion is both renal and hepatic. The kidneys remove approximately 60% via tubular secretion, while the liver excretes around 40% of the drug unmetabolized into the bile.
As a coronary vasodilator REG is shown to cause tachycardia and changes in blood pressure (both increase and decrease).Trochu et al.[6] showed in animal studies that while adenosine increased left ventricular (LV) systolic pressure, REG did not to any significant degree, and that LV contractility measured by dP/dT increased by 39±7% with REG and 29±7% with adenosine. The ADVANCE MPI studies[7] have shown that the decrease in systolic and diastolic blood pressures (BP) was similar between REG and adenosine (systolic BP drop 14±13 mmHg vs. 13±14 mmHg, P = ns; diastolic BP drop 10±8 mmHg vs. 10±8 mmHg, P = ns). Both drugs increase the heart rate; however, REG more significantly than adenosine (25±11bpm vs. 20±10bpm,
The increase in heart rate with REG is mainly due to direct sympathetic excitation and less so from a baroreceptor reflex induced tachycardia. Dhalla et al.[8] has also suggested that an A2A receptor mediated sinus tachycardia can occur with REG. A blunted heart rate acceleration with both REG and adenosine has also been observed in studies with diabetic patients and is felt to be related to sympathetic denervation.[9]
Like other vasodilators, REG is associated with many minor and a few major (albeit to a lesser extent than older vasodilators) side effects of which clinicians need to be aware.[10] Transient side effects included nausea (6%), abdominal pain (5%), headache (26%), and chest tightness (13%). In the randomized studies evaluating REG prior to its FDA approval, atrioventricular (AV) block incidence was <1% with no instances of advanced AV block or asystole in the ADVANCE MPI 3 studies. However, post marketing surveillance has highlighted rare major adverse reactions related to REG such as acute myocardial infarction,[11, 12] atrioventricular block, and asystole.[13] Thus, REG, despite its A2A selectivity, should not be used in patients with greater than the first-degree AV block unless they have a backup pacemaker. Furthermore, cases of syncope[14] and seizures[15] have also been reported following REG administration. Although aminophylline is used for reversal of many REG-induced side effects, it should not be used in the setting of seizures following REG injection as it lowers the seizure threshold. Instead, standard antiseizure therapy with benzodiazepines and agents such as phenytoin should be used.
Caffeine is an A2A receptor antagonist (Figure 1). Hence, it has the potential to attenuate the hyperemic response, which occurs after vasodilator administration. This is a well-known problem with adenosine and dipyridamole, both of which require abstinence from caffeinated products for at least 24 h prior to stress testing. However, the REG package insert specifies withholding caffeinated products for only 12 h prior to testing. Preclinical animal studies suggested that caffeine attenuated the duration of REG-induced coronary hyperemia in dogs.[16] Subsequent human studies evaluating myocardial blood flow in 41 healthy volunteers using REG with PET imaging showed that moderate caffeine consumption may not interfere with REG-induced coronary hyperemia.[17] Thus, conflicting evidence existed regarding the effect of caffeine on REG stress testing until a multicenter randomized trial on this subject was performed in 2014.
Tejani et al.[18] studied the effects of caffeine on the diagnostic accuracy of REG single proton emissions computed tomography (SPECT) MPI in 207 subjects with documented coronary artery disease on an initial rest-REG SPECT MPI sequence. A third set of SPECT images was acquired in all patients following randomization to two different caffeine doses (200 and 400 mg) or placebo. Previously noted reversible defects were attenuated in patients who consumed both doses of caffeine at least 90 min prior to REG administration, thus diminishing the diagnostic accuracy of the study. There was no difference in adverse effects between the three groups.[18] Current American Society of Nuclear Cardiology (ASNC) guidelines recommend that patients refrain from caffeine consumption for at least 12 h before REG stress testing.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Brand name | \n\t\t\tLexiscan® | \n\t\t\tAdenocard®/Adenoscan® | \n\t\t\tPersantine® | \n\t\t
Indication | \n\t\t\tPharmacologic stress agent in MPI. | \n\t\t\tTreatment of paroxysmal supraventricular tachycardia, pharmacologic stress agent in MPI | \n\t\t\tOral—antithrombotic along with warfarin/aspirin. Intravenous—pharmacologic stress agent in MPI | \n\t\t
Mechanism of action | \n\t\t\tIncreases coronary flow reserve (CFR) via selective A2A adenosine receptor agonism | \n\t\t\tNonselective adenosine agonist on A1, A2A, A2B, and A3 receptors. Increases coronary flow reserve (CFR) via A2Areceptor activation. | \n\t\t\tIncreases availability of adenosine by inhibiting adenosine deaminase, which prevents adenosine’s breakdown | \n\t\t
Potency | \n\t\t\t10 times more potent than adenosine | \n\t\t\tLess potent | \n\t\t\tLess potent | \n\t\t
Distribution in body | \n\t\t\t11.5 L | \n\t\t\tUnknown | \n\t\t\t2–3 L | \n\t\t
Metabolism | \n\t\t\tUnknown | \n\t\t\tIn blood and tissue, metabolized by adenosine deaminase into inosine and then adenosine monophosphate and hypoxanthine | \n\t\t\tHepatic | \n\t\t
Time to peak | \n\t\t\t1–4 min | \n\t\t\t30 s | \n\t\t\t2–2.5 h | \n\t\t
Half-life | \n\t\t\tTriphasic First phase = 2–4 min Second phase = 15–30 min Third phase = 33–108 min | \n\t\t\t<10 s | \n\t\t\t30–45 min | \n\t\t
Administration | \n\t\t\tBolus | \n\t\t\tInfusion | \n\t\t\tInfusion | \n\t\t
Dose | \n\t\t\t400 µg | \n\t\t\t140 µg/kg/min | \n\t\t\t0.14 mg/kg/min | \n\t\t
Duration of infusion | \n\t\t\t10-20 s bolus | \n\t\t\t6 min continuous infusion | \n\t\t\t4 min continuous infusion | \n\t\t
Excretion | \n\t\t\t57% of drug excreted unchanged in urine via tubular secretion | \n\t\t\tCellular uptake | \n\t\t\tConjugated by glucuronide and unchanged drug excreted in feces | \n\t\t
Safety in pregnancy | \n\t\t\tRisk cannot be ruled out (Category C) | \n\t\t\tRisk cannot be ruled out (Category C) | \n\t\t\tNo evidence of human risk in controlled studies (Category B) | \n\t\t
Common side effects | \n\t\t\tHeadache 26% , flushing 16%, dyspnea 28%, hypotension 2% | \n\t\t\tHeadache 21%, flushing 35%, dyspnea 19%, hypotension 3% | \n\t\t\tHeadache 12%, flushing 3.4%, dyspnea 2.6%, hypotension 5% | \n\t\t
IV tubing | \n\t\t\tNot needed: only Hep-lock | \n\t\t\tNeeded | \n\t\t\tNeeded | \n\t\t
Protocol completion time with radiotracer | \n\t\t\tLess than 1 min | \n\t\t\t4–6 min | \n\t\t\t6–8 min | \n\t\t
Comparison of the three commonly used vasodilator agents
Compared with the other two agents, REG is more potent, causes more selective coronary vasodilatation, can be injected in a single bolus without weight-based adjustments, and produces SPECT images comparable to adenosine and dipyridamole.
In a multicenter phase 2 study, REG was tested in 36 patients undergoing SPECT MPI at bolus doses of 400 and 500 μg. Patients with heart transplantation, left bundle branch block, ventricular pacemaker, and low ejection fraction (14 patients) were excluded. This study showed a higher rate of detecting reversible perfusion defects with the lower dose of REG (89% for 400 μg) than with the higher dose (76% for 500 μg).[19] Subsequently, two phase 3 double-blinded, randomized, multicenter trials (ADVANCE-MPI 1 and ADVANCE-MPI 2) demonstrated non-inferiority of REG SPECT MPI to adenosine SPECT MPI. The ADVANCE-MPI 2 trial included 54 sites and 784 patients undergoing clinically indicated adenosine MPI who were blindly randomized 4 weeks later to a second MPI study with REG (
The predominantly renal excretion of REG (60% of the drug) raises concern for its safety in chronic kidney disease and end stage renal disease patients, including those on dialysis. To date, two major studies and one prognostic study have shown that REG is not associated with any major adverse events in this group.
Ananthasubramaniam et al.[22] conducted a randomized, double-blinded, placebo-controlled multicenter trial to evaluate the safety and tolerability of REG in 432 patients with stage 3 (glomerular filtration rate (GFR) 30–59 mL/min/1.73 m2) and 72 patients with stage 4 (GFR 15–29 mL/min/1.73 m2) chronic kidney disease. There were no major adverse events within 24 h of REG injection in the intervention group. Minor adverse effects like headache, dyspnea, chest discomfort, nausea, flushing, and dizziness were more common in the REG group than in the placebo group.
Doukky et al.[23] studied 146 ESRD patients undergoing REG stress testing, which included 131 patients on hemodialysis, 12 patients on peritoneal dialysis, and two not on any dialysis. These were compared with 97 control patients with GFR ≥30 mL/min. The primary end point of the study was patient reported side effects within 24 h following REG administration. There were no statistically significant differences in adverse effects between the groups. Interestingly, end stage renal disease patients tolerated REG stress better than the control group and expressed their willingness to take the test again (117/131 (80%) vs. 63/97 (65%), P = 0.001).[23]
Adenosine 2B and 3 receptors are located in bronchial smooth muscle cells which, when activated, can lead to bronchoconstriction (Figure 1). Although REG is a selective A2A receptor agonist, there is a concern related to its use in patients with asthma and chronic obstructive pulmonary disease (COPD).
More than six studies have been performed to evaluate the safety of REG in this population specifically looking at respiratory symptoms, spirometry parameters, hemodynamic response, and major adverse events. The combined population of these five prospective studies and one retrospective study comprised 686 COPD patients and 695 asthmatics.[24] Respiratory parameters like FEV1, FVC, FEV1/FVC ratio, and patient-reported symptoms were monitored in most of these studies. All showed that REG is safe in COPD and asthmatics. Dyspnea was reported more frequently in COPD and asthmatics, but no significant decline in spirometry measurements occurred among these patients in two double-blinded studies.[25, 26] Of particular note, Kwon et al.[27] demonstrated that patients who underwent low-level exercise in conjunction with REG stress reported fewer respiratory symptoms than those who did not exercise following REG administration.
In patients with left bundle branch block (LBBB), pacemaker, or intrinsic conduction disease, the increased heart rate caused by either exercise, or dobutamine can lead to false-positive septal perfusion defects. This is due to a tachycardia-induced decrease in diastolic perfusion in an already asynchronously activated septum. Multiple studies have compared adenosine and exercise stress tests in these patients. Caner et al.[28–30] showed that dobutamine stress testing is associated with higher false positives in LBBB patients, and similar results were observed in pacemaker patients as well.
The ability of REG to identify perfusion defects in this population was studied by Thomas et al.[31] In their sub-analysis of the ADVANCE MPI 1 and 2 trials, where all 2015 subjects underwent SPECT MPI with adenosine followed by SPECT MPI with either REG or adenosine, 64 patients with LBBB and 93 with pacemakers were identified. Hemodynamic changes, visually assessed summed difference scores (SDS), and quantitative perfusion defects in the LAD territory and septum were compared between REG MPI and adenosine MPI. The study showed that although REG led to a significant increase in heart rate compared with adenosine, it did not cause or exaggerate perfusion defects in the LAD or septal territories either by SDS or quantitative assessment.[31]
Orthotopic heart transplant (OHT) patients have a higher incidence of AV block due to denervation supersensitivity. Hence, OHT patients who undergo MPI studies are at increased risk for developing high-grade AV block. Few studies have evaluated the role of MPI in diagnosing cardiac allograft vasculopathy in these patients.
In a retrospective analysis, Al-Mallah et al.[32] identified 102 OHT patients who underwent adenosine MPI and compared them with 204 control patients for heart rate, blood pressure changes, and occurrence of AV block. A threefold increase in the incidence of high-grade AV block (Mobitz type II and third degree) was seen in OHT patients vs. controls. Symptomatic bradyarrhythmias occurred in 2% of OHT patients leading to premature termination of the adenosine infusion.
OHT patients were excluded from the early trials of REG, which led to its approval, and thus the safety of REG in this population was initially unknown. The effects of REG in these patients are particularly relevant, however, given its relative A2A selectivity and the decreased incidence of AV block observed with REG in other populations. Cavalcante et al.[33] identified 40 OHT patients who underwent REG MPI. These results were compared with prior adenosine MPI results in the same patients. There were five episodes of second-degree AV block (Mobitz type II) and three episodes of sinus pause in adenosine MPI compared with only one episode of sinus pause in REG MPI. No major adverse effects such as congestive heart failure or death were reported following REG administration. To reverse REG’s side effects, aminophylline was given to four patients (two for severe headache and two for chest pressure). However, REG was largely well tolerated by the OHT patients with no difference in overall adverse effect profile between the two test drugs.
Although REG was approved in April 2008 by the U.S. Food and Drug Administration for use in single photon emission computed tomography (SPECT) radionuclide myocardial perfusion imaging (MPI) as a pharmacologic stressor in patients unable to perform exercise stress testing, it has not yet been formally approved for use in positron emission tomography (PET) MPI. Nonetheless, it is increasingly being used in PET MPI in addition to the more established vasodilators, adenosine and dipyridamole. Over the past several years, PET MPI has become more accepted into the mainstream for the diagnosis and management of coronary artery disease (CAD).[34] Furthermore, a recent consensus statement by the American Society of Nuclear Cardiology recommended PET MPI over SPECT MPI as the preferred initial pharmacologic MPI modality if available.[35] The following is a discussion of the current evidence for REG as a pharmacologic stressor in PET MPI.
The 2003 ACC/AHA/ASNC Guidelines for Clinical Use of Radionuclide Imaging recommend adenosine or dipyridamole myocardial perfusion PET for diagnosis in patients with an intermediate likelihood of CAD and/or for risk stratification in patients with an intermediate or high likelihood of CAD.[36] The only class I recommendation is in “patients in whom an appropriately indicated myocardial perfusion SPECT study has been found to be equivocal for diagnostic or risk stratification purposes” (Level of Evidence B). Class IIa recommendations for vasodilator PET MPI are identification of “the extent, severity, and location of ischemia as the initial diagnostic test in patients who are unable to exercise” and in “patients who are able to exercise but have LBBB or an electronically-paced rhythm” (both Level of Evidence B). REG is listed as an additional vasodilator in the 2009 American Society of Nuclear Cardiology Guidelines.[37]
Cardiac PET imaging always includes concomitant CT acquisition for attenuation correction whereas this is still optional with SPECT. Effective radiation dose is lower with PET despite high positron emission energy due to very short half-life of rubidium-82 (Rb-82), the most commonly used PET radiotracer. Ejection fraction (EF) reserve (stress EF – rest EF) is more accurate with PET than SPECT because PET calculates the EF at peak stress rather than post stress as with SPECT. Coronary blood flow/flow reserve is possible with PET as myocardial uptake of Rb-82 bears a more linear relationship to coronary flow rates whereas the uptake of SPECT tracers plateaus at low flows. This allows for better characterization and localization of CAD. The superior image quality of PET is related to its high spatial resolution, reduced scatter, and the high positron emission energy of Rb-82 (1.52 MeV).
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Higher spatial resolution (2–4 mm vs. 6–8 mm) [38-40]\n\t\t\t | \n\t\t\tIncompatible with exercise ( | \n\t\t
Better count efficiency (more counts in less time) [38-40]\n\t\t\t | \n\t\t\tInsurance coverage not universal | \n\t\t
Superior soft tissue attenuation correction [38, 39]\n\t\t\t | \n\t\t\tLess availability | \n\t\t
Less liver/bowel uptake (less scatter) [40]\n\t\t\t | \n\t\t\tMotion artifact affects entire image (360° acquisition) | \n\t\t
Shorter scan time (5 vs. 16 min) [40]\n\t\t\t | \n\t\t\tClaustrophobia (longer tunnel) | \n\t\t
Less radiation (3.7 vs. 10–22 mSv) [40, 41]\n\t\t\t | \n\t\t\t\n\t\t |
More accurate estimation of EF reserve [42]\n\t\t\t | \n\t\t\t\n\t\t |
Ability to assess coronary blood flow/coronary flow reserve [34]\n\t\t\t | \n\t\t\t\n\t\t |
Superior diagnostic sensitivity, specificity, and accuracy [40]\n\t\t\t | \n\t\t\t\n\t\t |
Superior image quality [40]\n\t\t\t | \n\t\t\t\n\t\t |
Increased confidence in interpretation [40]\n\t\t\t | \n\t\t\t\n\t\t |
Advantages and disadvantages of Rb-82 PET MPI vs. SPECT MPI
\n\t\t\t | \n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
>70% stenosis | \n\t\t\t87%/82% (ns) | \n\t\t\t93%/73% ( | \n\t\t\t89%/79% ( | \n\t\t
>50% stenosis | \n\t\t\t86%/81% (ns) | \n\t\t\t100%/66% ( | \n\t\t\t87%/71% ( | \n\t\t
Overall sensitivity, specificity, and diagnostic accuracy of PET vs. SPECT MPI for both moderate and severe degrees of coronary stenosis
Comparison of 112 SPECT MPI (using adenosine and Tc-99m) and 112 PET MPI (using dipyridamole and Rb-82) in populations matched for gender, BMI, and presence/extent of CAD.[40] “Specificity” includes low-likelihood patients who did not undergo angiography in addition to angiographically normal patients. “ns” = not statistically significant.
The increase in coronary blood flow is over 100 times greater with REG than adenosine. Rapid onset of hyperemia (less than 1 min after injection) with peak hyperemia occurring about 2.3 min following injection[3] along with weight-independent standardized dosing make REG well suited for use with short-acting PET radiotracers such as Rb-82 (
Rest-stress regadenoson [
The ability to quantitatively assess coronary blood flow (CBF) and coronary flow reserve (CFR) on angiography was discovered by Gould in animal experiments during the mid 1970s.[44] Because PET image acquisition occurs during peak stress, calculation of CFR (peak flow ÷ rest flow) is one of the unique features of PET as opposed to other noninvasive imaging modalities. A “normal range” has proved difficult to define given the disparity between coronary flows in asymptomatic patients. Based on pooled data from nearly 15,000 patients in 252 studies using three different PET isotopes, CFR in patients without CAD is 3.55 ± 1.36. In patients with established coronary disease, this drops to 2.02 ± 0.70.[45] Table 4 displays the range of values for absolute coronary flow and CFR in the presence of CAD risk factors and other forms of cardiac disease. One of the larger studies in the literature, however, identified a CFR of 1.74 as the cutoff for “definite ischemia” below which patients manifest anginal symptoms and/or ischemic ECG changes during vasodilator stress testing matched by a significant perfusion defect on PET imaging.[46]
\n\t\t\t\t | \n\t\t
Graded Absolute Flow and Coronary Flow Reserve Across Spectrum of Disease : n=14,962[45]
Reproduced with permission. Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am CollCardiol2013;62:1639–53.
Not until recently was the clinical utility of PET-derived CFR fully appreciated. A study of 205 patients (using REG in half of these) demonstrated that with a negative predictive value of 97%, normal global CFR virtually assures the absence of high-risk CAD, despite any coexistent abnormal perfusion.[47] However, as a reduced CFR can occur in three different conditions (diffuse non-obstructive atherosclerosis, significant epicardial coronary stenosis, and microvascular disease), it can be somewhat helpful but is not specific for selecting patients likely to have high-risk CAD on angiography. A very recent study of PET-derived CFR further illustrated that low CFR can be seen in patients with systolic cardiomyopathy (EF ≤ 45%) of both ischemic and non-ischemic etiologies.[48] Murthy et al.[49] studied 2783 patients with known or suspected CAD referred for rest/stress PET MPI and then followed over a median of 1.4 years. Those in the lowest CFR tertile (<1.5) had a 16-fold increase in risk of cardiac death versus those in the highest tertile (>2.0). The middle tertile had a 5.7-fold increase in risk compared to the highest tertile. The addition of CFR to clinical and standard MPI factors led to the correct re-categorization of 34.9% of patients in the intermediate-risk group. Patients in this study received one of four different vasodilators (adenosine, dipyridamole, dobutamine, or REG). As resting CBF was similar between all three tertiles, the reduction in CFR was primarily driven by lower CBF with stress suggesting impaired coronary vasodilator function as an etiology. No difference was drawn between the various vasodilators used, however.
Very little has been published on the specific use of REG to assess CFR in Rb-82 PET MPI. Van Tosh et al.[50] used REG alone to show that CFR corresponded with LV dysfunction (LVD) during stress and that regional reductions in CFR were more often present in patients with LVD than those without, indicating that the phenomenon of coronary steal may be involved in the genesis of LVD.
There exist scant data comparing REG and dipyridamole in PET MPI. A recent study retrospectively assessed CBF and CFR using Rb-82 perfusion PET/CT in 104 matched patients with normal stress tests, half with dipyridamole and half with REG. No significant difference in stress CBF and CFR was found between the two vasodilators (Figure 4). Further supporting REG’s usefulness as a stress agent was the lack of any correlation between stress CBF or CFR and patient weight or BMI.[51]
Myocardial blood flow (MBF) and myocardial flow reserve (MFR) in subjects undergoing pharmacological stress with regadenoson versus dipyridamole.
A very recent study by Johnson and Gould compared CFR in patients undergoing two sequential PET MPIs, either both with dipyridamole (
The shorter duration of peak hyperemia with REG (2.3 min) than dipyridamole has raised some concern as to whether Rb-82 uptake by the myocardium would be sufficient to register perfusion defects or changes in cardiac function with the newer vasodilator. Cullom et al.[53] studied 32 patients, all of whom underwent both REG and dipyridamole PET MPI, and compared summed stress and difference scores, total perfusion deficit, LVEF, LV volumes, and change in stress-rest function. They determined that REG and dipyridamole yielded equivalent measures of cardiac perfusion and function.
To date, there are no published investigations of REG vs. adenosine in PET myocardial perfusion imaging.
Studies comparing vasodilator stress SPECT and PET MPI have repeatedly demonstrated slightly higher sensitivity in PET (90%) than SPECT (80–84%) but far greater specificity in PET (89%) than SPECT (53–76%).[34, 38, 39] Table 5 summarizes the results of all published literature on the diagnostic accuracy of PET through 2007. Most of these studies used Rb-82 as a tracer and dipyridamole ± handgrip for stress. One included dipyridamole, adenosine, and dobutamine stress, and one used exercise stress with ammonia-N13 PET imaging.
\n\t\t\t\t | \n\t\t
Summary of Published Literature with Regard to Diagnostic Accuracy of PET[34]
*Study using PET/CT (in which CT was used for attenuation correction only).
PPV= positive predictive value; NPV= negative predictive value; NR= not reported. (Reprinted with permission of (28).)
Reproduced with permission. Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC. Clinical myocardial perfusion PET/CT. J Nucl Med2007;48:783–93.
Hsiao et al.[43] performed the first and so far only published study to evaluate the diagnostic accuracy of REG in PET MPI. In a relatively small cohort of 134 patients in 98 of whom angiographic data were also available, its accuracy was found to be similar to that of PET MPI using other vasodilators. Sensitivity for obstructive CAD was 92%, and overall specificity was 77% (53% in patients with high likelihood of CAD but no angiographic evidence of obstructive disease and 93% in low likelihood patients who did not go on to angiography [normalcy rate]). The area under the receiver–operator curve was 0.847, comparable to the high accuracy rates of PET in previous studies.
The high sensitivity of PET MPI for detection of obstructive CAD can be further increased by PET’s ability to quantify blood flow/flow reserve and to calculate LVEF reserve using peak-stress LVEF.
It has been shown that the prognostic value of REG is comparable to that of adenosine in patients with normal SPECT myocardial perfusion tests.[54] There are no published data on the prognostic value of REG in PET MPI, nor of REG MPI in patients with abnormal results using either PET or SPECT. Recent studies, however, offer insight as to the prognostic value of LVEF reserve in vasodilator stress PET.
Dorbala et al.[42] established that LVEF reserve (stress LVEF – rest LVEF) is independently predictive of the extent of at-risk myocardium on Rb-82 PET MPI and the extent of CAD on invasive angiography. Based on these results, LVEF reserve >5% essentially rules out severe 3-vessel or left main disease with a negative predictive value of 97%. In 985 patients with gated vasodilator stress Rb-82 PET MPI, nearly half of whom were at intermediate risk for CAD consistent with contemporary practice, the same group of investigators showed that during a mean follow-up period of 1.7 years, the frequency of cardiac events and all-cause death was higher in patients with LVEF reserve <0 than in those with LVEF which either remained the same or augmented with stress.[55] The prognostic value of LVEF reserve was found to be independent of, and incremental to, clinical variables and rest LVEF. These studies, however, included only patients who had received either dipyridamole or adenosine.
Hsiao’s was the first group to investigate LVEF reserve using REG PET MPI, albeit in a much smaller cohort of 115 patients. Here, LVEF reserve with REG was inversely related to the severity of reversible perfusion defect (summed difference score) as well as jeopardized myocardium on coronary angiography (Duke Jeopardy Score)[43] (Figures 5 and 6). This suggests that REG may be as useful as dipyridamole or adenosine in determining LVEF reserve; however, further studies are still needed to evaluate its prognostic value.
Regadenoson LVEF reserve as function of relative MPI results. Mod=moderate.[
Regadenoson LVEF reserve as function of Duke Jeopardy Score. LLK= low likelihood.[
The IDEALPET (Integrated Dual Exercise and Lexiscan PET) study is currently underway and will compare Lexiscan© alone with Lexiscan© plus exercise (“Lexercise”) with regards to safety, tolerability, myocardial perfusion image quality, and assessment of relative and absolute myocardial perfusion.[56]
As of February 2011 REG was being used in 68% of all pharmacologic stress MPI studies in the United States.[54] Given its already widespread use and favorable profile as a stress agent plus the advantages inherent in Rb-82 PET perfusion imaging (superior image quality, shorter scan time, lower radiation dose to patient, quantitation of myocardial blood flow, measurement of peak LVEF, additional prognostic information), REG PET MPI has the capacity to become the pharmacologic stress test of choice over the next several years.
Exercise-based testing has been convincingly shown to provide powerful prognostic data and remains the preferred mode of stress testing if patients are capable of exercising.[57, 58] However, about 25% of exercise-based testing may be non-diagnostic due to inability to achieve target heart rates. Two alternatives for these patients have been evaluated in the past: either rescheduling for pharmacologic stress or immediately attempting adjunctive vasodilator stress with agents such as adenosine and dipyridamole.[59, 60] The combination of simultaneous adjunctive low-level exercise with adenosine or dipyridamole helps both to lessen side effects and improve image quality.[61, 62] However, trying to add on adenosine or dipyridamole when exercise testing is submaximal poses major challenges as both are given as an infusion over a few minutes, need to be adjusted for weight or delivered via pump (as in the case of adenosine), and thus are not immediately feasible. In these instances, patients are usually rescheduled for a pharmacologic stress test when exercise testing is submaximal. With the advent of rapid-acting, weight-independent, single-bolus dosing of REG, its use as an adjunct to exercise seemed logistically feasible and potentially convenient. Its administration could result in quick conversion of an otherwise non-diagnostic nuclear exercise stress study due to submaximal heart rate to a diagnostic one. Early data support such a practice.
Thomas et al.[63] evaluated the safety of REG during exercise in a double blind study of 60 patients focusing on image quality, patient acceptance, and detection of perfusion defects. Patients undergoing a clinically indicated adenosine supine MPI were subsequently randomized in a 2:1 fashion to REG with low-level exercise (RegEx) or placebo with low-level exercise (PlcEx). This small study showed no significant differences in blood pressure response between the RegEx and PlcEx groups, although a smaller increase in heart rate was noted in the RegEx than in the PlcEx group. The image quality was better with REGEx compared to the adenosine supine MPI images. Patient tolerability was also reported to be better with RegEx compared to adenosine supine MPI. No significant adverse events, including high-grade AV block, were reported in the RegEx group.
In a subsequent study, Kwon et al.[27] published their retrospective experience with 1263 patients undergoing REG MPI with either adjunctive low-level treadmill exercise (
Our own experience comparing REG MPI (
No data exist showing improved detection of ischemia/prognosis by combining REG with exercise. A few randomized studies have assessed the safety and efficacy of REG when used as an adjunct to maximal exercise when target heart rate is not achieved. Ross et al.[64] randomized 200 patients undergoing exercise MPI to either adjunctive REG if target heart rate was not achieved at peak exercise or to the discontinuation of exercise with conversion to a standard supine REG stress test. They showed that both approaches were well tolerated without any adverse events. There were no differences in ischemia detection, image quality or referral to cardiac catheterization in either group. Another small randomized study (
The concept of reactive hyperemia is particularly useful in guiding percutaneous coronary intervention (PCI) when intermediate coronary lesions of unclear hemodynamic significance are present on invasive angiography.[67, 68] More recently, seminal studies have firmly established that FFR-guided decision making for coronary lesions of unclear significance is associated with a favorable outcome with PCI being deferred or performed based on FFR values.[69] Most catheterization labs use either intracoronary or intravenous adenosine for assessment of hyperemic response.[70, 71] However recent studies have now shown that REG may be a viable alternative to adenosine with its weight independent bolus and rapid achievement of hyperemia in 33–40 s, thus shortening the entire time needed for FFR assessment.[72, 73] In a study of 25 patients undergoing catheterization, Nair et al.[72] compared the ability of IV adenosine and IV REG to induce coronary hyperemia in assessment of coronary stenosis significance. They found excellent linear correlation for measurement of FFR between the two agents (
Average of FFR with Adenosine and FFR with Regadenoson[
In summary, the data accumulated on REG in FFR suggest that it could very well be the preferred agent in the catheterization lab given its ease of use and proven efficacy and comparability to adenosine.
The detection of CAD using stress echocardiography (SE) is based on the physiologic principle of stress-induced subendocardial ischemia causing wall motion abnormalities in the territory subtended by stenosis. Exercise and dobutamine (DSE) are the main methods of SE in North America,[76] whereas high-dose dipyridamole supplemented with atropine has been the mainstay pharmacologic stressor in Europe.[76, 77]
It is well known that wall motion can be completely normal with DSE despite mild to moderate stenosis and corresponding abnormalities in hyperemic blood flow.[78] Using a newer technique of myocardial contrast echocardiography (MCE), contrast imaging during induced hyperemia allows for the detection of milder degrees of coronary stenosis. Similar to nuclear perfusion imaging, MCE is able to pick up small perfusion abnormalities, which occur prior to ischemic changes in wall motion, in keeping with the “ischemic cascade.” Prior studies using adenosine, dobutamine, and exercise with MCE have shown that myocardial contrast perfusion enables detection of moderate stenosis when added to wall motion.[79–81]
Given its ease of use, there has been interest in using REG as a vasodilator to induce hyperemic stress during MCE. In a study of 100 patients undergoing quantitative coronary angiography, Porter et al.[82] performed real-time MCE with Definity 3% infusion at baseline and then at 2-min intervals for up to 6 min after a REG bolus. This study showed that MCE with REG can detect noncritical coronary stenosis (>50% diameter) with sensitivity, specificity, and accuracy of 80%, 74%, and 75%, respectively, which was better than wall motion analysis alone (60%, 70%, and 66%, respectively (
Our group recently reported on 44 patients undergoing diagnostic angiography based on prior abnormal stress testing who also underwent a novel protocol called REGAT (REG + atropine) SE to assess feasibility, safety, and diagnostic accuracy of CAD detection. The testing sequence began with administration of 2 × 1 mg boluses of atropine to induce chronotropy followed by a 400-μg bolus of REG, and then echo imaging at peak stress starting 20 s after the REG bolus. The protocol was found to be safe and well tolerated with no serious adverse effects. The mean duration of REGAT SE was 18 ± 7 min. Significant CAD (≥70% stenosis) by angiography was present in 51.1%. Sensitivity, specificity, and positive and negative predictive values for REGAT SE were 60.9%, 80.4%, 82.4%, and 67.9%, respectively. By coronary territories, the sensitivity, specificity, PPV, and NPV were as follows: left anterior descending artery, 58.8%, 92.9%, 83.3%, and 78.8%; left circumflex artery, 6.7%, 93.3%, 33.3%, and 67.7%; and right coronary artery, 16.7%, 93.9%, 50%, and 75.6%. Over 90% of subjects reported feeling comfortable, with 83% preferring REGAT as a future stress modality. We concluded that although the REGAT protocol was fast, safe, and well-tolerated with good specificity for CAD detection, its low sensitivity and NPV preclude it from routine use. Importantly, contrast was not utilized in our study as we were testing the feasibility of a combination of REG and atropine. Overall evidence indicates that REG in SE may be feasible and safe and, but larger studies are needed in this area as concern still exits that echocardiographic imaging may not detect ischemia induced by vasodilator stress.
It is now well established that CCTA performs with high diagnostic sensitivity and has excellent negative predictive value for the noninvasive evaluation of CAD[84, 85] However the specificity and positive predictive value have been shown to be less than desired with overestimation of stenosis severity in published studies[86, 87]. When compared to fractional flow reserve or SPECT even apparent high grade stenosis diagnosed on CCTA has not be consistently associated with ischemia[87]. This has raised some concerns that CCTA as a noninvasive modality for CAD may lead to higher false positives and downstream testing. CCTA stenosis detection requires additional physiologic information to correctly identify physiologic significant lesions. Until recently evidence for ischemia evaluation with CCTA has been very limited. The concept of combining stress perfusion with CT (CTP) has been tested and found to be accomplished in many single center studies mainly using adenosine or adenosine triphosphate. This has raised the possibility that a comprehensive anatomic and physiologically CAD assessment could be feasible by CCTA+CTP. [88-90]
Most recently a multicenter study sponsored by Astellas was completed and published evaluating the non-inferiority of REG CTP to REG SPECT. Patients (men > 45 years; women > 50 years) with known or suspected coronary artery disease (n=124) were randomized to 1 of 2 diagnostic sequences: rest/REG SPECT MPI on day 1, then REG/rest CTP on day 2, or REG/rest CTP on day 1 followed by rest/REG SPECT MPI on day 2. CCTA was also performed during the same acquisition as the CTP in both groups. Scanning platforms included 64-, 128-, 256-, and 320-slice systems. The primary analysis examined the agreement rate between CTP and SPECT for detecting or excluding reversible ischemia in 2 myocardial segments as assessed by independent blinded readers. Across the 110 patients included in the final analysis REG CTP was non-inferior to SPECT for detecting or excluding reversible ischemia with an agreement rate of 0.87 (95% confidence interval [CI], 0.77-0.97) and sensitivity and specificity of 0.90 (95% CI, 0.71-1.00) and 0.84 (95% CI, 0.77-0.91), respectively. The agreement rate for detecting or excluding fixed defects by REG CTP and SPECT was 0.86 (95% CI, 0.74e0.98). With SPECT as the reference standard, the diagnostic accuracies for detecting or excluding ischemia by REG CTP and CTA alone were 0.85 (95% CI, 0.78-0.91) and 0.69 (95% CI, 0.60-0.77), respectively. The authors concluded that REG CTP is non-inferior to SPECT. Thus, CT vasodilator stress perfusion imaging either with REG or adenosine appears to have a promising role in providing physiologic information to clarify anatomic stenosis. Further studies are awaited to establish this modality in clinical practice.
We have aimed to provide the reader in this chapter a detailed overview of REG and its current status in cardiac stress testing and other emerging cardiac applications. The role of REG remains to be better defined in cardiac MRI and CT.
We thank Stephanie Stebens MLIS AHIP, Sladen Library, Henry Ford Hospital, for her expert assistance in the preparation of this manuscript.
The demand for electricity increases new ways of electrical generation are required that is both cleaner and safer. In Malaysia, research has shown that about 3.8% of the population reside below the poverty line. Most of these people are located in rural areas in Malaysia. The electricity coverage in Peninsular Malaysia is at 99.62%, while Sabah and Sarawak’s electrical coverage is around 79%. The challenge is to build a grid system through jungles and mountain. To add to that, building a grid system through these types of the area will also not be economic. A way to solve the problem would be through the implementation of Renewable Energy (RE) in these villages. The main source of Malaysia’s energy supplies is from Natural Gas, Hydro, Oil, RE and Coal. Among these five Energy Sources (ES), coal supplies the most energy in terms of electricity production at 26,177 GWh. The types of RE which were researched are Solar, Wind and Hydropower. Not all of these energies are widely used in Malaysia. Some Renewable Energy Sources (RES) are ideal because of the terrain or weather in Malaysia, while others are under the research phase to determine the possibility of implementation in Malaysia. Malaysia has been amply endowed RESs such as Solar and Biomass Energy. However, these ESs have been greatly underutilized. A comparison of each REs was done to understanding the applicability of each of these resources in the Malaysian context. Being able to implement these ESs especially in areas not connected to the national grid would be beneficial to Malaysia to improve the living quality of Malaysians in rural areas.
Sun is the ultimate resource on earth as it is responsible for all the weather conditions and ESs on earth. Sun emits Solar Energy due to the nuclear fusion reactions in the sun’s core and subsequently produces a tremendous amount of energy. However, small portion of it is directed towards earth in the form of light and heat. Solar energy, which correlates to the sunlight’s photons has an abundant potential that can fill our global needs if it is harnessed in the right way.
Generally, there are two main ways to harness Solar Energy, which is using either photovoltaics or solar thermal collectors. Photovoltaic (PV) or commonly known as solar cells, comes in various shapes and are made from electricity producing materials such monocrystalline silicon, polycrystalline silicon and thin film solar cells. When sunlight gets in contact with the solar cells’ semiconductor material, they get absorbed and consequently, generate electricity [1]. This conversion is mainly due to the photovoltaic effect. When this effect occurs, the photons from the sun’s radiation knocks electrons loose, causing them to flow and thus generate electricity. The initial generated current is the direct current (DC). In order for, this can be stored in the battery and used for DC appliances. To make it useable for regular households, it is first converted to alternating current (AC) using an inverter. If the system is connected to the grid, then additional electricity is fed to the main supply. The other way of tapping the sun’s energy is by capturing the heat produced by the solar radiation. This form of harnessing is usually done in a large scale in such a fashion that power stations are built. These power stations are called Concentrated Solar Power (CSP) plants. The term concentrated comes from a large number of mirrors in the plant which are used to focus the sun’s rays on tubes containing molten fluid that can store heat well. The molten fluid then is used to convert water into steam. Subsequently, the steam produced rotates a turbine and thus, generate electricity [2].
In Malaysia, solar cells are commonly used to generate electricity. In 2018 alone, 467344.2 MWh of power was generated based on Malaysia’s Feed-in Tariff (FiT) system. Comparing this figure to the other RE, harnessing solar energy comes up on top. Although the nation is exposed to long hours of sunlight daily, the average maximum amount of energy produced per solar cell has an efficiency of 15–20 percent. This efficiency poses an issue whereby not many investors would invest in the technology. A way to overcome this situation in Malaysia is by constructing Large Scale Solar (LSS) power plants. This way, the amount of electricity generated can be maximized. The LSS power plants are not to be mistaken with CSP plants. The main difference between the two is that LSS captures light via solar cells and converting them into electricity whereas CSP captures heat which is transformed into mechanical energy that rotates a turbine and subsequently produces electricity. In Malaysia, CSPs are not developed yet. Having the minimal Direct Normal Irradiance (DNI) within the range of 1900 to 2000 kWh/m2/year, is the main requirement to start a CSP project. However, the DNI for Malaysia is below this threshold and it is due to the geographical position of the country which is not situated in high solar insolation zones [2].
On 20th March 2012, an 8 MW large scale solar PV plant, developed by Cypark Resources Berhad, was officially launched and operational. Figure 1 shows the aerial view of the solar power plant. This project is the first-ever completed LSS above 1 MW and operational under the Sustainable Energy Development Authority’s (SEDA) Feed-In-Tariff Mechanism (FiT) in Malaysia. The LSS has received two accolades by the Malaysia Book of Records as it is recognized as one of the largest grids connected solar parks in the nation. The land coverage by the LSS is approximately 41.73 acres and it is equipped with 31, 824 solar panels [3]. Being the first of its kind in the country, the RM150 million project has the ability to power over 17,000 households annually. In 21 years from its initiation, it is expected to generate up to RM500 million worth of electricity. This is equivalent to the power generated by 9, 300 tons of coal each year. For the environment, it is capable of reducing 14, 335 tons of carbon emissions and 664 tons of methane gas annually [3, 4].
Aerial view of three major Solar Energy Projects in Malaysia. (a) An aerial view of the 8 MW large scale solar photovoltaic plant [
As of November 2018, the nation’s largest LSS has started its operation. The project won in competitive bidding by Tenaga Nasional Berhard (TNB) and subsequently, the project started its development in July 2017. The 10 km of 132 kV power and fiber optic underground cables were connected to 230, 000 solar panels in this plant. This LSS is capable of producing 50 MW of electricity to the national grid. The total cost of this project is approximately RM339 million. The total land size used is up to 242.16 acres. Due to the success of TNB, this project serves as a booster and aspiration in further developing more RE projects in Malaysia. Consequently, by 2030, Energy, Science, Technology, Environment and Climate Change Ministry has set a goal to increase the country’s electricity usage powered by 20% based on Res [5] Also, TNB’s success in this project has led the company to secure RM144 million in developing a second large scale solar project for the country [5, 6] Figure 1 shows the aerial view of the LSS.
On 27 November 2018, one of Malaysia’s advance solar PV power plant has started its operation. This project began on 16 March 2017 when Sinar Kamiri Sdn Bhd signed a power purchase agreement with Tenaga Nasional Berhad to develop and operate a 49 MW large scale solar photovoltaic power plant which cost around RM270 million [6]. This LSS is situated in Sungai Siput Perak over a land size of 150 acres and is equipped with 170, 961 panels. In this land, the complex mountain topography has posed many challenges for the developers as this would often cause shadows, string mismatches as well as high temperature and humidity. However, the land offers a long duration of sunshine and high solar irradiance throughout the year. To overcome this topographical situation, the developers have integrated Huawei Fusion Solar Smart PV Solution into the grid [7]. This includes the smart PV string inverter SUN2000-42KTL to troubleshoot the string mismatch issues faced in Sungai Siput as well as a PLC technology which helps to deliver a simpler system with safer and more reliable data transmission. As a consequence of using these PV systems, this LSS has obtained 2% higher energy yields and a 50% increase in efficiency compared to other LSS of the same scale. Figure 1 illustrates the aerial view of the LSS.
In July 2017, RM250 million green socially responsible investment (SRI) sukuk has been issued to Tadau Energy Berhad to further develop the current state of RE usage in Malaysia. Also, this green SRI sukuk receives funds for the projects due to its international endorsement and potential tax benefits via deduction of issuing expenses against the taxable income of the issuer [8]. In other words, it helps companies to achieve their corporate social responsibilities. With this cash in hand, the company started to develop a 50 MW solar power plant in Kudat, Sabah which covers up to 189 acres. This LSS is equipped with 188, 512 solar panels. 2 MW out of 50 MW of the available power channels the local Kudat electricity grid while the remaining 48 MW is channeled into 132 kV transmission line which is distributed through Sabah [9].
Based on the information in Table 1, the selected 4 LSS projects can be arranged and compared between one another in terms of generation capacity, number of solar panels, generation capacity per solar panel, land area and project cost.
Location | Pajam, Negeri Sembilan | Mukim Tanjung 12, Selangor | Sungai Siput, Perak | Kudat, Sabah |
---|---|---|---|---|
Generation Capacity (MW) | 8 | 50 | 49 | 50 |
Number of Solar Panels | 31, 824 | 230, 000 | 170, 961 | 188, 512 |
Yield per Solar Panel (W/panel) | 251.38 | 217.39 | 286.61 | 265.23 |
Land Area (acres) | 41.73 | 242.16 | 150 | 189 |
Project Cost (RM in millions) | 150 | 339 | 270 | 250 |
Summary of information of the four selected LSS.
First, among the projects, the LSS which has the highest generation capacities are Mukim Tanjung 12, Sungai Siput and Kudat. Each of these LSS has a generation capacity of around 50 MW. Subsequently, this is followed by Pajam at 8 MW. The difference in the capacities is based on the purpose of the project. For example, the reason why Kudat’s generation capacity is high is that the power generated is used to supply the local villages as the remaining is supplied to the power grid, which is then distributed throughout Sabah [9]. A smaller LSS may not have the same purpose and the demand for electricity in the area may not be as high as areas with more population or activities. Alongside this reasoning, it corresponds as well with the total number of panels. Although Mukim Tanjung 12, Sungai Siput and Kudat have similar generation capacity and project motives, the number of panels used at each plant is different. As seen in the table, Mukim Tanjung 12 uses 230, 000 panels, Sungai Siput uses 170, 961 panels and Kudat uses 188, 512 panels. Coinciding with this information, it can be inferred that the panels which are used in each power plant have different efficiencies. For instance, although Sungai Siput uses fewer solar panels compared to Mukim Tanjung 12 nad Kudat, it is still having a similar power output as the other two. This is because the panels which the LSS has, uses Huawei’s Fusion Solar Smart PV Solution panels. These panels have the potential to increase energy yields, maximize the return of investments (ROI) and helps customers optimize initial investments. Also, DC combiners are not needed in these plants [7, 8]. The reasoning in the paragraph is also backed up by the amount of each that each panel can generate. From the table based on the third row, the highest yielding panel to lowest is Sungai Siput at 286.61 W/panel, Kudat at 265.23 W/panel, Pajam at 251.31 W/panel then Mukim Tanjung 12 at 217.39 W/panel. From here, the quality of the panels used in both Sungai Siput and Kudat are of higher efficiency. Next, the amount of land size used from highest to lowest is in an order of Mukim Tanjung 12 at242.16 acres, Kudat at189 acres, Sungai Siput at 150 acres and lastly Pajam at 41.73 acres. The land coverage is closely dependent on the required generation capacity as well as the yield per panel. If the required generation capacity is low, the land size will not cover over a large area as seen in Pajam. Also, if the yield per panel is high, the land size needed is small. The last aspect that can be compared is the project cost. This correlates with the land size, efficiency of the panels and ease of installation. Generally, it would cost more for a land of a bigger size. This goes the same for a higher quality panel. In terms of ease of installation, it depends on the safety factors that are given to each component in the power plant based on the land’s topography and weather. Some areas could be flat land while some are covered by hills. In Mukim Tanjung 12, since its land size is large, it accounts for the high cost of the project. Subsequently, Sungai Siput’s project cost is relatively high as well and this is due to the hilly area which the LSS is built on as well as the quality of the solar panels.
In Malaysia, the country’s first LSS was developed in 2012. However, it does a gradual impact on the awareness of people on using RESs. Ever since then, more and more LSS projects have been developed and the country has started to see this RE’s advantages. Consequently, in the current years, the country has new policies such as the Renewable Energy Transition Roadmap (RETR) 2035 which aims to further explore the possible strategies and action plans to reach the country’s renewable target of 20% in the national power mic by 2025. In Table 2, the new addition in the panels is around the same value for each year. This is due to the country’s reliance on coal and fuel which has also been one of the main sources of the country’s economy. As a result, transitioning to another form of ES requires confidence built up by the country. Nonetheless, this issue is slowly alleviated as the awareness of using more RESs has increased every year.
2015 | 2016 | 2017 | 2018 | |||||
---|---|---|---|---|---|---|---|---|
Country | Total solar PV Addition (MW) | Net Solar PV Capacity (MW) | Total solar PV Addition (MW) | Net Solar PV Capacity (MW) | Total solar PV Addition (MW) | Net Solar PV Capacity (MW) | Total solar PV Addition (MW) | Net Solar PV Capacity (MW) |
China | 15,150 | 43,530 | 34,540 | 78,070 | 53,000 | 131,000 | 44,018 | 175,018 |
US | 7,300 | 25,620 | 14,730 | 33,100 | 8,173 | 41,273 | 8,419 | 49,692 |
Japan | 11,000 | 34,410 | 8,600 | 42,750 | 7,000 | 49,000 | 6,500 | 55,500 |
Malaysia | 63 | 231 | 54 | 286 | 50 | 386 | 52 | 438 |
Among these four countries, in terms of annual production in 2018 (Figure 2), China has produced the most energy of a figure close to 80 GW. This is followed by Malaysia with an annual production of approximately 15 GW. Subsequently, Japan produced around 5 GW in that year and lastly, the USA has produced half of Japan’s [12].
Global PV cell production from 2015 to 2018 [
Based on the trends, the number of solar PV additions by each of the countries has plateaued in recent years due to hurdles faced within the country. Considering this, some other countries have been growing in this field including Malaysia. Ever since the first LSS was developed, the country has been developing more projects that is able to harness the sun’s energy. Due to the country’s accumulative efforts, Malaysia has the potential to become one of the leading countries in solar PV generation given that further research and development is given into this field.
Hydropower is the conversion of Kinetic Energy (KE) of water into electricity and is considered a RES due to the water cycle being constantly renewed by the sun. According to an article on the US Geological Survey website, a hydropower dam works by having the water in the reservoir flow into a pathway called the penstock when the sluice gate is opened. This penstock is directly connected to the turbine, which is spun by the force of the water moving from a location of higher pressure to one of lower pressure. The water itself then flows out to a river below, whereas the turning of the turbine causes the conversion of KE from the water force into mechanical energy for use by the generator, which is connected to it by way of shafts or gears. This turning of the turbine also causes the rotor within the generator to turn and consequently causes the electromagnets on its edge to move past the stators placed in a static position outside the rotor, allowing for the conversion of the mechanical energy from the turbine into Electrical Energy (EE). The electricity produced from this conversion process is then carried out to other locations and facilities by way of power to transmission lines connected directly to the generator.
International Hydropower Association states that the installed hydropower capacity is 6094 MW in 2016, with hydropower generating roughly 11% of the country’s electricity and less than 20% of the technically feasible generation potential utilized to date in their article from May 2017 [14]. The following comparison has been done by choosing the most five powerful Hydropower plants in Malaysia.
The Bakun Hydroelectric Plant is located on Batang Lui in the upper parts of the Rajang River, roughly 37 km upstream of the town of Belaga in Sarawak. The plant is powered by eight 300 MW turbines, allowing for an installed generation capacity of 2400 MW and has a power transmission system that directly connects to the existing power transmission network in Sarawak. The plant has been operational since 2011 and produces an average electricity generation of 1700 MW to 2110 MW depending on demands. The dam is considered to be the largest and tallest Concrete-Faced Rock-fill dam in South East Asia with a 205 m height and 750 m length, with the capability to contain 16.93 million m3 of water, allowing the reservoir a surface area of around 695km2 with a catchment area of 14750 km2 [13].
The Murum Hydroelectric Plant was completed back in 2016 and is located on the Murum River in the upper region of the Rajang River Basin, roughly 200 km from Bintulu. The plant is powered by four 236 MW turbines, which totals to an installed generation capacity of 944 MW [13, 14], with its average production being around 635 MW and would be delivered through the state power grid. The dam is 141 m high and 473 m long, with a reservoir area of 270km2 and a catchment area of 2750km2. The cost of the project totaled about RM 4.8 billion [15]. Besides that, Murum also has the world’s tallest stepped chute spillway that helps to reduce KE by aerating the water overflow, which also helps to preserve the riverine ecosystem and the Batu Tungun rock formation, which is considered sacred to the local Penan community [14].
The Pergau Hydroelectric Station is located on the Pergau Lake, around 100 km away from Kota Bharu, Kelantan. The plant is powered by four 150 MW turbines totaling 600 MW of installed generation capacity and was designed to operate at a daily load factor of 25%. The Kuala Yong dam, which the power station receives its water from, is 75 m high [15, 16], with a 54km2 upper catchment and lower plain area. Besides that, the station also has a
The Sultan Mahmud Power Station was completed in 1985 and located 55 km southwest of Kuala Terengganu on the Kenyir Lake. The plant is powered by four 100 MW turbines, totaling 400 MW of installed generation capacity, with continuous generation being 165 MW. The dam is 155 m high and 800 m long in crest, with a reservoir area of 369km2 and a catchment area of 1260km2. The water height is around 120 m at minimum capacity and can go up to 153 m when it’s at maximum, with a full supply level of 145 m [16, 17]. The lake itself can store 13.6 billion m2 of water, with its deepest point being 145 m. Besides that, it can also release any excess water flow in the reservoir directly downstream into the Terengganu River.
The Ulu Jelai Hydroelectric Power Plant was completed in 2016 and is located in the Cameron Highlands, Pahang on the Bertam River. The plant is powered by two 186 MW turbines which are placed in an underground plant [18], totaling to 372 MW of installed generation capacity for electricity. The Susu Dam, which is the dam that forms the Susu Reservoir of this hydropower plant, was built using almost 750,000m2 of concrete through the Roller-Compacted Concrete (RCC) method, a very modern way to build such a dam. Said dam is measured to be 88 m high and 460 m long in the crest, with a 0.1km2 catchment area. The total cost of the project was RM 4.2 billion and is expected to reduce 250,000 tons of carbon dioxide equivalent per year by substituting coal or fossil fuel-based generator stations during peak hours, according to a United Nations report [17, 18].
Based on the information gathered here, the five selected hydropower projects can be arranged and compared between each other within the categories of installed generation capacity, dam size, catchment area, reservoir area, and project cost (Table 3) [15, 18].
Hydropower Station | Max Power (MW) | Turbine Amount | Dam Dimensions (h x l) | Surface Area (km2) | Catchment Area (km2) | Project Cost ($ Billion) |
---|---|---|---|---|---|---|
Bakun | 2400 | 8 x 300 | 205 x 750 | 695 | 14750 | 7.3 |
Murum | 944 | 4 x 236 | 141 x 473 | 270 | 2750 | 4.8 |
Pergau | 600 | 4 x 150 | 75 x --- | 54 | — | 2.23 |
Sultan Mahmud | 400 | 4 x 100 | 155 x 800 | 369 | 1260 | — |
Ulu Jelai | 372 | 2 x 186 | 88 x 460 | — | 0.1 | 4.2 |
The data for each of the five selected hydroelectric power plants.
When it comes to total installed generation capacity, the Bakun has the highest of the five at 2400 MW, followed by Murum at 944 MW, Pergau/Sultan Ismail Petra at 600 MW, Sultan Mahmud at 400 MW and lastly Ulu Jelai at 372 MW. The reason behind the high output behind Bakun is not only it’s high number of turbines, but the capacity of 300 MW that each turbine is capable of, which in and off itself is close to rivaling the entire output of the Ulu Jelai station at 372 MW. This makes it the most powerful hydroelectric power plant in Malaysia and the largest power generation facility in Sarawak, as it also supports the Sarawak Corridor of Renewable Energy (SCORE) initiative required for the energy-intensive heavy industries such as the Samajaya Industry Park. In terms of the dam sizes, Bakun has the largest at 205 m high and 800 m long, followed by Sultan Mahmud at 155 m high and 800 m long, Murum at 141 m high and 473 m long, and lastly Ulu Jerai at 88 m high and 460 m long. The length of the Pergau/Sultan Ismail Petra was not given but can be assumed to be the smallest of the five as the height is only 75 m. As for catchment area, which is a land area where water can flow into the plant reservoir [15, 18], the largest is Bakun at 14750km2, followed by Murum at 2750km2, Sultan Mahmud at 1260km2, Pergau at 54km2 and lastly Ulu Jerai at 0.1km2. Ulu Jerai is the smallest of the bunch as it uses the Bertam River, whereas the rest have a larger area to work with as they are built on lakes and other large bodies of water. Out of the five stations, only Bakun, Murum and Sultan Mahmud have a listed reservoir size at 695km2, 270km2 and 369km2 respectively. Having a reservoir allows for the storage of water as conversion fuel for a later date [17], meaning that Bakun has the largest water reserve of them all and thus can use more water to generate more electricity in comparison. When it comes to cost, the most expensive project was Bakun at RM 7.3 billion, Murum at RM 4.8 billion, Ulu Jelai at RM 4.2 billion, and lastly Pergau at RM 2.23 billion, whereas the cost for production of the Sultan Mahmud plant was nowhere to be found but could be assumed to be between Pergau and Murum due to the size being between those two and that it was completed in 1985. The cost of Bakun being the highest is because it uses more turbines that are very powerful in order to produce more power than the rest of the ones on the list combined at peak usage, not to mention the size of the construction project itself.
To wrap this part up, the Bakun Hydroelectric Plant is the best hydroelectric plant available in Malaysia due to the amount of installed generation capacity for electricity that it can provide due to the massive size of the project itself, but such power comes at a great price tag. In comparison, a project such as the Sultan Ismail Power Station or Pergau Hydroelectric Station would be a more feasible one to create in a higher quantity for a developing country such as this due to the lower costs and less space requirement, while still capable of pumping out a respectable amount of electricity for the towns, villages and cities found in this country.
Malaysia’s annual hydropower energy production is rated at 4.5 Mtoe/year (Megaton of energy per year) [16] with an installed hydropower capacity of 6094 MW and a hydropower usage percentage of 11%. The largest dam or hydropower facility in Malaysia is the Bakun Dam at 2400 MW of installed generating capacity.
Country | Annual Energy (Mtoe/year) | Strongest dam & output (MW) | Installed hydropower capacity (MW) | Usage Percentage (%) |
---|---|---|---|---|
China | 96.9 | Three Gorges’ Dam (22,500) | 341,190 | 20 |
Brazil | 32.9 | Itaipu Dam (14,000) | 100,273 | 64 |
Canada | 32.3 | Robert-Bourassa Dam (5,616) | 79,323 | 62 |
Malaysia | 4.5 | Bakun Dam (2,400) | 6,094 | 11 |
Data for three of the world’s leading hydropower countries in comparison to Malaysia’s.
From the information gathered here, the leading hydropower nations were China, Brazil, and Canada, with 96.9 Mtoe/year, 32.9 Mtoe/year and 32.3 Mtoe/year (megaton of energy per year) respectively, whereas overall energy input from hydropower in Malaysia is totalled to be 4.5 Mtoe/year (kiloton of energy per year). In comparison to the 3 countries stated previously, Malaysia’s hydropower energy input is extremely tiny in comparison (Table 4). When it comes to the respective strongest dams in terms of output, China’s Three Gorges Dam is the highest at 22.5GW of installed generating capacity, followed by the joint Brazil/Paraguay Itaipu Dam at 14GW and lastly Canada’s Robert-Bourassa Dam at 5616 MW. Malaysia’s largest one, Bakun at 2400 MW, is respectable and considered the largest in South-East Asia [13, 17], but the output is nothing compared to these giants. It is generally more than enough for providing electricity to Sarawak itself and can support the local heavy industries found in the state. When it comes to percentages of hydropower usage for electricity in a country, Brazil has the largest at 64%, followed by Canada at 62%, China at 20%, and lastly Malaysia at 11%. Malaysia’s percentage of hydropower usage is lower compared to these other countries as Malaysia still relies heavily on coal for most of their power stations [15], which should be changed as soon as possible as it’s a non-RES and could dry up in the future. In terms of installed hydropower capacity, China is the largest at 341,190 MW, followed by Brazil at 100,273 MW, Canada at 79,323 MW and lastly Malaysia at 6094 MW. Considering how small Malaysia is compared to all the three countries above, it’s understandable that the installed hydropower capacity is far lower than them as Malaysia has much less space and water bodies to work with in comparison, while not to mention Malaysia’s economy not being as strong as them (Figure 3).
Hydropower Major projects in Malaysia. Aerial view of the (a) Bakun Hydropower, (b) Murum Hydropower, (c) Yong Hydropower and (d) Kenyir Hydropower.
Taking an example out of Canada or Brazil here would be a good idea as there are many rivers and water bodies that could be exploited for hydroelectricity generation, however building more mega-dams like Bakun could harm the rainforests and animal species that makeup country’s ecosystem, not to mention potentially displacing the natives and eating large sums of money that could be used for other equally beneficial projects. Therefore, a balanced method of implementing hydropower while maintaining the ecosystem should be explored, so that Malaysia could progress to the future with hydropower while still maintaining the well-being of Malaysia’s unique ecosystem.
Biomass is a type of fuel developed from organic materials. It is both sustainable and renewable in terms of generating EE. The organic materials are obtained from living and recently living things. These materials can include scraps of lumber, manure and forest debris. Biomass power is able to generate electricity which is carbon neutral through renewable organic waste [19]. This energy releases heat when burnt. These energies are utilized through burning them to produce steam to run turbines which in turn generates electricity.
Malaysia is a country filled with many conventional energy resources. These energy sources include oil and gas which are non-renewable and RESs like solar, hydro and biomass energy. For biomass, Malaysia has plenty of opportunities as far as exploiting biomass energy in Malaysia. Malaysia is filled with agricultural biomass and wood waste which can be exploited and used to replace non –RESs in use [19].
Malaysia’s exporting of 19.9 million tons of palm oil in 2017 makes this country a world leader as an exporter of palm oil. In 2011, the country was able to generate more than 80 million tons of oil palm biomass. 30% of the 379 palm oil mills here in Malaysia utilize palm oil mill effluent (POME) by turning it to biogas [19].
Another important agricultural biomass is rice husk. This resource has a very good potential for biomass cogeneration. Biomass cogeneration refers to “generating together”, this is a process where heat and EE is obtained at the same time from fuel. This type of biomass is implemented in technologies such as steam turbines, gas turbines and reciprocating engines. Currently, Malaysia has constructed its first rice husk power plant in the state of Kedah in Padang [19, 20].
For the generation of solid waste in Malaysia, the amount of mass-produced in a day range from 0.45–1.44 kg/day. This result is dependent on the economic status of the area within Malaysia. The organic waste in Malaysia contains a high amount of moisture with a bulk density of above 200 kg/m3. The bulk density is with respect to the population growth in Malaysia, the higher the number of populations in the area the larger the bulk density of the waste. These waste are generally disposed of as landfilling which makes them ideal for being used for biomass [20] (Figure 4).
Electricity generation by fuel and Power generation sources in Malaysia.
The plant has huge commercial potential from its biowaste in the palm oil industry. It does this through an integrated complex system in Kunak, Tawau situated in east Malaysia, Sabah. This plant has both biomass and biogas power plants as well as being equipped with a pulp and paper plant. The plant is considered friendly to the environment as it takes into consideration the protection and preservation of the environment. This plant is responsible for the generation of electricity through the disposal of waste from oil palms. This plant is under the ownership of the Kumpulan Sawit Kinabalu and has taken considerable precautions in order to create a sustainable wealth while ensuring the protection and preservation of the environment. The amount of energy production has dropped by nearly 85% since the opening of the power plant, and as a result, increasing the profit of the mills by RM1.14 million [21]. The power generation of the plant is 14 MW of completely RE from biomass cogeneration plant [21]. The plant is also the first biomass power plant connected to the main grid in Malaysia. The RE from the biomass power plant has formed an agreement with the Sabah Electricity Sdn Bhd to provide green electricity of up to 10 MW [20, 22]. TSH built up approximately 50,000 ha in a planted area across Sabah which are strategically located with associated companies. The company also has 65,000 ha worth of unplanted land bank for future development, this is to keep the company busy for many years to come. In addition to that, the company also has 3 mills in Sabah which has a 1.0 million tons of Fresh Fruit Bunches processing capacity per annum. The refining crude palm oil and kernel located at Kunak Jaya, Sabah has capacities of 2600 tons and 600 tons per day respectively [21, 22].
Both these power plants are in Sandakan, Sabah. Seguntor Bioenergy and Kina Biopower Power Plant are owned by HRE Seguntor Bioenergy Sdn. Bhd and HRE Kina Biopower Sdn. Bhd respectively [23]. These two power plants are implemented with a similar design. The power plants have a fuel consumption of 23.123 kg/h and a boiler capacity of 56 tons per hour at 420 degrees Celsius. Adding to that, a mechanical draught cooling tower, counterflow, water flow of around 2491 t/h. The coldwater temperature is measured at 32 degree Celsius and 42 degree Celsius for the hot water temperature. The generators are enclosed and has an in –built water – air-cooled system. A synchronous generator is also used in the system. Each power plant can provide a total of 11.5 MW of green energy from biomass energy [23, 24]. These efforts are made to ensure the provision of a stable power supply to consumers in the East Coast of Malaysia. The power plants are located strategically about 20–90 km to 15 palms oi mills. Furthermore, the power plants are located 10 km radii of SESB’s substation making it ideal for grid interconnection [20, 23]. About 654,000 tonnes per year of biomass will be generated from the Nilai Tani Resources Sdn. Bhd., Monsok Palm Oil Mill Sdn. Bhd, Prolific Yield Sdn. Bhd. and Tanjung Panjang Sdn. Bhd palm oil mills. The power plants are expected to cost around RM120 million each.
The Jana Landfill is owned by the Jana Landfill Sdn Bhd which runs a power plant and municipal storage waste sites. It is a subsidiary of TNB Energy Services. The power plant is located in Ayer Hitam Forest Reserve in Puchong, Selangor. The Jana Landfill obtains its fuel via the decomposition of natural municipal waste from the landfill site. The power plant generates a total of 2 MW of green energy using landfill gas as a fuel source [21, 24]. The power plant has two separate sections, Jana 1 and Jana 2. Each power plant can generate up to 1 MW of energy. To date with the arrival of Jana 3, the power plants is expected to generate a combined total of 6 MW which is beneficial to about 6000 homes in Malaysia.
The Recycle Energy power plant is the first power in the whole of Southeast Asia to initiate Refuse Derived Fuel (RDF). RDF is the product of separating noncombustible and combustible portion from municipal solid waste. This method can help increase the recycling levels in Malaysia as well as decrease the overall waste. To add to this, this method does not require additional cost from processing, baling, wrapping and transportation logistics making it less expensive than that of the landfilling [25]. RDF can be used as a renewable fuel for any coal – fired power plant. Recycle Energy power plant is located at Kampung Pasir in Semenyih, Selangor. The plant is located about 13 miles from the main capital. This facility is able to process a total of 1100 tons of solid waste a day. These wastes are then converted into RDF which is in fluff form. The RDF in fluff form is used as biofuel to enable the production of 8 MW of electrical energy a day [24, 25]. This electricity is used to power up the RDF plant and any remaining electricity is sold for usage in the national power grid. The RDF power plant is 28 – acre wide and is handled by the Malaysian government (Figure 5).
Major biomass projects in Malaysia.
When compared, the TSH Resources Berhad power plant located in Kunak, Tawau in Sabah has the highest power generation at 14 MW. The main reason for the success of the TSH Resources Berhad power plant is its immense area of coverage. Palm oil is able to be attained from the within the power plants location. Continues supplies of palm waste can be obtained and processed rapidly in the power plant. The Kumpulan Sawit Kinabalu also ensures the protection and preservation of the palm oil farms. The Seguntor and Kina power plants needs to transport its oil palm waste 20–90 km from the mills to the power plants thus having a lower efficiency rate compared to the TSH Resources power plant. Furthermore, the TSH Resources Berhad power plant uses a biomass cogeneration system enabling it to attain both electrical and heat energy from the biomass fuels (Table 5).
Power Plants | Power generation | Type of Turbine | Fuel | Cost | Area coverage |
---|---|---|---|---|---|
TSH Resources Berhad | 14 MW | Steam turbines | Empty fruit bunch | 5e+8 square meter (used land) and 6.5e+8 (unused land) | |
Seguntor Bioenergy Power Plant | 11.5 MW | Steam turbines | Empty fruit bunch | RM120 million | 400000 square meters |
Kina Biopower Power Plant | 11.5 MW | Steam turbines | Empty fruit bunch | RM120 million | 400000 square meters |
Jana Landfill | 2 MW (From Jana 1 & 2), 6 MW (with the future addition of Jana 3) | Gas turbines | Biogas | ||
Recycle Energy power plant | 8 MW | Steam turbines | Refuse-derived fuel | 113312 square meters |
Comparison between the biomass energy of different power plants in Malaysia.
In terms of the turbines used, steam engine has a better power-to-weight ratio making them ideal for reciprocating engines. For a small size is able to generate a high amounts of power output and does not produce a lot of vibration compared to other reciprocating counterparts. The steam turbine has a higher operating efficiency and reliability compared to that of the gas turbines. Jana Landfill is the only power plant in Malaysia using gas turbines and from power generation it is the lowest compared to all the other power plants which are using steam turbines. A main issue is that, having variation in its fuel specs can lead to an enormous drop in the efficiency of the turbine. In addition to that, external power is required to ensure turbine can carry out a self-sustained operation [23, 26]. In terms of the most eco-friendly fuel source would be the source used by the Recycle Energy power plant. This power plant uses a refuse-derived fuel source making it ideal to not only for making biofuels to power up turbines inside the power plant, but also recycling resources which are not combustibles.
From the comparison table, it can be seen that in terms of practicality and usage in the whole Malaysia the TSH Resources Berhad power plant is the most ideal. It is able to generate the highest amounts of the greenest EE at 14 MW which is why it is connected to the main grid in East Malaysia.
Unlike the other countries, Malaysia is highly reliant on the usage of palm oil and coconut husk as biomass sources. Malaysia is still unable to completely utilize all resources which can lead to the production of biomass. If Malaysia can utilize converting municipal waste as a source for biomass, there is no reason to why Malaysia cannot increase their power generation from biomass. In addition to that, if Malaysia is able to produce more biomass power plants situated around palm oil fields like the TSH Resources Berhad power plant, the amount of power generated from biomass is bound to increase within the country (Table 6).
Country | Power generation from biofuels (GWh) | Source of waste | ||
---|---|---|---|---|
2014 | 2015 | 2016 | ||
America | 62357 | 61640 | 60493 | Wood waste, agricultural crop, animal manure, plants and recycled waste |
China | 44400 | 52700 | 64700 | Agricultural, forestry waste and domestic livestock (manure). |
India | 293926 | 24997 | 41972 | Agricultural wastes. |
Malaysia | 701 | 751 | 760 | Palm oil biomass, rice husk and municipal solid waste. |
Comparison between the amounts of electricity generation from biomass between countries.
Malaysia is still relatively new in terms of the power generation using biomass sources. From the year 2014–2016 there is a gradual increase in the power generation using biofuels in Malaysia. Thus. the potential is bright for the usage of biomass as a RESs in Malaysia.
Tides are created from the gravitational pull from the Earth and the moon, creating coastal tidal waters at a different time at the day. This movement of water has an enormous amount of potential energy. This energy is predictable and renewable with low operating cost. Although tidal energy is recognized as one of the promising technologies, the technology currently doesn’t exist in Malaysia. There are three main types of tides phenomenon which are diurnal, semidiurnal and mixed tides [27]. Diurnal tides have one high tide every day. Semidiurnal tides have two high tides every day. Mixed tides are the combination of the characteristics of diurnal and semidiurnal tides. Tidal energy can be harnessed through different methods. A tidal barrage makes use of the tides. A barrage looks like a dam, but it’s lesser height and very much bigger [28]. The other method would be the tidal stream. It works just like wind turbines, but it’s placed underwater using the movement of water created by tides [27, 28]. A tidal lagoon is another method similar to the tidal barrage, but the dam is replaced by a 360-degree enclosure, creating a pool. Water will enter and exit the lagoon due to different water tides.
To determine the feasibility of tidal energy in Malaysia, it is required to understand the available tides in Malaysia. In Malaysia, there is no diurnal tides. The North and West of Peninsula have majority of semidiurnal tides while the area of South and East have majority of mixed tides with dominant semidiurnal. The rest of the area of Malaysia has mixed tides with dominant diurnal (Figure 6).
Types of tides available in Malaysia [
The tides differ at a different location and different times of the year. The height of water level between tides also influences the potential energy that could be harnessed. As shown in the below figure, the most potential location to harness tidal energy would be Selangor with height range between 0.4 meters to 5.3 meters when compared to other locations [28, 29].
The tidal energy will always be influenced by the gravity of the moon and the sun. However, it has more advantages than wind and solar energy as it has a more predictable nature with high environmental benefits. Different locations in Malaysia have different tides and it must be considered before installing a tidal power plant. Based on the analysis being done, Selangor has the highest potential to harness tidal energy compared to other locations in Malaysia (Figure 7).
Semidiurnal and Dominant semidiurnal Tides.
Geothermal energy is created by the gravitational energy of the Earth and the unstable radioactive decay of atoms [29]. Geothermal energy is mainly used to generate electricity and to provide heating. Although geothermal energy technologies have been around for over 40 years, they are still undergoing research and development. This is due to the complexity and high investments before executing geothermal projects as it includes underground exploration and requires multidisciplinary expertise [30] (Figure 8).
How geothermal energy works.
Malaysia does not have technology that harnesses geothermal energy. However, there are several potential locations in Malaysia.
According to a study by the Deputy Natural Resources and Environment of Malaysia back in 2010, Tawau has the potential to generate up to 67 MW of electricity per day, meeting the demands of Tawau [1, 31]. The water temperatures below the selected area are near to 235 degrees which is more than enough to heat and at the same time generate electricity. This geothermal project was initiated in Tawau, Sabah, Malaysia back in 2015. However, the project site has not shown any progress and had seemed to stop operations in the third quarter of 2016. Therefore, the project’s approval is being cancelled and is now currently abandoned [29, 31] (Figure 9).
Tawau geothermal project being abandoned.
The feasibility of geothermal energy in Malaysia is inclusive of geothermal exploration and resource assessment, which requires a very high cost. The country’s first geothermal power plant project failed due to the lack of preparation and great deal of discipline in executing the project. Based on the history of geothermal development, the geothermal project can easily go wrong if not all aspects are addressed adequately.
Malaysia is a developing country and being able to harness RE would be a great attribute to improve the country. The existing RE in Malaysia includes Solar energy, Hydropower energy, and Biomass energy. Other potential REs in Malaysia could be harvested such as Tidal energy. Solar cells are commonly used to harness solar energy. The technology can be further investigated and improved to increase the efficiency of electricity generation. Hydropower in Malaysia is generating 11% of the country’s electricity as Malaysia has many rivers and water bodies that could be exploited. A balanced method of implementing hydropower can be done to always ensure the ecosystem of Malaysia is not disturbed. Malaysia is still relatively new in using Biomass energy. However, the gradual increase of power generation using biofuels has increased the potential of biomass energy in Malaysia as a renewable energy source. Tidal energy has the potential to be harnessed in Malaysia as there are locations such as Selangor and Johor having tides that could generate a decent amount of electricity. Geothermal energy also has the potential in Malaysia as there are multiple hot springs. Sabah has the potential to harness geothermal energy as it originates within young volcanic area. However, more research and investment would be needed to harness geothermal energy in Malaysia. It is quite convincing that Malaysia could harness more RE as the sustainability of energy consumption is crucial in this era.
As a company committed to the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).
',metaTitle:"OAI-PMH",metaDescription:"As a firm believer in the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).",metaKeywords:null,canonicalURL:"/page/oai-pmh",contentRaw:'[{"type":"htmlEditorComponent","content":"The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\\n\\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\\n\\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\\n\\nREQUESTS
\\n\\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\\n\\nDATABASES
\\n\\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\\n\\nBASE - Bielefeld Academic Search Engine
\\n\\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\\n\\n\\n\\nA search engine for online catalogues of publications from all over the world.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\n\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\n\nAs a Registered Data Provider, metadata for published Books and Chapters are available via our interface at the base URL: http://mts.intechopen.com/oai/index.php
\n\nREQUESTS
\n\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at ai@intechopen.com.
\n\nDATABASES
\n\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\n\nBASE - Bielefeld Academic Search Engine
\n\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\n\n\n\nA search engine for online catalogues of publications from all over the world.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,11,14,15,17,20,22,24"},books:[{type:"book",id:"11555",title:"Ubiquitous and Pervasive Computing - New Trends and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"42b6f15e5d9044c3abd00c231efec806",slug:null,bookSignature:"Prof. Rodrigo da Rosa Righi",coverURL:"https://cdn.intechopen.com/books/images_new/11555.jpg",editedByType:null,editors:[{id:"69889",title:"Prof.",name:"Rodrigo",surname:"da Rosa Righi",slug:"rodrigo-da-rosa-righi",fullName:"Rodrigo da Rosa Righi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11551",title:"Blockchain",subtitle:null,isOpenForSubmission:!0,hash:"26f3d47bfbfd96e25e5b46001876cc48",slug:null,bookSignature:"Prof. Vardan Mkrttchian",coverURL:"https://cdn.intechopen.com/books/images_new/11551.jpg",editedByType:null,editors:[{id:"333134",title:"Prof.",name:"Vardan",surname:"Mkrttchian",slug:"vardan-mkrttchian",fullName:"Vardan Mkrttchian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11458",title:"Human-Robot Interaction - Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"2003e3388833e911f610e0cd9788a5e7",slug:null,bookSignature:"Dr. Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/11458.jpg",editedByType:null,editors:[{id:"196746",title:"Dr.",name:"Ramana",surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11506",title:"Antenna Arrays",subtitle:null,isOpenForSubmission:!0,hash:"1b378e33d6f6e73721ee0dacbbb89aa1",slug:null,bookSignature:"Prof. Hussain Al-Rizzo, Dr. Nijas Kunju and Dr. Aldebaro Klautau",coverURL:"https://cdn.intechopen.com/books/images_new/11506.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11470",title:"Graphene - Recent Advances, Future Perspective and Applied Applications",subtitle:null,isOpenForSubmission:!0,hash:"409e022e3baf48795e816576a6ee66e3",slug:null,bookSignature:"Dr. Mujtaba Ikram, Dr. Asghari Maqsood and Dr. Aneeqa Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/11470.jpg",editedByType:null,editors:[{id:"286820",title:"Dr.",name:"Mujtaba",surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11445",title:"Multi-Agent Technologies and Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"d980826615baa6e33456e2a79064c5e8",slug:null,bookSignature:"Prof. Igor Sheremet",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",editedByType:null,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11519",title:"Vibration Monitoring and Analysis - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"f0d2d82a5c1a49020abf39dc8aabd89d",slug:null,bookSignature:"Dr.Ing. Louay Yousuf",coverURL:"https://cdn.intechopen.com/books/images_new/11519.jpg",editedByType:null,editors:[{id:"322417",title:"Dr.Ing.",name:"Louay",surname:"Yousuf",slug:"louay-yousuf",fullName:"Louay Yousuf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11525",title:"Wood Industry - Past, Present and Future Outlook",subtitle:null,isOpenForSubmission:!0,hash:"ccb74142053c89e0e572ac1c5d717a11",slug:null,bookSignature:"Prof. Guanben Du and Dr. Xiaojian Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/11525.jpg",editedByType:null,editors:[{id:"291315",title:"Prof.",name:"Guanben",surname:"Du",slug:"guanben-du",fullName:"Guanben Du"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11468",title:"High Entropy Alloys - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3b4ef3ce01f8f9b113dc28ac847b8c0d",slug:null,bookSignature:"Prof. Yong A Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg",editedByType:null,editors:[{id:"203937",title:"Prof.",name:"Yong",surname:"Zhang",slug:"yong-zhang",fullName:"Yong Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11484",title:"Thin Film Deposition - Fundamentals, Processes, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9c10a55203c2f0f7d47c743e6cfa2492",slug:null,bookSignature:"Dr. Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11484.jpg",editedByType:null,editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11121",title:"Crystal Growth - Technologies and Applications",subtitle:null,isOpenForSubmission:!0,hash:"81f076fab2acb567946aeaa4b7281fc1",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/11121.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:166},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"693",title:"Environmental Biotechnology",slug:"environmental-biotechnology",parent:{id:"112",title:"Biomedical Engineering",slug:"engineering-biomedical-engineering"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:139,numberOfWosCitations:433,numberOfCrossrefCitations:165,numberOfDimensionsCitations:520,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"693",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3484",title:"State of the Art in Biosensors",subtitle:"Environmental and Medical Applications",isOpenForSubmission:!1,hash:"b84ae4104612ff69dc3061cf297137f7",slug:"state-of-the-art-in-biosensors-environmental-and-medical-applications",bookSignature:"Toonika Rinken",coverURL:"https://cdn.intechopen.com/books/images_new/3484.jpg",editedByType:"Edited by",editors:[{id:"24687",title:"Dr.",name:"Toonika",middleName:null,surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"248",title:"Progress in Molecular and Environmental Bioengineering",subtitle:"From Analysis and Modeling to Technology Applications",isOpenForSubmission:!1,hash:"941ccb30ccac8ca99435a0e10463278d",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",bookSignature:"Angelo Carpi",coverURL:"https://cdn.intechopen.com/books/images_new/248.jpg",editedByType:"Edited by",editors:[{id:"58620",title:"Prof.",name:"Angelo",middleName:null,surname:"Carpi",slug:"angelo-carpi",fullName:"Angelo Carpi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"17237",doi:"10.5772/24553",title:"Hydrogels: Methods of Preparation, Characterisation and Applications",slug:"hydrogels-methods-of-preparation-characterisation-and-applications",totalDownloads:65738,totalCrossrefCites:86,totalDimensionsCites:276,abstract:null,book:{id:"248",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips",authors:[{id:"58120",title:"Prof.",name:"Saphwan",middleName:null,surname:"Al-Assaf",slug:"saphwan-al-assaf",fullName:"Saphwan Al-Assaf"}]},{id:"17260",doi:"10.5772/19546",title:"Engineering Bacteria for Bioremediation",slug:"engineering-bacteria-for-bioremediation",totalDownloads:17468,totalCrossrefCites:8,totalDimensionsCites:56,abstract:null,book:{id:"248",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Elen Aquino Perpetuo, Cleide Barbieri Souza and Claudio Augusto Oller Nascimento",authors:[{id:"35301",title:"Dr.",name:"Elen",middleName:null,surname:"Perpetuo",slug:"elen-perpetuo",fullName:"Elen Perpetuo"},{id:"50350",title:"Prof.",name:"Claudio",middleName:null,surname:"Oller Do Nascimento",slug:"claudio-oller-do-nascimento",fullName:"Claudio Oller Do Nascimento"},{id:"87386",title:"Dr.",name:"Cleide",middleName:null,surname:"Barbieri De Souza",slug:"cleide-barbieri-de-souza",fullName:"Cleide Barbieri De Souza"}]},{id:"17238",doi:"10.5772/22114",title:"Chemical Mediated Synthesis of Silver Nanoparticles and its Potential Antibacterial Application",slug:"chemical-mediated-synthesis-of-silver-nanoparticles-and-its-potential-antibacterial-application",totalDownloads:6797,totalCrossrefCites:11,totalDimensionsCites:24,abstract:null,book:{id:"248",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"P.Prema",authors:[{id:"46312",title:"Prof.",name:"Paulpandian",middleName:null,surname:"Prema",slug:"paulpandian-prema",fullName:"Paulpandian Prema"}]},{id:"43558",doi:"10.5772/55617",title:"Biosensors for Contaminants Monitoring in Food and Environment for Human and Environmental Health",slug:"biosensors-for-contaminants-monitoring-in-food-and-environment-for-human-and-environmental-health",totalDownloads:3313,totalCrossrefCites:8,totalDimensionsCites:19,abstract:null,book:{id:"3484",slug:"state-of-the-art-in-biosensors-environmental-and-medical-applications",title:"State of the Art in Biosensors",fullTitle:"State of the Art in Biosensors - Environmental and Medical Applications"},signatures:"Lívia Maria da Costa Silva, Vânia Paula Salviano dos Santos, Andrea Medeiros Salgado and Karen Signori Pereira",authors:[{id:"37632",title:"Dr.",name:"Andrea",middleName:null,surname:"Medeiros Salgado",slug:"andrea-medeiros-salgado",fullName:"Andrea Medeiros Salgado"},{id:"360817",title:"Dr.",name:"Lívia Maria da Costa",middleName:null,surname:"Silva",slug:"livia-maria-da-costa-silva",fullName:"Lívia Maria da Costa Silva"},{id:"360818",title:"Dr.",name:"Vânia Paula Salviano",middleName:null,surname:"dos Santos",slug:"vania-paula-salviano-dos-santos",fullName:"Vânia Paula Salviano dos Santos"},{id:"360819",title:"Dr.",name:"Karen Signori",middleName:null,surname:"Pereira",slug:"karen-signori-pereira",fullName:"Karen Signori Pereira"}]},{id:"17254",doi:"10.5772/19046",title:"Microalgal Biotechnology and Bioenergy in Dunaliella",slug:"microalgal-biotechnology-and-bioenergy-in-dunaliella",totalDownloads:8776,totalCrossrefCites:4,totalDimensionsCites:17,abstract:null,book:{id:"248",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Mansour Shariati and Mohammad Reza Hadi",authors:[{id:"33389",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Hadi",slug:"mohammad-reza-hadi",fullName:"Mohammad Reza Hadi"},{id:"33405",title:"Dr.",name:"Mansour",middleName:null,surname:"Shariati",slug:"mansour-shariati",fullName:"Mansour Shariati"}]}],mostDownloadedChaptersLast30Days:[{id:"17237",title:"Hydrogels: Methods of Preparation, Characterisation and Applications",slug:"hydrogels-methods-of-preparation-characterisation-and-applications",totalDownloads:65748,totalCrossrefCites:86,totalDimensionsCites:276,abstract:null,book:{id:"248",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Syed K. H. Gulrez, Saphwan Al-Assaf and Glyn O Phillips",authors:[{id:"58120",title:"Prof.",name:"Saphwan",middleName:null,surname:"Al-Assaf",slug:"saphwan-al-assaf",fullName:"Saphwan Al-Assaf"}]},{id:"17260",title:"Engineering Bacteria for Bioremediation",slug:"engineering-bacteria-for-bioremediation",totalDownloads:17480,totalCrossrefCites:8,totalDimensionsCites:56,abstract:null,book:{id:"248",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Elen Aquino Perpetuo, Cleide Barbieri Souza and Claudio Augusto Oller Nascimento",authors:[{id:"35301",title:"Dr.",name:"Elen",middleName:null,surname:"Perpetuo",slug:"elen-perpetuo",fullName:"Elen Perpetuo"},{id:"50350",title:"Prof.",name:"Claudio",middleName:null,surname:"Oller Do Nascimento",slug:"claudio-oller-do-nascimento",fullName:"Claudio Oller Do Nascimento"},{id:"87386",title:"Dr.",name:"Cleide",middleName:null,surname:"Barbieri De Souza",slug:"cleide-barbieri-de-souza",fullName:"Cleide Barbieri De Souza"}]},{id:"17238",title:"Chemical Mediated Synthesis of Silver Nanoparticles and its Potential Antibacterial Application",slug:"chemical-mediated-synthesis-of-silver-nanoparticles-and-its-potential-antibacterial-application",totalDownloads:6805,totalCrossrefCites:11,totalDimensionsCites:24,abstract:null,book:{id:"248",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"P.Prema",authors:[{id:"46312",title:"Prof.",name:"Paulpandian",middleName:null,surname:"Prema",slug:"paulpandian-prema",fullName:"Paulpandian Prema"}]},{id:"17244",title:"Platelet Rich Plasma in Reconstructive Periodontal Therapy",slug:"platelet-rich-plasma-in-reconstructive-periodontal-therapy",totalDownloads:6854,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"248",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Selcuk Yılmaz, Gokser Cakar and Sebnem Dirikan Ipci",authors:[{id:"50002",title:"Prof.",name:"Selcuk",middleName:null,surname:"Yilmaz",slug:"selcuk-yilmaz",fullName:"Selcuk Yilmaz"},{id:"50027",title:"Dr.",name:"Gokser",middleName:null,surname:"Cakar Gurluman",slug:"gokser-cakar-gurluman",fullName:"Gokser Cakar Gurluman"},{id:"50028",title:"Dr.",name:"Sebnem",middleName:null,surname:"Dirikan Ipci",slug:"sebnem-dirikan-ipci",fullName:"Sebnem Dirikan Ipci"}]},{id:"17256",title:"Morphology Control of Ordered Mesoporous Carbon Using Organic-Templating Approach",slug:"morphology-control-of-ordered-mesoporous-carbon-using-organic-templating-approach",totalDownloads:4525,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"248",slug:"progress-in-molecular-and-environmental-bioengineering-from-analysis-and-modeling-to-technology-applications",title:"Progress in Molecular and Environmental Bioengineering",fullTitle:"Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications"},signatures:"Shunsuke Tanaka and Norikazu Nishiyama",authors:[{id:"31174",title:"Dr",name:"Shunsuke",middleName:null,surname:"Tanaka",slug:"shunsuke-tanaka",fullName:"Shunsuke Tanaka"},{id:"77598",title:"Prof.",name:"Norikazu",middleName:null,surname:"Nishiyama",slug:"norikazu-nishiyama",fullName:"Norikazu Nishiyama"}]}],onlineFirstChaptersFilter:{topicId:"693",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"26",type:"subseries",title:"Machine Learning and Data Mining",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:175,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/20444",hash:"",query:{},params:{id:"20444"},fullPath:"/profiles/20444",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()