Endothelial activity reflects the balance of endogenous factors regulating vasoconstriction and vasodilation. Among these factors, nitric oxide (NO) is the most important contributor to the acute regulation of vascular tone. Altered nitric oxide synthesis by the vascular endothelium plays several important roles in the pathogenesis of neonatal disease through its effects on vascular homeostasis. However, the role of NO in the pathogenesis of perinatal brain injury has not been fully investigated. The present chapter explores how NO synthesis is regulated under physiological and pathological conditions, the impact of acute and chronic hypoxia on NO synthase activity in the vascular endothelium, and the role of perinatal endothelial dysfunction in the pathogenesis of neurodevelopmental disorders later in life.
Part of the book: Nitric Oxide Synthase
Endothelial function plays an important role in the extrauterine adaptation of newborn infants. Endothelium produces different biologically active mediators, which play the central role in physiological and pathological processes and also in the extrauterine adaptation of newborn infants. The imbalance between vasoconstrictive and vasodilatation factors results in impaired cardiovascular adaptation and microcirculation and also brain injury. Microcirculatory disturbances are observed very often in preterm babies, who have a serious risk for perinatal brain injury and further neurodevelopment disabilities. Present chapter presents the pathogenetic role of vascular tone regulators of endothelial genesis in the formation of microcirculatory changes in preterm babies with a high risk of perinatal hypoxic encephalopathy.
Part of the book: Basic and Clinical Understanding of Microcirculation