\r\n\tEssential information about the cell is derived from the light scattering features of the cells using dyes or monoclonal antibodies targeting either extracellular molecules on the cell surface or intracellular molecules. In biomedical research, the flow cytometer is the key tool used for analysis of complex cell populations such as immunological markers, in a very short timeframe. Today, flow cytometry applications are expanding in research and proved essential in clinical diagnosis. The diagnosis of many hematologic malignancies has now shifted from being based on morphology and clinical data to include comprehensive flow cytometry studies. This book provides insight into the basic flow cytometry principles and details the ever expanding applications of this powerful tool such as cell sorting, refined analysis of immunocompetent cells, phenotyping of peripheral blood cells and genomic analysis of single cells. \r\n\tThe importance of this technology in research and medical diagnosis as well as emerging applications is discussed in the last part of the book.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"6e0b28ea4d69a61c9ba5d164fa7bd430",bookSignature:"Ph.D. Christine Rasetti-Escargueil",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8651.jpg",keywords:"Cell Fluorescence, Light Scattering, Biomarkers, Interleukins, Protein Expression, Cell Differentiation, Fluorescence-Activated Cell Sorting, Antibodies, Leukemia, Cancer, Multiplex Analysis, Diagnosis",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 14th 2018",dateEndSecondStepPublish:"December 5th 2018",dateEndThirdStepPublish:"February 3rd 2019",dateEndFourthStepPublish:"April 24th 2019",dateEndFifthStepPublish:"June 23rd 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"249447",title:"Ph.D.",name:"Christine",middleName:null,surname:"Rasetti-Escargueil",slug:"christine-rasetti-escargueil",fullName:"Christine Rasetti-Escargueil",profilePictureURL:"https://mts.intechopen.com/storage/users/249447/images/system/249447.jpg",biography:"Christine Rasetti-Escargueil, PharmD, PhD, is a senior scientist at the Bacterial Toxins Unit at Pasteur Institute, Paris. She was a Senior Scientist at the National Institute for Biological Standards and Control, a centre of Medicine and Healthcare Products regulatory Agency in London, UK from 2006 to 2015. In addition, she has conducted research at Cardiff University, UK and at the French Atomic Commissariat using in vivo positron emission tomography imaging. Her specializations are in vitro/ex vivo/ in vivo and cell based models to explore molecular, immunological and functional endpoints in cells or animals exposed to bacterial toxins. Her research focus is the mechanism of action of bacterial toxins including botulinum toxins and related innovative pharmacological research. She published around 23 peer-reviewed papers, 2 book chapters, 30 abstracts and edited one book. She received a “Fondation pour la Recherche” award in Paris in 1994 and an award from the MRC-NC3Rs organisation, London, in 2010.",institutionString:"Pasteur Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70627",title:"Adipose Tissue in Health and Disease",doi:"10.5772/intechopen.90559",slug:"adipose-tissue-in-health-and-disease",body:'
1. Introduction
Novel findings on the immune-regulatory processes and metabolic mechanisms may open new avenues in the complex diseases as well as obesity; research on basic and clinical advances in immunometabolism has evolved rapidly during the past years, and the emergence of new tools for the detection and characterization of regulation of inflammation in systemic inflammatory diseases with metabolic comorbidity may play an imperative role.
Interplay in regulation of inflammation and metabolic risk factors are a complex cluster. The inflammatory condition associated with adipose tissue represents a triggering factor in the etiology of the obesity pathological-mechanism and mainly contributes to the related disease outcomes.
The purpose of this chapter is to address recent findings in metabolic, molecular biology, function, and pathology of the immune response to inflammation on the role of the immunometabolism in obesity. That containing significant new findings in the field, presenting the state of the art findings, will offer the new insights into interplay in the regulation of inflammation, especially in the tools of the comorbidity, in order to know their mechanisms by metabolic and immune response that cause disease.
2. Healthy adipose tissue
2.1 Morphology and cellular biology
Adipose tissue (AT) is a type of specialized connective tissue, and as such, it consists of two main components: a cellular population and a specialized extracellular matrix (ECM) [1].
The cellular population is integrated not only by adipocytes (the main cell type, by which receives its name) but also by preadipocytes, mesenchymal stem cells (MSCs), fibroblasts, endothelial and smooth muscle cells of blood vessels and any immune system cell, and adipose tissue macrophages (ATMs) with relevance [2, 3].
Its ECM, as any other, is composed of a wide type of collagens (fibrillar (I and III) and nonfibrillar (IV, VI, and VIII)), laminins, fibronectin, and proteoglycans; especially the external membrane contains a large complex of collagen IV and VIII as well as heparan sulfate proteoglycans and laminins [4]. AT ECM possesses the highest collagen VI concentration compared to any other body tissue [5, 6]. Altogether, the ECM and the non-adipocyte cellular population receive the name of stromal-vascular fraction (SVF) [7].
2.1.1 Classification
Histologically, AT is classified according to adipocyte microscopic characteristics as white (WAT), brown (BAT), and beige. White adipocytes are big oval cells with a single lipid droplet that fills the whole cytoplasm, displacing the nucleus and other organelles through periphery; its main function is the storage of energy in the form of triglycerides (TG) and lipolysis. Brown adipocytes are oval cells with multilocular lipid droplets uniformly distributed over the cytoplasm and have a high number of mitochondria, each one with several cristae expressing uncoupling protein 1 (UCP-1), characteristics that reflect an important thermogenic property. Beige adipocytes are cells with brown phenotype within WAT, that is why they are also called brite (brown-in-white) adipocytes; under basal conditions they express low quantity of UCP-1 but can overexpress it upon β-adrenergic simulation and thus acquire thermogenic function [8, 9, 10].
Moreover, adipose tissue has an important endocrine function, as it is capable to secrete own specific hormones called adipokines [11].
2.1.2 Fat depots
In humans WAT constitutes close to 5–10% of total human body weight and is located in two main compartments: intra-abdominal, named visceral AT (VAT), and subcutaneous AT (SCAT), also called hypodermis. VAT coats internal organs and protects them from mechanical friction and damage and can be divided into omental, mesenteric, retroperitoneal, gonadal and pericardial; SCAT is designated according to its superficial or deep situation regarding to the fascia superficialis as lamellar or areolar [12]. Moreover, abdominal and gluteofemoral regions are more relevant regarding of functional properties [13, 14].
It is remarkable to note that gender-related differences in distribution and quantity exist. While women have more SCAT (especially in gluteofemoral and peripheral regions), men have more VAT because SCAT has higher levels of estrogen and progesterone receptors, while VAT has more androgen receptors [15, 16].
In rodents, the main SCAT pads are anterior, from the neck to the axillae running through the interscapular area, and posterior, from the dorsolumbar to the gluteal region running through the inguinal region. Also, the striated muscle called panniculus carnosus clearly separates two layers of WAT depots: one directly underlying the reticular dermis and SCAT as such [17]; the former compartment is designated as dermal WAT (DWAT), composed primarily by intradermal adipocytes. These two terms were proposed as a redefinition of the nomenclature of skin-associated adipocytes, as it more accurately reflects their immediate developmental origin and anatomical location; humans, although not having a panniculus carnosus, possess functional and morphological distinctions between DWAT and SCAT [18, 19].
Differentiation, lipolytic and endocrine activity, and leucocyte population differ between VAT and SCAT, conferring them distinct metabolic properties and, in case of VAT, attribution of metabolic disturbances like dyslipidemia, glucose intolerance, and insulin resistance (IR) [20].
2.2 Immunometabolism
As an interdisciplinary field, immunometabolism emerged from discoveries of interdependent functions and mechanisms between the immune system and parenchymal cells of metabolic organs, which confer adaptive processes in homeostasis or disease at cellular, tissue, and systemic level [21, 22]. AT is the most studied in this field.
2.2.1 Immune response
Immune system has an important role on the control of AT homeostatic state, where its main functions are keeping an anti-inflammatory environment and remodeling of the extracellular matrix [8].
Under physiologic state, AT leucocyte population is integrated by eosinophils, mast cells, group 2 innate lymphoid cells (ILC2), invariant natural killer T cells (iNKT), regulatory T lymphocytes (Treg), and, of particular interest, adipose tissue macrophages (ATMs). It is proposed that these immune cells contribute to the maintenance of AT integrity through secretion of cytokines such as IL-4, IL-5, IL-13, and IL-10 (a Th2-type immune response) and that under hypercaloric state, macrophage accumulation may be a protective mechanism of the body to cope metabolic disturbances [23].
IL-33 produced by endothelial stromal cells has a key role in homeostatic maintenance and function of ECM. It is ligand of ST2 receptor, which is expressed in mast cells, Treg, eosinophils, ILC2s, and iNKT cells, practically the whole resident leucocyte population [24, 25].
In vitro and in vivo studies have demonstrated important effects of IL-33: production of IL-5 and IL-13 by Th2 lymphocytes and macrophages, eosinophil IL-4 production and survival, as well as ILC2s survival and expansion, the latter similar for Tregs [26]. iNKT cells express the transcriptional factor E4BP4; in adipose tissue produce anti-inflammatory cytokines, such as IL-2, IL-4, and IL-10; and participate in control of the homeostasis of Treg cells and macrophages in this tissue [27].
IL-25 promotes lipid metabolism and energy production, improves mitochondrial respiratory capacity, and alleviates lipid accumulation in the liver and AT via M2 macrophages and its interaction with adipocytes.
As we can observe, AT leucocytes produce the Th2-type cytokines, profile that favors the maintenance of ATMs in an anti-inflammatory M2 phenotype, known for the expression of arginase-1 (Arg-1, which inhibits iNOS activity) and production of IL-10 and IL-1Ra. ATMs also play an important lipid “buffering” activity, as they engulf free fatty acids (FFA) coming from adipocytes that have surpassed their lipid storage capacity and unchain lipolysis. Moreover, ATMs engulf death adipocytes that have reached a critical death size (CDS) [28] by a process named efferocytosis [29].
Thus, ATM is the fundamental leucocyte for correct AT functionality, as it engulfs apoptotic cell debris, and, FFA released whether by lipolysis or adipocyte death, promotes ECM reconstruction [30] and provides ECM components as scaffolds for its remodeling in the same way as under wound healing process; all these mechanisms promote adipogenesis and hyperplastic AT expansion. It is worth noting that these beneficial functions take place only under an anti-inflammatory M2 phenotype (Figure 1).
The ECM of any specialized connective tissue is essential not only for mechanic and structural sustain but also for providing a network that permits inter- and extracellular communication that enables proper growth and differentiation [1]. AT ECM is no exception, and its remodeling is regulated by resident leucocytes and own adipocytes.
WAT can undergo remodeling in response to changes in energy balance, like ECM degradation by members of the matrix metalloproteinase (MMP) family during adipocyte enlargement (hypertrophy) and allowing expansion by adipogenesis, under a positive energy balance [31, 32]; on the other hand, MMP activity counterregulation is mediated by their tissue inhibitors (TIMPs). The balance between MMPs and TIMPs is critical for ECM integrity and function, and alterations in this proteolysis balance may contribute to many pathological states [33].
Secreted protein, acidic, and rich in cysteine complex (SPARC)/osteonectin and its C and N isoforms contribute to AT ECM remodeling; they modulate cell-ECM contact, cell-cell interaction, ECM deposition, and adipose stem cells (ASCs) migration and posterior incorporation into expanding neovasculature accompanying WAT growth [34]. A study showed that serum concentrations of SPARC and MMP-2 after bariatric surgery decreased, SMAC correlated with HOMA-IR, and MMP-9 inversely correlated with serum adiponectin levels [35].
Regarding vasculature, AT ECM remodeling is influenced by a variety of angiogenic molecules, and it is triggered by transient hypoxia as a result of enlarged adipocytes under a positive energy balance. Hypoxia stimulates the production of angiogenic factors to compensate low perfusion rate; vascular endothelial growth factor (VEGF) is known as a master regulator of angiogenesis and plays crucial roles in the neovascular development of AT with obesity [36]. Hypoxia-inducible factor-1α (HIF-1α) binds to the proximal hypoxia response element in the VEGF gene promoter [37]; nevertheless, it also has a role in regulation of ECM remodeling, as overexpression of a constitutively active form of HIF-1α in adipose tissue forced the expression of pro-fibrotic genes, including Col I and III, elastin, lysyl oxidase, and Timp1 [38].
This shows that detrimental ECM component deposition occurs under chronic hypoxic conditions. Transforming growth factor beta (TGFβ) and tumor necrosis factor-α (TNF-α) are released under acute hypoxia state and act as proangiogenic factors [39, 40], and the latter activates expression of preadipocyte genes in 3T3-L1 adipocytes [41]. This is in contrast to the belief that AT inflammation exerts a fundamentally negative impact on metabolism, postulating the concept “healthy inflammation” under overnutrition, requiring an acute local inflammation in order to prevent lipotoxicity and ectopic lipid accumulation; in this regard, a report showed the analysis of three animal models with constitutive or inducible expression of anti-inflammatory factors and revealed their inability to expand AT, leading to ectopic lipid deposition and deteriorated metabolic profile [42].
Platelet-derived growing factor B (PDGF-B), usually produced by endothelial cells, activates an intracellular signaling cascade binding to its receptor (PDGFRβ) and promotes pericyte detachment and migration around new-forming vessels for maturation, playing key roles in vascular development and wound healing in adults via angiogenic actions [43]. Surprisingly, Onogi Y. and colleagues found that M1 macrophages were a major type of cells expressing PDGF-B in obese adipose tissue and correlated with elevated pericyte detachment in a dose-dependent manner; in contrast, inducible knockout pdgfrb mice presented reduced M1 macrophages and CLS formation but increased M2 macrophages. Additionally, they were protected from body weight gain, accumulation of SCAT, VAT, and ectopic fat in muscle and liver and showed improved whole-body glucose metabolism under high-fat diet (HFD) condition. The expression of hypoxic and proinflammatory factors (Hif1a, Emr1, Itgax, Mrc1, Tnfa, and Ccl2) was significantly increased by HFD feeding mice, whereas the increasing effects were attenuated in HFD-fed PDGFRB-KO mice [44]. Also, increased adipogenic capacity of PDGFRβ+ precursors through PPARG overexpression in pericytes resulted in healthy VAT expansion in obesity and adiponectin-dependent improvements in glucose homeostasis, in contrast with knockout PPARG counterparts; moreover, the ability of the thiazolidinedione (TZD) class of antidiabetic drugs to promote healthy visceral WAT remodeling is dependent on mural cell PPARG [45].
An experimental in vivo study consisting of brown adipogenesis by β3-adrenergic receptor (ADRB3) activation caused crown-like structures (CLSs) formation: white adipocyte death recruited M2-polarized macrophages with high expression of osteopontin (OPN), which in turn attracted a subpopulation of PDGFRα+ CD44+ (OPN receptor) progenitors that underwent adipogenesis, in contrast with knockout OPN [46]. It is important to highlight that recruited M2 macrophages also showed upregulation of Arg1 and Il10 without significant changes in proinflammatory markers, indicating that ADRB3-mediated adipogenesis involves recruitment of macrophages that mediate non-inflammatory tissue repair [47]. Another study combining experiments in mouse models and human conditions reported that PDGFRα + CD9high cells originate pro-fibrotic cells, while their CD9low counterparts harbored pro-adipogenic potential; frequency of PDGFRα + CD9high in omental WAT (oWAT) correlated not only to oWAT fibrosis level but also to the severity of insulin resistance and T2D [48].
Adipokines can also help regulate angiogenesis, a sustained and progressive increase in leptin resulting from hypoxic conditions could induce VEGF and receptor (VEGFR2) expression, activate sirtuin 1 (SIRT1), and subsequent HIF-2α stabilization promoting its activity [49].
2.2.3 Glucose and lipid metabolism
A steady and continuous energy supply is necessary for all cells’ survival; the production of the principal high-energy molecule, the adenosine triphosphate (ATP), is primarily obtained by the metabolism of such molecules as glucose and fatty acids. In the case of carbohydrates, these are the main source of energy in almost every living organism, from archaea to humans. It is not only the supply of these molecules, but also the intricate mechanism of regulation of pathways that control the consumption and storage of these biomolecules.
For example, after a meal, or what is called a post absorptive state, there is an increment of plasmatic glucose concentration which results in the secretion of hormones such as insulin by the pancreas; this contributes to the regulation of glucose metabolism as well, and the physiological response varies on every tissue, as can been seen in muscle and liver, where insulin favors glycolysis and glycogenesis. Nevertheless, this hormone not only alters the carbohydrates metabolism, but also promotes cholesterol synthesis and lipogenesis (or TG synthesis) in hepatic and adipose tissues [50].
In the case of glycolysis, it represents the central path for glucose metabolism and provides multiple intermediate products. On aerobic conditions, it starts in the cytoplasm of the cell, with glucose as a substrate, which is partially oxidized by 10 enzymatic reactions, obtaining two pyruvate molecules, reducing equivalents such as NADH (nicotinamide adenine dinucleotide in reduced form) and a net production of 2 ATPs for each glucose [51].
Afterward, the pyruvate molecules will be transformed into acetyl-CoA and transported into the mitochondria to continue their oxidation in the tricarboxylate cycle to produce two CO2 molecules, three NADH and one FADH (flavin adenine dinucleotide in reduced form). The latter will transfer their electrons to the mitochondrial complexes of the electron respiratory chain; a series of redox transformation and the aid of molecular oxygen will finally converge in the synthesis of ATP by the ATP synthase complex.
Both ATP, NADH, and acetyl-CoA are metabolites that are shown to be thermodynamically favorable and are indicated as the protagonists in cellular energy metabolism [52].
After glycogen, the body stores energy in the form of TG in adipose tissue; nevertheless, diverse types of lipids are required for the maintenance of cellular functions, not only for energetic ones, but also structural (such as phospholipids) or for the formation of specialized products like steroid hormones. These are obtained from diet, absorbed and subsequently transported by lipoproteins such as the very high-density lipoprotein (VLDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL), all of these ensembled by the liver. FFAs are a major source of acetyl-CoA molecules by β-oxidation, these molecules continue their oxidation in the tricarboxylate cycle and the electron respiratory chain, providing a significant amount of energy at the cellular level.
Due to the importance of these biomolecules, there is a narrow regulation that includes transcription factors such as sterol regulatory element-binding proteins (SREBPs) and hormonal control for an adequate function [53].
Although these regulatory mechanisms are recognized, the possible regulatory activity that miRNAs may have in lipid and cholesterol homeostasis has recently been suggested, particularly for miR-122 and miR-33 [54].
3. Adipose tissue and disease
3.1 Insulin resistance
3.1.1 Obesity as a trigger
Obesity is a disease of multifactorial origin with a worldwide increasing prevalence; it entails an injurious health status for individuals, which represents a serious public health issue. This condition is associated to diverse diseases and has a complex treatment, being the reason why it must be assessed in a multidisciplinary context by healthcare professionals.
It is defined as an abnormal or excessive fat accumulation that can be detrimental for health [55]. It originates from the interrelation of inadequate food intake and/or overfeeding, sedentary lifestyle, and psychological, genetic, and ambiental factors. The excessive adiposity status hinders the disease reversion because of the difficulty to perform physical activity and the metabolic and satiety dysregulation [56].
Obesity develops a diversity of somatic complications such as respiratory, mechanic, cardiovascular, and metabolic, as well as psychological and social, which make its assessment, prognosis, and intervention even more complicated. Diagnosis is preceded by an anthropometric evaluation, which correlates adiposity with a total body weight of individuals [57].
Progressive AT expansion in the organism, given by a positive energy balance from excessive macronutrients and calorie intake, entails an elevated number of circulating FFA that triggers a deregulation in the organism, from changes in body structure to changes at local and systemic levels [58]. This excessive AT induces a chronic inflammatory state, also named lipoinflammation, causing hypoxia of adipocytes [59]. AT hypoxia and inflammation correlate with the risk of developing insulin resistance (IR), type 2 diabetes (T2D), and cardiovascular disease (CVD).
When the organism is under positive energy balance, energy excess accumulates in AT, giving place to SCAT hyperplasia until a physiologic allowed limit as energy reservoir is reached. When energy excess prevails, it is now stored at VAT; unfortunately this depot does not possess a great capacity as SCAT, resulting in adipocyte hypertrophy and subsequent android, central, or visceral adiposity [60, 61].
Central obesity is highly associated with T2D and CVD. AT is the pathogenic site where obesity-induced local IR originates before being systemic; its secretory genetic expression profile of endocrine and paracrine bioactive substances reflects a generalized inflammatory local state, the reason why adipocyte is referred to as key to the onset and development of obesity-induced inflammation and to macrophages as amplifiers of this process [62].
As aforementioned, AT initially plays a role in energy reservoir but also has a significant function in metabolism and immune system. Resident ATMs are key in IR onset, as they produce proinflammatory molecules which can explain more than 50% of secretion of TNF-α, by the action of insulin on adipocytes and on peripheric organs of the body [63].
Other implicated adipokines are resistin and IL-6, which stimulate hormone-sensitive lipase (HSL) activity resulting in triglycerides cleavage and subsequent glycerol and FFA release; these high circulating FFA levels are the cause and consequence of IR and T2D [64].
We can broadly elucidate that adipocytes and ATMs synthesize proinflammatory molecules and that weight increase at the expense of AT will contribute in turn to the perpetuation of chronic inflammation by increasing the levels of circulating cytokines. Required actions to help reverse the IR process should be focused on establishing a healthy diet accompanied by exercise; these will help to reduce the proinflammatory state, while downregulation of TNF-α and IL-6 expression of adipocytes occur. Meanwhile, exercise by its own will enhance mitochondrial FFA metabolism, avoiding their storage [65].
Other factors involved in IR and inflammation are implicated by diet and related to gut microbiota, which in turn demonstrates how an excessive saturated fat consumption can drive an important bacterial lipopolysaccharide (LPS) production, which impacts on systemic inflammation [58].
Initial steps that launch the inflammatory response are less well elucidated. On experimental studies with HFD-induced obesity murine models, HIF-1α levels are observed before the onset of a significant adiposity status; under this situation, adipocyte hypoxia and HIF-1α act as early triggers of inflammation and IR [59].
3.1.2 Inflammatory pathway
Adipose tissue complex and diverse functions have implications in the whole body, and cytokines are involved in his physiologic response. In obesity condition the major cytokines expressed by AT are leptin, resistin, TNFα, chemerin, MCP-1 and IL-6 [66, 67]. On the other hand, the adipose cells are both hyperplastic and hypertrophic, and in this state induce the inflammatory process. Dysregulation of adipose tissue promotes incorrect remodeling and subsequent inflammation, according to recruitment of macrophages and expression of chemotactic cytokines like MCP-1, TNFα and chemerin, to mention some of them. The phenotype involved is the M1 pro-inflammatory and evidence shows that this situation is not only local, but also systemic and this promotes further inflammation explaining how obesity can be the etiologic cause of other diseases [68, 69].
In addition, it is well known that this mechanism promotes insulin resistance, which is the previous phase before the development of T2D. However, the adipocyte is in a very close communication with the macrophage making the inflammatory process redundant and more complex. Nevertheless, in lean adipose tissue, it is typically the opposite, meaning that macrophages differentiate into a M2 anti-inflammatory phenotype, releasing IL-10, TGFβ, IL-4, and other regulatory cytokines [70]. Otherwise other mechanisms that can promote the anti-inflammatory pathway, like the consumption of Omega 3 fatty acids, exist [71].
Taking it all together, obesity results from genetic, epigenetic, physiological, behavioral, molecular and environmental factors that lead the proinflammatory phenotype [72, 73].
3.1.3 Molecular mechanism
It is described that adipose cells derive from a stem cell that can differentiate into adipocytes, chondrocytes, osteoblasts, and myocytes [74].
In a first phase, adipoblasts can be addressed to the adipogenic lineage and become preadipocytes. If the stimuli in the tissue continue, these cells maturate to become mature adipose cells with lipid storage capacity [75].
There are two main transcription factors that are involved in the differentiation of the adipocyte, CCAAT/enhancer-binding protein α (C/EBP-α), and peroxisome proliferator-activated receptor γ (PPAR-γ). PPAR-γ is the most described transcriptional factor, and its expression is regulated by the co-factor PGC1α and the production of adiponectin [76, 77].
Transcription factors that belong to the C/EBP family also have a crucial play in the differentiation, and there are reports that this factor can be activating more early than PPAR-γ (Figure 2) [78].
Figure 2.
Adipose tissue differentiation and hyperplasia and hypertrophy consequences.
The dysfunction in the capacity of generating healthy adipose tissue has several metabolic consequences, like dyslipidemia, hypertension, and insulin resistance among others [79].
Many molecular mechanisms are involved since the adipocytes have different gene expression patterns, leading to the expression of different types of adipokines depending the phenotype induced in the tissue. Healthy expansion of adipocytes depends on the plasticity of the extracellular matrix, but in obesity there is a limiting in the oxygen diffusion, and it becomes hypoxic [80].
3.1.4 Role of adipokines and myokines
Skeletal muscle compounds 40% of total body weight in healthy individuals. The muscle is the major site for the insulin-stimulated glucose uptake and lipid metabolism, so it is an important part of metabolism maintenance [81].
Adipose tissue possesses more than 600 potentially secretory proteins, which means that more adipokines and myokines are still in line for discovery and characterization [82].
Additionally in adipokines there is a cross talk between these and myokines, which are synthetized by the muscle. Nevertheless, both tissues can express the same cytokines creating a regulation process with a strong communication. The most characterized cytokines are chemerin, TNFa, MCP-1 and IL-6. It is demonstrated that WAT deposits exist in skeletal muscle and facilitate communication, also, these tissues usually are in close anatomical proximity.
The knowledge of the most important characterized myokines is as follows:
IL-6: this increases in favor of the exercises, but it is recognized that it has a controversial role in the inflammatory or anti-inflammatory pathway.
Il-15: it mediates a beneficial effect on physical activity.
Irisin: it stimulates the development of brown adipose tissue activating MPK and ERK molecular ways, and it is regulated by the age and gender. This molecule has also a controversial role, because it has been reported to increase obesity.
Myonectin: it has a homology worth the sequence of adiponectin and promotes fatty acid uptaking in mice [82, 84, 85, 86].
Principally, the major role of the adipomyokines is contributing to metabolism, angiogenesis, blood vessel regulation, adipogenesis, myogenesis, and immune response [82]. On the other hand, it is important to remark the impact that macrophages have in metabolism, since they induce a response in both tissues. For example, when circulating monocytes respond to chemoattractant molecules, they migrate into adipose and muscle tissue, and then develop a phenotype depending on environmental necessities (Table 1) [94].
Finally, there is another terminology newly adopted by the scientist called organokines, because it has been suggested that all proteins secreted in various tissues or organs (liver, adipose tissue, muscle, and bone) have an intimate relationship in the context of the communication and regulation for the maintaining of homeostasis and that they are involved in a network of paracrine and endocrine cross talk [84].
3.1.5 Emerging role of microRNAs in obesity
In the context of complex diseases, obesity is the prototype of immuno-metabolic disease; it is considered a major factor that triggers metabolic risk and the development of secondary chronic illness2, insulin resistance (IR), and metabolic syndrome (MS). The susceptibility of a subject to develop obesity will depend on different factors such as the repertoire of individual variations in an ensemble of relevant genes, their history of exposure to environmental risk factors, and the interaction between the lifestyle and metabolism, which is also modulated by the gene regulators [95, 96, 97].
Meanwhile, obesity presents many subclinical manifestations, characterized by alterations in lipids and carbohydrate metabolism at different levels; most of these changes is due to a low-grade systemic chronic inflammation [98, 99] that favors the development of IR. Adipose tissue is the primary anatomical site where IR disease takes place; in early stage this tissue became inflamed.
Novel findings on the immune-regulatory processes and metabolic mechanisms may open new avenues in the treatment of the common complex diseases as well as inflammatory component; research on basic and clinical advances in immunometabolism has evolved rapidly during the past years, and the beginning of new tools for the detection and characterization of regulation of inflammation in metabolic diseases with comorbidity may play an imperative role; nevertheless, the precise mechanisms mediating this relationship remains poorly understood.
Interplay in the regulation of inflammation and metabolic risk factors are a complex cluster. The inflammatory condition associated with adipose tissue represents a triggering factor in the etiology of the obesity pathological mechanisms and mainly contributes to the related disease outcomes.
In the early stages of obesity, in white adipose tissue, primed immune cells are recruited as adiposity increases, and these cells became resident cells (mainly macrophages) and secrete proinflammatory adipokines that promote further recruitment of circulating monocytes [100, 101, 102, 103]. Later, they polarize toward M1 macrophages, favoring a subclinical chronic inflammatory state [102, 104, 105, 106] secondary to irregular increase and distribution of fat depots [107]. In IR, the expression of genes implicated in glucose and lipid absorption and metabolism in liver and adipose tissue is dysregulated, at the same time, insulin signaling pathway in peripheral tissues is also disturbed [108]; this IR scenario precedes the development of T2D and other related diseases.
The identification of diverse molecular mechanisms related to energy metabolism has allowed the definition of strategies for searching genes implied in obesity and IR.
In the decade that precedes us, experimental reports show the existence of small noncoding RNAs, which are identified as microRNAs, (miRs) with the function of regulating cellular processes through modulating the expression of genes that code for functional proteins.
The insulin signaling pathways may be regulated by microRNAs (miRNA) that modulate the stability and translation of messenger RNAs (mRNA) by a particular mechanism of binding seeding sequences located in target genes, resulting in protein decay [109, 110].
Once synthesized, some miRNA can be released into circulation via exosomes, vesicular bodies, lipoproteins, simple extrusion, or apoptotic bodies. Most researches in the field have assessed the presence of circulating miRNA in many body fluids, being related to their impaired expression in tissues under physiological and pathological conditions. Several studies have shown a correlation of particular circulating miRNA with the development of different pathologies, positioning them as valuable biomarkers in silent diseases such as obesity, IR, and MS [111, 112].
Although rapid progress is being made in research on miRs, there is little availability of experimental tools with scientific value and mechanisms that lead from the discoveries of miRs to the therapeutic application in diseases. Therefore, the current demand is to explore the expression and biological function of miRs in the development of diseases in vivo.
The main considerations that are known are that the process of its biogenesis is governed by regulatory checkpoints, based on the fact that the sequence of the primary transcript does not correspond linearly to mature miR. The abundance or scarcity of a miR indicates its level of regulation.
Under physiological conditions, it has been shown that miRs modulate gene expression; however pathological stress increases or decreases its function. Therefore, its function will be defined by the effect on the expression of the genes to which it is directed. Predictions indicate that 60% of target mRNA genes have similar binding sequences in the 3′UTR region for single or multiple miRs. These miRs exert their silencing function through two different mechanisms: translation inhibition (initiation or elongation) and target mRNA degradation. In the target genes for miRs, it is observed that 3′UTR regions have binding sites for multiple miRs; this suggests cooperation and redundancy of the effect on gene expression between the different miRs.
Currently, there are 1917 human miRNAs listed in the miRNA database miRBase (http://www.mirbase.org), representing 1% of all genes in the human genome. These miRNAs are predicted to target aprox. 30% of the human gene pool.
From the extraction of plasma and blood serum miRs from human and mammalian animal samples, they have been proposed as diagnostic biomarkers in the diseases. The attributes that stand out are that the miRs extracted from the serum have stability, and the results in the quantification are reproducible and consistent among individuals of the same species.
The logical sequence in the integral investigation of miRs is firstly to identify the presence in a given sample. The experimental tools used to measure the expression profile of miRs have been by microarray analysis or deep sequencing, while the determination of the level of expression of individual miRs has been performed by RT-PCR, in situ hybridization or northern blot.
However, the investigations carried out can be categorized from two conceptual points, the determination of the level of expression in which the most used methodological tool is real-time PCR analysis and global expression assays. The former stand out for their specificity while confirming the latter, while the latter provide a broad view of the presence and regulation of miRs.
Properly identifying the functionality and level of expression of a specific miR is limited due to the high degree of sequence homology between some miRs and the size of the molecule; the parallel application of different molecular tools strengthens the identification or quantification process of the level of expression. However, an unfavorable factor is the combined regulation of multiple genes or small changes in gene regulation that are lost in biological noise.
Enhancing the work of performing research surrounding these novel gene regulators will advance our understanding of miRNAs and their specific functions and will augment the opportunities to safely follow them as therapeutic targets [113].
3.2 IR in muscle and liver
Conventionally, insulin acts directly on the WAT under the cascade of the IRS1 axis, PI3K, and AKT, for glucose absorption, with a possible positive feedback of the phosphorylation of Ser388 from IRS2, by cyclin-dependent kinase 4 (CDK4) [114], culminating with lipolysis regulation. However, as described in previous sections of the chapter, inflammatory processes and alternative activation of macrophages favor the pathogenic adiposity in which the action of insulin is not carried out correctly and therefore does not slow the lipolysis process.
Although the mechanism of signaling pathways that links pathogenic adiposity to insulin resistance in skeletal muscle and liver has not been well defined due to the difficulty of modeling in vitro systems that allow cell coordination as in a complex organism, the process of understanding molecular bases has lagged behind the direct action of insulin in an organ or cell. The best way to associate it is the chronic surplus of energy that favors the accumulation of ectopic lipids in the liver and skeletal muscle that trigger the activation of pathways that impair insulin signaling, causing the decrease in glucose absorption in muscle cells and of glycogenesis in liver [115].
3.2.1 Liver
In a physiological stage with food withdrawal, the main source of glucose in the bloodstream is the liver. On the other hand, after absorption of nutrients by the intestine, the production of hepatic glucose should be interrupted in coordination with hyperinsulinemia.
The most assertive explanations of how insulin acts to promote glucose homeostasis by inhibiting both glycogenolysis and hepatic gluconeogenesis have focused on the canonical pathway of insulin interacting directly in the liver by activating the insulin receptor (InsR) and the substrate of insulin receptor (IRS) and the phosphoinositol 3-kinase signaling cascade (PI3K/Akt/mTOR pathway) by inhibiting transcription of the forkhead box class O-1FOXO1 factor and thus gene transcription and activation of gluconeogenic enzymes such as phosphoenolpyruvate carboxykinase (PCK1) and glucose 6 phosphatase (G6PC) [116, 117].
However, it has been observed that suppression of hepatic glucose production is not totally dependent on the Akt activation pathway, for which remote insulin actions that interact indirectly with the physiological process of hepatic glucose have been studied. On one hand, the reduction of PCK1 and glucose 6-phosphatase (G6Pase) through cerebral insulin action activates the ATP-sensitive potassium channels (KATP) of hypothalamus and stimulate the vagal transmission and STAT3 activation [118, 119], blocking the de novo glucose formation by the liver and therefore regulating serum hyperglycemia.
On the other hand, insulin action in WAT suppresses lipolysis and reduces the fatty acids flow into the liver, therefore, reduction of both acetyl-CoA concentration and pyruvate-to-glucose conversion occur, corresponding with the cessation of glycerol supply, observing a decrease in pyruvate carboxylase (PC) enzyme activity [120].
However, when WAT is in an inflammatory process and insulin resistance, it constantly increases the supply of gluconeogenic substrates, such as non-esterified fatty acids (NEFAS), and glycerol favors hepatic glucose production [121]. In stages with normal insulin levels, fatty acids in the bloodstream compete with glucose to internalize cells independent of hyperglycemia; however when insulin concentration or activity is deficient, fatty acids contribute directly to the production of glucose [122]. The ectopic accumulation of fatty acids in liver increases the content of acetyl-CoA allosterically activating PC and increasing gluconeogenesis; this increase in glucose and the presence of pro-inflammatory cytokines lead to inadequate insulin signaling in liver and subsequently, IR [123].
According to current knowledge of the importance of indirect insulin pathways in the liver to maintain the homeostatic glucose process, research groups will follow some therapeutic targets associated with the signaling pathways of G-protein-coupled receptors (GPCRs) [124] as well as inhibitors of the enzyme acetyl-CoA carboxylase [125, 126] for the treatment of metabolic diseases. Similarly there is evidence that proves that the diet with low calorie concentrations can reverse hyperglycemia [127].
3.2.2 Muscle
The skeletal muscle is responsible for 70% of the elimination of total body glucose, associated with its capacity and energy need. Therefore, insulin sensitivity of skeletal muscle is critically important in maintaining homeostasis of blood glucose [128].
Many studies propose molecules related to the deterioration in insulin signaling; however, they agree that these molecules accumulate when the energy supply exceeds the demand in the body. Therefore, it suggests that the IR in the muscle not only has intrinsic problems as a reference. One of the main mechanisms proposed to elucidate the pathogenic process of IR in skeletal muscle is mitochondrial compromise due to the bioenergetic imbalance present mainly in pathological adiposity. However, the molecular pathways to describe this event are not entirely elucidated.
In the physiological process of insulin/IR interaction in skeletal muscle, you can activate two signaling pathways with the phosphorylation of IRS1 and, on the one hand, the PI3K/AKT pathway that induces glycogen synthesis and glucose uptake by recruiting the transporter protein of glucose (GLUT-4) to the plasma membrane, while the activation of the MAPK pathway favors the growth and differentiation of skeletal muscle [129].
The presence of pathological adiposity provides high concentrations of fatty acids and cytokines that activate signaling pathways linked to obesity that converge with insulin signaling. As plasma FFA increase, they accumulate in muscle. Intramuscular diacylglycerol (DAG) and ceramides levels rise, compounds that might act as second messengers in alternative signaling pathways that interfere with IRS-1 adequate phosphorylation [108, 130].
The presence of TAG and DG in muscle activates Ser307 phosphorylation in IRS-1, resulting in the activation of PKC-θ. These changes in turn result in a decrease in the tyrosine phosphorylation of IRS-1 and a lower activation of the PI3K associated with IRS-1, resulting in a decrease in insulin-stimulated glucose transport activity. Intramolecular lipids (IMCL) have been observed to be elevated when lipid oxidation is poor and lipid supply to the muscle is exceeded [120, 131, 132].
The bioenergetic imbalance favors mitochondrial beta oxidation, although incompletely which can increase the concentration of reactive oxygen species (ROS) mainly H2O2, this reactive species is responsible for the inhibition of PP2A causing the activation of JNK and ERK, and these inhibit serine phosphorylation in IRS1. When the energy demand is exceeded, skeletal muscle mitochondria stimulate lipid biosynthesis that redundantly increases the concentration of ROS and myocellular lipids [133, 134, 135].
Although the process by which ROS and fatty acids trigger insulin resistance is not yet elucidated, it can be deduced that energy imbalance is the fundamental key.
4. A new terminology: pathologic adiposity
Total adipose mass, fat depot location, and particular AT type function are the predominant factors that explain high metabolic risk in individuals with obesity, since number, distribution, and leucocyte population differ between SCAT and VAT from lean and obese individuals; VAT has higher a macrophage number, and adipocyte size is smaller and has less lipid storage capacity. These differences suggest VAT can undergo subclinical inflammation and metabolic disease [136]; actually, central obesity associates with higher CVD, metabolic disorders, and early death, in contrast with gynecoid obesity at the expense of SCAT accumulation in the gluteofemoral region [13].
With the aforementioned, we can state that not every obese individual is affected by the common metabolic abnormalities associated with obesity. Approximately 10–25% of obese and a smaller fraction of morbidly obese persons are “metabolically healthy” (metabolically healthy obese, MHO), as they are insulin sensitive and normotensive and possess a favorable lipid profile; furthermore, they present less VAT and hepatic lipids and possess normal glucose metabolism. On the other hand, a subgroup of normal weight individuals suffers obesity characteristic metabolic abnormalities, whereby they are denominated as “metabolically healthy but with normal weight” (MONW). It is suggested that MHO individuals own a less detrimental metabolic profile and better prognosis compared to normal weight individuals with metabolic syndrome [137, 138, 139].
As stated before in this chapter, under acute caloric excess, enlarged adipocytes suffer hypoperfusion and mechanic stress owing to its surrounding ECM, which causes transient hypoxia and triggers angiogenesis and release of stress signals so that AT could undergo healthy remodeling and maintenance [140].
Nonetheless, obesity is a chronic caloric excess state, which means adipocyte enlargement surpasses angiogenesis, whereby hypoxia and stress signals perpetuate and cause fibrosis and cell death with eventual necrosis; this scenario causes local lipotoxicity, as ATM lipid buffering function is surpassed by the increased FFAs levels caused by overfeeding or adipocyte lipolysis and death [141, 142]. Thus, ATMs undergo metabolic activation, as lipids like palmitate are TLR-2/4 ligands, therefore initiating a proinflammatory response and polarization towards a M1 phenotype, losing all pro-homeostatic functions that we have previously discussed [143, 144, 145]. Furthermore, the other resident leucocytes will change in number and function as ATMs did, towards a Th1-type immune response.
The activation of NF-kB pathway with cytokine/chemokine release and the contribution of harmful metabolites (i.e., ceramide and sphingosine 1-phosphate, S1P) interfere with proper insulin signaling, therefore establishing a local AT IR [146, 147, 148].
After the AT IR is established, non-suppressive lipolysis now perpetuates and triggers high circulating FFA levels giving place to peripheral/systemic lipotoxicity: ectopic fat accumulation in liver and muscle; additionally, the proinflammatory cytokine, adipokine, and chemokine profile will circulate through the bloodstream, establishing metainflammation. Eventually, the high ectopic lipid concentration in this tissues will unleash similar detrimental effects that took place at AT, establishing now peripheral/systemic IR and dyslipidemia [132, 149].
The ensemble of this AT dysfunction and its harmful metabolic clinical repercussions is what we call pathologic adiposity: the adiposity status that determinates metabolic systemic dysfunction (IR and dyslipidemia), whether in an obese or normal weight individual, “metabolically unhealthy obese” (MUO), or “metabolically obese normal weight” (MONW) person, respectively (Figure 3).
Figure 3.
A series of unfortunate events that leads to a pathologic adiposity status.
5. Conclusions
Metainflammation can be defined as the systemic metabolic inflammation derived from obese adipose tissue in which innate and adaptive immune system cells have changed in number and function, from a lean and homeostatic to a proinflammatory state, and whose cytokine and adipokine proinflammatory profiles cause metabolic syndrome. Some authors consider metainflammation as the result of dysfunctional adipose tissue that consists of unhealthy expansion (hypertrophy) and angiogenesis, hypoxia, and detrimental ECM remodeling, which in turn limit adipocyte lipid storage capacity; altogether, these deleterious scenarios cause lipolysis and ectopic fat accumulation in the liver and muscle.
The knowledge developed in recent years in relation to the homeostatic interaction between immune system and the energetic metabolism along with the role of miRs allows that in a state in imbalance such as obesity, new biomarkers that show clinical information about the state are sought health of individuals and the early detection of the risk of developing metabolic complications is derived from the state of pathological adiposity.
Conflict of interest
The authors declare no conflict of interest.
Acronyms and abbreviations
ADRB3
β3-adrenergic receptor
AKT
protein kinase B
ASCs
adipose stem cells
AT
adipose tissue
ATMs
adipose tissue macrophages
ATP
adenosine triphosphate
BAT
brown adipose tissue
C/EBP-α
CCAAT/enhancer-binding protein α
CDK4
cyclin-dependent kinase 4
CDS
critical death size
CVD
cardiovascular disease
DWAT
dermal WAT
ECM
extracellular matrix
ERK
extracellular signal-regulated kinase-1
FADH
flavin adenine dinucleotide in reduced form
FFA
free fatty acids
FGF21
fibroblast growth factor 21
FOXO1
forkhead box class O-1
Fstl 1
follistatin-related protein 1
G6PaseC
glucose 6 phosphatase
GLUT
transporter protein of glucose
HDL
high-density lipoproteins
HFD
high-fat diet
HIF-1α
hypoxia-inducible factor-1α
HSL
hormone sensitive lipase
IL
interleukin
ILC2
group 2 innate lymphoid cells
IMCL
intramolecular lipids
iNKT
invariant natural killer T cells
IR
insulin resistance
IRS1
substrate of insulin receptor 1
IRS2
substrate of insulin receptor 2
KATP
ATP-sensitive potassium channels
LDL
low-density lipoprotein
LPS
lipopolysaccharide
MCP-1
monocyte chemoattractant protein-1
miRs
microRNAs
MPK
mitogen-activated protein kinase
mRNA
messenger RNAs
MS
metabolic syndrome
MSCs
mesenchymal stem cells
NADH
nicotinamide adenine dinucleotide in reduced form
NEFAS
non-esterified fatty acids
OPN
osteopontin
PAI-1
plasminogen activator inhibitor-1
PCK1
phosphoenolpyruvate carboxy kinase
PC
pyruvate carboxylase
PDGF
platelet-derived growth factor
PDGFR
platelet-derived growth factor receptor
PEDF
pigment epithelium-derived factor
PI3K
phosphoinositide 3-kinases
PPAR-γ
peroxisome proliferator-activated receptor γ
RT-PCR
real-time polymerase chain reaction
SCAT
subcutaneous adipose tissue
SIRT 1
sirtuin 1
SPARC
secreted protein, acidic, and rich in cysteine complex
SREBPs
sterol regulatory element-binding proteins
STAT3
signal transducer and activator of transcription 3
SVF
stromal-vascular fraction
S1P
sphingosine-1-phosphate
TZD
thiazolidinediones
TIMP
tissue inhibitor of matrix metalloproteinases
T2D
type 2 diabetes
TG
triglycerides
TGFβ
transforming growth factor beta
TNFα
tumor necrosis factor alpha
Treg
regulatory T lymphocytes
UCP-1
uncoupling protein 1
VAT
visceral adipose tissue
VLDL
very-low-density lipoprotein
WAT
white adipose tissue
\n',keywords:"obesity, adipose tissue, adipose tissue macrophages-M1 phenotype, exosomes, microRNAs, insulin resistance, pathologic adiposity",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/70627.pdf",chapterXML:"https://mts.intechopen.com/source/xml/70627.xml",downloadPdfUrl:"/chapter/pdf-download/70627",previewPdfUrl:"/chapter/pdf-preview/70627",totalDownloads:447,totalViews:0,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,dateSubmitted:"September 4th 2019",dateReviewed:"November 19th 2019",datePrePublished:"January 9th 2020",datePublished:"February 19th 2020",dateFinished:"December 24th 2019",readingETA:"0",abstract:"Obesity, being an epidemy these days, is the trigger of metabolic disturbances such as cardiovascular disease, type 2 diabetes, and insulin resistance. Defined as an increase in fat storage, adipose tissue has been put under the spotlight as the culprit of these conditions, as it is composed not only by adipocytes but of any immune system cell and a singular extracellular matrix. Its behavior under acute and chronic hypercaloric states is quite different; persistent hypertrophy in the latter creates hypoxia, resulting in the release of reactive oxygen species and proinflammatory cytokines that impact on the immune response type of the resident leucocytes, mainly macrophages. Hypertrophy over hyperplasia, adipose tissue macrophages-M1 phenotype polarization, and the adipokines/myokines profile are thought to be regulated by foreign microRNAs, delivered from surrounding or distant cells by exosomes through the bloodstream. In this chapter, we focus on adipose tissue immunometabolism and how obesity causes the chronic inflammatory state, and, subsequently, this stablishes a pathologic adiposity, characterized by dyslipidemia and insulin resistance (IR).",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/70627",risUrl:"/chapter/ris/70627",book:{slug:"obesity"},signatures:"Fernanda-Isadora Corona-Meraz, Jesus-Aureliano Robles-De Anda, Perla-Monserrat Madrigal-Ruiz, Gustavo-Ignacio Díaz-Rubio, Jorge Castro-Albarrán and Rosa-Elena Navarro-Hernández",authors:[{id:"191565",title:"Dr.",name:"Rosa Elena",middleName:null,surname:"Navarro Hernandez",fullName:"Rosa Elena Navarro Hernandez",slug:"rosa-elena-navarro-hernandez",email:"rosa_elena_n@hotmail.com",position:null,institution:null},{id:"195067",title:"MSc.",name:"Fernanda Isadora",middleName:null,surname:"Corona Meraz",fullName:"Fernanda Isadora Corona Meraz",slug:"fernanda-isadora-corona-meraz",email:"fernandacoronameraz@live.com.mx",position:null,institution:null},{id:"311468",title:"BSc.",name:"J. Aureliano",middleName:null,surname:"Robles-De Anda",fullName:"J. Aureliano Robles-De Anda",slug:"j.-aureliano-robles-de-anda",email:"aureliano.robles7@gmail.com",position:null,institution:null},{id:"311477",title:"Dr.",name:"Perla-Monserrat",middleName:null,surname:"Madrigal-Ruiz",fullName:"Perla-Monserrat Madrigal-Ruiz",slug:"perla-monserrat-madrigal-ruiz",email:"perlamadrigal@hotmail.com",position:null,institution:{name:"University of Guadalajara",institutionURL:null,country:{name:"Mexico"}}},{id:"311478",title:"Dr.",name:"Jorge",middleName:null,surname:"Castro-Albarran",fullName:"Jorge Castro-Albarran",slug:"jorge-castro-albarran",email:"nutjca@gmail.com",position:null,institution:{name:"University of Guadalajara",institutionURL:null,country:{name:"Mexico"}}},{id:"311479",title:"MSc.",name:"Gustavo Ignacio",middleName:null,surname:"Diaz-Rubio",fullName:"Gustavo Ignacio Diaz-Rubio",slug:"gustavo-ignacio-diaz-rubio",email:"gusqfb@hotmail.com",position:null,institution:{name:"University of Guadalajara",institutionURL:null,country:{name:"Mexico"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Healthy adipose tissue",level:"1"},{id:"sec_2_2",title:"2.1 Morphology and cellular biology",level:"2"},{id:"sec_2_3",title:"2.1.1 Classification",level:"3"},{id:"sec_3_3",title:"2.1.2 Fat depots",level:"3"},{id:"sec_5_2",title:"2.2 Immunometabolism",level:"2"},{id:"sec_5_3",title:"Table 1.",level:"3"},{id:"sec_6_3",title:"2.2.2 ECM remodeling",level:"3"},{id:"sec_7_3",title:"2.2.3 Glucose and lipid metabolism",level:"3"},{id:"sec_10",title:"3. Adipose tissue and disease",level:"1"},{id:"sec_10_2",title:"3.1 Insulin resistance",level:"2"},{id:"sec_10_3",title:"3.1.1 Obesity as a trigger",level:"3"},{id:"sec_11_3",title:"3.1.2 Inflammatory pathway",level:"3"},{id:"sec_12_3",title:"3.1.3 Molecular mechanism",level:"3"},{id:"sec_13_3",title:"3.1.4 Role of adipokines and myokines",level:"3"},{id:"sec_14_3",title:"3.1.5 Emerging role of microRNAs in obesity",level:"3"},{id:"sec_16_2",title:"3.2 IR in muscle and liver",level:"2"},{id:"sec_16_3",title:"3.2.1 Liver",level:"3"},{id:"sec_17_3",title:"3.2.2 Muscle",level:"3"},{id:"sec_20",title:"4. A new terminology: pathologic adiposity",level:"1"},{id:"sec_21",title:"5. Conclusions",level:"1"},{id:"sec_25",title:"Conflict of interest",level:"1"},{id:"sec_24",title:"Acronyms and abbreviations",level:"1"}],chapterReferences:[{id:"B1",body:'Ross M, Wojciech P. Connective tissue. In: Histology: A Text and Atlas with Correlated Cell and Molecular Biology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2015. p. 992'},{id:"B2",body:'Haylett WL, Ferris WF. Adipocyte-progenitor cell communication that influences adipogenesis. Cellular and Molecular Life Sciences. 2019. Available from: https://doi.org/10.1007/s00018-019-03256-5'},{id:"B3",body:'Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity. Immunology. 2018;155(4):407-417'},{id:"B4",body:'Martinez-Santibanez G, Lumeng CN. Macrophages and the regulation of adipose tissue remodeling. Annual Review of Nutrition. 2014;34:57-76'},{id:"B5",body:'Khan T et al. Metabolic dysregulation and adipose tissue fibrosis: Role of collagen VI. Molecular and Cellular Biology. 2009;29(6):1575-1591'},{id:"B6",body:'Pasarica M et al. Adipose tissue collagen VI in obesity. The Journal of Clinical Endocrinology and Metabolism. 2009;94(12):5155-5162'},{id:"B7",body:'Orr JS, Kennedy AJ, Hasty AH. Isolation of adipose tissue immune cells. Journal of Visualized Experiments. 2013;75:e50707'},{id:"B8",body:'Rodriguez A et al. Revisiting the adipocyte: A model for integration of cytokine signaling in the regulation of energy metabolism. American Journal of Physiology. Endocrinology and Metabolism. 2015;309(8):E691-E714'},{id:"B9",body:'Ross M, Wojciech P. Adipose tissue. In: Histology: A Text and Atlas with Correlated Cell and Molecular Biology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2015. p. 992'},{id:"B10",body:'Zwick RK et al. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metabolism. 2018;27(1):68-83'},{id:"B11",body:'Fasshauer M, Bluher M. Adipokines in health and disease. Trends in Pharmacological Sciences. 2015;36(7):461-470'},{id:"B12",body:'Stenkula KG, Erlanson-Albertsson C. Adipose cell size: Importance in health and disease. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2018;315(2):R284-r295'},{id:"B13",body:'Goossens GH. The metabolic phenotype in obesity: Fat mass, body fat distribution, and adipose tissue function. Obesity Facts. 2017;10(3):207-215'},{id:"B14",body:'Fitzgerald SJ et al. A new approach to study the sex differences in adipose tissue. Journal of Biomedical Science. 2018;25(1):89'},{id:"B15",body:'Chang E, Varghese M, Singer K. Gender and sex differences in adipose tissue. Current Diabetes Reports. 2018;18(9):69'},{id:"B16",body:'Blouin K et al. Effects of androgens on adipocyte differentiation and adipose tissue explant metabolism in men and women. Clinical Endocrinology. 2010;72(2):176-188'},{id:"B17",body:'Totowa AO. In: Mazzone T, Fantuzzi G, editors. Nutrition and Health: Adipose Tissue and Adipokines in Health and Disease. Chicago, Il, USA: Springer; 2007. pp. 3-19'},{id:"B18",body:'Schmidt B, Horsley V. Unravelling hair follicle-adipocyte communication. Experimental Dermatology. 2012;21(11):827-830'},{id:"B19",body:'Driskell RR et al. Defining dermal adipose tissue. Experimental Dermatology. 2014;23(9):629-631'},{id:"B20",body:'Wajchenberg BL. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocrine Reviews. 2000;21(6):697-738'},{id:"B21",body:'Kohlgruber AC, LaMarche NM, Lynch L. Adipose tissue at the nexus of systemic and cellular immunometabolism. Seminars in Immunology. 2016;28(5):431-440'},{id:"B22",body:'Man K, Kutyavin VI, Chawla A. Tissue immunometabolism: Development, physiology, and pathobiology. Cell Metabolism. 2017;25(1):11-26'},{id:"B23",body:'Dalmas E. Role of innate immune cells in metabolism: From physiology to type 2 diabetes. Seminars in Immunopathology. 2019;41(4):531-545'},{id:"B24",body:'Ferrante AW Jr. The immune cells in adipose tissue. Diabetes, Obesity & Metabolism. 2013;15(Suppl 3):34-38'},{id:"B25",body:'Ghazarian M et al. Immunopathology of adipose tissue during metabolic syndrome. Turk Patoloji Dergisi. 2015;31(Suppl 1):172-180'},{id:"B26",body:'de Oliveira MFA, Talvani A, Rocha-Vieira E. IL-33 in obesity: Where do we go from here? Inflammation Research. 2019;68(3):185-194'},{id:"B27",body:'Satoh M, Iwabuchi K. Communication between natural killer T cells and adipocytes in obesity. Adipocytes. 2016;5(4):389-393'},{id:"B28",body:'Cinti S. Reversible physiological transdifferentiation in the adipose organ. The Proceedings of the Nutrition Society. 2009;68(4):340-349'},{id:"B29",body:'Cash JG et al. Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress. The Journal of Biological Chemistry. 2012;287(33):27876-27884'},{id:"B30",body:'Cai J et al. Macrophage infiltration regulates the adipose ECM reconstruction and the fibrosis process after fat grafting. Biochemical and Biophysical Research Communications. 2017;490(2):560-566'},{id:"B31",body:'Bauters D et al. Gelatinase A (MMP-2) promotes murine adipogenesis. Biochimica et Biophysica Acta. 2015;1850(7):1449-1456'},{id:"B32",body:'Bouloumie A et al. Adipocyte produces matrix metalloproteinases 2 and 9: Involvement in adipose differentiation. Diabetes. 2001;50(9):2080-2086'},{id:"B33",body:'Chavey C et al. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. The Journal of Biological Chemistry. 2003;278(14):11888-11896'},{id:"B34",body:'Tseng C, Kolonin MG. Proteolytic isoforms of SPARC induce adipose stromal cell mobilization in obesity. Stem Cells. 2016;34(1):174-190'},{id:"B35",body:'Lee YJ et al. Serum SPARC and matrix metalloproteinase-2 and metalloproteinase-9 concentrations after bariatric surgery in obese adults. Obesity Surgery. 2014;24(4):604-610'},{id:"B36",body:'Sung HK et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metabolism. 2013;17(1):61-72'},{id:"B37",body:'He Q et al. Regulation of HIF-1{alpha} activity in adipose tissue by obesity-associated factors: Adipogenesis, insulin, and hypoxia. American Journal of Physiology. Endocrinology and Metabolism. 2011;300(5):E877-E885'},{id:"B38",body:'Halberg N et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Molecular and Cellular Biology. 2009;29(16):4467-4483'},{id:"B39",body:'Zubkova ES et al. Regulation of adipose tissue stem cells angiogenic potential by tumor necrosis factor-alpha. Journal of Cellular Biochemistry. 2016;117(1):180-196'},{id:"B40",body:'Li J et al. Gene expression profile of rat adipose tissue at the onset of high-fat-diet obesity. American Journal of Physiology. Endocrinology and Metabolism. 2002;282(6):E1334-E1341'},{id:"B41",body:'Ruan H et al. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: Nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes. 2002;51(5):1319-1336'},{id:"B42",body:'Wernstedt Asterholm I et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metabolism. 2014;20(1):103-118'},{id:"B43",body:'Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes & Development. 2008;22(10):1276-1312'},{id:"B44",body:'Onogi Y et al. PDGFRbeta regulates adipose tissue expansion and glucose metabolism via vascular remodeling in diet-induced obesity. Diabetes. 2017;66(4):1008-1021'},{id:"B45",body:'Shao M et al. De novo adipocyte differentiation from Pdgfrbeta(+) preadipocytes protects against pathologic visceral adipose expansion in obesity. Nature Communications. 2018;9(1):890'},{id:"B46",body:'Lee YH, Petkova AP, Granneman JG. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metabolism. 2013;18(3):355-367'},{id:"B47",body:'Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nature Reviews. Immunology. 2011;11(11):723-737'},{id:"B48",body:'Marcelin G et al. A PDGFRalpha-mediated switch toward CD9(high) adipocyte progenitors controls obesity-induced adipose tissue fibrosis. Cell Metabolism. 2017;25(3):673-685'},{id:"B49",body:'Delle Monache S et al. Adipose-derived stem cells sustain prolonged angiogenesis through leptin secretion. Growth Factors. 2016;34(3-4):87-96'},{id:"B50",body:'Chao HW et al. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease. International Journal of Molecular Sciences. 2019;20(2):1-18. Available from: http://dx.doi.org/10.3390/ijms20020298'},{id:"B51",body:'Lenzen S. A fresh view of glycolysis and glucokinase regulation: History and current status. The Journal of Biological Chemistry. 2014;289(18):12189-12194'},{id:"B52",body:'Walsh CT, Tu BP, Tang Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chemical Reviews. 2018;118(4):1460-1494'},{id:"B53",body:'Raghow R et al. SREBPs: The crossroads of physiological and pathological lipid homeostasis. Trends in Endocrinology and Metabolism. 2008;19(2):65-73'},{id:"B54",body:'Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nature Reviews. Molecular Cell Biology. 2012;13(4):239-250'},{id:"B55",body:'Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organization Technical Report Series. 2000;894:i-xii, 1-253'},{id:"B56",body:'Sangros FJ et al. Association of general and abdominal obesity with hypertension, dyslipidemia and prediabetes in the PREDAPS study. Revista Española de Cardiología. 2018;71(3):170-177'},{id:"B57",body:'Faucher P et al. Bariatric surgery in obese patients with type 1 diabetes: Effects on weight loss and metabolic control. Obesity Surgery. 2016;26(10):2370-2378'},{id:"B58",body:'Barazzoni R et al. Insulin resistance in obesity: An overview of fundamental alterations. Eating and Weight Disorders. 2018;23(2):149-157'},{id:"B59",body:'Lee YS et al. Increased adipocyte O2 consumption triggers HIF-1alpha, causing inflammation and insulin resistance in obesity. Cell. 2014;157(6):1339-1352'},{id:"B60",body:'Bosch TA et al. Identification of sex-specific thresholds for accumulation of visceral adipose tissue in adults. Obesity (Silver Spring). 2015;23(2):375-382'},{id:"B61",body:'Rachel Marie Watson PRS, Talley AE, Stults-Kolehmainen MA. Influence of age, ethnicity and sex on body composition thresholds for the accumulation of visceral adipose tissue in adults. American Journal of Sports Science. 2019;7(3):111-120'},{id:"B62",body:'CCC C, Faucher P, Czernichow S, Oppert J-M. Obesidad del adulto. Tratado de Medicina. 2017;21(2):1-10'},{id:"B63",body:'Izaola O et al. Inflammation and obesity (lipoinflammation). Nutrición Hospitalaria. 2015;31(6):2352-2358'},{id:"B64",body:'Bluher M. Clinical relevance of adipokines. Diabetes and Metabolism Journal. 2012;36(5):317-327'},{id:"B65",body:'Cremona A et al. Effect of exercise modality on markers of insulin sensitivity and blood glucose control in pregnancies complicated with gestational diabetes mellitus: A systematic review. Obesity Science and Practice. 2018;4(5):455-467'},{id:"B66",body:'Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflammation. 2013;2013:139239'},{id:"B67",body:'Mancuso P. The role of adipokines in chronic inflammation. ImmunoTargets and Therapy. 2016;5:47-56'},{id:"B68",body:'Grigoras A et al. Perivascular adipose tissue in cardiovascular diseases-an update. Anatolian Journal of Cardiology. 2019;22(5):219-231'},{id:"B69",body:'Parisi L, Gini E. Macrophage polarization in chronic inflammatory diseases: Killers or builders? Journal of Immunology Research. 2018;2018:8917804'},{id:"B70",body:'Marie C et al. Regulation by anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGFbeta) of interleukin-8 production by LPS- and/ or TNFalpha-activated human polymorphonuclear cells. Mediators of Inflammation. 1996;5(5):334-340'},{id:"B71",body:'Calder PC. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochemical Society Transactions. 2017;45(5):1105-1115'},{id:"B72",body:'Ieronymaki E et al. Insulin signaling and insulin resistance facilitate trained immunity in macrophages through metabolic and epigenetic changes. Frontiers in Immunology. 2019;10:1330'},{id:"B73",body:'Unamuno X et al. Adipokine dysregulation and adipose tissue inflammation in human obesity. European Journal of Clinical Investigation. 2018;48(9):e12997'},{id:"B74",body:'Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiological Reviews. 1998;78(3):783-809'},{id:"B75",body:'Park A, Kim WK, Bae KH. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World Journal of Stem Cells. 2014;6(1):33-42'},{id:"B76",body:'Lefterova MI et al. PPARgamma and the global map of adipogenesis and beyond. Trends in Endocrinology and Metabolism. 2014;25(6):293-302'},{id:"B77",body:'Lin FT, Lane MD. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(19):8757-8761'},{id:"B78",body:'Guo L, Li X, Tang QQ. Transcriptional regulation of adipocyte differentiation: A central role for CCAAT/enhancer-binding protein (C/EBP) beta. The Journal of Biological Chemistry. 2015;290(2):755-761'},{id:"B79",body:'Grundy SM. Adipose tissue and metabolic syndrome: Too much, too little or neither. European Journal of Clinical Investigation. 2015;45(11):1209-1217'},{id:"B80",body:'Moseti D, Regassa A, Kim WK. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. International Journal of Molecular Sciences. 2016;17(1):124'},{id:"B81",body:'Trayhurn P, Drevon CA, Eckel J. Secreted proteins from adipose tissue and skeletal muscle—Adipokines, myokines and adipose/muscle cross-talk. Archives of Physiology and Biochemistry. 2011;117(2):47-56'},{id:"B82",body:'Raschke S, Eckel J. Adipo-myokines: Two sides of the same coin-mediators of inflammation and mediators of exercise. Mediators of Inflammation. 2013;2013:320724'},{id:"B83",body:'Li F et al. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine & Growth Factor Reviews. 2017;33:73-82'},{id:"B84",body:'Rodriguez A et al. Crosstalk between adipokines and myokines in fat browning. Acta Physiologica (Oxford, England). 2017;219(2):362-381'},{id:"B85",body:'Sahin-Efe A et al. Irisin and leptin concentrations in relation to obesity, and developing type 2 diabetes: A cross sectional and a prospective case-control study nested in the normative aging study. Metabolism. 2018;79:24-32'},{id:"B86",body:'Ye X et al. Irisin reverses insulin resistance in C2C12 cells via the p38-MAPK-PGC-1alpha pathway. Peptides. 2019;119:170120'},{id:"B87",body:'Meijer K et al. Human primary adipocytes exhibit immune cell function: Adipocytes prime inflammation independent of macrophages. PLoS One. 2011;6(3):e17154'},{id:"B88",body:'Sell H et al. Skeletal muscle insulin resistance induced by adipocyte-conditioned medium: Underlying mechanisms and reversibility. American Journal of Physiology. Endocrinology and Metabolism. 2008;294(6):E1070-E1077'},{id:"B89",body:'Sell H et al. Monocyte chemotactic protein-1 is a potential player in the negative cross-talk between adipose tissue and skeletal muscle. Endocrinology. 2006;147(5):2458-2467'},{id:"B90",body:'Lobo SM et al. TNF-alpha modulates statin effects on secretion and expression of MCP-1, PAI-1 and adiponectin in 3T3-L1 differentiated adipocytes. Cytokine. 2012;60(1):150-156'},{id:"B91",body:'Famulla S et al. Pigment epithelium-derived factor (PEDF) is one of the most abundant proteins secreted by human adipocytes and induces insulin resistance and inflammatory signaling in muscle and fat cells. International Journal of Obesity. 2011;35(6):762-772'},{id:"B92",body:'Fisher FM et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes & Development. 2012;26(3):271-281'},{id:"B93",body:'Wu Y, Zhou S, Smas CM. Downregulated expression of the secreted glycoprotein follistatin-like 1 (Fstl1) is a robust hallmark of preadipocyte to adipocyte conversion. Mechanisms of Development. 2010;127(3-4):183-202'},{id:"B94",body:'Rudrapatna S et al. Obesity and muscle-macrophage crosstalk in humans and mice: A systematic review. Obesity Reviews. 2019;20(11):1572-1596'},{id:"B95",body:'Landrier JF, Derghal A, Mounien L. MicroRNAs in obesity and related metabolic disorders. Cell. 2019;8(8):859'},{id:"B96",body:'Naukkarinen J et al. Causes and consequences of obesity: The contribution of recent twin studies. International Journal of Obesity. 2012;36(8):1017-1024'},{id:"B97",body:'Xia Q , Grant SF. The genetics of human obesity. Annals of the New York Academy of Sciences. 2013;1281:178-190'},{id:"B98",body:'de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Letters. 2008;582(1):97-105'},{id:"B99",body:'Ota T. Chemokine systems link obesity to insulin resistance. Diabetes and Metabolism Journal. 2013;37(3):165-172'},{id:"B100",body:'Bourlier V, Bouloumie A. Role of macrophage tissue infiltration in obesity and insulin resistance. Diabetes & Metabolism. 2009;35(4):251-260'},{id:"B101",body:'Wang Z, Nakayama T. Inflammation, a link between obesity and cardiovascular disease. Mediators of Inflammation. 2010;2010:535918'},{id:"B102",body:'Chawla A, Nguyen KD, Goh YP. Macrophage-mediated inflammation in metabolic disease. Nature Reviews. Immunology. 2011;11(11):738-749'},{id:"B103",body:'Ouchi N et al. Adipokines in inflammation and metabolic disease. Nature Reviews. Immunology. 2011;11(2):85-97'},{id:"B104",body:'McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2014;41(1):36-48'},{id:"B105",body:'Schipper HS et al. Adipose tissue-resident immune cells: Key players in immunometabolism. Trends in Endocrinology and Metabolism. 2012;23(8):407-415'},{id:"B106",body:'Yao L et al. Roles of the chemokine system in development of obesity, insulin resistance, and cardiovascular disease. Journal of Immunology Research. 2014;2014:181450'},{id:"B107",body:'Poon AK et al. Short-term repeatability of insulin resistance indexes in older adults: The atherosclerosis risk in communities study. The Journal of Clinical Endocrinology and Metabolism. 2018;103(6):2175-2181'},{id:"B108",body:'Samuel VT, Shulman GI. Mechanisms for insulin resistance: Common threads and missing links. Cell. 2012;148(5):852-871'},{id:"B109",body:'Chakraborty C et al. Influence of miRNA in insulin signaling pathway and insulin resistance: Micro-molecules with a major role in type-2 diabetes. Wiley Interdisciplinary Reviews: RNA. 2014;5(5):697-712'},{id:"B110",body:'Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):17-24'},{id:"B111",body:'Ness-Abramof R, Apovian CM. Waist circumference measurement in clinical practice. Nutrition in Clinical Practice. 2008;23(4):397-404'},{id:"B112",body:'Khoury S, Tran N. Circulating microRNAs: Potential biomarkers for common malignancies. Biomarkers in Medicine. 2015;9(2):131-151'},{id:"B113",body:'van Rooij E. The art of microRNA research. Circulation Research. 2011;108(2):219-234'},{id:"B114",body:'Lagarrigue S et al. CDK4 is an essential insulin effector in adipocytes. The Journal of Clinical Investigation. 2016;126(1):335-348'},{id:"B115",body:'Di Meo S, Iossa S, Venditti P. Skeletal muscle insulin resistance: Role of mitochondria and other ROS sources. The Journal of Endocrinology. 2017;233(1):R15-r42'},{id:"B116",body:'Edgerton DS et al. Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo. Diabetes. 2009;58(12):2766-2775'},{id:"B117",body:'Miyake K et al. Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver. The Journal of Clinical Investigation. 2002;110(10):1483-1491'},{id:"B118",body:'Inoue H et al. Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metabolism. 2006;3(4):267-275'},{id:"B119",body:'Pocai A et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005;434(7036):1026-1031'},{id:"B120",body:'Yu C et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. The Journal of Biological Chemistry. 2002;277(52):50230-50236'},{id:"B121",body:'Cherrington AD. The role of hepatic insulin receptors in the regulation of glucose production. The Journal of Clinical Investigation. 2005;115(5):1136-1139'},{id:"B122",body:'Ferrannini E et al. Effect of fatty acids on glucose production and utilization in man. The Journal of Clinical Investigation. 1983;72(5):1737-1747'},{id:"B123",body:'Perry RJ et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745-758'},{id:"B124",body:'Gupta MK, Vasudevan NT. GPCRs and insulin receptor signaling in conversation: Novel avenues for drug discovery. Current Topics in Medicinal Chemistry. 2019;19(16):1436-1444'},{id:"B125",body:'Chen L et al. Acetyl-CoA carboxylase (ACC) as a therapeutic target for metabolic syndrome and recent developments in ACC1/2 inhibitors. Expert Opinion on Investigational Drugs. 2019;28(10):917-930'},{id:"B126",body:'Haeusler RA et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nature Communications. 2014;5:5190'},{id:"B127",body:'Perry RJ et al. Mechanisms by which a very-low-calorie diet reverses hyperglycemia in a rat model of type 2 diabetes. Cell Metabolism. 2018;27(1):210-217.e3'},{id:"B128",body:'Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: Problems and prospects. Endocrine Reviews. 1998;19(4):477-490'},{id:"B129",body:'Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: Insights into insulin action. Nature Reviews. Molecular Cell Biology. 2006;7(2):85-96'},{id:"B130",body:'Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiological Reviews. 2007;87(2):507-520'},{id:"B131",body:'Dresner A et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. The Journal of Clinical Investigation. 1999;103(2):253-259'},{id:"B132",body:'Hotamisligil GS et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665-668'},{id:"B133",body:'Boura-Halfon S, Zick Y. Phosphorylation of IRS proteins, insulin action, and insulin resistance. American Journal of Physiology. Endocrinology and Metabolism. 2009;296(4):E581-E591'},{id:"B134",body:'Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440(7086):944-948'},{id:"B135",body:'Muoio DM, Neufer PD. Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metabolism. 2012;15(5):595-605'},{id:"B136",body:'Altintas MM et al. Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. Journal of Lipid Research. 2011;52(3):480-488'},{id:"B137",body:'De Lorenzo A et al. New obesity classification criteria as a tool for bariatric surgery indication. World Journal of Gastroenterology. 2016;22(2):681-703'},{id:"B138",body:'Stefan N, Schick F, Haring HU. Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans. Cell Metabolism. 2017;26(2):292-300'},{id:"B139",body:'van Vliet-Ostaptchouk JV et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: A collaborative analysis of ten large cohort studies. BMC Endocrine Disorders. 2014;14:9'},{id:"B140",body:'Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis. The Journal of Clinical Investigation. 2017;127(1):74-82'},{id:"B141",body:'Bluher M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Practice & Research. Clinical Endocrinology & Metabolism. 2013;27(2):163-177'},{id:"B142",body:'Woo CY et al. Mitochondrial dysfunction in adipocytes as a primary cause of adipose tissue inflammation. Diabetes & Metabolism Journal. 2019;43(3):247-256'},{id:"B143",body:'Chylikova J et al. M1/M2 macrophage polarization in human obese adipose tissue. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czech Republic. 2018;162(2):79-82'},{id:"B144",body:'Kratz M et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metabolism. 2014;20(4):614-625'},{id:"B145",body:'Mori S et al. Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; comparison with visceral adipose tissue. International Journal of Biological Sciences. 2014;10(8):825-833'},{id:"B146",body:'Engin AB. Adipocyte-macrophage cross-talk in obesity. Advances in Experimental Medicine and Biology. 2017;960:327-343'},{id:"B147",body:'Karczewski J et al. Obesity and inflammation. European Cytokine Network. 2018;29(3):83-94'},{id:"B148",body:'Fang Z, Pyne S, Pyne NJ. Ceramide and sphingosine 1-phosphate in adipose dysfunction. Progress in Lipid Research. 2019;74:145-159'},{id:"B149",body:'Godsland IF. Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clinical Science (London, England). 2009;118(5):315-332'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Fernanda-Isadora Corona-Meraz",address:null,affiliation:'
UDG-CA-701, Research Group on Immunometabolism and Complex Diseases, Department of Molecular Biology and Genomics, Health Sciences School, University of Guadalajara, Mexico
Department of Biomedical Sciences, Health Sciences Division, CUTonalá, University of Guadalajara, Mexico
UDG-CA-701, Research Group on Immunometabolism and Complex Diseases, Department of Molecular Biology and Genomics, Health Sciences School, University of Guadalajara, Mexico
Doctoral Program in Molecular Sciences in Medicine, Department of Molecular Biology and Genomics, Health Sciences School, University of Guadalajara, Mexico
UDG-CA-701, Research Group on Immunometabolism and Complex Diseases, Department of Molecular Biology and Genomics, Health Sciences School, University of Guadalajara, Mexico
Doctoral Program in Molecular Sciences in Medicine, Department of Molecular Biology and Genomics, Health Sciences School, University of Guadalajara, Mexico
UDG-CA-701, Research Group on Immunometabolism and Complex Diseases, Department of Molecular Biology and Genomics, Health Sciences School, University of Guadalajara, Mexico
Department of Health Sciences and Human Ecology, Regional Development Division, CUCSur, University of Guadalajara, Mexico
UDG-CA-701, Research Group on Immunometabolism and Complex Diseases, Department of Molecular Biology and Genomics, Health Sciences School, University of Guadalajara, Mexico
'}],corrections:null},book:{id:"7017",title:"Obesity",subtitle:null,fullTitle:"Obesity",slug:"obesity",publishedDate:"February 19th 2020",bookSignature:"Hülya Çakmur",coverURL:"https://cdn.intechopen.com/books/images_new/7017.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78985-852-5",printIsbn:"978-1-78985-494-7",pdfIsbn:"978-1-78985-885-3",editors:[{id:"190636",title:"Associate Prof.",name:"Hülya",middleName:null,surname:"Çakmur",slug:"hulya-cakmur",fullName:"Hülya Çakmur"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"70311",title:"Introductory Chapter: Unbearable Burden of the Diseases - Obesity",slug:"introductory-chapter-unbearable-burden-of-the-diseases-obesity",totalDownloads:298,totalCrossrefCites:0,signatures:"Hülya Çakmur",authors:[{id:"190636",title:"Associate Prof.",name:"Hülya",middleName:null,surname:"Çakmur",fullName:"Hülya Çakmur",slug:"hulya-cakmur"}]},{id:"70627",title:"Adipose Tissue in Health and Disease",slug:"adipose-tissue-in-health-and-disease",totalDownloads:447,totalCrossrefCites:0,signatures:"Fernanda-Isadora Corona-Meraz, Jesus-Aureliano Robles-De Anda, Perla-Monserrat Madrigal-Ruiz, Gustavo-Ignacio Díaz-Rubio, Jorge Castro-Albarrán and Rosa-Elena Navarro-Hernández",authors:[{id:"191565",title:"Dr.",name:"Rosa Elena",middleName:null,surname:"Navarro Hernandez",fullName:"Rosa Elena Navarro Hernandez",slug:"rosa-elena-navarro-hernandez"},{id:"195067",title:"MSc.",name:"Fernanda Isadora",middleName:null,surname:"Corona Meraz",fullName:"Fernanda Isadora Corona Meraz",slug:"fernanda-isadora-corona-meraz"},{id:"311468",title:"BSc.",name:"J. Aureliano",middleName:null,surname:"Robles-De Anda",fullName:"J. Aureliano Robles-De Anda",slug:"j.-aureliano-robles-de-anda"},{id:"311477",title:"Dr.",name:"Perla-Monserrat",middleName:null,surname:"Madrigal-Ruiz",fullName:"Perla-Monserrat Madrigal-Ruiz",slug:"perla-monserrat-madrigal-ruiz"},{id:"311478",title:"Dr.",name:"Jorge",middleName:null,surname:"Castro-Albarran",fullName:"Jorge Castro-Albarran",slug:"jorge-castro-albarran"},{id:"311479",title:"MSc.",name:"Gustavo Ignacio",middleName:null,surname:"Diaz-Rubio",fullName:"Gustavo Ignacio Diaz-Rubio",slug:"gustavo-ignacio-diaz-rubio"}]},{id:"63165",title:"Obesity as a Promoter of Cancer Development and Progression",slug:"obesity-as-a-promoter-of-cancer-development-and-progression",totalDownloads:401,totalCrossrefCites:1,signatures:"Nicole Bonan and Katie DeCicco-Skinner",authors:[{id:"117955",title:"Dr.",name:"Kathleen",middleName:null,surname:"DeCicco-Skinner",fullName:"Kathleen DeCicco-Skinner",slug:"kathleen-decicco-skinner"},{id:"258398",title:"MSc.",name:"Nicole",middleName:null,surname:"Bonan",fullName:"Nicole Bonan",slug:"nicole-bonan"}]},{id:"63940",title:"Reproductive Consequences of Obesity",slug:"reproductive-consequences-of-obesity",totalDownloads:475,totalCrossrefCites:1,signatures:"Tamara Hunter and Roger Hart",authors:[{id:"187858",title:"Prof.",name:"Roger",middleName:null,surname:"Hart",fullName:"Roger Hart",slug:"roger-hart"},{id:"259614",title:"Dr.",name:"Tamara",middleName:null,surname:"Hunter",fullName:"Tamara Hunter",slug:"tamara-hunter"}]},{id:"69366",title:"Treatment Options in Morbid Obesity",slug:"treatment-options-in-morbid-obesity",totalDownloads:276,totalCrossrefCites:0,signatures:"Tülay Diken Allahverdi",authors:[{id:"309911",title:"Dr.",name:"Tülay",middleName:"Diken",surname:"Diken Allahverdi",fullName:"Tülay Diken Allahverdi",slug:"tulay-diken-allahverdi"}]}]},relatedBooks:[{type:"book",id:"6704",title:"Geriatrics Health",subtitle:null,isOpenForSubmission:!1,hash:"7cac7767e0b34391318cd4a680ca0d68",slug:"geriatrics-health",bookSignature:"Hülya Çakmur",coverURL:"https://cdn.intechopen.com/books/images_new/6704.jpg",editedByType:"Edited by",editors:[{id:"190636",title:"Associate Prof.",name:"Hülya",surname:"Çakmur",slug:"hulya-cakmur",fullName:"Hülya Çakmur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"62240",title:"Introductory Chapter: Aging is a Preventable Disorder",slug:"introductory-chapter-aging-is-a-preventable-disorder",signatures:"Hülya Çakmur",authors:[{id:"190636",title:"Associate Prof.",name:"Hülya",middleName:null,surname:"Çakmur",fullName:"Hülya Çakmur",slug:"hulya-cakmur"}]},{id:"59805",title:"Diplopia Developed in Later Life, An Ophthalmologic Approach",slug:"diplopia-developed-in-later-life-an-ophthalmologic-approach",signatures:"Elfriede Stangler-Zuschrott",authors:[{id:"233383",title:"Emeritus Prof.",name:"Elfriede",middleName:null,surname:"Stangler-Zuschrott",fullName:"Elfriede Stangler-Zuschrott",slug:"elfriede-stangler-zuschrott"}]},{id:"62064",title:"Empowering the Elderly by Giving Dignity",slug:"empowering-the-elderly-by-giving-dignity",signatures:"Irudaya Rajan Sebastian and Sunitha Syamala",authors:[{id:"233458",title:"Prof.",name:"Irudaya Rajan",middleName:null,surname:"S",fullName:"Irudaya Rajan S",slug:"irudaya-rajan-s"},{id:"238597",title:"Dr.",name:"Sunitha",middleName:null,surname:"S",fullName:"Sunitha S",slug:"sunitha-s"}]},{id:"60124",title:"Life Span Management",slug:"life-span-management",signatures:"Adewale James Alegbeleye",authors:[{id:"238052",title:"Dr.",name:"A. James",middleName:null,surname:"Alegbeleye",fullName:"A. James Alegbeleye",slug:"a.-james-alegbeleye"}]},{id:"62129",title:"Cognitive Ageing",slug:"cognitive-ageing",signatures:"Dorina Cadar",authors:[{id:"238420",title:"Dr.",name:"Dorina",middleName:null,surname:"Cadar",fullName:"Dorina Cadar",slug:"dorina-cadar"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"76228",title:"Minimally Invasive Surgery of the Groin: Inguinal Hernia Repair",doi:"10.5772/intechopen.97266",slug:"minimally-invasive-surgery-of-the-groin-inguinal-hernia-repair",body:'
1. Introduction
When dealing with groin hernia, we believe that surgeons must be familiarized with an open technique (Lichtenstein), a posterior open technique (e.g., Rives-Stoppa), a non-mesh technique (Shouldice or McVay), and a laparoendoscopic technique (TAPP or eTEP). The former is because the groin hernia has a lifetime occurrence of 27–43% in men and 3–6% in women [1]. Therefore, inguinal hernia repair (IHR) is one of the most common surgeries performed worldwide, doing approximately 20 million each year [2].
It is now well recognized that laparoendoscopic techniques are superior to open approaches concerning less postoperative pain, numbness [3], chronic pain, fewer complications, and faster return to normal activities [2–4. Nevertheless, longer operative time, increased costs, and major complications such as great vessels and intestinal injuries are attributable to the laparoendoscopic approach [2, 3, 4]. Even though laparoendoscopic surgery is more expensive than open procedures [2], improved surgical skills, experienced surgeons, high-volume centers, and some patient characteristics (e.g., Bilateral inguinal hernia) enhance this approach [2, 4, 5, 6].
The minimally invasive surgical techniques for inguinal hernia repair (MISr): extended-view totally extraperitoneal approach (eTEP) and transabdominal preperitoneal approach (TAPP); are gaining ground in the surgeons’ armamentarium. Improved laparoscopic skills, well-selected patients, simulator training, and anatomy knowledge of the groin are the cornerstone for these approaches.
2. Anatomical considerations
The myopectineal orifice (MPO) is an inherently weak area of the abdominal wall where the direct, indirect, femoral, and oblique hernias occur [7], being delimited medially by rectus abdominis muscle, inferiorly by pectineus ligament, laterally by psoas muscle, and superiorly by the transverse arch (transversus abdominis and internal oblique muscle) [8]. The anatomical landmarks are described in Figure 1.
Figure 1.
Anatomical landmark of laparoscopic pelvic view (A) and inguinal laparoscopic view (B). Own by the author.
Two classic triangles have been described in the laparoscopic inguinal view: The triangle of doom (Figure 2) where the external iliac artery and vein are, and the triangle of pain (Figure 2), within this triangle, are from lateral to medial: the lateral femoral cutaneous nerve, the femoral branch of the genitofemoral nerve and the femoral nerve.
Figure 2.
Triangle of pain (P) and triangle of doom (D). Own by the author.
A more didactic description of the MPO’s posterior visualization dividing this region into three zones and five triangles was described to facilitate the comprehension and recognition of anatomical structures during MISr [8] (see Figures 3 and 4).
Figure 3.
Inverted “Y” and five triangles of the inguinal region. Femoral hernia (F), direct hernia (D), indirect hernia (I), doom (D) and pain (D) triangles. Own by the author.
Figure 4.
Zones of the inguinal region. Own by the author.
3. Surgical aspects
Even though the eTEP and the TAPP require a different initial approach, both techniques need to accomplish the MPO’s critical view to assurance a correct mesh placement after the creation of the peritoneal pocket.
3.1 Indications and contraindications
The indications to perform a MISr of inguinal hernia are the same as those for an open approach. The more important indications to do MISr are: knowledge of the technique with a clear laparoscopic anatomy concept, having laparoscopic skills for intracorporeal suture, and bimanual dissection capacity. In the case of an incarcerated or strangulated hernia, we recommend the TAPP approach to inspect the bowel; if small bowel resection must be done, intracorporeal stapler use or exteriorization of the bowel through the umbilical port (minilaparotomy of 5 cm) can be used.
The contraindications are the patient’s intolerance to pneumoperitoneum, childhood, and pregnancy after the second trimester. Relative contraindications are severe ascites, strangulated hernia, recurrence inguinal hernia after a posterior approach.
As for the initial cases, we recommend starting with small, unilateral hernias and progressively, increase the difficulty of the cases.
3.2 Preoperative planning
Patient: patient’s position on the operating table is supine with both arms secured at their respective side. Bladder drainage with a Foley catheter is unnecessary if the patient urinates immediately before entering the operating room; We suggest draining the bladder with a Foley catheter during the initial cases.
Instrument: laparoscopic tower, a 30 degrees 10 mm angular scope, two grasper or Croce-Olmi forceps, one Maryland dissector, one Metzenbaum scissors, one laparoscopic needle driver, monopolar energy.
The surgeon’s position is on the hernia’s contralateral side (Dr. Ploneda-Valencia usually operates at the patient’s head). The camera’s operator is on the hernia’s side (or at the opposite of the hernia if the surgeon is at the patient’s head). The operating table is kept in the Trendelenburg position with a contralateral rotation of the hernia. The monitor is placed at the patient’s feet.
Comment: Our anesthetist usually applies a TAP block guided with ultrasound.
3.2.1 Standardize technique: critical view of the myopectineal orifice
The following are the steps to gain the critical view of the MPO, which are necessary to increase surgical success [9]:
Create a large peritoneal flap. Dissect across the midline and identify the pubic tubercle and Cooper’s ligament (CL). For large, direct hernias, extend the dissection to the contralateral CL.
Rule out a direct hernia by visualizing the anatomy. Remove unusual fat in the Hesselbach’s triangle.
Dissect the space of Retzius at least 2 cm between the CL and bladder to facilitate flat placement of the mesh.
Rule out a femoral hernia by dissecting between the CL and iliac vein.
Parietalize the cord’s elements. To ensure compliance with this requirement, the dissection must continue until the cord’s elements lie flat. Pull the sac and peritoneum upward; this maneuver will not trigger any movement of the cord’s elements if this step is achieved.
Identify and reduce cord lipomas.
Dissect the peritoneum lateral to the cord’s elements beyond the anterior superior iliac spine.
Perform the dissection and ensure that mesh provides adequate coverage of all defects. Mechanical fixation must be placed above an imaginary inter-anterior superior iliac spine line and any defects to avoid recurrence and nerve injury.
Place the mesh only when items 1 to 8 are completed, and hemostasis has been verified. The mesh size should be at least 15–10 cm and be placed without creases or folds. Ensure that its lateral-inferior corner lies deep against the wall and does not roll up during space deflation.
3.2.2 eTEP technical features
The initial incision is made on the flank 3 cm above and 5 cm lateral to the umbilicus line [6, 10, 11]. See Figure 5 for unilateral hernia and Figure 6 for bilateral hernia trocar setup. At the selected location, a 12 mm incision is made, and the anterior fascia is exposed with the use of “S” retractors, the anterior fascia is incised with a no. 11 blade, the fibers of the rectal abdominis muscle are separate, and the posterior sheath is exposed. Blunt dissection with the finger is done, and the space created is lifted with the help of the “S” retractor to allow the introduction of the balloon dissector (Figure 7). Once the balloon dissector (Spacemaker™ Plus Dissector System) is inserted, the camera is introduced, and the balloon is inflated with the hand pump with 25–30 hand pumps of air under direct vision. The next step should follow the critical view of the myopectineal orifice [9].
Figure 5.
eTEP for unilateral inguinal hernia trocar setup. “A” left hernia and “B” right hernia. Own by the author.
Figure 6.
eTEP bilateral inguinal hernia trocar setup. “A” start with the right hernia; “B” insert a fourth trocar in the rigth lower cuadrant to do the left hernia.
Figure 7.
Balloon dissector outside (A) and inside (B) view of the abdomen. Own by the author.
3.2.3 TAPP technical features
The trocar setup we recommend is demonstrated in Figure 8; the initial incision is transumbilical [12, 13], either Veress or Hasson technique can be done as the surgeons’ preference, and a 12 mm trocar is introduced. After laparoscopy is done, two 5 mm trocar to the right and left of the umbilicus are introduced. Our recommendation for the peritoneal flap creation is to initiate the lateral side 2 cm upper and 2 cm medial to the anterior superior iliac spine. In a horizontal direction, it incises the peritoneum to the medial umbilical ligament (See Figure 1). The following dissection should be in a bloodless space, which could be done either in Zone 1 or in Zone 2 (See Figure 4). We recommend doing first the Zone 2 dissection because it is easier to identify the CL and the pubic tubercle (Figure 9). The next step should follow the critical view of the myopectineal orifice [9].
Figure 8.
TAPP trocar setup. Own by the author.
Figure 9.
Complete inguinal dissection. Own by the author.
3.2.4 Pitfalls and pearls
The TAPP technique is easier to learn and has a more “friendly” view of the anatomical landmarks than eTEP.
The dissection of Zone 2 is easier to do and has a more consistent anatomy.
The medial defect should be close if it is larger than 2 cm. We recommend the use of the European Hernia Classification to describe the hernias [14].
The lateral hernia sac should be traction medially. Remember, “traction” and “counteraction” are the key steps to dissect the sac.
“Twist” medially the sac to improve the traction.
The dissection of the cord’s elements is achieved when we tract the peritoneal flap, and the movement is not transmitted to the cord’s elements; the sac must reach the peritoneal flap.
In larger sacs, the “ligation and section” approach is a valid option
If bleeding from the “Corona Mortis” occurs, simple compression with two or three gauzes is usually enough for 5 to 10 minutes. We do not recommend using electrocautery as it may tear the vessel or increase the zone of bleeding.
The mesh should be at least 12 cm transversely and 11 cm vertically. We usually use a 14×14 cm mesh.
We do not recommend using a pre-shaped mesh because it only increases the cost of the procedure. We use a polypropylene mesh of 15×15 cm (Ultrapro™ or Prolene™) and cut it to fix. We only cut the border of the mesh. See Figure 10
We recommend rolling up the mesh to introduce the mesh and place an external stitch to maintain the position. Once inside, cut the stitch and unroll it, pulling the mesh’s inferior medial aspect downward and unrolling upward. See Figure 11
To fix the mesh, either use 1–2 Tackers in CL, 1 Tacker medial, and 1 Tacker lateral and in the most upper part of the mesh to avoid the triangle of pain or use absorbable stitches instead. Always remember not to apply it over the inferior epigastric vessels or beneath an imaginary line that runs transversely from the iliopubic tract to the pubic tubercle (See Figure 3). See Figure 12.
Even though experts do not fix the mesh [15], we strongly recommend fixing it to diminish migration risk. On the other hand, the mesh’s excessive fixation won’t prevent a recurrence if the surgical technique isn’t performed correctly and will increase the risk of postoperative pain and chronic pain [16].
Tears can appear during the creation of the peritoneal flap, making it complicated to cover the mesh. Using the redundant peritoneal sac to cover the mesh with peritoneum is a feasible option.
Figure 10.
Mesh configuration. Own by the author.
Figure 11.
Roll up mesh (A) and unroll the mesh from downward to upward (B). Own by the author.
Figure 12.
Fix mesh either with tackers (A) or stitches (B). Own by the author.
3.2.5 Postoperative care
In the small or medium-sized hernias (L/M < 3), we managed the patient as an outpatient; during the learning curve, a 12–24 hours observation may be advisable. The use of tight boxers and an icepack application in the groin region reduces postoperative pain and the inflammatory response. We recommend using the icepack for 30 minutes four times a day during the first seven days. Physical activity, mild activities (such as driving or going to work) are recommended after the 7th postoperative day; lifting over 10 kg or doing exercise is recommended after the 4th postoperative week.
3.3 Complications
Transoperative complications: the most common complication is peritoneal flap tear, which can be closed with the remanent sac or by diminishing the insufflator’s pressure to do a primary closure. Bleeding of large vessels is a life-threatening complication. The more frequent injured vessels are the inferior epigastric vessels or the obturator vessels. If bleeding occurs, compression with gauze for 10 minutes is usually enough; using titanium clips or an advanced hemostatic device (LigasureTM or HarmonicTM) may resolve the problem. The surgeon must be ready to convert the surgery if the bleeding is abundant. As for the intestinal lesion, the surgeon’s ability to do a primary closure with intracorporeal suture will decide the course of action. If the surgical field is contaminated, an open non-mesh technique should be done.
Postoperative complications include pain, seroma, hematoma, hydrocele, surgical site infection, chronic pain, mesh rejection, mesh infection, recurrence, testicular atrophy, among other less common complications (e.g., mesh penetration of the bladder). Seroma is the most frequent complication, usually appears in a large hernia, secondary either to death-space or to an exhaustive dissection of a large sac. Hematoma is another frequent complication which diminishes its appearance if tight boxers and icepack on the groin are used. Generally, watchful waiting is enough to manage either seroma or hematoma, but surgical drainage may be needed if large and painful.
4. Conclusions
MISr is safe and feasible if the surgeon is familiarized with the anatomical landmarks and the technique. Surgical skills and experience are essential to improve patient outcomes. Reviewing the surgery video, especially during the learning curve or in complicated cases, and comparing it with the expert’s videos, enhances the surgeon’s growth and diminishes the learning curve.
Conflict of interest
The authors declare no conflict of interest.
\n',keywords:"inguinal hernia, TAPP, TEP, E-TEP, minimally",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/76228.pdf",chapterXML:"https://mts.intechopen.com/source/xml/76228.xml",downloadPdfUrl:"/chapter/pdf-download/76228",previewPdfUrl:"/chapter/pdf-preview/76228",totalDownloads:8,totalViews:0,totalCrossrefCites:0,dateSubmitted:"July 13th 2020",dateReviewed:"March 15th 2021",datePrePublished:"April 12th 2021",datePublished:null,dateFinished:"April 12th 2021",readingETA:"0",abstract:"The minimally invasive surgical technique for inguinal hernia repair (eTEP and TAPP) are gaining acceptance among surgeons worldwide. With the superior benefits of the laparoendoscopic techniques (less postoperative pain, numbness, and chronic pain, fewer complications, and faster return to normal activities), the protocolization and standardization of these approaches are essential to improve patient outcomes and reduce costs. Improved laparoscopic skills, well-selected patients, simulator training, and anatomy knowledge of the groin are the cornerstone for these approaches. We recommend starting the learning curve with the TAPP procedure, because it is easier to get familiarized with the anatomical landmarks of the pelvis and groin.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/76228",risUrl:"/chapter/ris/76228",signatures:"César Felipe Ploneda-Valencia, Carlos Alfredo Bautista-López, Carlos Alberto Navarro-Montes and Juan Carlos Verdugo-Tapia",book:{id:"10447",title:"The Art and Science of Abdominal Hernia",subtitle:null,fullTitle:"The Art and Science of Abdominal Hernia",slug:null,publishedDate:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/10447.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",middleName:null,surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Anatomical considerations",level:"1"},{id:"sec_3",title:"3. Surgical aspects",level:"1"},{id:"sec_3_2",title:"3.1 Indications and contraindications",level:"2"},{id:"sec_4_2",title:"3.2 Preoperative planning",level:"2"},{id:"sec_4_3",title:"3.2.1 Standardize technique: critical view of the myopectineal orifice",level:"3"},{id:"sec_5_3",title:"3.2.2 eTEP technical features",level:"3"},{id:"sec_6_3",title:"3.2.3 TAPP technical features",level:"3"},{id:"sec_7_3",title:"3.2.4 Pitfalls and pearls",level:"3"},{id:"sec_8_3",title:"3.2.5 Postoperative care",level:"3"},{id:"sec_10_2",title:"3.3 Complications",level:"2"},{id:"sec_12",title:"4. Conclusions",level:"1"},{id:"sec_16",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'The HerniaSurge Group. International guidelines for groin hernia management. Hernia. febrero de 2018;22(1):1-165.'},{id:"B2",body:'Tadaki C, Lomelin D, Simorov A, Jones R, Humphreys M, daSilva M, et al. Perioperative outcomes and costs of laparoscopic versus open inguinal hernia repair. Hernia. junio de 2016;20(3):399-404.'},{id:"B3",body:'Cavazzola LT, Rosen MJ. Laparoscopic Versus Open Inguinal Hernia Repair. Surg Clin North Am. octubre de 2013;93(5):1269-1279.'},{id:"B4",body:'Pisanu A, Podda M, Saba A, Porceddu G, Uccheddu A. Meta-analysis and review of prospective randomized trials comparing laparoscopic and Lichtenstein techniques in recurrent inguinal hernia repair. Hernia. junio de 2015;19(3):355-366.'},{id:"B5",body:'Ielpo B, Nuñez-Alfonsel J, Duran H, Diaz E, Fabra I, Caruso R, et al. Cost-effectiveness of Randomized Study of Laparoscopic Versus Open Bilateral Inguinal Hernia Repair: Ann Surg. noviembre de 2018;268(5):725-730.'},{id:"B6",body:'Daes J. Minimally Invasive Surgical Techniques for Inguinal Hernia Repair: The Extended-View Totally Extraperitoneal Approach (eTEP). En: Davis, SS, Dakin G, Bates A, editores. The SAGES Manual of Hernia Surgery [Internet]. Cham: Springer International Publishing; 2019 [citado 22 de noviembre de 2020]. p. 449-60. Disponible en: http://link.springer.com/10.1007/978-3-319-78411-3_33'},{id:"B7",body:'Yang X-F, Liu J-L. Anatomy essentials for laparoscopic inguinal hernia repair. Ann Transl Med. octubre de 2016;4(19):372-372.'},{id:"B8",body:'Furtado M, Claus CMP, Cavazzola LT, Malcher F, Bakonyi-Neto A, Saad-Hossne R. Systemization of laparoscopic inguinal hernia repair (tapp) based on a new anatomical concept: inverted y and five triangles. ABCD Arq Bras Cir Dig São Paulo. 2019;32(1):e1426.'},{id:"B9",body:'Daes J, Felix E. Critical View of the Myopectineal Orifice: Ann Surg. julio de 2017;266(1):e1-e2.'},{id:"B10",body:'Claus C, Furtado M, Malcher F, Cavazzola LT, Felix E. Ten golden rules for a safe MIS inguinal hernia repair using a new anatomical concept as a guide. Surg Endosc. abril de 2020;34(4):1458-1464.'},{id:"B11",body:'Daes J. The enhanced view–totally extraperitoneal technique for repair of inguinal hernia. Surg Endosc. abril de 2012;26(4):1187-1189.'},{id:"B12",body:'Inga-Zapata E, García F. MIS Techniques: Lap TAPP and rTAPP. En: Davis, SS, Dakin G, Bates A, editores. The SAGES Manual of Hernia Surgery [Internet]. Cham: Springer International Publishing; 2019 [citado 22 de noviembre de 2020]. p. 415-27. Disponible en: http://link.springer.com/10.1007/978-3-319-78411-3_30'},{id:"B13",body:'Garcia-Ruiz A, Weber-Sanchez A. Laparoscopic Transabdominal Preperitoneal Inguinal Hernia Repair. En: Fischer JE, Jones DB, editores. Master Techniques in Surgery Hernia. Philadelphia PA: Lippincott Williams & Williams, Wolter Kluwer; 2013. p. 161-72.'},{id:"B14",body:'Miserez M, Alexandre JH, Campanelli G, Corcione F, Cuccurullo D, Pascual MH, et al. The European hernia society groin hernia classication: simple and easy to remember. Hernia. 22 de marzo de 2007;11(2):113-6.'},{id:"B15",body:'Palmisano EM, Aguilar Ruiz MJ. Transabdominal pre-peritoneal inguinal hernioplasty (TAPP) without mesh fixation. Initial experience in the short term. Rev Hispanoam Hernia [Internet]. 2019 [citado 23 de noviembre de 2020]; Disponible en: https://hernia.grupoaran.com/articles/00234/show'},{id:"B16",body:'Yheulon C, Davis SS. Fixation vs. No Fixation in MIS Inguinal Hernia Repair. En: Davis, SS, Dakin G, Bates A, editores. The SAGES Manual of Hernia Surgery [Internet]. Cham: Springer International Publishing; 2019 [citado 23 de noviembre de 2020]. p. 391-5. Disponible en: http://link.springer.com/10.1007/978-3-319-78411-3_28'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"César Felipe Ploneda-Valencia",address:"dr.ploneda.cirugia@gmail.com",affiliation:'
CEMIJAL (Cirugía Endoscópica y de Mínima Invasión Jalisco), CHG Hospital, México
Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, México
'},{corresp:null,contributorFullName:"Carlos Alberto Navarro-Montes",address:null,affiliation:'
CEMIJAL (Cirugía Endoscópica y de Mínima Invasión Jalisco), CHG Hospital, México
'},{corresp:null,contributorFullName:"Juan Carlos Verdugo-Tapia",address:null,affiliation:'
CEMIJAL (Cirugía Endoscópica y de Mínima Invasión Jalisco), CHG Hospital, México
'}],corrections:null},book:{id:"10447",title:"The Art and Science of Abdominal Hernia",subtitle:null,fullTitle:"The Art and Science of Abdominal Hernia",slug:null,publishedDate:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/10447.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",middleName:null,surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"195641",title:"Dr.",name:"Qiande",middleName:null,surname:"Zhu",email:"qdzhu@nhri.cn",fullName:"Qiande Zhu",slug:"qiande-zhu",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{title:"Field-Controlled Hydrological Experiments in Red Soil-Covered Areas (South China): A Review",slug:"field-controlled-hydrological-experiments-in-red-soil-covered-areas-south-china-a-review",abstract:"Investigation of runoff generation processes and response to changes in catchment characteristics (e.g. land use, soil type, slope, etc.), tillage practice and climate pattern (e.g. rainfall intensity and rainfall duration) is important for understanding of the hydrological cycle and developing land management practices for water and soil conservation. Field and indoor artificial hydrological experiments provide an efficient way for the study of the above processes. This study gave a summary of artificial hydrological experiments using rainfall simulator in China, especially in the red soil-covered region of Jiangxi province. Experiment setting for field and indoor artificial hydrological experiments were introduced; the water balance, runoff components (i.e. surface runoff, subsurface runoff at different depths), runoff amount and relationship to rainfall events were studied and assessment of land coverage and tillage practices on soil and water conservation were conducted. Based on the literature review, it implies that hydrological process at field slope requires more investigation in the following aspects: (1) improvement of monitoring strategies and methodology and isotopic method may be used to improve understanding of hydrological regimes, (2) developing long-term in situ experimental study to analyse soil water movement at different temporal and spatial scales and (3) developing and improving modelling of soil water movement.",signatures:"Sanyuan Jiang, Qiande Zhu and Seifeddine Jomaa",authors:[{id:"189852",title:"Dr.",name:"Sanyuan",surname:"Jiang",fullName:"Sanyuan Jiang",slug:"sanyuan-jiang",email:"syjiang@niglas.ac.cn"},{id:"195641",title:"Dr.",name:"Qiande",surname:"Zhu",fullName:"Qiande Zhu",slug:"qiande-zhu",email:"qdzhu@nhri.cn"},{id:"195642",title:"Dr.",name:"Seifeddine",surname:"Jomaa",fullName:"Seifeddine Jomaa",slug:"seifeddine-jomaa",email:"seifeddine.jomaa@ufz.de"}],book:{title:"Hydrology of Artificial and Controlled Experiments",slug:"hydrology-of-artificial-and-controlled-experiments",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"189128",title:"Prof.",name:"Wolfgang",surname:"Schaaf",slug:"wolfgang-schaaf",fullName:"Wolfgang Schaaf",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Charité",institutionURL:null,country:{name:"Germany"}}},{id:"189852",title:"Dr.",name:"Sanyuan",surname:"Jiang",slug:"sanyuan-jiang",fullName:"Sanyuan Jiang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Chinese Academy of Sciences",institutionURL:null,country:{name:"China"}}},{id:"191443",title:"Dr.",name:"Lihu",surname:"Yang",slug:"lihu-yang",fullName:"Lihu Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Institute of Geographic Sciences and Natural Resources Research",institutionURL:null,country:{name:"China"}}},{id:"191446",title:"Prof.",name:"Xianfang",surname:"Song",slug:"xianfang-song",fullName:"Xianfang Song",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"194750",title:"Dr.",name:"Werner",surname:"Gerwin",slug:"werner-gerwin",fullName:"Werner Gerwin",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"194751",title:"Prof.",name:"Christoph",surname:"Hinz",slug:"christoph-hinz",fullName:"Christoph Hinz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"194752",title:"Dr.",name:"Markus",surname:"Zaplata",slug:"markus-zaplata",fullName:"Markus Zaplata",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"194753",title:"Prof.",name:"Reinhard",surname:"Hüttl",slug:"reinhard-huttl",fullName:"Reinhard Hüttl",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"195642",title:"Dr.",name:"Seifeddine",surname:"Jomaa",slug:"seifeddine-jomaa",fullName:"Seifeddine Jomaa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"216486",title:"Ph.D. Student",name:"Yoshitaka",surname:"Komatsu",slug:"yoshitaka-komatsu",fullName:"Yoshitaka Komatsu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tsukuba",institutionURL:null,country:{name:"Japan"}}}]},generic:{page:{slug:"OA-publishing-fees",title:"Open Access Publishing Fees",intro:"
The Open Access model is applied to all of our publications and is designed to eliminate subscriptions and pay-per-view fees. This approach ensures free, immediate access to full text versions of your research.
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 128,000 international scientists and researchers.
\\n\\n
The Open Access Publishing Fee (OAPF) is payable only after your full chapter, monograph or Compacts monograph is accepted for publication.
\\n\\n
OAPF Publishing Options
\\n\\n
\\n\\t
1,400 GBP Chapter - Edited Volume
\\n\\t
10,000 GBP Monograph - Long Form
\\n\\t
4,000 GBP Compacts Monograph - Short Form
\\n
\\n\\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\\n\\n
Services included are:
\\n\\n
\\n\\t
An online manuscript tracking system to facilitate your work
\\n\\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\\n\\t
Assurance that your manuscript meets the highest publishing standards
\\n\\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\\n\\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\\n\\t
Discoverability - electronic citation and linking via DOI
\\n\\t
Permanent and unrestricted online access to your work
What isn't covered by the Open Access Publishing Fee?
\\n\\n
If your manuscript:
\\n\\n
\\n\\t
Exceeds 20 pages (for chapters in Edited Volumes), an additional fee of 40 GBP per page will be required
\\n\\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\\n
\\n\\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\\n\\n
Open Access Funding
\\n\\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at oapf@intechopen.com for further details or assistance.
\\n\\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\\n\\n
Added Value of Publishing with IntechOpen
\\n\\n
Choosing to publish with IntechOpen ensures the following benefits:
\\n\\n
\\n\\t
Indexing and listing across major repositories, see details ...
\\n\\t
Long-term archiving
\\n\\t
Visibility on the world's strongest OA platform
\\n\\t
Live Performance Metrics to track readership and the impact of your chapter
\\n\\t
Dissemination and Promotion
\\n
\\n\\n
Benefits of Publishing with IntechOpen
\\n\\n
\\n\\t
Proven world leader in Open Access book publishing with over 10 years experience
\\n\\t
+5,200 OA books published
\\n\\t
Most competitive prices in the market
\\n\\t
Fully compliant with OA funding requirements
\\n\\t
Optimized processes, enabling publication between 8 and 12 months
\\n\\t
Personal support during every step of the publication process
\\n\\t
+146,150 citations in Web of Science databases
\\n\\t
Currently strongest OA platform with over 150 million downloads
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 128,000 international scientists and researchers.
\n\n
The Open Access Publishing Fee (OAPF) is payable only after your full chapter, monograph or Compacts monograph is accepted for publication.
\n\n
OAPF Publishing Options
\n\n
\n\t
1,400 GBP Chapter - Edited Volume
\n\t
10,000 GBP Monograph - Long Form
\n\t
4,000 GBP Compacts Monograph - Short Form
\n
\n\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\n\n
Services included are:
\n\n
\n\t
An online manuscript tracking system to facilitate your work
\n\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\n\t
Assurance that your manuscript meets the highest publishing standards
\n\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\n\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\n\t
Discoverability - electronic citation and linking via DOI
\n\t
Permanent and unrestricted online access to your work
What isn't covered by the Open Access Publishing Fee?
\n\n
If your manuscript:
\n\n
\n\t
Exceeds 20 pages (for chapters in Edited Volumes), an additional fee of 40 GBP per page will be required
\n\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\n
\n\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\n\n
Open Access Funding
\n\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at oapf@intechopen.com for further details or assistance.
\n\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\n\n
Added Value of Publishing with IntechOpen
\n\n
Choosing to publish with IntechOpen ensures the following benefits:
\n\n
\n\t
Indexing and listing across major repositories, see details ...
\n\t
Long-term archiving
\n\t
Visibility on the world's strongest OA platform
\n\t
Live Performance Metrics to track readership and the impact of your chapter
\n\t
Dissemination and Promotion
\n
\n\n
Benefits of Publishing with IntechOpen
\n\n
\n\t
Proven world leader in Open Access book publishing with over 10 years experience
\n\t
+5,200 OA books published
\n\t
Most competitive prices in the market
\n\t
Fully compliant with OA funding requirements
\n\t
Optimized processes, enabling publication between 8 and 12 months
\n\t
Personal support during every step of the publication process
\n\t
+146,150 citations in Web of Science databases
\n\t
Currently strongest OA platform with over 150 million downloads
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5818},{group:"region",caption:"Middle and South America",value:2,count:5287},{group:"region",caption:"Africa",value:3,count:1757},{group:"region",caption:"Asia",value:4,count:10539},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15929}],offset:12,limit:12,total:119317},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Calorimetry - New Advances",subtitle:null,isOpenForSubmission:!0,hash:"bb239599406f0b731bbfd62c1c8dbf3f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10715",title:"Brain MRI",subtitle:null,isOpenForSubmission:!0,hash:"6d56c88c53776966959f41f8b75daafd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10715.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10730",title:"Extracorporeal Membrane Oxygenation",subtitle:null,isOpenForSubmission:!0,hash:"2ac3ed12d9db14ee4bc66d7808c82295",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10731",title:"Cannabinoids",subtitle:null,isOpenForSubmission:!0,hash:"1d2e090ecf2415b8d3c9fba15856b7b1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10731.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10744",title:"Astrocyte",subtitle:null,isOpenForSubmission:!0,hash:"b770f09e3f87daa5d8525fa78f771405",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10744.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:47},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:217},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5319},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"92",title:"Information and Knowledge Engineering",slug:"information-and-knowledge-engineering",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:38,numberOfAuthorsAndEditors:776,numberOfWosCitations:703,numberOfCrossrefCitations:555,numberOfDimensionsCitations:1026,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"information-and-knowledge-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8779",title:"Linked Open Data",subtitle:"Applications, Trends and Future Developments",isOpenForSubmission:!1,hash:"5860ff20764f7549ff218e9d5e112fef",slug:"linked-open-data-applications-trends-and-future-developments",bookSignature:"Kingsley Okoye",coverURL:"https://cdn.intechopen.com/books/images_new/8779.jpg",editedByType:"Edited by",editors:[{id:"219803",title:"Dr.",name:"Kingsley",middleName:null,surname:"Okoye",slug:"kingsley-okoye",fullName:"Kingsley Okoye"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7780",title:"Ontological Analyses in Science, Technology and Informatics",subtitle:null,isOpenForSubmission:!1,hash:"72c8b15505d4716d94f299061496ef48",slug:"ontological-analyses-in-science-technology-and-informatics",bookSignature:"Andino Maseleno and Marini Othman",coverURL:"https://cdn.intechopen.com/books/images_new/7780.jpg",editedByType:"Edited by",editors:[{id:"219663",title:"Dr.",name:"Andino",middleName:null,surname:"Maseleno",slug:"andino-maseleno",fullName:"Andino Maseleno"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8850",title:"Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems",subtitle:null,isOpenForSubmission:!1,hash:"25ef9074be50f4e5c1f6cb7298e1b68d",slug:"harnessing-knowledge-innovation-and-competence-in-engineering-of-mission-critical-systems",bookSignature:"Ali G. Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/8850.jpg",editedByType:"Edited by",editors:[{id:"108303",title:"Prof.",name:"Ali G.",middleName:null,surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8141",title:"Social Media and Machine Learning",subtitle:null,isOpenForSubmission:!1,hash:"155aa6c54dc411b5d2a1498f10f9417e",slug:"social-media-and-machine-learning",bookSignature:"Alberto Cano",coverURL:"https://cdn.intechopen.com/books/images_new/8141.jpg",editedByType:"Edited by",editors:[{id:"200724",title:"Dr.",name:"Alberto",middleName:null,surname:"Cano",slug:"alberto-cano",fullName:"Alberto Cano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9470",title:"Open Scientific Data",subtitle:"Why Choosing and Reusing the RIGHT DATA Matters",isOpenForSubmission:!1,hash:"898ef46a10e74ff18d1253b5200741ab",slug:"open-scientific-data-why-choosing-and-reusing-the-right-data-matters",bookSignature:"Vera J. Lipton",coverURL:"https://cdn.intechopen.com/books/images_new/9470.jpg",editedByType:"Authored by",editors:[{id:"307100",title:"Dr.",name:"Vera",middleName:null,surname:"Lipton",slug:"vera-lipton",fullName:"Vera Lipton"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"5844",title:"Ontology in Information Science",subtitle:null,isOpenForSubmission:!1,hash:"922bcfea0d27e7e004542ce3adca6d20",slug:"ontology-in-information-science",bookSignature:"Ciza Thomas",coverURL:"https://cdn.intechopen.com/books/images_new/5844.jpg",editedByType:"Edited by",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5144",title:"Big Data on Real-World Applications",subtitle:null,isOpenForSubmission:!1,hash:"5c942ece49d87df7900f18463c798f26",slug:"big-data-on-real-world-applications",bookSignature:"Sebastian Ventura Soto, José M. Luna and Alberto Cano",coverURL:"https://cdn.intechopen.com/books/images_new/5144.jpg",editedByType:"Edited by",editors:[{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4792",title:"E-Learning",subtitle:"Instructional Design, Organizational Strategy and Management",isOpenForSubmission:!1,hash:"09c4d63ffc09c72a13ab15b442a9c2b6",slug:"e-learning-instructional-design-organizational-strategy-and-management",bookSignature:"Boyka Gradinarova",coverURL:"https://cdn.intechopen.com/books/images_new/4792.jpg",editedByType:"Edited by",editors:[{id:"78424",title:"Dr.",name:"Boyka",middleName:null,surname:"Gradinarova",slug:"boyka-gradinarova",fullName:"Boyka Gradinarova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2746",title:"Theory and Applications for Advanced Text Mining",subtitle:null,isOpenForSubmission:!1,hash:"ed74b8719e654014932e764fe1e57816",slug:"theory-and-applications-for-advanced-text-mining",bookSignature:"Shigeaki Sakurai",coverURL:"https://cdn.intechopen.com/books/images_new/2746.jpg",editedByType:"Edited by",editors:[{id:"150787",title:"Prof.",name:"Shigeaki",middleName:null,surname:"Sakurai",slug:"shigeaki-sakurai",fullName:"Shigeaki Sakurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2203",title:"Data Acquisition Applications",subtitle:null,isOpenForSubmission:!1,hash:"370ab36f6990188147fc3c2c758a9307",slug:"data-acquisition-applications",bookSignature:"Zdravko Karakehayov",coverURL:"https://cdn.intechopen.com/books/images_new/2203.jpg",editedByType:"Edited by",editors:[{id:"140529",title:"Prof.",name:"Zdravko",middleName:null,surname:"Karakehayov",slug:"zdravko-karakehayov",fullName:"Zdravko Karakehayov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2506",title:"Modern Information Systems",subtitle:null,isOpenForSubmission:!1,hash:"3e0a4cfa7da4c373806375837fac00f7",slug:"modern-information-systems",bookSignature:"Christos Kalloniatis",coverURL:"https://cdn.intechopen.com/books/images_new/2506.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2505",title:"Innovative Information Systems Modelling Techniques",subtitle:null,isOpenForSubmission:!1,hash:"6a88e4e4e63736e2bc6c4ba010a27883",slug:"innovative-information-systems-modelling-techniques",bookSignature:"Christos Kalloniatis",coverURL:"https://cdn.intechopen.com/books/images_new/2505.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:38,mostCitedChapters:[{id:"38735",doi:"10.5772/51066",title:"Biomedical Named Entity Recognition: A Survey of Machine-Learning Tools",slug:"biomedical-named-entity-recognition-a-survey-of-machine-learning-tools",totalDownloads:4711,totalCrossrefCites:18,totalDimensionsCites:31,book:{slug:"theory-and-applications-for-advanced-text-mining",title:"Theory and Applications for Advanced Text Mining",fullTitle:"Theory and Applications for Advanced Text Mining"},signatures:"David Campos, Sérgio Matos and José Luís Oliveira",authors:[{id:"72193",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Oliveira",slug:"jose-luis-oliveira",fullName:"Jose Luis Oliveira"},{id:"152991",title:"Dr.",name:"Sérgio",middleName:null,surname:"Matos",slug:"sergio-matos",fullName:"Sérgio Matos"},{id:"152992",title:"MSc.",name:"David",middleName:null,surname:"Campos",slug:"david-campos",fullName:"David Campos"}]},{id:"13173",doi:"10.5772/13222",title:"Glucose Prediction in Type 1 and Type 2 Diabetic Patients Using Data Driven Techniques",slug:"glucose-prediction-in-type-1-and-type-2-diabetic-patients-using-data-driven-techniques",totalDownloads:3216,totalCrossrefCites:0,totalDimensionsCites:24,book:{slug:"knowledge-oriented-applications-in-data-mining",title:"Knowledge-Oriented Applications in Data Mining",fullTitle:"Knowledge-Oriented Applications in Data Mining"},signatures:"Eleni I. Georga, Vasilios C. Protopappas and Dimitrios I. Fotiadis",authors:[{id:"14138",title:"Prof.",name:"Eleni",middleName:null,surname:"Georga",slug:"eleni-georga",fullName:"Eleni Georga"},{id:"16827",title:"Dr.",name:"Vasilios C.",middleName:null,surname:"Protopappas",slug:"vasilios-c.-protopappas",fullName:"Vasilios C. Protopappas"},{id:"16828",title:"Prof",name:"Dimitrios",middleName:null,surname:"Fotiadis",slug:"dimitrios-fotiadis",fullName:"Dimitrios Fotiadis"}]},{id:"13162",doi:"10.5772/13683",title:"Data Mining Using RFM Analysis",slug:"data-mining-using-rfm-analysis",totalDownloads:21093,totalCrossrefCites:12,totalDimensionsCites:24,book:{slug:"knowledge-oriented-applications-in-data-mining",title:"Knowledge-Oriented Applications in Data Mining",fullTitle:"Knowledge-Oriented Applications in Data Mining"},signatures:"Derya Birant",authors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}]}],mostDownloadedChaptersLast30Days:[{id:"65993",title:"Automatic Speech Emotion Recognition Using Machine Learning",slug:"automatic-speech-emotion-recognition-using-machine-learning",totalDownloads:2730,totalCrossrefCites:9,totalDimensionsCites:20,book:{slug:"social-media-and-machine-learning",title:"Social Media and Machine Learning",fullTitle:"Social Media and Machine Learning"},signatures:"Leila Kerkeni, Youssef Serrestou, Mohamed Mbarki, Kosai Raoof, Mohamed Ali Mahjoub and Catherine Cleder",authors:[{id:"247090",title:"Ph.D. Student",name:"Leila",middleName:null,surname:"Kerkeni",slug:"leila-kerkeni",fullName:"Leila Kerkeni"}]},{id:"38040",title:"A Semantic-Based Framework for Summarization and Page Segmentation in Web Mining",slug:"a-semantic-based-framework-for-summarization-and-page-segmentation-in-web-mining",totalDownloads:4132,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"theory-and-applications-for-advanced-text-mining",title:"Theory and Applications for Advanced Text Mining",fullTitle:"Theory and Applications for Advanced Text Mining"},signatures:"Alessio Leoncini, Fabio Sangiacomo, Paolo Gastaldo and Rodolfo Zunino",authors:[{id:"151894",title:"Ph.D. Student",name:"Alessio",middleName:null,surname:"Leoncini",slug:"alessio-leoncini",fullName:"Alessio Leoncini"},{id:"153061",title:"MSc.",name:"Fabio",middleName:null,surname:"Sangiacomo",slug:"fabio-sangiacomo",fullName:"Fabio Sangiacomo"},{id:"153062",title:"Prof.",name:"Paolo",middleName:null,surname:"Gastaldo",slug:"paolo-gastaldo",fullName:"Paolo Gastaldo"},{id:"153064",title:"Prof.",name:"Rodolfo",middleName:null,surname:"Zunino",slug:"rodolfo-zunino",fullName:"Rodolfo Zunino"}]},{id:"37307",title:"Cyber Security",slug:"cybersecurity-in-the-real-world-implications-and-applications",totalDownloads:2256,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"security-enhanced-applications-for-information-systems",title:"Security Enhanced Applications for Information Systems",fullTitle:"Security Enhanced Applications for Information Systems"},signatures:"Barry Lunt, Dale Rowe and Joseph Ekstrom",authors:[{id:"110690",title:"Prof.",name:"Barry",middleName:null,surname:"Lunt",slug:"barry-lunt",fullName:"Barry Lunt"},{id:"124554",title:"Prof.",name:"Joseph",middleName:null,surname:"Ekstrom",slug:"joseph-ekstrom",fullName:"Joseph Ekstrom"},{id:"124555",title:"Prof.",name:"Dale",middleName:null,surname:"Rowe",slug:"dale-rowe",fullName:"Dale Rowe"}]},{id:"48924",title:"Effective eLearning and eTeaching — A Theoretical Model",slug:"effective-elearning-and-eteaching-a-theoretical-model",totalDownloads:2012,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"e-learning-instructional-design-organizational-strategy-and-management",title:"E-Learning",fullTitle:"E-Learning - Instructional Design, Organizational Strategy and Management"},signatures:"Maureen Snow Andrade",authors:[{id:"96902",title:"Dr.",name:"Maureen",middleName:null,surname:"Snow Andrade",slug:"maureen-snow-andrade",fullName:"Maureen Snow Andrade"}]},{id:"69743",title:"Literature Review on Big Data Analytics Methods",slug:"literature-review-on-big-data-analytics-methods",totalDownloads:778,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"social-media-and-machine-learning",title:"Social Media and Machine Learning",fullTitle:"Social Media and Machine Learning"},signatures:"Iman Raeesi Vanani and Setareh Majidian",authors:[{id:"296037",title:"Mrs.",name:"Setareh",middleName:null,surname:"Majidian",slug:"setareh-majidian",fullName:"Setareh Majidian"},{id:"296039",title:"Dr.",name:"Iman",middleName:null,surname:"Raeesi Vanaei",slug:"iman-raeesi-vanaei",fullName:"Iman Raeesi Vanaei"}]},{id:"51248",title:"Medical Big Data Analysis in Hospital Information System",slug:"medical-big-data-analysis-in-hospital-information-system",totalDownloads:2916,totalCrossrefCites:5,totalDimensionsCites:6,book:{slug:"big-data-on-real-world-applications",title:"Big Data on Real-World Applications",fullTitle:"Big Data on Real-World Applications"},signatures:"Jing-Song Li, Yi-Fan Zhang and Yu Tian",authors:[{id:"16649",title:"Dr.",name:"Jing-Song",middleName:null,surname:"Li",slug:"jing-song-li",fullName:"Jing-Song Li"},{id:"184262",title:"Ms.",name:"Yi-Fan",middleName:null,surname:"Zhang",slug:"yi-fan-zhang",fullName:"Yi-Fan Zhang"},{id:"184263",title:"Dr.",name:"Yu",middleName:null,surname:"Tian",slug:"yu-tian",fullName:"Yu Tian"}]},{id:"51173",title:"Introduction to Big Data in Education and Its Contribution to the Quality Improvement Processes",slug:"introduction-to-big-data-in-education-and-its-contribution-to-the-quality-improvement-processes",totalDownloads:3157,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"big-data-on-real-world-applications",title:"Big Data on Real-World Applications",fullTitle:"Big Data on Real-World Applications"},signatures:"Christos Vaitsis, Vasilis Hervatis and Nabil Zary",authors:[{id:"178487",title:"M.Sc.",name:"Christos",middleName:null,surname:"Vaitsis",slug:"christos-vaitsis",fullName:"Christos Vaitsis"},{id:"179404",title:"MSc.",name:"Vasilis",middleName:null,surname:"Hervatis",slug:"vasilis-hervatis",fullName:"Vasilis Hervatis"},{id:"179405",title:"Associate Prof.",name:"Nabil",middleName:null,surname:"Zary",slug:"nabil-zary",fullName:"Nabil Zary"}]},{id:"50926",title:"Real-World Treatment Patterns and Outcomes among Elderly Acute Myeloid Leukemia Patients in the United States",slug:"real-world-treatment-patterns-and-outcomes-among-elderly-acute-myeloid-leukemia-patients-in-the-unit",totalDownloads:1646,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"big-data-on-real-world-applications",title:"Big Data on Real-World Applications",fullTitle:"Big Data on Real-World Applications"},signatures:"Sacha Satram- Hoang, Carolina Reyes, Deborah Hurst, Khang Q.\nHoang and Bruno C. Medeiros",authors:[{id:"178750",title:"Dr.",name:"Sacha",middleName:null,surname:"Satram-Hoang",slug:"sacha-satram-hoang",fullName:"Sacha Satram-Hoang"},{id:"184759",title:"Dr.",name:"Carolina",middleName:null,surname:"Reyes",slug:"carolina-reyes",fullName:"Carolina Reyes"},{id:"184760",title:"Dr.",name:"Deborah",middleName:null,surname:"Hurst",slug:"deborah-hurst",fullName:"Deborah Hurst"},{id:"184761",title:"Dr.",name:"Khang",middleName:null,surname:"Hoang",slug:"khang-hoang",fullName:"Khang Hoang"},{id:"184762",title:"Dr.",name:"Bruno",middleName:null,surname:"Medeiros",slug:"bruno-medeiros",fullName:"Bruno Medeiros"}]},{id:"51470",title:"Novel Rule Base Development from IED-Resident Big Data for Protective Relay Analysis Expert System",slug:"novel-rule-base-development-from-ied-resident-big-data-for-protective-relay-analysis-expert-system",totalDownloads:1885,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"big-data-on-real-world-applications",title:"Big Data on Real-World Applications",fullTitle:"Big Data on Real-World Applications"},signatures:"Mohammad Lutfi Othman, Ishak Aris and Thammaiah\nAnanthapadmanabha",authors:[{id:"178477",title:"Dr.",name:"Mohammad Lutfi",middleName:null,surname:"Othman",slug:"mohammad-lutfi-othman",fullName:"Mohammad Lutfi Othman"},{id:"184387",title:"Prof.",name:"Ishak",middleName:"Bin",surname:"Aris",slug:"ishak-aris",fullName:"Ishak Aris"},{id:"184388",title:"Dr.",name:"Ananthapadmanabha",middleName:null,surname:"Thammaiah",slug:"ananthapadmanabha-thammaiah",fullName:"Ananthapadmanabha Thammaiah"}]},{id:"70437",title:"Information and Communication-Based Collaborative Learning and Behavior Modeling Using Machine Learning Algorithm",slug:"information-and-communication-based-collaborative-learning-and-behavior-modeling-using-machine-learn",totalDownloads:287,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"social-media-and-machine-learning",title:"Social Media and Machine Learning",fullTitle:"Social Media and Machine Learning"},signatures:"Nityashree Nadar and R. Kamatchi",authors:[{id:"313995",title:"Dr.",name:"Anil",middleName:null,surname:"Kumar",slug:"anil-kumar",fullName:"Anil Kumar"}]}],onlineFirstChaptersFilter:{topicSlug:"information-and-knowledge-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},route:{name:"profile.detail",path:"/profiles/195641/qiande-zhu",hash:"",query:{},params:{id:"195641",slug:"qiande-zhu"},fullPath:"/profiles/195641/qiande-zhu",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()