Papers reporting myogenic induction without transgenes from hPSCs [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38].
\r\n\t[2] J. V. Moloney, A. C. Newell. Nonlinear Optics. Westview Press, Oxford, 2004.
\r\n\t[3] M. Kauranen, A. V. Zayats. Nonlinear Plasmonics. Nature Photonics, vol. 6, 2012, pp. 737-748.
\r\n\t[4] P. Dombi, Z. Pápa, J. Vogelsang et al. Strong-field nano-optics. Reviews of Modern Physics, vol. 92, 2020, pp. 025003-1 – 025003-66.
\r\n\t[5] N. C. Panoiu, W. E. I. Sha, D.Y. Lei, G.-C. Li. Nonlinear optics in plasmonic nanostructures. Journal of Optics, 20, 2018, pp. 1-36.
\r\n\t[6] A. Krasnok, A. Alu. Active nanophotonics. Proceedings of IEEE, vol. 108, 2020, pp. 628-654.
\r\n\t[7] M. Lapine, I.V. Shadrivov, Yu. S. Kivshar. Colloquium: Nonlinear metamaterials. Reviews of Modern Physics, vol. 86, 2014, pp. 1093-1123.
\r\n\t[8] Iam Choon Khoo. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Progress in Quantum Electronics, vol. 38, 2014, pp. 77- 117.
\r\n\t
When injured, skeletal muscle regenerates by activation and proliferation of its own stem cells: muscle satellite cells. Therefore, muscle satellite cells were expected to be a cell source for cell therapy for devastating muscular dystrophies. However, clinical trials in the 1990s were unsuccessful [1], possibly because myoblasts that had been expanded in vitro lost the high ability to fuse with the host’s injured myofibers, indicating that improvement of muscle function requires a large quantity of myogenic progenitors with regenerative potential. Human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) [2] have almost unlimited proliferative potential and the ability to differentiate into the skeletal muscle lineage (reviewed in [3, 4]). Therefore, they are a promising source of new cells for cell therapy of muscle diseases such as muscular dystrophy (DMD). They are also useful for biological and physiological studies of human skeletal muscle.
\nDisease-specific hiPS cells are generated from patients’ somatic cells (usually blood cells or skin fibroblasts) with almost the same efficiency and quality as cells from healthy donors [5]. Therefore, disease-specific-induced pluripotent stem (iPS) cells are being widely used to study the molecular mechanisms of these diseases and to screen potential drugs. As a method to directly derive skeletal muscle cells from hPSCs, MyoD-mediated reprogramming was established and is widely used. MyoD induces muscle cells in a relatively short period with high efficiency. In this chapter, we review the literature on derivation of skeletal muscle from human PSCs and discuss the next steps toward clinical applications. In the last part, we review the recent reports on successful disease modeling in vitro using patient iPS cells and discuss future directions.
\nMuscle satellite cells were first identified by electron microscopy as a mononuclear cell between myofibers and the basal lamina and named by Mauro in 1961 [6]. Later, muscle satellite cells were shown to be skeletal muscle-specific stem cells in postnatal muscle [7]. Muscle satellite cells are activated upon muscle injury, proliferate as myoblasts, and fuse with each other or with regenerating myofibers to repair damaged muscle [8]. In 1989, Partridge et al. reported successful recovery of dystrophin expression in dystrophin-deficient mdx mice after direct injection of wild-type myoblasts [9]. Based on this finding, myoblast transfer therapy was performed on DMD patients in several hospitals. Unfortunately, the clinical trials failed to recover the muscle function of these patients. The majority of injected cells seemed to be lost within 48 h [1]. The results were unexpected at that time because endogenous muscle satellite cells themselves have high regenerative activity in situ and repair damaged muscle quickly. Later, researchers started to search for multipotent stem cells, which can be delivered systemically, engraft in muscle, and differentiate into myofibers. One of these cells is the mesoangioblalst, which showed an amazing ability to recover dystrophin expression in the muscles of dystrophic dogs after intra-arterial injection [10]. Mesenshymal stem/progenitor cells (MSC/MPC) are also expected to be a tool for regenerative medicine. They themselves do not differentiate into myofibers, but support muscle regeneration by paracrine effects [11]. The history of direct reprogramming in the muscle field is long, starting with the discovery of MyoD by Weintraub and his colleagues [12, 13]. MyoD powerfully converts non-muscle cells to skeletal muscle cells, but it is difficult to induce Pax7+ myogenic progenitors using MyoD alone. Recently Ito et al. reported that a combination of transcription factors (Pax3, Mef2b, and Pitx1 or Pax7, Mef2b, and Pitx1 for embryonic fibroblasts, and Pax7, Mef2b plus MyoD for adult fibroblasts) successfully induced transplantable myogenic progenitors from mouse fibroblasts [14]. Whether the same set of reprogramming factors can induce myogenic progenitors from human fibroblasts remains to be seen. Human iPS cells are relative newcomers in the muscle stem cell field. hiPSCs are pluripotent stem cells with almost equivalent properties to human ES cells, but can be derived from somatic cells such as skin fibroblasts [2]. Successful derivation of muscle cells from hiPS cells opened a new era of regenerative medicine for muscular dystrophies (Figure 1).
\nHistory of research on muscle stem cells and cell therapy for muscular dystrophies [2, 6, 10, 15, 16, 17, 18].
Muscle satellite cells were identified and named by Mauro in 1961 [6]. Direct reprogramming was reported for the first time in the skeletal muscle field in 1987 [15], but MyoD alone cannot induce myogenic progenitors. After a surprising report of BM-derived myogenic cells by Ferrari in 1998 [16], researchers looked for multipotent stem cells that can be delivered via the circulation. MSCs are modulators of muscle regeneration and widely used in regenerative medicine. Human iPS cells are a relative newcomer in the muscle stem cell field.
\nMyoD: Weintraub and colleagues showed that overexpression of MyoD, a muscle-specific basic helix-loop-helix transcription factor, converted non-myogenic cells to muscle cells [13]. In 2014, Abujarour et al. reported efficient conversion of hiPSCs into muscle cells using a lentiviral vector-mediated doxycycline (DOX)-inducible MyoD overexpression system [19]. Sakurai and his colleagues used a PiggyBac transposon system to overexpress DOX-inducible MyoD in hiPSCs [20]. Importantly, the induced myotubes contracted on electrical stimulation [20]. MyoD induces skeletal muscle cells in a short period with high efficiency, but it cannot induce PAX7(+) myogenic progenitors. MyoD-induced skeletal muscle is now widely used for in vitro modeling of inherited muscle diseases.
\nDarabi et al. [21] reported derivation of engraftable muscle progenitors from hiPSCs by using a lentiviral vector encoding DOX-inducible PAX7. PAX7 expression was induced transiently in differentiating cells in a monolayer culture after a 7-day embryoid body (EB) culture [21]. Pax7-expressing GFP-positive cells purified by fluorescence-activated cell sorting (FACS) were then transplanted into the skeletal muscle of immune-deficient dystrophin-deficient mice, NSG-mdx4Cv, and improved the muscle function of the mice. Whether myogenic cells induced by overexpression of Pax7 are suitable for cell transplantation therapy remains to be determined because transgenes have a risk of tumor formation. As far as the integration sites of the expression units in the genome and the expression of PAX7 are strictly regulated, myogenic progenitors expanded by PAX7 successfully regenerated damaged muscle of patients [22].
\nThe majority of stepwise muscle induction protocols recently reported for human ESCs/iPSCs utilize a GSK3b inhibitor in common, myogenic growth factors (HGF, IGF-1, bFGF, EGF, etc.), and a serum-free medium (Table 1; [3]). For example, Chal et al. treated hiPS cells with CHIR-99021, which activates Wnt signaling, and LDN-193189, which prevents hiPSCs from differentiation into lateral mesoderm and induces differentiation into paraxial mesoderm. Treatment with these molecules of hESC cultures induced myogenin(+) myogenic cells with 25–30% efficiencies [34, 36, 39].
\nEB culture and sphere culture are often used to induce muscle progenitor cells (Table 1). Hosoyama et al. reported that hESCs/hiPSCs cultured as floating cell aggregates (termed EZ spheres) in a medium developed for neural stem cells supplemented with bFGF and EGF efficiently differentiated into myogenic cells. After a 6-week floating culture, 40–50% of cells expressed PAX7, MyoD or myogenin [32]. Because dissociation of sphere cells into single cells during the induction process drastically reduces myogenic activity, direct cell-cell interaction might be essential for commitment of hPSCs to the skeletal muscle lineage.
\nThe extra-cellular matrix (ECM) is an interactive environment having, apart from its simple role as a mechanical support or physical barrier, a role in signaling and providing a niche for the stem cell [40].
\nCollagens, laminins, fibronectin, or Matrigel have been used for in vitro studies in order to mimic the ECM of muscle cells in 2D or 3D culture systems because ECM is indispensable for skeletal muscle development [41]. Interestingly, native ECM obtained by decellularization of skeletal muscle stimulated muscle differentiation and a more rapid cell organization compared to single matrix glycoprotein culture [42], indicating again that ECM has functions in myogenesis. The use of a 3D fibrin-based hydrogel culture after production of myogenic cells with transient overexpression of Pax7 was recently reported to generate functional biomimetic skeletal muscle tissues from hiPSC-derived paraxial mesoderm cells for the first time [43].
\nThe stiffness of the microenvironment has also been reported to regulate differentiation of myogenic cells [44, 45]. More precisely, in an in vitro context, 12 kPa stiffness was shown to give optimal results for muscle stem cells, compared to the harsh 106 kPa stiffness of a regular polystyrene plastic culture dish [45]. The impact of stiffness can be partially explained by the activation of pathways such as N-RAP, FAK, or PKC [44].
\nSome studies showed improvement of myoblast migration and differentiation through MMP-1 treatment [46], migration with MMP-13 [47], and fusion through MMP-7 overexpression [48], suggesting the importance of remodeling of the ECM for migration and differentiation of myogenic cells even in vitro.
\nThe interaction between myogenic cells and non-myogenic cells in muscle tissue may influence myogenesis either by interacting directly or by secretion of paracrine factors (Figure 2). Motor neurons were used to form neuro-muscular junctions [49] and further adapted to a 3D culture system [50]. The presence of motor neurons had positive effects on myotube maturation [50]. Co-culture with mesenchymal stem cells (MSCs) significantly enhanced the proliferation of muscle cells [51]. Co-culture of fibroblasts with myoblasts improved the alignment of the formed myotubes, but reduced differentiation [52]. Another paper, however, reported that the myoblasts formed longer, thicker myotubes with a mature phenotype in the presence of fibroblast-conditioning media, compared with control media [53].
\nSummary of environmental inputs that promote differentiation of muscle cells.
Exosomes are major tools of cross talk between cells throughout the body and miRNAs are one of the elements they transport. Some miRNAs, such as miR-206, have been identified as promoters of skeletal muscle development and differentiation [54]. Therefore, miRNA-mediated induction of skeletal muscle from human iPSCs is a topic of great interest.
\nElectrical: Another aspect of the muscle cell environment is the stimulation they are subjected to during the final steps of myogenesis. Exercise has been shown to have a great impact on muscle growth and differentiation in mice [55], and when electrically stimulated in vitro, C2C12 cells, a mouse myogenic cell line, showed similar responses to those of exercised skeletal muscle in vivo [56]. In the last couple of years, studies showed improvement of cardiac muscle differentiation of hiPSC by using electrical stimulation [57, 58].
\nMechanical: Mechanical or stretch-relaxation stimulation has been shown to promote muscle growth and alignment in an electrical stimulus-independent manner [59]. Stretch-relaxation cycles have been shown to promote differentiation, muscle growth, fibers alignment, and overall organization [59, 60, 61]. Whether mechanical stimulation improves muscle induction from human iPS cells and their maturation remains to be determined even though results using cardiomyocytes are encouraging [58].
\nBy mimicking the muscle microenvironment, it might be possible to increase the overall quantity, quality, and functionality of skeletal muscle cells produced from hiPSC.
\nMost published protocols for muscle induction from human iPS cells generate a heterogenous cell population, including myogenic cells, undifferentiated cells, and non-myogenic cells. Non-myogenic cells are in many cases of neuronal lineage. Undifferentiated cells proliferate actively and form tumors in the host muscle. Therefore, purification of myogenic progenitors is an important step for clinical use. Purification of myogenic cells would also facilitate the study of molecular pathogenesis and drug screening. To enrich myogenic cells by FACS, several iPS cell lines where the expression cassette of fluorescent proteins are inserted in the locus of myogenic regulators such as PAX7 [62] or Myf5 [63]. Combinations of myogenic cell-specific surface markers to enrich myogenic cells are also reported, for example, CD56 and CD82 [64], or CXCR4 (CD184) and C-MET [31]. We identified CD271 (NGFR) as a myogenic marker (submitted). M-cadherin antibody is also useful when the cells are dissociated into single cells by non-enzymatic treatment. Recently, Hicks et al. [38] identified ERBB3 (HER3) as a cell surface marker that enriches transplantable hiPSC-derived myogenic cells. To exclude neurogenic cells, CD57(HNK-1) is useful [31].
\nCell source: Although cell therapy is a promising therapeutic approach to DMD and other muscular dystrophies, myoblast transfer therapy (MTT) in the early 90s failed to improve muscle function of DMD patients, possibly due to expansion of satellite cells in vitro. It was proposed that expansion of myoblasts in culture dishes reduced the regenerative activity of the injected cells. Incomplete immune suppression was also suggested as a cause of unsuccessful transplantation [1]. Because human iPSCs are highly proliferative, it might be possible to derive engraftable myogenic progenitors from hiPSCs on a large scale. iPSC-based cell therapy also allows the use of the patient’s own cells (autologous cell transplantation) to avoid an immune response against engrafted cells. However, it takes a long time and is expensive to custom-make iPSCs from each patient and correct the disease-causing gene mutation. To solve this problem, HLA-homozygous donor-iPSC stocks are now being prepared (e.g.,
Tumorigenicity: A major concern of the use of hiPSCs for cell therapy is the tumorigenicity of hiPSC-derived cells. Tumor-forming cells could be roughly divided into two categories: residual undifferentiated cells and transformed cells. For undifferentiated iPS cells, purification of the differentiated cells with lineage-specific markers and elimination of undifferentiated cells using iPS markers would be effective. To avoid transformed cells, integration of the transgenes used for reprogramming into the genome should be carefully ruled out. Checking the integrity of the whole genome of parental iPS cells using genome-wide sequencing might be necessary. Prolonged culture of iPS cells should be avoided because long-term culture causes genomic abnormalities. Some groups propose, as a final line of defense, the use of a specific hiPSC line containing a HSV-tk gene [65] or an inducible Caspase-9 gene as a suicide gene, which would allow eradication of hiPSC-derived tumors in vivo after transplantation [66, 67, 68, 69].
\nQuality control: For clinical use, (1) stable induction of myogenic progenitors in large quantity, (2) reduction of culture period and cost, and (3) establishment of a reliable system to monitor the quality and safety of the cells are all required. The monitoring system is especially important, because the cells change their properties during culture and it is difficult to keep the myogenic potential of the FACS-sorted cells high during culture.
\nDuring the past decades, researchers have generated numerous mouse models, such as knock-out mice to analyze the pathogenesis of muscle diseases. However, mouse models often fail to reproduce the phenotypes of patients. For example, dystrophic mdx mice, which carry a DMD-type mutation in the dystrophin gene, exhibit much milder dystrophic phenotypes than DMD patients. It also has happened that drugs proven to be effective in a mouse model have much less effect in human patients. This is why human iPS cells are expected to become a tool for disease modeling.
\nThese days, iPSCs from many kinds of muscular diseases have been established. For example, Abujarour et al. generated iPSC lines from patients with DMD or Becker muscular dystrophies (BMD) [19]. Shoji et al. established DMD-iPSCs and reported abnormal calcium ion influx in DMD myotubes. Importantly, dystrophin expression was restored to DMD myotubes by an exon-skipping technique, and the calcium ion overflow was suppressed [70]. Choi et al. [71] reported that DMD-iPS cells showed aberrant expression of inflammation or immune-response genes and collagen genes, increased BMP/TGFβ signaling, and reduced fusion competence. Tanaka et al. [20] established iPSC lines from patients with Miyoshi myopathy. Patient-iPSC-derived myotubes showed defective membrane repair, and the authors rescued the phenotype by expression of full-length DYSFERLIN. Snider et al. [72] showed the expression of full length DUX4 in embryoid bodies from iPSCs with facioscapulohumeral dystrophy (FSHD). Caron et al. reported that FSHD1 myotubes were thinner, and the genes involved in cell cycle control, oxidative stress response, and cell adhesion were differentially regulated [37]. Du et al. and Ueki et al. [73, 74] reported that the CTG-CAG triplet repeats were expanded by passaging iPSCs derived from myotonic dystrophy type1 (DM1) patients. Yoshida et al. [75] generated iPSCs from a patient with infantile-onset Pompe disease that showed lysosomal glycogen accumulation, which was dose-dependently rescued by rhGAA.
\nThese successful in vitro disease modelings using patient-iPSCs are encouraging and would be useful for screening new drugs. Because hiPSCs have unlimited proliferative potential, one can perform experiments repeatedly and screen potential drugs extensively even if it is a rare disease. It should be, however, also recognized that skeletal muscle cells derived from hPSCs are much more immature in gene expression, morphology, and function than real myofibers in the body. Therefore, to what extent patient-derived iPSCs can reproduce a disease phenotype in vitro is important. In addition, there are variations in differentiation propensity among hiPS cell lines [76], and it is important to confirm the reproducibility of the results. Patient-iPS cells whose mutated genes were corrected by genome-editing technique [77] would serve as good controls and help to validate the findings.
\nSkeletal muscle can be induced from hPSCs by direct reprogramming or a stepwise differentiation method. Disease modeling using patient-derived iPSCs is now widely used to elucidate disease mechanisms and to screen for drugs. For successful disease modeling, it is important to induce mature myofibers. For cell-based therapy, the protocols for induction of myogenic progenitors from hiPS cells and their purification have been almost completely established. However, to eliminate the risk of tumor formation by engrafted cells, more study is needed.
\nThis study is supported by (1) Research Funds for “Development of cell transplantation methods for refractory muscle diseases” (Projects for Technological Development) and “Research on refractory musculoskeletal diseases using disease-specific induced pluripotent stem (iPS) cells” from the Research Center Network for Realization of Regenerative Medicine, Japan Science and Technology Agency (JST), and Japan Agency for Medical Research and Development (AMED), (2) Grants-in-aid for Scientific Research (C) (16 K08725, 24590497) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan and (3) Intramural Research Grants (24-9, 25-5, 27-7, and 28-6) for Neurological and Psychiatric Disorders of NCNP.
\nThe authors declare that they have no conflicts of interest.
We thank Ms. Motoko Shimizu for supporting our research.
The knowledge of medicinal plants extends to any part of the world where man has traditionally needed them to cure his illnesses. Thus, a mixture of magic and religion, combined with necessity and chance, trial and error, the passage of different cultures has created a whole knowledge of plant remedies that has been the basis of modern medicine [1]. However, many studies have been performed to test if they are truly effective and, as a result of these studies, the therapeutic use of many medicinal plants as substitutes for pharmaceutical medicines has been applied successfully to cure or relieve diseases [2].
\nAccording to the WHO, herbal medicines include herbs, herbal material, preparations, and herbal products, which contain as active ingredients parts of plants or other plant materials, and their use is well established and widely recognized as safe and effective [3].
\nIt has been shown in studies and reviews that medicinal plants have various properties that cure, for example, anticancer and antiviral activities [4], antidiabetic properties [5], anti-dengue activities [6], infertility problems [7], contusion and swelling, plants that improves learning and retrieval processes, and facilitates memory retention, to treat Alzheimer disease, hepatitis, significant anesthetic activity, antiarrhythmic action and even anti-obesity [8, 9, 10, 11].
\nIn this work, three medicinal plants were selected, which for many years have been considered important because of the amount of medicinal properties they possess and because the literature has corroborated their effectiveness in various treatments.
\nOne of the most used plants for medical purposes in the world is Annona (Annona muricata L.) which is a comestible tropical fruit widely cultivated through the world [12]. The roots of these species are used for their antiparasitic and pesticidal properties. Intensive chemical investigations of the leaves and seeds of this plant have resulted in the isolation of a great number of bioactive compounds which were found to display interesting biological including antitumor, anticancer, antiparasitic and pesticidal properties [13, 14]. Literature revealed that Annona fruit extracts possess antioxidant properties and were able to inhibit enzymes relevant to type-2 diabetes and hypertension [15].
\nOn the other hand, also, Moringa oleifera, native to India, is fully utilized for its high nutritive values. The leaves have many minerals and vitamins and are utilized to treat malnutrition, to increase breast milk production in women, and as a powerful antioxidant, anticancer, anti-inflammatory, antidiabetic, and antimicrobial agent. There is literature that provides relaxing inducing properties [16, 17, 18, 19].
\nFinally, Cymbopogon. It is native to Asia and grows in tropical and subtropical regions [19]. There are many medicinal uses of Cymbopogon because it has many functional properties. The leaves and the essential oil are consumed to help with dyspeptic disorders, colds, nervous conditions, and exhaustion. It was found that they have a potential anticarcinogenic action [20] and antimicrobial, sedative, spasmolytic, and carminative effects. It has also been shown to have antifungal, anti-inflammatory, antimutagenic, antimalarial, antinociceptive, antibacterial, and cholesterol reduction effects [21, 22, 23, 24, 25, 26].
\nThe preparation of medicinal plants depending on its use, is very important to reach the maximum potential action in the human body, but the most frequently performed preparation is drying the leaves and using them in teas or distilling them to produce essential oils.
\nDrying is fundamentally defined the elimination of the majority of plant moisture content, permitting the prevention of enzymatic and microbial activity and therefore preserving the product for extended shelf life. Moreover, the properties of medicinal plants are determined by their moisture content. Mostly of its preparation needs the elimination of water. Consequently, adequate dryers are very important, including control of temperature, velocity, and humidity values, and in many cases, direct solar radiation is forbidden to provide a rapid reduction in the moisture content without affecting the quality of medicinal plants. Drying process aids the marketing of plants, because drying allows to improve the distribution of the plants since it reduces both the weight and the volume, reducing the transport and storage needs [27].
\nTherefore, in this work, an indirect solar dehydrator was designed, with which the plant is protected from its high sensitivity to high temperatures and solar radiation.
\nIn this study, an indirect solar dryer type tunnel with solar technology hybridization was constructed (\nFigure 1\n): This dryer is hermetically sealed and is composed of three front sections. Each section contains two trays with a metallic mesh to support the hot air flow evenly. Each tray has a separation of 20 cm, as shown in \nFigure 1a\n. The drying chamber is connected to a solar water heater by a hopper, which drives preheated air inside, supported by a heat exchanger. Additionally, the dryer has a solar air collector installed at the top. This collector contains a fan that extracts the ambient air through the interior and directs it, with an increase in temperature, to the interior of the drying chamber (\nFigure 1b\n). The solar dryer has a 1/2 hp. motor that extracts ambient air into the solar air collector and an electric pump that recirculates the water in the solar heater, both systems work with a 280 W solar panel. \nFigure 1c\n shows the indirect solar dryer in operation.
\nTunnel-type solar dryer: (a) main measurements and location of trays, (b) location of solar heater and solar air collector, (c) the indirect solar dryer in operation. Source: Own elaboration.
In order to ensure the reliability of the experimental results, different measuring equipment were used at the different stages of the experimentation; Boeco mark food moisture measurement scale, model BMA150, with an accuracy of ±1 mg (0.001%) was used to determine the initial and final humidity of the leaves. The leaf sample of approximately 1.5 g was cut and placed in the analyzer. Water activity in the leaves under study was measured by a mark team Rotronic HygroPalm, with an accuracy of ±0.01% mg. The mean of three measurements was reported at a room temperature of 24.5 ± 1°C. The temperature and humidity inside the drying chambers were measured using a Brannan thermo-hygrometer with temperature and relative humidity accuracy of ±1°C and ± 3%, respectively. The weight of the samples was measured using a Boeco weighing scale, model BPS40plus, which have an accuracy of ±0.001 g.
\nThe weather parameters were monitored by the weather station located in the Faculty of Engineering of the Autonomous University of Campeche, which consists of a LI-COR Pyranometer, with which the global solar irradiance was measured; the accuracy is Azimuth: < ± 1% on 360° to 45° of elevation. The relative humidity, ambient temperature, and wind velocity and direction were measured by NG Systems mark equipment, model RH-5X (accuracy ±3%), 110S (accuracy ±1.1°C), Series #200P (accuracy ±3°), and P2546C-OPR (accuracy ±0.3 m/s), respectively.
\nIn this study, the kinetics of drying medicinal plants using an indirect solar dryer were analyzed experimentally to determine optimal operating conditions, evaluating the possibility of the integration of solar technologies in solar food drying. Samples of fresh leaves were cut from plantings on agricultural land, in the month of March 2019, in the city of Campeche, Campeche, Mexico. The experimental study was carried out from March 4 to April 26. The branches were cut, and the leaves were separated and selected to obtain a homogeneous group, based on maturity, color, freshness, and size. They were washed and weighed, and the width, length, and thickness were measured.
\nTo analyze the initial and final humidity in the plants, the leaf sample of approximately 1.5 g was cut and placed in the analyzer. Water activity (aw) is a parameter that determines the stability of the food with respect to the ambient humidity. It was measured for both fresh and dried leaves before and after the drying process using portable water activity meter.
\nThe plants that were selected for experimentation were Moringa oleifera, Annona muricata L., and Cymbopogon citratus. Moringa oleifera, is a plant that has generated great interest in recent years because of its attributed medicinal properties [28], contains more than 90 nutrients, different antioxidants, and all the 8 essential amino acids [29]. The main medicinal property of Cymbopogon Citratus is to be anti-inflammatory and antioxidant due to polyphenols, it contains, so it is used in cases of cancer and to combat arthritis among other properties [30].
\nFresh and dried leaves were placed on a flat surface, and the colorimeter was placed on the leaves to measure color values. For each sample, the measurements were replicated four times, obtaining in each measurement the values L * (luminance), a * (brownness), and b * (darkness) [31].
\nThe total color change (ΔE) was the parameter considered for the overall color difference evaluation, between a dried sample and the fresh leaf [32]:
\nIn order to observe the drying behavior of medicinal plants, the moisture ratio against the drying time was plotted. The dry-based moisture ratio during the drying process was calculated using the following equation [33]:
\nwhere \n
The experimental moisture-versus-time ratio was adjusted by nonlinear regression to nine thin-layer drying models (\nTable 1\n) for each drying kinetic of the medicinal plants. The criteria used to select the model that best fit the data experimental were the coefficient of determination (R2) and the root of the mean square error (RMSE), considering that values of R2 superior to 0.95 RMSE values below 0.06 indicate good fit [34]. In addition, a lower value of X2 is considered as indicative of better fit. The adjustment was solved for the calculation of the different parameters involved in the selected fit models using the DataFix software version 9.1.
\nModel name | \nModel equation | \nReference | \n
---|---|---|
Newton | \n\n\n | \n[35] | \n
Page | \n\n\n | \n[36] | \n
Modified page | \n\n\n | \n[37] | \n
Henderson and Pabis | \n\n\n | \n[38] | \n
Logarithmic | \n\n\n | \n[39] | \n
Two-term | \n\n\n | \n[40] | \n
Two-term exponential | \n\n\n | \n[41] | \n
Wang and Singh | \n\n\n | \n[42] | \n
Weibull | \n\n\n | \n[43] | \n
Mathematical models used to predict the drying kinetics of medicinal plants.
Source: Own elaboration.
Moisture tests were performed on fresh and dehydrated leaves; in all cases, the average initial humidity was 73.8%, the maximum readings were 79.58%, and the minimum readings were 68.2%. These readings agree with those reported in the literature (Banchero, Carballo, & Telesca, 2007). The initial average aw was 0.976, the minimum measured was 0.96, while the maximum was 0.98. The average final aw in all cases was 0.44, the minimum measured reading was 0.33, and the maximum was 0.58. The final aw values indicate that there is no possibility of microbial growth in the dehydrated product obtained [44].
\n\n\nFigure 2\n shows the change in the weather parameters during the test period with three sunny days. As can be seen, a maximum solar global irradiance of 952 W/m2 was achieved, with the average maximum values ranging between 874 and 962 W/m2. The average ambient temperature varied of 30°C y 35.7°C. On the other hand, the minimum RH (relative humidity) ranged between 44 and 46%; the maximum average on the test days ranged between 60 and 81%.
\nAverage solar irradiance, ambient temperature, and relative humidity. Source: Own elaboration.
\n\nFigure 3\n shows the temperatures inside the drying chamber, solar radiation, and the ambient temperature during the hours with the highest solar incidence on the selected day as an example. The drying chamber consists of three sections with similar temperatures. The highest temperature reaches 50.7°C.
\nSolar irradiance variation and temperature inside the drying chamber of the tunnel solar dryer. Source: Own elaboration.
The weight loss stabilized upon reaching this sample 3.9 g; the final drying time was 360 min. It can be seen in \nFigure 4\n that the moisture content started at 2.93 g water/g dry matter, ending between 0.201 and 0.256. \nFigure 5\n shows the moisture content as a function of the drying rate; in this case no constant rate period was observed. The highest drying rate was found with 0.012 g water/g dry matter minute.
\nWeight loss and moisture content depending on the drying time for Moringa oleifera leaves. Source: Own elaboration.
Drying rate as function of moisture content for a Moringa oleifera leaves. Source: Own elaboration.
In the case of Annona muricata leaves, the total drying time was 500 min, (\nFigure 6\n); the initial moisture content was 5.667 g water/g dry matter, reaching a final moisture content between 0.843 g water/g dry matter and 1.204 g water/g dry matter. Reaching a final drying rate between 0.643 g water/g matter dry minute and 1.024 g water/g matter dry minute, the final weight of the sample was 2.7 g (see \nFigure 7\n).
\nWeight loss and moisture content depending on the drying time for Annona muricata leaves. Source: Own elaboration.
Drying rate as function of moisture content for an Annona muricata leaves. Source: Own elaboration.
As can be seen in \nFigure 8\n, the drying kinetics of the Cymbopogon sample stabilized in 660 min. The initial moisture content was 5.66 g water/g dry matter. The final moisture content was between 0.421 and 0.435. \nFigure 9\n shows that the highest drying rate was 0.026 g water/g dry matter min.
\nWeight loss and moisture content depending on the drying time for Cymbopogon leaves. Source: Own elaboration.
Drying rate as function of moisture content for a Cymbopogon leaves. Source: Own elaboration.
Color is a primary characteristic perceived by the consumer of a product and plays an important role in food. The color of food is often an indication of the nutrients it contains. In addition, the color of a processed product is expected to be as similar as possible to fresh ones [45].
\n\n\nTable 2\n shows the values obtained from L*, a*, and b*, in the medicinal plants studied in fresh and dry.
\nValues obtained from L*, a*, b* (fresh and dried) in the medicinal plants studied.
Source: Own elaboration.
An insignificant variation in the parameters L*, a*, and b* obtained in the plants studied before and after the drying process can be seen in \nTable 2\n. This can be corroborated in \nFigure 10\n, in which ΔE is analyzed. The main reason for this color preservation is the protection against solar irradiation of the solar tunnel dryer, so dehydrated plants are kept more similar to fresh ones. For this reason, it is preferable to dry in a closed and controlled environment, which is consistent with studies of Helvaci et al. [46].
\nRelationship between final drying time and ΔE in dehydrated leaves. Source: Own elaboration.
It is important to note that in all cases the values of L*, a*, and b* decreased; this means that as the temperature increased (the three sections of the drying chamber reached up to 50.7°C). There was a tendency toward gray colors, a decrease in red colors (more brown), and an increase in yellow colors; these results agree with data reported by Bhardwaj et al. [47].
\nComputational simulation is performed by using of a free software called Energy2D [48]. Simulation consists of temperature dependence upon time at different zones. For the temperature evolution across time, thermal conduction and convection simulation mode was selected. For accurate results, also the thermal and optical properties of each material were chosen. The complete procedure of simulation can be found in Ref. [49]. In \nFigure 11\n, the thermal behavior of the dehydrator is shown and can be distinguished into three zones: left, middle, and right. Maximum reached values of temperature sensors, at the left, middle, and right zones were 45.2, 38.8, and 44.7°C, respectively, while its averages were about 41.4, 34.9, and 39.2°C, correspondingly. The temporal fluctuation of temperature is depicted in \nFigure 12\n.
\nThermal behavior simulation of the dehydrator. Source: Own elaboration.
Graph of thermal behavior simulation of the dehydrator. Source: Own elaboration.
The temperatures reached in the dryer with the hybridization of solar technologies remained stable during most of the day, with a variation between 45 and 50°C (\nFigures 3\n and \n12\n), which, as reported in the literature reviewed, are optimal to prevent the loss of important properties in vegetables and medicinal plants [46, 50].
\nThe drying kinetics obtained experimentally in the medicinal plants were adjusted using the nine drying models mentioned in \nTable 1\n. \nTable 3\n presents the model that best fit for each drying condition. These models had the highest R2\n values as shown in \nTable 2\n.
\nAnnona | \n||
---|---|---|
Model | \nCoefficients and fit parameter | \nValue | \n
Modified page | \nk | \n0.0116 | \n
n | \n0.5685 | \n|
\nR2\n\n | \n0.9941 | \n|
RMSE | \n0.0199 | \n|
\nX2\n\n | \n0.0005 | \n|
Cymbopogon | \n||
Model | \nCoefficients and fit parameter | \nValue | \n
Modified page | \nk | \n0.0369 | \n
n | \n0.7545 | \n|
\nR2\n\n | \n0.9988 | \n|
RMSE | \n0.0092 | \n|
\nX\n2\n | \n0.0001 | \n|
Moringa | \n||
Model | \nCoefficients and fit parameter | \nValue | \n
Page | \nk | \n0.0067 | \n
n | \n1.5616 | \n|
\nR2\n\n | \n0.9987 | \n|
RMSE | \n0.0119 | \n|
\nX2\n\n | \n0.0001 | \n
Results of regression analysis of the best adjusted models.
Source: Own elaboration.
Estimates of the statistical parameter for all experimental conditions showed that R2\n values ranged from 0.991 to 0.9988, indicating a good fit [34]. Therefore, these models adequately predict the selected plant drying kinetics. From the data, Modified Page model was the most suitable for describing drying processes of Annona and Cymbopogon drying conditions and Page for Moringa (see \nFigure 13\n).
\nExperimental versus mathematical model. Source: Own elaboration.
\nMoringa oleifera, Cymbopogon, and Annona muricata have antioxidant, anticancer, anti-inflammatory, antidiabetic, antimicrobial, and many more positive effects in the human body. The drying kinetics of this plants were analyzed using a constructed indirect solar dryer type tunnel. It was possible to obtain optimum temperatures for drying (45–50°C), and drying times were significantly reduced by keeping these temperatures constant for a longer time throughout the day.
\nThe quality of the plants at the end of drying was confirmed when obtaining average aw values of 4.4. The average final moisture content of the three medicinal plants varied between 0.8 and 1.5 g water/g dry matter. The moisture ratio was fitted to nine thin-layer drying mathematical models to select a suitable drying curve. The Modified Page and Page models showed the best fit to the experimental results. The time required to reach the equilibrium moisture content in all experiments varied between 250 and 350 min. The superior efficiency of the dryer allows a reduction of the important drying costs. This technology would allow agricultural producers to reduce costs while contributing to the improvement of the environment.
\nEdited by Jan Oxholm Gordeladze, ISBN 978-953-51-3020-8, Print ISBN 978-953-51-3019-2, 336 pages,
\nPublisher: IntechOpen
\nChapters published March 22, 2017 under CC BY 3.0 license
\nDOI: 10.5772/61430
\nEdited Volume
This book serves as a comprehensive survey of the impact of vitamin K2 on cellular functions and organ systems, indicating that vitamin K2 plays an important role in the differentiation/preservation of various cell phenotypes and as a stimulator and/or mediator of interorgan cross talk. Vitamin K2 binds to the transcription factor SXR/PXR, thus acting like a hormone (very much in the same manner as vitamin A and vitamin D). Therefore, vitamin K2 affects a multitude of organ systems, and it is reckoned to be one positive factor in bringing about "longevity" to the human body, e.g., supporting the functions/health of different organ systems, as well as correcting the functioning or even "curing" ailments striking several organs in our body.
\\n\\nChapter 1 Introductory Chapter: Vitamin K2 by Jan Oxholm Gordeladze
\\n\\nChapter 2 Vitamin K, SXR, and GGCX by Kotaro Azuma and Satoshi Inoue
\\n\\nChapter 3 Vitamin K2 Rich Food Products by Muhammad Yasin, Masood Sadiq Butt and Aurang Zeb
\\n\\nChapter 4 Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet by Barbara Walther and Magali Chollet
\\n\\nChapter 5 The Impact of Vitamin K2 on Energy Metabolism by Mona Møller, Serena Tonstad, Tone Bathen and Jan Oxholm Gordeladze
\\n\\nChapter 6 Vitamin K2 and Bone Health by Niels Erik Frandsen and Jan Oxholm Gordeladze
\\n\\nChapter 7 Vitamin K2 and its Impact on Tooth Epigenetics by Jan Oxholm Gordeladze, Maria A. Landin, Gaute Floer Johnsen, Håvard Jostein Haugen and Harald Osmundsen
\\n\\nChapter 8 Anti-Inflammatory Actions of Vitamin K by Stephen J. Hodges, Andrew A. Pitsillides, Lars M. Ytrebø and Robin Soper
\\n\\nChapter 9 Vitamin K2: Implications for Cardiovascular Health in the Context of Plant-Based Diets, with Applications for Prostate Health by Michael S. Donaldson
\\n\\nChapter 11 Vitamin K2 Facilitating Inter-Organ Cross-Talk by Jan O. Gordeladze, Håvard J. Haugen, Gaute Floer Johnsen and Mona Møller
\\n\\nChapter 13 Medicinal Chemistry of Vitamin K Derivatives and Metabolites by Shinya Fujii and Hiroyuki Kagechika
\\n"}]'},components:[{type:"htmlEditorComponent",content:'This book serves as a comprehensive survey of the impact of vitamin K2 on cellular functions and organ systems, indicating that vitamin K2 plays an important role in the differentiation/preservation of various cell phenotypes and as a stimulator and/or mediator of interorgan cross talk. Vitamin K2 binds to the transcription factor SXR/PXR, thus acting like a hormone (very much in the same manner as vitamin A and vitamin D). Therefore, vitamin K2 affects a multitude of organ systems, and it is reckoned to be one positive factor in bringing about "longevity" to the human body, e.g., supporting the functions/health of different organ systems, as well as correcting the functioning or even "curing" ailments striking several organs in our body.
\n\nChapter 1 Introductory Chapter: Vitamin K2 by Jan Oxholm Gordeladze
\n\nChapter 2 Vitamin K, SXR, and GGCX by Kotaro Azuma and Satoshi Inoue
\n\nChapter 3 Vitamin K2 Rich Food Products by Muhammad Yasin, Masood Sadiq Butt and Aurang Zeb
\n\nChapter 4 Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet by Barbara Walther and Magali Chollet
\n\nChapter 5 The Impact of Vitamin K2 on Energy Metabolism by Mona Møller, Serena Tonstad, Tone Bathen and Jan Oxholm Gordeladze
\n\nChapter 6 Vitamin K2 and Bone Health by Niels Erik Frandsen and Jan Oxholm Gordeladze
\n\nChapter 7 Vitamin K2 and its Impact on Tooth Epigenetics by Jan Oxholm Gordeladze, Maria A. Landin, Gaute Floer Johnsen, Håvard Jostein Haugen and Harald Osmundsen
\n\nChapter 8 Anti-Inflammatory Actions of Vitamin K by Stephen J. Hodges, Andrew A. Pitsillides, Lars M. Ytrebø and Robin Soper
\n\nChapter 9 Vitamin K2: Implications for Cardiovascular Health in the Context of Plant-Based Diets, with Applications for Prostate Health by Michael S. Donaldson
\n\nChapter 11 Vitamin K2 Facilitating Inter-Organ Cross-Talk by Jan O. Gordeladze, Håvard J. Haugen, Gaute Floer Johnsen and Mona Møller
\n\nChapter 13 Medicinal Chemistry of Vitamin K Derivatives and Metabolites by Shinya Fujii and Hiroyuki Kagechika
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5706},{group:"region",caption:"Middle and South America",value:2,count:5174},{group:"region",caption:"Africa",value:3,count:1690},{group:"region",caption:"Asia",value:4,count:10249},{group:"region",caption:"Australia and Oceania",value:5,count:889},{group:"region",caption:"Europe",value:6,count:15658}],offset:12,limit:12,total:117458},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"23"},books:[{type:"book",id:"9538",title:"Demographic Analysis - Selected Concepts, Tools, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f335c5d0a39e8631d8627546e14ce61f",slug:null,bookSignature:"Ph.D. Andrzej Klimczuk",coverURL:"https://cdn.intechopen.com/books/images_new/9538.jpg",editedByType:null,editors:[{id:"320017",title:"Ph.D.",name:"Andrzej",surname:"Klimczuk",slug:"andrzej-klimczuk",fullName:"Andrzej Klimczuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse - an Interdisciplinary Approach",subtitle:null,isOpenForSubmission:!0,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:null,bookSignature:"Dr. Ersi Abaci Kalfoglou and Dr. Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:null,editors:[{id:"68678",title:"Dr.",name:"Ersi Abaci",surname:"Kalfoglou",slug:"ersi-abaci-kalfoglou",fullName:"Ersi Abaci Kalfoglou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10660",title:"Heritage",subtitle:null,isOpenForSubmission:!0,hash:"14096773aa1e3635ec6ceec6dd5b47a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10660.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10811",title:"Urban Transition - Perspectives on Urban Systems and Environments",subtitle:null,isOpenForSubmission:!0,hash:"4885cfa30ba6184b0da9f575aee65998",slug:null,bookSignature:"Ph.D. Marita Wallhagen and Dr. Mathias Cehlin",coverURL:"https://cdn.intechopen.com/books/images_new/10811.jpg",editedByType:null,editors:[{id:"337569",title:"Ph.D.",name:"Marita",surname:"Wallhagen",slug:"marita-wallhagen",fullName:"Marita Wallhagen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10911",title:"Higher Education",subtitle:null,isOpenForSubmission:!0,hash:"c76f86ebdc949d57e4a7bdbec100e66b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10913",title:"Indigenous Populations",subtitle:null,isOpenForSubmission:!0,hash:"c5e8cd4e3ec004d0479494ca190db4cb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10913.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Racism",subtitle:null,isOpenForSubmission:!0,hash:"0737383fcc202641f59e4a5df02eb509",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:11},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:51},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:8},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5156},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10062",title:"Forecasting in Mathematics",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"9a3ad05fef0502040d2a238ad22487c0",slug:"forecasting-in-mathematics-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoude",coverURL:"https://cdn.intechopen.com/books/images_new/10062.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoude",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editedByType:"Edited by",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10116",title:"Nano- and Microencapsulation",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"8d92c5999718734b36a0cc3a6af7c7f6",slug:"nano-and-microencapsulation-techniques-and-applications",bookSignature:"Nedal Abu-Thabit",coverURL:"https://cdn.intechopen.com/books/images_new/10116.jpg",editedByType:"Edited by",editors:[{id:"308436",title:"Associate Prof.",name:"Nedal",middleName:null,surname:"Abu-Thabit",slug:"nedal-abu-thabit",fullName:"Nedal Abu-Thabit"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9881",title:"Perovskite and Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"8fa0e0f48567bbc50fbb3bfdde6f9a0b",slug:"perovskite-and-piezoelectric-materials",bookSignature:"Someshwar Pola, Neeraj Panwar and Indrani Coondoo",coverURL:"https://cdn.intechopen.com/books/images_new/9881.jpg",editedByType:"Edited by",editors:[{id:"177037",title:"Dr.",name:"Someshwar",middleName:null,surname:"Pola",slug:"someshwar-pola",fullName:"Someshwar Pola"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9394",title:"Genotoxicity and Mutagenicity",subtitle:"Mechanisms and Test Methods",isOpenForSubmission:!1,hash:"9ee7e597358dbbfb5e33d0beb76e6fff",slug:"genotoxicity-and-mutagenicity-mechanisms-and-test-methods",bookSignature:"Sonia Soloneski and Marcelo L. Larramendy",coverURL:"https://cdn.intechopen.com/books/images_new/9394.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",middleName:null,surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1212",title:"Physical Cosmology",slug:"astrophysics-physical-cosmology",parent:{title:"Astrophysics",slug:"astrophysics"},numberOfBooks:3,numberOfAuthorsAndEditors:42,numberOfWosCitations:4,numberOfCrossrefCitations:12,numberOfDimensionsCitations:13,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"astrophysics-physical-cosmology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7357",title:"New Ideas Concerning Black Holes and the Universe",subtitle:null,isOpenForSubmission:!1,hash:"0c081ffdc6173f4c7d7d2d47231f61b9",slug:"new-ideas-concerning-black-holes-and-the-universe",bookSignature:"Eugene Tatum",coverURL:"https://cdn.intechopen.com/books/images_new/7357.jpg",editedByType:"Edited by",editors:[{id:"261441",title:"Dr.",name:"Eugene",middleName:"Terry",surname:"Tatum",slug:"eugene-tatum",fullName:"Eugene Tatum"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6768",title:"Cosmic Rays",subtitle:null,isOpenForSubmission:!1,hash:"1578350f18d0bc3abfbcf62278630739",slug:"cosmic-rays",bookSignature:"Zbigniew Szadkowski",coverURL:"https://cdn.intechopen.com/books/images_new/6768.jpg",editedByType:"Edited by",editors:[{id:"67836",title:"Prof.",name:"Zbigniew Piotr",middleName:null,surname:"Szadkowski",slug:"zbigniew-piotr-szadkowski",fullName:"Zbigniew Piotr Szadkowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5918",title:"Trends in Modern Cosmology",subtitle:null,isOpenForSubmission:!1,hash:"6fbfd7e2f33ac06d54517d3b52005231",slug:"trends-in-modern-cosmology",bookSignature:"Abraao Jesse Capistrano de Souza",coverURL:"https://cdn.intechopen.com/books/images_new/5918.jpg",editedByType:"Edited by",editors:[{id:"52362",title:"Dr.",name:"Abraao",middleName:"Jesse",surname:"Capistrano",slug:"abraao-capistrano",fullName:"Abraao Capistrano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"54849",doi:"10.5772/68113",title:"Superfluid Quantum Space and Evolution of the Universe",slug:"superfluid-quantum-space-and-evolution-of-the-universe",totalDownloads:1186,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Valeriy I. Sbitnev and Marco Fedi",authors:[{id:"93881",title:"Dr.",name:"Valeriy",middleName:null,surname:"Sbitnev",slug:"valeriy-sbitnev",fullName:"Valeriy Sbitnev"},{id:"200600",title:"Dr.",name:"Marco",middleName:null,surname:"Fedi",slug:"marco-fedi",fullName:"Marco Fedi"}]},{id:"60002",doi:"10.5772/intechopen.75426",title:"Cosmic Ray Muons as Penetrating Probes to Explore the World around Us",slug:"cosmic-ray-muons-as-penetrating-probes-to-explore-the-world-around-us",totalDownloads:676,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Paola La Rocca, Domenico Lo Presti and Francesco Riggi",authors:[{id:"18197",title:"Dr.",name:"Francesco",middleName:null,surname:"Riggi",slug:"francesco-riggi",fullName:"Francesco Riggi"},{id:"18200",title:"Dr.",name:"Paola",middleName:null,surname:"La Rocca",slug:"paola-la-rocca",fullName:"Paola La Rocca"},{id:"243971",title:"Dr.",name:"Domenico",middleName:null,surname:"Lo Presti",slug:"domenico-lo-presti",fullName:"Domenico Lo Presti"}]},{id:"54705",doi:"10.5772/68116",title:"The Impact of Baryons on the Large-Scale Structure of the Universe",slug:"the-impact-of-baryons-on-the-large-scale-structure-of-the-universe",totalDownloads:1120,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Weiguang Cui and Youcai Zhang",authors:[{id:"199688",title:"Dr.",name:"Weiguang",middleName:null,surname:"Cui",slug:"weiguang-cui",fullName:"Weiguang Cui"},{id:"205491",title:"Dr.",name:"Youcai",middleName:null,surname:"Zhang",slug:"youcai-zhang",fullName:"Youcai Zhang"}]}],mostDownloadedChaptersLast30Days:[{id:"60125",title:"Galactic Cosmic Rays and Low Clouds: Possible Reasons for Correlation Reversal",slug:"galactic-cosmic-rays-and-low-clouds-possible-reasons-for-correlation-reversal",totalDownloads:771,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Svetlana Veretenenko, Maxim Ogurtsov, Markus Lindholm and\nRisto Jalkanen",authors:[{id:"83636",title:"Dr.",name:"Maxim",middleName:null,surname:"Ogurtsov",slug:"maxim-ogurtsov",fullName:"Maxim Ogurtsov"},{id:"239574",title:"D.Sc.",name:"Svetlana",middleName:null,surname:"Veretenenko",slug:"svetlana-veretenenko",fullName:"Svetlana Veretenenko"},{id:"245213",title:"Dr.",name:"Markus",middleName:null,surname:"Lindholm",slug:"markus-lindholm",fullName:"Markus Lindholm"},{id:"245214",title:"Dr.",name:"Risto",middleName:null,surname:"Jalkanen",slug:"risto-jalkanen",fullName:"Risto Jalkanen"}]},{id:"54849",title:"Superfluid Quantum Space and Evolution of the Universe",slug:"superfluid-quantum-space-and-evolution-of-the-universe",totalDownloads:1186,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Valeriy I. Sbitnev and Marco Fedi",authors:[{id:"93881",title:"Dr.",name:"Valeriy",middleName:null,surname:"Sbitnev",slug:"valeriy-sbitnev",fullName:"Valeriy Sbitnev"},{id:"200600",title:"Dr.",name:"Marco",middleName:null,surname:"Fedi",slug:"marco-fedi",fullName:"Marco Fedi"}]},{id:"54580",title:"The Importance of Cosmology in Culture: Contexts and Consequences",slug:"the-importance-of-cosmology-in-culture-contexts-and-consequences",totalDownloads:2530,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Nicholas Campion",authors:[{id:"200410",title:"Dr.",name:"Nicholas",middleName:null,surname:"Campion",slug:"nicholas-campion",fullName:"Nicholas Campion"}]},{id:"60002",title:"Cosmic Ray Muons as Penetrating Probes to Explore the World around Us",slug:"cosmic-ray-muons-as-penetrating-probes-to-explore-the-world-around-us",totalDownloads:676,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Paola La Rocca, Domenico Lo Presti and Francesco Riggi",authors:[{id:"18197",title:"Dr.",name:"Francesco",middleName:null,surname:"Riggi",slug:"francesco-riggi",fullName:"Francesco Riggi"},{id:"18200",title:"Dr.",name:"Paola",middleName:null,surname:"La Rocca",slug:"paola-la-rocca",fullName:"Paola La Rocca"},{id:"243971",title:"Dr.",name:"Domenico",middleName:null,surname:"Lo Presti",slug:"domenico-lo-presti",fullName:"Domenico Lo Presti"}]},{id:"67823",title:"A Heuristic Model of the Evolving Universe Inspired by Hawking and Penrose",slug:"a-heuristic-model-of-the-evolving-universe-inspired-by-hawking-and-penrose",totalDownloads:391,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-ideas-concerning-black-holes-and-the-universe",title:"New Ideas Concerning Black Holes and the Universe",fullTitle:"New Ideas Concerning Black Holes and the Universe"},signatures:"Eugene Terry Tatum",authors:[{id:"261441",title:"Dr.",name:"Eugene",middleName:"Terry",surname:"Tatum",slug:"eugene-tatum",fullName:"Eugene Tatum"}]},{id:"55093",title:"Relativistic Celestial Metrology: Dark Matter as an Inertial Gauge Effect",slug:"relativistic-celestial-metrology-dark-matter-as-an-inertial-gauge-effect",totalDownloads:842,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Luca Lusanna and Ruggero Stanga",authors:[{id:"113030",title:"Dr.",name:"Luca",middleName:null,surname:"Lusanna",slug:"luca-lusanna",fullName:"Luca Lusanna"},{id:"201395",title:"Dr.",name:"Ruggero",middleName:null,surname:"Stanga",slug:"ruggero-stanga",fullName:"Ruggero Stanga"}]},{id:"61637",title:"Gamma Ray Bursts: Progenitors, Accretion in the Central Engine, Jet Acceleration Mechanisms",slug:"gamma-ray-bursts-progenitors-accretion-in-the-central-engine-jet-acceleration-mechanisms",totalDownloads:515,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Agnieszka Janiuk and Konstantinos Sapountzis",authors:[{id:"239614",title:"Associate Prof.",name:"Agnieszka",middleName:null,surname:"Janiuk",slug:"agnieszka-janiuk",fullName:"Agnieszka Janiuk"},{id:"240376",title:"Dr.",name:"Konstantinos",middleName:null,surname:"Sapountzis",slug:"konstantinos-sapountzis",fullName:"Konstantinos Sapountzis"}]},{id:"54784",title:"Neutrino Interactions with Nuclei and Dark Matter",slug:"neutrino-interactions-with-nuclei-and-dark-matter",totalDownloads:1007,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"trends-in-modern-cosmology",title:"Trends in Modern Cosmology",fullTitle:"Trends in Modern Cosmology"},signatures:"Paraskevi C. Divari",authors:[{id:"200618",title:"Prof.",name:"Paraskevi",middleName:null,surname:"Divari",slug:"paraskevi-divari",fullName:"Paraskevi Divari"}]},{id:"61639",title:"Exploration of Solar Cosmic Ray Sources by Means of Particle Energy Spectra",slug:"exploration-of-solar-cosmic-ray-sources-by-means-of-particle-energy-spectra",totalDownloads:491,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"Jorge Perez-Peraza and Juan C. Márquez-Adame",authors:[{id:"92548",title:"Dr.",name:"Jorge",middleName:null,surname:"Perez-Peraza",slug:"jorge-perez-peraza",fullName:"Jorge Perez-Peraza"},{id:"248825",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Marquez Adame",slug:"juan-carlos-marquez-adame",fullName:"Juan Carlos Marquez Adame"}]},{id:"60664",title:"Galactic Cosmic Rays from 1 MeV to 1 GeV as Measured by Voyager beyond the Heliopause",slug:"galactic-cosmic-rays-from-1-mev-to-1-gev-as-measured-by-voyager-beyond-the-heliopause",totalDownloads:563,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"cosmic-rays",title:"Cosmic Rays",fullTitle:"Cosmic Rays"},signatures:"William R. Webber",authors:[{id:"114311",title:"Prof.",name:"William R",middleName:null,surname:"Webber",slug:"william-r-webber",fullName:"William R Webber"}]}],onlineFirstChaptersFilter:{topicSlug:"astrophysics-physical-cosmology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/191848/patricia-fontes",hash:"",query:{},params:{id:"191848",slug:"patricia-fontes"},fullPath:"/profiles/191848/patricia-fontes",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()