\r\n\tThe purpose of this book is to provide the readers with an understanding of the characteristics of the crisis itself, recognize the wide range and multi-layer of the crisis from a real situation, give ideas on how to minimize the damage, and find ways to increase resilience in the future. To adapt to the rapidly and diversely changing world, the necessary experience and appropriate management for all kinds of crisis issues will be discussed as well. At the same time, it is intended to suggest elements such as verified scientific and empirical knowledge and applicable technologies; more effective risk management operation; modeling of the risks, manuals, management plans, and strategies. \r\n\t
",isbn:"978-1-80356-492-0",printIsbn:"978-1-80356-491-3",pdfIsbn:"978-1-80356-493-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"89fd49a084aea68bc39838042bdfce66",bookSignature:"Ph.D. Carine J. Yi",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11439.jpg",keywords:"Real-World Applications, Rebuild Strategies, Emergency Management, Risk Management, Advanced Technology, Statistics, Models, System Errors, Empirical Application, Governance, Safety, Risk Reduction, Resilience, Social Vulnerability, Sustainable Well-Being",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 4th 2022",dateEndSecondStepPublish:"April 1st 2022",dateEndThirdStepPublish:"May 31st 2022",dateEndFourthStepPublish:"August 19th 2022",dateEndFifthStepPublish:"October 18th 2022",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"An experienced researcher in disaster risk management, formerly affiliated with Tohoku University, awarded her Ph.D. for the University of Tsukuba. In 2015, Dr. Yi’s international forum at the 3rd United Nations World Conference on Disaster Reduction received high appraisals. Dr. Yi is regularly invited to review the academic manuscripts for the International Remote Sensing Journal.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"200332",title:"Ph.D.",name:"Carine",middleName:"J.",surname:"Yi",slug:"carine-yi",fullName:"Carine Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/200332/images/system/200332.png",biography:null,institutionString:"R. Park & Associates Inc.",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453623",firstName:"Silvia",lastName:"Sabo",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/453623/images/20396_n.jpg",email:"silvia@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"17482",title:"Utilisation of Waste from Digesters for Biogas Production",doi:"10.5772/17029",slug:"utilisation-of-waste-from-digesters-for-biogas-production",body:'
1. Introduction
1.1. Is the waste from digesters (digestate) an excellent organic fertilizer?
A prevailing opinion of bio-power engineers as well as in literature is that wastes from digesters in biogas production are an excellent fertiliser and that anaerobic digestion is to some extent an improvement process in relation to the fertilising value of organic materials used for biogas production. These opinions are apparently based on the fact that in anaerobic stabilisation of sludge the ratio of organic to mineral matters in dry matter is approximately 2:1 and after methanisation it drops to 1:1. Because there is a loss of a part of organic dry matter of sludge in the process of anaerobic digestion, the weight of its original dry matter will decrease by 40%, which will increase the concentration of originally present nutrients. In reality, anaerobic digestion will significantly release only ammonium nitrogen from the original material, which will enrich mainly the liquid phase due to its solubility; the process will not factually influence the content of other nutrients (Straka 2006).
The opinion that waste from anaerobic digestion is an excellent fertiliser is also due to the observation of fertilised lands. The growths are rich green and juicy. They have a fresh appearance – this is a typical sign of mineral nitrogen, including larger quantities of water retention by plants due to the nitrogen. However, the content of dry matter is changed negligibly, which shows evidence that the fertilisation is inefficient.
If organic matter is to be designated as organic fertiliser, it has to satisfy the basic condition: it has to be easily degradable microbially so that it will release necessary energy for soil microorganisms.
1.2. Mineralisation of organic matter in soil
This microbial transformation of organic matter in soil is mineralisation when organic carbon of organic substances is transformed to CO2 and from mineralised organic matter those mineral nutrients are released that were already contained in organic matter in mineral (ionic) form and those that were in it in organic form. CO2 is an important fertiliser in agriculture; it is the basic component for photosynthetic assimilation, for the formation of new organic matter produced by plants. As plants can take up only nutrients in mineral form (K+, NH4+, NO3-, Ca2+, Mg2+, H2PO4-, HPO42-, SO42- etc.) and nutrients in organic form (e.g. protein nitrogen, phosphorus of various organophosphates), it is not accessible to plants, and besides its main function – energy production for the soil microedaphon – the mineralization of organic matter in soil is an important source of mineral nutrients for plants. It is applicable solely on condition that organic matter in soil is easily mineralisable, i.e. degradable by soil microorganisms.
1.3. Gain from mineralising organic fertiliser for farmers: energy for soil microorganisms and release of mineral nutrients for plant nutrition
What we appreciated more for organic fertilisers? Gain of energy and enhancement of the microbial activity of soil or savings that are obtained by the supply of mineral nutrients? Unfortunately, simplified economic opinions cause each superficial evaluator to prefer the gain of mineral nutrients released from organic matter. Such a gain is also easy to calculate. The calculation of the gain from an increased microbial activity of soil is difficult and highly inaccurate. Nevertheless, a good manager will unambiguously prefer such a gain. It is to note that the microbial activity of soil is one of the main pillars of soil productivity, it influences physical properties of soil, air and water content in soil, retention of nutrients in soil for plant nutrition and their losses through elution from soil to groundwater. A biological factor is one of the five main factors of the soil-forming process; without this process the soil would not be a soil, it would be only a parent rock or perhaps a soil-forming substrate or an earth at best.
Hence, it is to state that the release of mineral nutrients for their utilisation by plants during mineralisation of organic fertiliser in the soil produces an economically favourable effect but it is not the primary function of organic fertiliser, its only function is the support of microedaphon. The effect of mineral nutrients is replaceable by mineral fertilisers, the energetic effect for the microbial activity of soil is irreplaceable.
1.4. What influences the quality of digestate as a fertiliser?
The digestate, the waste from digesters during biogas production, is composed of solid phase and liquid phase (fugate). We have demonstrated that the solid phase of the digestate is not an organic fertilizer because its organic matter is very stable and so it cannot be a relatively expeditious source of energy for the soil microedaphon (Kolář et al. 2008). Neither is it a mineral fertilizer because available nutrients of the original raw material and also nutrients released from it during anaerobic digestion passed to the liquid phase – fugate. The digestate, and naturally the fugate, have a low content of dry matter (fugate 0.8 – 3% by weight) and this is the reason why analytical data on the ones to tens of weight % of available nutrients given in dry matter foster an erroneous opinion in practice that these wastes are excellent fertilizers. In fact, fugates are mostly highly diluted solutions in which the content of the nutrients that are represented at the highest amount, mineral nitrogen, is only 0.04 – 0.4% by weight.
The surplus of water during fertilization with this waste increases the elution of this nutrient in pervious soils while in less pervious soils the balance between water and air in the soil is impaired, which will have negative consequences.
The quality of the digestate as an organic fertiliser (labile, not organic material that is hard to decompose) substantially influences not only the microbial decomposability of the input material but also the level of anaerobic digestion in the digester. In the past when the sludge digestion was carried out in municipal waste treatment plants in digesters at temperatures of 18°C-22°C (psychrophilic regime), the decomposability of the substrate after fermentation was still good, therefore the digested sludge was a good organic fertiliser. These days we work with less decomposable substrates in mesophilic ranges (around 40°C) or even in thermophilic conditions. The degree of decomposition of organic matter during fermentation is consequently high and the digestate as organic fertiliser is practically worthless.
1.5. A hopeful prospect – IFBB process
It would be ideal to realize biogas production from the liquid phase only – it would be possible to introduce high performance UASB (Upflow Anaerobic Sludge Blanket) digesters and to achieve the large saving of technological volumes but the concentration of substances in the liquid phase should have to be increased. The solid phase of substrates, which cannot be applied as an organic fertilizer after the fermentation process, would be used as biomass for the production of solid biofuels in the form of pellets or briquettes. But it would be necessary to reduce its chlorine content to avoid the generation of noxious dioxins and dibenzofurans during the burning of biofuel pellets or briquettes at low burning temperatures of household boilers and other low-capacity heating units. Wachendorf et al. (2007, 2009) were interested in this idea and tried to solve this problem in a complex way by the hot-water extraction of the raw material (at temperatures of 5ºC, 60ºC and 80ºC) followed by the separation of the solid and liquid phase by means of mechanical dehydration when a screw press was used. This procedure is designated by the abbreviation IFBB (Integrated Generation of Solid Fuel and Biogas from Biomass). These researchers successfully reached the transfer ratio of crude fibre from original material (grass silage) to liquid phase only 0.18, which is desirable for biogas production, but for more easily available organic substances influencing biogas production, e.g. nitrogen-free extract, the ratio is 0.31. The transfer of potassium, magnesium and phosphorus to the liquid phase ranged from 0.52 to 0.85 of the amount in fresh matter, calcium transformation was lower, at the transfer ratio 0.44 – 0.48 (Wachendorf et al. 2009). Transformation to the liquid phase was highest in chlorine, 0.86 of the amount in original fresh matter, already at a low temperature (5ºC). The transfer of mineral nitrogen to the liquid phase before the process of anaerobic digestion is very low because there is a minute amount of mineral N in plant biomass and the major part of organic matter nitrogen is bound to low-soluble proteins of the cell walls. Nitrogen from these structures toughened up by lignin and polysaccharides is released just in the process of anaerobic digestion. Because in the IFBB process also organic nitrogen compounds (crude protein – nitrogen of acid detergent fibre ADF) are transferred to the liquid phase approximately at a ratio 0.40, the liquid phase, subjected to anaerobic digestion, is enriched with mineral nitrogen.
Like Wachendorf et al. (2009), we proceeded in the same way applying the IFBB system for the parallel production of biogas and solid biofuels from crops grown on arable land. The IFBB technological procedure is based on a high degree of cell wall maceration as a result of the axial pressure and abrasion induced with a screw press.
2. Crucial problems
2.1. The first problem: organic matter of digestate is poorly degradable in soil, its labile fractions were already utilised in a digester
The point is that the digestate is not an organic fertiliser because its organic substance is poorly degradable. But its liquid fraction contains a small amount of mineral nutrients, mainly of nitrogen. The fugate (and also the digestate) can be considered as a very dilute mineral fertiliser, nitrogenous fertiliser. However, the agriculture sector is exposed worldwide to an enormous pressure on economic effectiveness while the costs of machinery, fuels and agricultural labour force are very high in relation to the price of agricultural products. Therefore the chemical industry helps farmers to save on transportation and application costs incurred by fertilisation when highly concentrated mineral fertilisers are produced. Even though they are substantially more expensive, from the aspect of cost accounting their use will finally pay off. Before the manufacture of town gas from coal using the ammonia water ended, farmers took the waste containing 1% of ammonia nitrogen only exceptionally even though it was practically free of charge.
With the current output of a biogas plant 526 kW (Chotýčany, South Bohemia) and daily dose of a substrate to the digester 46 t and practically identical production of digestate the daily production of mineral nitrogen is approximately 40 kg, which amounts to a relatively high value per year, almost 15 t of mineral nitrogen, but the dilution is unacceptable.
2.2. The second problem: the digestate contains much water and therefore the solution with plant nutrients is very dilute.
If this waste is applied as a fertiliser, the water surplus increases the elution of this nutrient into the bottom soil in pervious soils. In impervious soils and in less pervious soils the imbalance between water and air in the soil is deteriorated with all adverse consequences: aerobiosis restriction, reduction in the count of soil microorganisms, denitrification and escape of valuable nitrogen in the form of N2 or N-oxides into the atmosphere. Soil acidification takes place because organic substances are not mineralised under soil anaerobiosis and they putrefy at the simultaneous production of lower fatty acids. These soil processes result in a decrease in soil productivity. Currently, its probability is increasingly higher for these reasons:
As a consequence of global acidification the frequency of abundant precipitation is higher in Europe throughout the year.
As a result of rising prices of fuels, depreciation on farm machinery and human labour force farmers apply digestates or fugates in the closest proximity of a biogas plant. It causes the overirrigation of fertilised fields even though the supplied rate of nitrogen does not deviate from the required average.
The problem of an excessively high irrigation amount has generally been known since long: it occurred in Berlin and Wroclaw irrigation fields after irrigation with municipal waste water in the 19th and 20th century, in the former socialist countries after the application of agricultural and industrial waste waters and of slurry from litterless operations of animal production. Even though nobody surely casts doubt on the fertilising value of pig slurry or starch-factory effluents, total devastation of irrigated fields and almost complete loss of their potential soil productivity were quite normal phenomena (Stehlík 1988).
2.3. Fundamental issues to solve
A further part of this study should help solve these crucial problems:
What is the rational utilisation of digestate and/or fugate and separated solid fraction of digestate in the agriculture sector that are generated by current biogas plants if we know that their utilisation as fertilisers is rather problematic?
What are the prospects of utilisation of wastes from biogas production and what modifications in the technology of biogas production from agricultural wastes should be introduced?
What problems should be solved by researchers so that the promising utilisation of wastes from biogas production could be realised?
What is the optimum form of utilisation of wastes from biogas plants and why?
3. Information
3.1. Current optimum utilisation of digestate from biogas plants in the agriculture sector
3.1.1. Biodegradability (lability) and stability of organic matter
How many labile components of organic matter are lost during anaerobic digestion in a biogas plant can be demonstrated by determination of the degree of organic matter lability. For this purpose a number of methods can be used that are mostly based on resistance to oxidation or on resistance to hydrolysis. Oxidation methods are based on oxidation with chemical oxidants, e.g. with a solution of K2Cr2O7 in sulphuric acid at various concentrations – 6 M + 9 M + 12 M (Walkley 1947, Chan et al. 2001) or with a neutral solution of KMnO4 at various concentrations (Blair et al. 1995, Tirol-Padre, Ladha 2004). The degree of organic matter lability is evaluated from the amount of oxidizable carbon in per cent of its total amount in particular variously aggressive oxidation environments or the reaction kinetics of the observed oxidation reaction is examined while its characteristic is the rate constant of the oxidation process.
In 2003 was proposed and tested the method to evaluate the kinetics of mineralisation of the degradable part of soil organic matter by the vacuum measurement of biochemical oxygen demand (BOD) of soil suspensions using an Oxi Top Control system of the WTW Merck Company, designed for the hydrochemical analysis of organically contaminated waters (Kolář et al. 2003). BOD on the particular days of incubation is obtained by these measurements whereas total limit BODt can be determined from these data, and it is possible to calculate the rate constant K of biochemical oxidation of soil organic substances per 24 hours as the rate of stability of these substances. A dilution method is the conventional technique of measuring BOD and also rate constants. It was applied to determine the stability of soil organic substances but it was a time- and labour-consuming procedure. The Oxi Top Control method was used with vacuum measurement in vessels equipped with measuring heads with infrared interface indicator communicating with OC 100 or OC 110 controller while documentation is provided by the ACHAT OC programme communicating with the PC, and previously with the TD 100 thermal printer. Measuring heads will store in their memory up to 360 data sentences that can be represented graphically by the controller while it is also possible to measure through the glass or plastic door of the vessel thermostat directly on stirring platforms. The rate of biochemical oxidation of organic substances as the first-order reaction is proportionate to the residual concentration of yet unoxidised substances:
dy/dt=K(L–y)=KLzE1
where:
L = total BOD
y = BOD at time t
Lz = residual BOD
k, K = rate constants
By integrating from 0 to t of the above relation the following equation is obtained:
Lz\n\t\t\t\t\t\t= L. e-Kt\n\t\t\t\t\t\t= L. 10-kt (2)
In general it applies for BOD at time t:
y=L(1–10−kt)E2
where:
y = BOD at time t
L = BODtotal
k = rate constant 24 hrs-1
Used procedure is identical with the method of measurement recommended by the manufacturer in accordance with the Proposal for German Uniform Procedures DEV 46th Bulletin 2000 – H 55, also published in the instructions for BOD (on CD-ROM) of WTW Merck Company.
The decomposition of organic matter is the first-order reaction. In these reactions the reaction rate at any instant is proportionate to the concentration of a reactant (see the basic equation dy/dt). Constant k is the specific reaction rate or rate constant and indicates the instantaneous reaction rate at the unit concentration of a reactant. The actual reaction rate is continually variable and equals the product of the rate constant and the instantaneous concentration. The relation of the reaction product expressed by BOD at time t (y) to t is the same as the relation of the reactant (L – y) at time t and therefore the equations
(L–y)=L.e−ktE3
and
y=L(1–e−kt)E4
are analogical.
If in the graph the residual concentration of carbon is plotted on the y-axis in a logarithmic scale log (L – y) and the time in days from the beginning of experiment is plotted on the x-axis, we will obtain a straight line, the slope of which corresponds to the value -k/2.303.
The quantity of the labile fraction of organic matter can also be assessed by determination of soluble carbon compounds in hot water (Körschens et al. 1990, Schulz 1990) and their quality by determination of the rate constant of their biochemical oxidation (Kolář et al. 2003, 2005a,b).
Hydrolytic methods are based on resistance of the organic matter different aggressive ways of hydrolysis that is realised at different temperature, time of action and concentration of hydrolytic agent, which is usually sulphuric acid. Among many variants of these methods the hydrolytic method according to Rovira et Vallejo (2000, 2002, 2007) in Shirato et Yokozawa (2006) modification was found to be the best. This method yields three fractions: labile LP1, semi-labile LP2 and stable LP3. The per cent ratio of these three fractions, the sum of which is total carbon of the sample Ctot, provides a very reliable picture of the degree of organic matter lability.
Of course, there are a lot of methods based on the study of organic matter biodegradability in anaerobic conditions. First of all, it is the international standard ISO CD 11734: Water quality – evaluation of the “ultimate” anaerobic biodegradability of organic compounds in digested sludge – Method by measurement of the biogas production, and particularly a very important paper using the Oxi Top Control measuring system manufactured by the German company MERCK for this purpose (Süssmuth et al. 1999).
Tests of methanogenic activity (Straka et al. 2003) and tests examining the activity of a microbial system (Zábranská et al. 1985a, b, 1987) are methods that can describe the degree of organic matter lability in its ultimate effect. Our long-time work experiences in the evaluation of a huge amount of various analyses for the study of organic matter lability have brought about this substantial knowledge:
The study of the ratio of organic matter labile fractions, i.e. of their quantity, is always incomplete. A more authentic picture of the situation can be obtained only if information on the quality of this labile fraction is added to quantitative data. Such a qualitative characteristic is acquired in the easiest way by the study of reaction kinetics of the oxidation process of this fraction. The process of biochemical oxidation and the calculation of its rate constant KBio are always more accurate that the calculation of its rate constant of oxidation by chemical oxidants KCHEM (Kolář et al. 2009a).
It applies to current substrates for biogas production in biogas plants that with some scarce exceptions the degree of organic matter lability is very similar in both aerobic and anaerobic conditions. In other words: organic matter is or is not easily degradable regardless of the conditions concerned (Kolář et al. 2006).
A comparison of various methods for determination of organic matter lability and its degradability in the anaerobic environment of biogas plant digesters and also for determination of digestate degradability after its application to the soil showed that hydrolytic methods are the best techniques. They are relatively expeditious, cheap, sample homogenisation and weighing are easy, and the results correlate very closely with methods determining the biodegradability of organic matter directly. E.g. with the exception of difficult weighing of a very small sample and mainly its homogenisation the Oxi Top Control Merck system is absolutely perfect and highly productive – it allows to measure in a comfortable way simultaneously up to 360 experimental treatments and to assess the results continually using the measuring heads of bottles with infrared transmitters, receiving controller and special ACHAT OC programme for processing on the PC including the graph construction. But its price is high, in the CR about 4 million Kč for the complex equipment. Hydrolytic methods require only a small amount of these costs and are quite satisfactory for practical operations (Kolář et al. 2008). However, for scientific purposes we should prefer the methods that determine anaerobic degradability of organic matter, designated by DC.
The substrate production of methane VCH4S [the volume of produced methane (VCH4c) after the subtraction of endogenous production of methane (VCH4e) by the inocula] was determined by an Oxi Top Control Merck measuring system.
The calculation is based on this equation of state:
n=p´V/RTE5
where:
n = number of gas moles
V = volume [ml]
P = pressure [hPa]
T = temperature [°K]
R = gas constant 8.134 J/mol °K
and the number of CO2 and CH4 moles in the gaseous phase of fermentation vessels is calculated:
nCO2gCH4=(Δp´Vg/RT)´10−4E6
Δp=p1–p0E7
where:p0 = initial pressure
Fermentation at 35° C and continuous agitation of vessels in a thermostat lasts for 60 days, the pressure range of measuring heads is 500 – 1 350 kPa and the time interval of measuring pressure changes is 4.5 min. Anaerobic fermentation is terminated by the injection of 1 ml of 19% HCl with a syringe through the rubber closure of the vessel to the substrate. As a result of acidification CO2 is displaced from the liquid phase of the fermentation vessel. The process is terminated after 4 hours. The number of CO2 moles is calculated from the liquid phase:
nCO2l={[p2(Vg–VHCl)–p1´Vg]/RT}´10−4E8
The injection of 1 ml of 30% KOH into the rubber container in the second tube of the fermentation vessel follows. The sorption of CO2 from the gaseous phase of the vessel is terminated after 24 hours and the total number of CO2 moles in gaseous and liquid phases is calculated from a drop in the pressure in the vessel:
Vg = the volume of the gas space of the fermentation vessel ml
p1 = gas pressure before HCl application hPa
p2 = gas pressure before KOH application hPa
p3 = gas pressure after KOH application hPa
R = gas constant = 8.134 J/mol °K
T = absolute temperature = 273.15 + X °C
VHCl = the volume of added HCl ml
VKOH = the volume of added KOH ml
Based on the results, it is easy to calculate the number of CO2 moles in the gaseous phase and by the subtraction from nCO2 g CH4 the number of moles of produced methane:
nCH4=(nCO2gCH4+nCO2l)–nCO2lCO2gE10
The total number of moles of the gases of transported carbon:
nCO2gCH4+nCO2l=ntotalE11
Baumann’s solution A + B in deionised water of pH = 7.0 is used as a liquid medium (Süssmuth et al. 1999).
The standard addition of the inoculum corresponds roughly to an amount of 0.3% by volume (aqueous sludge from the anaerobic tank of the digester). Instead of Baumann’s solution it is possible to use a ready-made nutrient salt of the MERCK Company for this system.
The operation of the Oxi Top Control measuring system was described in detail by Süssmuth et al. (1999).
Methane yield was calculated from the substrate production of methane VCH4S by division by the initial quantity of the added substrate:
YCH4g=(VCH4C–VCH4e)S=VCH4SS[l/g]E12
where:
VCH4C = methane yield of C-source
VCH4e = methane yield of the added inoculum
S = substrate quantity at the beginning [g]
Lord’s test and other methods suitable for few-element sets and based on the R range of parallel determinations were used for the mathematical and statistical evaluation of analytical results including the computation of the interval of reliability.
Anaerobic degradability is given by the equation:
Dc=CgCs.100E13
where:
Cs = total C content in the sample
Cg = C content in methane released during the measurement of anaerobic degradability
The value of Cg is computed from the substrate production of methane VCH4S:
Cg=12pVCH4SRTE14
(because 1 mol CH4 contains 12 g C)
where:
K = temperature (°K)
R = gas constant
P= pressure
VCH4S = the volume of produced methane after the subtraction of endogenous production by the inoculum from total production
This method, which determines organic matter lability in anaerobic conditions, is so exact that it allows to investigate e.g. the digestive tract of ruminants as an enzymatic bioreactor and to acquire information on its activity, on feed utilisation or digestibility and on the influence of various external factors on the digestion of these animals (Kolář et al. 2010a) or to determine the share of particular animal species in the production of greenhouse gasses (Kolář et al. 2009b).
At the end of this subchapter dealing with the degree of organic matter lability and its changes after fermentation in a biogas plant these experimental data are presented:
A mixture of pig slurry and primary (raw) sludge from the sedimentation stage of a municipal waste water treatment plant at a 1 : 1 volume ratio was treated in an experimental unit of anaerobic digestion operating as a simple periodically filled Batch-system with mechanical agitation, heating tubes with circulating heated medium at a mesophilic temperature (40°C) and low organic load of the digester (2.2 kg org. dry matter/m3) and 28-day fermentation.
Acid hydrolysis of sludge, slurry and their mixture was done before and after anaerobic fermentation. The hydrolysis of samples was performed with the dry matter of examined sludge and its mixture with pig slurry including the liquid fraction after screening the material through a 250-μm mesh sieve. The method of hydrolysis according to Rovira and Vallejo (2000, 2002) as modified by Shirato and Yokozawa (2006): 300 mg of homogenised sample is hydrolysed with 20 ml of 2.5 M H2SO4 for 30 min at 105ºC in a pyrex tube. The hydrolysate is centrifuged and decanted, the residues are washed with 25 ml water and the wash water is added to the hydrolysate. This hydrolysate is used to determine Labile Pool I (LP I).
The washed residue is dried at 60ºC and hydrolysed with 2 ml of 13 M H2SO4 overnight at room temperature and continuous shaking. Such an amount of water is added that the concentration of the acid will be 1 M, and the sample is hydrolysed for 3 hours at 105ºC at intermittent shaking. The hydrolysate is isolated by centrifugation and decantation, the residue is washed again with 25 ml of water and the wash water is added to the hydrolysate. This hydrolysate is used for the determination of Labile Pool II (LP II). The residue from this hydrolysis is dried at 60ºC and Recalcitrant Pool (RP) is determined from this fraction.
Ctot is determined in all three fractions.
Degradability of organic matter of the test materials was studied by modified methods of Leblanc et al. (2006) used to examine the decomposition of green mulch from Inga samanensis and Inga edulis leaves. These authors conducted their study in outdoor conditions (average annual temperature 25.1ºC) and we had to modify their method in the cold climate of this country. At first, the liquid phase of sludge, slurry and mixture was separated by centrifugation; the solid phase was washed with hot water several times and separated from the solid phase again. By this procedure we tried to separate the solid phase from the liquid one, which contains water-soluble organic substances and mineral nutrients. Solid phases of tested organic materials were mixed with sandy-loamy Cambisol at a 3:1 weight ratio to provide for inoculation with soil microorganisms and volume ventilation of samples with air. After wetting to 50% of water retention capacity the mixtures at an amount of 50 g were put onto flat PE dishes 25 x 25 cm in size. The material was spread across the surface of the dish. Cultivation was run in a wet thermostat at 25ºC, and in the period of 2 – 20 weeks dishes were sampled in 14-day intervals as subsamples from each of the four experimental treatments. The agrochemical analysis of the used topsoil proved that the content of available nutrients P, K, Ca and Mg according to Mehlich III is in the category “high” and pKKCl = 6.3. After drying at 60°C for 72 hours the content of lipids, crude protein, hemicelluloses, cellulose, lignin, total nitrogen and hot-water-insoluble dry matter was determined in the dish contents.
After twenty weeks of incubation organic substances were determined in the dish contents by fractionation into 4 degrees of lability according to Chan et al. (2001).
The content of hemicelluloses was calculated from a difference between the values of neutral detergent fibre (NDF) and acid detergent fibre (ADF), lignin was calculated from ADF by subtracting the result after lignin oxidation with KMnO4. Because ADF contains lignin, cellulose and mineral fraction, it was possible to determine the cellulose content by ashing the residue in a muffle furnace and by determination of mineral fraction. These methods were described by Van Soest (1963), modifications used by Columbian authors (Leblanc et al. 2006) were reported by López et al. (1992).
Ion exchange capacity [mmol.chem.eq./kg] was determined in dry matter of the examined materials according to Gillman (1979), buffering capacity was determined in samples induced into the H+-cycle with HCl diluted with water at 1 : 1 and washed with water until the reaction to Cl- disappears. In the medium of 0.2 M KCl the samples were titrated to pH = 7 with 0.1 M NaOH and buffering capacity was calculated from its consumption.
Tab. 1 shows the analyses of a mixture of pig slurry and primary sludge used in the experiment. Obviously, compared to the values reported in literature our experimental materials had a somewhat lower content of organic substances in dry matter, and perhaps this is the reason why anaerobic fermentation reduced the content of organic substances by 39% only although the usual reduction by 45 – 65% for primary sludge was expected as reported in literature (Pitter 1981) and by 40 – 50% for pig slurry (Stehlík 1988). As a result of the organic dry matter reduction the content of nutrients in sludge after anaerobic fermentation is higher, nitrogen content is lower by about 20%. In this process organic nitrogen is converted to (NH4)2CO3, which partly decomposes into NH3 + H2O + CO2 and partly passes into the sludge liquor. Roschke (2003) reported that up to 70% of total nitrogen might pass to the ammonium form at 54% degradation of organic substances of dry matter. Even though concentrations of the other nutrients in dry matter of the aerobically stabilised sludge increased as a result of the organic dry matter reduction, their content in the sludge liquor also increased (Tab. 2).
Pig slurry
Primary sludge
Mixture of slurry and sludge before methanisation
Mixture of slurry and sludge after methanisation
Organic substances
65.1 2.6
62.7 2.4
64.1 2.4
36.9 1.5
Total nutrients
N
6.2 0.2
2.6 0.1
3.9 0.2
3.1 0.1
P
1.6 0.1
0.7 0.0
1.1 0.0
1.3 0.1
K
2.3 0.1
0.2 0.0
1.2 0.0
1.2 0.0
Ca
2.8 0.1
2.6 0.1
2.5 0.1
2.8 0.1
Table 1.
The analysis of experimental pig slurry and primary sludge, mixture of pig slurry and primary sludge before methanisation in a digester and after methanisation in % of dry matter (pig slurry and primary sludge were mixed for anaerobic digestion at a 1:1 volume ratio). (Sample size n = 6, interval of reliability of the mean for a significance level = 0.05)
% A
% B
mg/l Before fermentation
mg/l After fermentation
Total N
8.40
55.20
246.2 14.7
994.7 59.6
Ammonia N
52.60
90.80
153.7 8.4
907.2 48.2
Total P
12.20
25.30
134.5 8.7
176.3 11.6
Total K
19.90
28.10
172.9 10.4
184.1 11.0
Table 2.
The analysis of the liquid fraction (sludge liquor) of a mixture of pig slurry and primary sludge from a waste water treatment plant (1 : 1) before fermentation and after fermentation in mg/l. The values A and B express % in the liquid phase of the total amount of sludge before and after fermentation (Sample size n = 5, interval of reliability of the mean for a significance level = 0.05)
Taking into account that the amount of water-soluble nutrients in the sludge liquor and organic forms of N and P dispersed in the sludge liquor in the form of colloid sol (but it is a very low amount) is related not only to the composition of the substrate but also to technological conditions of anaerobic digestion, digester load and operating temperature, it is evident that the liquid fraction of anaerobically stabilised sludge contains a certain amount of mineral nutrients, approximately 1 kg N/m3, besides the others, although differences in the concentration of P and K in the liquid fraction before and after fermentation are generally negligible. It is a very low amount, and there arises a question whether the influence of the liquid fraction on vegetation is given by the effect of nutrients or water itself, particularly in drier conditions.
After anaerobic digestion the solid phase of sludge still contains a high amount of proteins and other sources of organic nitrogen that could be a potential pool of mineral nitrogen if the degradation of sludge after fermentation in soil is satisfactory.
Material
Proportion
LP I
LP II
RP
Primary sewage sludge
68 5
23 2
9 1
Pig slurry
59 5
15 2
26 2
Mixture of primary sludge and pig slurry at a 1:1 volume ratio
63 5
20 2
17 1
Mixture of primary sludge and pig slurry at a 1:1 volume ratio after methanisation
18 2
16 1
66 5
Table 3.
Proportions of the three pools of carbon in experimental materials, as determined by the acid hydrolysis method of Rovira and Vallejo (2002),(Sample size n = 4, interval of reliability of the mean for a significance level = 0.05),(Materials including the liquid fraction were used)
The results of hydrolysis in Tab. 3 prove that pig slurry has 59% of its total carbon in LP I, which indicates great lability, corresponding to the hydrolysability of cereals and grasses according to Shirato and Yokozawa (2006). Primary sewage sludge is still better from this aspect, having almost 70% C in LP I. The degree of lability of the sludge and slurry mixture is relatively high and corresponds to the component ratio. After methanisation carbon content in LP I of the sludge and slurry mixture decreases to less than a third of the original amount and carbon of non-hydrolysable matters increases even almost four times in the RP fraction. The sum of LP I and LP II, i.e. the labile, degradable fraction of carbon compounds of the sludge and pig slurry mixture, was reduced by anaerobic digestion from 83% to 34%, that means approximately by 50%. These are enormous differences and they prove that mainly very labile organic substances are heavily destroyed by the anaerobic process even though a reduction in the content of organic substances during anaerobic fermentation is lower (by 39% in our experiment).
Tab. 4 shows the analysis of raw materials (sludge and pig slurry) and their mixture before and after anaerobic fermentation while Tab. 5 shows the analysis of their liquid fraction. The same results (Tab. 4) are provided by the incubation of the solid phase of sludge, pig slurry and their mixture before and after anaerobic fermentation when incubated with soil at 25°C and by the contents of lipids, crude protein, hemicelluloses, cellulose, lignin, total nitrogen and hot-water-insoluble dry matter; the same explicit conclusion can be drawn from the results of the fractionation of organic matter lability of the experimental treatments after 20-week incubation with soil according to Chan et al. (2001) shown in Tab. 5. A comparison of the results in Tab. 3 and 5 indicates that as a result of the activity of microorganisms of the added soil in incubation hardly hydrolysable organic matter was also degraded – differences between the most stable fractions F 3 and F 4 in Tab. 5 are larger by about 73% after anaerobic fermentation while in the course of acid chemical hydrolysis the content of non-hydrolysable fraction was worsened by anaerobic fermentation because it increased by about 290%. But it is a matter of fact that the soil microorganisms are not able to stimulate the anaerobically fermented sludge to degradation as proved by more than ¾ of total carbon in fraction 4.
I Before incubation (25° C)
II After incubation (25°C, 20 weeks)
A
B
C
D
A
B
C
D
Lipids (petroleum ether extractable compounds) %
8.60 0.69
14.27 1.14
10.82 0.86
2.01 0.15
7.97 0.65
13.50 1.09
10.39 0,85
2.08 0,17
Proteins (Berstein) %
13.43 1.30
17.95 1.62
15.31 1.60
8.50 0.93
11.81 1.20
16.10 1.53
13.89 1.42
8.50 0.98
Hemicelluloses %
1.82 0.19
5.03 0.73
3.32 0.61
0.70 0.60
1.43 0.11
4.23 0.51
2.89 0.30
0.69 0.10
Cellulose %
7.45 0.92
11.18 1.33
9.61 1.05
6.03 0.95
5.42 0.82
9.27 0.98
7.96 0.94
6.05 0.83
Lignins %
4.84 0.62
5.16 0.84
4.99 0.75
5.18 0.92
4.83 0.91
5.18 1.07
4.98 0.84
5.20 0.91
Total N %
1.59 0.06
2.70 0.11
2.29 0.10
1.07 0.04
1.51 0.06
2.50 0.11
2.14 0.09
1.08 0.05
Hot-water insoluble dry matter %
98.25 2.94
98.26 2.95
98.25 2.95
98.23 2.92
89.05 2.67
85.17 2.60
87.26 2.58
98.20 2.93
Ion exchange capacity mmol chem. eq./kg
48 3
55 3
53 3
145 9
50 3
61 4
55 4
168 10
Buffering capacity mmol chem. eq./kg
62 4
69 4
65 4
157 9
65 4
72 4
70 4
179 11
Table 4.
The content of selected organic substances (%) and ion exchange and buffering capacity of the solid phase of primary sludge (A), pig slurry (B), sludge and pig slurry mixture at a 1:1 ratio before fermentation (C) and after fermentation (D) before and after 20 weeks of incubation with sandy-loamy Cambisol topsoil at a 3:1 ratio at 25°C in dry matter(Sample size n = 4 /hot-water-soluble dry matter n = 7/, interval of reliability of the mean for a significance level = 0.05)
Unfermented primary sludge
Unfermented pig slurry
Mixture A
Mixture B
Soil only
Fraction 1 (12 N H2SO4)
59.84 7.18 (32.00)
55.38 6.52 (28.40)
54.09 6.50 (30.05)
2.65 0.30 (2.60)
1.30 0.17 (7.22)
Fraction 2 (18 N - 12 N H2SO4)
42.45 5.13 (22.70)
35.76 4.26 (18.34)
34.22 4.10 (19.01)
9.28 1.10 (9.07)
0.80 0.09 (4.44)
Fraction 3 (24 N - 18 N H2SO4)
27.34 3.28 (14.62)
20.18 2.53 (10.35)
20.30 2.42 (11.28)
11.13 1.33 (10.91)
3.70 0.44 (20.56)
Fraction 4 (TOC = 24 N H2SO4)
57.37 6.85 (30.68)
83.67 10.01 (42.91)
71.39 8.55 (39.66)
78.97 9.40 (77.42)
1.22 1.42 (67.78)
Table 5.
The fractionation of organic carbon (g/kg) of primary sludge, pig slurry, and sludge and slurry mixture at a 1:1 ratio before fermentation (A) and after fermentation (B) in a mixture with sandy-loamy Cambisol (3 : 1) in dry matter after 20 weeks of incubation at 25°C by the modified Walkley-Black method according to Chan et al. (2001) with a change in H2SO4 concentration. (The values given in brackets are % of the C fraction in total dry matter carbon) (Sample size n = 5, interval of reliability of the mean for a significance level = 0.05)
The table results document that 20-week incubation decreased more or less the per cent content of examined organic substances except lignin (total N 5 – 8%, cellulose 17 – 25%, hemicellulose 13 – 22%, proteins 9 – 12%, lipids 4 – 7%, and the content of hot-water-insoluble dry matter by 10 – 15%) factually in all experimental treatments except the treatment of the anaerobically fermented mixture of primary sludge and pig slurry where a reduction in these matters is low or nil. Hence, primary sludge, pig slurry and their mixture can be considered as organic fertilisers but only before anaerobic fermentation. We recorded a substantially lower degree of degradation of selected organic substances in sludge, pig slurry and their mixture during incubation with 25% of sandy-loamy soil (5 – 25%) than did Leblanc et al. (2006) with phytomass of Inga samanensis and Inga edulis leaves, who reported about 50% degradation of total mass, hemicelluloses and nitrogen in mass. We are convinced that it is caused by a very different content of hemicelluloses in our materials compared to the materials used by the above-mentioned authors. No easily degradable hemicelluloses are present in sewage sludge or in pig slurry any longer, and obviously, only more stable forms pass through the digestive tracts of animals and humans. It is also interesting that after anaerobic fermentation and after 20-week aerobic cultivation at 25°C only the compounds (lipids + proteins + hemicelluloses in mixture II D account roughly for 11%) that could be considered as labile remained in the mixture of slurry and sludge. These are apparently their more stable forms as confirmed by the results in Tab. 5 which illustrate that to approximately 11% of organic carbon compounds it is necessary to add the % proportions of the first and second fraction on the basis of oxidisability according to Chan et al. (2001). Literary sources report that the sum of lipids, proteins and hemicelluloses in the anaerobically stabilised sludge from municipal waste water treatment plants amounts to 13% – 39.6% of dry matter, so it is quite a general phenomenon.
The ion exchange capacity of sludge, pig slurry and their mixture before fermentation, before incubation and after incubation is very low and does not reach the values that are typical of sandy soil. It is increased by anaerobic fermentation along with incubation markedly but practically little significantly to the level typical of medium-textured soils. The same relations were observed for buffering capacity, which is not surprising. The results document that degradability of the organic part of anaerobically stabilised sludge worsened substantially and that it cannot be improved very markedly by the use of soil microorganisms and soil.
We have to draw a surprising conclusion that sludge as a waste from the processes of anaerobic digestion is a mineral rather than organic fertiliser and that from the aspect of its use as organic fertiliser it is a material of much lower quality than the original materials. We cannot speak about any improvement of the organic material by anaerobic digestion at all. Their liquid phase, rather than the solid one, can be considered as a fertiliser. If it is taken as a fertiliser in general terms, we do not protest because besides the slightly higher content of mineral nutrients available to plants (mostly nitrogen) it has the higher ion exchange capacity and higher buffering capacity than the material before anaerobic fermentation, but this increase is practically little significant.
3.1.2. Digestate composting
3.1.2.1. What is compost?
Similarly like in the evaluation of digestate when the daily practice has simplified the problem very much because the main functions of mineral and organic fertilisers are not distinguished from each other, the simplification of the problem of composting and application of composts has also led to an absurd situation. In many countries the compost is understood to be a more or less decomposed organic material, mostly from biodegradable waste, which contains a certain small amount of mineral nutrients and water. The main requirement, mostly defined by a standard, is prescribed nutrient content, minimum amount of dry matter, absence of hazardous elements and the fact that the particles of original organic material are so decomposed that the origin of such material cannot be identified. Such ‘pseudo’ composts are often offered to farmers at a very low cost because the costs of their production are usually paid by producers of biodegradable waste who want to dispose of difficult waste.
The producers of such composts often wonder why farmers do not intend to buy these composts in spite of the relatively low cost. It is so because the yield effect of fertilisation with these composts is minimal, due to a low content of nutrients it is necessary to apply tens of tons per 1 ha (10 000 m2), which increases transportation and handling costs. In comparison with so called “green manure”, i.e. ploughing down green fresh matter of clover, lucerne, stubble catch crops and crops designed for green manure, e.g. mustard, some rape varieties, etc., the fertilisation with these false composts does not have any advantage. The highly efficient decomposing activity of soil microorganisms, supported by equalising the C : N ratio to the value 15 – 25 : 1, works in the soil similarly like the composting process in a compost pile where the disposal of biodegradable material is preferred at the cost of a benefit to farmers.
What should the real compost be like? It is evident from the definition: the compost is a decomposed, partly humified organomineral material in which a part of its organic component is stabilised by the mineral colloid fraction. It is characterised by high ion-exchange capacity, high buffering capacity and is resistant to fast mineralisation. The reader of this text has surely noticed that the nutrients have not been mentioned here at all. Of course, they are present in the compost, their amount may be higher or a lower, but it is not important. It is crucial that the compost will maintain nutrients in the soil by its ion-exchange reactions and that it will protect them against elution from topsoil and subsoil layers to bottom soil or even to groundwater, no matter whether these plant nutrients originate from the compost itself or from mineral fertilisers or from a natural source – the soil-forming substrate in the soil-forming process. In the production of such “genuine” compost it is necessary to ensure that organic matter of the original composted mixture will be transformed not only by decomposing mineralisation, exothermic oxidation processes but also partly by an endothermic humification process that is not a decomposing one, but on the contrary, it is a synthetic process producing high-molecular, polycondensed and polymeric compounds, humic acids, fulvic acids and humins, i.e. the components of soil humus. It is to note that we should not confound the terms “humus” and “primary soil organic matter”; these are completely different mixtures of compounds, of quite different properties! Humus is characterised by high ion-exchange capacity and very slow mineralisation (the half-time of mineralisation of humic acids in soil conditions is 3 000 – 6 000 years!) while primary organic matter, though completely decomposed but not humified, has just opposite properties. Sometimes it may have a high sorption capacity but not an ion-exchange capacity.
The high ion-exchange capacity of humified organic matter is a cause of other two very important phenomena: huge surface forces of humus colloids in soil lead to a reaction with similarly active mineral colloids, which are all mineral soil particles of silicate nature that are smaller than 0.001 mm in size. These particles are called “physical clay” in pedology. The smaller the particles, the larger their specific surface, which implies their higher surface activity. Clay-humus aggregates are formed, which are adsorption complexes, elementary units of well-aerated, mechanically stable and elastic soil microaggregates that may further aggregate to macroaggregates and to form the structured well-aerated soil that has a sufficient amount of capillary, semi-capillary and non-capillary pores and so it handles precipitation water very well: in drought capillary pores draw water upward from the bottom soil while in a rainy period non-capillary pores conduct water in an opposite direction. The basic requirement for soil productivity is met in this way. It is often much more important than the concentration of nutrients in the soil solution (and hence in the soil).
The other important phenomenon related to ion-exchange properties of compost or soil is buffering capacity, the capacity of resisting to a change in pH. Soils generally undergo acidification, not only through acid rains as orthodox ecologists often frighten us but also mainly by electrolytic dissociation of physiologically acid fertilisers and intensive uptake of nutrients from the soil solution by plants. By the uptake of nutrient cations plants balance electroneutrality by the H+ ion, which is produced by water dissociation, so that the total electric charge does not change. If it were not so, each plant would be electrically charged like an electrical capacitor. The humus or clay or clay-humus ion exchanger in compost or in soil, similarly like any other ion exchanger, behaves in the same way as the plant during nutrient uptake: when any ion is in excess in the environment, e.g. H+ in an acidifying soil, the plant binds this H+ and exchanges it for another cation that was bound by it before. The H+ ion is blocked in this way and the pH of soil does not change. High buffering capacity is a very favourable soil property and is typical of soils with a high content of mineral or organic colloid fraction, i.e. of heavy-textured soils and of organic soils with a high degree of humification of soil organic matter.
As described above, it is quite obvious what soils should be fertilised with real genuine composts preferentially: these are mainly light sandy and sandy-loam soils in which mineralisation processes are so fast due to high aeration that the organic matter of potentially applied organic fertilisers factually “burns”. Mineral nutrients are released from an organic fertiliser but very soon there is a lack of necessary organic matter in such a soil. Energy for the soil microedaphon is not sufficient, ion-exchange capacity is low because decomposed organic matter fails to undergo humification. Such a soil does not hold water while rainfall quickly leaches nutrients from the soil. Only the application of genuine composts can markedly improve the productivity of these soils. Their clay-stabilised organic matter resists the attack of oxygen excess and remains decomposable, so it is able to maintain the required microbial activity of soil.
3.1.2.2. How is “genuine” compost produced?
Modern production of industrial composts is based on an idea that the compost is a substrate for plants with nutrient content. This is the reason why attention is mainly paid to the mechanical treatment of organic material – grinding, crushing and homogenisation. A homogenised blend, enriched with nutrients, applied water and/or compost additives, is subjected to fast fermentation. It is turned at the same time and homogenised again. The turning ensures a new supply of oxygen and if the compost has a sufficient amount of easily degradable organic matter, the temperature during composting increases up to 50 – 60°C, which allows a desirable breakdown of particles of the original organic material. The product acquires a dark colour, it is loose, often has a pleasant earthy smell while the odour of the original organic material is not perceptible any more. Farm sludge is often added to the compost formula as a nitrogen source or the improper C to N ratio is adjusted by the addition of mineral nitrogenous fertilisers. Slurry and liquid manure are used as an N and water source and sometimes limestone is added to prevent acidification. The aeration of the fermented pile of materials is provided by the addition of inert coarse-grained materials, mainly of wood chips, crushed straw, rubble, undecomposable organic waste and other materials available from local sources, whereas the use of horizontal and vertical ventilation systems is less frequent. It is often the type of “aeration” additive which explicitly shows that the compost producer prefers waste processing to the interest of future users of their products, farmers and productivity of their soils. The ion-exchange capacity of these composts is about 40 – 80 mmol chem. eq. 1000 g-1 and it is very low. It characterises a light, little fertile sandy soil.
How is the real “genuine” compost produced? The following principles should be observed:
Organic material of the compost formula should have a high degree of lability. If the compost producer does not have a sufficient amount of such very easily degradable organic material, its lability should be enhanced by saccharidic waste.
The C : N ratio should be adjusted to the value 10 – 15 : 1, not to total C and total N, but to the value of Chws and Nhws (hot water extractable carbon and nitrogen). Obviously, it is not worth adding to the compost a nitrogen source e.g. in waste polyamide because this nitrogen is not accessible. It is a flagrant example but we have detected many times that the C : N ratios are completely different from those the compost producers suppose them to be.
The compost formula should have a high proportion of buffering agent. It should always be ground limestone or dolomite, it should never be burnt or slaked lime. Do not economize on this additive very much. It will be utilised excellently after the application of this compost to soils.
Stabilisation of organic matter should be ensured by a sufficient amount of the clay mineral fraction. It must not be applied in lumps, but in the form of clay slurry, clay water suspension, used also for the watering of the blend of compost materials. Concrete mixers are ideal equipment for the preparation of clay slurry.
The compost blend should be inoculated by healthy fertile topsoil. Soil microorganisms are adapted in a different way than the microorganisms of the intestinal tract of animals. Therefore slurry and liquid manure are sources of water and nitrogen but they are not a suitable inoculant even though they are often recommended in literature for this purpose.
The basic requirement is to reach a high temperature (55 – 60°C) during composting and to maintain the second phase of temperature (40 – 50°C) for a sufficiently long time. This process will be successful only at a sufficiently high amount of highly labile organic matter in the compost formula, at a correct C : N ratio, at a correct water to air ratio in the pile (the moisture during fermentation should be maintained in the range of 50 – 60% of water-retention capacity) and at a reduction in heat losses. Heat losses of the compost into the atmosphere through the pile surface are relatively small. The highest quantity of heat is lost by conducting the heat through the concrete or the frozen ground of the compost pile, and mainly by an aerating system if it is installed.
Humification processes, formation of humus acids and humins or their precursors at least, occur rather in later stages of fermentation and so we should accept that the good compost cannot be produced by short-term fermentation. Old gardeners fermented composts for 10 – 12 years, but their composts reached the ion-exchange capacity of 300 – 400 mmol chem. eq. 1000 g-1.
3.1.2.3. How is the digestate used in compost production?
If besides decomposing exothermic processes synthetic endothermic processes are also to take place in compost when high-molecular humus substances (fulvic acids, humic acids and humins) are formed, these conditions must be fulfilled: very favourable conditions for the microflora development must exist in compost, and minimum losses and the highest production of heat must be ensured. For this purpose it is necessary to use a high admixture of buffering additive (limestone) in the compost formula, sufficient amount of very labile organic matter, thermal insulation of the base of fermented material because the heat transfer coefficient does not have the highest value for transfer from the composted pile into the atmosphere but mainly into solid especially moist materials, i.e. into concrete, moist or frozen earth, clay, bricks, etc. At a sufficient amount of labile fractions of organic matter the maximum heat production can be achieved only by a sufficient supply of air oxygen. Beware of this! The ventilation through vertical and horizontal pipes provides sufficient air for aerobic processes in the fermented material but at the same time the ventilation is so efficient that a considerable portion of reaction heat is removed, the material is cooled down and the onset of synthetic reactions with the formation of humus substances does not occur at all.
When sufficiently frequently turning the fermented material, the safest method of compost aeration and ventilation is the addition of coarse-grained material while inert material such as wood chips, chaff and similar materials can be used. It is however problematic because inert material in the fermented blend naturally decreases the concentration of the labile fraction of organic matter, which slows down the reaction rate of aerobic biochemical reactions and also the depth of fermentation is reduced in this way. It mainly has an impact on the synthetic part of reactions and on the formation of humus substances while the influence on decomposing reactions is smaller.
It would be ideal if during compost fermentation in a microbially highly active environment the inert aeration material were able not only to allow the access of air oxygen into the fermented material but also to decompose itself at least partly and to provide additional energy to biochemical processes in the pile in this way.
These requirements are excellently met by the solid fraction of digestate from biogas plants. It aerates the compost and although it lost labile fractions of organic matter in biogas plant digesters, it is capable of further decomposition in a microbially active environment. It releases not only energy but also other mineral nutrients. So this waste is perfectly utilised in this way. The average microbial activity of even very fertile, microbially active soils is not efficient enough for the decomposition of this stable organic material when the solid phase of digestate is used as an organic fertiliser. The decomposition rate is slow, especially in subsequent years, and therefore the resultant effect of the solid fraction of digestate as an organic fertiliser is hardly noticeable. The combination of anaerobic decomposition in the biogas plant digester and aerobic decomposition in compost could seem paradoxical, and some agrochemists do think so. The preceding exposition has shown that it is not nonsense.
Now let us answer the question: what dose of the solid fraction of digestate should be used in the compost formula? It depends on many factors: on the amount of the labile fraction of organic component and mainly on the degree of its lability (which can be determined in a reliable way by the above-mentioned method according to Rovira and Vallejo 2002, 2007, Shirato and Yokozawa 2006), on the aeration and porosity of materials used in the compost formula, on the number of turnings, on prevailing outdoor temperature, water content, degree of homogenisation and on other technological parameters.
In general: the higher the amount of the labile component of organic matter and the higher its lability (e.g. the content of saccharides and other easily degradable substances), the higher the portion of the solid fraction of digestate that can be used.
Now short evidence from authors own research is presented:
The basic compost blend was composed of 65% fresh clover-grass matter from mechanically mown lawns, 10% ground dolomite, 2% clay in the form of clay suspension, 20% solid phase of digestate (obtained by centrifugation with fugate separation) or 20% crushed wood chips and 3% PK fertilisers. The C : N ratio in the form of Chws : Nhws (hot-water-soluble forms) was 15 : 1, nitrogen was applied in NH4NO3 in sprinkling water that was used at the beginning of fermentation at an amount of 70% of the beforehand determined water-retention capacity of the bulk compost blend. Inoculation was done by a suspension of healthy topsoil in sprinkling water. Fermentation was run in a composter in the months of April – November, and the perfectly homogenised material was turned six times in total. Water loss was checked once a fortnight and water was replenished according to the increasing water-retention capacity to 60%. The formation, amount and quality of formed humus substances were determined not only by their isolation and measurement but also by their specific manifestation, which is the ion-exchange capacity of the material. The original particles of composted materials were not noticeable in either compost (with the solid part of digestate and with wood chips), in both cases the dark coloured loose material with pleasant earthy smell was produced. Tab. 6 shows the analyses of composted materials and composts. The digestate was from a biogas plant where a mix of cattle slurry, maize silage and grass haylage is processed as a substrate. The material in which the aeration additive was polystyrene beads was used as compost for comparison.
Solid phase of digestate
Wood chips
Compost
PS
Wood chips
Solid phase of digestate
CFA mg.kg-1
0
0
38
84
178
CHA mg.kg-1
0
0
15
20
62
CHA : CFA
-
-
0,39
0,24
0,35
Ion-exchange capacity T mmol chem. eq.kg-1
51
12
72
64
224
Table 6.
The content of fulvic acid carbon (CFA), humic acid carbon (CHA), their ratio and ion-exchange capacity T of the solid phase of digestate and wood chips at the beginning of fermentation and of composts with polystyrene (PS), wood chips and solid phase of digestate
The results document that the ion-exchange capacity, and hence the capacity of retaining nutrients in soil and protecting them from elution after the application of such compost, increased very significantly only in the digestate-containing compost. The ion-exchange capacity of this compost corresponds to the ion-exchange capacity of heavier-textured humus soil, of very good quality from the aspect of soil sorption. The compost with wood chips produced in the same way does not practically differ from the compost with polystyrene but it does not have any humic acids and the ion-exchange capacity of these composts is on the level of light sandy soil with minimum sorption and ion-exchange properties. However, the total content of humus acids in the compost with the solid phase of digestate is very small and does not correspond to the reached value of the ion-exchange capacity of this compost. Obviously, precursors of humus acids that were formed during the fermentation of this compost already participate in the ion exchange. Humus acids would probably be formed from them in a subsequent longer time period of their microbial transformation. If only humus acids were present in composting products, at the detected low concentration of CFA + CHA the T value of the compost with the solid phase of digestate would be higher only by 1 – 1.2 mmol.kg-1 than in the compost with polystyrene or wood chips. Because it is more than a triple, other substances obviously participate in the ion exchange.
3.1.3. Use of digestate for improvement of heavy-textured soils
Optimum values of reduced bulk density Or for soils are around 1.2 g.cm-3, but more important is the minimum value of bulk density for the restriction of root growth which is about 1.7 – 1.8 g.cm-3 for light soils and only 1.40 – 1.45 g.cm-3 for heavy-textured clay soils. Bulk density Or is a crucial parameter for the assessment of the soil compaction rate as an important negative factor of soil productivity. Bulk density of topsoil in the range of 0.95 – 1.15 g.cm-3 shows loose topsoil while the value 1.25 g.cm-3 indicates heavily compacted topsoil.
Another important value of soil is soil aeration VZ. It is expressed in volume % as the difference between porosity Po and momentous soil moisture Wobj.
Vz=Po–Wobj.E15
Optimum aeration e.g. for grasslands is 10% by volume, for soils for barley growing it is already as much as 24% by volume. Soil porosity Po is the sum of all pores in volume per cent, in topsoils it is around 55%, in subsoil it decreases to 45 – 35%. Sandy soils have on average P = 42% by vol., out of this 30% are large pores and 5% are fine pores while heavy-textured clay soils have the average porosity of 48% by vol., out of this only 8% are large pores and 30% are fine pores. Fine pores are capillary and large pores are non-capillary ones. Cereals should be grown in soils with 60 – 70% of capillary pores out of total porosity and 30 – 40% of non-capillary pores. Forage crops and vegetables require the soils with 75 – 85% of capillary pores and only 15 – 25% of non-capillary pores out of total porosity.
Ploughing resistance P is also significant. It is a specific resistance that must be overcome during cutting into and turning over the soil layer. It is expressed by the drawbar pull measured dynamometrically on the coupling hook of a tractor. It is related to the texture and moisture of soil, to its content of organic substances and ploughing depth. Ploughing resistance for light soils is 2 – 4 t.m-2, for heavy-textured soils it is 6 – 8 t.m-2. The units kp.dm-2 are also used. For sandy soils the ploughing resistance of 25 – 28 kp.dm-2 is usual, for clay soils it is 70 kp.dm-2.
Hence heavy-textured soils are more responsive to the higher reduced bulk density of soil when roots develop poorly, they need more non-capillary pores to allow for the better infiltration of precipitation water, they also need higher aeration because they are mostly too moist and many aerobic processes including the microbial activity take place with difficulty. Of course, the high ploughing resistance is not desirable either for the economics of soil cultivation or for the production process of any crop. Therefore it is necessary to improve heavy-textured soils and the question is how. Organic fertilisers are not sufficient; peat was used previously but now it is banned to use it for the reason of the peat bog conservation, and synthetic soil amendments (Krilium, Flotal etc.) are currently too costly for the agriculture sector. An excellent material for the improvement of heavy-textured soils is the solid phase of digestate if ploughed down at higher doses than those used for the application of farmyard manure or compost, i.e. 100 – 150 t.ha-1. Even though we cannot expect any great release of mineral nutrients from organic matter of the solid phase of digestate due to high stability of this material, the improvement and aeration of heavy-textured soil with better conditions for the microbial activity of soil and undisturbed root growth often bring about a higher yield effect than is the yield effect of nutrients from high-quality organic fertilisers as shown by the results of this field trial:
When we still believed that the solid phase of digestate was an organic fertiliser, we laid out an exact field trial on a heavier-textured, loamy-clay soil with medium to good reserve of available nutrients. The trial had two treatments: the one treatment was fertilisation with the solid phase of digestate only (after fugate centrifugation) and the other treatment was the application of only mineral fertilisers in the form of pure salts at such a dose that the level of these easily available nutrients to plants was the same as the amount of unavailable or little available nutrients in the treatment fertilised with digestate. We wanted to find out from the yield of the grown crop what amount of mineral nutrients would be released from the digestate in comparison with completely available nutrients in the first year and in subsequent years of the crop rotation: early potatoes – winter barley – red clover – oats. We intended to compare the digestate with other organic fertilisers, e.g. farmyard manure which in the first year mineralises about a half of its nutrients bound in organic matter. But the result we obtained was surprising: in the first year the yield of early potatoes was higher by 12% in the digestate treatment although nobody could doubt that this treatment had a lower amount of nutrients than the variant fertilised with pure salts. The only explanation is that the higher yield effect in the digestate treatment was not caused by the higher input of nutrients but by the improvement in physical properties of heavy-textured soil that surely occurred as seen in Tab. 7. The favourable effect of the heavy-textured soil improvement on yield was positively reflected in subsequent years also in other crops of the crop rotation that were fertilised in both treatments in the same way, i.e. mineral fertilisers were applied. We drew a conclusion that in practice the yield effect is often ascribed to digestate nutrients although it is caused by better soil aeration and better root growth due to soil loosening after the application of digestate.
Clay-loamy soils
initial
improved by digestate
Reduced bulk density Or g.cm-3
1.43
1.38
Soil aeration Vz % by vol.
18.5
22.4
Total porosity Po % by vol.
43.9
43.8
Proportion of largepores in total porosity %
22.7
28.1
Ploughing resistance P kp.dm-2
63
50
Table 7.
Bulk density Or, aeration Vz, total porosity Po, proportion of large pores in total porosity and ploughing resistance P in a heavy-textured clay-loamy soil and after its improvement with the dose of 150 t-ha-1 of the digestate solid phase
3.2. Perspective utilisation of digestate with a modification of conventional technology of biogas production
Perspective utilisation of digestate is connected with envisaged modifications of the technology of biogas production in agricultural biogas plants. These plants have digesters for the solid phase only or the most frequent are liquid (suspension) digesters. These are digesters without partition wall where the biomass of microorganisms is carried by the processed substrate. In reactor systems for the technological processing of waste from chemical and food technologies and from the technology of municipal and industrial waste water treatment those digesters are preferred where the biomass of functional microorganisms is fixed onto a solid carrier or onto partition walls of apparatuses. It is often granulated and is maintained in the digester as a suspended sludge cloud. These reactors may be affected by short-circuiting and therefore they are sensitive to the particle size of the processed substrate but they withstand a much higher organic load than the digesters without partition wall. Of course, the reactor is smaller, cheaper and more efficient.
Hence a perspective modification of the biogas production technology in agricultural biogas plants is gradual transition to the procedures of anaerobic digestion that are currently used in industrial plants for the treatment of organic waste water. The promising utilisation of digestate from such digesters is mainly the manufacture of solid fuels in the form of pellets that are prepared from the solid phase of agricultural waste before the proper aerobic digestion of the material for a biogas plant. The first proposal of this type is the IFBB procedure, the principle of which was explained in Chapter 1.4. The liquid phase from the preparation of processed material, which is destined for anaerobic fermentation in digesters with partition wall, could be used as a liquid or suspension fertiliser but researchers would have to solve the cheap method of nutrient concentration in this waste. The current price of Diesel fuel, machinery and human labour and low purchase prices of agricultural products do not allow the application of highly diluted fertilisers and in fact handling of water.
The problem is that a small biogas plant is only scarcely profitable. Hence economic reasons favour large-capacity plants with the volume of digesters 5 000 – 10 000 m3. In such large plants the reactors with partition wall would be unjustifiably expensive and therefore in these large-capacity facilities for biogas production it is necessary to use reactors without partition wall. The utilisation of their digestate should be based on this scheme: separation of digestate – concentration of fugate and its utilisation as a liquid mineral nitrogenous fertiliser. The solid phase of digestate should be used as an inert aeration component in compost production and as a material for the improvement and aeration of heavy-textured soils.
In any case, researchers must resolve a cheap method of nutrient concentration in fugate.
A number of different reactors are available for small to medium-sized biogas plants with the treatment of material according to IFBB that were developed on a research basis mainly in the sixties to the nineties of the twentieth century. At first, these were reactors with suspension biomass, e.g. mixing contact anaerobic reactor (ACR – AG), its innovation was a membrane anaerobic reactor system (MARS) and sequencing batch reactors (SBR). Then reactors with immobilised biomass were developed that are divided into reactors with biomass on the surface of inert material and reactors with aggregated (granulated) biomass.
The former group is divided into upflow reactors and downflow reactors. Reactors with a mobile filling are the third variant.
The latter group is divided into reactors with the internal separator of biogas and biomass, reactors with the external separator of biomass and reactors with partitions.
Further development brought about biofilm reactors where the biomass of microorganisms is fixed onto a solid carrier. These reactors are considered as facilities with the highest operating stability, very resistant to the fluctuation of operating conditions. But they do not usually allow for such a high load as reactors with suspension biomass. The oldest reactor of this series was an upflow anaerobic filter (UAF) reactor from 1967, then a downflow stationary fixed film reactor (DSFF) and downflow reactor with filling in bulk followed. Great progress was made by designing an anaerobic rotating biological contactor (ARBC) and fluidized bed reactor (FBR) in the eighties of the last century. A similar type of reactor, expanded bed reactor (EBR), also designated by AAFEB (anaerobic attached film expanded bed), is suitable to be operated at low temperatures. The detention time is only several hours and the portion of residual organic impurities is practically the same as in modern aerobic systems for the treatment of organically contaminated waters.
Further advance was the development of reactors with aggregated biomass. The most important representative of this group of digesters is an upflow anaerobic sludge blanket (UASB) reactor. It is a reactor with sludge bed and internal separator of microorganism biomass. The biggest reactor of this type (5 000 m3) processes waste water from the manufacture of starch in the Netherlands, it withstands the load of 12.7 kg chemical oxygen demand (COD) per 1 m3/day, 74% of organic matter is degraded and the detention time is 33 hours only. Besides the UASB reactor these reactors belong to this group: hybrid upflow bed filter (UBF) reactor, anaerobic baffled reactor (ABR), expanded granular sludge bed (EGSB) reactor, internal circulation (IC) reactor and upflow staged sludge bed reactor (USBB), often also called biogas tower reactor (BTR), and other design models of the UASB reactor.
At the end of this chapter it is to note that modern anaerobic reactors have almost amazing outputs – unfortunately, the more perfect the reactor, the more expensive, and also their advantage over huge digesters without partition wall we have got accustomed to in biogas plants is gradually disappearing. The selection of modern anaerobic reactors is also more difficult than the selection of conventional technology of reactors without partition wall, because they are mostly rather specific to the substrate to be processed. They also have higher demands on processing, attendance and checks.
The perspective possibility of using modern anaerobic reactors for biogas production in smaller plants and the simultaneous solution to the use of the digestate solid phase as a raw material for the production of solid pelleted biofuels initiated our study of the IFBB procedure (Chap. 1.4.) for the substrate commonly used in biogas plants in the CR. The results of our experimental work are presented below:
The IFBB technological procedure is based on a high degree of cell wall maceration as a result of the axial pressure and abrasion induced with a screw press. Reulein et al. (2007) used this procedure for dehydration of various field crops; it is also known from the technologies of processing rapeseed, sugar beet and leguminous crops for the production of protein concentrates (Telek and Graham 1983, Rass 2001) and in biorefineries for the extraction of lactic acid and amino acids (Mandl et al. 2006).
The basic substrate contained 37.5% by weight of cattle slurry and 62.5% by weight of solid substrates, i.e. a mixture of chopped maize silage and grass haylage of particle size max. 40 mm mixed at a 4.75 : 1 ratio, i.e. 51.6% of silage and 10% of haylage. In total, the substrate accounted for 19.3% of dry matter. This substrate at 15°C is designated by A. A portion of this substrate was mixed with water at a weight ratio of 1 : 5, put into a thermostat with a propeller stirrer at 15°C and intensively stirred for 15 minutes. Analogically, the other portion was also mixed with water at a substrate to water ratio of 1: 5 and put into a thermostat at a temperature of 60°C with 15-minute intensive stirring again. The sample of the substrate with water 15°C was designated by B, the sample with water 60°C was designated by C. The liquid phase from substrate A was separated by centrifugation while the liquid phases from substrate B and C were separated in a laboratory screw press for the pressing of fruits and vegetables. The separated liquid phases of substrates A, B and C were diluted with water to obtain a unit volume and the analytical results were recalculated to a transfer ratio in the liquid phase in relation to the content of particular nutrients in dry matter of the original substrate mixture.
The experiments conducted in an experimental unit of anaerobic digestion and in an equipment for IFBB made it possible to determine the content of mineral nutrients in substrate A after 42-day anaerobic digestion in mesophilic conditions (40°C), in the liquid phase of substrate A after anaerobic digestion, in the liquid phase of substrate B and C after recalculation to the dry matter content and concentration corresponding to substrate A, also after the process of anaerobic digestion under the same conditions (42 days, 40°C).
The above recalculations enable to clearly show the advantages of the IFBB process in nutrient transfer from solid to liquid phase when substrate A and 5 times diluted substrates B and C are compared, but they may unfortunately evoke a distorted idea about the real concentration of nutrients in liquid phases. It is to recall that IFBB increases the mass flow and transfer to the liquid phase but with regard to the 5-fold dilution the nutrient concentration in liquid waste for fertilization continues to decrease. This is the reason why the table below shows the original, not recalculated concentrations in the fugate of fermented substrate A and in the fermented liquid phases of the same substrate in IFBB conditions designated by B and C, which document considerable dilution of these potential mineral fertilizers.
The solid phases of substrates A, B and C after anaerobic digestion were subjected to determination of organic matter hydrolysability in sulphur acid solutions according to Rovira and Vallejo (2000, 2002) as modified by Shirata and Yokozawa (2006); we already used this method to evaluate the degradability of a substrate composed of pig slurry and sludge from a municipal waste water treatment plant (Kolář et al. 2008).
Cattle slurry
Maize silage
Grass haylage
Substrate
Transfer ratio to liquid phase
A
B
C
Dry matter
6.4
28.9
18.7
19.3
0.06 0.01
0.18 0.04
0.20 0.03
N-compounds (N x 6.25)
25.6
11.5
7.4
16.3
0.05 0.01
0.20 0.04
0.26 0.05
Digestible nitrogen compounds
-
6.2
3.8
7.3
-
-
-
Nitrogen-free extract
-
52.8
48.6
49.9
0.30 0.03
0.45 0.05
0.48 0.05
Crude fibre
-
25.7
29.8
18.0
0.01 0.00
0.10 0.00
0.10 0.00
Fat
-
4.8
1.5
2.8
-
-
-
Organic substances
76.4
94.8
87.3
87.0
-
-
-
Mineral N (N – NH4+, NO3-)
2.4
0.1
0.1
1.0
0.74 0.05
0.89 0.06
0.95 0.06
P
1.3
0.2
0.3
0.6
0.40 0.05
0.52 0.07
0.65 0.08
K
5.3
1.4
1.7
2.9
0.57 0.04
0.60 0.04
0.79 0.05
Ca
1.3
0.4
0.6
0.8
0.31 0.06
0.38 0.08
0.46 0.08
Mg
0.5
0.2
0.3
0.3
0.38 0.07
0.43 0.08
0.55 0.07
Na
0.1
0.1
0.1
0.1
0.70 0.08
0.77 0.04
0.80 0.08
Cl
0.3
0.2
0.2
0.2
0.77 0.06
0.85 0.05
0.85 0.06
Table 8.
Dry matter content in the fresh mass of used materials and their chemical composition in % dry matter. The transfer ratio of mass flow to the liquid phase from the fresh mass of substrate not diluted with water at 15°C (A), diluted with water at a 1:5 ratio at 15°C (B) and diluted with water at a 1:5 ratio at 60°C (C). Liquid phase A was separated by centrifugation, liquid phases B and C with a screw press.(Sample size n = 5, reliability interval of the mean for a significance level = 0.05)
Table 8 documents that the IFBB procedure proposed by German authors for grass haylage is applicable to the typical substrate of Czech biogas plants, to a mixture of cattle slurry, maize silage and grass haylage. In agreement with German experience the observed transfer ratios are markedly higher at 60°C compared to 15°C of hydrothermal conditions but the value of transfer ratios to the liquid phase is generally lower in our experiments. We ascribe this fact to the properties of the material and also to the achieved axial force of the used press that was apparently lower even though the same perforation size of the conical part of the press (1.5 mm) and slope of the body (1 : 7.5) were used.
The results in Table 8 illustrate that the separation of the liquid and solid phase of the substrate that has not been subjected to anaerobic digestion yet by means of centrifugation only is rather imperfect from the aspect of the mass flow of components. The IFBB system (water dilution, intensive stirring at a temperature of 60ºC and subsequent separation of the liquid and solid phase with a screw press) increases the transfer of organic and mineral substances into the liquid phase by about 15 – 20%, and it is also true of the saccharidic nitrogen-free extract and organic nitrogen compounds. This fact documents that the liquid phase has a higher amount of active, well-degradable organic material for anaerobic digestion, and so it is possible to expect not only the higher production of biogas but also more mineral nitrogen in the liquid after anaerobic digestion.
The high mass flow of alkaline metals and chlorine into the liquid phase, and on the contrary, the low transfer of calcium confirm the opinion of German researchers (Wachendorf et al. 2007, 2009) that the IFBB procedure largely increases the quality of biomass solid phase as a material for the production of solid fuels: the production of polychlorinated dioxins and dibenzofurans is reduced, waste gases will be less corrosive and the temperature of ash fusion will be higher.
Nitrogen compounds of the substrate dry matter account for 16.3%, i.e. these nitrogen organic compounds contain 2.6% of nitrogen in dry matter (Table 8). The content of mineral nitrogen in the substrate before anaerobic digestion was 1%. If the digestate contains 2.26% of mineral nitrogen in the same dry matter after anaerobic digestion, it is to state that during anaerobic digestion about a half of organic nitrogen mineralized and enriched the original 1% content of the substrate before the fermentation process. But the dry matter content decreased in the course of fermentation, and therefore the concentration of all nutrients in digestate apparently increased contrary to the original substrate. In our experiment the concentration of substrate dry matter decreased from 19.3% to 13.3% by weight during anaerobic digestion. The content of mineral nitrogen amounting to 3.28% at this dry matter content corresponds to 2.26% of min. N at the original dry matter content of 19.3% by weight (Table 9). The contents of the nutrients P, K, Ca and Mg in digestate dry matter after anaerobic digestion (Table 9) are apparently substantially higher than before fermentation. However, anaerobic digestion did not actually bring about any increase in the content of these nutrients, and the increased concentrations completely correspond to a reduction in dry matter content, 19.3 : 13.3 = 1.45.
It is not a new fact, but Table 9 shows how this mineral nitrogen is transferred to the liquid phase of substrates B and C compared to substrate A. Obviously, the liquid phase of substrate B has a higher amount of mineral nitrogen than that of substrate A, and so the effects of the screw press, which already before anaerobic digestion enriched the liquid substrate B with colloidal solutions (sols) of nitrogen organic compounds from the crushed cell walls of the plant material that provided further mineral nitrogen during fermentation, were significantly positive at the same temperature. It was still more evident in the liquid phase of substrate C while a conclusion can be drawn that a higher temperature contributes to a higher extraction of insoluble or partly soluble nitrogen organic compounds from which further mineral nitrogen is released after subsequent fermentation.
Substrate A
Liquid phase of substrate A
Liquid phase of substrate after recalculation to dry matter content and concentration of substrate A
B
C
N
3.28
2.43
2.92
3.11
P
0.87
0.35
0.45
0.56
K
4.20
2.39
2.52
3.32
Ca
1.16
0.25
0.30
0.36
Mg
0.43
0.11
0.13
0.16
Table 9.
Contents of mineral nutrients after anaerobic digestion (42 days, 40°C) in digestate (substrate A), in its liquid phase and in fermented liquids from IFBB in % dry matter by weight
Table 10 documents the original (before their recalculation) concentrations of mineral nutrients in the liquid phase of substrates A, B and C. These results indicate that liquid phase A can be considered as a highly diluted mineral fertilizer. Even though the IFBB process increases the concentration of nutrients (nitrogen) in the liquid phase before and after fermentation (liquid phase B and C), the dilution is very high. The recommended dilution with water, used by Wachendorf et al. (2009) and also in our experiments, produces liquid wastes diluted to such an extent after anaerobic digestion that they are practically hardly utilizable as a solution of mineral nutrients. Fugates are still rather problematic as mineral fertilizers, especially for applications in humid years and to soils with low microbial activity and consequently slow immobilization of mineral nitrogen, and naturally they are hardly applicable to pervious soils.
Liquid phase
A
B
C
N
0.32 0.03
0.09 0.01
0.10 0.01
P
0.05 0.00
0.01 0.00
0.02 0.10
K
0.31 0.04
0.08 0.01
0.11 0.15
Ca
0.03 0.00
0.01 0.00
0.01 0.00
Mg
0.01 0.00
0.00 0.00
0.00 0.00
Table 10.
Contents of mineral nutrients after anaerobic digestion (42 days, 40°C) in the liquid phase of digestate A and in liquid phases B, C with the application of IFBB in % by weight of solutions that should be used for mineral fertilization(Sample size n = 4, reliability interval of the mean for a significance level = 0.05)(Note: Statistical evaluation of this recalculation table is based on original data in Table 10.)
Table 11 shows the results of hydrolytic experiments with solid phases of substrates A, B and C. They confirm the previously observed fact in the work with the substrate consisting of a mixture of pig slurry and primary sludge from a municipal waste water treatment plant that the solid phases of wastes from anaerobic digestion cannot be efficient as mineral fertilizers because of their very low degradability (Kolář et al. 2008). The IFBB process, which enriches the liquid phases with organic, easily degradable substances and improves biogas yields during the anaerobic degradation of only liquid phases, further depletes of these substances the solid phases of substrates and impairs their quality as organic fertilizers, even though it is not the case of an increase in the resistant component but only in worse hydrolysable LP II.
Solid phase of substrate
Proportion
LP I
LP II
RP
A1
43 8
41 7
16 2
A2
22 4
20 3
58 8
B
39 6
44 6
17 3
C
31 6
47 8
16 2
Table 11.
Proportions of the three pools of carbon in the solid phase of substrate A before anaerobic digestion (A1), after anaerobic digestion (A2) and in the solid phase of substrate A1 after IFBB procedure before anaerobic digestion at 15°C (B) and at 60°C (C) as determined by the acid hydrolysis method of Rovira and Vallejo (2002).(Sample size n = 4, reliability interval of the mean for a significance level = 0.05).Note: Description of fractions according to the method of Rovira, Vallejo 2002:LP I = (labile pool I) = the reserve of very labile, easily hydrolysable organic substances expressed as % of the total amount of organic matter in a sample LP II = (labile pool II) = the reserve of intermediately labile, less easily hydrolysable organic substances in %RP = (recalcitrant pool) = the reserve of hydrolysis resistant, very hardly degradable organic substances in %
Hence it is to state:
We tested the Integrated Generation of Solid Fuel and Biogas from Biomass (IFBB) procedure proposed for ensiled grass matter from the aspect of suitability of its use for a typical substrate of new Czech biogas plants, a mixture of cattle slurry, maize silage and grass haylage. The agrochemical value of the liquid phase from a biodigester was also evaluated. We concluded that this procedure is suitable for the tested substrate and improves the agrochemical value of a fugate from biogas production. By chlorine transfer to the liquid phase it makes it possible to use the solid phase as a material for the production of solid biofuels with a reduced threat of the generation of polychlorinated dioxins and dibenzofurans during combustion. However, the concentration of mineral nutrients in the liquid phase during IFBB procedure is extremely low after anaerobic digestion as a result of dilution with water, and so its volume value is negligible.
Here research must go on.
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/17482.pdf",chapterXML:"https://mts.intechopen.com/source/xml/17482.xml",downloadPdfUrl:"/chapter/pdf-download/17482",previewPdfUrl:"/chapter/pdf-preview/17482",totalDownloads:3198,totalViews:772,totalCrossrefCites:7,totalDimensionsCites:12,totalAltmetricsMentions:0,impactScore:4,impactScorePercentile:92,impactScoreQuartile:4,hasAltmetrics:0,dateSubmitted:"October 18th 2010",dateReviewed:"March 16th 2011",datePrePublished:null,datePublished:"August 1st 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/17482",risUrl:"/chapter/ris/17482",book:{id:"450",slug:"biofuel-s-engineering-process-technology"},signatures:"Ladislav Kolář, Stanislav Kužel, Jiří Peterka and Jana Borová-Batt",authors:[{id:"27030",title:"Dr.",name:"Ladislav",middleName:null,surname:"Kolar",fullName:"Ladislav Kolar",slug:"ladislav-kolar",email:"kolar@zf.jcu.cz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University of South Bohemia in České Budějovice",institutionURL:null,country:{name:"Czech Republic"}}},{id:"33954",title:"Mr.",name:"Stanislav",middleName:null,surname:"Kuzel",fullName:"Stanislav Kuzel",slug:"stanislav-kuzel",email:"kuzel@zf.jcu.cz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University of South Bohemia in České Budějovice",institutionURL:null,country:{name:"Czech Republic"}}},{id:"33955",title:"Mrs.",name:"Jiří",middleName:null,surname:"Peterka",fullName:"Jiří Peterka",slug:"jiri-peterka",email:"jiri.peterka@jcu.cz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"33956",title:"Mrs",name:"Jana",middleName:null,surname:"Borová-Batt",fullName:"Jana Borová-Batt",slug:"jana-borova-batt",email:"janabatt@volny.cz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_1_2",title:"1.1. Is the waste from digesters (digestate) an excellent organic fertilizer?",level:"2"},{id:"sec_2_2",title:"1.2. Mineralisation of organic matter in soil",level:"2"},{id:"sec_3_2",title:"1.3. Gain from mineralising organic fertiliser for farmers: energy for soil microorganisms and release of mineral nutrients for plant nutrition",level:"2"},{id:"sec_4_2",title:"1.4. What influences the quality of digestate as a fertiliser?",level:"2"},{id:"sec_5_2",title:"1.5. A hopeful prospect – IFBB process",level:"2"},{id:"sec_7",title:"2. Crucial problems",level:"1"},{id:"sec_7_2",title:"2.1. The first problem: organic matter of digestate is poorly degradable in soil, its labile fractions were already utilised in a digester",level:"2"},{id:"sec_8_2",title:"2.2. The second problem: the digestate contains much water and therefore the solution with plant nutrients is very dilute.",level:"2"},{id:"sec_9_2",title:"2.3. Fundamental issues to solve",level:"2"},{id:"sec_11",title:"3. Information",level:"1"},{id:"sec_11_2",title:"3.1. Current optimum utilisation of digestate from biogas plants in the agriculture sector",level:"2"},{id:"sec_11_3",title:"Table 1.",level:"3"},{id:"sec_12_3",title:"Table 6.",level:"3"},{id:"sec_12_4",title:"3.1.2.1. What is compost?",level:"4"},{id:"sec_13_4",title:"3.1.2.2. How is “genuine” compost produced?",level:"4"},{id:"sec_14_4",title:"Table 6.",level:"4"},{id:"sec_16_3",title:"Table 7.",level:"3"},{id:"sec_18_2",title:"3.2. Perspective utilisation of digestate with a modification of conventional technology of biogas production",level:"2"}],chapterReferences:[{id:"B1",body:'BlairG. J.LefroyR. D. B.LisleL.\n\t\t\t\t\t1995\n\t\t\t\t\tSoil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems.\n\t\t\t\t\tAustralian Journal of Agricultural Research, 46\n\t\t\t\t\t14591466 .'},{id:"B2",body:'GillmanG. P.\n\t\t\t\t\t1979\n\t\t\t\t\tA proposed method for the measurement of exchange properties of highly weathered soils. Australian Journal of Soil Research, 17\n\t\t\t\t\t129139 .'},{id:"B3",body:'ChanK. Y.BowmanA.OatesA.\n\t\t\t\t\t2001\n\t\t\t\t\tOxidizible organic carbon fractions and soil quality changes in an oxic Paleustalf under different pasture leys. Soil Science, 166, (1): 61 EOF -67.'},{id:"B4",body:'KolářL.KlimešF.LedvinaR.KuželS.\n\t\t\t\t\t2003 A method to determine mineralization kinetics of a decomposable part of soil organic matter in the soil. Plant, Soil and Environment, 49, (1): 8-11.'},{id:"B5",body:'KolářL.KuželS.HanušováA.GergelJ.LedvinaR.ŠindelářováM.SilovskáŠ.ŠtindlP.\n\t\t\t\t\t2005a The use of Spectroquant Merck BOD photometric test to evaluate the stability of organic matters in soil. Plant, Soil and Environment, 51, (1): 46-50.'},{id:"B6",body:'KolářL.KlimešF.GergelJ.KuželS.KobesM.LedvinaR.ŠindelářováM.\n\t\t\t\t\t2005b Methods to evaluate substrate degradability in anaerobic digestion and biogas production. Plant, Soil and Environment, 51, (4): 173-178.'},{id:"B7",body:'KolářL.LedvinaR.KuželS.KlimešF.ŠtindlS.\n\t\t\t\t\t2006 Soil Organic Matter and its Stability in Aerobic and Anaerobic Conditions. Soil Water Research, 1, (2): 57-64.'},{id:"B8",body:'KolářL.KuželS.PeterkaJ.ŠtindlP.PlátV.\n\t\t\t\t\t2008 Agrochemical value of organic matter of fermenter wastes in biogas production. Plant, Soil and Environment, 54, (8): 321-328.'},{id:"B9",body:'KolářL.KuželS.HoráčekJ.ČechováV.Borová-BattJ.PeterkaJ.\n\t\t\t\t\t2009a Labile fractions of soil organic matter, their quantity and quality. Plant, Soil and Environment, 55, (6): 245-251.'},{id:"B10",body:'KolářL.MaršálekM.FrelichJ.KuželS.ZedníkováJ.ŠvecováM.\n\t\t\t\t\t2009b Changes in methane release from organic matter passing through the digestive tract of horses. Czech Journal of Animal Science, 54\n\t\t\t\t\t112120 .'},{id:"B11",body:'KolářL.FrelichJ.BroučekJ.KuželS.Borová-BattJ.PeterkaJ.ŠlachtaM.VolfováK.PezlarováJ.HřebečkováJ.ČechováV.\n\t\t\t\t\t2010a Anaerobic degradability of organic matter of cattle faeces and a possibility of its utilization. Czech Journal of Animal Science, 55, (12): 538-547.'},{id:"B12",body:'KolářL.KuželS.PeterkaJ.Borová-BattJ.\n\t\t\t\t\t2010b Agrochemical value of the liquid phase of wastes from fermenters during biogas production. Plant, Soil and Environment, 56, (1): 23-27.'},{id:"B13",body:'KörschensM.SchulzE.BöhmR.\n\t\t\t\t\t1990 Heisswasserlöslicher C und N im Boden als Kriterium für das N-Nachlieferungsvermögen. Zentralblatt für Mikrobiologie, Jena, 145, (4): 305-311.'},{id:"B14",body:'LeblancH. A.NygrenP.Mc GrawR. L.\n\t\t\t\t\t2006\n\t\t\t\t\tGreen mulch decomposition and nitrogen release from leaves of two Inga spp. in an organic alley-cropping practice in the humid tropics. Soil Biology Biochemistry, 38, (2): 349 EOF358 EOF .'},{id:"B15",body:'LópezF.RodríguezG.KassM.\n\t\t\t\t\t1992 Manual de métodos rutinarios. Laboratorio de nutrición animal. CATIE, Turrialba, Costa Rica, 52 pp.'},{id:"B16",body:'MandlM.GrafN.ThallerA.BöchzeltH.SchnitzerH.SteinwenderM.WachlhofferR.FinkR.KromusS.RinghoferJ.LeitnerE.ZentekJ.NovalinS.MihalyiB.MariniI.NeureiterM.NarodoslawskyM.\n\t\t\t\t\t2006 Green bio-refinery- primary processing and utilization of fibres from green biomass. Series: Reports from energy and environmental research. 67 BMVIT, Vienna.'},{id:"B17",body:'PitterP.\n\t\t\t\t\t1981 Hydrochemie. SNTL Praha, 373 pp.'},{id:"B18",body:'RassM.\n\t\t\t\t\t2001 Rheology of biogenic solids under compression using peeled rapeseed as an example. Ph.D. thesis. University of Essen, Germany.'},{id:"B19",body:'ReuleinJ.SchefferK.StülpnagelR.BühleL.ZerrW.WachendorfM.\n\t\t\t\t\t2007 Efficient utilization of biomass through mechanical dehydration of silages. In: Proceedings of the 15th European Biomass Conference Exhibition, Berlin, Germany, 17701774 , Florence, Italy: ETA- Renewable Energies.'},{id:"B20",body:'RoschkeM.\n\t\t\t\t\t2003 Verwertung der Faulsubstrate, in: Biogas in der Landwirtschaft-Leitfaden für Landwirte und Investoren im Land Brandenburg. Ministerium für Landwirtschaft, Umweltschutz und Raumordnung des Landes Brandenburg, Postdam, 2933 .'},{id:"B21",body:'RoviraP.VallejoV. R.\n\t\t\t\t\t2000\n\t\t\t\t\tExamination of thermal and acid hydrolysis procedures in characterization of soil organic matter. Communications in Soil Science and Plant Analysis, 31\n\t\t\t\t\t81100 .'},{id:"B22",body:'RoviraP.VallejoV. R.\n\t\t\t\t\t2002\n\t\t\t\t\tLabile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma, 107\n\t\t\t\t\t109141 .'},{id:"B23",body:'RoviraP.VallejoV. R.\n\t\t\t\t\t2007\n\t\t\t\t\tLabile, recalcitrant and inert organic matter in Mediterranean forest soils.\n\t\t\t\t\tSoil Biology Biochemistry, 39, (1): 202 EOF215 EOF .'},{id:"B24",body:'ShiratoY.YokozawaM.\n\t\t\t\t\t2006\n\t\t\t\t\tAcid hydrolysis to partition plant material into decomposable and resistant fractions for use in the Rothamsted carbon model. Soil Biology Biochemistry, 38\n\t\t\t\t\t812816 .'},{id:"B25",body:'SchulzE.\n\t\t\t\t\t1990 Die heisswasserextrahierbaze C-Fraktion als Kenngrösse zur Einschätzung des Versorgungszustands mit organischer Substanz. Tagung-Berichte, Akad. Landwirtsch. Wiss., Berlin, 295\n\t\t\t\t\t269275 .'},{id:"B26",body:'StehlíkK.\n\t\t\t\t\t1988 Use of waste water for irrigation. Praha, MZVž ČR, 437 pp. (in Czech).'},{id:"B27",body:'StrakaF.DohányosM.ZábranskáJ.DědekJ.MalijevskýA.NovákJ.OldřichJ.\n\t\t\t\t\t2003 Biogas. GAS Říčany, 1\n\t\t\t\t\t1517 pp. (in Czech).'},{id:"B28",body:'StrakaF.DohányosM.ZábranskáJ.DědekJ.MalijevskýA.NovákJ.OldřichJ.\n\t\t\t\t\t2006 Biogas. GAS Říčany, 2\n\t\t\t\t\t1706 pp. (in Czech).'},{id:"B29",body:'SüssmuthR.DoserCh.LuedersT.\n\t\t\t\t\t1999 Determination of the biological biodegradability of organic substances under anaerobic conditions using the Oxi Top Control measuring system. Universität Hohenheim, Institut für Mikrobiologie, Wissenschaftlich-Technische Werkstäten GmbH & Co., KG Weilheim, Germany.'},{id:"B30",body:'TelekI.GrahamH. D.\n\t\t\t\t\t1983\n\t\t\t\t\tLeaf protein concentrates. Westport, CT: AVI Publishing Company.'},{id:"B31",body:'Tirol-PadreA.LadhaJ. K.\n\t\t\t\t\t2004\n\t\t\t\t\tAssessing the reliability of permanganate-oxidizable carbon as an index of soil labile carbon. Soil Science Society of America Journal, 68, (3): 969 EOF978 EOF .'},{id:"B32",body:'Van SoestP. J.\n\t\t\t\t\t1963\n\t\t\t\t\tUse of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin.\n\t\t\t\t\tJournal of the Association of Official Analytical Chemists, 46\n\t\t\t\t\t829835 .'},{id:"B33",body:'WachendorfM.FrickeT.GrassR.StülpnagelR.\n\t\t\t\t\t2007 Ein neues Konzept für die bioenergetische Nutzung von Grünlandbiomasse. In: Wrage N., Isselstein J.: Mitteilungen der Arbeitsgemeinschaft Grünland und Futterbau, 8\n\t\t\t\t\t165168 .'},{id:"B34",body:'WachendorfM.RichterF.FrickeT.GrassR.NeffR.\n\t\t\t\t\t2009 Utilization of semi-natural grassland through integrated generation of solid fuel and biogas from biomass. Grass and Forage Science, 64\n\t\t\t\t\t132143 .'},{id:"B35",body:'WalkleyA.\n\t\t\t\t\t1947 A critical examination of a rapid method for determining organic carbon in soils. Soil Science, 63\n\t\t\t\t\t251263 .'},{id:"B36",body:'ZábranskáJ.DohányosM.GranP.\n\t\t\t\t\t1985a Direct measurement of the Hydrogenase activity of Anaerobic Microorganisms. Watter Science Technology, 17\n\t\t\t\t\t303306 .'},{id:"B37",body:'ZábranskáJ.SchneiderováK.DohányosM.\n\t\t\t\t\t1985b Relation of coenzyme F 420 to the activity of methanogenic microorganisms. Biotechnology Letters, 7\n\t\t\t\t\t547552 .'},{id:"B38",body:'ZábranskáJ.DohányosM.\n\t\t\t\t\t1987 Methods of Investigation of the Metabolism of Anaerobic Microorganisms. Acta hydrochimica hydrobiologica, 15\n\t\t\t\t\t4355 .'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Ladislav Kolář",address:"",affiliation:'
Agricultural Faculty of the University of South Bohemia in České Budějovice,, Czech Republic
Agricultural Faculty of the University of South Bohemia in České Budějovice,, Czech Republic
'}],corrections:null},book:{id:"450",type:"book",title:"Biofuel's Engineering Process Technology",subtitle:null,fullTitle:"Biofuel's Engineering Process Technology",slug:"biofuel-s-engineering-process-technology",publishedDate:"August 1st 2011",bookSignature:"Marco Aurélio dos Santos Bernardes",coverURL:"https://cdn.intechopen.com/books/images_new/450.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-480-1",pdfIsbn:"978-953-51-4468-7",reviewType:"peer-reviewed",numberOfWosCitations:255,isAvailableForWebshopOrdering:!0,editors:[{id:"6625",title:"Dr.",name:"Marco Aurelio",middleName:null,surname:"Dos Santos Bernardes",slug:"marco-aurelio-dos-santos-bernardes",fullName:"Marco Aurelio Dos Santos Bernardes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"763"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"17474",type:"chapter",title:"The Effect of Thermal Pretreatment Process on Bio-Fuel Conversion",slug:"the-effect-of-thermal-pretreatment-process-on-bio-fuel-conversion",totalDownloads:3194,totalCrossrefCites:1,signatures:"Aleksander Ryzhkov, Vadim Silin, Tatyana Bogatova, Aleksander Popov and Galina Usova",reviewType:"peer-reviewed",authors:[{id:"27414",title:"Dr.",name:"Vadim",middleName:null,surname:"Silin",fullName:"Vadim Silin",slug:"vadim-silin"},{id:"43073",title:"Mr.",name:"Aleksander",middleName:null,surname:"Popov",fullName:"Aleksander Popov",slug:"aleksander-popov"},{id:"43074",title:"Prof.",name:"Tatyana",middleName:null,surname:"Bogatova",fullName:"Tatyana Bogatova",slug:"tatyana-bogatova"},{id:"43075",title:"Ms.",name:"Galina",middleName:null,surname:"Usova",fullName:"Galina Usova",slug:"galina-usova"},{id:"43077",title:"Mr",name:"Alexander",middleName:null,surname:"Ryzhkov",fullName:"Alexander Ryzhkov",slug:"alexander-ryzhkov"}]},{id:"17475",type:"chapter",title:"The Challenge of Bioenergies: An Overview",slug:"the-challenge-of-bioenergies-an-overview",totalDownloads:2734,totalCrossrefCites:3,signatures:"Nicolas Carels",reviewType:"peer-reviewed",authors:[{id:"24968",title:"Dr.",name:"Nicolas",middleName:null,surname:"Carels",fullName:"Nicolas Carels",slug:"nicolas-carels"}]},{id:"17476",type:"chapter",title:"Biogas Upgrading by Pressure Swing Adsorption",slug:"biogas-upgrading-by-pressure-swing-adsorption",totalDownloads:9244,totalCrossrefCites:4,signatures:"Carlos A. Grande",reviewType:"peer-reviewed",authors:[{id:"31487",title:"Dr.",name:"Carlos",middleName:"Adolfo",surname:"Grande",fullName:"Carlos Grande",slug:"carlos-grande"}]},{id:"17477",type:"chapter",title:"Use of Rapeseed Straight Vegetable Oil as Fuel Produced in Small-Scale Exploitations",slug:"use-of-rapeseed-straight-vegetable-oil-as-fuel-produced-in-small-scale-exploitations",totalDownloads:2973,totalCrossrefCites:1,signatures:"Grau Baquero, Bernat Esteban, Jordi-Roger Riba, Rita Puig and Antoni Rius",reviewType:"peer-reviewed",authors:[{id:"30674",title:"Dr.",name:"Jordi-Roger",middleName:null,surname:"Riba",fullName:"Jordi-Roger Riba",slug:"jordi-roger-riba"},{id:"30684",title:"MSc.",name:"Bernat",middleName:null,surname:"Esteban",fullName:"Bernat Esteban",slug:"bernat-esteban"},{id:"30685",title:"Dr.",name:"Grau",middleName:null,surname:"Baquero",fullName:"Grau Baquero",slug:"grau-baquero"},{id:"30686",title:"Dr.",name:"Rita",middleName:null,surname:"Puig",fullName:"Rita Puig",slug:"rita-puig"},{id:"30687",title:"Dr.",name:"Antoni",middleName:null,surname:"Rius",fullName:"Antoni Rius",slug:"antoni-rius"}]},{id:"17478",type:"chapter",title:"Nanotech Biofuels and Fuel Additives",slug:"nanotech-biofuels-and-fuel-additives",totalDownloads:6910,totalCrossrefCites:1,signatures:"Sergio C. Trindade",reviewType:"peer-reviewed",authors:[{id:"26784",title:"Dr.",name:"Sergio",middleName:"C",surname:"Trindade",fullName:"Sergio Trindade",slug:"sergio-trindade"}]},{id:"17479",type:"chapter",title:"Bioresources for Third-Generation Biofuels",slug:"bioresources-for-third-generation-biofuels",totalDownloads:4400,totalCrossrefCites:2,signatures:"Rafael Picazo-Espinosa, Jesús González-López and Maximino Manzanera",reviewType:"peer-reviewed",authors:[{id:"27371",title:"Dr.",name:"Maximino",middleName:null,surname:"Manzanera",fullName:"Maximino Manzanera",slug:"maximino-manzanera"},{id:"34626",title:"Mr",name:"Rafael",middleName:null,surname:"Picazo-Espinosa",fullName:"Rafael Picazo-Espinosa",slug:"rafael-picazo-espinosa"},{id:"87059",title:"Prof.",name:"Jesús",middleName:null,surname:"González-López",fullName:"Jesús González-López",slug:"jesus-gonzalez-lopez"}]},{id:"17480",type:"chapter",title:"Overview of Corn-Based Fuel Ethanol Coproducts: Production and Use",slug:"overview-of-corn-based-fuel-ethanol-coproducts-production-and-use",totalDownloads:5092,totalCrossrefCites:1,signatures:"Kurt A. Rosentrater",reviewType:"peer-reviewed",authors:[{id:"27500",title:"Dr.",name:"Kurt",middleName:"A.",surname:"Rosentrater",fullName:"Kurt Rosentrater",slug:"kurt-rosentrater"}]},{id:"17481",type:"chapter",title:"Biorefinery Processes for Biomass Conversion to Liquid Fuel",slug:"biorefinery-processes-for-biomass-conversion-to-liquid-fuel",totalDownloads:6406,totalCrossrefCites:2,signatures:"Shuangning Xiu, Bo Zhang and Abolghasem Shahbazi",reviewType:"peer-reviewed",authors:[{id:"25012",title:"Dr.",name:"Shuangning",middleName:null,surname:"Xiu",fullName:"Shuangning Xiu",slug:"shuangning-xiu"},{id:"38668",title:"Dr.",name:"Ghasem",middleName:null,surname:"Shahbazi",fullName:"Ghasem Shahbazi",slug:"ghasem-shahbazi"},{id:"80440",title:"Dr.",name:"Bo",middleName:null,surname:"Zhang",fullName:"Bo Zhang",slug:"bo-zhang"}]},{id:"17482",type:"chapter",title:"Utilisation of Waste from Digesters for Biogas Production",slug:"utilisation-of-waste-from-digesters-for-biogas-production",totalDownloads:3198,totalCrossrefCites:7,signatures:"Ladislav Kolář, Stanislav Kužel, Jiří Peterka and Jana Borová-Batt",reviewType:"peer-reviewed",authors:[{id:"27030",title:"Dr.",name:"Ladislav",middleName:null,surname:"Kolar",fullName:"Ladislav Kolar",slug:"ladislav-kolar"},{id:"33954",title:"Mr.",name:"Stanislav",middleName:null,surname:"Kuzel",fullName:"Stanislav Kuzel",slug:"stanislav-kuzel"},{id:"33955",title:"Mrs.",name:"Jiří",middleName:null,surname:"Peterka",fullName:"Jiří Peterka",slug:"jiri-peterka"},{id:"33956",title:"Mrs",name:"Jana",middleName:null,surname:"Borová-Batt",fullName:"Jana Borová-Batt",slug:"jana-borova-batt"}]},{id:"17483",type:"chapter",title:"Biodiesel Production and Quality",slug:"biodiesel-production-and-quality",totalDownloads:8410,totalCrossrefCites:0,signatures:"Roseli Ap. Ferrari, Anna Leticia M. Turtelli Pighinelli and Kil Jin Park",reviewType:"peer-reviewed",authors:[{id:"27184",title:"Dr.",name:"ROSELI",middleName:null,surname:"FERRARI",fullName:"ROSELI FERRARI",slug:"roseli-ferrari"},{id:"29629",title:"Dr.",name:"Anna Leticia",middleName:null,surname:"M. Turtelli Pighinelli",fullName:"Anna Leticia M. Turtelli Pighinelli",slug:"anna-leticia-m.-turtelli-pighinelli"},{id:"29630",title:"Dr.",name:"Kil",middleName:null,surname:"Jin Park",fullName:"Kil Jin Park",slug:"kil-jin-park"}]},{id:"17484",type:"chapter",title:"Perspectives of Biobutanol Production and Use",slug:"perspectives-of-biobutanol-production-and-use",totalDownloads:6405,totalCrossrefCites:8,signatures:"Petra Patakova, Daniel Maxa, Mojmir Rychtera, Michaela Linhova, Petr Fribert, Zlata Muzikova, Jakub Lipovsky, Leona Paulova, Milan Pospisil, Gustav Sebor and Karel Melzoch",reviewType:"peer-reviewed",authors:[{id:"25189",title:"Prof.",name:"Petra",middleName:null,surname:"Patakova",fullName:"Petra Patakova",slug:"petra-patakova"},{id:"38039",title:"Prof.",name:"Milan",middleName:null,surname:"Pospíšil",fullName:"Milan Pospíšil",slug:"milan-pospisil"},{id:"38040",title:"MSc",name:"Michaela",middleName:null,surname:"Linhova",fullName:"Michaela Linhova",slug:"michaela-linhova"},{id:"38041",title:"Prof.",name:"Jakub",middleName:null,surname:"Lipovsky",fullName:"Jakub Lipovsky",slug:"jakub-lipovsky"},{id:"38042",title:"MSc",name:"Petr",middleName:null,surname:"Fribert",fullName:"Petr Fribert",slug:"petr-fribert"},{id:"38043",title:"Prof.",name:"Leona",middleName:null,surname:"Paulova",fullName:"Leona Paulova",slug:"leona-paulova"},{id:"38044",title:"Prof.",name:"Mojmir",middleName:null,surname:"Rychtera",fullName:"Mojmir Rychtera",slug:"mojmir-rychtera"},{id:"38045",title:"Prof.",name:"Karel",middleName:null,surname:"Melzoch",fullName:"Karel Melzoch",slug:"karel-melzoch"},{id:"38046",title:"Prof.",name:"Zlata",middleName:null,surname:"Muzikova",fullName:"Zlata Muzikova",slug:"zlata-muzikova"},{id:"38047",title:"Prof.",name:"Daniel",middleName:null,surname:"Maxa",fullName:"Daniel Maxa",slug:"daniel-maxa"},{id:"38048",title:"Prof.",name:"Gustav",middleName:null,surname:"Sebor",fullName:"Gustav Sebor",slug:"gustav-sebor"}]},{id:"17485",type:"chapter",title:"Paving the Road to Algal Biofuels with the Development of a Genetic Infrastructure",slug:"paving-the-road-to-algal-biofuels-with-the-development-of-a-genetic-infrastructure",totalDownloads:3290,totalCrossrefCites:0,signatures:"Julian N. Rosenberg, Michael J. Betenbaugh and George A. Oyler",reviewType:"peer-reviewed",authors:[{id:"27484",title:"Mr",name:"Julian",middleName:null,surname:"Rosenberg",fullName:"Julian Rosenberg",slug:"julian-rosenberg"},{id:"28230",title:"Dr.",name:"Michael",middleName:null,surname:"Betenbaugh",fullName:"Michael Betenbaugh",slug:"michael-betenbaugh"},{id:"28231",title:"Dr.",name:"George",middleName:null,surname:"Oyler",fullName:"George Oyler",slug:"george-oyler"}]},{id:"17486",type:"chapter",title:"Rheological Characterization of Bio-Oils from Pilot Scale Microwave Assisted Pyrolysis",slug:"rheological-characterization-of-bio-oils-from-pilot-scale-microwave-assisted-pyrolysis",totalDownloads:4453,totalCrossrefCites:5,signatures:"Chinnadurai Karunanithy and Kasiviswanathan Muthukumarappan",reviewType:"peer-reviewed",authors:[{id:"25176",title:"Dr.",name:"Chinnadurai",middleName:null,surname:"Karunanithy",fullName:"Chinnadurai Karunanithy",slug:"chinnadurai-karunanithy"},{id:"28898",title:"Dr.",name:"Kasiviswanathan",middleName:null,surname:"Muthukumarappan",fullName:"Kasiviswanathan Muthukumarappan",slug:"kasiviswanathan-muthukumarappan"}]},{id:"17487",type:"chapter",title:"Co-production of Bioethanol and Power",slug:"co-production-of-bioethanol-and-power",totalDownloads:2959,totalCrossrefCites:0,signatures:"Atsushi Tsutsumi and Yasuki Kansha",reviewType:"peer-reviewed",authors:[{id:"37659",title:"Prof.",name:"Atsushi",middleName:null,surname:"Tsutsumi",fullName:"Atsushi Tsutsumi",slug:"atsushi-tsutsumi"},{id:"38949",title:"Dr.",name:"Yasuki",middleName:null,surname:"Kansha",fullName:"Yasuki Kansha",slug:"yasuki-kansha"}]},{id:"17488",type:"chapter",title:"Conversion of Non-Homogeneous Biomass to Ultraclean Syngas and Catalytic Conversion to Ethanol",slug:"conversion-of-non-homogeneous-biomass-to-ultraclean-syngas-and-catalytic-conversion-to-ethanol",totalDownloads:4124,totalCrossrefCites:0,signatures:"Stéphane C. Marie-Rose, Alexis Lemieux Perinet and Jean-Michel Lavoie",reviewType:"peer-reviewed",authors:[{id:"30688",title:"Dr.",name:"Jean-Michel",middleName:null,surname:"Lavoie",fullName:"Jean-Michel Lavoie",slug:"jean-michel-lavoie"},{id:"37198",title:"Dr.",name:"Stéphane",middleName:null,surname:"Marie-Rose",fullName:"Stéphane Marie-Rose",slug:"stephane-marie-rose"},{id:"37199",title:"MSc.",name:"Alexis",middleName:null,surname:"Lemieux Périnet",fullName:"Alexis Lemieux Périnet",slug:"alexis-lemieux-perinet"}]},{id:"17489",type:"chapter",title:"Novel Methods in Biodiesel Production",slug:"novel-methods-in-biodiesel-production",totalDownloads:8435,totalCrossrefCites:5,signatures:"Didem Özçimen and Sevil Yücel",reviewType:"peer-reviewed",authors:[{id:"32444",title:"Dr.",name:"Didem",middleName:null,surname:"Özçimen",fullName:"Didem Özçimen",slug:"didem-ozcimen"},{id:"33457",title:"Dr.",name:"Sevil",middleName:null,surname:"Yucel",fullName:"Sevil Yucel",slug:"sevil-yucel"}]},{id:"17490",type:"chapter",title:"Pyrolysis Oil Stabilisation by Catalytic Hydrotreatment",slug:"pyrolysis-oil-stabilisation-by-catalytic-hydrotreatment",totalDownloads:5113,totalCrossrefCites:2,signatures:"Venderbosch R.H. and Heeres H.J.",reviewType:"peer-reviewed",authors:[{id:"31524",title:"Dr.",name:"Robbie",middleName:"H.",surname:"Venderbosch",fullName:"Robbie Venderbosch",slug:"robbie-venderbosch"},{id:"31525",title:"Dr.",name:"Hero Jan",middleName:null,surname:"Heeres",fullName:"Hero Jan Heeres",slug:"hero-jan-heeres"}]},{id:"17491",type:"chapter",title:"Biomass Feedstock Pre-Processing – Part 1: Pre-Treatment",slug:"biomass-feedstock-pre-processing-part-1-pre-treatment",totalDownloads:9061,totalCrossrefCites:8,signatures:"Lope Tabil, Phani Adapa and Mahdi Kashaninejad",reviewType:"peer-reviewed",authors:[{id:"27220",title:"MSc",name:"Phani",middleName:null,surname:"Adapa",fullName:"Phani Adapa",slug:"phani-adapa"},{id:"31671",title:"Prof.",name:"Lope",middleName:"G.",surname:"G. Tabil",fullName:"Lope G. Tabil",slug:"lope-g.-tabil"},{id:"31672",title:"Dr.",name:"Mahdi",middleName:null,surname:"Kashaninejad",fullName:"Mahdi Kashaninejad",slug:"mahdi-kashaninejad"}]},{id:"17492",type:"chapter",title:"Biomass Feedstock Pre-Processing – Part 2: Densification",slug:"biomass-feedstock-pre-processing-part-2-densification",totalDownloads:5247,totalCrossrefCites:3,signatures:"Lope Tabil, Phani Adapa and Mahdi Kashaninejad",reviewType:"peer-reviewed",authors:[{id:"27220",title:"MSc",name:"Phani",middleName:null,surname:"Adapa",fullName:"Phani Adapa",slug:"phani-adapa"},{id:"31671",title:"Prof.",name:"Lope",middleName:"G.",surname:"G. Tabil",fullName:"Lope G. Tabil",slug:"lope-g.-tabil"},{id:"31672",title:"Dr.",name:"Mahdi",middleName:null,surname:"Kashaninejad",fullName:"Mahdi Kashaninejad",slug:"mahdi-kashaninejad"}]},{id:"17493",type:"chapter",title:"Performances of Enzymatic Glucose/O2 Biofuel Cells",slug:"performances-of-enzymatic-glucose-o2-biofuel-cells",totalDownloads:3886,totalCrossrefCites:1,signatures:"Habrioux Aurélien, Servat Karine, Tingry Sophie and Kokoh Boniface",reviewType:"peer-reviewed",authors:[{id:"27529",title:"Dr.",name:"Sophie",middleName:null,surname:"Tingry",fullName:"Sophie Tingry",slug:"sophie-tingry"},{id:"28387",title:"Prof.",name:"Boniface",middleName:null,surname:"Kokoh",fullName:"Boniface Kokoh",slug:"boniface-kokoh"},{id:"29442",title:"Dr.",name:"Aurélien",middleName:null,surname:"Habrioux",fullName:"Aurélien Habrioux",slug:"aurelien-habrioux"},{id:"29443",title:"Dr.",name:"Karine",middleName:null,surname:"Servat",fullName:"Karine Servat",slug:"karine-servat"}]},{id:"17494",type:"chapter",title:"Quantifying Bio-Engineering: The Importance of Biophysics in Biofuel Research",slug:"quantifying-bio-engineering-the-importance-of-biophysics-in-biofuel-research",totalDownloads:2558,totalCrossrefCites:1,signatures:"Patanjali Varanasi, Lan Sun, Bernhard Knierim, Elena Bosneaga, Purbasha Sarkar, Seema Singh and Manfred Auer",reviewType:"peer-reviewed",authors:[{id:"30721",title:"Dr.",name:"Manfred",middleName:null,surname:"Auer",fullName:"Manfred Auer",slug:"manfred-auer"},{id:"38806",title:"Ms.",name:"Elena",middleName:null,surname:"Bosneaga",fullName:"Elena Bosneaga",slug:"elena-bosneaga"},{id:"38807",title:"Dr.",name:"Bernhard",middleName:null,surname:"Knierim",fullName:"Bernhard Knierim",slug:"bernhard-knierim"},{id:"38809",title:"Dr.",name:"Purbasha",middleName:null,surname:"Sakar",fullName:"Purbasha Sakar",slug:"purbasha-sakar"},{id:"38810",title:"Dr.",name:"Lan",middleName:null,surname:"Sun",fullName:"Lan Sun",slug:"lan-sun"},{id:"38811",title:"Dr.",name:"Patanjali",middleName:null,surname:"Varanasi",fullName:"Patanjali Varanasi",slug:"patanjali-varanasi"},{id:"113536",title:"Dr.",name:"Seema",middleName:null,surname:"Singh",fullName:"Seema Singh",slug:"seema-singh"}]},{id:"17495",type:"chapter",title:"Kinetic Study on Palm Oil Waste Decomposition",slug:"kinetic-study-on-palm-oil-waste-decomposition",totalDownloads:2930,totalCrossrefCites:6,signatures:"Zakir Khan, Suzana Yusup, Murni M. Ahmad, Yoshimitsu Uemura, Vuoi S. Chok, Umer Rashid and Abrar Inayat",reviewType:"peer-reviewed",authors:[{id:"25173",title:"Prof.",name:"Suzana",middleName:null,surname:"Yusup",fullName:"Suzana Yusup",slug:"suzana-yusup"},{id:"25866",title:"Mr.",name:"Zakir",middleName:null,surname:"Khan",fullName:"Zakir Khan",slug:"zakir-khan"},{id:"25867",title:"Dr.",name:"Murni",middleName:null,surname:"Ahmad",fullName:"Murni Ahmad",slug:"murni-ahmad"},{id:"25869",title:"Mr.",name:"Voi Soon",middleName:null,surname:"Chok",fullName:"Voi Soon Chok",slug:"voi-soon-chok"},{id:"25870",title:"Mr.",name:"Abrar",middleName:null,surname:"Inayat",fullName:"Abrar Inayat",slug:"abrar-inayat"},{id:"25873",title:"Dr.",name:"Umer",middleName:null,surname:"Rashid",fullName:"Umer Rashid",slug:"umer-rashid"},{id:"25885",title:"Prof.",name:"Yushimitsu",middleName:null,surname:"Uemura",fullName:"Yushimitsu Uemura",slug:"yushimitsu-uemura"}]},{id:"17496",type:"chapter",title:"Biofuels and Energy Self-Sufficiency: Colombian Experience",slug:"biofuels-and-energy-self-sufficiency-colombian-experience",totalDownloads:2679,totalCrossrefCites:1,signatures:"Elkin Alonso Cortés-Marín and Héctor José Ciro-Velázquez",reviewType:"peer-reviewed",authors:[{id:"27552",title:"Prof.",name:"Elkin Alonso",middleName:null,surname:"Cortes Marin",fullName:"Elkin Alonso Cortes Marin",slug:"elkin-alonso-cortes-marin"},{id:"36917",title:"Prof.",name:"Hector Jose",middleName:null,surname:"Ciro Velasquez",fullName:"Hector Jose Ciro Velasquez",slug:"hector-jose-ciro-velasquez"}]},{id:"17497",type:"chapter",title:"Enzyme-Based Microfluidic Biofuel Cell to Generate Micropower",slug:"enzyme-based-microfluidic-biofuel-cell-to-generate-micropower",totalDownloads:3074,totalCrossrefCites:3,signatures:"A.Zebda, C. Innocent, L. Renaud, M. Cretin, F. Pichot, R. Ferrigno and S. Tingry",reviewType:"peer-reviewed",authors:[{id:"27529",title:"Dr.",name:"Sophie",middleName:null,surname:"Tingry",fullName:"Sophie Tingry",slug:"sophie-tingry"},{id:"27557",title:"Dr.",name:"Abdelkadder",middleName:null,surname:"Zebda",fullName:"Abdelkadder Zebda",slug:"abdelkadder-zebda"},{id:"27558",title:"Dr.",name:"Christophe",middleName:null,surname:"Innocent",fullName:"Christophe Innocent",slug:"christophe-innocent"},{id:"27559",title:"Dr.",name:"Louis",middleName:null,surname:"Renaud",fullName:"Louis Renaud",slug:"louis-renaud"},{id:"27560",title:"Dr.",name:"Marc",middleName:null,surname:"Cretin",fullName:"Marc Cretin",slug:"marc-cretin"},{id:"27561",title:"Dr.",name:"Frédéric",middleName:null,surname:"Pichot",fullName:"Frédéric Pichot",slug:"frederic-pichot"},{id:"27562",title:"Dr.",name:"Rosaria",middleName:null,surname:"Ferrigno",fullName:"Rosaria Ferrigno",slug:"rosaria-ferrigno"}]},{id:"17498",type:"chapter",title:"Energy Paths due to Blue Tower Process",slug:"energy-paths-due-to-blue-tower-process",totalDownloads:2935,totalCrossrefCites:4,signatures:"Kiyoshi Dowaki",reviewType:"peer-reviewed",authors:[{id:"29883",title:"Dr.",name:"Kiyoshi",middleName:null,surname:"Dowaki",fullName:"Kiyoshi Dowaki",slug:"kiyoshi-dowaki"}]},{id:"17499",type:"chapter",title:"Advances in the Development of Bioethanol: A Review",slug:"advances-in-the-development-of-bioethanol-a-review",totalDownloads:3868,totalCrossrefCites:0,signatures:"Giovanni Di Nicola, Eleonora Santecchia, Giulio Santori and Fabio Polonara",reviewType:"peer-reviewed",authors:[{id:"47975",title:"Prof.",name:"Giovanni",middleName:null,surname:"Di Nicola",fullName:"Giovanni Di Nicola",slug:"giovanni-di-nicola"}]},{id:"17500",type:"chapter",title:"Effect of Fried Dishes Assortment on Chosen Properties of Used Plant Oils as Raw Materials for Production of Diesel Fuel Substitute",slug:"effect-of-fried-dishes-assortment-on-chosen-properties-of-used-plant-oils-as-raw-materials-for-produ",totalDownloads:2595,totalCrossrefCites:0,signatures:"Marek Szmigielski, Barbara Maniak, Wiesław Piekarski and Grzegorz Zając",reviewType:"peer-reviewed",authors:[{id:"31304",title:"Dr.",name:"Marek",middleName:null,surname:"Szmigielski",fullName:"Marek Szmigielski",slug:"marek-szmigielski"},{id:"86571",title:"Dr.",name:"Barbara",middleName:"Anna",surname:"Maniak",fullName:"Barbara Maniak",slug:"barbara-maniak"},{id:"86577",title:"Prof.",name:"Wiesław",middleName:null,surname:"Piekarski",fullName:"Wiesław Piekarski",slug:"wieslaw-piekarski"},{id:"86582",title:"Dr.",name:"Grzegorz",middleName:null,surname:"Zając",fullName:"Grzegorz Zając",slug:"grzegorz-zajac"}]},{id:"17501",type:"chapter",title:"Recent Development of Miniatured Enzymatic Biofuel Cells 657",slug:"recent-development-of-miniatured-enzymatic-biofuel-cells-657",totalDownloads:4012,totalCrossrefCites:1,signatures:"Yin Song, Varun Penmasta and Chunlei Wang",reviewType:"peer-reviewed",authors:[{id:"28377",title:"Prof.",name:"Chunlei",middleName:null,surname:"Wang",fullName:"Chunlei Wang",slug:"chunlei-wang"},{id:"46854",title:"Ms",name:"Yin",middleName:null,surname:"Song",fullName:"Yin Song",slug:"yin-song"},{id:"46858",title:"Mr",name:"Varun",middleName:null,surname:"Penmatsa",fullName:"Varun Penmatsa",slug:"varun-penmatsa"}]},{id:"17502",type:"chapter",title:"Biorefining Lignocellulosic Biomass via the Feedstock Impregnation Rapid and Sequential Steam Treatment",slug:"biorefining-lignocellulosic-biomass-via-the-feedstock-impregnation-rapid-and-sequential-steam-treatm",totalDownloads:3460,totalCrossrefCites:6,signatures:"Jean-Michel Lavoie, Romain Beauchet, Véronique Berberi and Michel Chornet",reviewType:"peer-reviewed",authors:[{id:"30688",title:"Dr.",name:"Jean-Michel",middleName:null,surname:"Lavoie",fullName:"Jean-Michel Lavoie",slug:"jean-michel-lavoie"},{id:"37167",title:"Dr.",name:"Romain",middleName:null,surname:"Beauchet",fullName:"Romain Beauchet",slug:"romain-beauchet"},{id:"37168",title:"MSc.",name:"Véronique",middleName:null,surname:"Berberi",fullName:"Véronique Berberi",slug:"veronique-berberi"},{id:"37169",title:"Mr.",name:"Michel",middleName:null,surname:"Chornet",fullName:"Michel Chornet",slug:"michel-chornet"}]},{id:"17503",type:"chapter",title:"Biomethanol Production from Forage Grasses, Trees, and Crop Residues",slug:"biomethanol-production-from-forage-grasses-trees-and-crop-residues",totalDownloads:4764,totalCrossrefCites:5,signatures:"Hitoshi Nakagawa, Masayasu Sakai, Toshirou Harada, Toshimitsu Ichinose, Keiji Takeno, Shinji Matsumoto, Makoto Kobayashi,Keigo Matsumoto and Kenichi Yakushido",reviewType:"peer-reviewed",authors:[{id:"30632",title:"Dr.",name:"Hitoshi",middleName:null,surname:"Nakagawa",fullName:"Hitoshi Nakagawa",slug:"hitoshi-nakagawa"},{id:"35449",title:"Prof.",name:"Msayasu",middleName:null,surname:"Sakai",fullName:"Msayasu Sakai",slug:"msayasu-sakai"},{id:"35450",title:"Dr.",name:"Toshirou",middleName:null,surname:"Harada",fullName:"Toshirou Harada",slug:"toshirou-harada"},{id:"35451",title:"Dr.",name:"Toshimitsu",middleName:null,surname:"Ichinose",fullName:"Toshimitsu Ichinose",slug:"toshimitsu-ichinose"},{id:"35452",title:"Dr.",name:"Keiji",middleName:null,surname:"Takeno",fullName:"Keiji Takeno",slug:"keiji-takeno"},{id:"35453",title:"Dr.",name:"Kenichi",middleName:null,surname:"Yakushido",fullName:"Kenichi Yakushido",slug:"kenichi-yakushido"},{id:"35454",title:"Mr",name:"Makoto",middleName:null,surname:"Kobayashi",fullName:"Makoto Kobayashi",slug:"makoto-kobayashi"},{id:"35512",title:"Mr",name:"Shinji",middleName:null,surname:"Matsumoto",fullName:"Shinji Matsumoto",slug:"shinji-matsumoto"}]}]},relatedBooks:[{type:"book",id:"448",title:"Biofuel Production",subtitle:"Recent Developments and Prospects",isOpenForSubmission:!1,hash:"c74ec286656d475a34445a835eee296d",slug:"biofuel-production-recent-developments-and-prospects",bookSignature:"Marco Aurelio dos Santos Bernardes",coverURL:"https://cdn.intechopen.com/books/images_new/448.jpg",editedByType:"Edited by",editors:[{id:"6625",title:"Dr.",name:"Marco Aurelio",surname:"Dos Santos Bernardes",slug:"marco-aurelio-dos-santos-bernardes",fullName:"Marco Aurelio Dos Santos Bernardes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"20054",title:"Abiotic Stress Diagnosis via Laser Induced Chlorophyll Fluorescence Analysis in Plants for Biofuel",slug:"abiotic-stress-diagnosis-via-laser-induced-chlorophyll-fluorescence-analysis-in-plants-for-biofuel",signatures:"Artur S. Gouveia-Neto, Elias Arcanjo da Silva-Jr, Patrícia C. Cunha, Ronaldo A. Oliveira-Filho, Luciana M. H. Silva, Ernande B. da Costa, Terezinha J. R. Câmara and Lilia G. Willadino",authors:[{id:"25709",title:"Prof.",name:"Artur",middleName:null,surname:"Gouveia-Neto",fullName:"Artur Gouveia-Neto",slug:"artur-gouveia-neto"},{id:"26609",title:"MSc.",name:"Elias",middleName:null,surname:"Arcanjo-Jr",fullName:"Elias Arcanjo-Jr",slug:"elias-arcanjo-jr"},{id:"26610",title:"Dr.",name:"Patricia",middleName:null,surname:"Cunha",fullName:"Patricia Cunha",slug:"patricia-cunha"},{id:"26611",title:"Mr.",name:"Ronaldo",middleName:null,surname:"Oliveira-Filho",fullName:"Ronaldo Oliveira-Filho",slug:"ronaldo-oliveira-filho"},{id:"26612",title:"Prof.",name:"Ernande",middleName:null,surname:"Costa",fullName:"Ernande Costa",slug:"ernande-costa"},{id:"26613",title:"Prof.",name:"Terezinha",middleName:null,surname:"Camara",fullName:"Terezinha Camara",slug:"terezinha-camara"},{id:"26614",title:"Prof.",name:"Lilia",middleName:null,surname:"Willadino",fullName:"Lilia Willadino",slug:"lilia-willadino"}]},{id:"20055",title:"Is It Possible to Use Biodiesel as a Reference Material?",slug:"is-it-possible-to-use-biodiesel-as-a-reference-material-",signatures:"Dalni Malta do E. Santo Filho, José Renato R. Siqueira, Renata Martins H. Borges, Claudio Roberto da C. Rodrigues, Alex Pablo F. Barbosa, José Júlio P. dos Santos Júnior and Roberto G. Pereira",authors:[{id:"29417",title:"Dr.",name:"Roberto",middleName:null,surname:"Pereira",fullName:"Roberto Pereira",slug:"roberto-pereira"},{id:"32098",title:"Dr.",name:"Dalni",middleName:null,surname:"Santo Filho",fullName:"Dalni Santo Filho",slug:"dalni-santo-filho"},{id:"37371",title:"Mr.",name:"José Renato",middleName:null,surname:"Siqueira",fullName:"José Renato Siqueira",slug:"jose-renato-siqueira"},{id:"37372",title:"Dr.",name:"Renata",middleName:null,surname:"Borges",fullName:"Renata Borges",slug:"renata-borges"},{id:"37373",title:"BSc.",name:"Claudio Roberto",middleName:null,surname:"Rodrigues",fullName:"Claudio Roberto Rodrigues",slug:"claudio-roberto-rodrigues"},{id:"37374",title:"BSc.",name:"Alex Pablo",middleName:null,surname:"Barbosa",fullName:"Alex Pablo Barbosa",slug:"alex-pablo-barbosa"},{id:"37375",title:"Mr.",name:"José Júlio",middleName:null,surname:"dos Santos Júnior",fullName:"José Júlio dos Santos Júnior",slug:"jose-julio-dos-santos-junior"}]},{id:"20056",title:"First Generation Biodiesel",slug:"first-generation-biodiesel",signatures:"Guomin Xiao and Lijing Gao",authors:[{id:"47601",title:"Prof.",name:"Guomin",middleName:null,surname:"Xiao",fullName:"Guomin Xiao",slug:"guomin-xiao"},{id:"47611",title:"Dr.",name:"Lijing",middleName:null,surname:"Gao",fullName:"Lijing Gao",slug:"lijing-gao"}]},{id:"20057",title:"Bioethanol – What Has Brazil Learned About Yeasts Inhabiting the Ethanol Production Processes from Sugar Cane?",slug:"bioethanol-what-has-brazil-learned-about-yeasts-inhabiting-the-ethanol-production-processes-from-sug",signatures:"Maria da Graça Stupiello Andrietta, Sílvio Roberto Andrietta and Érika Nogueira Andrade Stupiello",authors:[{id:"25627",title:"Dr.",name:"Graça",middleName:null,surname:"Andrietta",fullName:"Graça Andrietta",slug:"graca-andrietta"},{id:"34988",title:"Dr.",name:"Sílvio",middleName:null,surname:"Andrietta",fullName:"Sílvio Andrietta",slug:"silvio-andrietta"},{id:"34989",title:"Dr.",name:"Eríka",middleName:null,surname:"Stupiello",fullName:"Eríka Stupiello",slug:"erika-stupiello"}]},{id:"20058",title:"Ethanol Production in Brazil: The Industrial Process and Its Impact on Yeast Fermentation",slug:"ethanol-production-in-brazil-the-industrial-process-and-its-impact-on-yeast-fermentation",signatures:"Luiz Carlos Basso, Thiago Olitta Basso and Saul Nitsche Rocha",authors:[{id:"27097",title:"Dr.",name:"Luiz Carlos",middleName:null,surname:"Basso",fullName:"Luiz Carlos Basso",slug:"luiz-carlos-basso"},{id:"27117",title:"Dr.",name:"Thiago Olitta",middleName:null,surname:"Basso",fullName:"Thiago Olitta Basso",slug:"thiago-olitta-basso"},{id:"84059",title:"Prof.",name:"Saul",middleName:"Nitsche",surname:"Rocha",fullName:"Saul Rocha",slug:"saul-rocha"}]},{id:"20059",title:"Ethanol Reforming in the Dynamic Plasma - Liquid Systems",slug:"ethanol-reforming-in-the-dynamic-plasma-liquid-systems",signatures:"Valeriy Ya. Chernyak, Eugen V. Martysh, Sergei V. Olszewski, Vitalij V. Yukhymenko, Sergei M. Sidoruk, Oleg A. Nedybaliuk, Iryna V. Prysiazhnevych, Anatolij I. Shchedrin and Dmitry S. Levko",authors:[{id:"29627",title:"Prof.",name:"Valeriy",middleName:null,surname:"Chernyak",fullName:"Valeriy Chernyak",slug:"valeriy-chernyak"}]},{id:"20060",title:"Developing Organisms for Consolidated Bioprocessing of Biomass to Ethanol",slug:"developing-organisms-for-consolidated-bioprocessing-of-biomass-to-ethanol",signatures:"Willem H. van Zyl, Riaan den Haan and Daniel C. la Grange",authors:[{id:"30646",title:"Prof.",name:"Willem",middleName:"H",surname:"van Zyl",fullName:"Willem van Zyl",slug:"willem-van-zyl"},{id:"38219",title:"Dr.",name:"Riaan",middleName:null,surname:"den haan",fullName:"Riaan den haan",slug:"riaan-den-haan"},{id:"38222",title:"Dr.",name:"Daniel C.",middleName:null,surname:"la Grange",fullName:"Daniel C. la Grange",slug:"daniel-c.-la-grange"}]},{id:"20061",title:"Latest Frontiers in the Biotechnologies for Ethanol Production from Lignocellulosic Biomass",slug:"latest-frontiers-in-the-biotechnologies-for-ethanol-production-from-lignocellulosic-biomass",signatures:"De Canio Paola, De Bari Isabella and Romano Patrizia",authors:[{id:"36344",title:"Dr",name:"Patrizia",middleName:null,surname:"Romano",fullName:"Patrizia Romano",slug:"patrizia-romano"},{id:"84991",title:"Dr",name:"Paola",middleName:null,surname:"De Canio",fullName:"Paola De Canio",slug:"paola-de-canio"},{id:"84992",title:"Dr",name:"Isabella",middleName:null,surname:"De Bari",fullName:"Isabella De Bari",slug:"isabella-de-bari"}]},{id:"20062",title:"Novel Approaches to Improve Cellulase Biosynthesis for Biofuel Production – Adjusting Signal Transduction Pathways in the Biotechnological Workhorse Trichoderma reesei",slug:"novel-approaches-to-improve-cellulase-biosynthesis-for-biofuel-production-adjusting-signal-transduct",signatures:"Doris Tisch and Monika Schmoll",authors:[{id:"24970",title:"Dr.",name:"Monika",middleName:null,surname:"Schmoll",fullName:"Monika Schmoll",slug:"monika-schmoll"},{id:"36153",title:"Dr.",name:"Doris",middleName:null,surname:"Tisch",fullName:"Doris Tisch",slug:"doris-tisch"}]},{id:"20063",title:"Detoxification of Lignocellulosic Hydrolysates for Improved Bioethanol Production",slug:"detoxification-of-lignocellulosic-hydrolysates-for-improved-bioethanol-production",signatures:"Anuj K. Chandel, Silvio Silvério da Silva and Om V. Singh",authors:[{id:"25160",title:"Prof.",name:"Om",middleName:"V",surname:"Singh",fullName:"Om Singh",slug:"om-singh"},{id:"51540",title:"Dr.",name:"Silvio",middleName:null,surname:"Silva",fullName:"Silvio Silva",slug:"silvio-silva"},{id:"76898",title:"Dr.",name:"Anuj",middleName:null,surname:"Chandel",fullName:"Anuj Chandel",slug:"anuj-chandel"}]},{id:"20064",title:"Biofuel From Cellulosic Mass with Incentive for Feed Industry Employing Thermophilic Microbes",slug:"biofuel-from-cellulosic-mass-with-incentive-for-feed-industry-employing-thermophilic-microbes",signatures:"Javed Iqbal Qazi, Naureen Chaudhary and Saima Shahzad Mirza",authors:[{id:"25478",title:"Dr.",name:"Javed Iqbal",middleName:null,surname:"Qazi",fullName:"Javed Iqbal Qazi",slug:"javed-iqbal-qazi"},{id:"136682",title:"PhD.",name:"Naureen",middleName:null,surname:"Chaudhary",fullName:"Naureen Chaudhary",slug:"naureen-chaudhary"},{id:"136683",title:"PhD.",name:"Saima Shahzad",middleName:null,surname:"Mirza",fullName:"Saima Shahzad Mirza",slug:"saima-shahzad-mirza"}]},{id:"20065",title:"Kinetic Modelling of Dilute Acid Hydrolysis of Lignocellulosic Biomass",slug:"kinetic-modelling-of-dilute-acid-hydrolysis-of-lignocellulosic-biomass",signatures:"P. Lenihan, A. Orozco, E. O’Neill, M.N.M. Ahmad, D.W. Rooney, C. Mangwandi and G.M. Walker",authors:[{id:"27361",title:"Dr.",name:"Gavin",middleName:null,surname:"walker",fullName:"Gavin walker",slug:"gavin-walker"}]},{id:"20066",title:"Trichoderma reesei: A Fungal Enzyme Producer for Cellulosic Biofuels",slug:"trichoderma-reesei-a-fungal-enzyme-producer-for-cellulosic-biofuels",signatures:"Bernhard Seiboth, Christa Ivanova and Verena Seidl-Seiboth",authors:[{id:"26474",title:"Dr.",name:"Bernhard",middleName:null,surname:"Seiboth",fullName:"Bernhard Seiboth",slug:"bernhard-seiboth"},{id:"43389",title:"Dr.",name:"Verena",middleName:null,surname:"Seidl-Seiboth",fullName:"Verena Seidl-Seiboth",slug:"verena-seidl-seiboth"},{id:"87418",title:"MSc.",name:"Christa",middleName:null,surname:"Ivanova",fullName:"Christa Ivanova",slug:"christa-ivanova"}]},{id:"20067",title:"Application of Response Surface Methodology to Optimize Alkali Concentration, Corn Stover Particle Size, and Extruder Parameters for Maximum Sugar Recovery",slug:"application-of-response-surface-methodology-to-optimize-alkali-concentration-corn-stover-particle-si",signatures:"Chinnadurai Karunanithy and Kasiviswanathan Muthukumarappan",authors:[{id:"25176",title:"Dr.",name:"Chinnadurai",middleName:null,surname:"Karunanithy",fullName:"Chinnadurai Karunanithy",slug:"chinnadurai-karunanithy"},{id:"28898",title:"Dr.",name:"Kasiviswanathan",middleName:null,surname:"Muthukumarappan",fullName:"Kasiviswanathan Muthukumarappan",slug:"kasiviswanathan-muthukumarappan"}]},{id:"20068",title:"Innovative Biological Solutions to Challenges in Sustainable Biofuels Production",slug:"innovative-biological-solutions-to-challenges-in-sustainable-biofuels-production",signatures:"Xiaohan Yang, Ting Li, David Weston, Abhijit Karve, Jessy L. Labbe, Lee E. Gunter, Poornima Sukumar, Anne Borland, Jin-Gui Chen, Stan D. Wullschleger, Timothy J. Tschaplinski and Gerald A. Tuskan",authors:[{id:"28445",title:"Dr.",name:"Xiaohan",middleName:null,surname:"Yang",fullName:"Xiaohan Yang",slug:"xiaohan-yang"},{id:"38876",title:"Dr.",name:"Ting",middleName:null,surname:"Li",fullName:"Ting Li",slug:"ting-li"},{id:"38877",title:"Dr.",name:"David",middleName:null,surname:"Weston",fullName:"David Weston",slug:"david-weston"},{id:"38878",title:"Dr.",name:"Anne",middleName:null,surname:"Borland",fullName:"Anne Borland",slug:"anne-borland"},{id:"38879",title:"Dr.",name:"Stan",middleName:null,surname:"Wullschleger",fullName:"Stan Wullschleger",slug:"stan-wullschleger"},{id:"38880",title:"Dr.",name:"Timothy",middleName:null,surname:"Tschaplinski",fullName:"Timothy Tschaplinski",slug:"timothy-tschaplinski"},{id:"38881",title:"Dr.",name:"Gerald",middleName:null,surname:"Tuskan",fullName:"Gerald Tuskan",slug:"gerald-tuskan"},{id:"94926",title:"Dr.",name:"Abhijit",middleName:null,surname:"Karve",fullName:"Abhijit Karve",slug:"abhijit-karve"},{id:"94930",title:"Dr.",name:"Jessy",middleName:null,surname:"Labbe",fullName:"Jessy Labbe",slug:"jessy-labbe"},{id:"94931",title:"Ms.",name:"Lee",middleName:null,surname:"Gunter",fullName:"Lee Gunter",slug:"lee-gunter"},{id:"94934",title:"Dr.",name:"Jin-Gui",middleName:null,surname:"Chen",fullName:"Jin-Gui Chen",slug:"jin-gui-chen"}]},{id:"20069",title:"Microwave-Assisted Synthesis of Biofuels",slug:"microwave-assisted-synthesis-of-biofuels",signatures:"Armando T. Quitain, Shunsaku Katoh and Motonobu Goto",authors:[{id:"31504",title:"Dr.",name:"Motonobu",middleName:null,surname:"Goto",fullName:"Motonobu Goto",slug:"motonobu-goto"},{id:"37904",title:"Dr.",name:"Armando",middleName:"Tibigin",surname:"Quitain",fullName:"Armando Quitain",slug:"armando-quitain"},{id:"37905",title:"Dr.",name:"Shunsaku",middleName:null,surname:"Katoh",fullName:"Shunsaku Katoh",slug:"shunsaku-katoh"}]},{id:"20070",title:"Fertilizer Potential of Biofuel Byproducts",slug:"fertilizer-potential-of-biofuel-byproducts",signatures:"Amber Moore",authors:[{id:"24938",title:"Prof.",name:"Amber",middleName:"Dawn",surname:"Moore",fullName:"Amber Moore",slug:"amber-moore"}]},{id:"20071",title:"The Past, Present, and Future of Biofuels – Biobutanol as Promising Alternative",slug:"the-past-present-and-future-of-biofuels-biobutanol-as-promising-alternative",signatures:"Köpke Michael, Noack Steffi and Dürre Peter",authors:[{id:"37463",title:"Dr.",name:"Peter",middleName:null,surname:"Dürre",fullName:"Peter Dürre",slug:"peter-durre"},{id:"38074",title:"Dr.",name:"Steffi",middleName:null,surname:"Noack",fullName:"Steffi Noack",slug:"steffi-noack"},{id:"38075",title:"Dr.",name:"Michael",middleName:null,surname:"Köpke",fullName:"Michael Köpke",slug:"michael-kopke"}]},{id:"20072",title:"DMF - A New Biofuel Candidate",slug:"dmf-a-new-biofuel-candidate",signatures:"Guohong Tian, Ritchie Daniel and Hongming Xu",authors:[{id:"44550",title:"Prof.",name:"Hongming",middleName:null,surname:"Xu",fullName:"Hongming Xu",slug:"hongming-xu"},{id:"100409",title:"Dr.",name:"Guohong",middleName:null,surname:"Tian",fullName:"Guohong Tian",slug:"guohong-tian"},{id:"100412",title:"Mr.",name:"Ritchie",middleName:null,surname:"Daniel",fullName:"Ritchie Daniel",slug:"ritchie-daniel"}]},{id:"20073",title:"Biofuels: From Hopes to Reality",slug:"biofuels-from-hopes-to-reality",signatures:"Carioca J.O.B., Friedrich, H. and Ehrenberger, S.",authors:[{id:"82687",title:"Dr",name:"José Osvaldo",middleName:null,surname:"Beserra Carioca",fullName:"José Osvaldo Beserra Carioca",slug:"jose-osvaldo-beserra-carioca"},{id:"82693",title:"Dr",name:"Horst",middleName:null,surname:"Friedrich",fullName:"Horst Friedrich",slug:"horst-friedrich"},{id:"82694",title:"Mrs",name:"Simone",middleName:null,surname:"Ehrenberger",fullName:"Simone Ehrenberger",slug:"simone-ehrenberger"}]},{id:"20074",title:"Bioproduction of Hydrogen with the Assistance of Electrochemical Technology",slug:"bioproduction-of-hydrogen-with-the-assistance-of-electrochemical-technology",signatures:"Soundarrajan Chandrasekaran and Dachamir Hotza",authors:[{id:"25552",title:"Prof.",name:"Dachamir",middleName:null,surname:"Hotza",fullName:"Dachamir Hotza",slug:"dachamir-hotza"},{id:"44695",title:"Ph.D. Student",name:"Soundarrajan",middleName:null,surname:"Chandrasekaran",fullName:"Soundarrajan Chandrasekaran",slug:"soundarrajan-chandrasekaran"}]},{id:"20075",title:"A Genetic-Fuzzy System for Modelling of Selected Processes in Diesel Engine Fuelled by Biofuels",slug:"a-genetic-fuzzy-system-for-modelling-of-selected-processes-in-diesel-engine-fuelled-by-biofuels",signatures:"Michał Kekez and Leszek Radziszewski",authors:[{id:"38787",title:"Dr.",name:"Michał",middleName:null,surname:"Kekez",fullName:"Michał Kekez",slug:"michal-kekez"},{id:"38812",title:"Prof.",name:"Leszek",middleName:null,surname:"Radziszewski",fullName:"Leszek Radziszewski",slug:"leszek-radziszewski"}]},{id:"20076",title:"Determination of the Impact of Biogas on the Engine Oil Condition Using a Sensor Based on Corrosiveness",slug:"determination-of-the-impact-of-biogas-on-the-engine-oil-condition-using-a-sensor-based-on-corrosiven",signatures:"C. Schneidhofer, S. Sen and N. Dörr",authors:[{id:"38255",title:"MSc",name:"Christoph",middleName:null,surname:"Schneidhofer",fullName:"Christoph Schneidhofer",slug:"christoph-schneidhofer"},{id:"38280",title:"BSc.",name:"Sedat",middleName:null,surname:"Sen",fullName:"Sedat Sen",slug:"sedat-sen"},{id:"38281",title:"Dr.",name:"Nicole",middleName:null,surname:"Dörr",fullName:"Nicole Dörr",slug:"nicole-dorr"}]}]}],publishedBooks:[{type:"book",id:"448",title:"Biofuel Production",subtitle:"Recent Developments and Prospects",isOpenForSubmission:!1,hash:"c74ec286656d475a34445a835eee296d",slug:"biofuel-production-recent-developments-and-prospects",bookSignature:"Marco Aurelio dos Santos Bernardes",coverURL:"https://cdn.intechopen.com/books/images_new/448.jpg",editedByType:"Edited by",editors:[{id:"6625",title:"Dr.",name:"Marco Aurelio",surname:"Dos Santos Bernardes",slug:"marco-aurelio-dos-santos-bernardes",fullName:"Marco Aurelio Dos Santos Bernardes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"450",title:"Biofuel's Engineering Process Technology",subtitle:null,isOpenForSubmission:!1,hash:"ff9814e64849f2167e29403f356e018e",slug:"biofuel-s-engineering-process-technology",bookSignature:"Marco Aurélio dos Santos Bernardes",coverURL:"https://cdn.intechopen.com/books/images_new/450.jpg",editedByType:"Edited by",editors:[{id:"6625",title:"Dr.",name:"Marco Aurelio",surname:"Dos Santos Bernardes",slug:"marco-aurelio-dos-santos-bernardes",fullName:"Marco Aurelio Dos Santos Bernardes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"460",title:"Progress in Biomass and Bioenergy Production",subtitle:null,isOpenForSubmission:!1,hash:"bd3ca64524ad4e5ab8280bb2e8e71d64",slug:"progress-in-biomass-and-bioenergy-production",bookSignature:"Syed Shahid Shaukat",coverURL:"https://cdn.intechopen.com/books/images_new/460.jpg",editedByType:"Edited by",editors:[{id:"58930",title:"Dr.",name:"Shahid",surname:"Shaukat",slug:"shahid-shaukat",fullName:"Shahid Shaukat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"582",title:"Biodiesel",subtitle:"Feedstocks and Processing Technologies",isOpenForSubmission:!1,hash:"6515b40c0b7f5abd126e0325263a581c",slug:"biodiesel-feedstocks-and-processing-technologies",bookSignature:"Margarita Stoytcheva and Gisela Montero",coverURL:"https://cdn.intechopen.com/books/images_new/582.jpg",editedByType:"Edited by",editors:[{id:"6375",title:"Prof.",name:"Margarita",surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1858",title:"Biodiesel",subtitle:"Quality, Emissions and By-Products",isOpenForSubmission:!1,hash:"ee4fbba87cc2259cc2e726be4cd58bfd",slug:"biodiesel-quality-emissions-and-by-products",bookSignature:"Gisela Montero and Margarita Stoytcheva",coverURL:"https://cdn.intechopen.com/books/images_new/1858.jpg",editedByType:"Edited by",editors:[{id:"69000",title:"Dr.",name:"Gisela",surname:"Montero",slug:"gisela-montero",fullName:"Gisela Montero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"450",title:"Biofuel's Engineering Process Technology",subtitle:null,isOpenForSubmission:!1,hash:"ff9814e64849f2167e29403f356e018e",slug:"biofuel-s-engineering-process-technology",bookSignature:"Marco Aurélio dos Santos Bernardes",coverURL:"https://cdn.intechopen.com/books/images_new/450.jpg",editedByType:"Edited by",editors:[{id:"6625",title:"Dr.",name:"Marco Aurelio",surname:"Dos Santos Bernardes",slug:"marco-aurelio-dos-santos-bernardes",fullName:"Marco Aurelio Dos Santos Bernardes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"63749",title:"New Perspectives on Blowing Snow in Antarctica and Implications for Ice Sheet Mass Balance",doi:"10.5772/intechopen.81319",slug:"new-perspectives-on-blowing-snow-in-antarctica-and-implications-for-ice-sheet-mass-balance",body:'
1. Introduction
Antarctica is the coldest and windiest place on earth. The ice sheet reaches a height of 4 km near the center of East Antarctica and slopes toward the coasts. The sloping terrain together with radiative cooling of the surface and lower atmosphere produces drainage flows known as katabatic winds. In some places, wind speeds can attain hurricane force and blow for days on end. It is not surprising, then, that the snow present in Antarctica is almost always airborne. Snow lifted from the surface and carried aloft by wind is known as drifting and blowing snow. Drifting snow is generally defined as airborne snow confined to a maximum height of 2 m. Once snow particles attain a height greater than 2 m, it is considered blowing snow. Blowing snow is important for a number of reasons including ice sheet mass balance [1, 2], the water budget of high latitude regions [3], and the reconstruction of paleoclimate records from the physical and chemical records obtained from ice cores [4]. Interaction with blowing snow is a major factor for changes in surface ice characteristics, such as rifts, crevasses, ridges, sastrugi, etc. and in deposition of snow on sea ice [5, 6, 7].
Most of our understanding of blowing snow comes from field measurements at the surface or from numerical modeling. Numerous observations conducted in Antarctica have measured the properties of blowing snow such as particle size, number density, mass flux, and atmospheric conditions associated with blowing snow episodes [8, 9, 10]. Most such studies are made in drifting or blowing snow conditions where the snow particles are confined to shallow layers. Particle size ranges from 50 to 450 m with the largest particles occurring near the surface. These studies also provided data on the wind speed required to initiate blowing snow. This wind speed, known as the threshold velocity, depends on the properties of the snow on the surface such as age, temperature, density, sphericity, and cohesiveness [1]. Generally, the threshold velocity ranges from about 5 to 8 m s−1. All field measurements of blowing snow in the literature are made below a height of 10 m. However, blowing snow can frequently reach heights of 100 m or more and little or nothing is known about the properties of these deep blowing snow layers [11, 12]. This is mainly because when they occur, the conditions are too harsh to make measurements in the field.
Because of the lack of observations over Antarctica, the temporal and spatial frequency of blowing snow was not known until recently. With the advent of active satellite remote sensing (lidar), it was shown that blowing snow occurs more frequently than 70% of the time over large regions of Antarctica and can reach heights of 500 m [13].
2. Blowing snow detection from satellite lidar
Because of the scarcity of manned weather observation stations in Antarctica, the only practical way of obtaining information on blowing snow over the entire continent is from satellite remote sensing. While there have been passive sensors in polar orbit since the 1960s, it is very difficult to detect blowing snow from passive visible or infrared (IR) channels. In the visible, the blowing snow is indistinguishable from the underlying snow surface, and in the IR, there is generally not enough temperature contrast between the surface and blowing snow to make the latter visible. In 2003, ICESat carried the Geoscience Laser Altimeter System (GLAS) into polar orbit [14]. GLAS had both altimetry and atmospheric channels and was the first satellite lidar to study the earth’s surface and atmosphere. Atmospheric data from GLAS were used to develop a technique to detect blowing snow layers from satellite lidar data. In 2006, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was launched into polar orbit [15]. CALIPSO was specifically designed to study the earth’s atmosphere using a multi-wavelength lidar. The data from CALIPSO have been used to study the climatology of blowing snow over Antarctica for the period 2006–2017 [16].
A lidar instrument transmits short pulses of (usually) visible or near IR laser light into the atmosphere, and a very small portion of the light is scattered directly backward from molecules, aerosols, and clouds. A telescope and associated detector electronics record the backscattered light into time-resolved “bins” usually 30–75 m in length. For satellite lidars like CALIPSO, the resulting backscatter profile extends from about 40 km in altitude to a kilometer or two below the ground. For blowing snow detection, only the backscatter data in the lowest 500 m above the surface are of interest. Since blowing snow is rooted at the ground, the algorithm first detects the large ground return signal and then interrogates the bins immediately above for elevated levels of backscatter. If the ground return is not found, then it is impossible to detect blowing snow from the backscatter profile. The lack of a ground return indicates that overlying cloud layers have attenuated the lidar beam and reduced the backscatter signal from the ground to near zero. This occurs when the overlying cloud layers have an optical depth of about 3 or greater. In general, over East Antarctica, this only happens near the coast. In the interior, cloudiness is normally quite low, and what clouds are present are usually optically thin.
When the ground return is found, the backscatter level of the lidar profile bin directly above the ground is compared to a threshold value (about 10 times the local value of the molecular backscatter). If it is greater than the threshold and the 10 m wind speed (which is on the CALIPSO data product and is obtained from the GEOS-5 global analysis product) is greater than 4 m s−1, then a scattering layer has been detected. The search then continues upward for the location of the top of the scattering layer. This is defined as the bin immediately below two consecutive bins that have signal levels less than a value of about twice the local value of molecular backscatter. A few tests are made on the scattering layer in an effort to remove diamond dust from the detections. Diamond dust is fairly common in Antarctica, especially over the high Antarctic Plateau in winter and can be many km in thickness and extend to the ground. To reduce misclassification of diamond dust as blowing snow, the top of the layer cannot exceed 500 m in height (above the ground) and the backscatter level within the layer must decrease with height. If these tests are passed, then the layer is assumed to be blowing snow. Finally, the optical depth of the blowing snow layer is estimated using an extinction to backscatter a value (lidar ratio) of 25 sr that is the typical value of ice crystals found in cirrus clouds [17].
3. Characteristics of blowing snow
Blowing snow is a dynamic boundary layer phenomenon, which is only slowly revealing its many secrets. The satellite lidar measurements discussed in Section 2 have increased our knowledge significantly. Figure 1 shows examples of blowing snow as seen by CALIPSO. Each panel of Figure 1 is a separate CALIPSO track over East Antarctica. They show the 532-nm attenuated backscatter as measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar and represent typical wintertime blowing snow events in Antarctica. Generally, the average height of the layers is about 120 m, but they can range from just a few meters to over 400 m in depth. The lidar attenuated backscatter values range from about 1.0 × 10−5 m−1 sr−1 near the top of the layer to 5.0 × 10−4 m−1 sr−1 in the lower third of the layer. This is consistent with blowing snow models that indicate both the particle size and number density decrease with height. On average, the optical depth of blowing snow layers (not shown) is about 0.2, but can range from 0.05 to 1.0 [13]. A defining feature of blowing snow as visualized by lidar is the cellular-like structure of the backscatter. Close inspection of Figure 1 will reveal relatively small (2–3 km), regularly spaced cell-like structures. This is a very common feature of blowing snow layers and seems to suggest that convection is occurring within the layer.
Figure 1.
CALIOP 532-nm attenuated backscatter of typical wintertime blowing snow layers over East Antarctica for (a) September 18, 2007, 09:10 UTC, (b) September 7, 2010, 14:14 UTC, and (c) October 10, 2010, 12:34 UTC.
A recent discovery aided by active (lidar) and passive satellite measurements is the size of blowing snow storms in East Antarctica. Evidence shows that these storms can cover an enormous area and last for a number of days [13]. An example of such a storm is shown in Figure 2, which is a MODerate resolution Imaging Spectroradiometer (MODIS) false color (RGB = 2.1, 2.1, 0.85 μm) image of a large area of blowing snow covering an area about the size of Texas (695,622 km2) in East Antarctica on October 14, 2009. This false color technique is the best way to visualize blowing snow from passive sensors. The one drawback is that sunlight is required. In Figure 2, blowing snow is a dirty gray-white, the ice/snow surface (in clear areas) is blue, and clouds are generally a brighter white. Also shown in Figure 2 are two CALIPSO tracks (yellow lines) and their associated retrieved blowing snow backscatter (upper and lower images of CALIOP backscatter). Note that the yellow track lines are drawn only where blowing snow was detected by CALIOP, and that not all the CALIOP blowing snow detections for that day are shown. The green dots denote the coastline. Plainly seen along the coast near longitude 145–150 E is blowing snow being carried off the continent. This is an important but poorly understood component of the ice sheet mass balance equation and will be discussed further in Section 5.
Figure 2.
A large blowing snow storm over Antarctica with blowing snow transport from continent to ocean on October 14, 2009. (a) CALIOP 532-nm attenuated backscatter along the yellow (south to north) line indicated by the green arrow as shown in (b) at 06:11–06:15 UTC. (b) MODIS false color image at 06:06:14–06:17:31 UTC showing blowing snow as dirty white areas. The coastline is indicated by the green dots, and two CALIPSO tracks, where blowing snow was detected, are indicated by the yellow lines. (c) CALIOP 532 nm attenuated backscatter along the yellow (north to south) line, 14:18–14:25 UTC.
The temperature and moisture structure of blowing snow layers are very important to the calculation of the sublimation rate of blowing snow particles (sublimation is discussed further in Section 5). This information is typically acquired by radiosondes, but during intense blowing snow episodes, they cannot be launched due to high winds. Thus, the temperature and moisture structure of these layers remain somewhat unknown. Surface measurements during blowing snow have shown that sublimation of the snow particles will cool and moisten the air. Eventually, the air becomes saturated and sublimation ends. However, this has been shown to be true only near the surface. Measurements higher up in the blowing snow layer have not been made. Likewise, models of blowing snow also indicate that the blowing snow layer quickly saturates and sublimation reduces to near zero in a matter of hours after initiation [3, 18]. However, the models may be missing physical processes that keep the layer from reaching saturation.
Recent work has utilized dropsonde measurements to better understand the thermodynamic structure of blowing snow layers [19]. The Concordiasi Project, which occurred in the austral fall of 2010 (September 28–December 8), utilized multiple high altitude, long duration balloons to launch 648 dropsondes over Antarctica and surrounding sea ice [20, 21, 22]. The dropsondes measured temperature, moisture, and wind from the lower stratosphere to the surface. Some of the sondes fell through blowing snow layers as measured by CALIPSO and MODIS. One example is shown in Figure 3, which shows the CALIOP measured 532-nm attenuated backscatter in the color image with the dropsonde measured temperature (red profile) and moisture (white profile) drawn on the image. The distance between the dropsonde and the CALIPSO track was less than 5 km, but the dropsonde data were acquired about 7 hours after the CALIPSO data. However, blowing snow was very likely still occurring at the time of the dropsonde (12 UTC) since CALIOP and MODIS data showed blowing snow still occurring in the area 2 hours after the dropsonde. The temperature profile in Figures 3 and 4a shows the normal low-level inversion beginning at about 350 m above the surface or 2550 m above mean sea level (MSL). However, it does not continue to the surface, but rather, at the height of the top of the blowing snow layer (∼140–150 m above the surface), the temperature profile increases slightly as it descends. The average lapse rate in the lowest 150 m is almost adiabatic (−0.0088 versus −0.0098°C m−1), which is between moist and dry adiabatic. There are even regions of the temperature profile that have a lapse rate less than dry adiabatic (Figure 4a between 20 and 50 m above the surface).
Figure 3.
CALIPSO calibrated attenuated backscatter at 05:52:50–05:54:40 UTC on October 12, 2010 showing the blowing snow layer, the approximate position of the dropsonde (vertical dashed white line), temperature (red line, scale at top), and relative humidity with respect to ice (white line, scale at bottom) as measured by the dropsonde. Note, height scale is in m above the mean sea level (MSL), and the surface is at 2200 m MSL.
Figure 4.
(a) A magnified view of the dropsonde temperature (black solid line) and humidity (blue solid line) profiles on October 12, 2010 at 12:49 UTC and CALIPSO average backscatter (green dotted) profile at 05:50 UTC for just the lowest 200 m above the surface for the data in Figure 3. Also shown is the dry (black dashed line) and moist (dotted black line) adiabatic lapse rates. (b) Dropsonde wind speed (black) and direction (red) through the blowing snow layer shown in Figure 3. Location of dropsonde: 71.61 S, 143.44 E.
The relative humidity (with respect to ice) profile in Figures 3 and 4a shows an ample structure both above and within the blowing snow layer. Well above the blowing snow layer, the relative humidity averages about 75%. As the dropsonde descends into the blowing snow layer, and at almost the exact height of the inflection point of the temperature profile (∼150 m above the surface), the relative humidity begins to increase from a value of about 60% near the top of the layer to about 82% within roughly 10 to 20 m of the surface. From there, it decreases to a value of about 75% at the surface. Most importantly, note that the relative humidity is not saturated within the layer.
The wind speed (blue line in Figure 4b) reaches a maximum of almost 24 m s−1 (∼53 miles per hour) at an altitude of about 2350 m MSL, which is 150 m above the surface and very near the top of the blowing snow layer. From that altitude, the wind speed decreases linearly to roughly 15 m s−1 (33.5 miles per hour) close to the surface. The wind direction (red line in Figure 4b) varies from about 155° at 2400 m altitude to 184° at 50 m above the surface. The magnitude of the wind speed and directional shear in the lower 150 m (corresponding to the blowing snow layer) will undoubtedly produce turbulence in the layer and promote mixing. It is apparent that the mixing has destroyed the temperature inversion at the surface (assuming it existed prior to the onset of high wind speeds and blowing snow) by the process of entrainment of warmer air from above and/or adiabatic warming of the descending katabatic flow.
4. Climatology of blowing snow
Understanding the spatial coverage and temporal changes of blowing snow is crucial if we are to fully understand how it impacts Antarctic climate, mass balance, and hydrology. Because of the harsh climate of Antarctica and the scarcity of observations, there are few direct observations of blowing snow that cover long time periods. Most observations are near the coasts and are limited in time, covering months or a few seasons [9, 10, 23]. The CALIPSO mission has enabled the construction of a 12-year climatology of blowing snow over Antarctica. This constitutes the basis of a longer term record that can be used to examine variability and trends. The algorithm described in Section 2 has been applied to the CALIOP backscatter data acquired between 2006 and 2017. The result, shown in Figure 5, is the average wintertime (April–October) blowing snow frequency for that period. Note that, CALIOP began operating in June of 2006, and thus April and May are missing from that year’s average. Figure 5 indicates that large areas of Antarctica experience blowing snow more than 50% of the time. Notable patches of even higher blowing snow frequencies are found over the Megadune region east of the Transantarctic mountains, south of 75 S from 120 to 160 E, and near the Lambert Glacier along 60 to 80 E longitude. Note also that these frequency values do not contain shallow (<30 m) blowing snow layers or drifting snow, since that is the vertical resolution of the CALIOP data. In addition, blowing snow that occurs during synoptic storms is also not included as most of the time these storms contain clouds thick enough to obscure the ground (attenuate the lidar beam so that the ground cannot be detected). The latter point has a large effect only near the East Antarctic coasts and most of West Antarctica where precipitation events via synoptic storms are more frequent.
Figure 5.
The average blowing snow frequency over Antarctica for the winter months (April–October), of each year 2006–2017.
Shown in Figure 6 is the intra-annual frequency of blowing snow for the period of 2006–2017. This is made by creating the average blowing snow frequency for each month during that period and then averaging each of the 12 months. Note that 2006 does not have data prior to June, and thus, January to May represent the average of 11 months. Blowing snow is prevalent in all months except November through February, though in these summer months, it still occurs at a reduced frequency. It is striking how fast the blowing snow frequency increases from February to March and how fast it decreases from October to November. These time periods generally coincide with the setting and rising of the sun, respectively. We hypothesize that the abrupt increase/decrease in blowing snow frequency is due to an increase/decrease in the katabatic wind flow, which is related to the increase/decrease in radiative cooling when the sun sets/rises. From April through September, large regions of Antarctica experience blowing snow more than 70% of the time with the overall spatial pattern and magnitude of blowing snow frequency remaining fairly constant through the 12 year period.
Figure 6.
The average monthly blowing snow frequency over Antarctica for the period of 2006–2017.
As the climate warms, it is expected that Antarctic precipitation will increase [24, 25, 26, 27]. Climate models predict on average about a 7.4% increase in precipitation per degree of atmospheric warming [28]. Given the scarcity of observations and the problems of measuring precipitation in Antarctica, it is very difficult to verify any changes in Antarctic precipitation if indeed it is occurring. However, since blowing snow depends, at least partially, on the availability of snow [1, 29], it is reasonable to suggest that the frequency of blowing snow over Antarctica could increase as precipitation increases in a warming climate.
Using the winter average (April–October) blowing snow frequency for each year, we computed the trend of the blowing snow frequency for each 1 × 1° grid box over Antarctica for the 12 years of data. The student t-test for significance was applied to each of the time series. The grid boxes that had positive trends significant at the 95% level or greater are shown in Figure 7a. Some very small areas of significant negative trends were also found (not shown). The color scale refers to the percentage increase in blowing snow frequency over a 10-year period. Here, we see an increase in blowing snow frequency up to 100% per decade over East Antarctica bounded between 45 and 95 E longitude. The observed geographic preference for increasing blowing snow frequency lies along the sloping edge of the ice divide. This feature in the time series trend map is intriguing. The red areas on the map in Figure 7a indicate grid boxes that experienced near a 100% increase in blowing snow frequency.
Figure 7.
Percent increase in blowing snow frequency (a) and 10 m wind speed (b) per decade for areas with trends significant at the 95% or greater level. The grid box size for the plot is 1 × 1°.
Since blowing snow is dependent on both the availability of snow and the near surface winds (along with the surface roughness and the snow properties), we computed the trends in 10-m wind speeds to see if the wind speed was increasing in the areas of increasing blowing snow frequency. The 10-m wind speed used was taken directly from the CALIPSO data product (V4-00), which uses the NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis. In Figure 7b, we see spatially similar increasing trends in 10-m wind speed in some of the areas that show increasing blowing snow frequency. However, there are a few other small areas where an increasing trend in wind speed is observed with no significant trends in blowing snow frequency.
5. Blowing snow sublimation and transport
Blowing snow sublimation and transport are two important terms in the ice sheet mass balance equation (Eq. (1)). The processes that contribute to the mass balance of a snow or ice-covered surface are precipitation (P), surface evaporation and sublimation (E), surface melt and runoff (M), blowing snow sublimation (Qs), and snow transport (Qt). Sublimation of snow can occur at the surface but is greatly enhanced within the atmospheric column of the blowing snow layer. The contributions of these processes to the mass balance vary greatly spatially and can be highly localized and very difficult to quantify.
S=∫P−E−M−Qt−QsdtE1
Of the terms in this equation, precipitation is by far the greatest in magnitude followed by Qs and Qt. Until recently, due to the uninhabited expanse of Antarctica and the lack of observations, prior, continent-wide studies of blowing snow sublimation over Antarctica had to rely on parameterized methods that use model reanalysis of wind speed and low level moisture. The presence of blowing snow is inferred from surface temperature, wind speed, and snow age (if known). In a series of papers on the modeling of blowing snow, Dery and Yau [30, 31] develop and test a parameterization of blowing snow sublimation. Dery and Yau [2] utilize the model with the ECMWF reanalysis covering 1979–1993 and show that most blowing snow sublimation occurs along the coasts and over sea ice with maximums in some coastal areas of 150-mm snow water equivalent (swe) year−1. Lenaerts et al. utilized a high resolution regional climate model (RACMO2) to simulate the surface mass balance of the Antarctic ice sheet [32]. They found drifting and blowing snow sublimation to be the most significant ablation term reaching values as high as 200 mm year−1 swe along the coast. There has been some recent work done on blowing snow sublimation and transport from field measurements (see for instance [33, 34]), but the data are sparse, and the measurements are only available within the surface layer (<10 m).
While transport of blowing snow is considered less important than sublimation in terms of mass balance of the Antarctic ice sheet, erosion and transport of snow by wind can be considerable in certain regions. Das et al. [35] have shown that blue ice areas are frequently seen in Antarctica. These regions exhibit a negative mass balance as all precipitation that falls is either blown off or sublimated away. Along the coastal regions, it has been argued that considerable mass is transported off the coast via blowing snow in preferential areas dictated by topography [12]. In the Tera Nova Bay region of East Antarctica, manned surface observations show that drifting and blowing snow occurred 80% of the time in fall and winter, and cumulative snow transport was 4 orders about of magnitude higher than snow precipitation.
Considering that the accuracy of model data is questionable over Antarctica, and the complicated factors that govern the onset of blowing snow, it is difficult to assess the accuracy of model parameterizations of blowing snow sublimation and transport. However, these quantities can also be computed using direct retrieval of blowing snow layers from CALIOP attenuated backscatter and model reanalysis fields of temperature, moisture, and winds [36]. Even with this method, the accuracy of the resulting sublimation is highly dependent on the accuracy of the model temperature and moisture fields. Using the CALIOP blowing snow backscatter and the MERRA-2 reanalysis, blowing snow sublimation was computed for the period of 2007–2015 (Figure 8). The highest values of sublimation are along and slightly inland of the coast. Notice that this is not necessarily where the highest blowing snow frequencies are located (see Figure 5). Sublimation is highly dependent on the air temperature and relative humidity. For a given value of the blowing snow particle density, the warmer and drier the air, the greater the sublimation. In Antarctica, it is considerably warmer along the coast but one would not necessarily conclude that it is drier there. However, other authors have noted that the katabatic winds, flowing essentially downslope, will warm and dry the air as they descend [37, 38]. Continental interior areas with very high blowing snow frequency that approaches 75% (like the Megadune region in East Antarctica) exhibit fairly low values of sublimation because it is very cold and the model relative humidity is high. Table 1 shows the average sublimation over all grid cells in snow water equivalent and the integrated sublimation amount over the Antarctic continent (north of 82 S) for the CALIPSO period in Gt year−1. Note that the 2006 data include only months June–December (CALIOP began operating in June 2006), and the 2016 data are only up through October and do not include the month of February (CALIOP was not operating). To obtain the integrated amount, the year average swe (column 1) is multiplied by the surface area of Antarctica north of 82 S and the density of ice. The average integrated value for the 9-year period 2007–2015 of 393 Gt year−1 is significantly greater than (about twice) the values in the literature obtained from model parameterization [39].
Figure 8.
Blowing snow total yearly sublimation over Antarctica for the period of 2007–2015.
The year average sublimation and the integrated sublimation over the Antarctic continent (north of 82 S) for 2006–2016.
2006 and 2016 consist of only 7 and 9 months of observations, respectively.
Transport of snow via the wind is generally important locally and does not constitute a large part of the ice sheet mass balance in Antarctica. There are areas where the wind scours away all snow that falls producing a net negative mass balance (i.e., blue ice areas), but in general, the snow is simply moved from place to place over most of the continent (Figure 9). At the coastline, however, this is not the case. There, persistent southerly winds can carry airborne snow off the continent. This can be seen very plainly in Figure 2, at the bottom right of the MODIS image where snow is being blown off the coast. It turns out that this is quite a common phenomenon. Palm et al. [36] computed the mass of snow being carried off the continent by the process of blowing snow. They determined that in total about 3.68 Gt of snow is blown off the continent each year.
Figure 9.
The magnitude of blowing snow transport over Antarctica integrated over the year for years 2007–2015.
6. Summary and conclusion
Active remote sensing in the form of satellite lidar has given us a new perspective on, and an increased understanding of, blowing snow over Antarctica. We now know that large blowing snow storms are frequent, reach heights of 500 m, and often cover an area roughly the size of the state of Texas. From April to October, blowing snow occurs over 50% of the time over large areas of East Antarctica with some areas experiencing blowing snow 75% of the time in winter. The greatest blowing snow frequency is seen in the Megadune region of East Antarctica (south of 75 S and 120 to 160 E) and near the Lambert Glacier (60 to 80 E). Most areas of high blowing snow frequency coincide with areas of high average wind speed and/or high surface roughness. Blowing snow is prevalent in 8 months of the year, with only November through February devoid of areas of blowing snow frequency greater than 50%. Blowing snow frequency increases markedly from February to March and decreases significantly from October to November. This behavior is likely the result of katabatic wind speed increasing/decreasing as the sun sets/rises in the fall/spring.
Dropsonde and CALIOP backscatter data were utilized to investigate the temperature, moisture, and wind structure through the depth of blowing snow for the first time. The temperature structure through the layer is near isothermal, with the average lapse rate close to moist adiabatic. Above the blowing snow layer, the temperature profile is strongly stable (an inversion). The relative humidity was the greatest near the surface or slightly above (80%) and decreased through the depth of the layer with a minimum of about 60% near the layer top. Saturation was not reached within the layer indicating that sublimation of blowing snow particles was ongoing. Wind speed was 15 m s−1 near the surface and rapidly increased to 24 m s−1 near the layer top. The wind direction was constant in the lowest 50 m but backed by 25° in the upper 100 m of the layer. The near-isothermal temperature structure within the layer is likely due to the turbulent mixing of warm air from the inversion above the layer and caused by wind speed and directional shear. It is also possible that the relative humidity structure is influenced by the same process (entrainment of warmer and dryer air from above the layer), which keeps the layer from reaching saturation despite the sublimation of blowing snow particles. These results have potentially important implications for the amount of water vapor that is sublimated into the atmosphere during blowing snow episodes and also for ice sheet mass balance.
Blowing snow events identified by CALIPSO and meteorological fields from MERRA-2 were used to compute the blowing snow sublimation and transport rates. The results show that maximum sublimation occurs along and slightly inland of the coastline. This is contrary to the observed maximum blowing snow frequency, which occurs over the interior. The associated temperature and moisture reanalysis fields likely contribute to the spatial distribution of the maximum sublimation values. However, the spatial pattern of the sublimation rate over Antarctica is consistent with modeling studies and precipitation estimates. Overall, the results show that the 2006–2016 Antarctica average integrated blowing snow sublimation is about 393 ± 196 Gt year−1, which is considerably larger than previous model-derived estimates [2, 39]. The maximum blowing snow transport amount of 5 Megatons km−1 year−1 occurs over parts of East Antarctica and aligns well with the blowing snow frequency pattern. The amount of snow transported from continent to ocean was estimated to be about 3.7 Gt year−1. These continent wide estimates of blowing snow sublimation and transport based on the direct measurements of blowing snow layers are the first of their kind and can be used to help model and constrain the surface-mass budget over Antarctica.
Acknowledgments
This research was performed under NASA contracts NNH14CK40C and NNH14CK39C. The authors would like to thank Dr. Thomas Wagner and Dr. David Considine for their support and encouragement. The CALIPSO data used in this study are the https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L1-STANDARD-V4-00_L1B-004.00 data product obtained from the NASA Langley Research Center Atmospheric Science Data Center. Blowing snow data are available from the author and will soon be made available from the NASA Langley Research Center Atmospheric Science Data Center. The dropsonde data were provided by NCAR/EOL under the sponsorship of the National Science Foundation and are available at https://data.eol.ucar.edu/dataset/221.002. We also acknowledge the Global Modeling and Assimilation Office (GMAO) at Goddard Space Flight Center who supplied the MERRA-2 data.
\n',keywords:"blowing snow, climatology, sublimation, transport, thermodynamic structure, CALIPSO",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/63749.pdf",chapterXML:"https://mts.intechopen.com/source/xml/63749.xml",downloadPdfUrl:"/chapter/pdf-download/63749",previewPdfUrl:"/chapter/pdf-preview/63749",totalDownloads:856,totalViews:110,totalCrossrefCites:0,dateSubmitted:"May 31st 2018",dateReviewed:"September 4th 2018",datePrePublished:"November 5th 2018",datePublished:"April 3rd 2019",dateFinished:"September 24th 2018",readingETA:"0",abstract:"Blowing snow processes commonly occur over the earth’s ice sheets and snow covered regions when near surface wind speed exceeds a threshold value. These processes play a key role in the sublimation and redistribution of snow, thereby influencing the surface mass balance. Prior field studies and modeling results have shown the importance of blowing snow sublimation and transport on the surface mass budget and hydrological cycle of high latitude regions. Until recently, most of our knowledge of blowing snow was obtained from field measurements or modeling. Recent advances in satellite remote sensing have enabled a more complete understanding of the nature of blowing snow. Using 12 years of satellite lidar data, climatology of blowing snow frequency has been compiled, showing the spatial and temporal distribution of blowing snow frequency over Antarctica. Other characteristics of blowing snow such as backscatter structure and profiles of temperature, relative humidity, and winds through the layer are explored. A new technique that uses direct measurements of blowing snow backscatter combined with model meteorological reanalysis fields to compute the magnitude of blowing snow sublimation and transport is also discussed.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/63749",risUrl:"/chapter/ris/63749",signatures:"Stephen P. Palm, Yuekui Yang and Vinay Kayetha",book:{id:"7382",type:"book",title:"Antarctica",subtitle:"A Key To Global Change",fullTitle:"Antarctica - A Key To Global Change",slug:"antarctica-a-key-to-global-change",publishedDate:"April 3rd 2019",bookSignature:"Masaki Kanao, Genti Toyokuni and Masa-yuki Yamamoto",coverURL:"https://cdn.intechopen.com/books/images_new/7382.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78985-816-7",printIsbn:"978-1-78985-815-0",pdfIsbn:"978-1-83962-109-3",isAvailableForWebshopOrdering:!0,editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Blowing snow detection from satellite lidar",level:"1"},{id:"sec_3",title:"3. Characteristics of blowing snow",level:"1"},{id:"sec_4",title:"4. Climatology of blowing snow",level:"1"},{id:"sec_5",title:"5. Blowing snow sublimation and transport",level:"1"},{id:"sec_6",title:"6. Summary and conclusion",level:"1"},{id:"sec_7",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'Gallée H, Guyomarc’h G, Brun E. Impact of snow drift on the Antarctic ice sheet surface mass balance: Possible sensitivity to snow-surface properties. Boundary-Layer Meteorology. 2001;99:1-19. DOI: 10.1023/A:1018776422809'},{id:"B2",body:'Déry SJ, Yau MK. Large-scale mass balance effects of blowing snow and surface sublimation. Journal of Geophysical Research. 2002;107(D23):4679. DOI: 10.1029/2001JD001251'},{id:"B3",body:'Déry SJ, Taylor PA, Xiao J. The thermodynamic effects of sublimating, blowing snow in the atmospheric boundary layer. Boundary-Layer Meteorology. 1998;89:251-283. DOI: 10.1023/A:1001712111718'},{id:"B4",body:'King JC, Anderson PS, Vaughan DG, Mann GW, Mobbs SD. Wind-borne redistribution of snow across an Antarctic ice rise. Journal of Geophysical Research. 2004;109:D11104. DOI: 10.1029/2003JD004361'},{id:"B5",body:'Déry SJ, Tremblay LB. Modeling the effects of wind redistribution on the snow mass budget of polar sea ice. Journal of Physical Oceanography. 2004;34:258-271. DOI: 10.1175/1520-0485(2004)034<0258:MTEOWR>2.0.CO;2'},{id:"B6",body:'Leonard KC, Tremblay LB, MacAyealand DR, Jacobs SS. Interactions of wind-transported snow with a rift in the Ross Ice Shelf, Antarctica. Geophysical Research Letters. 2008;35:L05501. DOI: 10.1029/2007GL033005'},{id:"B7",body:'Leonard KC, Maksym T. The importance of wind-blown snow redistribution to snow accumulation on Bellinghausen sea ice. Annals of Glaciology. 2011;52(57):271-278'},{id:"B8",body:'Walden VP, Warren SG, Tuttle E. Atmospheric ice crystals over the Antarctic Plateau in winter. Journal of Applied Meteorology and Climatology. 2003;42:1391-1405'},{id:"B9",body:'Mann GW, Anderson PS, Mobbs SD. Profile measurements of blowing snow at Halley, Antarctica. Journal of Geophysical Research-Atmospheres. 2000;105(D19):24491-24508. DOI: 10.1029/2000JD900247'},{id:"B10",body:'Nishimura K, Nemoto N. Blowing snow at Mizuho station, Antarctica. Philosophical Transactions of the Royal Society A. 2005;363:1647-1662. DOI: 10.1098/rsta.2005.1599'},{id:"B11",body:'Mahesh A, Eager R, Campbell JR, Spinhirne JD. Observations of blowing snow at the South Pole. Journal of Geophysical Research. 2003;108(D22):4707. DOI: 10.1029/2002JD003327'},{id:"B12",body:'Scarchilli C, Frezzotti MM, Grigioni P, De Silvestri L, Agnoletto L, Dolci S. Extraordinary blowing snow transport events in East Antarctica. Climate Dynamics. 2010;34:1195-1206. DOI: 10.1007/s00382-009-0601-0'},{id:"B13",body:'Palm SP, Yang Y, Spinhirne JD, Marshak A. Satellite remote sensing of blowing snow properties over Antarctica. Journal of Geophysical Research. 2011;116:D16123. DOI: 10.1029/2011JD015828'},{id:"B14",body:'Spinhirne JD, Palm SP, Hart WD, Hlavka DL, Welton EJ. Cloud and aerosol measurements from GLAS: Overview and initial results. Geophysical Research Letters. 2005;32:L22S03. DOI: 10.1029/2005GL023507'},{id:"B15",body:'Winker DM, Vaughan MA, Omar A, Hu YX, Powell KA, Liu ZY, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology. 2009;26:2310-2323. DOI: 10.1175/2009jtecha1281.1'},{id:"B16",body:'Palm SP, Kayetha V, Yang Y. Toward a satellite-derived climatology of blowing snow over Antarctica. Journal of Geophysical Research: Atmospheres. 2018;123. https://doi.org/10.1029/2018JD028632'},{id:"B17",body:'Chen WN, Chiang CW, Nee JB. Lidar ratio and depolarization ratio for cirrus clouds. Applied Optics. 2002;41:6470-6476. DOI: 10.1364/Ao.41.006470'},{id:"B18",body:'Bintanja R. Snowdrift suspension and atmospheric turbulence part II: Results of model simulations. Boundary-Layer Meteorology. 2000;95:369-395'},{id:"B19",body:'Palm SP, Yang Y, Kayetha V, Nicolas JP. Insight into the thermodynamic structure of blowing snow layers in antarctica from dropsonde and CALIPSO measurements. Journal of Applied Meteorology and Climatology. 2018 (in review)'},{id:"B20",body:'Rabier F et al. The Concordiasi field experiment over Antarctica: First results from innovative atmospheric measurements. Bulletin of the American Meteorological Society. 2012;94:ES17-ES20. DOI: 10.1175/BAMS-D-12-00005.1'},{id:"B21",body:'Rabier F et al. The Concordiasi project in Antarctica. Bulletin of the American Meteorological Society. 2010;91(1):69-86. DOI: 10.1175/2 009BAMS2764.1'},{id:"B22",body:'Boylan P, Wang J, Cohn SA, Hultberg T, August T. Identification and intercomparison of surface-based inversions over Antarctica from IASI, ERA-Interim, and Concordiasi dropsonde data. Journal of Geophysical Research—Atmospheres. 2016;121:9089-9104. DOI: 10.1002/2015JD024724'},{id:"B23",body:'Takahashi S. Characteristics of drifting snow at Mizuho station, Antarctica. Annals of Glaciology. 1985;6:71-75. DOI: 10.3189/1985AoG6-1-71-75'},{id:"B24",body:'Agosta C, Favier V, Genthon C, Gallée H, Krinner G, Lenaerts JTM, et al. A 40-year accumulation dataset forAdelie Land, Antarctica and its application for model validation. Climate Dynamics. 2012;38(1–2):75-86. DOI: 10.1007/s00382-011-1103-4'},{id:"B25",body:'Frieler K, Clark PU, He F, Buizert C, Reese R, Ligtenberg SRM, et al. Consistent evidence of increasing Antarctic accumulation with warming. Nature Climate Change. 2015;5:348-352. DOI: 10.1038/nclimate2574'},{id:"B26",body:'Krinner G, Magand O, Simmonds I, Genthon C, Dufresne J-L. Simulated Antarctic precipitation and surface mass balance at the end of twentieth and twenty-first centuries. Climate Dynamics. 2007;28(2–3):215-230. DOI: 10.1007/s00382-006-0177-x'},{id:"B27",body:'Ligtenberg SRM, van de Berg WJ, van den Broeke MR, Rae JGL, van Meijgaard E. Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Climate Dynamics. 2013;41(3–4):867-884. DOI: 10.1007/s00382-013-1749-1'},{id:"B28",body:'Palerme C, Claud C, Dufour A, Genthon C, Wood NB, L’Ecuyer T. Evaluation of Antarctic snowfall in global meteorological reanalyses. Atmospheric Research. 2017;190:104-112. DOI: 10.1016/j.atmosres.2017.02.015'},{id:"B29",body:'Gossart A, Souverijns N, Gorodetskaya IV, Lhermitte S, Lenaerts JTM, Schween JH, et al. Blowing snow detection from ground-based ceilometers: Application to East Antarctica. The Cryosphere. 2017;11:2755-2772. DOI: 10.5194/tc-11-2755-2017'},{id:"B30",body:'Dery SJ, Yau MK. Simulation of blowing snow in the canadian arctic using a double-moment model. Boundary-Layer Meteorology. 2001;99:297-316'},{id:"B31",body:'Dery SJ, Yau MK. A bulk blowing snowmodel. Boundary-Layer Meteorology. 1999;93:237-251'},{id:"B32",body:'Lenaerts JTM, van den Broeke MR, Dery SJ, van Meijgaard E, van de Berg WJ, Palm SP, et al. Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation. Journal of Geophysical Research-Atmospheres. 2012;117:D05108. DOI: 10.1029/2011jd016145'},{id:"B33",body:'Barral H, Genthon C, Trouvilliez A, Brun C, Amory C. Blowing snow in coastal Adélie Land, Antarctica: Three atmospheric-moisture issues. The Cryosphere. 2014;8:1905-1919. Available from: www.the-cryosphere.net/8/1905/2014/. DOI: 10.5194/tc-8-1905-2014'},{id:"B34",body:'Trouvilliez A, Naaim F, Genthon C, Piard L, Favier V, Bellot H, et al. Blowing snow observation in Antarctica: A review including a new observation system in Adélie Land. Cold Regions Science and Technology. 2014. DOI: 10.1016/j.coldregions.2014.09.005'},{id:"B35",body:'Das I, Bell RE, Scambos TA, Wolovick M, Creyts TT, Studinger M, et al. Influence of persistent wind scour on the surface mass balance of Antarctica. Nature Geoscience. 2013;6:367-371. DOI: 10.1038/Ngeo1766'},{id:"B36",body:'Palm SP, Kayetha V, Yang Y, Pauly R. Blowing snow sublimation and transport over Antarctica from 11 years of CALIPSO observations. The Cryosphere. 2017;11:2555-2569. DOI: 10.5194/tc-11-2555-2017'},{id:"B37",body:'Gallée H. A simulation of blowing snow over the Antarctic ice sheet. Annals of Glaciology. 1998;26:203-205'},{id:"B38",body:'Bintanja R. Modelling snowdrift sublimation and its effect on the moisture budget of the atmospheric boundary layer. Tellus. 2001;53A:215-232'},{id:"B39",body:'Lenaerts JTM, van den Broeke MR, van de Berg WJ, van Meijgaard E, Munneke PK. A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophysical Research Letters. 2012;39:1-5. DOI: 10.1029/2011gl050713'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Stephen P. Palm",address:"stephen.p.palm@nasa.gov",affiliation:'
'}],corrections:null},book:{id:"7382",type:"book",title:"Antarctica",subtitle:"A Key To Global Change",fullTitle:"Antarctica - A Key To Global Change",slug:"antarctica-a-key-to-global-change",publishedDate:"April 3rd 2019",bookSignature:"Masaki Kanao, Genti Toyokuni and Masa-yuki Yamamoto",coverURL:"https://cdn.intechopen.com/books/images_new/7382.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78985-816-7",printIsbn:"978-1-78985-815-0",pdfIsbn:"978-1-83962-109-3",isAvailableForWebshopOrdering:!0,editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"189028",title:"Dr.",name:"Jean-Claude",middleName:null,surname:"Tardif",email:"jean-claude.tardif@icm-mhi.org",fullName:"Jean-Claude Tardif",slug:"jean-claude-tardif",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"University of Montreal",institutionURL:null,country:{name:"Canada"}}},booksEdited:[],chaptersAuthored:[{id:"54310",title:"Near-Infrared Spectroscopy (NIRS): A Novel Tool for Intravascular Coronary Imaging",slug:"near-infrared-spectroscopy-nirs-a-novel-tool-for-intravascular-coronary-imaging",abstract:"Acute coronary syndrome (ACS) arising from plaque rupture is the leading cause of mortality worldwide. Near-infrared spectroscopy (NIRS) combined with intravascular ultrasound (NIRS-IVUS) is a novel catheter-based intravascular imaging modality that provides a chemogram of the coronary artery wall, which enables the detection of lipid core and specific quantification of lipid accumulation measured as the lipid-core burden index (LCBI) in patients undergoing coronary angiography. Recent studies have shown that NIRS-IVUS can identify vulnerable plaques and vulnerable patients associated with increased risk of adverse cardiovascular events, whereas an increased coronary plaque LCBI may predict a higher risk of future cardiovascular events and periprocedural events. NIRS is a promising tool for the detection of vulnerable plaques in CAD patients, PCI-guidance procedures, and assessment of lipid-lowering therapies. Previous trials have evaluated the impact of statin therapy on coronary NIRS defined lipid cores, whereas NIRS could further be used as a surrogate end point of future ACS in phase II clinical trials evaluating novel anti-atheromatous drug therapies. Multiple ongoing studies address the different potential clinical applications of NIRS-IVUS imaging as a valuable tool for coronary plaque characterization and predictor of future coronary events in CAD patients.",signatures:"Marie-Jeanne Bertrand, Philippe Lavoie-L’Allier and Jean-Claude\nTardif",authors:[{id:"189028",title:"Dr.",name:"Jean-Claude",surname:"Tardif",fullName:"Jean-Claude Tardif",slug:"jean-claude-tardif",email:"jean-claude.tardif@icm-mhi.org"},{id:"189836",title:"Dr.",name:"Marie-Jeanne",surname:"Bertrand",fullName:"Marie-Jeanne Bertrand",slug:"marie-jeanne-bertrand",email:"mariejeanne.bertrand@gmail.com"},{id:"189837",title:"Dr.",name:"Philippe",surname:"L. L'Allier",fullName:"Philippe L. L'Allier",slug:"philippe-l.-l'allier",email:"philippe.l_lallier@icloud.com"}],book:{id:"5437",title:"Developments in Near-Infrared Spectroscopy",slug:"developments-in-near-infrared-spectroscopy",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"24137",title:"Prof.",name:"Mohamad",surname:"Sawan",slug:"mohamad-sawan",fullName:"Mohamad Sawan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"188661",title:"M.Sc.",name:"Amal",surname:"Kassab",slug:"amal-kassab",fullName:"Amal Kassab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Concordia University",institutionURL:null,country:{name:"Canada"}}},{id:"189836",title:"Dr.",name:"Marie-Jeanne",surname:"Bertrand",slug:"marie-jeanne-bertrand",fullName:"Marie-Jeanne Bertrand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"190108",title:"Dr.",name:"Iwao",surname:"Mizumoto",slug:"iwao-mizumoto",fullName:"Iwao Mizumoto",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Toyama College",institutionURL:null,country:{name:"Japan"}}},{id:"190160",title:"Dr.",name:"Francisco",surname:"Garcia-Sanchez",slug:"francisco-garcia-sanchez",fullName:"Francisco Garcia-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Centro de Edafología y Biología Aplicada del Segura",institutionURL:null,country:{name:"Spain"}}},{id:"191669",title:"Dr.",name:"Philiswa",surname:"Nomngongo",slug:"philiswa-nomngongo",fullName:"Philiswa Nomngongo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},{id:"196391",title:"Dr.",name:"Luis",surname:"Galvez -Sola",slug:"luis-galvez-sola",fullName:"Luis Galvez -Sola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"196392",title:"Dr.",name:"Juan J.",surname:"Martinez-Nicolas",slug:"juan-j.-martinez-nicolas",fullName:"Juan J. Martinez-Nicolas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"196393",title:"Dr.",name:"Raquel",surname:"Muelas-Domingo",slug:"raquel-muelas-domingo",fullName:"Raquel Muelas-Domingo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"196394",title:"Dr.",name:"Manuel",surname:"Nieves",slug:"manuel-nieves",fullName:"Manuel Nieves",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"orders-and-delivery",title:"Order and Delivery Info",intro:'
IntechOpen books are published online and are accessible for free.
\r\n\r\n
However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through FREE DHL Express delivery.
\r\n\r\n
For a quote or assistance please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\r\n\r\n
Our entire portfolio of over 5,500 books is also available through Amazon.
',metaTitle:"Order and delivery",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"
Hardcover, Printed Full Colour
\\n\\n
Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\\n\\n
Print On Demand (POD)
\\n\\n
\\n\\t
IntechOpen Books are printed specifically for your order
\\n\\t
Ordered, printed, and delivered in 7-15 business days
\\n\\t
Available for purchase at any time no minimum or maximum threshold on book order quantity
\\n
\\n\\n
IntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\n
Prices and Discounts
\\n\\n
IntechOpen books retail price range is:
\\n\\n
100 - 159 GBP ex. VAT (available in USD and EUR)
\\n\\n
Discounts available:
\\n\\n
\\n\\t
All IntechOpen contributors can buy the print copies of books for an Author Exclusive price with discounts from 30% to 50% on retail price. Log in to your Author Panel to purchase a book at the discounted price.
\\n\\t
Libraries are offered a 20% discount.
\\n\\t
Book resellers receive a 20% standard trade discount.
\\n
\\n\\n
Bulk discounts are granted for orders of 10 copies and more.
\\n\\n
There is no minimum or maximum threshold on the quantity of book orders.
\\n\\n
Terms and Conditions
\\n\\n
Payment Terms
\\n\\n
Orders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\\n\\n
We currently accept the following payment options:
\\n\\n
\\n\\t
Credit Card
\\n\\t
PayPal
\\n\\t
Bank Transfer
\\n
\\n\\n
When paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\\n\\n
IntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n
In accordance with the best security practice, we do not accept card orders via email.
\\n\\n
General Handling and Delivery Info
\\n\\n
The combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\n
If you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\n
Tax and Customs
\\n\\n
Tax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\n
Customs: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n\\n
P.O. Boxes
\\n\\n
P.O. Boxes cannot be used as a Ship-To Address.
\\n\\n
Restricted Countries
\\n\\n
IntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\\n\\n
When ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\\n\\n
Restricted Ship-to Countries:
\\n\\n
\\n\\t
Afghanistan
\\n\\t
Belarus
\\n\\t
Central African Republic
\\n\\t
Cote d'Ivoire
\\n\\t
Congo
\\n\\t
Cuba (US only)
\\n\\t
Eritrea
\\n\\t
Iran, Islamic Republic of
\\n\\t
Iraq
\\n\\t
Korea, DPR
\\n\\t
Lebanon
\\n\\t
Libya
\\n\\t
Mali
\\n\\t
Myanmar
\\n\\t
Niger
\\n\\t
Somalia
\\n\\t
South Sudan
\\n\\t
Sudan
\\n\\t
Syria
\\n\\t
Yemen
\\n\\t
Zimbabwe
\\n
\\n\\n
Return Policy
\\n\\n
POD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\\n\\n
Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\n
Representatives
\\n\\n
Print copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\\n\\n
Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\n
Books International
\\n\\n
Representative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\\n\\n
China Publishers Services Ltd - CPS
\\n\\n
Representative for: China, Taiwan, Hong Kong
\\n\\n
India - CBS Publishers & Distributors Pvt. Ltd.
\\n\\n
Representative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\\n\\n
LSR Libros Servicios y Representaciones S.A. de C.V
Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\n\n
Print On Demand (POD)
\n\n
\n\t
IntechOpen Books are printed specifically for your order
\n\t
Ordered, printed, and delivered in 7-15 business days
\n\t
Available for purchase at any time no minimum or maximum threshold on book order quantity
\n
\n\n
IntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\n
Prices and Discounts
\n\n
IntechOpen books retail price range is:
\n\n
100 - 159 GBP ex. VAT (available in USD and EUR)
\n\n
Discounts available:
\n\n
\n\t
All IntechOpen contributors can buy the print copies of books for an Author Exclusive price with discounts from 30% to 50% on retail price. Log in to your Author Panel to purchase a book at the discounted price.
\n\t
Libraries are offered a 20% discount.
\n\t
Book resellers receive a 20% standard trade discount.
\n
\n\n
Bulk discounts are granted for orders of 10 copies and more.
\n\n
There is no minimum or maximum threshold on the quantity of book orders.
\n\n
Terms and Conditions
\n\n
Payment Terms
\n\n
Orders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\n\n
We currently accept the following payment options:
\n\n
\n\t
Credit Card
\n\t
PayPal
\n\t
Bank Transfer
\n
\n\n
When paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\n\n
IntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n
In accordance with the best security practice, we do not accept card orders via email.
\n\n
General Handling and Delivery Info
\n\n
The combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\n
If you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\n
Tax and Customs
\n\n
Tax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\n\n
Customs: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n\n
P.O. Boxes
\n\n
P.O. Boxes cannot be used as a Ship-To Address.
\n\n
Restricted Countries
\n\n
IntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\n\n
When ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\n\n
Restricted Ship-to Countries:
\n\n
\n\t
Afghanistan
\n\t
Belarus
\n\t
Central African Republic
\n\t
Cote d'Ivoire
\n\t
Congo
\n\t
Cuba (US only)
\n\t
Eritrea
\n\t
Iran, Islamic Republic of
\n\t
Iraq
\n\t
Korea, DPR
\n\t
Lebanon
\n\t
Libya
\n\t
Mali
\n\t
Myanmar
\n\t
Niger
\n\t
Somalia
\n\t
South Sudan
\n\t
Sudan
\n\t
Syria
\n\t
Yemen
\n\t
Zimbabwe
\n
\n\n
Return Policy
\n\n
POD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\n\n
Inspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\n
Representatives
\n\n
Print copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\n\n
Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\n
Books International
\n\n
Representative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\n\n
China Publishers Services Ltd - CPS
\n\n
Representative for: China, Taiwan, Hong Kong
\n\n
India - CBS Publishers & Distributors Pvt. Ltd.
\n\n
Representative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\n\n
LSR Libros Servicios y Representaciones S.A. de C.V
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6585},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2382},{group:"region",caption:"Asia",value:4,count:12514},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17531}],offset:12,limit:12,total:132506},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"N-T-0-T1-NW"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12007",title:"Updates in Volcanology - Linking Active Volcanism and the Geological Record",subtitle:null,isOpenForSubmission:!0,hash:"a55d00d84b7616824cc783586c092525",slug:null,bookSignature:"Dr. Károly Németh",coverURL:"https://cdn.intechopen.com/books/images_new/12007.jpg",editedByType:null,editors:[{id:"51162",title:"Dr.",name:"Károly",surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12009",title:"Soil Moisture",subtitle:null,isOpenForSubmission:!0,hash:"9d683c1c4b137c5de03d7e6f141256f1",slug:null,bookSignature:"Dr. Rahul Datta, Dr. Mohammad Javed Ansari, Dr. Shah Fahad and Dr. Subhan Danish",coverURL:"https://cdn.intechopen.com/books/images_new/12009.jpg",editedByType:null,editors:[{id:"313525",title:"Dr.",name:"Rahul",surname:"Datta",slug:"rahul-datta",fullName:"Rahul Datta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12063",title:"Critical Infrastructure - Modern Approach and New Developments",subtitle:null,isOpenForSubmission:!0,hash:"a88b0006f3a58c0a60f89e06efb31102",slug:null,bookSignature:"Dr. Antonio Di Pietro and Dr. José R. Martí",coverURL:"https://cdn.intechopen.com/books/images_new/12063.jpg",editedByType:null,editors:[{id:"284589",title:"Dr.",name:"Antonio",surname:"Di Pietro",slug:"antonio-di-pietro",fullName:"Antonio Di Pietro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12173",title:"Dairy Processing - From Basics to Advances",subtitle:null,isOpenForSubmission:!0,hash:"420e687768b56ca7b3238d77f63f1302",slug:null,bookSignature:"Dr. Neelam Upadhyay",coverURL:"https://cdn.intechopen.com/books/images_new/12173.jpg",editedByType:null,editors:[{id:"269538",title:"Dr.",name:"Neelam",surname:"Upadhyay",slug:"neelam-upadhyay",fullName:"Neelam Upadhyay"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12176",title:"Oligonucleotides - Overview and Applications",subtitle:null,isOpenForSubmission:!0,hash:"365b4a84e87d26bcb24b7183814fba04",slug:null,bookSignature:"Dr. Arghya Sett",coverURL:"https://cdn.intechopen.com/books/images_new/12176.jpg",editedByType:null,editors:[{id:"301899",title:"Dr.",name:"Arghya",surname:"Sett",slug:"arghya-sett",fullName:"Arghya Sett"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11599",title:"Leukemia - From Biology to Diagnosis and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"30b431385424f0b84aee499d839f46cc",slug:null,bookSignature:"Prof. Margarita Guenova and Prof. Gueorgui Balatzenko",coverURL:"https://cdn.intechopen.com/books/images_new/11599.jpg",editedByType:null,editors:[{id:"52938",title:"Prof.",name:"Margarita",surname:"Guenova",slug:"margarita-guenova",fullName:"Margarita Guenova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12202",title:"Sexual Violence - Issues in Prevention, Treatment, and Policy",subtitle:null,isOpenForSubmission:!0,hash:"d3d39a00095ec14f7f869ed5b5211527",slug:null,bookSignature:"Dr. Kathleen Monahan",coverURL:"https://cdn.intechopen.com/books/images_new/12202.jpg",editedByType:null,editors:[{id:"463306",title:"Dr.",name:"Kathleen",surname:"Monahan",slug:"kathleen-monahan",fullName:"Kathleen Monahan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11651",title:"Bone Tumors - Recent Updates",subtitle:null,isOpenForSubmission:!0,hash:"cf7dd688b160a1ba07e3179613684f16",slug:null,bookSignature:"Dr. Hiran Wimal Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/11651.jpg",editedByType:null,editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11830",title:"Rubber Materials",subtitle:null,isOpenForSubmission:!0,hash:"6cf0b844f6881c758c61cca10dc8b134",slug:null,bookSignature:"Associate Prof. Gülşen Akın Evingür and Dr. Önder Pekcan",coverURL:"https://cdn.intechopen.com/books/images_new/11830.jpg",editedByType:null,editors:[{id:"180256",title:"Associate Prof.",name:"Gülşen",surname:"Akın Evingür",slug:"gulsen-akin-evingur",fullName:"Gülşen Akın Evingür"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11947",title:"Power Converter Technology - Recent Advances, Design and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1f5c85b127faa05e07e46c646dcb4540",slug:null,bookSignature:"Dr. Raul Gregor",coverURL:"https://cdn.intechopen.com/books/images_new/11947.jpg",editedByType:null,editors:[{id:"175676",title:"Dr.",name:"Raul",surname:"Gregor",slug:"raul-gregor",fullName:"Raul Gregor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11499",title:"Nonlinear Systems - Recent Developments and Advances",subtitle:null,isOpenForSubmission:!0,hash:"22a4fb880337aaa9899a7bddcdde52eb",slug:null,bookSignature:"Dr. Bo Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11499.jpg",editedByType:null,editors:[{id:"234525",title:"Dr.",name:"Bo",surname:"Yang",slug:"bo-yang",fullName:"Bo Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:412},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"411",title:"Cancer Biology",slug:"biochemistry-genetics-and-molecular-biology-microbiology-cancer-biology",parent:{id:"59",title:"Microbiology",slug:"biochemistry-genetics-and-molecular-biology-microbiology"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:139,numberOfWosCitations:118,numberOfCrossrefCitations:85,numberOfDimensionsCitations:174,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"411",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5121",title:"Free Radicals and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"9f5f123060d6e78a2f4bb7d37e781d92",slug:"free-radicals-and-diseases",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/5121.jpg",editedByType:"Edited by",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5267",title:"Tumor Metastasis",subtitle:null,isOpenForSubmission:!1,hash:"ac0d598a394585f0b00dcc15347e1f89",slug:"tumor-metastasis",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/5267.jpg",editedByType:"Edited by",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5175",title:"Role of Biomarkers in Medicine",subtitle:null,isOpenForSubmission:!1,hash:"f47eae7f8443697d384b2c8e763f0c55",slug:"role-of-biomarkers-in-medicine",bookSignature:"Mu Wang and Frank A. Witzmann",coverURL:"https://cdn.intechopen.com/books/images_new/5175.jpg",editedByType:"Edited by",editors:[{id:"40766",title:"Prof.",name:"Mu",middleName:null,surname:"Wang",slug:"mu-wang",fullName:"Mu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2857",title:"Apoptosis",subtitle:null,isOpenForSubmission:!1,hash:"ecedf2c21b8be33b3e6b587c5eb71fca",slug:"apoptosis",bookSignature:"Justine Rudner",coverURL:"https://cdn.intechopen.com/books/images_new/2857.jpg",editedByType:"Edited by",editors:[{id:"138726",title:"Dr.",name:"Justine",middleName:null,surname:"Rudner",slug:"justine-rudner",fullName:"Justine Rudner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"51874",doi:"10.5772/64700",title:"Ovarian Cancer Metastasis: A Unique Mechanism of Dissemination",slug:"ovarian-cancer-metastasis-a-unique-mechanism-of-dissemination",totalDownloads:3060,totalCrossrefCites:12,totalDimensionsCites:21,abstract:"Ovarian cancer is the most lethal of all gynecologic malignancies and has witnessed minimal improvements in patient outcomes in the past three decades. About 70% of ovarian cancer patients present with disseminated disease at the time of diagnosis. The standard of care remains a combination of debulking surgery and platinum‐ and taxanes‐based cytotoxic chemotherapy. Even though metastasis is the leading cause of ovarian cancer related fatalities, our understanding of the process remains limited. Ovarian cancer has a unique pattern of metastasis where the hematogenous spread is less common. Ovarian cancer cells mainly metastasize within the peritoneal cavity, which involves exfoliation from the primary tumor, survival, and transport in the peritoneal fluid followed by metastatic colonization of the organs within the peritoneal cavity. A key step for successful metastasis is their attachment and productive interactions with the mesothelial cells covering the metastatic organs for the establishment of metastatic tumors. This chapter provides an overview of ovarian cancer metastasis highlighting the unique dissemination and the underlying mechanisms of regulation of the steps involved. The role of the microenvironment in the process of metastasis will also be reviewed.",book:{id:"5267",slug:"tumor-metastasis",title:"Tumor Metastasis",fullTitle:"Tumor Metastasis"},signatures:"Anirban K. Mitra",authors:[{id:"185152",title:"Dr.",name:"Anirban",middleName:"Kumar",surname:"Mitra",slug:"anirban-mitra",fullName:"Anirban Mitra"}]},{id:"52345",doi:"10.5772/64573",title:"Oxidative Stress in Invertebrate Systems",slug:"oxidative-stress-in-invertebrate-systems",totalDownloads:2408,totalCrossrefCites:8,totalDimensionsCites:18,abstract:"Invertebrates have been valuable research models in the discovery of many scientific principles owing to the numerous advantages they provide. Throughout the life cycle, many of them thrive in pathogen-rich environments, manage harsh weathers, exposed to a number of allochemicals, and adapt well to both terrestrial and marine ecosystems. Their remarkable ability to cope up with the enormous oxidative stress generated in all these circumstances, make them attractive models in this field of research. Endocrine control of oxidative stress in insects is recently emerging. Adipokinetic hormone, glucagon, ecdysteroids and juvenile hormone have been implicated in antioxidative protective role in insects. Drosophila and Caenorhabditis elegans have provided the largest body of evidence addressing the free radical theory of ageing. Oxidative stress is also induced by pesticides/insecticides. In mollusks, pesticides exert their biological effects via generation of ROS. Oxidative stress has been shown to be associated with exposure to several organophosphorous compounds and different classes of pyrethroids. Malathion is a potential hazard to the environment. Adverse effects induced by malathion in earthworms and insects have been reported. Information is now available in great detail on the role of ROS in modulating insect immunity during parasite invasion and bacterial infection. In Drosophila melanogaster ROS are actively produced in the midgut at a basal level in the presence of commensal microbiota and highly generated upon bacterial challenge. The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. The concentration of ROS increased in sand fly midguts after they fed on the insect pathogen Serratia marcescens. Elevated oxidative stress was previously reported for a mosquito line experimentally infected with Wolbachia, indicating that oxidative stress may be important for Wolbachia-mediated antiviral protection. In a nutshell, this chapter highlights the current advances of oxidative stress in invertebrate model systems and its implications.",book:{id:"5121",slug:"free-radicals-and-diseases",title:"Free Radicals and Diseases",fullTitle:"Free Radicals and Diseases"},signatures:"R.K. Chaitanya, K. Shashank and P. Sridevi",authors:[{id:"178087",title:"Dr.",name:"Rk",middleName:null,surname:"Chaitanya",slug:"rk-chaitanya",fullName:"Rk Chaitanya"}]},{id:"51903",doi:"10.5772/64787",title:"Role of Oxygen Free Radicals in Cancer Development and Treatment",slug:"role-of-oxygen-free-radicals-in-cancer-development-and-treatment",totalDownloads:3571,totalCrossrefCites:13,totalDimensionsCites:15,abstract:"It is well known that species derived from oxygen are cytotoxic and are involved in the etiology of cancer. Several carcinogens during metabolism exert their effect by producing reactive oxygen species (ROS). One of the consequences of oxidative damage to cellular DNA is mutated. It plays a vital role in the process of carcinogenesis (especially in the initiation and progression). The alters, including rearrangement of DNA sequence, base modification, DNA miscoding lesions, gene amplification, and the activation of oncogenes, could be implicated in the initiation stage of several cancers. Mitochondrial changes in the cancer cells are well known and as a result are respiratory injured. Mitochondrial dysfunction could lead to a low coupling efficiency of the mitochondrial electron transport chain (mETC), raising electron leakage and increased ROS formation. It has been documented that by reducing and inactivation of antioxidant system, the oxidative stress (OS) in cancer cells is higher. Cancer cells exhibit a higher oxidative stress level compared to normal cells, rendering tumor cells more vulnerable to raise ROS levels. Therefore, increasing ROS levels through redox modulation can be a strategy to selectively kill cancer cells but not normal cells. A promising anti-cancer method named “oxidation therapy” has been developed by causing cytotoxic oxidative stress for cancer therapy. In this chapter, we described the role of ROS as a double-edged sword in cancer development and treatment.",book:{id:"5121",slug:"free-radicals-and-diseases",title:"Free Radicals and Diseases",fullTitle:"Free Radicals and Diseases"},signatures:"Jalal Pourahmad, Ahmad Salimi and Enaytollah Seydi",authors:[{id:"172672",title:"Prof.",name:"Jalal",middleName:null,surname:"Pourahmad",slug:"jalal-pourahmad",fullName:"Jalal Pourahmad"}]},{id:"44689",doi:"10.5772/55415",title:"Drug Resistance and Molecular Cancer Therapy: Apoptosis Versus Autophagy",slug:"drug-resistance-and-molecular-cancer-therapy-apoptosis-versus-autophagy",totalDownloads:3850,totalCrossrefCites:2,totalDimensionsCites:14,abstract:null,book:{id:"2857",slug:"apoptosis",title:"Apoptosis",fullTitle:"Apoptosis"},signatures:"Rebecca T. Marquez, Bryan W. Tsao, Nicholas F. Faust and Liang Xu",authors:[{id:"19713",title:"Dr.",name:"Liang",middleName:null,surname:"Xu",slug:"liang-xu",fullName:"Liang Xu"},{id:"149902",title:"Dr.",name:"Rebecca",middleName:null,surname:"Marquez",slug:"rebecca-marquez",fullName:"Rebecca Marquez"}]},{id:"51890",doi:"10.5772/64569",title:"Oxidative Stress and Autophagy",slug:"oxidative-stress-and-autophagy",totalDownloads:1894,totalCrossrefCites:6,totalDimensionsCites:11,abstract:"Free radical production related with many stress factors including radiation, drugs, ageing and trauma plays a key role in cell death. Notwithstanding, free radicals can cause pathology in a variety of diseases through oxidative stress: Under oxidative stress, excessive production of free radicals can trigger cell death by primarily DNA and all cellular macromolecule damages. Also, excessive free radicals have a role in early inducers of autophagy cell death upon nutrient deprivation. Autophagy is physiologic process of eukaryotic systems, which have significant role in adaptation to oxidative stress by degradation of metalloproteins and oxidatively damaged macromolecules. By oxidizing, membrane injuries allow the leakage of enzymes and contribute to cell damage. However, recent publications demonstrate the protecting role of lysosome system during excessive reactive oxygen species (ROS) production by the elimination of damaged proteins or organelles. Activation of autophagic or lysosomal system can eliminate the oxidizing components of cell in oxidative stress response. This chapter aims to provide the novel insight data for oxidative damage-mediated autophagy as well as their metabolic networks.",book:{id:"5121",slug:"free-radicals-and-diseases",title:"Free Radicals and Diseases",fullTitle:"Free Radicals and Diseases"},signatures:"Adem Kara, Semin Gedikli, Emin Sengul, Volkan Gelen and Seckin\nOzkanlar",authors:[{id:"177953",title:"Associate Prof.",name:"Adem",middleName:null,surname:"Kara",slug:"adem-kara",fullName:"Adem Kara"},{id:"178363",title:"Dr.",name:"Emin",middleName:null,surname:"Sengul",slug:"emin-sengul",fullName:"Emin Sengul"},{id:"178365",title:"Dr.",name:"Semin",middleName:null,surname:"Gedikli",slug:"semin-gedikli",fullName:"Semin Gedikli"},{id:"178366",title:"Associate Prof.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen"},{id:"178367",title:"Dr.",name:"Seckin",middleName:null,surname:"Ozkanlar",slug:"seckin-ozkanlar",fullName:"Seckin Ozkanlar"}]}],mostDownloadedChaptersLast30Days:[{id:"44699",title:"Apoptosis and Activation-Induced Cell Death",slug:"apoptosis-and-activation-induced-cell-death",totalDownloads:2893,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2857",slug:"apoptosis",title:"Apoptosis",fullTitle:"Apoptosis"},signatures:"Joaquín H. Patarroyo S. and Marlene I. Vargas V",authors:[{id:"141183",title:"Prof.",name:"Joaquín",middleName:null,surname:"Patarroyo",slug:"joaquin-patarroyo",fullName:"Joaquín Patarroyo"},{id:"146188",title:"Prof.",name:"Marlene",middleName:null,surname:"Vargas",slug:"marlene-vargas",fullName:"Marlene Vargas"}]},{id:"44689",title:"Drug Resistance and Molecular Cancer Therapy: Apoptosis Versus Autophagy",slug:"drug-resistance-and-molecular-cancer-therapy-apoptosis-versus-autophagy",totalDownloads:3855,totalCrossrefCites:2,totalDimensionsCites:14,abstract:null,book:{id:"2857",slug:"apoptosis",title:"Apoptosis",fullTitle:"Apoptosis"},signatures:"Rebecca T. Marquez, Bryan W. Tsao, Nicholas F. Faust and Liang Xu",authors:[{id:"19713",title:"Dr.",name:"Liang",middleName:null,surname:"Xu",slug:"liang-xu",fullName:"Liang Xu"},{id:"149902",title:"Dr.",name:"Rebecca",middleName:null,surname:"Marquez",slug:"rebecca-marquez",fullName:"Rebecca Marquez"}]},{id:"51334",title:"Free Radicals and Biomarkers Related to the Diagnosis of Cardiorenal Syndrome",slug:"free-radicals-and-biomarkers-related-to-the-diagnosis-of-cardiorenal-syndrome",totalDownloads:3724,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The National Heart, Lung, and Blood Institute Working Group has postulated the cardiorenal syndrome (CRS) as an interaction between the kidneys and the cardiovascular system in which therapy to relieve congestive heart failure (HF) symptoms is limited by the further worsening renal function. CRS is classified from type I to V, taking into account the progression of the symptoms in terms of mechanisms, clinical conditions, and biomarkers. Experimental and clinical studies have shown the kidney as both a trigger and a target to sympathetic nervous system (SNS) overactivity. Renal damage and ischemia, activation of the renin angiotensin aldosterone system (RAAS), and dysfunction of nitric oxide (NO) system are associated with kidney adrenergic activation. Indeed, the imbalances of RAAS and/or SNS share an important common process in CRS: the activation and production of free radicals, especially reactive oxygen species (ROS). The present chapter addresses connections of the free radicals as potential biomarkers as the imbalances in the RAAS and the SNS are developed. Understanding the involvement of free radicals in CRS may bring knowledge to design studies in order to develop accurate pharmacological interventions.",book:{id:"5121",slug:"free-radicals-and-diseases",title:"Free Radicals and Diseases",fullTitle:"Free Radicals and Diseases"},signatures:"Carolina B.A. Restini, Bruna F.M. Pereira and Tufik M. Geleilete",authors:[{id:"178144",title:"Dr.",name:"Carolina",middleName:null,surname:"Baraldi A. Restini",slug:"carolina-baraldi-a.-restini",fullName:"Carolina Baraldi A. Restini"},{id:"178387",title:"Ms.",name:"Bruna",middleName:null,surname:"Pereira",slug:"bruna-pereira",fullName:"Bruna Pereira"},{id:"184159",title:"Dr.",name:"Tufik",middleName:null,surname:"Geleilete",slug:"tufik-geleilete",fullName:"Tufik Geleilete"}]},{id:"52345",title:"Oxidative Stress in Invertebrate Systems",slug:"oxidative-stress-in-invertebrate-systems",totalDownloads:2409,totalCrossrefCites:8,totalDimensionsCites:18,abstract:"Invertebrates have been valuable research models in the discovery of many scientific principles owing to the numerous advantages they provide. Throughout the life cycle, many of them thrive in pathogen-rich environments, manage harsh weathers, exposed to a number of allochemicals, and adapt well to both terrestrial and marine ecosystems. Their remarkable ability to cope up with the enormous oxidative stress generated in all these circumstances, make them attractive models in this field of research. Endocrine control of oxidative stress in insects is recently emerging. Adipokinetic hormone, glucagon, ecdysteroids and juvenile hormone have been implicated in antioxidative protective role in insects. Drosophila and Caenorhabditis elegans have provided the largest body of evidence addressing the free radical theory of ageing. Oxidative stress is also induced by pesticides/insecticides. In mollusks, pesticides exert their biological effects via generation of ROS. Oxidative stress has been shown to be associated with exposure to several organophosphorous compounds and different classes of pyrethroids. Malathion is a potential hazard to the environment. Adverse effects induced by malathion in earthworms and insects have been reported. Information is now available in great detail on the role of ROS in modulating insect immunity during parasite invasion and bacterial infection. In Drosophila melanogaster ROS are actively produced in the midgut at a basal level in the presence of commensal microbiota and highly generated upon bacterial challenge. The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. The concentration of ROS increased in sand fly midguts after they fed on the insect pathogen Serratia marcescens. Elevated oxidative stress was previously reported for a mosquito line experimentally infected with Wolbachia, indicating that oxidative stress may be important for Wolbachia-mediated antiviral protection. In a nutshell, this chapter highlights the current advances of oxidative stress in invertebrate model systems and its implications.",book:{id:"5121",slug:"free-radicals-and-diseases",title:"Free Radicals and Diseases",fullTitle:"Free Radicals and Diseases"},signatures:"R.K. Chaitanya, K. Shashank and P. Sridevi",authors:[{id:"178087",title:"Dr.",name:"Rk",middleName:null,surname:"Chaitanya",slug:"rk-chaitanya",fullName:"Rk Chaitanya"}]},{id:"51782",title:"Is Extracellular Matrix a Castle Against to Invasion of Cancer Cells?",slug:"is-extracellular-matrix-a-castle-against-to-invasion-of-cancer-cells-",totalDownloads:2289,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"Metastasis is a complicated course that involves the spread of a neoplasm to distant parts of the body from its original site. A cancer cell must complete a series of steps before it becomes a clinically detectable lesion for successful colonization in the body. These are separation from the primary tumor, invasion and penetration of their basement membranes, entry into the blood vessels and survival within blood, and entry into lymphatics. A major challenge in extracellular matrix (ECM) biology is to understand the roles of the ECM and how disruption of ECM dynamics may contribute to cancer. A noteworthy area of forthcoming cancer research will be to determine whether abnormal ECM could be an effective cancer therapeutic target. We should understand how ECM composition and organization are normally maintained and how they may be deregulated in cancer. So the aims of this chapter were to focus on extracellular matrix. Invasion and metastatic skills, properties and functions of the ECM, abnormal ECM dynamics, tumor microenvironment and ECM, details of ECM invasion, role of ECM and ECM‐associated proteins in metastasis, tumor dormant and metastatic process, essential component of the niches, role of the ECM in tumor angiogenesis and lymphangiogenesis are be briefly explained in this chapter.",book:{id:"5267",slug:"tumor-metastasis",title:"Tumor Metastasis",fullTitle:"Tumor Metastasis"},signatures:"Serdar Altınay",authors:[{id:"185324",title:"Associate Prof.",name:"Serdar",middleName:null,surname:"Altınay",slug:"serdar-altinay",fullName:"Serdar Altınay"}]}],onlineFirstChaptersFilter:{topicId:"411",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11580",title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",hash:"1806716f60b9be14fc05682c4a912b41",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 23rd 2022",isOpenForSubmission:!0,editors:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Business and Management",value:86,count:1,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:null,institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:65,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:64,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:174,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:286,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/189028",hash:"",query:{},params:{id:"189028"},fullPath:"/profiles/189028",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()