The budding yeast Saccharomyces cerevisiae is a useful eukaryote model organism for application to chemical biology studies, for example, drug screening, drug evaluation, and target identification. To use yeast for chemical biology research, however, it has been necessary to construct yeast strains suitable for various compounds because of their high drug resistance. Hence, the deletion of all multidrug resistance genes except for those that are important for viability and for genetic experiments/manipulation could increase the drug sensitivity without influencing the transformation, mating, or sporulation efficiency. There are two major factors conferring multidrug resistance in S. cerevisiae: one is the drug efflux system and the other is the permeability barrier. We therefore constructed a strain which shows high sensitivity to multiple drugs by disrupting the drug efflux system using ATP-binding cassette transporters and suppressing the membrane barrier system by introducing an ERG6-inducible system. In this review, we discuss the construction of our multidrug-sensitive yeast strains and their application in chemical biology.
Part of the book: The Yeast Role in Medical Applications