Laser characteristics of Nd:YAG ceramics [50].
\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"}]},book:{item:{type:"book",id:"6897",leadTitle:null,fullTitle:"Biophysical Chemistry - Advance Applications",title:"Biophysical Chemistry",subtitle:"Advance Applications",reviewType:"peer-reviewed",abstract:"Biophysical chemistry is one of the most interesting interdisciplinary research fields. Some of its different subjects have been intensively studied for decades. Now the field attracts not only scientists from chemistry, physics, and biology backgrounds but also those from medicine, pharmacy, and other sciences. We aimed to start this version of the book Biophysical Chemistry from advanced principles, as we include some of the most advanced subject matter, such as advanced topics in catalysis applications (first section) and therapeutic applications (second section). This led us to limit our selection to only chapters with high standards, therefore there are only six chapters, divided into two sections. We have assumed that the interested readers are familiar with the fundamentals of some advanced topics in mathematics such as integration, differentiation, and calculus and have some knowledge of organic and physical chemistry, biology, and pharmacy. We hope that the book will be valuable to graduate and postdoctoral students with the requisite background, and by some advanced researchers active in chemistry, biology, biochemistry, medicine, pharmacy, and other sciences.",isbn:"978-1-78984-048-3",printIsbn:"978-1-78984-047-6",pdfIsbn:"978-1-83880-138-0",doi:"10.5772/intechopen.73426",price:119,priceEur:129,priceUsd:155,slug:"biophysical-chemistry-advance-applications",numberOfPages:110,isOpenForSubmission:!1,isInWos:1,hash:"0ad18ab382e2ffb9ff202d15282297eb",bookSignature:"Mohammed A. A. Khalid",publishedDate:"February 19th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",numberOfDownloads:3046,numberOfWosCitations:4,numberOfCrossrefCitations:2,numberOfDimensionsCitations:9,hasAltmetrics:0,numberOfTotalCitations:15,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 11th 2018",dateEndSecondStepPublish:"November 8th 2018",dateEndThirdStepPublish:"January 7th 2019",dateEndFourthStepPublish:"March 28th 2019",dateEndFifthStepPublish:"May 27th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.",institutionString:"Taif University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"380",title:"Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology-biochemistry-molecular-biology"}],chapters:[{id:"70561",title:"Introductory Chapter: The Diversity of Biophysical Chemistry Techniques",doi:"10.5772/intechopen.90542",slug:"introductory-chapter-the-diversity-of-biophysical-chemistry-techniques",totalDownloads:327,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mohammed Awad Ali Khalid",downloadPdfUrl:"/chapter/pdf-download/70561",previewPdfUrl:"/chapter/pdf-preview/70561",authors:[{id:"137240",title:"Prof.",name:"Mohammed",surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid"}],corrections:null},{id:"68716",title:"Application of Riboflavin Photochemical Properties in Hydrogel Synthesis",doi:"10.5772/intechopen.88855",slug:"application-of-riboflavin-photochemical-properties-in-hydrogel-synthesis",totalDownloads:427,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Gabriela Ionita and Iulia Matei",downloadPdfUrl:"/chapter/pdf-download/68716",previewPdfUrl:"/chapter/pdf-preview/68716",authors:[{id:"100714",title:"Dr.",name:"Iulia",surname:"Matei",slug:"iulia-matei",fullName:"Iulia Matei"},{id:"185412",title:"Dr.",name:"Gabriela",surname:"Ionita",slug:"gabriela-ionita",fullName:"Gabriela Ionita"}],corrections:null},{id:"66503",title:"Biocatalysis and Strategies for Enzyme Improvement",doi:"10.5772/intechopen.85018",slug:"biocatalysis-and-strategies-for-enzyme-improvement",totalDownloads:922,totalCrossrefCites:2,totalDimensionsCites:5,signatures:"Yauheniya Osbon and Manish Kumar",downloadPdfUrl:"/chapter/pdf-download/66503",previewPdfUrl:"/chapter/pdf-preview/66503",authors:[{id:"290106",title:"Dr.",name:"Manish",surname:"Kumar",slug:"manish-kumar",fullName:"Manish Kumar"},{id:"292602",title:"Ms.",name:"Yauheniya",surname:"Osbon",slug:"yauheniya-osbon",fullName:"Yauheniya Osbon"}],corrections:null},{id:"66666",title:"Study of the Influence of Humic Acid Macromolecules on the Structure of Erythrocytes of Some Animals by the Method of Absorption",doi:"10.5772/intechopen.85321",slug:"study-of-the-influence-of-humic-acid-macromolecules-on-the-structure-of-erythrocytes-of-some-animals",totalDownloads:353,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nikolay L. Lavrik and Тatiana N. Ilyitcheva",downloadPdfUrl:"/chapter/pdf-download/66666",previewPdfUrl:"/chapter/pdf-preview/66666",authors:[{id:"284748",title:"Prof.",name:"Nikolay",surname:"Lavrik",slug:"nikolay-lavrik",fullName:"Nikolay Lavrik"}],corrections:null},{id:"64113",title:"Molecular Target Therapy against Neuroblastoma",doi:"10.5772/intechopen.81706",slug:"molecular-target-therapy-against-neuroblastoma",totalDownloads:418,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hidemi Toyoda, Dong-Qing Xu, Lei Qi and Masahiro Hirayama",downloadPdfUrl:"/chapter/pdf-download/64113",previewPdfUrl:"/chapter/pdf-preview/64113",authors:[{id:"80047",title:"Dr.",name:"Hidemi",surname:"Toyoda",slug:"hidemi-toyoda",fullName:"Hidemi Toyoda"},{id:"111097",title:"Dr.",name:"Masahiro",surname:"Hirayama",slug:"masahiro-hirayama",fullName:"Masahiro Hirayama"},{id:"203998",title:"Dr.",name:"Lei",surname:"Qi",slug:"lei-qi",fullName:"Lei Qi"},{id:"267523",title:"Dr.",name:"Dong Qing",surname:"Xu",slug:"dong-qing-xu",fullName:"Dong Qing Xu"}],corrections:null},{id:"70000",title:"Anticancer Drugs’ Deoxyribonucleic Acid (DNA) Interactions",doi:"10.5772/intechopen.85794",slug:"anticancer-drugs-deoxyribonucleic-acid-dna-interactions",totalDownloads:599,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Saad Hmoud Alotaibi and Awad Abdalla Momen",downloadPdfUrl:"/chapter/pdf-download/70000",previewPdfUrl:"/chapter/pdf-preview/70000",authors:[{id:"277977",title:"Dr.",name:"Saad",surname:"Alosaimi",slug:"saad-alosaimi",fullName:"Saad Alosaimi"},{id:"277982",title:"Dr.",name:"Awad",surname:"Momen",slug:"awad-momen",fullName:"Awad Momen"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5913",title:"Redox",subtitle:"Principles and Advanced Applications",isOpenForSubmission:!1,hash:"bc323da5a080b0f626da4c6099b5193a",slug:"redox-principles-and-advanced-applications",bookSignature:"Mohammed Awad Ali Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/5913.jpg",editedByType:"Edited by",editors:[{id:"137240",title:"Prof.",name:"Mohammed",surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3203",title:"Oxidative Stress and Chronic Degenerative Diseases",subtitle:"A Role for Antioxidants",isOpenForSubmission:!1,hash:"7014dbaa632114f7220802475ccd0402",slug:"oxidative-stress-and-chronic-degenerative-diseases-a-role-for-antioxidants",bookSignature:"José A. Morales-González",coverURL:"https://cdn.intechopen.com/books/images_new/3203.jpg",editedByType:"Edited by",editors:[{id:"109774",title:"Dr.",name:"Jose Antonio",surname:"Morales-Gonzalez",slug:"jose-antonio-morales-gonzalez",fullName:"Jose Antonio Morales-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5407",title:"The Transcription Factor Nrf2",subtitle:null,isOpenForSubmission:!1,hash:"0788a269796226b416cf12529a57ecbb",slug:"a-master-regulator-of-oxidative-stress-the-transcription-factor-nrf2",bookSignature:"Jose Antonio Morales-Gonzalez, Angel Morales-Gonzalez and Eduardo Osiris Madrigal-Santillan",coverURL:"https://cdn.intechopen.com/books/images_new/5407.jpg",editedByType:"Edited by",editors:[{id:"109774",title:"Dr.",name:"Jose Antonio",surname:"Morales-Gonzalez",slug:"jose-antonio-morales-gonzalez",fullName:"Jose Antonio Morales-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7346",title:"Biogenic Amines",subtitle:null,isOpenForSubmission:!1,hash:"0438601a19ebd4d9dd37f88692b4196a",slug:"biogenic-amines",bookSignature:"Charalampos Proestos",coverURL:"https://cdn.intechopen.com/books/images_new/7346.jpg",editedByType:"Edited by",editors:[{id:"198333",title:"Dr.",name:"Charalampos",surname:"Proestos",slug:"charalampos-proestos",fullName:"Charalampos Proestos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8095",title:"Liposomes",subtitle:"Advances and Perspectives",isOpenForSubmission:!1,hash:"02b0d76190d551561ad19af0c80f98f2",slug:"liposomes-advances-and-perspectives",bookSignature:"Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/8095.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6365",title:"Molecular Docking",subtitle:null,isOpenForSubmission:!1,hash:"ca23ec77de0bb7a434608335e1d6a963",slug:"molecular-docking",bookSignature:"Dimitrios P. Vlachakis",coverURL:"https://cdn.intechopen.com/books/images_new/6365.jpg",editedByType:"Edited by",editors:[{id:"179110",title:"Dr.",name:"Dimitrios",surname:"Vlachakis",slug:"dimitrios-vlachakis",fullName:"Dimitrios Vlachakis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6397",title:"Free Radicals, Antioxidants and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"7b0703d537f4f738f46848aac66f5d34",slug:"free-radicals-antioxidants-and-diseases",bookSignature:"Rizvan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/6397.jpg",editedByType:"Edited by",editors:[{id:"40482",title:"Prof.",name:"Rizwan",surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6486",title:"Glutathione in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"23fb1f2e0cea5cf004d57bc8c0d46ce4",slug:"glutathione-in-health-and-disease",bookSignature:"Pinar Erkekoglu and Belma Kocer-Gumusel",coverURL:"https://cdn.intechopen.com/books/images_new/6486.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pınar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6966",title:"Lipid Peroxidation Research",subtitle:null,isOpenForSubmission:!1,hash:"f1f45176e765ecb65a1c6d1496e75b5b",slug:"lipid-peroxidation-research",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/6966.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,isOpenForSubmission:!1,hash:"de9fa48c5248dbfb581825b8c74f5623",slug:"peptide-synthesis",bookSignature:"Jaya T. Varkey",coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",editedByType:"Edited by",editors:[{id:"246502",title:"Dr.",name:"Jaya",surname:"Varkey",slug:"jaya-varkey",fullName:"Jaya Varkey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66302",slug:"corrigendum-to-the-role-of-cytokines-in-orthodontic-tooth-movement",title:"Corrigendum to: The Role of Cytokines in Orthodontic Tooth Movement",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66302.pdf",downloadPdfUrl:"/chapter/pdf-download/66302",previewPdfUrl:"/chapter/pdf-preview/66302",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66302",risUrl:"/chapter/ris/66302",chapter:{id:"63306",slug:"the-role-of-cytokines-in-orthodontic-tooth-movement",signatures:"Amila Vujacic, Jasna Pavlovic and Aleksandra Konic-Ristic",dateSubmitted:"April 22nd 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 9th 2018",datePublished:"April 10th 2019",book:{id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,fullTitle:"Current Approaches in Orthodontics",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işık Aslan",slug:"belma-isik-aslan",fullName:"Belma Işık Aslan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"255738",title:"Associate Prof.",name:"Amila",middleName:null,surname:"Vujacic",fullName:"Amila Vujacic",slug:"amila-vujacic",email:"amilavujacic@gmail.com",position:null,institution:null},{id:"264430",title:"Prof.",name:"Jasna",middleName:null,surname:"Pavlovic",fullName:"Jasna Pavlovic",slug:"jasna-pavlovic",email:"drjasnapavlovic@gmail.com",position:null,institution:null},{id:"264432",title:"Dr.",name:"Aleksandra",middleName:null,surname:"Konic",fullName:"Aleksandra Konic",slug:"aleksandra-konic",email:"sandrakonic@gmail.com",position:null,institution:null}]}},chapter:{id:"63306",slug:"the-role-of-cytokines-in-orthodontic-tooth-movement",signatures:"Amila Vujacic, Jasna Pavlovic and Aleksandra Konic-Ristic",dateSubmitted:"April 22nd 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 9th 2018",datePublished:"April 10th 2019",book:{id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,fullTitle:"Current Approaches in Orthodontics",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işık Aslan",slug:"belma-isik-aslan",fullName:"Belma Işık Aslan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"255738",title:"Associate Prof.",name:"Amila",middleName:null,surname:"Vujacic",fullName:"Amila Vujacic",slug:"amila-vujacic",email:"amilavujacic@gmail.com",position:null,institution:null},{id:"264430",title:"Prof.",name:"Jasna",middleName:null,surname:"Pavlovic",fullName:"Jasna Pavlovic",slug:"jasna-pavlovic",email:"drjasnapavlovic@gmail.com",position:null,institution:null},{id:"264432",title:"Dr.",name:"Aleksandra",middleName:null,surname:"Konic",fullName:"Aleksandra Konic",slug:"aleksandra-konic",email:"sandrakonic@gmail.com",position:null,institution:null}]},book:{id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,fullTitle:"Current Approaches in Orthodontics",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işık Aslan",slug:"belma-isik-aslan",fullName:"Belma Işık Aslan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10810",leadTitle:null,title:"Modern Ship Engineering, Design and Operations",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tNowadays marine propulsion systems, based on thermal machines operating under the diesel cycle, have positioned themselves as one of the main options for this type of applications. Their main comparative advantages, compared to other propulsion systems, based on thermal machines, are the low specific fuel consumption and their higher thermal efficiency. However, its main disadvantage lies in the emissions produced by combustion, such as carbon dioxide (CO2), oxide sulphur (SOx) and oxide nitrogen (NOx).
\r\n\r\n\tOver the last decade, the International Maritime Organization (IMO), has adopted a series of regulations to reduce these emissions, based on the introduction of several energy efficiency design and operational indicators for new and existing vessels.
\r\n\r\n\tIn this context, this book will focus on design and operation efficiency of ships throughout an analysis of the main propulsion systems. Starting from the use of alternative alternative fuels, to the integration of hybrid and full electric propulsion systems.
",isbn:"978-1-83969-473-8",printIsbn:"978-1-83969-472-1",pdfIsbn:"978-1-83969-474-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"579a9da63aca2172c0f0584328ae91c1",bookSignature:"Dr. Carlos Alberto Reusser",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10810.jpg",keywords:"Energy Efficiency Design Index (EEDI), Energy Efficiency Operational Indicator (EEOI), Power Take-In-Off Applications, Propulsion Systems Hybridization, Fuel Cell Applications, Multiphase Machines, Permanent Magnet Synchronous Machines, High-Efficiency Induction Machines, Power Converters for Electric Drives, Control of Hybrid Propulsion Systems, Methanol, Biofuels",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 10th 2021",dateEndSecondStepPublish:"March 10th 2021",dateEndThirdStepPublish:"May 9th 2021",dateEndFourthStepPublish:"July 28th 2021",dateEndFifthStepPublish:"September 26th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Reusser implemented an energy efficiency control strategy for the reduction in GHG emissions on the operation of marine vessels and developed several new power converter topologies for its use in marine and renewable energy applications.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"209816",title:"Dr.",name:"Carlos",middleName:"Alberto",surname:"Reusser",slug:"carlos-reusser",fullName:"Carlos Reusser",profilePictureURL:"https://mts.intechopen.com/storage/users/209816/images/system/209816.jpg",biography:"Carlos A. Reusser earned the B.Eng. degree in Naval Electrical Engineering from the Naval Polytechnic Academy in 2001, and served in the Chilean Navy for 20 years. He received the Masters in Asset Management, M.Sc. and Ph.D. degrees in Power Electronics from Universidad Tecnica Federico Santa Maria, in 2010, 2014 and 2020 respectively. From 2011-2019, was a lecturer in APOLINAV and in 2015 he became a lecturer at Universidad Tecnica Federico Santa Maria. In 2020 became Associate Professor at Pontificia Universidad Catolica de Valparaiso. His main research interests include: Electric Ship applications, Sensorless Control of Drives, Power Converters and Renewable Energies.",institutionString:"Pontificial Catholic University of Valparaiso",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Pontificial Catholic University of Valparaiso",institutionURL:null,country:{name:"Chile"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"346794",firstName:"Mia",lastName:"Miskulin",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/346794/images/15795_n.png",email:"mia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"6121",title:"Distributed Optimisation Using the Mobile Agent Paradigm through an Adaptable Ontology: Multi-Operator Services Research and Composition",doi:"10.5772/6612",slug:"distributed_optimisation_using_the_mobile_agent_paradigm_through_an_adaptable_ontology__multi-operat",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/6121.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/6121",previewPdfUrl:"/chapter/pdf-preview/6121",totalDownloads:1262,totalViews:81,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"January 1st 2009",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/6121",risUrl:"/chapter/ris/6121",book:{slug:"multiagent_systems"},signatures:"Hayfa Zgaya and Slim Hammadi",authors:[{id:"18813",title:"Dr.",name:"Hayfa",middleName:null,surname:"Zgaya",fullName:"Hayfa Zgaya",slug:"hayfa-zgaya",email:"hayfa.zgaya@ec-lille.fr",position:null,institution:null},{id:"22642",title:"Pr",name:"Slim",middleName:null,surname:"Hammadi",fullName:"Slim Hammadi",slug:"slim-hammadi",email:"slim.hammadi@ec-lille.Fr",position:null,institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"3172",title:"Multiagent Systems",subtitle:null,fullTitle:"Multiagent Systems",slug:"multiagent_systems",publishedDate:"January 1st 2009",bookSignature:"Salman Ahmed and Mohd Noh Karsiti",coverURL:"https://cdn.intechopen.com/books/images_new/3172.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",editors:[{id:"131685",title:"Prof.",name:"Salman",middleName:null,surname:"Ahmed",slug:"salman-ahmed",fullName:"Salman Ahmed"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"6102",title:"Agent-Based Distributed Resource Allocation in Continuous Dynamic Systems",slug:"agent-based_distributed_resource_allocation_in_continuous_dynamic_systems",totalDownloads:2150,totalCrossrefCites:2,signatures:"Holger Voos",authors:[{id:"131460",title:"Prof.",name:"Holger",middleName:null,surname:"Voos",fullName:"Holger Voos",slug:"holger-voos"}]},{id:"6103",title:"Constraint Based Automated Multi-Attribute Negotiations",slug:"constraint_based_automated_multi-attribute_negotiations",totalDownloads:1507,totalCrossrefCites:0,signatures:"Miguel A. López-Carmona, Iván Marsá-Maestre and Juan R. Velasco",authors:[{id:"118692",title:"Dr.",name:"Ivan",middleName:null,surname:"Marsa-Maestre",fullName:"Ivan Marsa-Maestre",slug:"ivan-marsa-maestre"},{id:"118695",title:"Dr.",name:"Miguel A.",middleName:null,surname:"Lopez-Carmona",fullName:"Miguel A. Lopez-Carmona",slug:"miguel-a.-lopez-carmona"},{id:"131461",title:"Prof.",name:"Juan R.",middleName:null,surname:"Velasco",fullName:"Juan R. Velasco",slug:"juan-r.-velasco"}]},{id:"6104",title:"Goal-Oriented Autonomic Business Process Modelling and Execution",slug:"goal-oriented_autonomic_business_process_modelling_and_execution",totalDownloads:3511,totalCrossrefCites:1,signatures:"Dominic Greenwood and Roberto Ghizzioli",authors:[{id:"131465",title:"Prof.",name:"Dominic",middleName:null,surname:"Greenwood",fullName:"Dominic Greenwood",slug:"dominic-greenwood"},{id:"131466",title:"Prof.",name:"Roberto",middleName:null,surname:"Ghizzioli",fullName:"Roberto Ghizzioli",slug:"roberto-ghizzioli"}]},{id:"6105",title:"Modeling and Analysis Methods for Multi-Agent Systems",slug:"modeling_and_analysis_methods_for_multi-agent_systems",totalDownloads:2519,totalCrossrefCites:0,signatures:"Jose R. Celaya and Alan A. Desrochers",authors:[{id:"131683",title:"Prof.",name:"Jose R.",middleName:null,surname:"Celaya",fullName:"Jose R. Celaya",slug:"jose-r.-celaya"},{id:"131684",title:"Prof.",name:"Alan A.",middleName:null,surname:"Desrochers",fullName:"Alan A. Desrochers",slug:"alan-a.-desrochers"}]},{id:"6106",title:"Control Analysis and Feedback Techniques for Multi Agent Robots",slug:"control_analysis_and_feedback_techniques_for_multi_agent_robots",totalDownloads:2700,totalCrossrefCites:1,signatures:"Salman Ahmed and Mohd Noh Karsiti and Robert N. K. Loh",authors:[{id:"131685",title:"Prof.",name:"Salman",middleName:null,surname:"Ahmed",fullName:"Salman Ahmed",slug:"salman-ahmed"},{id:"86620",title:"Dr.",name:"Mohd Noh",middleName:null,surname:"Karsiti",fullName:"Mohd Noh Karsiti",slug:"mohd-noh-karsiti"},{id:"129913",title:"Dr.",name:"Robert N.K.",middleName:null,surname:"Loh",fullName:"Robert N.K. Loh",slug:"robert-n.k.-loh"}]},{id:"6107",title:"Scalable Coordination Mechanism to Maintain Throughput of Dynamic Multiagent Networks",slug:"scalable_coordination_mechanism_to_maintain_throughput_of_dynamic_multiagent_networks",totalDownloads:1518,totalCrossrefCites:0,signatures:"Rajesh Gautam and Kazuo Miyashita",authors:[{id:"18391",title:"Prof.",name:"Kazuo",middleName:null,surname:"Miyashita",fullName:"Kazuo Miyashita",slug:"kazuo-miyashita"},{id:"131686",title:"Prof.",name:"Rajesh",middleName:null,surname:"Gautam",fullName:"Rajesh Gautam",slug:"rajesh-gautam"}]},{id:"6108",title:"Requirements Driven Service Agent Collaboration",slug:"requirements_driven_service_agent_collaboration",totalDownloads:1205,totalCrossrefCites:0,signatures:"Liwei Zheng, Jian Tang and Zhi Jin",authors:[{id:"17631",title:"Mr.",name:"Jian",middleName:null,surname:"Tang",fullName:"Jian Tang",slug:"jian-tang"}]},{id:"6109",title:"Coordination Control and Fault Diagnosis of Production System Using Multi-Agent Technology",slug:"coordination_control_and_fault_diagnosis_of_production_system_using_multi-agent_technology",totalDownloads:1417,totalCrossrefCites:0,signatures:"Li Tiejun, Peng Yuqing and Wu Jianguo",authors:[{id:"131691",title:"Prof.",name:"Tiejun",middleName:null,surname:"Li",fullName:"Tiejun Li",slug:"tiejun-li"},{id:"131692",title:"Prof.",name:"Yuqing",middleName:null,surname:"Peng",fullName:"Yuqing Peng",slug:"yuqing-peng"}]},{id:"6110",title:"Evolutionary Game Theory Based Cooperation Algorithm in Multi-Agent System",slug:"evolutionary_game_theory_based_cooperation_algorithm_in_multi-agent_system",totalDownloads:2188,totalCrossrefCites:1,signatures:"Yuehai Wang",authors:[{id:"131694",title:"Prof.",name:"Yuehai",middleName:null,surname:"Wang",fullName:"Yuehai Wang",slug:"yuehai-wang"}]},{id:"6111",title:"Indirect Coordination Mechanism of MAS",slug:"indirect_coordination_mechanism_of_mas",totalDownloads:2070,totalCrossrefCites:0,signatures:"Satoshi Kurihara, Kensuke Fukuda, Shinya Sato and Toshiharu Sugawara",authors:[{id:"3821",title:"Prof.",name:"Toshiharu",middleName:null,surname:"Sugawara",fullName:"Toshiharu Sugawara",slug:"toshiharu-sugawara"},{id:"16768",title:"Dr.",name:"Satoshi",middleName:null,surname:"Kurihara",fullName:"Satoshi Kurihara",slug:"satoshi-kurihara"},{id:"125022",title:"Prof.",name:"Kensuke",middleName:null,surname:"Fukuda",fullName:"Kensuke Fukuda",slug:"kensuke-fukuda"},{id:"131697",title:"Prof.",name:"Shinya",middleName:null,surname:"Sato",fullName:"Shinya Sato",slug:"shinya-sato"}]},{id:"6112",title:"A Multi-Agent Approach to Bluffing",slug:"a_multi-agent_approach_to_bluffing",totalDownloads:1636,totalCrossrefCites:0,signatures:"Tshilidzi Marwala and Evan Hurwitz",authors:[{id:"43989",title:"Prof.",name:"Tshilidzi",middleName:null,surname:"Marwala",fullName:"Tshilidzi Marwala",slug:"tshilidzi-marwala"},{id:"131698",title:"Prof.",name:"Evan",middleName:null,surname:"Hurwitz",fullName:"Evan Hurwitz",slug:"evan-hurwitz"}]},{id:"6113",title:"MASL: a Language for Multi-Agent System",slug:"masl__a_language_for_multi-agent_system",totalDownloads:1374,totalCrossrefCites:1,signatures:"Michel Dubois, Yann Le Guyadec and Dominique Duhaut",authors:[{id:"131674",title:"Prof.",name:"Dominique",middleName:null,surname:"Duhaut",fullName:"Dominique Duhaut",slug:"dominique-duhaut"},{id:"131699",title:"Prof.",name:"Michel",middleName:null,surname:"Dubois",fullName:"Michel Dubois",slug:"michel-dubois"},{id:"131700",title:"Prof.",name:"Yann",middleName:null,surname:"Le Guyadec",fullName:"Yann Le Guyadec",slug:"yann-le-guyadec"}]},{id:"6114",title:"Agent-Oriented Novel Quantum Key Distribution Protocol for the Security in Wireless Network",slug:"agent-oriented_novel_quantum_key_distribution_protocol_for_the_security_in_wireless_network",totalDownloads:2342,totalCrossrefCites:3,signatures:"Xu Huang, Shirantha Wijesekera and Dharmendra Sharma",authors:[{id:"18898",title:"Dr.",name:"Xu",middleName:null,surname:"Huang",fullName:"Xu Huang",slug:"xu-huang"},{id:"131701",title:"Prof.",name:"Shirantha",middleName:null,surname:"Wijesekera",fullName:"Shirantha Wijesekera",slug:"shirantha-wijesekera"},{id:"131702",title:"Prof.",name:"Dharmendra",middleName:null,surname:"Sharma",fullName:"Dharmendra Sharma",slug:"dharmendra-sharma"}]},{id:"6115",title:"A Framework for Business Process Simulation Based on Multi-Agent Cooperation",slug:"a_framework_for_business_process_simulation_based_on_multi-agent_cooperation",totalDownloads:2266,totalCrossrefCites:2,signatures:"Wenan Tan, Wei Xu, Fujun Yang, Song Li and Yi Du",authors:[{id:"131703",title:"Prof.",name:"Wenan",middleName:null,surname:"Tan",fullName:"Wenan Tan",slug:"wenan-tan"}]},{id:"6116",title:"Agent Oriented Engineering and Methodologies with Application to Production, Economical and Social Systems",slug:"agent_oriented_engineering_and_methodologies_with_application_to_production__economical_and_social_s",totalDownloads:1314,totalCrossrefCites:0,signatures:"Baltazár Frankovič, Than Tung Dang, Tomáš Kasanický, Viktor Oravec and and Ivana Budinská",authors:[{id:"131707",title:"Prof.",name:"Baltazár",middleName:null,surname:"Frankovič",fullName:"Baltazár Frankovič",slug:"baltazar-frankovic"},{id:"131708",title:"Prof.",name:"Than Tung",middleName:null,surname:"Dang",fullName:"Than Tung Dang",slug:"than-tung-dang"},{id:"131709",title:"Prof.",name:"Tomáš",middleName:null,surname:"Kasanický",fullName:"Tomáš Kasanický",slug:"tomas-kasanicky"},{id:"131710",title:"Prof.",name:"Viktor",middleName:null,surname:"Oravec",fullName:"Viktor Oravec",slug:"viktor-oravec"},{id:"131711",title:"Prof.",name:"Ivana",middleName:null,surname:"Budinská",fullName:"Ivana Budinská",slug:"ivana-budinska"}]},{id:"6117",title:"Effective Multi-Model Motion Tracking Under Multiple Team Member Actuators",slug:"effective_multi-model_motion_tracking_under_multiple_team_member_actuators",totalDownloads:1318,totalCrossrefCites:0,signatures:"Yang Gu and Manuela Veloso",authors:[{id:"128081",title:"Prof.",name:"Manuela",middleName:null,surname:"Veloso",fullName:"Manuela Veloso",slug:"manuela-veloso"}]},{id:"6118",title:"MASDScheGATS - Scheduling System for Dynamic Manufacturing Environmemts",slug:"masdschegats_-_scheduling_system_for_dynamic_manufacturing_environmemts",totalDownloads:1733,totalCrossrefCites:2,signatures:"Ana Madureira, Joaquim Santos and Ivo Pereira",authors:[{id:"131714",title:"Prof.",name:"Ana",middleName:null,surname:"Madureira",fullName:"Ana Madureira",slug:"ana-madureira"}]},{id:"6119",title:"Conversational Characters that Support Interactive Play and Learning for Children",slug:"conversational_characters_that_support_interactive_play_and_learning_for_children",totalDownloads:1991,totalCrossrefCites:1,signatures:"Andrea Corradini, Manish Mehta and Klaus Robering",authors:[{id:"131717",title:"Prof.",name:"Andrea",middleName:null,surname:"Corradini",fullName:"Andrea Corradini",slug:"andrea-corradini"},{id:"131718",title:"Prof.",name:"Manish",middleName:null,surname:"Mehta",fullName:"Manish Mehta",slug:"manish-mehta"},{id:"131719",title:"Prof.",name:"Klaus",middleName:null,surname:"Robering",fullName:"Klaus Robering",slug:"klaus-robering"}]},{id:"6120",title:"Auctions and Electronic Markets",slug:"auctions_and_electronic_markets",totalDownloads:1986,totalCrossrefCites:0,signatures:"Donna Griffin and Dirk Pesch",authors:[{id:"131720",title:"Prof.",name:"Donna",middleName:null,surname:"Griffin",fullName:"Donna Griffin",slug:"donna-griffin"},{id:"131721",title:"Prof.",name:"Dirk",middleName:null,surname:"Pesch",fullName:"Dirk Pesch",slug:"dirk-pesch"}]},{id:"6121",title:"Distributed Optimisation Using the Mobile Agent Paradigm through an Adaptable Ontology: Multi-Operator Services Research and Composition",slug:"distributed_optimisation_using_the_mobile_agent_paradigm_through_an_adaptable_ontology__multi-operat",totalDownloads:1262,totalCrossrefCites:2,signatures:"Hayfa Zgaya and Slim Hammadi",authors:[{id:"18813",title:"Dr.",name:"Hayfa",middleName:null,surname:"Zgaya",fullName:"Hayfa Zgaya",slug:"hayfa-zgaya"},{id:"22642",title:"Pr",name:"Slim",middleName:null,surname:"Hammadi",fullName:"Slim Hammadi",slug:"slim-hammadi"}]}]},relatedBooks:[{type:"book",id:"11",title:"Multi-Robot Systems",subtitle:"Trends and Development",isOpenForSubmission:!1,hash:null,slug:"multi-robot-systems-trends-and-development",bookSignature:"Toshiyuki Yasuda",coverURL:"https://cdn.intechopen.com/books/images_new/11.jpg",editedByType:"Edited by",editors:[{id:"5669",title:"Dr.",name:"Toshiyuki",surname:"Yasuda",slug:"toshiyuki-yasuda",fullName:"Toshiyuki Yasuda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"12631",title:"Swarm Patterns: Trends & Transformation Tools",slug:"swarm-patterns-trends-transformation-tools",signatures:"Blesson Varghese and Gerard Mckee",authors:[{id:"13288",title:"Dr.",name:"Blesson",middleName:null,surname:"Varghese",fullName:"Blesson Varghese",slug:"blesson-varghese"},{id:"13435",title:"Dr.",name:"Gerard",middleName:"Thomas",surname:"McKee",fullName:"Gerard McKee",slug:"gerard-mckee"}]},{id:"12632",title:"Formation and Obstacle Avoidance in the Unknown Environment of Multi-Robot System",slug:"formation-and-obstacle-avoidance-in-the-unknown-environment-of-multi-robot-system",signatures:"Tao Zhang, Xiaqin Li, Yi Zhu, Song Chen, Yu Cheng and Jingyan Song",authors:[{id:"13447",title:"Prof.",name:"Tao",middleName:null,surname:"Zhang",fullName:"Tao Zhang",slug:"tao-zhang"},{id:"14232",title:"Prof.",name:"Xiaqin",middleName:null,surname:"Li",fullName:"Xiaqin Li",slug:"xiaqin-li"},{id:"14233",title:"Mr.",name:"Yi",middleName:null,surname:"Zhu",fullName:"Yi Zhu",slug:"yi-zhu"},{id:"14234",title:"Prof.",name:"Jingyan",middleName:null,surname:"Song",fullName:"Jingyan Song",slug:"jingyan-song"},{id:"23701",title:"Prof.",name:"Song",middleName:null,surname:"Chen",fullName:"Song Chen",slug:"song-chen"},{id:"23702",title:"Prof.",name:"Yu",middleName:null,surname:"Cheng",fullName:"Yu Cheng",slug:"yu-cheng"}]},{id:"12633",title:"Distributed Adaptive Control for Networked Multi-Robot Systems",slug:"distributed-adaptive-control-for-networked-multi-robot-systems",signatures:"Abhijit Das and Frank L. Lewis",authors:[{id:"13439",title:"Dr.",name:"Abhijit",middleName:null,surname:"Das",fullName:"Abhijit Das",slug:"abhijit-das"},{id:"13440",title:"Dr.",name:"Frank L.",middleName:null,surname:"Lewis",fullName:"Frank L. Lewis",slug:"frank-l.-lewis"}]},{id:"12634",title:"Model-Based Nonlinear Cluster Space Control of Mobile Robot Formations",slug:"model-based-nonlinear-cluster-space-control-of-mobile-robot-formations",signatures:"Ignacio Mas, Christopher Kitts and Robert Lee",authors:[{id:"13335",title:"Dr.",name:"Ignacio",middleName:null,surname:"Mas",fullName:"Ignacio Mas",slug:"ignacio-mas"},{id:"13486",title:"Dr.",name:"Christopher",middleName:null,surname:"Kitts",fullName:"Christopher Kitts",slug:"christopher-kitts"},{id:"23604",title:"Mr.",name:"Robert",middleName:null,surname:"Lee",fullName:"Robert Lee",slug:"robert-lee"}]},{id:"12635",title:"A Robust Nonlinear Control for Differential Mobile Robots and Implementation on Formation Control",slug:"a-robust-nonlinear-control-for-differential-mobile-robots-and-implementation-on-formation-control",signatures:"Jie Wan and Peter Chen",authors:[{id:"14371",title:"Dr.",name:"Jie",middleName:null,surname:"Wan",fullName:"Jie Wan",slug:"jie-wan"},{id:"14684",title:"Dr.",name:"Peter",middleName:null,surname:"Chen",fullName:"Peter Chen",slug:"peter-chen"}]},{id:"12636",title:"Building Visual Maps with a Team of Mobile Robots",slug:"building-visual-maps-with-a-team-of-mobile-robots",signatures:"Mónica Ballesta, Arturo Gil, Oscar Reinoso and Luis Paya",authors:[{id:"10295",title:"Dr.",name:"Luis",middleName:null,surname:"Paya",fullName:"Luis Paya",slug:"luis-paya"},{id:"11214",title:"Dr.",name:"Oscar",middleName:null,surname:"Reinoso",fullName:"Oscar Reinoso",slug:"oscar-reinoso"},{id:"13872",title:"Dr.",name:"Arturo",middleName:null,surname:"Gil",fullName:"Arturo Gil",slug:"arturo-gil"},{id:"13873",title:"Prof.",name:"Mónica",middleName:null,surname:"Ballesta",fullName:"Mónica Ballesta",slug:"monica-ballesta"}]},{id:"12637",title:"Multirobot Cooperative Model Applied to Coverage of Unknown Regions",slug:"multirobot-cooperative-model-applied-to-coverage-of-unknown-regions",signatures:"Eduardo Gerlein and Enrique Gonzalez",authors:[{id:"14177",title:"Dr.",name:"Enrique",middleName:null,surname:"Gonzalez",fullName:"Enrique Gonzalez",slug:"enrique-gonzalez"},{id:"14178",title:"Ing.",name:"Eduardo",middleName:null,surname:"Gerlein",fullName:"Eduardo Gerlein",slug:"eduardo-gerlein"}]},{id:"12638",title:"Cooperative Global Localization in Multi-Robot System",slug:"cooperative-global-localization-in-multi-robot-system",signatures:"Ronghua Luo",authors:[{id:"14360",title:"Dr.",name:"Ronghua",middleName:null,surname:"Luo",fullName:"Ronghua Luo",slug:"ronghua-luo"}]},{id:"12639",title:"Cooperative Localization and SLAM Based on the Extended Information Filter",slug:"cooperative-localization-and-slam-based-on-the-extended-information-filter",signatures:"Francesco Conte, Andrea Cristofaro, Alessandro Renzaglia and Agostino Martinelli",authors:[{id:"14862",title:"Dr.",name:"Agostino",middleName:null,surname:"Martinelli",fullName:"Agostino Martinelli",slug:"agostino-martinelli"},{id:"14864",title:"Dr.",name:"Andrea",middleName:null,surname:"Cristofaro",fullName:"Andrea Cristofaro",slug:"andrea-cristofaro"},{id:"14865",title:"Mr",name:"Francesco",middleName:null,surname:"Conte",fullName:"Francesco Conte",slug:"francesco-conte"},{id:"23617",title:"Dr.",name:"Alessandro",middleName:null,surname:"Renzaglia",fullName:"Alessandro Renzaglia",slug:"alessandro-renzaglia"}]},{id:"12640",title:"Multi-Robot SLAM: A Vision-Based Approach",slug:"multi-robot-slam-a-vision-based-approach",signatures:"Hassan Hajjdiab and Robert Laganiere",authors:[{id:"14590",title:"Dr.",name:"Hassan",middleName:null,surname:"Hajjdiab",fullName:"Hassan Hajjdiab",slug:"hassan-hajjdiab"},{id:"14596",title:"Dr.",name:"Robert",middleName:null,surname:"Laganiere",fullName:"Robert Laganiere",slug:"robert-laganiere"}]},{id:"12641",title:"Probabilistic Map Building, Localization and Navigation of a Team of Mobile Robots. Application to Route Following",slug:"probabilistic-map-building-localization-and-navigation-of-a-team-of-mobile-robots-application-to-rou",signatures:"Luis Paya, Oscar Reinoso, Francisco Amoros, Lorenzo Fernandez and Arturo Gil",authors:[{id:"10295",title:"Dr.",name:"Luis",middleName:null,surname:"Paya",fullName:"Luis Paya",slug:"luis-paya"},{id:"11214",title:"Dr.",name:"Oscar",middleName:null,surname:"Reinoso",fullName:"Oscar Reinoso",slug:"oscar-reinoso"},{id:"13872",title:"Dr.",name:"Arturo",middleName:null,surname:"Gil",fullName:"Arturo Gil",slug:"arturo-gil"},{id:"11215",title:"MSc.",name:"Lorenzo",middleName:null,surname:"Fernandez",fullName:"Lorenzo Fernandez",slug:"lorenzo-fernandez"},{id:"14372",title:"MSc.",name:"Francisco",middleName:null,surname:"Amoros",fullName:"Francisco Amoros",slug:"francisco-amoros"}]},{id:"12642",title:"Graph-Based Multi Robot Motion Planning: Feasibility and Structural Properties",slug:"graph-based-multi-robot-motion-planning-feasibility-and-structural-properties",signatures:"Ellips Masehian and Azadeh H. Nejad",authors:[{id:"13334",title:"Prof.",name:"Ellips",middleName:null,surname:"Masehian",fullName:"Ellips Masehian",slug:"ellips-masehian"},{id:"14581",title:"Prof.",name:"Azadeh",middleName:null,surname:"H. Nejad",fullName:"Azadeh H. Nejad",slug:"azadeh-h.-nejad"}]},{id:"12643",title:"Target Tracking for Mobile Sensor Networks Using Distributed Motion Planning and Distributed Filtering",slug:"target-tracking-for-mobile-sensor-networks-using-distributed-motion-planning-and-distributed-filteri",signatures:"Gerasimos Rigatos",authors:[{id:"5488",title:"Dr.",name:"Gerasimos G.",middleName:null,surname:"Rigatos",fullName:"Gerasimos G. Rigatos",slug:"gerasimos-g.-rigatos"}]},{id:"12644",title:"Multi-Robot Path Planning",slug:"multi-robot-path-planning",signatures:"Pavel Surynek",authors:[{id:"13451",title:"Dr.",name:"Pavel",middleName:null,surname:"Surynek",fullName:"Pavel Surynek",slug:"pavel-surynek"}]},{id:"12645",title:"Object Path Planner for the Box Pushing Problem",slug:"object-path-planner-for-the-box-pushing-problem",signatures:"José Ramírez-torres and Ezra Federico Parra González",authors:[{id:"13766",title:"Dr.",name:"Ezra Federico",middleName:null,surname:"Parra González",fullName:"Ezra Federico Parra González",slug:"ezra-federico-parra-gonzalez"},{id:"13767",title:"Dr.",name:"José Gabriel",middleName:null,surname:"Ramírez-Torres",fullName:"José Gabriel Ramírez-Torres",slug:"jose-gabriel-ramirez-torres"}]},{id:"12646",title:"Time-Invariant Motion Planner in Discretized C-Spacetime for MRS",slug:"time-invariant-motion-planner-in-discretized-c-spacetime-for-mrs",signatures:"Fabio Marchese",authors:[{id:"13536",title:"Ph.D.",name:"Fabio",middleName:"Mario",surname:"Marchese",fullName:"Fabio Marchese",slug:"fabio-marchese"}]},{id:"12647",title:"Coordinated Hunting Based on Spiking Neural Network for Multi-Robot System",slug:"coordinated-hunting-based-on-spiking-neural-network-for-multi-robot-system",signatures:"Xu Wang, Zhiqiang Cao, Chao Zhou, Zengguang Hou and Min Tan",authors:[{id:"13263",title:"Prof.",name:"Zhiqiang",middleName:null,surname:"Cao",fullName:"Zhiqiang Cao",slug:"zhiqiang-cao"},{id:"14258",title:"Dr.",name:"Xu",middleName:null,surname:"Wang",fullName:"Xu Wang",slug:"xu-wang"},{id:"14263",title:"Dr.",name:"Chao",middleName:null,surname:"Zhou",fullName:"Chao Zhou",slug:"chao-zhou"},{id:"14264",title:"Dr.",name:"Zengguang",middleName:null,surname:"Hou",fullName:"Zengguang Hou",slug:"zengguang-hou"},{id:"14265",title:"Dr.",name:"Min",middleName:null,surname:"Tan",fullName:"Min Tan",slug:"min-tan"}]},{id:"12648",title:"Multi-Robot Information Fusion and Coordination Based on Agent",slug:"multi-robot-information-fusion-and-coordination-based-on-agent",signatures:"Bo Fan and Jiexin Pu",authors:[{id:"13706",title:"Dr.",name:"Bo",middleName:null,surname:"Fan",fullName:"Bo Fan",slug:"bo-fan"},{id:"13739",title:"Prof.",name:"Jiexin",middleName:null,surname:"Pu",fullName:"Jiexin Pu",slug:"jiexin-pu"}]},{id:"12649",title:"Bio-Inspired Communication for Self-Regulated Multi-Robot Sytems",slug:"bio-inspired-communication-for-self-regulated-multi-robot-sytems",signatures:"Md Omar Faruque Sarker and Torbjorn Dahl",authors:[{id:"13826",title:"Dr.",name:"Torbjorn",middleName:null,surname:"Dahl",fullName:"Torbjorn Dahl",slug:"torbjorn-dahl"},{id:"13932",title:"Prof.",name:"Md Omar Faruque",middleName:null,surname:"Sarker",fullName:"Md Omar Faruque Sarker",slug:"md-omar-faruque-sarker"}]},{id:"12650",title:"Multi-Robot Task Allocation Based on Swarm Intelligence",slug:"multi-robot-task-allocation-based-on-swarm-intelligence",signatures:"Shuhua Liu, Tieli Sun and Chih-cheng Hung",authors:[{id:"4368",title:"Prof.",name:"Chih-Cheng",middleName:null,surname:"Hung",fullName:"Chih-Cheng Hung",slug:"chih-cheng-hung"},{id:"13829",title:"Dr.",name:"Shuhua",middleName:null,surname:"Liu",fullName:"Shuhua Liu",slug:"shuhua-liu"},{id:"23596",title:"Prof.",name:"Tieli",middleName:null,surname:"Sun",fullName:"Tieli Sun",slug:"tieli-sun"}]},{id:"12651",title:"Research on Multi-Robot Architecture and Decision-Making Model",slug:"research-on-multi-robot-architecture-and-decision-making-model",signatures:"Shuqin Li",authors:[{id:"13498",title:"Dr.",name:"Shuqin",middleName:null,surname:"Li",fullName:"Shuqin Li",slug:"shuqin-li"}]},{id:"12652",title:"Auction and Swarm Multi-Robot Task Allocation Algorithms in Real Time Scenarios",slug:"auction-and-swarm-multi-robot-task-allocation-algorithms-in-real-time-scenarios",signatures:"Gabriel Oliver and José Guerrero",authors:[{id:"14005",title:"Dr.",name:"Gabriel",middleName:null,surname:"Oliver",fullName:"Gabriel Oliver",slug:"gabriel-oliver"},{id:"14267",title:"Dr.",name:"José",middleName:null,surname:"Guerrero",fullName:"José Guerrero",slug:"jose-guerrero"}]},{id:"12653",title:"Improving Search Efficiency in the Action Space of an Instance-Based Reinforcement Learning Technique for Multi-Robot Systems",slug:"improving-search-efficiency-in-the-action-space-of-an-instance-based-reinforcement-learning-techniqu",signatures:"Kazuhiro Ohkura and Toshiyuki Yasuda",authors:[{id:"5669",title:"Dr.",name:"Toshiyuki",middleName:null,surname:"Yasuda",fullName:"Toshiyuki Yasuda",slug:"toshiyuki-yasuda"},{id:"13267",title:"Prof.",name:"Kazuhiro",middleName:null,surname:"Ohkura",fullName:"Kazuhiro Ohkura",slug:"kazuhiro-ohkura"}]},{id:"12654",title:"A Reinforcement Learning Technique with an Adaptive Action Generator for a Multi-Robot System",slug:"a-reinforcement-learning-technique-with-an-adaptive-action-generator-for-a-multi-robot-system",signatures:"Kazuhiro Ohkura and Toshiyuki Yasuda",authors:[{id:"5669",title:"Dr.",name:"Toshiyuki",middleName:null,surname:"Yasuda",fullName:"Toshiyuki Yasuda",slug:"toshiyuki-yasuda"},{id:"13267",title:"Prof.",name:"Kazuhiro",middleName:null,surname:"Ohkura",fullName:"Kazuhiro Ohkura",slug:"kazuhiro-ohkura"}]},{id:"12655",title:"A Control Agent Architecture for Cooperative Robotic Tasks",slug:"a-control-agent-architecture-for-cooperative-robotic-tasks",signatures:"Enrique Gonzalez, Fernando De la Rosa, Alvaro Sebastian Miranda, Julian Angel and Juan Sebastian Figueredo",authors:[{id:"14177",title:"Dr.",name:"Enrique",middleName:null,surname:"Gonzalez",fullName:"Enrique Gonzalez",slug:"enrique-gonzalez"},{id:"13685",title:"Dr.",name:"Fernando",middleName:null,surname:"De la Rosa",fullName:"Fernando De la Rosa",slug:"fernando-de-la-rosa"},{id:"14497",title:"Prof.",name:"Alvaro Sebastian",middleName:null,surname:"Miranda",fullName:"Alvaro Sebastian Miranda",slug:"alvaro-sebastian-miranda"},{id:"14498",title:"Prof.",name:"Julian",middleName:null,surname:"Angel",fullName:"Julian Angel",slug:"julian-angel"},{id:"14499",title:"Prof.",name:"Juan Sebastian",middleName:null,surname:"Figueredo",fullName:"Juan Sebastian Figueredo",slug:"juan-sebastian-figueredo"}]},{id:"12656",title:"Robot Teams and Robot Team Players",slug:"robot-teams-and-robot-team-players",signatures:"Gerard Mckee and Blesson Varghese",authors:[{id:"13435",title:"Dr.",name:"Gerard",middleName:"Thomas",surname:"McKee",fullName:"Gerard McKee",slug:"gerard-mckee"},{id:"23616",title:"Dr.",name:"Blesson",middleName:null,surname:"Varghese",fullName:"Blesson Varghese",slug:"blesson-varghese"}]},{id:"12657",title:"On the Problem of Representing and Characterizing the Dynamics of Multi-Robot Systems",slug:"on-the-problem-of-representing-and-characterizing-the-dynamics-of-multi-robot-systems",signatures:"Angelica Munoz-melendez",authors:[{id:"13325",title:"Dr.",name:"Angelica",middleName:null,surname:"Munoz-Melendez",fullName:"Angelica Munoz-Melendez",slug:"angelica-munoz-melendez"}]},{id:"12658",title:"Modeling, Simulation and Control of 3-DOF Redundant Fault Tolerant Robots by Means of Adaptive Inertia",slug:"modeling-simulation-and-control-of-3-dof-redundant-fault-tolerant-robots-by-means-of-adaptive-inerti",signatures:"Claudio Urrea Oñate and John Kern",authors:[{id:"17976",title:"Dr.",name:"Claudio",middleName:null,surname:"Urrea Oñate",fullName:"Claudio Urrea Oñate",slug:"claudio-urrea-onate"},{id:"22275",title:"Prof.",name:"John",middleName:null,surname:"Kern",fullName:"John Kern",slug:"john-kern"}]},{id:"12659",title:"Comparison of Identification Techniques for a 6-DOF Real Robot and Development of an Intelligent Controller",slug:"comparison-of-identification-techniques-for-a-6-dof-real-robot-and-development-of-an-intelligent-con",signatures:"Claudio Urrea Oñate, Felipe Santander and Marcela Jamett",authors:[{id:"17976",title:"Dr.",name:"Claudio",middleName:null,surname:"Urrea Oñate",fullName:"Claudio Urrea Oñate",slug:"claudio-urrea-onate"},{id:"23555",title:"MSc.",name:"Felipe",middleName:"Alejandro",surname:"Santander",fullName:"Felipe Santander",slug:"felipe-santander"},{id:"23722",title:"Dr.",name:"Marcela",middleName:null,surname:"Jamett",fullName:"Marcela Jamett",slug:"marcela-jamett"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"74064",title:"From the Laser Plume to the Laser Ceramics",doi:"10.5772/intechopen.94464",slug:"from-the-laser-plume-to-the-laser-ceramics",body:'In recent years, much attention has been paid to the developments aimed at creating solid-state lasers with a high average and peak power. This is primarily due to the wide range of applications of such laser systems: in the industry for remote cutting, welding, quenching, heat treatment and labeling of various materials [1, 2, 3], as well as in basic scientific research [4, 5, 6]. One of the key components of high power continuous and pulsed-periodic lasers is the active medium, where an inverse population of levels is created. In recent years, increasingly greater attention has been paid to the researches aimed at developing a technology to produce ceramic active elements for high-power laser systems. This is due to many advantages of optical ceramics over traditional media from single crystals and glasses: larger sizes, improved thermomechanical characteristics, the ability to synthesize composite samples, quick production, lower energy costs and price.
After pioneering work on synthesis of the laser ceramics and obtaining effective generation [7], a large amount of research was carried out in this direction. The requirements [8] are specified to achieve high-efficiency laser generation in ceramics: the thickness of the grain boundaries is of the order of 1 nm, the scattering loss per pass is less than 0.05–0.1% cm−1 (residual porosity at the level of 10−4 vol.%), optical uniformity with wavefront distortion of the λ/19.5. Using yttrium-aluminum garnet-based ceramics (Y3Al5O12, YAG) with similar characteristics in the geometry of a thin disk (active medium Ø11 × 0.15 mm), an output power of 1.8 kW with a slope efficiency of 74.1% was implemented [9]. Moreover, a record output power of 6.5 kW with a slope efficiency of 57% was achieved in [10]. In a ceramic disc 8.5% Yb:LuAG with a thickness of 0.15 mm, an output power of 1.74 kW with a slope efficiency of 71.2% was demonstrated [11]. The most impressive output power values were achieved when using active elements of a sufficiently large volume. For example, in a ceramic plate of 1% Nd:YAG with a size of 89 × 30 × 3 mm3, the power of continuous laser generation was 2.44 kW [12], and with increasing dimensions up to 120 × 50 × 3 mm3—4.35 kW [13]. The cascade of several Nd:YAG ceramic elements sized 100 × 100 × 20 mm3 allowed this value to increase to 67 kW [14], and further to 105.5 kW [15].
From the point of view of energy characteristics, the impulses with an energy of 105 J for a duration of 10 ns and an average power of 1 kW at a repetition rate of 10 Hz and cryogenic cooling of a Yb:YAG/Cr:YAG element of ceramics have been implemented to date [16].
One should also note the progress in the field of implementation of ultrashort laser pulses in ceramic active media. In this direction, laser pulses of 188 fs duration [17] and 152 fs [18] were demonstrated using Yb:Y2O3 ceramics. The shortest duration was achieved using composite ceramic Yb:Y2O3/Yb:Sc2O3 media with a total width of the amplification band of 27.3 nm, where a record low pulse duration of 53 fs was demonstrated [19].
When developing the technology to produce ceramic active elements, the main attention is paid to the formation of a nonporous microstructure of the material while maintaining the characteristic grain size in the range from several hundred nanometers to micrometers, which is important for reducing the local depolarization of laser radiation [20]. To meet these requirements, synthesis techniques were developed based on spark plasma sintering [21, 22, 23], hot isostatic pressing [24, 25, 26], and vacuum sintering with doping of heterovalent ions [27]. The latter option is more attractive due to the less expensive and uncomplicated technology. However, this approach, with a significant content of additives (more than 1 mol.%), is fraught with a significant disadvantage due to the release of heterovalent ions during sintering into the regions adjacent to the grain boundaries. In the synthesis of oxide ceramics, the possibilities of this approach can be expanded by using nanopowders obtained by laser evaporation, where the synthesis of nanoparticles proceeds at high temperatures and rapid cooling. This will ensure high uniformity of nanoparticles and ceramics based on them.
There are many methods for preparing nanopowders: mechanical crushing, precipitation from solutions, sol-gel, self-propagating high-temperature synthesis, physical vapor deposition. However, nanopowders prepared by the method of laser evaporation of a solid target in a gas atmosphere meet the above requirements to the fullest extent possible. Indeed, the radius of such particles (5–10 nm), the range of particle size distribution is rather narrow (5–40 nm), their purity is similar to the purity of the starting material, they usually have a spherical shape. The large capillary pressure and the significant surface energy due to the large surface of such nanopowders allow, under otherwise equal conditions, to reduce the duration or the sintering temperature. However, the most important advantage of the nanopowders thus prepared is that the doping takes place directly in the laser plume at high temperature and rapid cooling. This prevents segregation of the dopants and ensures high homogeneity of the ingredients in the nanoparticle, in the compact and, as will be shown, in samples of synthesized ceramics. In this connection, let us consider the process of laser nanopowder synthesis in more detail.
For the synthesis of oxide nanopowders by this method, a CO2 laser (λ = 10.6 μm) and a 600 W fiber ytterbium laser (λ = 1.06 μm) were used. The average output power of the CO2 laser was 550 W at a repetition rate of 650 Hz pulses with an energy of W = 1.4 J, a peak power of about 9 kW, and a duration of 500 μs at a power level of 0.1.
Figure 1a shows a block diagram of the laser complex for preparing nanopowders [28, 29]. Laser radiation was focused on the target with a lens, which also served as the entrance window of the evaporation chamber. The target was made from oxide micro-powder (or a mixture of them) by pressing and sintering it. As a result of the action of laser radiation, a laser plume consisting of target vapors appeared on the target near its surface. Mixing with ambient air or other buffer gas, the steam was cooled. The cooled vapor was condensed in the form of nanoparticles, which were in the evaporating chamber in a suspended state. A special drive rotated the target and moved it linearly in a horizontal plane so that the laser beam scanned the surface of the target at a constant linear velocity, thereby achieving uniform evaporation of the material from the surface. After evaporation of the surface, the target moved in a vertical direction. The fan pumped air through the chamber and transferred the powder to the cyclone and further into the electric filter where it was assembled. The air was cleaned additionally in a mechanical filter and returned to the chamber. The gas flow rate above the target surface was 15 m/s. Figure 1b (upper) shows photographs of the laser target before and after exposure of the CO2 laser radiation for which the target material is opaque and the ytterbium laser radiation for which the target is semitransparent (lower). It can be seen that if the target is translucent for laser radiation, then it evaporates non-uniformly. Its surface consists of a number of needle formations 8 mm high and up to 1 mm thick.
Preparing a nanopowder: (a) block diagram of the laser complex for preparing a nanopowder, (b) image of laser target after exposure to radiation CO2 laser (top), ytterbium fiber laser (bottom) [
The nanoparticles are formed in a laser plume. A laser plume is a flow of incandescent vapors of a solid target in the form of a weakly ionized plasma from the region of incidence of the laser beam on the target [30, 31]. In visible light, the plume is typically in the shape of a needle directed normal to the target surface, regardless of the angle of incidence of the laser beam (Figure 2). This tip is surrounded by a vortex structure, which is clearly manifested in shadow photography [32].
Scanning of photographs (exposure 1 μs) of a laser plume (CO2 laser pulse duration 200 μs, incident angle of 45°). Top row: visible light photography, bottom row: shadow photography. The captions below them indicate the shooting delay time relative to the start of the plume initiation (t) and the peak laser power (P) at the time of shooting [
When exposed to single pulse or pulse-periodic laser radiation, the plume appears after the delay time td. During this time, the target substance is heated to the evaporation temperature in the area of the laser beam incidence. For a linear leading edge of a laser pulse, the delay time is defined as td = 2Wd/Pd. Here, Wd is the energy required for preheating the target substance to the evaporation temperature, and Pd is the instantaneous power of laser radiation at the moment of the flare appearance. For different substances, due to the difference in Wd, the delay times of td differ. After the appearance of the glow (l = 0), the height of the plume (l) increases at a rate proportional to the square root of the peak power of the laser pulse. The maximum height of the plume (lm) is reached at the moment of the maximum laser pulse. The diameter of the luminous zone of the plume is typically 0.5–1.0 mm, which approximately corresponds to the size of the laser spot on the target surface.
Over the entire length of the plume, its emission spectrum is represented by dominated structured molecular bands of radicals of cations of the target substance [31] against the background of a continuous band of recombination radiation (Figure 3). In this case, the short-wave part of the spectrum is well approximated by the Wien’s curve, which makes it possible to determine the temperature of the luminous gas in the flare. Thus, when irradiated with a pulsed CO2 laser, the maximum temperature close to the boiling point of the target material is reached at the target surface, and the flame temperature decreases nonmonotonically as it moves away from the target. When irradiated with pulses of a fiber ytterbium laser (1.07 μm), the temperature of the plume near the target slightly exceeds the melting point of the substance.
The spectrum of the plume glow from a CO2 laser at different distances (
The transverse dimensions of the crater that appears on the target after exposure to a laser pulse almost coincide with the size of the laser spot on the target, and its depth depends on the wavelength of the laser radiation. For example, at the same pulse energy (1.0–1.4 J) after CO2 laser irradiation, the crater depth is 5–10 μm, almost independently of the target substance. After a fiber laser pulse, the crater depth is 6–8 times greater, and with repeated exposure, the target surface becomes needle-like. These features are due to different mechanisms of absorption of radiation by the target of these. Thus, the frequency of a photon at the wavelength of a CO2 laser is comparable to the frequency of optical phonons of oxide crystals. Therefore, in this case, such materials are almost opaque and the depth of penetration of laser radiation into them is only a few micrometers. For fiber ytterbium laser radiation, oxides we used are transparent – absorption is possible only on crystal and mechanical defects of the target. If these materials are single crystals with a minimum content of defects, the characteristic depth of penetration of laser radiation into them is tens of centimeters. This corresponds to the absorption index α~10−2–10−3cm−1. If such defects are located inside the target in the area of the laser beam incidence, the initial heating also occurs inside the target (in the area of these defects). Then, due to the strong temperature dependence of the absorption coefficient, a heat wave is formed [33], which moves along the laser beam from the defect to the target surface, upon reaching which a laser plume is formed. This process is compounded by the fact that after repeated exposure, the surface of the initial target is covered with a layer of transparent melt 100–400 μm thick, in which the defect concentration is much lower than in the initial target made of sintered micro-powder.
This model is confirmed by the fact that the delay time for the appearance of a laser flare from the beginning of the laser pulse exposure has a large spread and on average increases with increasing transparency of the target. In particular, the delay in the appearance of a laser plume on the surface of a semitransparent Nd:Y2O3 ceramic with α = 23 cm−1 (an analog of the fused layer) averaged over several radiation pulses was 5–10 times greater than for the original sintered micro-powder target (α = 1.7 × 103 cm−1) at the same radiation intensity I = 0.4 MW/cm2 [31]. The spread of the delay in the formation of a laser plume during evaporation of the same target is due to the stochastic nature of the depth of defects from the target surface at different points.
When nanopowders are obtained using both lasers, in addition to nanoparticles, spherical particles with sizes from 0.5 to 150 μm are also formed [29, 33], as well as shapeless target fragments of the same size. Fragments are formed after the end of radiation exposure to a specific part of the target due to thermal splitting of the cooling fused layer [30]. Spherical particles are liquid droplets of the melt, is sprayed by the vapor pressure of the laser crater.
Especially many drops are formed when the target is vaporized by continuous ytterbium laser radiation. At the same average radiation power (600 W) and the same intensity on the target as for the CO2 laser (≈1.3 MW/cm2), the production capacity of the Nd:Y2O3 nanopowder decreased to 15 g/h, and its output during evaporation of one target to 9 wt.% [34]. High-speed shooting of the laser plume showed that this effect is due to the transition from steam to vapor-drop ablation. The latter becomes dominant ~500 μm after the start of the laser pulse. A similar pattern is observed in the evaporation of targets from YSZ and FeMgAl2O4. Theoretical analysis [33] allowed us to establish that one of the reasons for the appearance of drops in the laser flare is related to the presence of melt in the crater and is due to the development of the Kelvin-Helmholtz instability that is formed between the liquid wall of the crater and the flow of expiring vapor. This analysis made it possible to establish the characteristic size of the instability:
and its development the increment
where
Optimizing the duration (<00 μs) and radiation density, separation and trapping, it was possible to prepare high-quality nanopowders. Figure 4 shows an example of a photo of YSZ nanopowder, and the distribution of particles of different composition in size is given as an example. Depending on the thermophysical properties of refractory oxides, the pressure and speed of the carrier gas, the productivity of producing a nanopowder using a CO2 laser with an average radiation power of 600 W varies from 10 to 80 g/hour.
A typical photo of YSZ nanoparticles (a) and the size distribution of nanoparticles of different compositions (b) [
The distinguishing feature of nanoparticles synthesized in a laser plume, i.e. at a high temperature and rapid cooling, is a high homogeneity of the distribution of components in the volume. This is confirmed by the results of a study of the distribution of the concentration of dopant (Yb) in the Lu2O3 matrix, carried out in the scanning electron microscope (SEM) mode using the X-ray spectral microanalysis (X-ray SMA) method. The results of mapping the elemental composition of individual nanoparticles are shown in Figure 5. It follows from these images that the dopant is distributed uniformly over the Lu2O3 matrix, and there is no increased Yb concentration on the particle surface.
Results of mapping the elemental composition of Yb:Lu2O3 nanoparticles with the use of SEM and X-ray SMA.
This finding is supported by the results of X-ray diffraction analysis of Nd:Y2O3 nanopowders and ceramics doped with HfO2 (Figure 6). It can be seen that the dependence of the parameters of the crystal lattice on the HfO2 content is linear. This indirectly indicates a homogeneous occurrence of Hf in a Y2O3 matrix and the absence of second phases, both in a nanopowder and in ceramics.
Results of X-ray diffraction analysis of ceramics and nanopowders with different concentrations of HfO2 [
A feature of the above method for producing nanopowders is that they crystallize in a laser plume, as a rule, in metastable phases. For example, yttrium oxide nanopowders crystallize in the monoclinic phase, while alumina nanopowders in the γ-phase. This effect is associated with very rapid cooling and quenching (within ≈1 ms) of the resulting nanoparticles during vortex mixing of the laser plume with air and, possibly, with the resulting oxygen deficiency in nanoparticles formed from trivalent cation radicals.
The requirements that are imposed on the methods of "cold" pressing are, first of all, maximally possible compact density and uniformity of stacking of powders. To produce highly transparent ceramics, the following compacting methods are most often used: slip casting, slip casting under pressure, cold isostatic pressing, static pressing, static pressing with ultrasonic treatment on nanoparticles, magnetic pulse compacting.
In [36], the transparency of laser ceramics was investigated using compacts prepared by slip casting and dry pressing. It was shown that ceramics samples, whose compacts were prepared by cold isostatic pressing, have greater transparency than with slip casting. This difference is attributed to the high viscosity of the slip using nanoparticles, which prevented tight packaging. At the same time, when using hot pressing at 1750 °C and a pressure of 200 MPa, the samples prepared by slip casting have better characteristics than those based on the compacting of dry powders. However, the use of hot pressing is a complex and expensive step, therefore, there is a strong desire to create a technological chain of preparation of samples with theoretical transparency, without the use of hot pressing.
Given the above, the most studies are conducted using dry cold pressing of nanopowders. For these purposes, we have tested the method of static pressing of nanoparticles with and without ultrasonic treatment (UST), magnetic-pulse pressing and cold isostatic pressing. All of them showed rather close relative densities of compacts at the same pressures, which is confirmed by the results presented in [36, 37]. Nominally pure and neodymium-activated yttrium oxide nanopowders, designated by us as Y2O3, 8 NDY, 3NDY, and 1NDY (the number before the letter symbol NDY denotes the content of neodymium oxide in mole percent in nanopowder) were used in the experiments. For comparison, the dry nanopowders (without plasticizers) of all these types were pressed as uniaxial static pressing (without UST), and under the influence of ultrasonic vibrations. The pressures were 240, 480, and 720 MPa. The diameter of the pressed samples was 14 mm, the height of the samples was 2–4 mm. The experimental results in the form of the dependence of the relative density on the compacting pressure at a constant power of UST 3 kW and 0 kW (i.e. without UST) are shown in Figure 7.
Curves of nanopowder compaction: (a) 8NDY, 3NDY, 1NDY, Y2O3 with UST,
According to the technique described in [37], the parameters of the pressing equation
where
The effect of nanoparticle size on compacts density is discussed in [38] using the above method, the granular dynamics. The calculations were carried out for nanopowders with particle sizes from 10 to 100 nm. Typically, deterioration of compressibility with decreasing particle sizes is associated with adhesion of the individual particles, which results in the formation of strong aggregates. As possible causes of the size effect are called Van der Waals forces of attraction, the absence of plastic deformation of nanoparticles, the formation of chemical bonds, electrostatic interaction, etc. The authors [38] sought to take into account the most important of these reasons. Their calculations of the dependence of the density of compacts on the axial pressure are shown in Figure 8.
Axial pressure as a function of the compact density for systems with a particle size d = 10 nm (1), 30 nm (2), 100 nm (3) and a system without Van der Waals forces (4). Solid lines are isotropic initial configurations; dashed lines are anisotropic configurations [
Under the initial anisotropic configuration, the distribution of particles with the presence of vertical chains and a coordination number exactly equal to two accurately was adopted. It can be seen that as the particle size increases at the same pressing pressures, the density of the compacts increases substantially. We should also pay attention to the important role that the Van der Waals forces create (curve 4). Of course, there is no exact agreement with the experimental data, but the trend can be traced unequivocally. This fact raises the question of which nanopowders are most preferable for the synthesis of laser ceramics. On the one hand, small particles due to high surface energy provide high sinterability, and in the case of nanopowders, produced by laser evaporation, - greater solubility of ingredients in each other and particle uniformity, but poorer compressibility. This question remains open in relation to the synthesis of laser ceramics up to this point. Further, the results obtained using a nanopowder, obtained by laser evaporation of a solid target, with an average particle size of 10–20 nm and uniaxial static pressing will be presented for the preparation of compacts with dimensions less than 30 mm. Cold isostatic pressing was used for compacts of larger diameter. The prepared compacts with a relative density of 0.46–0.58 are usually air calcined to remove organic matter and to provide additional oxidation and phase transformations.
Figure 9 shows the dependence of the grain size on the calcination temperature. Each point on the graph corresponds to its own pattern. It can be seen that the grain sizes grow reasonably from 24 to 77 nm with an increase in temperature from 715 °C to 1300 °C, and the last point, apparently, is caused by a measurement error. The dependence of the mechanical stresses and density of compacts on temperature is also given there: after transformation at 715 °C into a cubic phase which parameters are greater than in the monoclinic one, mechanical stresses increase with the temperature raise, followed by a certain decrease, accompanied simultaneously by a shock of condensation of compacts, that we also interpreted as a mechanical ordering of grains. Further, the behavior of the curves is logical: the density of compacts increases, mechanical stresses decrease.
Dependence of the grain size, mechanical stresses and densities of compacts on the calcination temperature of compacts from the nanopowder of the monoclinic phase [
Sintering can be conditionally divided into three stages. The dependencies shown in Figure 9, characterize the processes in two of the three stages of sintering. In stage I (700–1200 °C), there is no shrinkage of the compact, but mass transfer from convex to concave surfaces occurs, mainly by near-surface diffusion. This leads to a decrease in the free surface of nanoparticles, which means that they smooth out, spheroidize and increase the size of contact spots between nanoparticles. In the case of nanopowders, the latter process leads to an increase in the dimensions of the nanoparticles, which is not observed for particles with dimensions of ~1 μm.
After 1200°C, a second stage is observed, characterized by rapid shrinkage of the sample. This is due to the diffusion sliding of the grains and the diffusion adjustment of their shape, as well as the "evaporation" of vacancies from the pore surface in the bulk of the particles, with their subsequent exit to the crystallite boundaries and displacement in the boundary layer. Since the particle sizes in our case are small, there are many grain boundaries, then the shrinkage process occurs quite intensively.
When the compacts are compacted, the diffusion processes are decisive. Therefore, an increase in these rates by introducing hetero- and isovalent additives that form solid solutions can significantly accelerate the compaction. In this case, heterovalent additives lead to the formation of vacancies that are much higher than their thermodynamic content in the unalloyed matrix. The introduction of isovalent additives leads to lattice distortion. Both these additives lead to an acceleration of mass transfer, release and filling of pores. When sintering with such additives, a situation may occur where the removal of pores outstrips the growth of crystallites. In this case, these processes are separated, and the crystallites grow non-porous, which facilitates the synthesis of high-transparency ceramics. Moreover, the introduction of additives changes the conditions for the transition of an atom across the boundary, which can significantly affect the final dimensions of the crystallites. We have investigated the replacement of the Y3+ cation in Nd3+:Y2O3 with isovalent ions Lu3+ or Sc3+ ions or the Zr4+ and Hf4+ heterovalent ions, and also the Al4+ cations by Ce3+ in garnet ceramics. The compacts with a diameter of 15–32 mm, a thickness of 0.5–3.5 mm with a relative density of ~0.5 were sintered. The parameters of sintering varied over a wide range: the sintering temperature T = 1550–2050°C; sintering time ts = 1–30 h; the rate of temperature rise vT = 0.75 and 5.0 K/min. The influence of these factors on the characteristics of high-transparency ceramics will be discussed in the next section.
Highly transparent ceramics are more commonly used as active elements of solid-state lasers intended for various purposes, optical armor, scintillation sensors, heat and mechanically resistant windows, bulbs for high-power high-pressure lamps, wide-angle lenses, etc. It was previously noted that ceramic samples of the highest optical quality are usually obtained using hot isostatic pressing. This is a rather expensive and complex technology. Therefore, numerous studies are being conducted to find technological solutions to avoid this operation. Here we present the results of only one of the ways to solve this problem, which is related to the use of nanopowders with a small average particle size and high uniformity of their composition within each of the nanoparticles. Let’s consider the characteristics of a number of ceramics for various purposes prepared using nanopowders synthesized in a laser plume.
Such ceramics are formed by replacing matrix cations with impurity cations. This leads to a change in the local crystalline fields in the positions of the activator ions and, therefore, to broadening of the spectral lines and the gain band.
First the focused broadening of the laser transition band was implemented in ceramic yttrium-aluminum garnet [39], when a part of aluminum ions was replaced by scandium ions, i.e. ion of the same valence. In this ceramic, activated by Nd3+, a laser pulse with a duration of 10 ps was obtained on its optical transitions in the 1 μm region, and when the neodymium was changed to ytterbium, it was reduced to 96 fs [40].
At the same time, it was found that the greatest broadening of the gain band is achieved in the ceramics based on yttrium oxide with the introduction of heterovalent ions. However, in [41] the doping with such ions did not allow achieving the transparency necessary for high-performance generation [35]. According to the authors, this was prevented by the formation of an "orange peel" due to the increased concentration of dopants near the intercrystalline boundaries. Since this class ceramic is important for the development of laser technology, we investigated its creation using two approaches. In the first case, the traditional approach [7] was implemented, i.e. the ceramics were synthesized from nanopowders of simple oxides Yb2O3, Nd2O3, Y2O3, HfO2 and ZrO2, mixed in the required ratio. We refer to them as to "mixed" powders. The second approach is original [42] and consists in the fact that the necessary components were mixed in the preparation of a laser target, and the synthesis of nanoparticles occurred in a laser plume, i.e. at high temperature and rapid (<1 ms) cooling. Let’s refer to these powders as to "laser" ones.
Using these approaches, the samples of ceramics based on yttrium oxide with HfO2 or ZrO2 additives were prepared. The samples were 2–3 mm thick and 11 mm in diameter. Analysis of the appearance of the ceramics’ samples based on yttrium oxide, obtained by different approaches, shows that they differ insignificantly. The differences are manifested in the study of their light scattering. Figure 10 shows photographs of the initial radiation of the laser (λ = 633 nm) incident on the screen and of the radiation passing through samples of "mixed" and "laser" powders having the same chemical composition [(YbxLuyY1−x−y)2O3]1−z(ZrO2)z. It can be seen that the ceramic made of "mixed" powders possesses a large light scattering and transparency by 15–20% lower than that made of laser powders [42], therefore it is not yet suitable for obtaining high-performance generation.
The initial radiation of a semiconductor laser (λ = 633 nm) incident on the screen (a) and the radiation transmitted through the ceramic samples [(YbxLuyY1−x−y)2O3]1−z(ZrO2)z from the “mixed” (b) and laser (c) powders [
In this connection, the ceramics prepared from “laser” powders were investigated further. Their disordered crystalline structure manifests itself in the broadening of the emission bands at laser transitions between the Stark levels of the neodymium ion 4F3/2 ↔ 4I11/2 and of the Yb3+ ion 2F5/2 ↔ 2F7/2 (Figure 11). Moreover, it was found that the additives lead to a complete overlap (at a level less than 0.4 of the maximum intensity) of the contours of the two neodymium emission bands at λ = 1060 nm and 1075 nm (Figure 11, left). This leads to the formation of a continuous emission band with a width of up to 50 nm (on the base) in the range of 1040–1090 nm [42].
IR spectra of luminescence of ceramic samples activated with Nd3+ ions (left) and Yb3+ ions (right) [
In the optical ceramics activated with ytterbium, the above additives also lead to broadening of the luminescence bands at λ = 1030 and 1075 nm on a laser transition between the Stark levels of the Yb3+ ion 2F5/2 ↔ 2F7/2 (Figure 11, right). A complete overlap of the bands is observed at a minimum level of 0.25 of the maximum intensity with the width of the continuous band at this level reaching 100 nm on the base [42, 43].
In the ceramics with additions of zirconium and hafnium, the trivalent Hf3+ and Zr3+ ions were found [42, 43, 44], which is confirmed by electron paramagnetic resonance spectra [44]. In the crystal, 3d104d1 Zr3+ and 4f145d1 Hf3+ ions form two Stark levels: the orbital doublet (E) and the triplet (T2), with the energy gap equal to the strength of the crystal field in the positions of these ions. In yttrium oxide, these ions replace yttrium ions in two positions С2 and C3i, differing in symmetry and the strength of the crystalline field. Therefore, in the pulsed cathodoluminescence spectra of the ceramics containing zirconium or hafnium, both ions (Hf3+ and Zr3+) emit two bands each, at λ = 818 nm and 900 nm about 30 nm wide [42, 43]. Furthermore, the energy of the radiative level of the short-wave band (12225 cm−1) of the Hf3+ and Zr3+ ions coincides with the energy of the pumping level of 4F5/2 (12138–12436 cm−1) of the neodymium ion, and the energy of the radiative level of the second longer wavelength band (11100 cm−1) – with that of the upper laser level 4F3/2 (11208–11404 cm−1) of the Nd3+ ion. It is because of the negative influence of the Hf3+ and Zr3+ ions on the inverse population of the laser levels caused by this coincidence, that we have not obtained laser generation on the neodymium ion ransitions in the ceramics with disordered crystalline structure with additions of hafnium or zirconium.
Another situation is observed for the activator Yb3+ ion. The energy of its upper laser level 2F5/2 (10240–10673 cm−1) is less than the energy of the radiative levels of Hf3+ and Zr3+ ions. Therefore, the Hf3+ and Zr3+ ions do not affect the population of the 2F5/2 level of the Yb3+ ion, which allowed generation of laser radiation in disordered ceramic consisting of 0.88[(Yb0.01Lu0.24Y0.75)2O3]+0.12ZrO2 [42] obtained from "laser" nanopowders of a solid solution. The generation properties were investigated in a three-mirror V-shaped resonator formed by two spherical mirrors with radii of curvature of 100 mm and an output plane mirror with a transmittance of 1.2, 2.4 and 5.0%. The active element in the form of a polished ceramic disk 1.27 mm thick was installed in the resonator between spherical mirrors at the Brewster angle. Pumping was carried out through a dichroic spherical mirror with a reflection coefficient of 99.9% in the range of 1020–1100 nm and a transmittance factor of 98% in the range of 950–980 nm by a laser diode radiation with a fiber output of 9 W at a wavelength of 975 nm and a bandwidth of 3 nm. With an output mirror with a transmittance factor of 1.2, 2.4 and 5.0%, the slope efficiency was 16.5, 26.0 and 29.0% with an optical efficiency of 6.8, 7.0 and 9.5%, respectively.
Relatively low values of the laser generation parameters obtained are due to the presence of an "orange peel" in the ceramics with a high content (12 mol%) of zirconium. In the ceramic consisting of 0.95[(Yb0.05Lu0.15Y0.80)2O3] + 0.05ZrO2 with a content of the sintering additive ZrO2 reduced to 5 mol%, the "orange peel" is not clearly manifested. While investigating the generation properties [45], it was found that the laser generation band on this ceramic (Figure 12) practically coincides with the IR-luminescence band (Figure 11, right), its width reaches 97 nm at the base, which is currently a record value in the visible and near-IR wavelengths. On this entire band, quasi-continuous generation with a slope efficiency equal to 49.3% and 51.2% in the band maxima at the wavelengths of 1077 and 1032 nm, respectively, was obtained. These factors provide good prospects for the development of lasers with ultrashort pulses and lasers with a wide range of smooth frequency tuning.
Laser generation band of 0.95[(Yb0.05Lu0.15Y0.80)2O3] + 0.05ZrO2 ceramics [
Taking into account the importance for the creation of technological lasers and high-scale laser systems, the great attention has been paid to YAG ceramics, doped with Nd or Yb. Extensive studies have been carried out, the results of which have been presented in a number of reviews, for example [46], and monographs [8], the methods for obtaining nanopowders, compaction and sintering have been developed that make it possible to synthesize samples with a transparency close to the theoretical one [8] and to generate a radiation with an efficiency of more than 74%. High-level results were obtained using both hot isostatic pressing (HIP) and vacuum sintering, but the presence of sintering additives in a mixture of nanopowders as TEOS [7] and MgO [47] was always mandatory. Using the nanopowders prepared by the laser synthesis method, we have studied the feasibility of synthesizing YAG ceramics without the use of these additives. Various approaches to the preparation of nanopowders were involved.
The successful attempt to produce highly transparent YAG ceramics without the use of sintering additives was associated with the mixing of separately obtained Nd:Y2O3 and Al2O3 nanopowders in the ratio of 3/5. Measured by the BET method the specific surface area of the Nd:Y2O3 powder was 50.7 m2/g. It was a solid solution based on monoclinic yttrium oxide with crystalline lattice parameters a = 13.92 Å, b = 3.494 Å, c = 8.611 Å, β = 101.2°. After calcination at a temperature of 1000 °C for 30 minutes, the surface area of the powder was 25 m2/g for conversion to the cubic phase, i. e. the particle size increased from 12 to 49 nm. Al2O3 nanopowder was also obtained by laser evaporation of a target followed by condensation of vapors in the air stream. Its specific surface, was 109.67 m2/g. X-ray fluorescence analysis showed that the powder consists mainly of the γ-Al2O3 phase and the δ-phase content was less than 10%.
These powders were mixed in the indicated proportion in a drum mixer with an inclined rotation axis for 24 hours. Further, briquettes with a density of 20% compared to the theoretical were compacted from this mixture, which were then calcined at 1200 °C for 3 hours. As shown by X-ray fluorescence analysis, the YAG phase content in the briquettes was 96–98%. These briquettes were then milled by YSZ balls in a planetary mill for 48 hours.
The analysis of powder images after grinding showed that the agglomerates of the particles formed after calcination had an average size slightly less than 1 μm, but sometimes their size was close to 10 μm. The compacting of nanopowders into disks with a diameter of 15 mm and a thickness of 1.5–4.5 mm was carried out by the method of dry uniaxial static pressing without the use of any additives. The compacting pressure in these experiments was unchanged and was 200 MPa, which made it possible to obtain a density of 61.8%. Sintering was performed at a temperature of 1760 °C for 20 hours. The pore content in the samples was ~60 ppm, and the transparency was 83.28%. For the first time in the Nd: YAG ceramics that did not contain sintering additives, the generation was obtained with an average power of up to 4 W and a slope efficiency of 19% [48]. However, much better results were achieved when 0.5 wt% TEOS sintering additive was added to the nanopowder. In this case, the slightly agglomerated Nd:Y2O3 and Al2O3 nanoparticles of spherical shape with dimensions of 8–14 nm were calcined at a temperature of 900–1200 °C for transformation from the monoclinic to the cubic phase. These calcined nanopowders were weighed to ensure the Nd0.03Y2.97Al5O12 stoichiometry and mixed in a ball mill with an inclined axis of rotation in alcohol with the addition of 0.5 wt% TEOS for 48 hours.
Using the previously described approach, Nd(Yb):YAG ceramic samples were synthesized. Figure 13 shows a photograph of a Nd:YAG ceramic sample, its transmission spectrum, and also the transmission spectrum of a single-crystal laser of the same composition, which has theoretical transparency. It can be seen that in the wavelength range of more than 450 nm, these spectra practically coincide. Compared with the above results, the optical quality of the resulting ceramic due to the presence of SiO2 was improved due to a partial reduction in agglomeration of the powder during the calcination step, inhibition of crystallite growth and pore removal due to the formation of the liquid phase, which led to reducing their content to 17 ppm. Similar results were obtained by compacting the calcined Nd:Y2O3 and Al2O3 nanopowders into compacts with a relative density of 48% and reactive sintering at 1780 °C for 20 hours.
Transmission spectra of Nd:YAG single crystal (1) and ceramics (2). The inset shows a photograph of ceramics [
The comparative studies of our samples and samples by Konoshima Chemical [50] were carried out jointly with the National Institute of Optics (Florence, Italy). They had the same composition (1 at.% Nd:YAG) and a thickness of 1.5 mm. To obtain the generation, a V-shaped resonator was used (Figure 14a). Pumping was carried out through an end dichroic mirror having high transparency for pumping radiation and high reflection for the generated radiation and spaced from the sample by 4 mm. The distance from the end EM and the output mirror OC to the rotary mirror FM was 280 mm. The OC transmission varied between 2–20%. Pumping was carried out by rectangular pulses of a duration of 10 ms and a frequency of 12.5 Hz. Their peak power was 32 W, the radiation focusing spot was 0.8 mm.
Flow-chart of the experimental setting (a) and the dependence of the generation power on the pump power (b) [
The dependence of the output power on the pump power is shown in Figure 14b. Similar results were obtained for the samples of Konoshima Chemical. Comparative data are given in Table 1. The best results were obtained with a transparency of the output mirror Toc = 20%, when the radiation power was Pout = 4.91 W, and the slope efficiency ηsl = 52.7%. Thus, the introduction of a sintering additive in the form of TEOS had a significant effect on improving the characteristics of samples prepared from nanoparticles synthesized in a laser plume.
ηS, % | ηS, % | ηS, % | ||||
---|---|---|---|---|---|---|
IEP UrB RAS | 4.91 | 52.7 | 4.38 | 35.5 | 2.07 | 16.7 |
Konoshima Chemical | 5.29 | 53 | 4.69 | 40.4 | 2.49 | 16.6 |
Laser characteristics of Nd:YAG ceramics [50].
The main stages and processes taking place in the preparation of high-transparent ceramics, including laser ones. The optimal conditions at which the productivity of nanopowder production is realized, depending on the thermophysical properties of the material, were found to be 10–80 g/h. It is shown that the nanoparticles obtained are weakly agglomerated, have a spherical shape and an average size of ~10 nm. A feature of such nanoparticles is the high homogeneity of the composition at a high level of doping. It is shown that the density of compacts does not depend on the method of dry pressing and is determined by pressure, although the level of residual mechanical stresses differs. Pressing was carried out at diapason of pressures of 250–300 MPa, at which compact densities were ~50%.
The use of nanopowders synthesized in a laser plume for the preparation of highly transparent ceramics makes it possible to increase the threshold for the formation of an "orange peel". This opens the road to the use of sesquioxides with highly disordered crystalline structure as active elements of solid-state lasers using a relatively simple technology. In particular, this approach allowed to obtain the following.
In samples based on Y2O3 doped with Yb2O3 and ZrO2, the slope efficiency of radiation generation can exceed 50%, and the band for smooth tuning of the radiation frequency can reach 100 nm.
Highly transparent YAG samples are prepared without the use of sintering additives, where the transparency and generation efficiency, however, is inferior to those realized when doping TEOS.
The research was carried out within the framework of the theme of state task No. 0389-2016-002 (2018–2020) and with the support of the project by UB of R AS No. 18-10-2-38.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15913}],offset:12,limit:12,total:119060},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9816",title:"Idiopathic Pulmonary Fibrosis",subtitle:null,isOpenForSubmission:!0,hash:"365bb9762ba33db2d07e677690af1772",slug:null,bookSignature:"Dr. Salim Surani and Dr. Venkat Rajasurya",coverURL:"https://cdn.intechopen.com/books/images_new/9816.jpg",editedByType:null,editors:[{id:"15654",title:"Dr.",name:"Salim",surname:"Surani",slug:"salim-surani",fullName:"Salim Surani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10789",title:"Cervical Cancer - A Global Public Health Treatise",subtitle:null,isOpenForSubmission:!0,hash:"3f7a79875d0d0ae71479de8c60276913",slug:null,bookSignature:"Dr. Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10789.jpg",editedByType:null,editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10568",title:"Hysteresis in Engineering",subtitle:null,isOpenForSubmission:!0,hash:"6482387993b3cebffafe856a916c44ce",slug:null,bookSignature:"Dr. Giuseppe Viola",coverURL:"https://cdn.intechopen.com/books/images_new/10568.jpg",editedByType:null,editors:[{id:"173586",title:"Dr.",name:"Giuseppe",surname:"Viola",slug:"giuseppe-viola",fullName:"Giuseppe Viola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10668",title:"Sustainable Concrete",subtitle:null,isOpenForSubmission:!0,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:null,bookSignature:"Prof. Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editedByType:null,editors:[{id:"144691",title:"Prof.",name:"Hosam",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10557",title:"Elaeis guineensis",subtitle:null,isOpenForSubmission:!0,hash:"79500ab1930271876b4e0575e2ed3966",slug:null,bookSignature:"Dr. Hesam Kamyab",coverURL:"https://cdn.intechopen.com/books/images_new/10557.jpg",editedByType:null,editors:[{id:"225957",title:"Dr.",name:"Hesam",surname:"Kamyab",slug:"hesam-kamyab",fullName:"Hesam Kamyab"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10648",title:"Vibrios",subtitle:null,isOpenForSubmission:!0,hash:"863c86c37b8a066ed95397fd9a114a71",slug:null,bookSignature:"Dr. Lixing Huang and Dr. Jie Li",coverURL:"https://cdn.intechopen.com/books/images_new/10648.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:25},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:44},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:169},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"224",title:"Fluid Mechanics",slug:"physics-fluid-mechanics",parent:{title:"Physics",slug:"physics"},numberOfBooks:13,numberOfAuthorsAndEditors:241,numberOfWosCitations:159,numberOfCrossrefCitations:91,numberOfDimensionsCitations:186,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"physics-fluid-mechanics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9276",title:"Computational Fluid Dynamics Simulations",subtitle:null,isOpenForSubmission:!1,hash:"03a2501c6fc0ac90a8b328850b712da7",slug:"computational-fluid-dynamics-simulations",bookSignature:"Guozhao Ji and Jiujiang Zhu",coverURL:"https://cdn.intechopen.com/books/images_new/9276.jpg",editedByType:"Edited by",editors:[{id:"190139",title:"Dr.",name:"Guozhao",middleName:null,surname:"Ji",slug:"guozhao-ji",fullName:"Guozhao Ji"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10162",title:"A Diffusion Hydrodynamic Model",subtitle:null,isOpenForSubmission:!1,hash:"a8c90b653db4fa7a59132d39cca185d8",slug:"a-diffusion-hydrodynamic-model",bookSignature:"Theodore V. Hromadka II, Chung-Cheng Yen and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/10162.jpg",editedByType:"Authored by",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}},{type:"book",id:"7516",title:"Pattern Formation and Stability in Magnetic Colloids",subtitle:null,isOpenForSubmission:!1,hash:"21a8698d0563982b2648f1e1a32425b9",slug:"pattern-formation-and-stability-in-magnetic-colloids",bookSignature:"Nicola?s O. Rojas",coverURL:"https://cdn.intechopen.com/books/images_new/7516.jpg",editedByType:"Edited by",editors:[{id:"208723",title:"Dr.",name:"Nicolás O.",middleName:null,surname:"Rojas",slug:"nicolas-o.-rojas",fullName:"Nicolás O. Rojas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7409",title:"Swirling Flows and Flames",subtitle:null,isOpenForSubmission:!1,hash:"5f1e759937aadaba14ea6082931a121a",slug:"swirling-flows-and-flames",bookSignature:"Toufik Boushaki",coverURL:"https://cdn.intechopen.com/books/images_new/7409.jpg",editedByType:"Edited by",editors:[{id:"101545",title:"Dr.",name:"Toufik",middleName:null,surname:"Boushaki",slug:"toufik-boushaki",fullName:"Toufik Boushaki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7490",title:"Fluid Flow Problems",subtitle:null,isOpenForSubmission:!1,hash:"27aa4a0406389276c800603b916db9a3",slug:"fluid-flow-problems",bookSignature:"Farhad Ali",coverURL:"https://cdn.intechopen.com/books/images_new/7490.jpg",editedByType:"Edited by",editors:[{id:"225906",title:"Dr.",name:"Farhad",middleName:null,surname:"Ali",slug:"farhad-ali",fullName:"Farhad Ali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8825",title:"Novel, Integrated and Revolutionary Well Test Interpretation and Analysis",subtitle:null,isOpenForSubmission:!1,hash:"6f79f457e509e77d107763010a6d0655",slug:"novel-integrated-and-revolutionary-well-test-interpretation-and-analysis",bookSignature:"Freddy Humberto Escobar Macualo",coverURL:"https://cdn.intechopen.com/books/images_new/8825.jpg",editedByType:"Authored by",editors:[{id:"142270",title:"Dr.",name:"Freddy",middleName:"Humberto",surname:"Escobar",slug:"freddy-escobar",fullName:"Freddy Escobar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"6514",title:"Microfluidics and Nanofluidics",subtitle:null,isOpenForSubmission:!1,hash:"4ec06fd827f4dc0d3d7653eda88662de",slug:"microfluidics-and-nanofluidics",bookSignature:"Mohsen Sheikholeslami Kandelousi",coverURL:"https://cdn.intechopen.com/books/images_new/6514.jpg",editedByType:"Edited by",editors:[{id:"185811",title:"Dr.",name:"Mohsen",middleName:null,surname:"Sheikholeslami Kandelousi",slug:"mohsen-sheikholeslami-kandelousi",fullName:"Mohsen Sheikholeslami Kandelousi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6126",title:"Colorimetry and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"f74525de04361957bd947a45b0e64378",slug:"colorimetry-and-image-processing",bookSignature:"Carlos M. Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/6126.jpg",editedByType:"Edited by",editors:[{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5915",title:"Granular Materials",subtitle:null,isOpenForSubmission:!1,hash:"4d72e38daa75721701686e2007b9defc",slug:"granular-materials",bookSignature:"Michael Sakellariou",coverURL:"https://cdn.intechopen.com/books/images_new/5915.jpg",editedByType:"Edited by",editors:[{id:"16550",title:"Dr.",name:"Michael",middleName:null,surname:"Sakellariou",slug:"michael-sakellariou",fullName:"Michael Sakellariou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5370",title:"Vortex Dynamics and Optical Vortices",subtitle:null,isOpenForSubmission:!1,hash:"bf45ea3936725da5f92207f7709d24ab",slug:"vortex-dynamics-and-optical-vortices",bookSignature:"Hector Perez-de-Tejada",coverURL:"https://cdn.intechopen.com/books/images_new/5370.jpg",editedByType:"Edited by",editors:[{id:"79235",title:"Dr.",name:"Hector",middleName:null,surname:"Perez-De-Tejada",slug:"hector-perez-de-tejada",fullName:"Hector Perez-De-Tejada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6028",title:"Vortex Structures in Fluid Dynamic Problems",subtitle:null,isOpenForSubmission:!1,hash:"3e6874ea59cb10b653cd2190b941c7f5",slug:"vortex-structures-in-fluid-dynamic-problems",bookSignature:"Hector Perez-de-Tejada",coverURL:"https://cdn.intechopen.com/books/images_new/6028.jpg",editedByType:"Edited by",editors:[{id:"79235",title:"Dr.",name:"Hector",middleName:null,surname:"Perez-De-Tejada",slug:"hector-perez-de-tejada",fullName:"Hector Perez-De-Tejada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1654",title:"Hydrodynamics",subtitle:"Theory and Model",isOpenForSubmission:!1,hash:"6f35be6d05e82cf5777223a86ff6e4ca",slug:"hydrodynamics-theory-and-model",bookSignature:"Jinhai Zheng",coverURL:"https://cdn.intechopen.com/books/images_new/1654.jpg",editedByType:"Edited by",editors:[{id:"105318",title:"Dr.",name:"Jin - Hai",middleName:null,surname:"Zheng",slug:"jin-hai-zheng",fullName:"Jin - Hai Zheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:13,mostCitedChapters:[{id:"31572",doi:"10.5772/26045",title:"Fuel Jet in Cross Flow - Experimental Study of Spray Characteristics",slug:"fuel-jet-in-cross-flow-experimental-study-of-spray-characteristics",totalDownloads:4332,totalCrossrefCites:13,totalDimensionsCites:30,book:{slug:"advanced-fluid-dynamics",title:"Advanced Fluid Dynamics",fullTitle:"Advanced Fluid Dynamics"},signatures:"E. Lubarsky, D. Shcherbik, O. Bibik, Y. Gopala and B. T. Zinn",authors:[{id:"65353",title:"Dr.",name:"Eugene",middleName:null,surname:"Lubarsky",slug:"eugene-lubarsky",fullName:"Eugene Lubarsky"}]},{id:"61632",doi:"10.5772/intechopen.74967",title:"Application of Nanofluids for Thermal Management of Photovoltaic Modules: A Review",slug:"application-of-nanofluids-for-thermal-management-of-photovoltaic-modules-a-review",totalDownloads:868,totalCrossrefCites:7,totalDimensionsCites:11,book:{slug:"microfluidics-and-nanofluidics",title:"Microfluidics and Nanofluidics",fullTitle:"Microfluidics and Nanofluidics"},signatures:"Hafiz Muhammad Ali, Tayyab Raza Shah, Hamza Babar and\nZargham Ahmad Khan",authors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",middleName:null,surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"},{id:"229676",title:"Mr.",name:"Hamza",middleName:null,surname:"Babar",slug:"hamza-babar",fullName:"Hamza Babar"},{id:"241251",title:"Mr.",name:"Tayyab",middleName:"Raza",surname:"Shah",slug:"tayyab-shah",fullName:"Tayyab Shah"},{id:"241252",title:"Mr.",name:"Zargham Ahmad",middleName:null,surname:"Khan",slug:"zargham-ahmad-khan",fullName:"Zargham Ahmad Khan"}]},{id:"59009",doi:"10.5772/intechopen.72505",title:"Thermal Transport and Challenges on Nanofluids Performance",slug:"thermal-transport-and-challenges-on-nanofluids-performance",totalDownloads:1149,totalCrossrefCites:3,totalDimensionsCites:10,book:{slug:"microfluidics-and-nanofluidics",title:"Microfluidics and Nanofluidics",fullTitle:"Microfluidics and Nanofluidics"},signatures:"José Jaime Taha-Tijerina",authors:[{id:"182402",title:"Dr.",name:"Jose",middleName:"Jaime",surname:"Taha-Tijerina",slug:"jose-taha-tijerina",fullName:"Jose Taha-Tijerina"}]}],mostDownloadedChaptersLast30Days:[{id:"53651",title:"Vortex Spinning System and Vortex Yarn Structure",slug:"vortex-spinning-system-and-vortex-yarn-structure",totalDownloads:4039,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"vortex-structures-in-fluid-dynamic-problems",title:"Vortex Structures in Fluid Dynamic Problems",fullTitle:"Vortex Structures in Fluid Dynamic Problems"},signatures:"Gizem Karakan Günaydin and Ali Serkan Soydan",authors:[{id:"186277",title:"Dr.",name:"Gizem",middleName:null,surname:"Karakan Günaydin",slug:"gizem-karakan-gunaydin",fullName:"Gizem Karakan Günaydin"},{id:"186607",title:"Dr.",name:"Ali",middleName:null,surname:"Serkan Soydan",slug:"ali-serkan-soydan",fullName:"Ali Serkan Soydan"}]},{id:"67203",title:"Introductory Chapter: Swirling Flows and Flames",slug:"introductory-chapter-swirling-flows-and-flames",totalDownloads:790,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"swirling-flows-and-flames",title:"Swirling Flows and Flames",fullTitle:"Swirling Flows and Flames"},signatures:"Toufik Boushaki",authors:[{id:"101545",title:"Dr.",name:"Toufik",middleName:null,surname:"Boushaki",slug:"toufik-boushaki",fullName:"Toufik Boushaki"}]},{id:"61556",title:"Microfluidics and Nanofluidics: Science, Fabrication Technology (From Cleanrooms to 3D Printing) and Their Application to Chemical Analysis by Battery-Operated Microplasmas-On-Chips",slug:"microfluidics-and-nanofluidics-science-fabrication-technology-from-cleanrooms-to-3d-printing-and-the",totalDownloads:1175,totalCrossrefCites:5,totalDimensionsCites:5,book:{slug:"microfluidics-and-nanofluidics",title:"Microfluidics and Nanofluidics",fullTitle:"Microfluidics and Nanofluidics"},signatures:"Vassili Karanassios",authors:[{id:"60925",title:"Prof.",name:"Vassili",middleName:null,surname:"Karanassios",slug:"vassili-karanassios",fullName:"Vassili Karanassios"}]},{id:"61632",title:"Application of Nanofluids for Thermal Management of Photovoltaic Modules: A Review",slug:"application-of-nanofluids-for-thermal-management-of-photovoltaic-modules-a-review",totalDownloads:868,totalCrossrefCites:7,totalDimensionsCites:11,book:{slug:"microfluidics-and-nanofluidics",title:"Microfluidics and Nanofluidics",fullTitle:"Microfluidics and Nanofluidics"},signatures:"Hafiz Muhammad Ali, Tayyab Raza Shah, Hamza Babar and\nZargham Ahmad Khan",authors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",middleName:null,surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"},{id:"229676",title:"Mr.",name:"Hamza",middleName:null,surname:"Babar",slug:"hamza-babar",fullName:"Hamza Babar"},{id:"241251",title:"Mr.",name:"Tayyab",middleName:"Raza",surname:"Shah",slug:"tayyab-shah",fullName:"Tayyab Shah"},{id:"241252",title:"Mr.",name:"Zargham Ahmad",middleName:null,surname:"Khan",slug:"zargham-ahmad-khan",fullName:"Zargham Ahmad Khan"}]},{id:"53041",title:"Partially Coherent Vortex Beam: From Theory to Experiment",slug:"partially-coherent-vortex-beam-from-theory-to-experiment",totalDownloads:1460,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"vortex-dynamics-and-optical-vortices",title:"Vortex Dynamics and Optical Vortices",fullTitle:"Vortex Dynamics and Optical Vortices"},signatures:"Xianlong Liu, Lin Liu, Yahong Chen and Yangjian Cai",authors:[{id:"186341",title:"Prof.",name:"Yangjian",middleName:null,surname:"Cai",slug:"yangjian-cai",fullName:"Yangjian Cai"},{id:"194234",title:"Dr.",name:"Xianlong",middleName:null,surname:"Liu",slug:"xianlong-liu",fullName:"Xianlong Liu"},{id:"194235",title:"Dr.",name:"Lin",middleName:null,surname:"Liu",slug:"lin-liu",fullName:"Lin Liu"},{id:"194236",title:"Dr.",name:"Yahong",middleName:null,surname:"Chen",slug:"yahong-chen",fullName:"Yahong Chen"}]},{id:"53200",title:"Direct Generation of Vortex Laser Beams and Their Non-Linear Wavelength Conversion",slug:"direct-generation-of-vortex-laser-beams-and-their-non-linear-wavelength-conversion",totalDownloads:1261,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"vortex-dynamics-and-optical-vortices",title:"Vortex Dynamics and Optical Vortices",fullTitle:"Vortex Dynamics and Optical Vortices"},signatures:"Andrew James Lee and Takashige Omatsu",authors:[{id:"186944",title:"Prof.",name:"Takashige",middleName:null,surname:"Omatsu",slug:"takashige-omatsu",fullName:"Takashige Omatsu"},{id:"187036",title:"Dr.",name:"Andrew",middleName:null,surname:"Lee",slug:"andrew-lee",fullName:"Andrew Lee"}]},{id:"53106",title:"Dynamical Particle Motions in Vortex Flows",slug:"dynamical-particle-motions-in-vortex-flows",totalDownloads:1504,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"vortex-dynamics-and-optical-vortices",title:"Vortex Dynamics and Optical Vortices",fullTitle:"Vortex Dynamics and Optical Vortices"},signatures:"Steven Wang and Naoto Ohmura",authors:[{id:"186403",title:"Prof.",name:"Naoto",middleName:null,surname:"Ohmura",slug:"naoto-ohmura",fullName:"Naoto Ohmura"},{id:"187311",title:"Dr.",name:"Steven",middleName:null,surname:"Wang",slug:"steven-wang",fullName:"Steven Wang"}]},{id:"57575",title:"Colorimetry and Dichromatic Vision",slug:"colorimetry-and-dichromatic-vision",totalDownloads:1152,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"colorimetry-and-image-processing",title:"Colorimetry and Image Processing",fullTitle:"Colorimetry and Image Processing"},signatures:"Humberto Moreira, Leticia Álvaro, Anna Melnikova and Julio Lillo",authors:[{id:"208770",title:"Dr.",name:"Humberto",middleName:null,surname:"Moreira Villegas",slug:"humberto-moreira-villegas",fullName:"Humberto Moreira Villegas"},{id:"208826",title:"Dr.",name:"Leticia",middleName:null,surname:"Álvaro",slug:"leticia-alvaro",fullName:"Leticia Álvaro"},{id:"208827",title:"BSc.",name:"Anna",middleName:null,surname:"Melnikova",slug:"anna-melnikova",fullName:"Anna Melnikova"},{id:"208828",title:"Prof.",name:"Julio",middleName:null,surname:"Lillo",slug:"julio-lillo",fullName:"Julio Lillo"}]},{id:"58322",title:"Image Segmentation Based on Mathematical Morphological Operator",slug:"image-segmentation-based-on-mathematical-morphological-operator",totalDownloads:975,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"colorimetry-and-image-processing",title:"Colorimetry and Image Processing",fullTitle:"Colorimetry and Image Processing"},signatures:"Jianjun Chen, Haijian Shao and Chunlong Hu",authors:[{id:"212306",title:"Ph.D.",name:"Jianjun",middleName:null,surname:"Chen",slug:"jianjun-chen",fullName:"Jianjun Chen"}]},{id:"57161",title:"A New Pansharpening Approach for Hyperspectral Images",slug:"a-new-pansharpening-approach-for-hyperspectral-images",totalDownloads:1188,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"colorimetry-and-image-processing",title:"Colorimetry and Image Processing",fullTitle:"Colorimetry and Image Processing"},signatures:"Chiman Kwan, Jin Zhou and Bence Budavari",authors:[{id:"214181",title:"Dr.",name:"Chiman",middleName:null,surname:"Kwan",slug:"chiman-kwan",fullName:"Chiman Kwan"},{id:"216203",title:"Mr.",name:"Bence",middleName:null,surname:"Budavari",slug:"bence-budavari",fullName:"Bence Budavari"},{id:"221300",title:"Dr.",name:"Jin",middleName:null,surname:"Zhou",slug:"jin-zhou",fullName:"Jin Zhou"}]}],onlineFirstChaptersFilter:{topicSlug:"physics-fluid-mechanics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/20240/luiz-henrique-capparelli-mattoso",hash:"",query:{},params:{id:"20240",slug:"luiz-henrique-capparelli-mattoso"},fullPath:"/profiles/20240/luiz-henrique-capparelli-mattoso",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()