The present study introduced a very sensitive and low-cost analytical procedure based on voltammetry to study platinum group metals in road dust and roadside soil matrices. Cathodic stripping voltammetry in conjunction with a reduced graphene oxide-antimony nanocomposite sensor and ICP-MS analysis were used to analyse roadside soil and dust samples. The results were processed to evaluate possible pollution in order to map the distribution of the PGMs along specific roads in the Stellenbosch area, outside Cape Town. The results revealed that within each site under investigation, Pd was more abundant than Pt and Rh using both voltammetric and spectroscopic methods. The AdDPCSV results obtained showed concentrations for Pd(II) ranging between 0.92 – 4.0 ng kg–1. For Pt (II), the concentrations ranged between 0.84 – 0.99 ng kg–1. For Rh(III), concentrations ranged between 0.42 – 1.21 ng kg–1. The ICP-MS results showed Pd concentrations ranging between 0.01 – 0.34 µg kg–1. For Pt the concentrations ranged between 0.004 – 0.07 µg kg–1. For Rh, concentrations ranged between 0.002 – 0.26 µg kg–1. The analysis showed significant levels of all PGMs in soil and dust samples analysed. Metal concentration in dust and soil followed the trend Pd > Pt > Rh using both voltammetric and spectroscopic techniques
Part of the book: Graphene Materials
The rapid demand for rare earth elements (REEs) in recent years due to increased use in various technological applications, agriculture, etc. has led to increased pollution and prevalence of REEs in the environment. Therefore, monitoring for REEs in the aquatic environment has become essential including the risk assessment to aquatic organisms. Since direct determination of REEs in sediment samples prove difficult at times, due to low concentrations available and complex matric effects, separation and enrichment steps are sometimes used. In this work, various REEs were determined employing wet acid digestion and lithium metaborate fusion in our optimised analytical technique. A comparison of the two analytical techniques was also made. The results obtained from the optimised ICP-OES radial view technique were in 5% agreement with the ICP-MS results from the same samples. The accuracy of the method was checked with the geological reference material GRE-03 and found to be in reasonable agreement. We demonstrated that there is a consistent relationship between the signals of the REEs and nebuliser gas flow rates, plasma power and pump speed. The detection limits for all the REEs ranged from 0.06 mg L-1 Yb to 2.5 mg L-1 Sm using the ICP-OES fusion technique.
Part of the book: Rare Earth Element