Monogenetic forms of PD and its fly homolog(s).
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"1891",leadTitle:null,fullTitle:"Management of Technological Innovation in Developing and Developed Countries",title:"Management of Technological Innovation in Developing and Developed Countries",subtitle:null,reviewType:"peer-reviewed",abstract:"It is widely accepted that technology is one of the forces driving economic growth. Although more and more new technologies have emerged, various evidence shows that their performances were not as high as expected. In both academia and practice, there are still many questions about what technologies to adopt and how to manage these technologies. The 15 articles in this book aim to look into these questions. There are quite many features in this book. Firstly, the articles are from both developed countries and developing countries in Asia, Africa and South and Middle America. Secondly, the articles cover a wide range of industries including telecommunication, sanitation, healthcare, entertainment, education, manufacturing, and financial. Thirdly, the analytical approaches are multi-disciplinary, ranging from mathematical, economic, analytical, empirical and strategic. Finally, the articles study both public and private organizations, including the service industry, manufacturing industry, and governmental organizations. Given its wide coverage and multi-disciplines, the book may be useful for both academic research and practical management.",isbn:null,printIsbn:"978-953-51-0365-3",pdfIsbn:"978-953-51-5123-4",doi:"10.5772/2313",price:139,priceEur:155,priceUsd:179,slug:"management-of-technological-innovation-in-developing-and-developed-countries",numberOfPages:326,isOpenForSubmission:!1,isInWos:1,hash:"dbabb12b1990f7355353d30d7d4ec8f7",bookSignature:"Hongyi Sun",publishedDate:"March 21st 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1891.jpg",numberOfDownloads:50573,numberOfWosCitations:14,numberOfCrossrefCitations:7,numberOfDimensionsCitations:26,hasAltmetrics:0,numberOfTotalCitations:47,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 11th 2011",dateEndSecondStepPublish:"June 8th 2011",dateEndThirdStepPublish:"October 13th 2011",dateEndFourthStepPublish:"November 12th 2011",dateEndFifthStepPublish:"March 11th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"105280",title:"Dr.",name:"HongYi",middleName:null,surname:"Sun",slug:"hongyi-sun",fullName:"HongYi Sun",profilePictureURL:"https://mts.intechopen.com/storage/users/105280/images/system/105280.jpg",biography:"Dr Hongyi Sun is an Associate Professor at the Department of Systems Engineering and Engineering Management, City University of Hong Kong. He is also the adjunct professor and PhD supervisor at Harbin Institute of Technology (HIT), China. Dr Sun is the director and founding member of the prestigious Engineering Doctorate Program in Engineering Management, EngD(EM). His teaching and research areas include management of technological innovation, manufacturing/operations strategy, quality management, and innovation education. Dr Sun has published over 100 papers in refereed international journals and conferences. Dr Sun is on the Editorial Board of the International Journal of Technological Innovation, Entrepreneurship and Technology Management (TECHNOVATION), International Journal of Quality and Reliability Management, and International Journal of Learning and Changes. Dr Sun is the winner of Teaching Excellence Awards at City University of Hong Kong.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"City University of Hong Kong",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"448",title:"Technology Management",slug:"technology-management"}],chapters:[{id:"33280",title:"Trends and Directions for Energy Saving in Electric Networks",doi:"10.5772/35516",slug:"trends-and-directions-for-energy-saving-in-electric-networks",totalDownloads:2280,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Gheorghe Grigoraş, Gheorghe Cârţină and Elena-Crenguţa Bobric",downloadPdfUrl:"/chapter/pdf-download/33280",previewPdfUrl:"/chapter/pdf-preview/33280",authors:[{id:"104788",title:"Dr.",name:"Gheorghe",surname:"Grigoras",slug:"gheorghe-grigoras",fullName:"Gheorghe Grigoras"},{id:"113489",title:"Prof.",name:"Gheorghe",surname:"Cartina",slug:"gheorghe-cartina",fullName:"Gheorghe Cartina"},{id:"113496",title:"Dr.",name:"Elena-Crenguta",surname:"Bobric",slug:"elena-crenguta-bobric",fullName:"Elena-Crenguta Bobric"}],corrections:null},{id:"33281",title:"Services Oriented Technologies: A Focus on the Financial Services Sector in South Africa",doi:"10.5772/36362",slug:"services-oriented-technologies-a-focus-on-the-financial-services-sector-in-south-africa",totalDownloads:2613,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Mazanai Musara",downloadPdfUrl:"/chapter/pdf-download/33281",previewPdfUrl:"/chapter/pdf-preview/33281",authors:[{id:"108005",title:"Mr.",name:"Mazanai",surname:"Musara",slug:"mazanai-musara",fullName:"Mazanai Musara"}],corrections:null},{id:"33282",title:"RF Sounding: Generating Sounds from Radio Frequencies",doi:"10.5772/37213",slug:"rf-sounding-generating-sounds-from-radio-frequencies",totalDownloads:1565,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Claudia Rinaldi, Fabio Graziosi, Luigi Pomante and Francesco Tarquini",downloadPdfUrl:"/chapter/pdf-download/33282",previewPdfUrl:"/chapter/pdf-preview/33282",authors:[{id:"111775",title:"Dr.",name:"Claudia",surname:"Rinaldi",slug:"claudia-rinaldi",fullName:"Claudia Rinaldi"}],corrections:null},{id:"33283",title:"Sanitation in Developing Countries: Innovative Solutions in a Value Chain Framework",doi:"10.5772/37756",slug:"sanitation-in-developing-countries-innovative-solutions-in-a-value-chain-framework",totalDownloads:2941,totalCrossrefCites:1,totalDimensionsCites:5,signatures:"Meine Pieter van Dijk",downloadPdfUrl:"/chapter/pdf-download/33283",previewPdfUrl:"/chapter/pdf-preview/33283",authors:[{id:"114193",title:"Prof.",name:"Meine Pieter",surname:"Van Dijk",slug:"meine-pieter-van-dijk",fullName:"Meine Pieter Van Dijk"}],corrections:null},{id:"33284",title:"Risk Assessment of Innovations in the Biopharmaceutical Industry",doi:"10.5772/38787",slug:"risk-assessment-of-innovations-in-the-biopharmaceutical-industry-",totalDownloads:2469,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"David Domonkos1 and Imre Hronszky",downloadPdfUrl:"/chapter/pdf-download/33284",previewPdfUrl:"/chapter/pdf-preview/33284",authors:[{id:"119417",title:"Mr.",name:"David",surname:"Domonkos",slug:"david-domonkos",fullName:"David Domonkos"}],corrections:null},{id:"33285",title:"iTech: An Interactive Virtual Assistant for Technical Communication",doi:"10.5772/37455",slug:"itech-an-interactive-virtual-assistant-for-technical-communication",totalDownloads:1723,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Dale-Marie Wilson, Aqueasha M. Martin and Juan E. Gilbert",downloadPdfUrl:"/chapter/pdf-download/33285",previewPdfUrl:"/chapter/pdf-preview/33285",authors:[{id:"111337",title:"Ms.",name:"Aqueasha",surname:"Martin",slug:"aqueasha-martin",fullName:"Aqueasha Martin"},{id:"112828",title:"Dr.",name:"Juan",surname:"Gilbert",slug:"juan-gilbert",fullName:"Juan Gilbert"},{id:"112829",title:"Dr.",name:"Dale-Marie",surname:"Wilson",slug:"dale-marie-wilson",fullName:"Dale-Marie Wilson"}],corrections:null},{id:"33286",title:"Performance Evaluation for Knowledge Transfer Organizations: Best European Practices and a Conceptual Framework",doi:"10.5772/37168",slug:"performance-evaluation-for-knowledge-transfer-organizations-best-european-practices-and-a-conceptual",totalDownloads:5386,totalCrossrefCites:2,totalDimensionsCites:6,signatures:"Anna Comacchio and Sara Bonesso",downloadPdfUrl:"/chapter/pdf-download/33286",previewPdfUrl:"/chapter/pdf-preview/33286",authors:[{id:"111564",title:"Prof.",name:"Anna",surname:"Comacchio",slug:"anna-comacchio",fullName:"Anna Comacchio"},{id:"114280",title:"Dr.",name:"Sara",surname:"Bonesso",slug:"sara-bonesso",fullName:"Sara Bonesso"}],corrections:null},{id:"33287",title:"Understanding Innovation Deployment and Evaluation in Healthcare: The Triality Framework",doi:"10.5772/35671",slug:"understanding-innovation-deployment-and-evaluation-in-healthcare-the-triality-framework",totalDownloads:1753,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Urvashi Sharma, Julie Barnett and Malcolm Clarke",downloadPdfUrl:"/chapter/pdf-download/33287",previewPdfUrl:"/chapter/pdf-preview/33287",authors:[{id:"105398",title:"Dr.",name:"Urvashi",surname:"Sharma",slug:"urvashi-sharma",fullName:"Urvashi Sharma"},{id:"114535",title:"Dr.",name:"Julie",surname:"Barnett",slug:"julie-barnett",fullName:"Julie Barnett"},{id:"114536",title:"Dr.",name:"Malcolm",surname:"Clarke",slug:"malcolm-clarke",fullName:"Malcolm Clarke"}],corrections:null},{id:"33288",title:"Technological Spillovers from Multinational Companies to Small and Medium Food Companies in Nigeria",doi:"10.5772/35811",slug:"technological-spillovers-from-multinational-companies-to-small-and-medium-food-companies-in-nigeria",totalDownloads:2466,totalCrossrefCites:0,totalDimensionsCites:5,signatures:"Isaac O. Abereijo and Matthew O. Ilori",downloadPdfUrl:"/chapter/pdf-download/33288",previewPdfUrl:"/chapter/pdf-preview/33288",authors:[{id:"105933",title:"Dr.",name:"Isaac",surname:"Abereijo",slug:"isaac-abereijo",fullName:"Isaac Abereijo"},{id:"105955",title:"Prof.",name:"Matthew",surname:"Ilori",slug:"matthew-ilori",fullName:"Matthew Ilori"}],corrections:null},{id:"33289",title:"Open Innovation in the Automotive Industry: A Multiple Case-Study",doi:"10.5772/34092",slug:"open-innovation-in-the-automotive-industry-a-multiple-case-study",totalDownloads:6918,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Alfredo De Massis, Valentina Lazzarotti, Emanuele Pizzurno and Enrico Salzillo",downloadPdfUrl:"/chapter/pdf-download/33289",previewPdfUrl:"/chapter/pdf-preview/33289",authors:[{id:"13022",title:"Prof.",name:"Alfredo",surname:"De Massis",slug:"alfredo-de-massis",fullName:"Alfredo De Massis"},{id:"13078",title:"Prof.",name:"Valentina",surname:"Lazzarotti",slug:"valentina-lazzarotti",fullName:"Valentina Lazzarotti"},{id:"98659",title:"Prof.",name:"Emanuele",surname:"Pizzurno",slug:"emanuele-pizzurno",fullName:"Emanuele Pizzurno"},{id:"127514",title:"Dr.",name:"Enrico",surname:"Salzillo",slug:"enrico-salzillo",fullName:"Enrico Salzillo"}],corrections:null},{id:"33290",title:"The Impact of Company Relationship and Institution Technology on R&D Activity and Innovation",doi:"10.5772/35711",slug:"the-impact-of-company-relationship-and-institution-technology-on-r-d-activity-and-innovation",totalDownloads:2145,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Fredy Becerra-Rodríguez",downloadPdfUrl:"/chapter/pdf-download/33290",previewPdfUrl:"/chapter/pdf-preview/33290",authors:[{id:"105554",title:"Dr.",name:"Fredy",surname:"Becerra Rodriguez",slug:"fredy-becerra-rodriguez",fullName:"Fredy Becerra Rodriguez"}],corrections:null},{id:"33291",title:"The Impact of ICT on Productivity: The Moderating Role of Worker Quality and Quality Strategy",doi:"10.5772/37291",slug:"the-impact-of-itc-on-productivity-the-moderating-role-of-worker-quality-and-quality-strategy",totalDownloads:14036,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Ana Gargallo-Castel and Carmen Galve-Górriz",downloadPdfUrl:"/chapter/pdf-download/33291",previewPdfUrl:"/chapter/pdf-preview/33291",authors:[{id:"112128",title:"Dr.",name:"Carmen",surname:"Galve-Gorriz",slug:"carmen-galve-gorriz",fullName:"Carmen Galve-Gorriz"},{id:"112654",title:"Dr.",name:"Ana",surname:"Gargallo",slug:"ana-gargallo",fullName:"Ana Gargallo"}],corrections:null},{id:"33292",title:"Incorporating Technological Innovation and Environmental Strategy: An Integrated View of Cognition and Action",doi:"10.5772/37710",slug:"incorporating-technological-innovation-and-environmental-strategy-an-integrated-view-of-cognition-an",totalDownloads:1927,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Xuanwei Cao",downloadPdfUrl:"/chapter/pdf-download/33292",previewPdfUrl:"/chapter/pdf-preview/33292",authors:[{id:"114018",title:"Dr.",name:"Xuanwei",surname:"Cao",slug:"xuanwei-cao",fullName:"Xuanwei Cao"}],corrections:null},{id:"33293",title:"Linking Process Technology and Manufacturing Performance Under the Framework of Manufacturing Strategy",doi:"10.5772/38557",slug:"linking-process-technology-and-manufacturing-performance-under-the-framework-of-manufacturing-strate",totalDownloads:2357,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hongyi Sun",downloadPdfUrl:"/chapter/pdf-download/33293",previewPdfUrl:"/chapter/pdf-preview/33293",authors:[{id:"105280",title:"Dr.",name:"HongYi",surname:"Sun",slug:"hongyi-sun",fullName:"HongYi Sun"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"67322",slug:"corrigendum-to-sexual-dysfunction-in-patients-with-systemic-sclerosis",title:"Corrigendum to: Sexual Dysfunction in Patients with Systemic Sclerosis",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/67322.pdf",downloadPdfUrl:"/chapter/pdf-download/67322",previewPdfUrl:"/chapter/pdf-preview/67322",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/67322",risUrl:"/chapter/ris/67322",chapter:{id:"66966",slug:"sexual-dysfunction-in-patients-with-systemic-sclerosis",signatures:"Barbora Heřmánková",dateSubmitted:"July 16th 2018",dateReviewed:"April 5th 2019",datePrePublished:"May 3rd 2019",datePublished:null,book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"66966",slug:"sexual-dysfunction-in-patients-with-systemic-sclerosis",signatures:"Barbora Heřmánková",dateSubmitted:"July 16th 2018",dateReviewed:"April 5th 2019",datePrePublished:"May 3rd 2019",datePublished:null,book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"8269",title:"New Insights into Systemic Sclerosis",subtitle:null,fullTitle:"New Insights into Systemic Sclerosis",slug:"new-insights-into-systemic-sclerosis",publishedDate:"September 18th 2019",bookSignature:"Michal Tomcik",coverURL:"https://cdn.intechopen.com/books/images_new/8269.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193284",title:"Dr.",name:"Michal",middleName:null,surname:"Tomcik",slug:"michal-tomcik",fullName:"Michal Tomcik"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8032",leadTitle:null,title:"Staphylococcus and Streptococcus",subtitle:null,reviewType:"peer-reviewed",abstract:"Staphylococcus spp. and Streptococcus spp. have not only got pathogenic isolates, but also non-pathogenic isolates. Staphylococcus spp. and Streptococcus spp. that are Gram positive cocci are the main pathogens in several infections. Virulence factors such as usual and unusual surface proteins encoded by resistance genes are the main causes of pathogenesis. Multidrug-resistant pathogens that are the main causes of morbidity and mortality worldwide have the ability to synthesize a number of destructive enzymes encoded by resistance genes such as ?-lactamases. Resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pneumoniae, Group A, and Group B Streptococcus have emerged throughout the world. To eliminate these resistant pathogens that cause untreatable, acute, and chronic infections, different new antimicrobials must be developed and used. The goal of this book is to provide the latest information about the above topics.",isbn:"978-1-78984-473-3",printIsbn:"978-1-78984-472-6",pdfIsbn:"978-1-78985-941-6",doi:"10.5772/intechopen.77863",price:119,priceEur:129,priceUsd:155,slug:"staphylococcus-and-streptococcus",numberOfPages:120,isOpenForSubmission:!1,hash:"b9ddbf132ac8ea9d2a7613836e5a27ca",bookSignature:"Sahra Kırmusaoğlu",publishedDate:"March 11th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8032.jpg",keywords:null,numberOfDownloads:2489,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:1,numberOfTotalCitations:2,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 24th 2018",dateEndSecondStepPublish:"January 29th 2019",dateEndThirdStepPublish:"March 30th 2019",dateEndFourthStepPublish:"June 18th 2019",dateEndFifthStepPublish:"August 17th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"179460",title:"Dr.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/179460/images/system/179460.jpeg",biography:"Dr. Kırmusaoğlu, PhD, is an assistant professor of Microbiology\nat the Department of Molecular Biology and Genetics, T.C. Haliç\nUniversity. She specialized in Microbiology at Abant Izzet Baysal\nUniversity (Biology Department), Turkey. Her previous experience\nincludes laboratory manager at microbiology laboratories in several\nresearch and private hospitals. Throughout her career, she collaborated\nwith academicians/researchers from Abant Izzate Baysal University (AIBU), Middle East Technical University (METU), and Istanbul\nUniversity Cerrahpaşa Faculty of Medicine, and has participated in various research projects.\nDr. Kırmusaoğlu’s research interests include medical microbiology, pathogenic bacteria, bacterial biofilms, antibiofilm and antibacterial activity, bacterial drug resistance, pathogen–host interactions, pathogenesis, molecular microbiology, and microbiota. She has published several international research articles, books, book chapters, and congress proceedings.\nShe is also the editor of Disinfection, Bacterial Pathogenesis and Antibacterial Control,\nand Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods\npublished by IntechOpen. In addition to these, she wrote the book Genel Biyoloji Laboratuvar\nKılavuzu (General Biology Laboratory Manual) published by Hipokrat Publisher.\nShe has contributed to a chapter translation of the book Sherris Medical Microbiology\nby Ryan et al. as one of the translation authors of Sherris Tıbbi Mikrobiyoloji, which is a\nTurkish translated book edited by Prof. Dr. Dürdal Us and Prof. Dr. Ahmet Başustaoğlu.",institutionString:"Haliç University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"Haliç University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"409",title:"Bacteriology",slug:"biochemistry-genetics-and-molecular-biology-microbiology-bacteriology"}],chapters:[{id:"70748",title:"Introductory Chapter: An Overview of the Genus Staphylococcus and Streptococcus",slug:"introductory-chapter-an-overview-of-the-genus-em-staphylococcus-em-and-em-streptococcus-em-",totalDownloads:273,totalCrossrefCites:0,authors:[{id:"179460",title:"Dr.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}]},{id:"66603",title:"Virulence Factors of Streptococcus mutans Related to Dental Caries",slug:"virulence-factors-of-em-streptococcus-mutans-em-related-to-dental-caries",totalDownloads:384,totalCrossrefCites:0,authors:[{id:"282054",title:"Ph.D.",name:"María Alejandra",surname:"Bojanich",slug:"maria-alejandra-bojanich",fullName:"María Alejandra Bojanich"},{id:"292367",title:"Mr.",name:"Mariano Daniel",surname:"Orlietti",slug:"mariano-daniel-orlietti",fullName:"Mariano Daniel Orlietti"}]},{id:"68220",title:"Toward Better Understanding on How Group A Streptococcus Manipulates Human Fibrinolytic System",slug:"toward-better-understanding-on-how-group-a-em-streptococcus-em-manipulates-human-fibrinolytic-system",totalDownloads:240,totalCrossrefCites:0,authors:[{id:"290636",title:"Dr.",name:"Ruby",surname:"Law",slug:"ruby-law",fullName:"Ruby Law"},{id:"300264",title:"Dr.",name:"Adam J.",surname:"Quek",slug:"adam-j.-quek",fullName:"Adam J. Quek"},{id:"300265",title:"Prof.",name:"James C.",surname:"Whisstock",slug:"james-c.-whisstock",fullName:"James C. Whisstock"}]},{id:"70554",title:"Cell Surface and Cytosolic Proteins of Group B Streptococcus Adding New Dimensions in Its Colonization and Pathogenesis",slug:"cell-surface-and-cytosolic-proteins-of-group-b-streptococcus-adding-new-dimensions-in-its-colonizati",totalDownloads:223,totalCrossrefCites:0,authors:[{id:"287626",title:"Dr.",name:"Manju",surname:"Pai",slug:"manju-pai",fullName:"Manju Pai"},{id:"295422",title:"Dr.",name:"Venkatesh",surname:"S Pai",slug:"venkatesh-s-pai",fullName:"Venkatesh S Pai"},{id:"295423",title:"Prof.",name:"Pratima",surname:"Gupta",slug:"pratima-gupta",fullName:"Pratima Gupta"},{id:"295424",title:"Prof.",name:"Anuradha",surname:"Chakraborti",slug:"anuradha-chakraborti",fullName:"Anuradha Chakraborti"}]},{id:"68429",title:"Nemonoxacin (Taigexyn®): A New Non-Fluorinated Quinolone",slug:"nemonoxacin-taigexyn-sup-sup-a-new-non-fluorinated-quinolone",totalDownloads:305,totalCrossrefCites:0,authors:[{id:"284129",title:"Dr.",name:"Ming-Chu",surname:"Hsu",slug:"ming-chu-hsu",fullName:"Ming-Chu Hsu"},{id:"290925",title:"Prof.",name:"Ying-Yuan",surname:"Zhang",slug:"ying-yuan-zhang",fullName:"Ying-Yuan Zhang"},{id:"290926",title:"MSc.",name:"Li-Wen",surname:"Chang",slug:"li-wen-chang",fullName:"Li-Wen Chang"}]},{id:"66903",title:"Staphylococcus aureus in the Meat Supply Chain: Detection Methods, Antimicrobial Resistance, and Virulence Factors",slug:"-em-staphylococcus-aureus-em-in-the-meat-supply-chain-detection-methods-antimicrobial-resistance-and",totalDownloads:730,totalCrossrefCites:0,authors:[{id:"282838",title:"Ph.D.",name:"Valeria",surname:"Velasco",slug:"valeria-velasco",fullName:"Valeria Velasco"},{id:"289945",title:"Dr.",name:"Helia",surname:"Bello",slug:"helia-bello",fullName:"Helia Bello"},{id:"289946",title:"BSc.",name:"Mario",surname:"Quezada-Aguiluz",slug:"mario-quezada-aguiluz",fullName:"Mario Quezada-Aguiluz"}]},{id:"68398",title:"An Emerging Multidrug-Resistant Pathogen: Streptococcus pneumoniae",slug:"an-emerging-multidrug-resistant-pathogen-em-streptococcus-pneumoniae-em-",totalDownloads:335,totalCrossrefCites:1,authors:[{id:"291217",title:"Dr.",name:"Razique",surname:"Anwer",slug:"razique-anwer",fullName:"Razique Anwer"},{id:"291219",title:"Dr.",name:"Khalid",surname:"Alqumaizi",slug:"khalid-alqumaizi",fullName:"Khalid Alqumaizi"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8133",title:"Pathogenic Bacteria",subtitle:null,isOpenForSubmission:!1,hash:"b26e69f94525a38ead8ac88e3c68631a",slug:"pathogenic-bacteria",bookSignature:"Sahra Kırmusaoğlu and Sonia Bhonchal Bhardwaj",coverURL:"https://cdn.intechopen.com/books/images_new/8133.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Dr.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6148",title:"Bacterial Pathogenesis and Antibacterial Control",subtitle:null,isOpenForSubmission:!1,hash:"92128a5094670f6b0c9321640f60d3a3",slug:"bacterial-pathogenesis-and-antibacterial-control",bookSignature:"Sahra",coverURL:"https://cdn.intechopen.com/books/images_new/6148.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Dr.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8427",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",subtitle:null,isOpenForSubmission:!1,hash:"0fdedc9bf6c23241235a0ae011c0304c",slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",bookSignature:"Sahra Kırmusaoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/8427.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Dr.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6601",title:"Disinfection",subtitle:null,isOpenForSubmission:!1,hash:"ea121cf9b26d006bc6d7c7f92195852d",slug:"disinfection",bookSignature:"Sahra Kırmusaoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/6601.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Dr.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2796",title:"Lactic Acid Bacteria",subtitle:"R & D for Food, Health and Livestock Purposes",isOpenForSubmission:!1,hash:"8d625f084ccba1e96cc326406074fe3f",slug:"lactic-acid-bacteria-r-d-for-food-health-and-livestock-purposes",bookSignature:"Marcelino Kongo",coverURL:"https://cdn.intechopen.com/books/images_new/2796.jpg",editedByType:"Edited by",editors:[{id:"138356",title:"Dr.",name:"J. Marcelino",surname:"Kongo",slug:"j.-marcelino-kongo",fullName:"J. Marcelino Kongo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2129",title:"A Search for Antibacterial Agents",subtitle:null,isOpenForSubmission:!1,hash:"1567c6402f459b018a6aabfd620aa3f7",slug:"a-search-for-antibacterial-agents",bookSignature:"Varaprasad Bobbarala",coverURL:"https://cdn.intechopen.com/books/images_new/2129.jpg",editedByType:"Edited by",editors:[{id:"90574",title:"Dr.",name:"Varaprasad",surname:"Bobbarala",slug:"varaprasad-bobbarala",fullName:"Varaprasad Bobbarala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5056",title:"Actinobacteria",subtitle:"Basics and Biotechnological Applications",isOpenForSubmission:!1,hash:"46638f9636540f83f06226bf0e0a1e43",slug:"actinobacteria-basics-and-biotechnological-applications",bookSignature:"Dharumadurai Dhanasekaran and Yi Jiang",coverURL:"https://cdn.intechopen.com/books/images_new/5056.jpg",editedByType:"Edited by",editors:[{id:"48914",title:"Dr.",name:"Dharumadurai",surname:"Dhanasekaran",slug:"dharumadurai-dhanasekaran",fullName:"Dharumadurai Dhanasekaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5867",title:"Antibacterial Agents",subtitle:null,isOpenForSubmission:!1,hash:"7834e622de76478416bdc3092c52cb15",slug:"antibacterial-agents",bookSignature:"Ranjith N. Kumavath",coverURL:"https://cdn.intechopen.com/books/images_new/5867.jpg",editedByType:"Edited by",editors:[{id:"163692",title:"Dr.",name:"Ranjith",surname:"Kumavath",slug:"ranjith-kumavath",fullName:"Ranjith Kumavath"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"554",title:"Bacterial Artificial Chromosomes",subtitle:null,isOpenForSubmission:!1,hash:"3092adcfb46acf538c9ef38530f92d8f",slug:"bacterial-artificial-chromosomes",bookSignature:"Pradeep Chatterjee",coverURL:"https://cdn.intechopen.com/books/images_new/554.jpg",editedByType:"Edited by",editors:[{id:"91537",title:"Dr.",name:"Pradeep",surname:"Chatterjee",slug:"pradeep-chatterjee",fullName:"Pradeep Chatterjee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6764",title:"Cyanobacteria",subtitle:null,isOpenForSubmission:!1,hash:"87c7d8f86f7c1185aa4dd47c6492951a",slug:"cyanobacteria",bookSignature:"Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/6764.jpg",editedByType:"Edited by",editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"50961",title:"Understanding Pathophysiology of Sporadic Parkinson's Disease in Drosophila Model: Potential Opportunities and Notable Limitations",doi:"10.5772/63767",slug:"understanding-pathophysiology-of-sporadic-parkinson-s-disease-in-drosophila-model-potential-opportun",body:'\nParkinson\'s disease (PD) is the second most common neurodegenerative disorder after Alzheimer disease, affecting approximately 1% of the population over the age of 50. Frequency of PD increases with age, but an expected 4% of people with this disease are detected earlier the age of 50. It is assessed that 7–10 million people worldwide are suffering from PD. About one million Americans are surviving with PD, which is more than the collective number of sufferers diagnosed with muscular dystrophy, Lou Gehrig\'s disease, and multiple sclerosis. Further, about 60,000 Americans are diagnosed with PD each year and this number does not mirror thousands of unnoticed cases [1]. Studies illustrate that prevalence of PD in men is significantly higher (one and half times more) than in women. In poor and developing nations of Asia and Africa no systematic data are available about the number of sufferers. Painful truth is that in these regions, millions of elderly suffer in silence due to poverty and ignorance.
\nPD is widely accepted as a multifactorial disease with both genetic and environmental contributions. Clinical signs comprise bradykinesia, resting tremble, muscular rigidity, and postural unsteadiness. Supplementary symptoms are characteristic postural anomalies, dystonic spams, and dementia. PD is progressive and usually has a devious onset in mid to late adult life. Pathogenic characters of typical PD comprise loss of dopaminergic neurons in the substantia nigra (SN) and the manifestation of Lewy bodies, intracellular cytoplasmic inclusions, in enduring neurons in various areas of the brain, mainly the SN [2].
\nDespite intensive research conducted in the field of PD, the etiology of this neurodegenerative disease remains elusive. Although genetic elements and exposure to environmental toxins, such as pesticides, are thought to play a crucial role in disease onset, aging remains the predominant risk factor [3]. In about 95% patients, Parkinsonism is considered to have a sporadic component. Some findings suggest that environmental factors may be more important than genetic factors in familial aggregation of PD. In maximum PD cases the cause is environmental influence, probably toxic, overlaid on a background of slow, sustained neuronal loss due to progressing age [4]. Finding PD in 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) drug consumers rejuvenated curiosity in reassessing environmental influences [5]. Another theory of Parkinsonism suggests that genetic predisposition may be transmitted through mitochondrial inheritance.
\nCurrent therapeutic strategies for PD mitigate symptoms by the replacement of dopamine, with variable efficacy and considerable side effects. Levodopa (L‐dopa), a dopamine precursor, the leading treatment of PD for over 40 years, improves motor impairment by increasing dopamine levels [6]. However, continued use of L‐dopa leads to other motor dyskinesias that undermine the benefits of treatment. The development of effective treatment for PD is difficult because pathology is affected by several pathways that may act serially or in parallel. However, there are currently no established curative, preventative, or disease‐modifying interventions, stemming from a poor understanding of the molecular mechanisms of pathogenesis.
\nThis chapter primarily aims to present an overview of the sporadic PD, disease modeling in Drosophila and critically analyze the potential opportunities and the notable limitations associated with fly models. Further, we have also briefly discussed some of the current applications of the model to obtain insights into the underlying molecular mechanism/s related to PD.
\nAnimal models have been invaluable tools for investigating the underlying mechanisms of the pathogenesis of PD. However, the usefulness of these models is dependent on how precisely they replicate the features of clinical PD. Nonmammalian models are a great cost‐effective alternative to rodent and primate‐based models, allowing rapid high‐throughput screening of novel therapies and investigation of genetic and environmental risk factors. Thus far, the nonmammalian rotenone models have included worm (Caenorhabditis elegans), fly (Drosophila), zebrafish (Danio rerio), and pond snail (Lymnea stagnalis). A good model of PD should exhibit pathological and medical characteristics of PD including both dopaminergic and nondopaminergic systems, the central and peripheral nervous systems, also the motor and nonmotor symptoms associated with the disease. Furthermore, the age‐reliant inception and progression of pathology should be reflected [7].
\nContemporary knowledge on the potential pathogenic and pathophysiological mechanisms of PD derives from innumerable studies conducted, in the past four decades, on experimental models of PD. While animal models, in particular, have provided invaluable information, they also offer the opportunity of trying new therapeutic methods. These model systems have been traditionally grounded on the exposure of neurotoxins able to imitate many of the pathological and phenotypic characters of PD in mammals. Conversely in the previous decade, the dawn of the “genetic era” of PD has provided a significant growth in this field with a number of transgenic models for experimentation. It is well recognized that both these classes of animal PD models (genetic and neurotoxin) have their own specificities as well as limitations and employment of one model or the other depends on the specific questions that are being addressed.
\nGenetic models: Animal models are developed primarily based on identified target genes (i.e., by mutating or knocking out) associated with potential mechanisms known to cause PD in humans (Table 1) [8–21]. For example, the autosomal dominant transmission of LRRK2 mutations makes transgenic expression of pathogenic LRRK2 species suitable for modeling disease process in PD. The invertebrate transgenic models producing LRRK2 PD mutants phenotypes range from no change to apparent neuronal loss or deficits in DA systems and motor behavior [22] that were used to evaluate LRRK2 kinase inhibitors in neuroprotection, revealing the potential value of the invertebrate LRRK2 models in drug screening [23].
\nSym bol | \nGene locus | \nGene | \nDrosophila homolog | \nInheri tance | \nDisorder | \nStatus and remarks | \n
---|---|---|---|---|---|---|
PARK1 | \n4q21‐22 | \nSNCA [10] | \nNo homolog | \nAD | \nEarly‐onset Parkinsonism | \nConfirmed | \n
PARK2 | \n6q25.2‐ q27 | \nPARK2 encoding Parkin[11] | \nParkin | \nAR | \nEarly onset Parkinsonism | \nConfirmed | \n
PARK3 | \n2p13 | \nUnknown | \n– | \nAD | \nClassical Parkinsonism | \nUnconfirmed | \n
PARK4 | \n4q21‐ q23 | \nSNCA | \nNo homolog | \nAD | \nEarly‐onset Parkinsonism | \nErroneous locus (identical to PARK1) | \n
PARK5 | \n4p13 | \nUCHL1 | \nUch | \nAD | \nClassical Parkinsonism | \nUnconfirmed | \n
PARK6 | \n1p35‐p36 | \nPINK1 [12] | \nPink1 | \nAR | \nEarly onset Parkinsonism | \nConfirmed | \n
PARK7 | \n1p36 | \nPARK7 encoding DJ‐1[13] | \nDj‐1α and dj‐1β | \nAR | \nEarly onset Parkinsonism | \nConfirmed | \n
PARK8 | \n12q12 | \nLRRK2 [14] | \nLrrk | \nAD | \nClassical Parkinsonism | \nConfirmed | \n
PARK9 | \n1p36 | \nATP13A2 [15] | \nCG32000 | \nAR | \nKufor–Rakeb syndrome, a formof juvenile‐ onset atypical Parkinsonism with dementia, spasticity and supranuclear gaze palsy | \nConfirmed | \n
PARK10 | \n1p32 | \nUnknown | \n– | \nRisk factor | \nClassical Parkinsonism | \nConfirmed susceptibility locus | \n
PARK11 | \n2q36‐27 | \nUnknown (maybe GIGYF2) | \n– | \nAD | \nLate onset Parkinsonism | \nNot independently confirmed | \n
PARK12 | \nXq21‐ q25 | \nUnknown | \n– | \nRisk factor | \nClassical Parkinsonism | \nConfirmed susceptibility locus | \n
PARK13 | \n2p12 | \nHTRA2 | \nHtrA2 | \nAD or risk factor | \nClassical Parkinsonism | \nUnconfirmed | \n
PARK14 | \n22q13.1 | \nPLA2G6 [16] | \niPLA2‐VIA | \nAR | \nEarly‐onset dystonia‐ Parkinsonism | \nConfirmed | \n
PARK15 | \n22q12‐ q13 | \nFBXO7 [17] | \nNo homolog | \nAR | \nEarly‐onset Parkinsonian‐ pyramidal syndrome | \nConfirmed | \n
PARK16 | \n1q32 | \nUnknown (maybe RAB7L1) | \n– | \nRisk factor | \nClassical Parkinsonism | \nConfirmed susceptibility locus | \n
PARK17 | \n16q11.2 | \nVPS35 | \nVps35 | \nAD | \nClassical Parkinsonism | \nUnconfirmed | \n
PARK18 | \n6p21.3 | \nEIF4G1 | \neIF4G | \nAD | \nLate onset Parkinsonism | \nUnconfirmed | \n
PARK19 | \n1p31.3 | \nDNAJC6 [18] | \nAuxillin | \nAR | \nJuvenile‐ onset Parkinsonism | \nConfirmed | \n
PARK20 | \n21q22.11 | \nSYNJ1 [19, 20] | \nSynj | \nAR | \nEarly‐ onset Parkinsonism | \nConfirmed | \n
Monogenetic forms of PD and its fly homolog(s).
AD, autosomal dominant; AR, autosomal recessive (adapted from Marras et al. [21]).
Neurotoxic models: Several studies have been performed to model PD‐associated neuron loss by neurotoxin intoxication in animals, the most common Parkinsonian neurotoxins being 6‐hydroxydopamine (6‐OHDA), 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP), rotenone, and paraquat [24, 25], and the common neurotoxic models of PD include that produced by the toxin 6‐hydroxydopamine (6‐OHDA) commonly used in rats, mice and marmosets, and 1‐methyl‐4‐ phenyl‐1,2,3,6 tetrahydropyridine (MPTP), used in mice and also in nonhuman primates. Administration of MPTP to animals, such as monkeys, mice, cats, rats, guinea pigs, dogs, sheep and even frogs and goldfish, has been shown to cause Parkinsonian‐like motor disturbances [26, 27].
\nA sporadic disease can be explained as a disease occurring randomly in a population with no known cause. In sporadic PD, the cause is considered to be environmental though the genetic influence is also present and hence the pathogenesis of PD is likely to be multifactorial which may involve gene–environment interactions. The discovery of MPTP (1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine), which reproduces pathological features of idiopathic Parkinsonism by targeting the nigrostriatal system [28] and pesticides (such as rotenone and paraquat), has implicated environmental toxins in the induction of sporadic PD [29, 30]. Both epidemiological and experimental data suggest the potential involvement of specific agents such as neurotoxicants (e.g., pesticides) or neuroprotective compounds (e.g., tobacco products) in the pathogenesis of nigrostriatal degeneration, further supporting a relationship between the environment and PD [28]. Further, the identification of the mutated α‐synuclein (SCNA) gene causing familial PD [10] as a risk factor for sporadic disease [31] provides a genetic context for the disease. The finding of α‐synuclein as a key component of the Lewy body [32] further links this gene to potential molecular mechanisms of PD.
\nThe study of environmental risk factors for PD is difficult because environmental exposures and gene–environment interactions may occur well before the onset of clinical symptoms since it remains undetected for many years. Moreover, the severe neurodegenerative changes that underlie the symptoms of PD may be the result of synergistic effects of multiple exposures and these effects could have been compounded by increased vulnerability of the aging nigrostriatal system to toxic injury over the years. Epidemiological and case–control studies suggest that rural residence, well water consumption, pesticide use, and certain occupations (farming, mining, and welding) are associated with an increased risk of PD [33–36].
\nEpidemiological studies have suggested an association with environmental toxins, mainly mitochondrial complex I inhibitors like rotenone [37, 38]. The results are consistent with a dose‐dependent effect in agricultural workers and the risk increased with duration of pesticide use [39, 40]. Data also suggest that exposure to specific pesticide such as bipyridyl, organochlorine, and carbamate derivatives could have a causal role in PD [39, 41]. Further, chronic exposure to metals/pesticides is also associated with a younger age at onset of PD among patients with no family history of the disease and that duration of exposure is a factor in the magnitude of this effect [42]. For instance, a study in Taiwan, where the herbicide paraquat (PQ) is commonly spurted on rice fields, a robust relationship was testified between paraquat contact and PD menace and the danger was amplified by more than six times in individuals who had been exposed to PQ chronically [43].
\nThe accidental discovery of MPTP leading to Parkinsonian syndrome stimulated the search for environmental factors as potential causes of PD. Several epidemiological studies have suggested that environmental toxins are one of the major causes of sporadic PD [44]. Sporadic PD\'s main cause is the accumulation of alpha‐synuclein but by an uncertain causative agent and uneven occurrence point in age of patients. The mechanisms by which the neurotoxins induce PD‐like symptoms are briefly described below.
\nMPTP: MPTP is a metabolite of the drug heroin. It is transported through the blood–brain barrier (BBB) by the plasma membrane dopamine transporter (DAT) and once it crosses the blood–brain barrier, MPTP is metabolically activated to the fully oxidized 1‐methyl‐4‐phenylpyridinium species (MPP+) which is then taken up into dopaminergic neurons via DAT [45, 46]. After MPP+ gains access into dopaminergic neurons, it is accumulated into synaptic vesicles via the vesicular monoamine transporter (VMAT2) [47]. The modulation of MPTP/MPP+ toxicity by DAT and VMAT2, where DAT enhances and VMAT2 protecting against toxicant injury, provides a paradigm linking environmental exposures to nigrostriatal degeneration. The ratio of DAT to VMAT2 indicates the sensitivity of dopaminergic neurons to toxic injury [48].
\n6‐Hydroxy dopamine (6‐OHDA): 6‐OHDA is the first catecholaminergic neurotoxin that was used to generate animal models of PD. Since this compound cannot cross BBB, it is needed to be injected and inserted systemically to aim dopamine pathways [49]. On injecting into substantia nigra, 6‐OHDA causes severe loss of dopamine neurons within a day [50]. Inside neurons, 6‐OHDA produces reactive oxygen species (ROS) and quinones that inactivate biological macromolecules. Till now, no Lewy body‐like inclusion has been described in the 6‐OHDA model. Owing to its inability to cross BBB, this model is less popular.
\nRotenone (ROT): ROT is used as a broad‐spectrum pesticide and belongs to the family of isoflavones naturally found in the roots and stems of several plants. Highly lipophilic, it easily crosses the BBB, and for cellular entry [51], it does not depend on the DAT. Within the cell rotenone mount up in mitochondria and inhibits complex I (where it impedes the transfer of electrons from iron–sulfur (Fe–S) centers to ubiquinone). It is opined that augmented ROS assembly is related with complex I inhibition, which may result in causing oxidative damage to DNA and proteins of neuronal cells. Further, nitric oxide may interact with ROS, particularly superoxide and hydroxyl radicals, resulting in peroxynitrite formation, eventually leading to cellular defects and impairment of dopaminergic neurons [52]. Further, ROT was shown to inhibit proteasome activity and dysfunction in proteasomes has been implicated in the pathogenesis of both genetic and sporadic forms of PD [53, 54].
\nParaquat (PQ): PQ is one of the most widely used herbicides in the world. The structural similarity of PQ with 1‐methyl‐4‐phenylpyridinium ion (MPP+) prompted the speculation that PQ might be dopaminergic neurotoxicant which may lead to PD. PQ is suspected to enter the brain by neutral amino acid transporters and subsequently the cells in a sodium‐dependent fashion [55]. Once within cells of the CNS, PQ acts as a redox cycling compound at the cytosolic level, which potentially leads to indirect mitochondrial toxicity [56]. Recently, it has also been shown that PQ‐induced apoptosis may involve Bak protein, a pro‐apoptosis Bcl‐2 family member [57].
\nManeb (MB): MB, a commonly used fungicide, is an irritant to respiratory tracts and is capable of inducing sensitization by skin contact. Mechanistically, MB seems to cross the BBB. Although knowledge of the mechanisms of this toxin is very limited, MB preferentially inhibits mitochondrial complex III [58]. Further, MB was shown to induce apoptosis through Bak activation, whereas combination of PQ and MB inhibits the Bak‐dependent pathway while potentiating apoptosis through Bak protein [59].
\nMetals: The potential role of metals due to prolonged exposure as risk factors for Parkinson\'s disease has been evaluated [60]. Chronic occupational exposure to high levels of manganese (Mn) in manganese miners causes accumulation of this metal in the basal ganglia, resulting in tremors, rigidity and psychosis that resemble PD [61]. The metal‐induced Parkinsonian syndrome that results from Mn exposure differs significantly from idiopathic PD. The Parkinsonism caused by Mn does not respond to L‐DOPA treatment and the primary target of Mn toxicity seems to be the globus pallidus rather than the nigrostriatal system [62]. The potential role of iron and other transition elements has also been studied. The level of ferritin (primary intracellular protein capable of keeping iron bound in a nonreactive status) in the nigral tissue of patients with PD was found to be decreased [63]. Thus, iron accumulation together with decreased binding capability may enhance the risk for iron‐mediated toxic reactions in PD by generating the highly toxic hydroxyl radical in the presence of iron and hydrogen peroxide, thus leading to oxidative stress and ultimately neurodegeneration.
\nThough Mendelian genes are responsible only for a small subset of PD patients, it is speculated that the same pathogenetic mechanisms could also play a relevant role in the development of more frequent sporadic PD [64]. With advancement in molecular biotechnological tools and techniques, a number of genes and proteins linked to PD have been identified, which reveal a complex network of molecular pathways involved in its etiology, suggesting that common mechanisms underlie both familial and sporadic forms of PD (Table 2) [65–79]. Three predominat pathways that can trigger the neurodegenerative process are as follows: (a) accumulation of aggregated and misfolded proteins, (b) impairment of the ubiquitin protein pathway (UPS) and the autophagy pathway, and (c) mitochondrial dysfunction [64]. Functional studies on the proteins encoded by PD‐related genes supports these pathways and it is confirmed by both pathological and biochemical studies performed in patients with sporadic PD with no apparent genetic cause [80–82]. Further, critical cellular protective pathways, such as autophagy, UPS, and mitochondria dynamics, are shown to lose adeptness with increasing age and there is a progressive build‐up of somatic mutations particularly in the mitochondrial DNA during aging process [64]. Recent studies have shown the role for chronic neuroinflammation and microglia activation in PD pathogenesis, suggesting that different molecular/cellular events may contribute to neurodegeneration by activating resident microglial populations in selected brain areas, with potential detrimental effects on vulnerable neuronal populations [83].
\nCompound treatment | \nDrosophila model | \nModifies phenotype(s) | \nPathway/ process | \nReferences | \n
---|---|---|---|---|
Sulforaphane and allyl Disulfide | \nparkin | \nDA neuron number | \nOxidative stress | \n[65] | \n
α‐synuclein | \nDA neuron number | \n[65] | \n||
S‐Methyl‐ L‐cysteine | \nα‐synuclein | \nLocomotor activity | \n[66] | \n|
Polyphenols | \nα‐synuclein | \nLifespan, Locomotor activity | \n[67] | \n|
Paraquat and Iron | \nLocomotor activity | \n[68] | \n||
α‐Tocopherol | \nDJ‐1β | \nLifespan | \n[69] | \n|
PINK1 | \nOmmatidial degeneration | \n[70] | \n||
SOD | \nPINK1 | \nOmmatidial degeneration | \n[70] | \n|
Melatonin | \nDJ‐1β | \nLifespan | \n[69] | \n|
Paraquat | \nLocomotor activity | \n[71] | \n||
Rotenone | \nLocomotor activity, Dopamine neuron number | \n[71] | \n||
Bacopa monieri leaf extract | \nParaquat; Rotenone | \nOxidative markers; Mitochondrial functions | \n[72, 73] | \n|
Minocycline | \nDJ‐1α | \nDA neuron number, dopamine levels | \nOxidative stress/ inflammatory process | \n[74] | \n
Celestrol | \nDJ‐1α | \nDA neuron number, dopamine levels, Locomotor activity and survival rate under oxidative stress conditions | \n[74] | \n|
Rapamycin | \nParkin/PINK1 | \nThoracic indentations, Locomotor activity, DA neuron number, and muscle integrity. | \nTOR signaling | \n[75] | \n
Geldanamycin | \nα‐ synuclein | \nDA neuron number | \nRemoval of excess or toxic protein forms | \n[76, 77] | \n
Zinc Chloride | \nParkin | \nLife span, Locomotor activity, and percentage of adulthood survivors. | \nZinc homeostasis | \n[78] | \n
Therapeutic compounds shown to modify phenotype(s) in the Drosophila PD model.
Modified from Munoz‐Soriano and Paricio [79].
The use of genetically tractable organisms to model gene–environment interactions has become an efficient means of identifying genetic risk factors [84, 85]. Functional characterization of the genes involved in familial PD has shown significant comprehensions into the molecular mechanism(s) responsible to the pathogenesis of PD. Abnormal protein and mitochondrial homeostasis are the crucial factors behind the development of PD, with oxidative stress playing a vital connection between the two events. Genome‐wide association studies (GWAS) showed variations in α‐synuclein and LRRK2 (well‐known familial PD genes), i.e., as important risk causes for the sporadic PD [86]. The elevation of dopamine synthesis in response to a variety of stressors [87] may subject DA neurons to an increased risk for oxidative stress‐mediated impairment [88]. Nevertheless, connotation studies of polymorphisms within these genes have not proved the hypothesis [89, 90].
\nThe recent application of high throughput whole genome and exome analysis technologies along with bioinformatics has provided valuable inputs in the identification of novel susceptibility loci involved in apparent sporadic PD. It is predicted that many more variants remained to be discovered despite the success of GWAS in discovering novel genetic variants in PD. In this regard, genome‐wide complex trait analysis [91, 92] may prove useful for a more exhaustive screening for PD risk variants [93]. Groundbreaking efforts have begun to establish the relationship between single nucleotide polymorphisms (SNPs) identified by GWAS and gene expression levels to describe their functional meaning. This approach has provided significant insights into various potential novel mechanisms underlying the observed SNP associations with PD etiology.
\nThe concept that gene–environment interactions affect PD susceptibility was proposed more than a decade ago [94]. Although many studies have described positive associations between genetic polymorphisms and increased risk for PD, only a few human association studies have examined gene–environment interactions. Occupational pesticide exposure as well as high exposure to PQ and MB in carriers of DAT genetic variants was shown to increase the PD risk [36, 95]. Further, SNP in NOS1 (neuronal nitric oxide synthase 1) and GSTP1 (glutathione S‐transferase pi 1) have been linked to an increased risk for PD among pesticide‐exposed individuals [96], although an association between GSTP1 and pesticide exposure has not been supported by a large cohort study conducted subsequently [97]. However, European studies did not show noteworthy interaction between polymorphisms in 15 genes that impact metabolism of extraneous chemicals or dopamine and exposure to pesticides and metals [97].
\nTwin studies: Twin studies are particularly useful in distinguishing between the influence of genetics or the environment on the risks of a disease. If genetic factors predominate in etiology of a disease, it is expected that concordance in monozygotic (MZ) twins will be greater than dizygotic (DZ) twins. Using striatal 18F[DOPA] positron emission tomography (PET) scan to detect dopaminergic dysfunction in asymptomatic cotwins of twin pairs with mostly sporadic and late onset PD, Piccini et al. [98] found a three‐fold higher concordance rate of PD in MZ twins (55%) than in DZ twins (18%), suggesting a significant genetic contribution. Furthermore, when monitored over a period of 7 years, asymptomatic MZ cotwins all showed progressive loss of dopaminergic function and four developed clinical PD, while none of the DZ twin pairs became clinically concordant. Similarly, a recent longitudinal study carried out on Swedish twins with predominantly sporadic PD revealed concordance rates of 11% for MZ and 4% for same‐sexed DZ twin pairs, with an overall heritability estimate of 34% [99].
\nTwo‐hit PD models: Present genetic PD models failed to reproduce nigrostriatal DA loss, hinting that a single genetic risk factor is not sufficient enough and an environmental factor may be required to initiate the process of neurodegeneration. To understand this paradigm and to decipher the interaction between genes and environment two hit animal models (animals with a genetic defect will be exposed to multiple environmental factors/toxicants to study if this synergy will lead to DA degeneration) will be of potential help.
\nThe fruit fly Drosophila has emerged as a suitable model for studying mechanisms of PD‐related neurodegeneration in the past decade. Structural architecture and functional pathways involved in dopamine synthesis and degradation are well preserved between Drosophila and human. Transgenic flies (neuronal overexpression of wt or mutant (A53T or A50P) human alpha‐synuclein) showed age‐dependent and selective loss of dopaminergic neurons, formation of fibrillary inclusions containing alpha‐synuclein, as well as a progressive loss of climbing activity, which could be alleviated by L‐DOPA or DA agonists [100]. Mutational analyses of alpha‐synuclein in Drosophila have permitted an extended evaluation of the protein domains involved and/or required for toxicity showing, for example, that truncated forms of alpha‐synuclein have a central hydrophobic region, between residues 71 and 82, essential for the formation of oligomeric and fibrillary forms of the protein and toxicity. Importance of post‐translational modification of alpha‐synuclein (phosphorylation on serine 129 and tyrosine 125, on alpha‐synuclein oligomerization and toxicity) was demonstrated using the Drosophila model. Using fly model it was also shown that early, soluble forms of aggregates of alpha‐synuclein are more toxic.
\nMutations that induce loss of function or inactivation of the fly homologs of mutations of fly homologs of PINK1, parkin, DJ‐1, or LRKK2 lead to selective DA degeneration leading to mobility defects that can be characterized through behavioral assays. Drosophila parkin null mutants exhibit decreased life span, mitochondrial abnormalities, and flight muscle deterioration leading to mobility defects and diminished proteasome 26S activity. Overexpression of mutant but not with wild parkin (human gene) in Drosophila leads to dopaminergic deterioration and motor defects, signifying a dominant negative effect of the mutated protein in PD pathology. Further, PINK1 mutant flies also share PD characteristics with parkin mutants.
\nDrosophila models have been important to identify the role of both parkin and PINK1 in the regulation of mitochondrial physiology [101]. Unlike mammals, Drosophila expresses two DJ‐1 homologs, viz., DJ‐1 alpha, restricted to male germline, and DJ‐1 beta that, similarly to mammals, is ubiquitously expressed. Different mutations of both genes have been induced. DJ‐1beta KO flies showed enhanced susceptibility to cytotoxins, such as paraquat, H2O2, and rotenone, further supporting the protective redox function of DJ‐1. Similarly, DJ‐1beta mutations that cause loss of protein function lead to accumulation of ROS in fly\'s brain.
\nDrosophila were first used to model PD, when Feany and Bender [100] produced transgenic flies that either expressed normal human α‐synuclein or one of the mutant forms, A30P and A53T α‐synuclein, which have both been linked to familial PD. This discovery revealed the potential of Drosophila system for modeling gain and loss‐of‐function genetic mutations that are associated with PD, thereby allowing the elucidation of the genes molecular functions and the pathways involved.
\nSeveral environmental chemicals (neurotoxins) have been employed to recapitulate PD‐like symptoms and pathology in Drosophila system [102]. Drosophila performs motor functions such as walking, climbing, and flying and has a well‐developed nervous system which makes Drosophila a suitable model for understanding PD. These kinds of complex behavior phenotypes are similar from strain to strain and hence characterizing a toxin induced PD model for this organism becomes easy [100]. Extensively used chemical models with their salient features are briefly described below.
\nRotenone (ROT) induced PD model in Drosophila: Inhibition of the mitochondrial respiratory chain by ROT has been widely used to study the role of the mitochondrial respiratory chain in apoptosis [103, 104]. The mitochondrial respiratory chain is the major site of ATP production in eukaryotes and it is well recognized that this organelle not only generates ATP, but also plays an important role in apoptosis [105–107]. It is now clear that upon apoptotic stimulation mitochondria can release several proapoptotic regulators, including cytochrome c [108], Smac/Diablo [109, 110], endonuclease G [111], and apoptosis‐inducing factor [112] to the cytosol. These proapoptotic regulators will then activate cellular apoptotic programs downstream [105–107]. The release of proapoptotic regulators is further regulated by the translocation of Bcl‐2 family proteins [113, 114]. Some of the salient pathophysiological features of the ROT fly model are: (a) being lipophilic, it can easily cross the blood–brain barrier but the final concentration of rotenone in the brain may probably be much lower than the initial because of these barriers and the powerful excretion system of flies. They have a tendency to stay at the bottom of vials and did not appear to coordinate their legs normally [37]. (b) Since neuronal dopaminergic clusters are normally present in each Drosophila adult brain hemisphere [115–117], abnormalities are characterized by the disappearance of part or the totality of dopaminergic cell clusters but this effect varies in intensity from one fly to another [37].
\nParaquat (PQ) model of PD in Drosophila: Long‐term exposure to environmental oxidative stressors, such as the herbicide PQ, has been linked to the development of PD. In view of this, PQ is frequently used in the Drosophila system and other animal models to study PD and the degeneration of dopaminergic neurons (DNs). Recently, it has been shown that expression of D1 like dopaminergic receptor (DAMB receptor) was directly proportional to PQ induced toxicity in CNS of flies [118]. It is notable that a long‐term neuronal DA synthesis decreases the DAMB expression and resists the PQ toxicity. Age‐related decrement in PQ resistance is also observed with a significant increase in DAMB receptor. This evidence proves that there are more areas to be researched regarding DA related neurodegeneration in Drosophila. Some of the salient pathophysiological features of PQ fly model are: (a) flies exhibit rapid onset of movement disorders, including resting tremors, bradykinesis, rotational behaviors and postural instability which resemble Parkinsonian symptoms. Furthermore, the flies frequently freeze while attempting to climb vial walls and would often fall to the bottom of the vial. Males exhibit symptoms 12 hours earlier than females, but both males and females are strongly affected [71]; (b) PQ‐dependent dopaminergic neuron loss is totally selective in a time‐dependent loss of exposure where after 6 hours of exposure PPL1 and by 12 hours PPM2, PPM3 cluster will be affected whereas PPM1 and PPL2 clusters only get affected after 20–24 hour of exposure [71], and (c) changes in the neuronal cell are also a trait where cell bodies aggregate in a round shape, and fragment and then disappear [71].
\nDrosophila models are a great cost‐effective alternative to rodent and primate‐based models, allowing rapid high throughput screening of novel therapies. Studies done with Drosophila model coexposed to rotenone and melatonin (an antioxidant and free radical scavenger) showed that melatonin improved the movement behavior of rotenone‐treated flies, even more evidently than L‐dopa [119]. Quantification of the number of dopaminergic cells after 1 week of rotenone feeding revealed that the presence of melatonin significantly rescued the loss of neurons in all of the clusters [37]. Subsequently, the rotenone model of Drosophila has been extensively employed as a screening platform to assess the neuroprotective potential of various molecules and phytoconstituents. Over the last five years, numerous workers have employed the fly rotenone model (both wild type and genetically modified strains) to test potential neuroprotective treatments [72–73, 120, 121]. The majority of these studies used compounds that have multiple therapeutic properties such as antioxidant, anti‐inflammatory, and anti‐apoptotic properties, which largely yielded positive results such as reductions in ROS and inflammatory mediators, attenuation of TH‐positive neuron loss and striatal dopamine loss as well as reversal of motor deficits [122].
\nThe Drosophila model is extensively used due to the flies’ rapid generation time, low cost, and amenability for genetic manipulation, and thus serves as an ideal model for identifying promising neuroprotective candidates that can then undergo further validation in mammalian models (Table 2) [65–79, 123]. Growing evidence indicate that the herbs used in traditional medicines contain neuroprotective compounds such as resveratol, curcumin or ginsenoside, green tea polyphenols or catechins, triptolide, etc. [124–128]. These compounds may help enhancing antioxidant activity, decrease loss of dopamine, inhibit activation of microglia, reduce the release of pro‐inflammatory factors, prevent α‐synuclein aggregation and fibrillation. These herbs also protect the dopaminergic neurons against neurotoxins like MTTP, 6‐OHDA. Some of the major plant derived molecules suggested as therapeutic agents for PD are as follows.
\nResveratol: This is a polyphenolic compound naturally found in grapes. This is able to cross the blood–brain barrier and is water soluble [129]. The numerous pharmacological functions include anti‐inflammation, antiapoptosis, antioxidation, anticancer, etc.
\nCurcumin: In recent years curcumin has shown therapeutic potential for neurodegenerative diseases such as PD. It is a natural polyphenol found in the spice turmeric and is known for several biological and medicinal effects such as anti‐inflammatory, antioxidant, anti‐proliferative activities, etc. It is demonstrated to help in preventing the aggregation and fibrillation of α‐synuclein [130]. Curcumin glucoside, a modified form, prevents the aggregation and enhances the solubility of α‐synuclein [131]. Studies have shown that curcumin reduces the LRRK2 kinase activity and decreases the levels of oxidized proteins. Thus curcumin also acts as an inhibitor for LRRK2 kinase activity. Our laboratory has shown stage‐specific neuroprotective efficacy of curcumin in Drosophila model of idiopathic PD [132].
\nGinsenoside: There are two major categories of ginsenosides—protopanaxadiols and protopanaxatriols. In vitro and in vivo studies have shown ginsenosides to exert pharmacological effects against neuroinflammation, cerebral oxidative stress, radical formation, and apoptosis. It plays a neuroprotective role in regulation of synaptic plasticity, neurotransmitter release, and neuroinflammatory responses [126].
\nBlueberry extracts: Blueberry contains a large amount of polyphenols and has a greater antioxidant property than most fruits and vegetables. Consumption of blueberry has been reported to slow down the age‐related functional and physiological deficits [133–135]. Peng et al. [136] were the first to show the anti‐aging property of blueberry using Drosophila fly model. The study also showed that supplemented blueberry extracts increased the mRNA levels of SOD1, SOD2, and CAT in Drosophila. Blueberry extracts can partially reverse the chronic Paraquat exposure. Blueberry extracts in diet of flies could increase the mean life span, decrease Paraquat induced mortality, and partially reverse the locomotor deficiency.
\nAnimal models are absolutely necessary for reproducing physiologic and neurosystems aspects of neurodegenerative disorders. However, animal models are complicated by the differing expression levels and patterns of expression of target genes, with different promoters among other issues for genetic models, and complexities of drug administration, drug distribution, and metabolism for toxin models [79]. Rodent models have faced limitations due to lack of strong construct (i.e., genotype or intervention) and face validity (i.e., phenotype), as well as species and strain limitations. In general, toxin‐induced PD models do not recapitulate the process of progressive neuron loss and the protein aggregation in LBs, due to the acute nature of the neurotoxin treatment [137, 138], but they have been useful to support the concept that alterations in mitochondrial biology are essential for the development of PD [139]. However, animal models allow studying a cellular process in the context of a whole organism and are thus more reliable.
\nResearch on PD using cell cultures has many advantages in which they allow rapid screening for disease pathogenesis and drug candidates. Cellular models can be easily used for molecular, biochemical, and pharmacological approaches, but they can lead to misinterpretation and artifacts. Vice versa limitations include that the survival of neurons is dependent upon the culture conditions and the cells do not develop their natural neuronal networks. In most cases, neurons are deprived of the physiological afferent and efferent connections [140].
\nWhile there are many advantages of the fly PD model, the most common disadvantage is that the important pathogenetic factors which are vertebrate‐specific may be ignored in invertebrate models. The differences between mammals and invertebrates represent potential drawbacks in modeling brain diseases such as PD [141].
\nDrosophila melanogaster was the first major complex organism to have its genome sequenced [142] and after the human genome was sequenced the homology between the two genomes greatly strengthened to understand human biology and the disease processes as a model [143]. More importantly, 75% of human disease‐related loci have a Drosophila orthologue [144]. Fly model are less costly and time consuming to use when compared to mammals due to their rapid reproduction time and short lifespan [143, 145, 146]. In addition, flies are capable of performing complex motor behaviors such as walking, climbing, and flying and their brain is complex enough to make these behaviors relevant to humans [101, 147, 148].
\nSome of the unique features of the Drosophila model which have been identified are: (a) Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD‐related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic) neurons and synapses rather than general cellular phenotypes. (b) Fly models show noncell autonomous signaling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signaling propagates, resembling Braak\'s scheme of spreading pathology in PD, (c) fly models link physiological deficits to changes in synaptic structure, and (d) the strong neuronal phenotypes observed in the fly models permit relevant in vivo drug testing [149]. Another key feature making Drosophila an attractive model is the range of genetic tools available to manipulate them and the ease of introducing human genes into the fly enables it to recapitulate the symptoms and progression of human disease in flies [150]. Two approaches employed are: the reverse genetic approach wherein a gene is tested for its potential functional role by using the GAL4/UAS‐system and the forward genetic approach (function of a gene) for identification of genes based on phenotype, which is useful to understand diseases whose genetic basis is yet to determined [141]. The genomics era has played a crucial role in directing both the functional biology and the in vitro/in vivo modeling of neurodegenerative diseases in fly model.
\nDrosophila has been used to model several aspects of neurodegenerative diseases, including aggregation toxicity of misfolding disease related proteins [151–156]. Ninety‐five percent of the Parkinson\'s disease patients suffer from sporadic form. In those sporadic cases, no indication allows a decided inference about the underlying causes as well as the pathogenic mechanism involved [101]. The limitations of human genetics make it necessary to use model system to analyze affected genes and pathways knowledge of which is essential to develop therapeutic targets. During last three decades, genetically pliable fruit fly Drosophila has been a great model system to study human neurodegenerative disorders including PD human genetic screens, and pathological studies have been able to provide limited mechanistic insights into the molecular processes that determine disease susceptibility or age at onset of disease [157]. Genetic analysis has identified causative mutations for autosomal‐dominant and recessive forms of familial PD. Functional studies of these genes have provided great insights into potential pathogenic mechanisms of inherited forms of PD; however it is unclear how these may relate to the more common sporadic forms of PD.
\nIdentification of PD risk locus SREBF1 through GWAS (genome‐wide association studies) analysis and substantiating its biological function as a regulator of mitophagy [158] remarkably emphasize the importance and potential to decipher the risk loci for idiopathic PD through genome‐wide screens in animal models. However, no systematic genome‐wide functional screens are performed in sporadic PD models. Here lies the importance and necessity to perform genome‐wide screen to identify the risk locus for idiopathic PD. Comprehensive efforts in this direction will provide novel insights into the molecular mechanisms behind the dopaminergic neurodegeneration and also figure out genetic basis for sporadic PD. Here lies the potential relevance and advantage of fly genetics and available technologies such as UAS‐Gal4, fly deletion lines, and RNAi lines, which can be of great help to figure out novel players, pathways, and mechanistic interactions among neurodegenerative disorders. Hence, it is worth placing future endeavors in this direction.
\nIn this chapter, we have provided an overview of current knowledge on the pathophysiology of sporadic PD employing Drosophila system. We also presented the future perspectives on the subject matter and emphasize the utmost importance for the need to generate comprehensive data employing genome‐wide association studies in this model that may lead to identification of newer pathways. We also discussed the importance and necessity to reexamine the strategies/methods of screens to assess the potential of neuroprotective compounds/molecules employing late life stages that may provide us better answers on successful utilization of therapeutic compounds in late onset neurodegenerative disorders such as PD.
\nThis work is partly supported by the Department of Biotechnology (DBT), Ministry of Science and Technology, India (R&D grant nos. BT/249/NE/TBP/2011, 25‐4‐2012, and BT/405/NE/U‐Excel/2013, 11‐12‐2014), to the corresponding author. Dr Muralidhara is a recipient of DBT (Department of Biotechnology, India) Visiting Research Professorship under the North–East scheme.
\nOxidoreductases, which includes oxidase, oxygenase, peroxidase, dehydrogenase, and others, are enzymes that catalyze redox reaction in living organisms and in the laboratory [1]. Interestingly, oxidoreductases catalyze reaction involving oxygen insertion, hydride transfer, proton extraction, and other essential steps. The substrate that is oxidized is considered as hydrogen or electron donor, whereas the substrate that is reduced during reaction as hydrogen/electrons acceptor. Most commonly, oxidoreductase enzymes use NAD, FAD, or NADP as a cofactor [2]. Organisms use this group of enzymes for synthesis of biomolecules, degradation and removal of molecules, metabolism of exogenous molecules like drugs, and so on [3, 4, 5]. Their biochemical property such as efficiency, specificity, good biodegradability, and being studied well make it fit well for industrial purposes. As a result, oxidoreductases are being utilized in nutrition, food processing, medicine, and other chemical synthesis. In the near future, oxidoreductase may be utilized as the best biocatalyst in pharmaceutical, food processing, and other industries [6, 7].
Enzymes like oxidoreductase play great and significant function in the field of disease diagnosis, prognosis, and treatment [8]. By analyzing the activities of enzymes and changes of certain substances in the body fluids, a number of disease conditions can be diagnosed [9, 10]. The determination of the activity of the oxidoreductases is helpful in understanding the metabolic activity of different organs [8, 11]. For example, the activity of oxidoreductase enzymes in Krebs cycle is significantly increased during skin infection [12].
There are different disease conditions resulting from deficiency (quantitative and qualitative) and excess of oxidoreductase, which may contribute to the metabolic abnormalities and decreased normal performance of life [13, 14]. For example, relative decreases in the activities of NADH dehydrogenase and ubiquinol-cytochrome c oxidoreductase are highly associated with the developments of peripheral arterial disease. Another best example is mutation of p450 oxidoreductase (POR) gene, which leads to insufficiency of P450 enzymes characterized by defective steroidogenesis. Similarly, deficiency of mitochondrial acetaldehyde dehydrogenase disturbs normal metabolism of alcohol and leads to accumulation of acetaldehyde [8, 15, 16]. These conditions in turn affect the normal development and reproduction.
Oxidoreductases are a family of enzymes that catalyze redox reactions. Oxidoreductases catalyze the transfer of electrons from oxidant to reductant [4]. Generally, oxidoreductases catalyze reactions which are similar to A– + B → A + B– where A is the oxidant and B is the reductant [17]. Oxidoreductases can be oxidases where a molecular oxygen acts as an acceptor of hydrogen or electrons and dehydrogenases which are enzymes that oxidize a substrate by transferring hydrogen to an acceptor that is either NAD+/NADP+ or a flavin enzyme. Other classes are oxidoreductases enzymes, peroxidases which are localized in peroxisomes and catalyze the reduction of hydrogen peroxide. Hydroxylases are involved in the addition of hydroxyl groups to their substrates, and oxygenases are key in the incorporation of oxygen from molecular oxygen into organic substrates. And reductase enzymes are involved in the catalysis of reduction reaction [2, 3, 18]. In general, oxidoreductase enzymes play an important role in both aerobic and anaerobic metabolism. They are involved in glycolysis, TCA cycle, oxidative phosphorylation, fatty acid, and amino acid metabolism [5, 19, 20].
In glycolysis, the enzyme glyceraldehydes-3-phosphate dehydrogenase catalyzes the reduction of NAD + to NADH. In order to maintain the redox state of the cell, this NADH must be re-oxidized to NAD+, which occurs in the oxidative phosphorylation pathway [21].
A high number of NADH molecules are produced in the TCA cycle. The product of glycolysis, pyruvate, enters the TCA cycle in the form of acetyl-CoA. Except leucine and lysine, all twenty of the amino acids can be degraded to TCA cycle intermediates. And most of the fatty acids are oxidized into acetyl coA through beta oxidation that enter TCA cycle [19, 22].
The precursor for the TCA cycle comes from lipids and carbohydrates, both of which produce the molecule acetyl-CoA. This acetyl-CoA enters the eight-step sequence of reactions that comprise the Krebs cycle, all of which occur inside mitochondria of eukaryotic cells. TCA or Krebs cycle produces NADH and FADH, and the reactions are catalyzed by classes of oxidoreductase enzymes [23].
Living cells use electron transport chain to transfer electrons stepwise from substrates (NADH & FADH2) to a molecular oxygen. The proton gradient which is generated through electron transport chain runs downhill to drive the synthesis of ATP. Electron transport chain and oxidative phosphorylation take place in the matrix of mitochondria, and there are oxidoreductase enzymes impregnated in the inner mitochondrial membrane, which catalyze these reactions and are engaged in energy production. NADH:quinone oxidoreductase, also called NADH dehydrogenase (complex I), is responsible for the transfer of electrons from NADH to quinones, coupled with proton translocation across the membrane. Succinate:quinone oxidoreductase, or succinate dehydrogenase (complex II), is an enzyme of the Krebs cycle, which oxidizes succinate and reduces quinones, in the absence of proton translocation. Quilon:cytochrome c oxidoreductase (complex III), which transfers electrons from quinols to cytochrome c and cytochrome c:oxygen oxidoreductase, an aa3-type enzyme (complex IV), which receives these electrons and transfers it to oxygen are both oxidoreductase enzymes involved in electron transport chain and oxidative phosphorylation [19, 24, 25] (Figure 1).
Oxidoreductase enzymes involved in electron transport chain and oxidative phosphorylation [18].
Liver is the principal organ for drug metabolism. The body uses different strategies to metabolize drugs like oxidation, reduction, hydrolysis, hydration, conjugation, condensation, or isomerization. The main goal of drug metabolism is to make the drug more hydrophilic and excrete easily. Enzymes involved in drug metabolism are found in many tissues and organs but are more concentrated in the liver. Rates of drug metabolism may vary among individuals. Some individuals metabolize a drug so rapidly; in others, metabolism may be so slow and have different effects. Genetic factors, coexisting disorders (particularly chronic liver disorders and advanced heart failure), and drug interactions are responsible factors for variation of rate of drug metabolism among individuals [26].
Generally, drug metabolism can be in three phases. In phase I drug metabolism, oxidoreductase enzymes such as cytochrome P450 oxidases add polar or reactive groups into drugs (xenobiotics). In phase I reaction, drugs are introduced into new or modified functional group through oxidation, reduction, and hydrolysis. In Phase II reactions, modified compounds are in conjugation with an endogenous substance, e.g., glucuronic acid, sulfate, and glycine. Phase II reactions are synthetic, and compounds become more polar and thus, more readily excreted by the kidneys (in urine) and the liver (in bile) than those formed in nonsynthetic reactions. At the end, in phase III reaction, the conjugated drugs (xenobiotics) may be further processed, before being recognized by efflux transporters and pumped out of cells. The metabolism of drug often converts hydrophobic compounds into hydrophilic products that are more readily excreted [27].
In normal cases, human body wants to remove or detoxify any compounds that cannot be metabolized otherwise utilized to serve the needs of the body. This removal process is carried out mainly by the liver. The liver has classes of oxidoreductase enzymes that are extremely effective at detoxification and removal of drugs from the body [5, 18].
Oxidation and metabolism of a high number of drugs and endogenous molecules are catalyzed by a class of oxidoreductase enzymes called cytochrome P450 monooxygenases. Even though they are distributed throughout the body, cytochrome P450 enzymes are primarily concentrated in liver cells. The CYP2D6 isozymes play a great role in metabolizing certain opioids, neuroleptics, antidepressants, and cardiac medications. Currently it is going to be understood that difference in the genes for CYP450 enzymes play to inter-individual differences in the serum concentrations of drug metabolites, resulting in interpatient variability in drug efficacy and safety [28].
Flavin-containing monooxygenases (FMOs) (EC 1.14.13.8) are a family of microsomal NADPH-dependent oxidoreductase, responsible for oxygenation of nucleophilic nitrogen, sulfur, phosphorus, other drugs, and endogenous molecules. Different variants of mammalian FMOs play a significant role in the oxygenation of nucleophilic xenobiotics. FMO utilizes NADPH as a cofactor and contains one FAD as a prosthetic group. FMOs have a broad substrate specificity and their activity is maximal at or above pH 8.4. FMO is a highly abundant enzyme in the liver endoplasmic reticulum and participates in drug metabolism (activation and detoxification) [29].
Before FMOs bind to a substrate, they activate molecular oxygen. First, flavin adenine dinucleotide (FAD), the prosthetic group of FMO, is reduced by NADPH to form FADH, then oxygen is added into the FAD, and hydro-peroxide FADH-4α-OOH is produced. And then, one oxygen atom is transferred to the substrate [30, 31].
Alcohol dehydrogenase (ADH) and mitochondrial aldehyde dehydrogenase (ALDH) are another family of oxidoreductase responsible for metabolizing ethanol. These enzymes are highly expressed in the liver but at lower levels in many tissues and play a great role in detoxification and easy removal of alcohols. Liver is the main organ for ethanol metabolism. Oxidation of ethanol with these enzymes can become a major energy source especially in the liver, and it can interfere metabolism of other nutrients [32].
The first step in ethanol metabolism is its oxidation to acetaldehyde, and this reaction is catalyzed by enzymes called alcohol dehydrogenases (ADHs). The second reaction in ethanol metabolism is oxidation of acetaldehyde into acetate catalyzed by aldehyde dehydrogenase (ALDH) enzymes. There are different ADH and ALDH enzymes encoded by different genes occurring in several alleles and enzymes that have different alcohol metabolizing capacity; thereby, they influence individuals’ alcoholism risk. These are either through rapid oxidation of ethanol to acetaldehyde where there is more active ADH or slower oxidation of acetaldehyde into acetate where there are less active ALDH enzymes. Excess accumulation of acetaldehyde is toxic, which results in different adverse reactions and produces nausea, skin rash, rapid heartbeat, etc. Most commonly, single-nucleotide polymorphisms (SNPs) are responsible for ADH and ALDH gene variants, and these may occur on both coding and non-coding regions of the gene [33, 34].
Monoamine oxidase is a very important oxidoreductase enzyme mainly responsible for degradation of amine neurotransmitters like norepinephrine, epinephrine, serotonin, and dopamine. Oxidation of different endogenous and exogenous biogenic amines may produce other active or inactive metabolites. Monoamine oxidase (MAO) is found in two isozyme forms: monoamine oxidase A (MAO-A) preferentially deaminates serotonin, norepinephrine, epinephrine, and dietary vasopressors such as tyramine, and MAO-B preferentially deaminates dopamine and phenethylamine. They are integral flavoproteins components of outer mitochondrial membranes in neurons and glia cell. The two isozymes of MAO differ based on substrate specificity and sensitivity to different inhibitors [35].
Monoamine oxidase enzymes catalyze the primary catabolic pathway for 5-HT oxidative deamination. Serotonin is converted into 5-hydroxy-indoleacetaldehyde, and this product is further oxidized by a NAD-dependent aldehyde dehydrogenase to form 5-hydroxyindoleacetic acid (5-HIAA). Immunohistochemical techniques and in situ hybridization histochemistry techniques are used to study the neuroanatomical localization and biochemical nature of the two forms of MAO [36].
Different antidepressant drugs like phenelzine and tranylcypromine inhibit the activity of monoamine oxidase. These are a result of MAO metabolizes biogenic amines such as 5-HT, DA, and NE. In addition, different dopaminergic neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are metabolized by MAO [37].
Another essential class of oxidoreductase enzyme is NADPH-cytochrome P450 reductase (CPR). It is a membrane-bound protein localized in the ER membrane. PR involves in the detoxification and activation of a number of xenobiotics. CPR uses FAD and FMN as cofactors, and it transfers the hydride ion of NADPH to FAD, and then FAD transfers electrons to FMN and other oxidases. Finally, it reduces the P450 enzyme heme center to activate molecular oxygen. Thus, electrons transfer from NADPH to the P450 heme center by CPR, which is central for P450-catalyzed metabolism. Flow of electron can be expressed as follows:
Human cytochrome P450 reductase is encoded by the POR gene. It is a 78-kDa multi domain diflavin reductase that binds both FMN and FAD and is attached to the cytoplasmic side of the endoplasmic reticulum via a transmembrane segment at its N-terminus [5, 15, 38].
Several industries such as pharmaceutical, foods, biofuel production, natural gas conversion, and others have used enzyme catalysis at commercial scale [39]. Classes of oxidoreductase enzymes are becoming a target by a number of industries. The family of oxidoreductase like heme-containing peroxidases and peroxygenases, flavin-containing oxidases and dehydrogenases, and different copper-containing oxidoreductases is involved in synthesis and degradation of interested products by the above industries and they are biocatalysts of interest for establishing a bio-based economy. Oxidoreductase enzymes have the highest potential in the production of polymer building blocks, sustainable chemicals, and materials from plant biomass within lignocellulose biorefineries [6, 7, 40].
Enzymes are biological catalysts and have great specificity, efficiency, and selectivity in the reaction they catalyze [39]. Oxidoreductase enzymes have different redox-active centers for doing their functions. These unique features of oxidoreductase enzymes make it valuable targets of pharmaceutical and chemical industries. Advancement in recombinant DNA technology, protein engineering, and bioinformatics is a critical event in the application of enzymes in different industries. A number of dug synthesis processes require the involvement of oxidoreductase enzymes [6].
An oxidoreductase is involved in the synthesis of 3,4-dihydroxylphenyl alanine (DOPA), and 3,4-dihydroxylphenyl alanine is a drug used for treatment of Parkinson’s disease [41]. Similarly, a class of oxidoreductase called monoamine oxidase (MAO) catalyzes enantiomeric desymmetrization of bicyclic proline intermediate, which is an important precursor in the synthesis of boceprevir. Boceprevir is a NS3 protease inhibitor that is used for the treatment of chronic hepatitis C infections. Using MAO in this reaction reduces time and waste product generation and is economically cost-competitive and profitable [42]. Its coenzyme specificity makes oxidoreductase an effective biocatalyst in protein engineering [43]. In vitro different oxidoreductase enzymes are involved in regeneration of coenzymes, pyridine nucleotides, NAD(H) and NADP(H). Alcohol dehydrogenase and format dehydrogenase are frequently used enzymes for recycling of coenzymes, and the intermediate products are useful in the synthesis of pharmaceutical drugs such as mevinic acid [44, 45].
Enzymes are biological catalysts and have a number of applications in agricultural fields. Using enzymes has great efficacy and efficiency over chemical catalysts with respect to their productivity, time, cost, quality, and quantity products. There are different classes of oxidoreductase enzymes nowadays involved in fertilizer production, dairy processing, and other food processing in agricultural sector, and their cost-effectiveness and quality product were confirmed by a number of researches [3].
Manipulation of gene cod for different oxidoreductase in plants can also change the characters of plants in a way that it increases productivity and resists adverse effects of herbicide and environmental changes. For example, modification of DNA for glyphosate oxidoreductase (GOX) enzyme that catalyzes the oxidative cleavage of the C▬N bond on the carboxyl side of glyphosate, resulting in the formation of aminomethylphosphonic acid (AMPA) and glyoxylate thereby augmented expression of GOX plants, results in glyphosate herbicide side effect tolerance [46, 47]. Some families of oxidoreductase like xanthine dehydrogenase in plants are used to metabolize reactive oxygen species associated with plant-pathogen and protect plants from stress-induced oxidative damage. Upregulation of xanthine dehydrogenase expression in plants is helpful to increase productivity [48, 49].
Classes of oxidoreductase are also involved in dairy processing. Glucose oxidase produced by fungal species acts as preservatives in dairy products and other foods. The intermediate and end product of glucose oxidase have antimicrobial effect [50]. Isozyme of xanthine oxidoreductase in bovine milk, which catalyzes reduction of oxygen to generate reactive metabolite is used as an anti-microbial agent in the neonatal gastrointestinal tract [51]. Similarly, peroxidases which are a family of oxidoreductase found in higher plants catalyze the oxidation of many compounds including phenolics, in the presence of hydrogen peroxide responsible in browning or darkening of noodles and pasta and associated with a grain quality defect [52]. Protochlorophyllide oxidoreductase (POR), which exists in two isozymes POR A and POR B, plays a vital role in plant chlorophyll synthesis, and manipulation on these genes can induce plant development [53]. In general, there are a number of oxidoreductase enzymes found in plants, and their normal activity is crucial for qualitative and quantitative productivity of crops, and these were confirmed by a number of active researches. Different interventions are also going on at gene level to control the expression of oxidoreductase enzymes in plant as needed [3].
Oxidoreductase enzymes are involved in a number of valuable biochemical reactions in the living organism, and their qualitative and quantitative normality is essential. For example, one important class of oxidoreductase is xanthine oxidoreductase (XOR) that catalyzes oxidative hydroxylation of hypoxanthine to xanthine then to uric acid and over activity XOR leads to hyperuricemia and concomitant production of reactive oxygen species. In turn, hyperuricemia is confirmed as an independent risk factor for a number of clinical conditions such as gout, cardiovascular disease, hypertension, and others. Different urate-lowering drugs or XOR inhibitors are nowadays implemented to prevent and manage hyperuricemia disorder [9].
Another important class of oxidoreductase enzyme is cytochrome P450 oxidoreductase (POR) that is essential for multiple metabolic processes. Cytochrome P450 enzymes are involved in metabolism of steroid hormones, drugs, and xenobiotics. Nowadays, more than 200 different mutations and polymorphisms in POR gene have been identified and cause a complex set of disorders. Deficiency of cytochrome P450 oxidoreductase affects normal production of hormone; specifically, it affects steroid hormones, which are needed for normal development and reproduction. This is highly linked with the reproductive system, skeletal system, and other functions. Signs and symptoms can be seen from birth to adult age with different severities. Individuals with moderate cytochrome P450 oxidoreductase deficiency may have ambiguous external genitalia and have a high chance of infertility but a normal skeletal structure [5, 16, 18].
Aldehyde dehydrogenase 2 (ALDH2) deficiency known as Asian glow or alcohol flushing syndrome is a common genetic health problem that interferes with alcohol metabolism, and ALDH2 is a classical family of oxidoreductase enzymes. It was confirmed that ALDH2 deficiency results in the accumulation acetaldehyde, which is a toxic metabolite of alcohol metabolism and responsible for a number of health challenges like esophageal, head, and neck cancer. A number of researches conclude that acetaldehyde is a group 1 carcinogenic metabolite [33, 54]. Similarly, monoamine oxidase deficiency, which is a family oxidoreductase enzyme, affects the normal metabolism of serotonin and catecholamines. It is a rare X-linked disorder characterized by mild intellectual disability, and behavioral challenges appear at earlier age. Monoamine oxidase-A deficiency that occurs almost exclusively in males has episodes of skin flushing, excessive sweating, headaches, and diarrhea. Monoamine oxidase-A deficiency can be diagnosed by finding an elevated urinary concentration of the monoamine oxidase-A substrates in combination with reduced amounts of the monoamine oxidase products [36, 55].
Mitochondria generate huge amounts of energy (ATP) to eukaryotic cells through oxidation of fats and sugars; and fatty acid β-oxidation and oxidative phosphorylation are two metabolic pathways that are central to this process. Qualitative and quantitative normality of oxidoreductase enzymes involved in oxidative phosphorylation and fatty acid oxidations are essential to get sufficient energy (ATP) form metabolism. Deficiency of a complex I (NADH-CoQ oxidoreductase) is common, and a well-characterized mitochondrial problem causes reduced ATP production [56]. Complex I (NADH-CoQ oxidoreductase) is responsible for recycling of NADH to NAD+, and in turn, this is essential to sustain Krebs cycle and glycolysis. Mutations in both nuclear and mitochondrial DNA for Complex I gene are responsible for mitochondrial disease. Individuals with mitochondrial diseases suffer from an energy insufficiency characterized by myopathies, neuropathy, delayed development, cardiomyopathy, lactic acidosis, and others. Furthermore, since mitochondria are a hub of metabolism, mitochondrial dysfunctions are highly associated with metabolic diseases like hypertension, obesity, diabetes, neurodegenerative diseases, and even aging. Deficiency of complex I leads to elevation of NADH levels in the mitochondria that inhibit pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. This condition completely inhibits Krebs cycle, and it is measured by CO2 evolution from [14C] labeled precursors. Similarly, complex II (succinate:ubiquinone oxidoreductase) deficiency affects both fatty acid oxidation and electron transport chain, and it induces retinopathies and encephalopathies [57, 58].
Deficiency of the pyruvate dehydrogenase complex (PDHC), another class of oxidoreductase enzymes, causes similar clinical and biochemical alteration in energy production with complex I (NADH-CoQ oxidoreductase) [59]. Both TCA cycle and respiratory chain can be affected by succinate dehydrogenase deficiency. Deficiency of oxidoreductase enzymes involved in Krebs cycle affects all carbohydrate, protein, fat, and nucleic acid metabolism as it is a common pathway for metabolism of the above macromolecules [60].
Oxidoreductase enzymes are also involved in bile acid synthesis. Classes of oxidoreductase enzymes called 3beta-hydroxy-Delta (5)-C (27)-steroid oxidoreductase catalyze an early step of bile acids synthesis from cholesterol and are encoded by HSD3B7 gene on chromosome 16p11.2-12. Mutations of HSD3B7 gene affect bile acids synthesis, cause development of progressive liver disease characterized by cholestatic jaundice, malabsorption of lipids, and lipid-soluble vitamins from the gastrointestinal tract, and finally progress to cirrhosis and liver failure [61].
One important biomolecule that acts as a precursor for other molecules and a component of cell membrane is cholesterol. Mammalian cells can get cholesterol from de novo biosynthesis or uptake of exogenously derived cholesterol associated with plasma low-density lipoprotein (LDL). 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which is a class of oxidoreductase, catalyzes the rate-limiting steps of de novo cholesterol biosynthetic pathway and target for manipulation pharmacologically. Under or over activity of HMG-CoA reductase can disturb cholesterol homeostasis and lead to either hypercholesterolemia or hypocholesterolemia. And disturbed cholesterol level associated with number serious clinical problem like atherosclerosis [62, 63].
The authors declare that they have no competing interests.
Mezgeu Legesse Habte drafted the paper and write the literature review.
Etsegenet Assefa assisted in guidance, critical assessment and peer review of the writing. Both authors have given their final approval of this version to be published. Both authors read and approved the final manuscript.
Availability of data and material: All necessary data and materials related to the article are included in the article.
Funding: This review article is not funded by any person or organization (not funded).
As this section deals with legal issues pertaining to the rights of individual Authors and IntechOpen, for the avoidance of doubt, each category of publication is dealt with separately. Consequently, much of the information, for example definition of terms used, is repeated to ensure that there can be no misunderstanding of the policies that apply to each category.
",metaTitle:"Copyright Policy",metaDescription:"Copyright is the term used to describe the rights related to the publication and distribution of original works. Most importantly from a publisher's perspective, copyright governs how authors, publishers and the general public can use, publish and distribute publications.",metaKeywords:null,canonicalURL:"/page/copyright-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Copyright is the term used to describe the rights related to the publication and distribution of original Works. Most importantly from a publisher's perspective, copyright governs how Authors, publishers and the general public can use, publish, and distribute publications.
\\n\\nIntechOpen only publishes manuscripts for which it has publishing rights. This is governed by a publication agreement between the Author and IntechOpen. This agreement is accepted by the Author when the manuscript is submitted and deals with both the rights of the publisher and Author, as well as any obligations concerning a particular manuscript. However, in accepting this agreement, Authors continue to retain significant rights to use and share their publications.
\\n\\nHOW COPYRIGHT WORKS WITH OPEN ACCESS LICENSES?
\\n\\nAgreement samples are listed here for the convenience of prospective Authors:
\\n\\n\\n\\nDEFINITIONS
\\n\\nThe following definitions apply in this Copyright Policy:
\\n\\nAuthor - in order to be identified as an Author, three criteria must be met: (i) Substantial contribution to the conception or design of the Work, or the acquisition, analysis, or interpretation of data for the Work; (ii) Participation in drafting or revising the Work; (iii) Approval of the final version of the Work to be published.
\\n\\nWork - a Chapter, including Conference Papers, and any and all text, graphics, images and/or other materials forming part of or accompanying the Chapter/Conference Paper.
\\n\\nMonograph/Compacts - a full manuscript usually written by a single Author, including any and all text, graphics, images and/or other materials.
\\n\\nCompilation - a collection of Works distributed in a Book that IntechOpen has selected, and for which the coordination of the preparation, arrangement and publication has been the responsibility of IntechOpen. Any Work included is accepted in its entirety in unmodified form and is published with one or more other contributions, each constituting a separate and independent Work, but which together are assembled into a collective whole.
\\n\\nIntechOpen - Registered publisher with office at 5 Princes Gate Court, London, SW7 2QJ - UNITED KINGDOM
\\n\\nIntechOpen platform - IntechOpen website www.intechopen.com whose main purpose is to host Monographs in the format of Book Chapters, Long Form Monographs, Compacts, Conference Proceedings and Videos.
\\n\\nVideo Lecture – an audiovisual recording of a lecture or a speech given by a Lecturer, recorded, edited, owned and published by IntechOpen.
\\n\\nTERMS
\\n\\nAll Works published on the IntechOpen platform and in print are licensed under a Creative Commons Attribution 3.0 Unported License, a license which allows for the broadest possible reuse of published material.
\\n\\nCopyright on the individual Works belongs to the specific Author, subject to an agreement with IntechOpen. The Creative Common license is granted to all others to:
\\n\\nAnd for any purpose, provided the following conditions are met:
\\n\\nAll Works are published under the CC BY 3.0 license. However, please note that book Chapters may fall under a different CC license, depending on their publication date as indicated in the table below:
\\n\\n\\n\\n
LICENSE | \\n\\t\\t\\tUSED FROM - | \\n\\t\\t\\tUP TO - | \\n\\t\\t
\\n\\t\\t\\t Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) \\n\\t\\t\\t | \\n\\t\\t\\t\\n\\t\\t\\t 1 July 2005 (2005-07-01) \\n\\t\\t\\t | \\n\\t\\t\\t\\n\\t\\t\\t 3 October 2011 (2011-10-03) \\n\\t\\t\\t | \\n\\t\\t
Creative Commons Attribution 3.0 Unported (CC BY 3.0) | \\n\\t\\t\\t\\n\\t\\t\\t 5 October 2011 (2011-10-05) \\n\\t\\t\\t | \\n\\t\\t\\tCurrently | \\n\\t\\t
The CC BY 3.0 license permits Works to be freely shared in any medium or format, as well as the reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as the source Work is cited and its Authors are acknowledged in the following manner:
\\n\\nContent reuse:
\\n\\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\\n\\nContent adaptation & reuse:
\\n\\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\\n\\nReposting & sharing:
\\n\\nOriginally published in {full citation}. Available from: {DOI}
\\n\\nRepublishing – More about Attribution Policy can be found here.
\\n\\nThe same principles apply to Works published under the CC BY-NC-SA 3.0 license, with the caveats that (1) the content may not be used for commercial purposes, and (2) derivative works building on this content must be distributed under the same license. The restrictions contained in these license terms may, however, be waived by the copyright holder(s). Users wishing to circumvent any of the license terms are required to obtain explicit permission to do so from the copyright holder(s).
\\n\\nDISCLAIMER: Neither the CC BY 3.0 license, nor any other license IntechOpen currently uses or has used before, applies to figures and tables reproduced from other works, as they may be subject to different terms of reuse. In such cases, if the copyright holder is not noted in the source of a figure or table, it is the responsibility of the User to investigate and determine the exact copyright status of any information utilised. Users requiring assistance in that regard are welcome to send an inquiry to permissions@intechopen.com.
\\n\\nAll rights to Books and all other compilations published on the IntechOpen platform and in print are reserved by IntechOpen.
\\n\\nThe copyright to Books and other compilations is subject to separate copyright from those that exist in the included Works.
\\n\\nAll Long Form Monographs/Compacts are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others.
\\n\\nCopyright to the individual Works (Chapters) belongs to their specific Authors, subject to an agreement with IntechOpen and the Creative Common license granted to all others to:
\\n\\nUnder the following terms:
\\n\\nThere must be an Attribution, giving appropriate credit, provision of a link to the license, and indication if any changes were made.
\\n\\nNonCommercial - The use of the material for commercial purposes is prohibited. Commercial rights are reserved to IntechOpen or its licensees.
\\n\\nNo additional restrictions that apply legal terms or technological measures that restrict others from doing anything the license permits are allowed.
\\n\\nThe CC BY-NC 4.0 license permits Works to be freely shared in any medium or format, as well as reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as it is not used for commercial purposes. The source Work must be cited and its Authors acknowledged in the following manner:
\\n\\nContent reuse:
\\n\\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\\n\\nContent adaptation & reuse:
\\n\\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\\n\\nReposting & sharing:
\\n\\nOriginally published in {full citation}. Available from: {DOI}
\\n\\nAll Book cover design elements, as well as Video image graphics are subject to copyright by IntechOpen.
\\n\\nEvery reproduction of a front cover image must be accompanied by an appropriate Copyright Notice displayed adjacent to the image. The exact Copyright Notice depends on who the Author of a particular cover image is. Users wishing to reproduce cover images should contact permissions@intechopen.com.
\\n\\nAll Video Lectures under IntechOpen's production are subject to copyright and are property of IntechOpen, unless defined otherwise, and are licensed under the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. This grants all others the right to:
\\n\\nShare — copy and redistribute the material in any medium or format
\\n\\nUnder the following terms:
\\n\\nUsers wishing to repost and share the Video Lectures are welcome to do so as long as they acknowledge the source in the following manner:
\\n\\n© {year} IntechOpen. Published under CC BY-NC-ND 4.0 license. Available from: {DOI}
\\n\\nUsers wishing to reuse, modify, or adapt the Video Lectures in a way not permitted by the license are welcome to contact us at permissions@intechopen.com to discuss waiving particular license terms.
\\n\\nAll software used on the IntechOpen platform, any used during the publishing process, and the copyright in the code constituting such software, is the property of IntechOpen or its software suppliers. As such, it may not be downloaded or copied without permission.
\\n\\nUnless otherwise indicated, all IntechOpen websites are the property of IntechOpen.
\\n\\nAll content included on IntechOpen Websites not forming part of contributed materials (such as text, images, logos, graphics, design elements, videos, sounds, pictures, trademarks, etc.), are subject to copyright and are property of, or licensed to, IntechOpen. Any other use, including the reproduction, modification, distribution, transmission, republication, display, or performance of the content on this site is strictly prohibited.
\\n\\nPolicy last updated: 2016-06-08
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Copyright is the term used to describe the rights related to the publication and distribution of original Works. Most importantly from a publisher's perspective, copyright governs how Authors, publishers and the general public can use, publish, and distribute publications.
\n\nIntechOpen only publishes manuscripts for which it has publishing rights. This is governed by a publication agreement between the Author and IntechOpen. This agreement is accepted by the Author when the manuscript is submitted and deals with both the rights of the publisher and Author, as well as any obligations concerning a particular manuscript. However, in accepting this agreement, Authors continue to retain significant rights to use and share their publications.
\n\nHOW COPYRIGHT WORKS WITH OPEN ACCESS LICENSES?
\n\nAgreement samples are listed here for the convenience of prospective Authors:
\n\n\n\nDEFINITIONS
\n\nThe following definitions apply in this Copyright Policy:
\n\nAuthor - in order to be identified as an Author, three criteria must be met: (i) Substantial contribution to the conception or design of the Work, or the acquisition, analysis, or interpretation of data for the Work; (ii) Participation in drafting or revising the Work; (iii) Approval of the final version of the Work to be published.
\n\nWork - a Chapter, including Conference Papers, and any and all text, graphics, images and/or other materials forming part of or accompanying the Chapter/Conference Paper.
\n\nMonograph/Compacts - a full manuscript usually written by a single Author, including any and all text, graphics, images and/or other materials.
\n\nCompilation - a collection of Works distributed in a Book that IntechOpen has selected, and for which the coordination of the preparation, arrangement and publication has been the responsibility of IntechOpen. Any Work included is accepted in its entirety in unmodified form and is published with one or more other contributions, each constituting a separate and independent Work, but which together are assembled into a collective whole.
\n\nIntechOpen - Registered publisher with office at 5 Princes Gate Court, London, SW7 2QJ - UNITED KINGDOM
\n\nIntechOpen platform - IntechOpen website www.intechopen.com whose main purpose is to host Monographs in the format of Book Chapters, Long Form Monographs, Compacts, Conference Proceedings and Videos.
\n\nVideo Lecture – an audiovisual recording of a lecture or a speech given by a Lecturer, recorded, edited, owned and published by IntechOpen.
\n\nTERMS
\n\nAll Works published on the IntechOpen platform and in print are licensed under a Creative Commons Attribution 3.0 Unported License, a license which allows for the broadest possible reuse of published material.
\n\nCopyright on the individual Works belongs to the specific Author, subject to an agreement with IntechOpen. The Creative Common license is granted to all others to:
\n\nAnd for any purpose, provided the following conditions are met:
\n\nAll Works are published under the CC BY 3.0 license. However, please note that book Chapters may fall under a different CC license, depending on their publication date as indicated in the table below:
\n\n\n\n
LICENSE | \n\t\t\tUSED FROM - | \n\t\t\tUP TO - | \n\t\t
\n\t\t\t Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) \n\t\t\t | \n\t\t\t\n\t\t\t 1 July 2005 (2005-07-01) \n\t\t\t | \n\t\t\t\n\t\t\t 3 October 2011 (2011-10-03) \n\t\t\t | \n\t\t
Creative Commons Attribution 3.0 Unported (CC BY 3.0) | \n\t\t\t\n\t\t\t 5 October 2011 (2011-10-05) \n\t\t\t | \n\t\t\tCurrently | \n\t\t
The CC BY 3.0 license permits Works to be freely shared in any medium or format, as well as the reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as the source Work is cited and its Authors are acknowledged in the following manner:
\n\nContent reuse:
\n\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\n\nContent adaptation & reuse:
\n\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\n\nReposting & sharing:
\n\nOriginally published in {full citation}. Available from: {DOI}
\n\nRepublishing – More about Attribution Policy can be found here.
\n\nThe same principles apply to Works published under the CC BY-NC-SA 3.0 license, with the caveats that (1) the content may not be used for commercial purposes, and (2) derivative works building on this content must be distributed under the same license. The restrictions contained in these license terms may, however, be waived by the copyright holder(s). Users wishing to circumvent any of the license terms are required to obtain explicit permission to do so from the copyright holder(s).
\n\nDISCLAIMER: Neither the CC BY 3.0 license, nor any other license IntechOpen currently uses or has used before, applies to figures and tables reproduced from other works, as they may be subject to different terms of reuse. In such cases, if the copyright holder is not noted in the source of a figure or table, it is the responsibility of the User to investigate and determine the exact copyright status of any information utilised. Users requiring assistance in that regard are welcome to send an inquiry to permissions@intechopen.com.
\n\nAll rights to Books and all other compilations published on the IntechOpen platform and in print are reserved by IntechOpen.
\n\nThe copyright to Books and other compilations is subject to separate copyright from those that exist in the included Works.
\n\nAll Long Form Monographs/Compacts are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others.
\n\nCopyright to the individual Works (Chapters) belongs to their specific Authors, subject to an agreement with IntechOpen and the Creative Common license granted to all others to:
\n\nUnder the following terms:
\n\nThere must be an Attribution, giving appropriate credit, provision of a link to the license, and indication if any changes were made.
\n\nNonCommercial - The use of the material for commercial purposes is prohibited. Commercial rights are reserved to IntechOpen or its licensees.
\n\nNo additional restrictions that apply legal terms or technological measures that restrict others from doing anything the license permits are allowed.
\n\nThe CC BY-NC 4.0 license permits Works to be freely shared in any medium or format, as well as reuse and adaptation of the original contents of Works (e.g. figures and tables created by the Authors), as long as it is not used for commercial purposes. The source Work must be cited and its Authors acknowledged in the following manner:
\n\nContent reuse:
\n\n© {year} {authors' full names}. Originally published in {short citation} under {license version} license. Available from: {DOI}
\n\nContent adaptation & reuse:
\n\n© {year} {authors' full names}. Adapted from {short citation}; originally published under {license version} license. Available from: {DOI}
\n\nReposting & sharing:
\n\nOriginally published in {full citation}. Available from: {DOI}
\n\nAll Book cover design elements, as well as Video image graphics are subject to copyright by IntechOpen.
\n\nEvery reproduction of a front cover image must be accompanied by an appropriate Copyright Notice displayed adjacent to the image. The exact Copyright Notice depends on who the Author of a particular cover image is. Users wishing to reproduce cover images should contact permissions@intechopen.com.
\n\nAll Video Lectures under IntechOpen's production are subject to copyright and are property of IntechOpen, unless defined otherwise, and are licensed under the Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. This grants all others the right to:
\n\nShare — copy and redistribute the material in any medium or format
\n\nUnder the following terms:
\n\nUsers wishing to repost and share the Video Lectures are welcome to do so as long as they acknowledge the source in the following manner:
\n\n© {year} IntechOpen. Published under CC BY-NC-ND 4.0 license. Available from: {DOI}
\n\nUsers wishing to reuse, modify, or adapt the Video Lectures in a way not permitted by the license are welcome to contact us at permissions@intechopen.com to discuss waiving particular license terms.
\n\nAll software used on the IntechOpen platform, any used during the publishing process, and the copyright in the code constituting such software, is the property of IntechOpen or its software suppliers. As such, it may not be downloaded or copied without permission.
\n\nUnless otherwise indicated, all IntechOpen websites are the property of IntechOpen.
\n\nAll content included on IntechOpen Websites not forming part of contributed materials (such as text, images, logos, graphics, design elements, videos, sounds, pictures, trademarks, etc.), are subject to copyright and are property of, or licensed to, IntechOpen. Any other use, including the reproduction, modification, distribution, transmission, republication, display, or performance of the content on this site is strictly prohibited.
\n\nPolicy last updated: 2016-06-08
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:202},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"45",title:"Bioorganic Chemistry",slug:"biochemistry-genetics-and-molecular-biology-bioorganic-chemistry",parent:{title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"},numberOfBooks:43,numberOfAuthorsAndEditors:1466,numberOfWosCitations:2788,numberOfCrossrefCitations:1065,numberOfDimensionsCitations:2947,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"biochemistry-genetics-and-molecular-biology-bioorganic-chemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8805",title:"Toll-like Receptors",subtitle:null,isOpenForSubmission:!1,hash:"ae025ebfc36fd7ebbe1cd53ea11c4dc1",slug:"toll-like-receptors",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/8805.jpg",editedByType:"Edited by",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8852",title:"Chemistry and Applications of Benzimidazole and its Derivatives",subtitle:null,isOpenForSubmission:!1,hash:"e95984a2b87df5a7ca051cb3345d5e7a",slug:"chemistry-and-applications-of-benzimidazole-and-its-derivatives",bookSignature:"Maria Marinescu",coverURL:"https://cdn.intechopen.com/books/images_new/8852.jpg",editedByType:"Edited by",editors:[{id:"250975",title:"Ph.D.",name:"Maria",middleName:null,surname:"Marinescu",slug:"maria-marinescu",fullName:"Maria Marinescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6914",title:"Proteomics Technologies and Applications",subtitle:null,isOpenForSubmission:!1,hash:"a38a096c9acaf7cad951db42497b23ac",slug:"proteomics-technologies-and-applications",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/6914.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Dr.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5935",title:"Solubility of Polysaccharides",subtitle:null,isOpenForSubmission:!1,hash:"f2e1999c512e400b58f4065789d080ee",slug:"solubility-of-polysaccharides",bookSignature:"Zhenbo Xu",coverURL:"https://cdn.intechopen.com/books/images_new/5935.jpg",editedByType:"Edited by",editors:[{id:"176645",title:"Dr.",name:"Zhenbo",middleName:null,surname:"Xu",slug:"zhenbo-xu",fullName:"Zhenbo Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5855",title:"Protein Phosphorylation",subtitle:null,isOpenForSubmission:!1,hash:"c5f88bc57e9b8606807624451a48a5a1",slug:"protein-phosphorylation",bookSignature:"Claude Prigent",coverURL:"https://cdn.intechopen.com/books/images_new/5855.jpg",editedByType:"Edited by",editors:[{id:"98783",title:"Dr.",name:"Claude",middleName:null,surname:"Prigent",slug:"claude-prigent",fullName:"Claude Prigent"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5843",title:"Quantitative Structure-activity Relationship",subtitle:null,isOpenForSubmission:!1,hash:"009d82593f285d019aaecb2670da39cf",slug:"quantitative-structure-activity-relationship",bookSignature:"Fatma Kandemirli",coverURL:"https://cdn.intechopen.com/books/images_new/5843.jpg",editedByType:"Edited by",editors:[{id:"104919",title:null,name:"Fatma",middleName:null,surname:"Kandemirli",slug:"fatma-kandemirli",fullName:"Fatma Kandemirli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5945",title:"Amino Acid",subtitle:"New Insights and Roles in Plant and Animal",isOpenForSubmission:!1,hash:"b7d91fed8804240b70bcc3e803f3b73a",slug:"amino-acid-new-insights-and-roles-in-plant-and-animal",bookSignature:"Toshiki Asao and Md. Asaduzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/5945.jpg",editedByType:"Edited by",editors:[{id:"106510",title:"Dr.",name:"Toshiki",middleName:null,surname:"Asao",slug:"toshiki-asao",fullName:"Toshiki Asao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5769",title:"Fatty Acids",subtitle:null,isOpenForSubmission:!1,hash:"026ff00026816b4cca7116ca6e1e7fbd",slug:"fatty-acids",bookSignature:"Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/5769.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5797",title:"Carotenoids",subtitle:null,isOpenForSubmission:!1,hash:"95f1843c0526c96e4aa0be620d8db749",slug:"carotenoids",bookSignature:"Dragan J. Cvetkovic and Goran S. Nikolic",coverURL:"https://cdn.intechopen.com/books/images_new/5797.jpg",editedByType:"Edited by",editors:[{id:"195521",title:"Prof.",name:"Dragan",middleName:"J.",surname:"Cvetkovic",slug:"dragan-cvetkovic",fullName:"Dragan Cvetkovic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5836",title:"Bisphenol A",subtitle:"Exposure and Health Risks",isOpenForSubmission:!1,hash:"446599b9e5cf929537d445edc546c449",slug:"bisphenol-a-exposure-and-health-risks",bookSignature:"Pinar Erkekoglu and Belma Kocer-Gumusel",coverURL:"https://cdn.intechopen.com/books/images_new/5836.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5497",title:"Nitric Oxide Synthase",subtitle:"Simple Enzyme-Complex Roles",isOpenForSubmission:!1,hash:"be2bf109fabe37c7514acc5712b9995b",slug:"nitric-oxide-synthase-simple-enzyme-complex-roles",bookSignature:"Seyed Soheil Saeedi Saravi",coverURL:"https://cdn.intechopen.com/books/images_new/5497.jpg",editedByType:"Edited by",editors:[{id:"14680",title:"Dr.",name:"Seyed Soheil",middleName:null,surname:"Saeedi Saravi",slug:"seyed-soheil-saeedi-saravi",fullName:"Seyed Soheil Saeedi Saravi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5507",title:"Current Topics in Lactation",subtitle:null,isOpenForSubmission:!1,hash:"ac8a108f23ad313d4ea64202d68c7502",slug:"current-topics-in-lactation",bookSignature:"Isabel Gigli",coverURL:"https://cdn.intechopen.com/books/images_new/5507.jpg",editedByType:"Edited by",editors:[{id:"175679",title:"Dr.",name:"Isabel",middleName:null,surname:"Gigli",slug:"isabel-gigli",fullName:"Isabel Gigli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:43,mostCitedChapters:[{id:"38477",doi:"10.5772/45943",title:"Lipid Peroxidation: Chemical Mechanism, Biological Implications and Analytical Determination",slug:"lipid-peroxidation-chemical-mechanism-biological-implications-and-analytical-determination",totalDownloads:12115,totalCrossrefCites:53,totalDimensionsCites:161,book:{slug:"lipid-peroxidation",title:"Lipid Peroxidation",fullTitle:"Lipid Peroxidation"},signatures:"Marisa Repetto, Jimena Semprine and Alberto Boveris",authors:[{id:"36452",title:"Dr.",name:"Marisa",middleName:"Gabriela",surname:"Repetto",slug:"marisa-repetto",fullName:"Marisa Repetto"}]},{id:"40938",doi:"10.5772/48294",title:"Dehydrogenase Activity in the Soil Environment",slug:"dehydrogenase-activity-in-the-soil-environment",totalDownloads:6010,totalCrossrefCites:49,totalDimensionsCites:124,book:{slug:"dehydrogenases",title:"Dehydrogenases",fullTitle:"Dehydrogenases"},signatures:"Agnieszka Wolińska and Zofia Stępniewska",authors:[{id:"141696",title:"Dr.",name:"Agnieszka",middleName:"Maria",surname:"Wolinska",slug:"agnieszka-wolinska",fullName:"Agnieszka Wolinska"}]},{id:"41116",doi:"10.5772/51572",title:"Algal Polysaccharides, Novel Applications and Outlook",slug:"algal-polysaccharides-novel-applications-and-outlook",totalDownloads:13455,totalCrossrefCites:50,totalDimensionsCites:122,book:{slug:"carbohydrates-comprehensive-studies-on-glycobiology-and-glycotechnology",title:"Carbohydrates",fullTitle:"Carbohydrates - Comprehensive Studies on Glycobiology and Glycotechnology"},signatures:"Stefan Kraan",authors:[{id:"142720",title:"Dr.",name:"Stefan",middleName:null,surname:"Kraan",slug:"stefan-kraan",fullName:"Stefan Kraan"}]}],mostDownloadedChaptersLast30Days:[{id:"67051",title:"2D Gel Electrophoresis to Address Biological Issues",slug:"2d-gel-electrophoresis-to-address-biological-issues",totalDownloads:672,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proteomics-technologies-and-applications",title:"Proteomics Technologies and Applications",fullTitle:"Proteomics Technologies and Applications"},signatures:"Domenica Scumaci and Giovanni Cuda",authors:null},{id:"50574",title:"Bioinformatics for RNA‐Seq Data Analysis",slug:"bioinformatics-for-rna-seq-data-analysis",totalDownloads:3789,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"bioinformatics-updated-features-and-applications",title:"Bioinformatics",fullTitle:"Bioinformatics - Updated Features and Applications"},signatures:"Shanrong Zhao, Baohong Zhang, Ying Zhang, William Gordon,\nSarah Du, Theresa Paradis, Michael Vincent and David von Schack",authors:[{id:"176364",title:"Dr.",name:"Shanrong",middleName:null,surname:"Zhao",slug:"shanrong-zhao",fullName:"Shanrong Zhao"}]},{id:"54169",title:"Importance of Fatty Acids in Physiopathology of Human Body",slug:"importance-of-fatty-acids-in-physiopathology-of-human-body",totalDownloads:3634,totalCrossrefCites:12,totalDimensionsCites:23,book:{slug:"fatty-acids",title:"Fatty Acids",fullTitle:"Fatty Acids"},signatures:"Katalin Nagy and Ioana-Daria Tiuca",authors:[{id:"178879",title:"Ph.D.",name:"Ioana",middleName:null,surname:"Gug",slug:"ioana-gug",fullName:"Ioana Gug"},{id:"204524",title:"Ms.",name:"Katalin",middleName:null,surname:"Nagy",slug:"katalin-nagy",fullName:"Katalin Nagy"}]},{id:"50934",title:"Bioinformatics: Basics, Development, and Future",slug:"bioinformatics-basics-development-and-future",totalDownloads:4377,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"bioinformatics-updated-features-and-applications",title:"Bioinformatics",fullTitle:"Bioinformatics - Updated Features and Applications"},signatures:"Ibrokhim Y. Abdurakhmonov",authors:[{id:"213344",title:"Dr.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}]},{id:"57402",title:"Solubility of Chitin: Solvents, Solution Behaviors and Their Related Mechanisms",slug:"solubility-of-chitin-solvents-solution-behaviors-and-their-related-mechanisms",totalDownloads:3495,totalCrossrefCites:18,totalDimensionsCites:35,book:{slug:"solubility-of-polysaccharides",title:"Solubility of Polysaccharides",fullTitle:"Solubility of Polysaccharides"},signatures:"Jagadish C. Roy, Fabien Salaün, Stéphane Giraud, Ada Ferri",authors:[{id:"27644",title:"Prof.",name:"Fabien",middleName:null,surname:"Salaün",slug:"fabien-salaun",fullName:"Fabien Salaün"},{id:"150004",title:"Prof.",name:"Yan",middleName:null,surname:"Chen",slug:"yan-chen",fullName:"Yan Chen"},{id:"189338",title:"Prof.",name:"Ada",middleName:null,surname:"Ferri",slug:"ada-ferri",fullName:"Ada Ferri"},{id:"189339",title:"Dr.",name:"Stéphane",middleName:null,surname:"Giraud",slug:"stephane-giraud",fullName:"Stéphane Giraud"},{id:"189340",title:"M.Sc.",name:"Jagadish",middleName:"Chandra",surname:"Roy",slug:"jagadish-roy",fullName:"Jagadish Roy"},{id:"218812",title:"Prof.",name:"Guan",middleName:null,surname:"Jinping",slug:"guan-jinping",fullName:"Guan Jinping"}]},{id:"57644",title:"Polysaccharides: Structure and Solubility",slug:"polysaccharides-structure-and-solubility",totalDownloads:3130,totalCrossrefCites:13,totalDimensionsCites:43,book:{slug:"solubility-of-polysaccharides",title:"Solubility of Polysaccharides",fullTitle:"Solubility of Polysaccharides"},signatures:"Mark Q. Guo, Xinzhong Hu, Changlu Wang and Lianzhong Ai",authors:[{id:"202384",title:"Dr.",name:"Qingbin",middleName:null,surname:"Guo",slug:"qingbin-guo",fullName:"Qingbin Guo"},{id:"203883",title:"Dr.",name:"Changlu",middleName:null,surname:"Wang",slug:"changlu-wang",fullName:"Changlu Wang"},{id:"203884",title:"Prof.",name:"Xinzhong",middleName:null,surname:"Hu",slug:"xinzhong-hu",fullName:"Xinzhong Hu"}]},{id:"40938",title:"Dehydrogenase Activity in the Soil Environment",slug:"dehydrogenase-activity-in-the-soil-environment",totalDownloads:6016,totalCrossrefCites:49,totalDimensionsCites:124,book:{slug:"dehydrogenases",title:"Dehydrogenases",fullTitle:"Dehydrogenases"},signatures:"Agnieszka Wolińska and Zofia Stępniewska",authors:[{id:"141696",title:"Dr.",name:"Agnieszka",middleName:"Maria",surname:"Wolinska",slug:"agnieszka-wolinska",fullName:"Agnieszka Wolinska"}]},{id:"52975",title:"Site‐Directed Mutagenesis by Polymerase Chain Reaction",slug:"site-directed-mutagenesis-by-polymerase-chain-reaction",totalDownloads:3541,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"polymerase-chain-reaction-for-biomedical-applications",title:"Polymerase Chain Reaction for Biomedical Applications",fullTitle:"Polymerase Chain Reaction for Biomedical Applications"},signatures:"Fabiola Castorena‐Torres, Katia Peñuelas‐Urquides and Mario\nBermúdez de León",authors:[{id:"188810",title:"Dr.",name:"Mario",middleName:null,surname:"Bermúdez De León",slug:"mario-bermudez-de-leon",fullName:"Mario Bermúdez De León"},{id:"188821",title:"Dr.",name:"Fabiola",middleName:null,surname:"Castorena Torres",slug:"fabiola-castorena-torres",fullName:"Fabiola Castorena Torres"},{id:"198351",title:"Dr.",name:"Katia",middleName:null,surname:"Peñuelas Urquides",slug:"katia-penuelas-urquides",fullName:"Katia Peñuelas Urquides"}]},{id:"53176",title:"Guidelines for Successful Quantitative Gene Expression in Real- Time qPCR Assays",slug:"guidelines-for-successful-quantitative-gene-expression-in-real-time-qpcr-assays",totalDownloads:2576,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"polymerase-chain-reaction-for-biomedical-applications",title:"Polymerase Chain Reaction for Biomedical Applications",fullTitle:"Polymerase Chain Reaction for Biomedical Applications"},signatures:"Antônio José Rocha, Rafael de Souza Miranda, Antônio Juscelino\nSudário Sousa and André Luis Coelho da Silva",authors:[{id:"188806",title:"Dr.",name:"Antônio",middleName:"José",surname:"Rocha",slug:"antonio-rocha",fullName:"Antônio Rocha"}]},{id:"55436",title:"Therapeutic Uses of Amino Acids",slug:"therapeutic-uses-of-amino-acids",totalDownloads:1590,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"amino-acid-new-insights-and-roles-in-plant-and-animal",title:"Amino Acid",fullTitle:"Amino Acid - New Insights and Roles in Plant and Animal"},signatures:"Amraibure Odia and Oaikhena Zekeri Esezobor",authors:[{id:"201701",title:"Associate Prof.",name:"Amraibure",middleName:null,surname:"Odia",slug:"amraibure-odia",fullName:"Amraibure Odia"},{id:"201703",title:"MSc.",name:"Oaikhena Zekeri",middleName:null,surname:"Esezobor",slug:"oaikhena-zekeri-esezobor",fullName:"Oaikhena Zekeri Esezobor"}]}],onlineFirstChaptersFilter:{topicSlug:"biochemistry-genetics-and-molecular-biology-bioorganic-chemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/194370/koviljko-lovre",hash:"",query:{},params:{id:"194370",slug:"koviljko-lovre"},fullPath:"/profiles/194370/koviljko-lovre",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()