Comparison between this survey and other previous surveys.
\r\n\tRisk management aims to develop an efficient organizational development environment through risk planning, assessment, analysis, and control. This process will apply in all areas of activity, and the evaluation framework is the same regardless of the field. This volume will aim to appeal to chapters that address methods, models, evaluation frameworks, benefits, barriers, and other dimensions of risk management.
\r\n\tSustainability and the circular economy are approaches approached by many companies and have become activities of global interest. Protecting the environment, streamlining the consumption of organizational resources, reducing the amount of waste generated, and other activities are objectives of these efforts. The circular economy contributes to the sustainable development of the company or country and the achievement of the global objectives of sustainable development. This book will aim to collect various studies for organizational and global sustainability.
\r\n\tLeadership has become a globally desirable approach that can help improve organizational competitiveness and reduce organizational risks. Risks and barriers in risk-free management can be well managed through effective organizational leadership. This book will aim to bring together chapters that explore different areas of leadership.
The extensive knowledge about the significance and connexions of the amygdala with other brain regions emerged in the early XXth century (Gurdjian, 1928). Since then, the seven comprising nuclei of amygdala −
Similar to other catecholamines such as epinephrine (adrenaline) and dopamine (DA), norepinephrine (noradrenaline) is released either into the circulation or locally to brain regions as a response to stress. NE subsequently also is transmitted into the amygdala. An increase in NE content within the amygdala modulates multiple physiological functions. In the amygdala the content of NE is higher than DA, but comparable to that of serotonin (Niwa et al., 2011). The noradrenergic neurons are present in the LC and amygdala. These neurons are distinguished by their positive reaction to DBH − dopamine β-hydroxylase, which enables the conversion of DA into NE. The physiological (endogenous) dynamics or pathological increase of NE occur at terminals originating from the LC (Emson et al., 1979). In individuals with a history of post-traumatic stress disorder (PTSD) the properties of the amygdala, along the hippocampus and prefrontal cortex, are affected and involve stress hormones such as cortisol and NE (for review see Bremner, 2006). Specifically, the fear-conditioning paradigm bilaterally increases the activity of the amygdala in those with symptoms of PTSD as a result of abuse. In healthy subjects, such an increase targets the left hemisphere; nevertheless, the left amygdala in the PTSD group is more active compared to the control. The upregulated activity in the amygdala correlates with increased blood flow to this region in the PTSD group.
Amygdala of rhesus monkey
The amygdala is the main brain region responsible for emotion, at least for its intensity. Emotions, in turn, can influence memory leading to either forgetting – amnesia or stronger (compared to average) remembering – hypermnesia. The latter two events occur in anterograde or retrograde fashion.
The emotional fear response originates in the brain by the convergence (Fig. 2) of conditioned and unconditioned stimuli (CS and US), the latter can be also shown in experimental animals by employing diverse parameters depending on the area of interest (Halverson et al., 2009; Kwapis et al., 2009). A particular Pavlovian training or conditioning that has been widely used in research, enables experimental animals to associate the neutral CS with the US of a negative valence. This association results in an aversive response to the subsequently encountered CS. Fear conditioning paradigms are excellent tools for the study of neurobiological substrates of learning and memory. With regard to this, a peculiar interest has been devoted to the role of amygdala in auditory fear conditioning (LeDoux et al., 1984). The learning process in the amygdala and resultant memory undergo multiple steps involving consolidation and re-consolidation. Although the mechanisms underlying these two steps to a greater extent are controversial (Alberini, 2008). The interplay between information storage and dynamic properties of synapses are complex (Varshney et al., 2006). The consolidation of recent memories (from the previous day) are processed during sleep within the rapid eye movement (REM) phase, the latter leads to sorting of relatively earlier (then the very recent one) acquired information and its subsequent forgetting (Poe et al., 2000). Fear memory and circuits related to addiction often function synergistically (Peters et al., 2009).
The pairing paradigm that is equivalent to Pavlovian (light-food pairings) classical conditioning (Pavlov, 1927) enables the potentiated response of synapses in the amygdala also
The neuronal excitability is a result of activities and properties of multiple ion channels including hyperpolarization-activated cyclic nucleotide gated non-selective cation (HCN or
Cortisol and NE are considered as a main stress hormones (for literature analyses see Cahill et al., 2003). The authors reported that cortisol levels in saliva samples increases from ~3.5 to 4.2 ng/ml in response to a simple paradigm − cold pressor stress (CPS). In those subjects (control) who immersed the left forearm up to above the elbow joint level into the slightly warmer water (37−40 ºC) than body temperature, the concentration of cortisol decreased to ~3 ng/ml when compared to CPS group (0−3 ºC). Under these two conditions, subjects exhibited similar LTM for neutral pictures. Greater amounts of emotionally charged pictures were correctly recalled by CPS group.
Stressful events result in activation of the amygdala accompanied by increase in NE levels and surgery counts to this. Patients who underwent general anesthesia responded faster and provided correct word associations with emotionally negative cues compared to neutral ones (Gidron et al., 2002). This was the case when it concerned the old cues, however in regard to new cues the opposite effects were observed. Moreover, there was a correlation between the reaction time and spectral edge frequency (SEF) during EEG recordings. Thus, analyses revealed that patients with a SEF of lower than 9 Hz reacted slower.
It has been shown that the variation in NE levels can mimic the intensity of emotion in tested subjects (Hurlemann et al., 2005). In this study, the noradrenergic response to NE was inhibited by propranolol via blockade of β-adrenoceptors. Experimentally, the noradrenergic response was enhanced by NE reuptake inhibitor, reboxetine mesilate, a pharmaceutical that is widely used in order to reveal the resultant changes during the exposure to certain experimental paradigms. Former treatment decreased the arousal to oddball stimuli, while the latter increased it. Such outcomes were observed with both positive and negative oddball stimuli, but not with neutral ones. Moreover, the valence during all three paradigms remained unchanged. Propranolol, but not reboxetine, lowered the systolic and diastolic blood pressure. The plasma levels of these drugs at the end of recall paradigm were 20 and 75 μg/L, respectively. In fact, the plasma content depends on overall body’s metabolism and prior fasting, as was shown for reboxetine (Hurlemann et al., 2007). Although, emotionally driven retrograde amnesia can occur via modulation of either NE or cortisol signaling, concurrent activation of these systems is perhaps an adequate underlying mechanism. This notion is supported by the magnitudes of recall change under negative emotion contact (E-1) for reboxetine (34 %) and synthetic cortisol (24 %), hydrocortisone, alone. The latter was increased by co-application of both (43 %). The amnesic influence was seen also on adjacent E-2 contact (22 %) and lasted 10 s. All these treatment combinations did not alter the
Oral intake of yohimbine reversibly increases the content of α-amylase in human saliva (van Stegeren et al., 2010). A cortisol containing pill enhanced the endogenous cortisol level in these subjects abruptly and sustained at plateau for at least 1 h. The baseline content was documented after one week. The performance of these two groups, in terms of (better) recognition and recalling emotional pictures, when compared to neutral ones were similar. Yohimbine was ineffective while cortisol improved recognition and recall responses to both stimuli to similar extent. The combination of both agents strengthened the response to the emotional stimulus. Endogenous cortisol levels in human subjects vary greatly, and for this reason, experiments are often conducted by assigning two groups with relatively low (~5 nM) and high (~8 nM) contents (van Stegeren et al., 2007). Under placebo the magnitude of amygdalar activation in response to emotional pictures (compared to those of neutral nature) correlated well with the level of cortisol within the groups. It was suggested that the response of the amygdala underlies an increase in NE levels, since after the intake of 80 mg propranolol such correlations were absent. Additionally, propranolol increased the cortisol levels, but not to significant extent.
The cortisol concentration changes dynamically, with the highest level (~12 μg/dl) occurring during the late (REM) sleep. Oral intake of 3 g metyrapone (cortisol synthesis inhibitor) before the sleep inhibited the plasma level of cortisol during 8 h of sleep in male subjects (Wagner et al., 2005). Metyrapone increased the plasma content of NE during both learning (from ~100 to 120) and retrieval (~130 vs. 160 pg/ml) and its concentration was lower during sleep. These opposing effects of metyrapone on cortisol and NE dynamics correlate and promote the emotionally charged memory formation that occurs within the amygdala. Emotional memories are consolidated during the slow wave sleep (SWS) and involve NE release. This was verified by intravenous infusion of α2 agonist clonidine, which inhibits NE release by the LC and decreases the retention of temporal order of emotional stories (Groch et al., 2011). Clonidine inhibited only the REM phase, which consisted of about 5% of total sleep time in tested subjects.
The NE degradation occurs by catechol-O-methyltransferase (COMT). In case of polymorphism in the COMT gene, the substitution of valine by methionine occurs at amino acid 158
Van Stegeren et al. (2005) confirmed that NE is a neurotransmitter involved in memories of emotional nature. Propranalol slightly increased the baseline heart rate (HR) compared to placebo group, but it significantly decreased before and after the fMRI procedure. Note that the procedure itself lowered the HR in both groups. Both groups similarly distinguished the emotional intensity of presented pictures by comparing them to prior images. The responses to gradually increased emotional intensity of pictures correlated with the pattern of activity in the amygdala. The latter activity was decreased by propranolol, but to significant extent only at intermediate intensity. In females, the amygdala exhibited about two fold less activation and higher resistance to propranolol compared to males. Male and female subjects also rated the pictures of similar intensity differently, especially former identified a greater number of images of neutral nature, while the latter rated them as emotionally intense pictures. Interestingly, propranolol did not affect the response of subjects exposed to pictures of highest emotional intensity. The overall memory performance was similar in both genders (van Stegeren et al., 2005).
The memory performance and related behaviour in rodents can be analyzed by employing multiple trainings and tests. The existing findings reflect controversial roles for NE in amygdala dependent memory.
Since moderate stress promotes memory formation and this event is accompanied by the release of NE, it is logical to expect similar effects on retention by this substance alone. The retention of memory is often manifested during the object recognition task. The overall performance depends on the duration of training, i.e. rats exploring objects for 3 min can retain memories for only one hour. By increasing the training time to 10 min, one would observe the resultant retention even after 24 h (Roozendaal et al., 2008). The latter study revealed that the NE administration into the BLA immediately after 3 min training improved the retention that lasted at least 24 h. However, the NE was effective only at lower doses up to 1 μg and declined abruptly at 3 μg. Direct exposure of BLA to propranolol resulted in impairment of retention in those rats trained during 10 min. The enhancement of fear memory by bilateral injection of NE into the BLA is reversed by prior exposure to context (Huff et al., 2005). In this regard, the latter study also provides some clarifications addressing controversial arguments in several studies. The dose response was not classical as judged by three different concentration of NE, and a clear effect was evident only at 1 μg, since at 3 μg, the freezing response – memory for fear, among tested rats declined and was not significant compared to control group. Injection of propranolol into the BLA immediately after training abolishes the enhancement of object recognition memory by corticosterone (Roozendaal et al., 2006b). The blockade of this memory via β–adrenoceptors was selective to the amygdala, since similar procedures (albeit even higher concentration of antagonist) targeting the hippocampus did not alter the discrimination index.
There are also toxins, which target noradrenergic neurons. One of them is DSP-4 [N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine] with selective effects on DBH positive cells of the amygdala and LC as demonstrated 10 days after i.p. injections in adult rats (Radwanska et al., 2010). The toxicity effect on BLA neurons was more pronounced compared to LC ones. One week after the injection, animals underwent the habituation and training sessions, and active avoidance responses to US were analyzed. The majority of DSP-4 treated rats were unable to avoid the foot-shock within the 5 s consequently receiving 25 s long US. The same tendency was found also after additional seven training sessions in subsequent days and correlated with the decrease in NE neurons. The DBH positive neurons in BLA are also immunoreactive to choline acetyltransferase (ChAT). Moreover, DBH and ChAT positive terminals can also be found in close proximity, perhaps even are synaptically connected to the same neuron (Li et al., 2001).
Long lasting increase in NE level were observed in response to 0.55 mA foot-shock applied during 1 s via the floor in dark compartment of the inhibitory avoidance box (Mcintyre et al., 2002). The immediate mean release after the shock was estimated around two-fold compared to baseline. The three-fold peak increase in NE level occurred after 15 min and then gradually declined, but did not reach baseline during up to 2 h and remained at ~1.5 fold. Interestingly, the identical stimulus delivered via the grid in the bottom of the holding cage evoked a small NE release that lasted ~15 min. In some rats, the content of NE reached the highest level (~7.5 fold), and there was to some extent a correlation between the level of NE and the latency to enter the dark compartment during inhibitory avoidance (IA) test in particular animals. Rats injected i.p. with corticosterone immediately after IA training retain memories 10 fold longer (~300 vs ~30 s) compared to controls (McReynolds et al., 2010). Interestingly, this procedure resulted in a transient two-fold increase in NE level in BLA and Arc expression in the hippocampus; the latter effects were observed only in trained rats. In fractioned synaptoneurosome, the expression of PSD-95 was higher than in total homogenate from hippocampus. Direct injection of propranolol into the BLA decreased the Arc density in synaptoneurosome preparation. These results support the notion that amygdala and hippocampus may act in synergy during cognitive behavior. Note that the increase in NE levels of similar magnitude (~1.6 fold) should occur even in the absence of any drug in the amygdala after IA training, and cAMP response element-binding (CREB) antisense reduces its magnitude and duration (Canal et al., 2008). The clenbuterol administration immediately following the training improved the related memory.
One of earlier studies demonstrated that the systemic injection of epinephrine increases the NE release in the amygdaloid complex in a reversible manner (Williams et al., 1998). Its magnitude was comparable when either 0.1 or 0.3 mg/kg epinephrine were used. The authors compared these effects with those resulting after escapable foot-shock in these two groups. The 1 s foot-shock with the intensity of 0.8 mA caused only a slight NE increase in of groups, but differences appeared not to be significant. The NE increase was concluded to take place in amygdalar terminals of
The post-training injection of NE into the BLA enhanced the retention of contextual fear conditioning (CFC) revealed by freezing time during the Y-maze test (LaLumiere et al., 2003). The pattern of response to two different concentrations was similar when the latency of both freezing and entry into the shock arm were analyzed. The CFC could be performed also by using the straight alley test and analyzing the avoidance (latency) of rats to enter the dark shock compartment. The enhancement of retention by 1 μg NE was comparable to that in the Y-maze, but slightly less pronounced (~3 vs. 4 fold).
Finally, the improvement of the retention is also observed during antagonism of α2 adrenoceptors by idazoxan (Ferry & McGaugh, 2008). The effects of idazoxan differ depending on either pre- or post IA training injections. However, in both cases this selective α2 antagonist improves retention. Thus, idazoxan injected into the BLA 20 min prior to IA test increased the retention latency from ~120 to 180 s, which was significantly longer (~260 s) when introduced immediately after foot-shock. The dose-dependent effects of idazoxan in these two experiments were similar and the peak identically occurred at 0.3 μg demonstrating the narrow bell-shaped effects. In another group, increasing the foot-shock intensity from 0.4 to 0.5 mA resulted in prolonged retention latency to ~300 s and that was decreased by injection of agonist UK 14,304 (up to 3 ng). The subcutaneous injection of hormone corticosterone decreased the conditioned auditory-cue fear response (Roozendall et al., 2006a). The effect of corticosterone was reversed by injection of β1-adrenoceptor antagonist atenolol (0.5 μg) into the BLA. Atenolol alone was ineffective and both agents’ effects occur only when they were administered immediately after pairing of tone with the shock, but not before it.
Most evidently, severe stress negatively impacts the memory and correlated amount of NE released during this period may exert such effects. A dramatic release of multiple neurotransmitters including NE (1200 %) is observed also after bilateral injection of antibiotic anisomycin into the amygdala. However, the latter led to amnesia (Canal et al., 2007). Interestingly, the vehicle injection increased NE levels by ~200 %. Under both conditions, the NE release was a transient event lasting ~60 and 45 min in former and latter cases. Another difference was seen in samples from anisomycin treated group that showed a rebound decrease almost to 0 % below the normalized 100 % baseline level. The baselines were not strictly stable, but to some extent identical in both groups. A rebound decrease was not observed in vehicle-injected animals, and after a transient increase, the NE levels returned to baseline values. When samples were analyzed every 45 min (vs. 15 min above), the transient increase was less pronounced in the anisomycin group, while it disappeared in the vehicle one. The rebound decrease in NE release was consistently present in anisomycin treated animals and remained at 50 % despite the prolonged experiments; baseline recovery occurred after 48 h. Amnesia by anisomycin involves the noradrenergic receptors, since either the prior injection of propranolol or subsequent administration of clenbuterol (β2 agonist) resulted in significantly lower impairment of memory in both groups of experiments. The lidocaine (Na+ channel blocker) prevents NE release that is evoked by intra-amygdalar injection of anisomycin (Sadowski et al., 2011). The latter correlated with the reversal (to some extent) of memory impairment achieved by anisomycin. Furthermore, anisomycin attenuated c-Fos (cellular FBJ osteosarcoma oncogene) immunoreactivity (assessed by application of foot-shocks) by inhibiting the protein synthesis in BLA, and thereby providing some possible challenges for required
Stress can be introduced to laboratory animals with paradigms closely resembling those occurring in the nature: social isolation, maternal separation or both. The combination of latter factors in mice between postnatal day 15 (P15) and P21 reduced the social interaction time by two-fold, measured during adulthood (Niwa et al., 2011). Thus, these mice were more anxious and show a decreased short-term memory (STM) compared to the control group, which is improved with antipsychotic drug clozapine. Under these conditions, the plasma level of corticosterone increased by four-fold (from ~200 to ~800 pg/ml). The NE content shows a tendency to decrease, but statistical analyses perhaps did not reveal a degree of significance contrary to that of the frontal cortex. Note that the overall level of NE in the frontal cortex was higher compared to the amygdala. Nevertheless, injection of NE into the right BLA immediately after the CFC decreases the freezing behavior in a dose-dependent manner (Berlau and McGaugh, 2006). However, this U-shaped response was narrow as judged by three logarithmic concentrations (0.3−3 μg) and show peak effects at 1 μg.
The pain perception was found to be lower in two lines of transgenic mice that lack α2A adrenergic receptors (Davies et al., 2004). One of the agonists of these receptors odexmedetomidine (i.p.) decreased the flinch threshold from 0.17 to 0.16 mA in WT mice. The odexmedetomidine in α2A AR mice did not affect the flinch response, while in D97N mice it increased the threshold (0.18 vs. 0.20 mA) that was not considered as an effect. In WT mice the freezing response was decreased, when odexmedetomidine was injected 30 min prior to fear conditioning, but not immediately after. This procedure also reduced the number of both P-CREB (phosphorylated) and c-Fos positive neurons in all three major nuclei of amygdala: LA, BLA and CeA. While the number of these two groups of neurons were comparable in LA and CeA, in BLA the content of P-CREB was five-fold and those of c-Fos two-fold.
Electrophysiological studies
The above-mentioned paradigm is known as DG LTP reinforcement by BLA. The injection of ~7 nM propranolol into the DG five minute prior to the BLA reinforcing paradigm decreases the LTP in DG achieved by PP stimulation (Bergado et al., 2007). The magnitudes of initial potentiation caused by PP stimulation in both groups were almost identical. Note that the control group comprises data obtained after the NaCl injections into the BLA, LC and medial septum and figure legend states that propranolol was delivered into the BLA.
Amygdala and fear response pathwaysLeft, amygdala (in actual coronal brain slice) and its major nuclei. Right, closely matching section of brain in coronal plane (
The potentiation of synaptic responses underlies the learning and memory at neuronal level.
Diverse cells have been observed in the amygdala, but the majority is comprised of two types. They are pyramidal and interneurons, and both are prone to plasticity (Mahanty & Sah, 1998; Tully et al., 2007). These neurons are distinguished by means of various methods; however, their electrophysiological properties could be considered a main criterion (Kodirov et al., 2009). In recent years, the attempt to recognize both types of cells by usage of biological marker − green fluorescent protein (GFP) − are starting to emerge. The interneurons in the BLA are apparently similar to other brain regions, because they express glutamate decarboxylase − 67 (GAD-67). In the BLA a single glutamatergic and three distinct GABAergic types of neurons have been distinguished (Kaneko et al., 2008). Although, this study is substantial, the characterized cell types warrant some skepticism, since in presented micrographs there are too many GFP+ (GABAergic) cells, the soma of several neurons is pyramidal-like, and finally the size of GFP- (glutamatergic, if those black spots are intact neurons, but not damaged ones) cells are comparable to those of GFP+. Even during targeted recordings one would not encounter that amount of GABAergic cells in such a close proximity within the amygdala. This study is actually contrary to current dogma, since principal cells “exclusively showed regular spiking” and only about half of studied cells possess pyramidal soma. Moreover, the type-A GABAergic cells “spiked with little adaptation” and the size of their soma ranged up to 20 μm.
NE release can be also triggered in brain slices by excessive depolarization using higher concentrations of K+. This procedure enables an increase (by 10-15 %) in NE content compared to basal magnitude in the amygdala (Lonart et al., 2008). Depolarization-induced NE release within the three nuclei were comparable in WT mice. In Rab3 interacting molecule 1 alpha (Rim1α) KO animals the identical approach evoked considerably lower NE release in BLA. Although in one of presented experiments, NE release from the CeA may have decreased, but the average data was not significant. The magnitude and response pattern of NE release in LA were indistinguishable from those of WT mice. Interestingly, in all these cases the peak release appeared with identical latencies of six minutes.
In control mice, NE gradually increases the frequency of spontaneous inhibitory postsynaptic currents (sIPSC) in pyramidal neurons of the BLA according to applied concentration (Braga et al., 2004). The effects of 1 μM NE was moderate, while of 10 μM high and at 100 μM excessive. Interestingly, at all tested doses the effects were completely reversible. The effects were observed also in the presence of adrenoceptor antagonists propranolol, yohimbine (α2A), CEC (α1B), and BMY 7378 (α1D). The selective α1A agonist A61603 increased both the rate and amplitude of sIPSC, and these effects were not observed in the presence of selective antagonist WB4101. NE at 10 μM had opposite effects on evoked IPSC, and note that the inhibition was not complete, but reversible and perhaps rather targeted only to those with the highest amplitude. The results became more complicated, since a blockade of GABAB receptors (although their activation was not experimentally shown) changed the effects of NE on evoked IPSC. In the stressed (immobilized and exposed to tail-shocks) group of animals, the mean frequency of sIPSC slightly decreased (3.1
Contrary to data of Braga et al. (2004), NE decreased the frequency of sIPSCs in pyramidal cells of LA, but did not alter their amplitude or any parameters of miniature events and eIPSCs (Tully et al., 2007). Therefore, it was assumed that NE decreases the excitability of interneurons. However, this assumption could be evidenced by recording APs and acutely applying NE. In some of the latter neurons, NE slightly decreased the tonic GABAergic currents, while the parameters of phasic ones were not altered. The conclusion of this study needs to be defined, since indeed the release of GABA into the pyramidal neurons was affected as it is supported by selective decrease of the frequency of sIPSCs by NE.
An increase in synaptic strength within the amygdalar fear circuit comprises the plasticity. Among multiple amygdaloidal nuclei, the LA has been extensively studied. The LA is modulated by excitatory afferents and involved in synaptic plasticity, i.e. the counterpart that underlies learning and memory at neuronal level. Memory formation in the LA can easily be demonstrated, since synapses can undergo LTP (Fig. 3).
Induction of LTP in the LA
LTP has been extensively explored and its properties in the amygdala are well established (Kodirov et al., 2006; Rogan et al., 1997; Royer & Pare, 2003). In the amygdala, LTP induction can be either N-methyl-D-aspartate (NMDA) glutamate receptor dependent or independent (Mahanty & Sah, 1998; Gewirtz & Davis, 1997). Picrotoxin (PTX) facilitates the induction of LTP of excitatory postsynaptic potentials (EPSP) in the amygdala (Kodirov et al., 2006) by inhibiting the GABAA receptors. However, via the same mechanism, it can block the induction of another form of plasticity (Fink & O’Dell, 2009) known as EPSP–spike (E–S) potentiation in
Thus, despite some skepticism, the best-known counterpart of learning and memory at synaptic and input levels is LTP. LTP in the amygdala occurs at both the thalamic and cortical synapses into the pyramidal neurons. Recently, the NE effects on LTP at thalamic inputs into the LA were revealed (Tully et al., 2007). Interestingly, the latter effects were seen only under physiological conditions, i.e. under undisturbed balance of excitation and inhibition. Note that under these conditions, the synapses at thalamic inputs into the LA are not prone to LTP. Therefore, NE rather enables the induction of LTP, and its effects on maintenance remains to be elucidated. Under facilitated excitatory drive, which is commonly achieved in the presence of up to 100 µM PTX, there was a tendency for enhanced LTP by NE, however, not to a significant level. Furthermore, the amplitudes of both components of glutamatergic currents remain unaltered in the presence of NE. However, two opposite effects were observed when prior to NE either α2− (yohimbine) or β–adrenoreceptors (propranolol) antagonists were applied. During the priming with yohimbine NE increased the amplitude of evoked excitatory postsynaptic currents (EPSC), while with propranolol NE decreased it. The latency was shorter and magnitude was greater in the former situation compared to the second one. Both effects were to some extent reversible after application of either yohimbine or propranolol. It has previously been shown that the NE effects vary depending on targeted influence on the latter two receptors (Ferry et al., 1999a). Therefore, perhaps just by using either yohimbine or propranolol one could observe the corresponding drug induced LTP in those experiments in the LA.
NE increased the number of evoked action potentials in pyramidal neurons of the LA. Intrinsic excitability of neurons can be attributed per se to learning and memory in
At thalamic inputs, terazosin decreased the amplitude of disynaptically induced inhibitory currents at 10 µM concentration, which did not alter the excitatory ones that were evoked in response to the first pulse (Lazzaro et al., 2010). The sequence of dysynaptic excitatory and inhibitory currents/potentials can be also evoked by stimulating the cortical inputs and adjusting the holding potential to between −30 and −40 mV (Kodirov et al., 2006). Interestingly, the amplitude of excitatory currents evoked during application of second pulse was increased by terazosin (Lazzaro et al., 2010), thus resulting in paired-pulse facilitation (PPF). Note that no PPF at both synapses was observed under control conditions, although employing the ISI of 50 ms usually results in PPF when the single pulses are applied. Interestingly, the thalamo-amygdalar synapses exhibit LTP that decay with time, but in the presence of PTX it persisted steadily at least up to 1.5 h. However, it is not clear when terazosin was applied, since the descriptions in both text and figures are contradictory. One pitfall during LTP experiments is the difficulty of comparing the potency of compounds, including NE. Nevertheless, at these inputs the LTP was more pronounced in the presence of terazosin compared to PTX. Since this compound was less effective at cortical synapses the authors conclude that the thalamic inputs are important in anxiety and α1 adrenoceptors play a role mostly in this pathway.
The Pavlovian paradigm also alters the expression of multiple genes in amygdala. Under control conditions, freezing response was observed in ~20 %, which was increased to ~80 % rats measured after 24 h of one trial of fear conditioning − pairing tone with foot-shock (Ploski et al., 2010). The behaviour of the rats was comparable in the next two trials. The qRT-PCR after 30 min of paradigm revealed an increase in mRNA of several genes: Arc−Activity-regulated cytoskeleton-associated protein, Egr2−Early growth response 2, Nr4a2−Nuclear receptor subfamily 4, group A, member 2, Per1−Period homolog 1 (
We have encountered that the PPF at cortical inputs into the LA occurs less compared to other regions of the brain (Kodirov et al., 2009). A recent study demonstrates that the magnitude of PPF at these synapses decreases after a pairing paradigm from the ratio of ~2 to 1.5, at least one can estimate from representative traces (Fourcaudot et al., 2008). However, the average data is perhaps inadequately presented by subtracting the PPF of baseline from that of heterosynaptic associative LTP (LTPHA – evoked by the simultaneous stimulation of cortical and thalamic inputs), thus resulting in negative paired-pulse ratios (PPR). Comparing PPF before and after the paradigm would be sufficient in order to conclude whether or not the expression of LTP is presynaptic. Moreover, it is not clear that “changes in PPR could also involve postsynaptic mechanisms” and “induction of LTPHA depends on presynaptic, but not postsynaptic, NMDA receptors”. The PPF ratio was reduced by 50 μM forskolin and the identical concentration rapidly (~2 min) increases the EPSP reaching within four minutes the plateau and thus induces potentiation lasting at least 20 min. Its amplitude (~150 % of baseline) was comparable with LTP triggered by the stimulation of cortical inputs. Thus, PKA and RIM1α were shown to alter the LTPHA.
NE influences memory performance either via interplay between the α- and β-adrenergic receptors or by co-activation of both (Ferry et al., 1999a, b). The memory promoting effects of NE via amygdala may occur also by the activation of principal neurons in the NTS and involve epinephrine (Williams et al., 1998). Amygdala dependent fear learning involves NE as a main neurotransmitter, since the post-training intracranial injection of 1 μg NE led to amnesia in rats 24 h after passive avoidance task (Kesner & Ellis, 1983). The pathological release of catecholamine NE in mammals including humans occurs in comparable manner to invertebrates (Kodirov, 2011).
The above outlined dual effects of NE on memory (impairment and enhancement) possibly underly the distinct BLA single neuronal response, since iontophoretic injection of NE in some cells increased and others decreased the spontaneous firings
Finally, the fear conditioning alone leads to the upregulation of ~30 genes in the LA (Ploski et al., 2010). Note that no downregulation for any genes was estimated in this study. Eventually, such results in the future could specify the role of plasticity related genes more precisely (in terms of their associations to certain neurotransmitters including NE), which then potentially could serve as a target points during diagnosis and the search for potential cure. Even in this century “how memory processing would be coded at the receptor [or gene] level remains unknown” (Ellis, 1985).
In this instance, I would like to acknowledge contributions of authors, which I was not able to review because of either length limitations or many of them were discussed elsewhere recently. I am also grateful to Nicholas D. Leymaster and Carl J. Christel for reading this work at its final stage.
Recently, the agricultural domain is facing numerous challenges related to the need to permanently increase productivity, climate change management, crop health monitoring, and irrigation water management, as well as fertilization optimization. To address these constraints, IoT technology is opening up new promising technological paths and pushing the future of agriculture to the next level. Indeed, many advantages are offered by IoT systems for intelligent farming, such as a panoply of sensor networks to optimize irrigation and agricultural inputs management, as well as improvement of the agricultural engine guidance and maintenance. Agricultural sensors implemented in the fields are estimated to reach 12 million by 2023, this revolution of smart devices will provide many remote facilities to manage seeds, irrigation, fertilizers, and early disease detection by collecting real-time data about the field and the environment. We mean by intelligent farming the integration of smartness in the farming processes, not only for the land management but also in the other chain links notably logistics and supply chain, transportation [1, 2, 3, 4], as well as storage. The need for automation in the agricultural domain to overcome the constraints imposed by classical methods of farming became more essential than before. Furthermore, the availability of water in a sufficient quantity and quality has been recently become alarming because of the climate change phenomenon. Consequently, many technological, economical, and social policies have to be implemented according to many recent studies that focused on water management topics [5]. Thanks to the smart and low-cost dedicated sensors, irrigation tasks will be precise and the productivity will be rapidly increased, without ignoring the important contribution in hydrological resources preservation. Traceability of the food supply chain (FSC) is an important key factor to ensure the quality and safety of food transportation and identification in a regulatory manner, as well as protect perishable food against waste. Dairy farming is another farming process that has taken benefits from the integration of information and communication technology in the farming industry, it helps farmers to adopt more accurate practices in dairy management [6] to monitor the heat of oestrus to improve reproduction, as well as the animal health check and monitoring [7].
Highly intelligent farming or high intelligent farming are two concepts that refer to the use of high tech in farming processes to enhance the efficiency of daily work. In fact, using technological innovation in farming is not new, but the rise of some disciplines, such as IoT, fog computing, satellites, drones, smartphones, and Blockchain, are things that will push smart agriculture and precise farming industries to a high level in the coming years. We believe that implementing ICT in the farming world will enable farmers to better understand and interact with their farms by collecting data about changing variables and giving commands according to the situations. All of these technologies will give the ability to the farms to make a big transition from being simple physical environments to highly intelligent and abstract worlds.
Despite the existence of several studies and surveys that introduce the issue of integrating ICT in farming processes, we find that these surveys either focused only on one farming process or do not investigate deep enough this integration. Moreover, investigation of Blockchain technology, its benefits for the farming industry, and its required research to build sustainable development, need to be elaborated. To fill these literature gaps, we propose this survey as one of the most mature studies of its kind that presents a systematic and developed state-of-the-art for integrating ICT in the farming world.
The remainder of this work is further structured as follows: The research methodology is presented in Section 2. Then, the general review of IoT-based systems’ requirements is discussed in Section 3. Next, Section 4 provides the components of an intelligent farming IoT model. After that, the open challenges resulting from IoT-fog computing integration are discussed in Section 5. The applications of Blockchain in intelligent farming and the discussion part are then presented in Section 6. The conclusion and summary are provided in Section 7.
This survey extensively studies the knowledge related to the intelligent farming domain. It inventories and summarizes the integration of ICT in the IF field. The potential of this survey regarding the other works is to evaluate the implementation of Blockchain in the IF topic.
The references related to our research area are collected and filtered, 104 references have been retained based on the following four criteria: (1) High priority was given to recent studies, which means that most of the selected papers were published between 2017 and 2021, and some of them are in press. (2) The timeliness and novelty of the study in the intelligent farming field is another criterion that has been given more priority. (3) The significance to the field and the potential impact on the course of future work in the area of smart farming, were also criteria that have been taken into account while selecting the examined papers. (4) Since the potential of our survey is the evaluation of the applications and benefits of Blockchain technology for the farming industry, we have given more importance to the studies that have explored Blockchain technology within farming environments. A variety of questions that are addressed in this survey can be summarized as follows—(Q1) what type of ICT systems and frameworks are used in the implementation of IF solutions? The answer to this question gives a general study of relevant technologies and protocols adopted in IoT systems as well as fog/edge computing platforms. These technologies represent the basis of many implementations in many fields including intelligent farming, (Q2) is there an IoT model structure that can be adopted to build IF solutions? To answer this question, a five-layer model for intelligent farming is presented, (Q3) how Blockchain technology can be used in the IF domain, and what impact might this have on IF practices improvement? The answer to this question leads us to introduce the most recent novelty of Blockchain usage in the IF domain, as well as the challenges and the needed researches to enrich this debate.
Starting from the examined papers, we have identified several state-of-the-arts, surveys, and reviews, each type of those papers discussed the use of ICT in intelligent farming based on specific ICT disciplines. Some previous surveys focused on the hardware used to implement IF applications, and others covered the integration of IoT with fog/edge technologies to optimize some metrics. Some points are common between our work and others, such as the description of the hardware and protocols adopted in IF systems, and the implementations of IF applications in cloud/fog computing environments. In this work we studied the Blockchain discipline related to the farming domain, this point has not been obviously covered by the other surveys. Table 1 summarizes the comparison between this survey and the other previous works.
Source | Hardware and protocols | Cloud computing | Fog computing | Blockchain |
---|---|---|---|---|
Ratnaparkhi et al. [8] | 🗸 | |||
Tahsien et al. [9] | 🗸 | |||
Hajjaji et al. [10] | 🗸 | 🗸 | ||
Farooq et al. [11] | 🗸 | 🗸 | 🗸 | |
Mekala et al. [12] | 🗸 | 🗸 | ||
Cisternas et al. [13] | ||||
Lova Raju et al. [14] | 🗸 | 🗸 | ||
Shi et al. [15] | 🗸 | 🗸 | 🗸 | |
Muangprathub et al. [16] | 🗸 | 🗸 | ||
Bacco et al. [17] | 🗸 | 🗸 | ||
This survey | 🗸 | 🗸 | 🗸 | 🗸 |
Comparison between this survey and other previous surveys.
In most cases, precision agriculture data are communicated wirelessly between sensors, or between IoT devices and the core using several kinds of communication protocols, these protocols define the rules and the different formats of the communicated data. The secret behind the success of IoT systems is the development of communication protocols [18, 19], such as RFID (Radio Frequency Identification), NFC (Near Field Communication), IEEE 802.11 Wi-Fi, IEEE 802.16 Wi-Max (Worldwide Interoperability for Microwave Access), IEEE 802.15.4 LR-WPAN (Low-Rate Wireless Personal Area Networks), 4G and 5G cellular networks, IEEE 802.15.1 Bluetooth, ZigBee, ANT/ANT+ networks, DASH7, Enocea...).
Unlike the fog computing paradigm, the traditional cloud computing approach is characterized by centralization, high latency, and more network failures. These characteristics among others make cloud computing unsuitable for IoT applications where time and mobility are crucial factors. In the IoT context, fog computing is a new computing approach that helps to distribute the load of processing and make it so close to the sensing layer. One of the solutions that were proposed to accelerate the processing and compensate for the resource limitation of IoT devices is computation offloading. This concept allows devices to fully/partially offload their computation tasks to resource-rich cloud infrastructures [20]. But this solution bypasses only the cloud computing limitations and does not propose a real solution to resolve them. A group of researchers [21] discussed the usefulness of another concept called computation onloading. This concept is based on bringing cloud services to the edge of the network to satisfy the requirements of IoT devices in terms of bandwidth and latency.
Many contributions are proposed to improve the shared characteristics between cloud and fog computing, notably the generated latency between requesting the task execution and receiving the response, the energy consumed during the task processing, the resource management strategy that defines the provided quality of service, the security issue directly linked to the privacy of generated data, the mobility support to ensure the best quality of service to the end devices, the interoperability between smart things, the scalability related to the exponential increase of the number of IoT devices, and finally the bandwidth needed to transmit data from the network of smart objects to the processing center.
The latency generated by the cloud is significantly important, this is an issue for new IoT mobile applications that need real-time responses to their requests. To enhance this characteristic through the fog/edge computing model, Yang et al. [22] developed an offline heuristic algorithm, SearchAdjust, to minimize the average latency for Multiuser Computation Partition Problem (MCPP). In the same context, Yousefpour et al. [23] developed and evaluated a policy to reduce the service delay for IoT devices based on offloading and sharing load approach. In another work, Molina et al. [24] proposed a strategy of uplink/downlink, and edge computational resources allocation in a multi-user scenario to achieve latency and energy efficiency in task processing. Ren et al. [25] investigated the collaboration between cloud computing and edge computing, where the tasks of mobile devices can be partially processed at the edge node and the cloud server. A joint communication and computation resource allocation problem is formulated to minimize the weighted-sum latency of all mobile devices.
Regarding the energy consumption issue, most of the processing tasks are carried out in the cloud computing data centers that increase the quantity of energy needed for query transmission and execution. This consumption is minimized in the fog/edge computing model because the majority of computing tasks are distributed over several end devices or offloaded to the edge mini data centers. In this context, Xiang et al. [26] proposed a policy to efficiently optimize energy in LTE (Evolution Long Term)/Wi-Fi link selection and transmission scheduling, as well as developed an approximate dynamic programming algorithm to reduce energy consumption in the MCC (Mobile Cloud Computing). Ge et al. [27] proposed a game-theoretic strategy to reduce the overall energy dissipation of both mobile devices and cloud servers considering the offloading technique in the MCC system. Chen et al. [28] adopted a game-theoretic approach to propose a multi-user offloading solution for mobile-edge cloud computing, their proposed solution aims to achieve energy efficiency in a multi-channel wireless interference environment.
In the classical cloud computing approach, the efficiency of resources management is less compared to the fog/edge computing approach, this is due to the existence of more sophisticated algorithms that proved their efficiency in resources allocation. In this window, Mostafa et al. [29] proposed an automated fog selection and allocation scheme of task requests by IoT devices. In another work, Jana et al. [30] proposed a QoS (Quality of Service)—aware resource management technique for the efficient management of resources. Souza et al. [31] developed a scheme that combines fog computing and cloud resource allocation. Aazam et al. [32] proposed a user characteristic-based resource management for fog, which performs efficient and fair management of resources for IoT deployments. Delegating data protection to the cloud layer without implementing mechanisms to protect data at the end device level is an inefficient strategy. The best way is to ensure end-to-end data protection, the fog/edge computing model is mainly concerned by this issue compared to the cloud computing approach that focuses on data protection at the cloud level. Das Manik [33] proposed a security protocol for IoT applications based on Elliptic Curve Cryptography (ECC). Hernández-Ramos et al. [34] proposed a new mechanism of lightweight authentication and authorization to be embedded in a smart object based on DCapBAC (Distributed Capability-Based Access Control). Zhang et al. [35] suggested using Ciphertext-policy attribute-based encryption (CP-ABE), which is a recognized cryptographic technique to ensure data confidentiality and provide firm access control.
The majority of IoT devices used in smart cities or smart environments are geographically distributed, mobility of IoT devices and applications should, therefore, be supported by the adopted computing approach. As a result, many works are proposed to enhance the mobility of end devices in the fog/edge model since this characteristic is less present in the traditional cloud computing model. For this purpose, Chaisiri et al. [36] proposed a mobility-aware offloading priority design, it aims to precisely anticipate users’ mobility profiles and channels. In the same context, Prasad et al. [37] proposed an approach for mobility management along with traffic control to offer better users’ QoE (Quality of Experience) with latency-tolerant tasks. Ning et al. [38] constructed a three-layer VFC (Vehicle Fog Computing) model to enable distributed traffic management and minimize the response time of citywide events collected and reported by vehicles.
Interoperability is another important difference between the fog/edge computing model and the cloud computing approach regarding provided smart services. The interoperability requires that all interfaces of cloud-based or fog/edge-based systems are wholly understood. Despite that cloud computing offers more interoperability for some distributed applications, it is difficult to cover smart things applications due to the big heterogeneity of manufacturers and systems. Contrary to cloud computing, fog/edge computing is more open to the end devices and tends to ameliorate the interoperability issue in an IoT system. Starting from this requirement, Jayaraman et al. [39] proposed an OpenIoT platform used for the digital agriculture use case (Phenonet), the OpenIoT enables semantic interoperability. Desai et al. [40] proposed a semantic web permit architecture to afford interoperability among smart things. Ullah et al. [41] proposed a semantic interoperability model for big-data in IoT (SIMB-IoT) to deliver semantic interoperability among heterogeneous IoT devices in the health care domain.
In the traditional cloud computing model, the number of smart supported devices and applications increases at a slow rate oppositely to what happens in fog/edge computing systems. Scalability is an essential feature that defines how resources provisioning is performed and what components can be scaled, notably the storage capacity, the number of fog/edge nodes, the connectivity solutions, and the internal hardware or software of fog/edge nodes. Tseng and Lin [42] designed a mechanism to dynamically scale in/out the serving instances of the middle nodes to make the whole IoT/ M2M (Machine to Machine) platform more scalable using an industrial IoT (IIoT) scenario. Vilalta et al. [43] proposed a new fog computing infrastructure named TelcoFog that can be installed at the edge of the mobile network of the telecom operator to provide several services, such as NFV (Network Function Virtualization) and MEC for IoT applications, the benefits of the proposed infrastructure are dynamic deployment, scalability, and low latency. Gupta et al. [44] proposed a highly distributed service-oriented middleware called SDFog (Software-Defined Fog) based on cloud and fog capabilities as well as SDN (Software-Defined Networking) and NFV to satisfy the required high level of scalability and QoS.
The bandwidth needed to transmit the data collected is closely tied to the generated latency, the biggest amount of data requires more bandwidth to be transmitted to the cloud data centers, which means more latency in the transmission process. Optimizing the bandwidth in a fog/edge environment directly minimizes the delay resulting from the transmission process because the processing resources are located close to the end devices. In this context, Ito et al. [45] proposed a bandwidth allocation scheme based on collectible information. Gia et al. [46] introduced the processing of ECG (electrocardiogram) features using fog nodes, their results disclosed that fog helps to achieve more efficiency in bandwidth and low latency in the data processing. Bhardwaj et al. [21] argued the utility of “onloading” cloud services to the edge of the network to address the bandwidth and latency challenges of IoT networks.
Before deciding to integrate IoT infrastructure in a given smart farming business model, it is first mandatory to understand the components of the IoT model, because this is the best way to analyze business technology compromises, and better define the requirements of the farming process system. Figure 1 illustrates the five layers comprising of the smart farming IoT model, each layer is explained in greater detail below.
The five layers of a smart farming IoT model.
This component is located in the bottom layer of the IoT model, it can also be called the data collection and actuation layer, it is considered as the link between the farm physical world and virtual data management and decision making. Functionally, this layer is responsible for sensing capabilities to gather data about the physical farming variables that we want to measure, as well as take actions to change the environment depending on the scenario of the made decision. In this layer, it is recommended to take into account the hardware characteristics, such as size, cost, useful lifetime, reliability, performances, as well as the scenario of use. Physical sensors existed for a long time before even the emergence of IoT devices, the only difference is that their uses have become more sophisticated and they have been used more ubiquitously. The intelligent farming sensors can be manufactured separately or embedded in a specific one board and dedicated to a particular application. The common applications of sensors are to measure temperature, humidity, geographical position, light and sound sense, and much more.
The farming actuators are the translators of the decision to comprehensive and useful energy capable to change the environment from one condition to another, such as guiding an agricultural engine, changing the temperature, making a movement, or enabling/disabling a pump. Operationally speaking, actuators can take three forms—pneumatic using air pressure, electrical using electrical energy, and hydraulic based on the power of liquids.
This layer represents the point of connection between the physical world and the fog-cloud environment, it defines how an object can be smart by doing local analytics, take simple decisions, or control other devices. This layer enables the “software-defined hardware infrastructure (SDHI)” or “resource desegregation” [47] concept, which is one of the software-defined environment taxonomy. This concept is of great interest today because it considers physical hardware as a modular component offering more flexibility, agility, automation, and optimization in cloud resource allocation. It provides a new pool of resources-based vision and strategy to efficiently manage available hardware resources to serve multiple applications, this offers more programmability to the infrastructure. It exists in literature more similar concepts like virtualization technique [48, 49], Virtual Network Function (VNF) [50, 51], Software-defined cloud (SDCloud) [52, 53]. This layer is important and critical at the same time. Important because it can be used to minimize the hardware complexity, in other words, instead of being stuck in a fixed hardware architecture which is complex and expensive to build in most of the time, it is possible to design generic hardware like Field Programmable Gate Arrays (FPGA) and program it for various scenarios. And critical because it is the only gate through which the data flows from the physical world to cloud or fog environments, thus the definition of an OS (Operating System) that manages the hardware and the running applications is considered a critical task.
In some contexts, this layer is called connectivity, it defines the manner of how data are sent and received between the cloud and the smart devices. The connectivity function has resulted from the combination of two essential elements—protocols and physical hardware used to transmit the signals. In the beginning, RFID is used by the objects to communicate with each other [54] without human intervention. With the emergence of 5G cellular network, a great opportunity is offered to accelerate the IoT systems’ development, particularly with the emergence of the MTC (Machine Type Communication) concept, which is also called machine to machine communication, it refers to automated data communications among devices. According to the 3GPP (3rd Generation Partnership Project), it exists two modes of communications in MTC applications—the first mode can occur between an MTC device and a server, and the second can happen between a network of MTC devices [55]. Choosing the communication mode and protocol is a critical task for IoT project owners. This modeling step defines not only the communication with the cloud but also determines how IoT objects communicate with each other. Many communication technologies can be used, for instance, Bluetooth, ZigBee, Wi-Fi, and optical wireless communication for small coverage areas [56, 57]. Sigfox [58] and LoRa, LoRaWan (Long Range Wide Area Network) [59] have been conceived for a wide coverage area. Moreover, 5G is adopted to enhance all traditional mobile communication performances, and respond to multiple connectivity requirements of IoT applications, such as introducing low latency and reliability.
The heterogeneity in communication protocols as well as the complexity of manufacturers’ models lead us to think about solutions to ensure the interoperability between IoT platforms and services. Consequently, the IoT middleware concept is immerged and many solutions have been proposed. The propositions can be classified into three big families [60]: Actor-based IoT middleware, cloud-based IoT middleware, and service-based IoT middleware. The first proposition of the actor-based middleware project offers an easy deployment in the distributed environments since it uses actor or agent concept, this middleware plays the role of a bridge between IoT devices and cloud services, it first works presciently to correctly receive data from each IoT device. It next sends the collected data to the cloud using HTTP (Hypertext Transfer Protocol) over TCP/IP protocol. The second family enables the terminology of the cloud of things (CoT) that was introduced by Yuriyama et al. [61], it is an enabler that lets us exploit and manage wireless sensors homogeneously without worrying about the manufacturer’s physical complexities. CoT uses cloud capabilities in terms of elasticity of resource provisioning as well as automation, scalability, and cost-effectiveness. Considering this family of IoT middleware, the access of IoT devices to the cloud resources is ensured by the Application Programming Interface (API) of the cloud service provider or through the product vendor’s application, as shown in Figure 2(a).
Cloud-based and service-based IoT middleware.
The last family of IoT middlewares refers generally to the open-source platform named OpenIoT project, the objective behind proposing the SaaS (Sensing as-a-Service) solution is to find an adequate way to extract data from virtual cloud sensors without worrying about the physical architecture of the sensor that was behind the collected data. The architecture of the service-based IoT middleware is given in Figure 2(b).
The most common criteria that is recommended to put in mind while choosing the adequate IoT middleware are stability regarding the application, the deployment mode (open source or commercial), the payment model (by the number of device/messages or using pay as you use mode), the level of security needed (depends on the criticality of the application and the managed data), the hardware compatibility (some commercial IoT Middlewares support the integration of some kind of hardware devices like Arduino and Raspberry), the protocol that the application requires (since it exists multiple types of communication protocols, some of them are open and others are proprietary), and either the middleware platform supports the required analytics or not (it depends on the nature of data that the application need which can be in real-time or historic).
IoT applications produce periodically what we call big data and send them to the backbone to be managed. The challenge for an IoT project manager is to consider many critical factors to conceive the right cloud architecture. This layer should take into account the essential 5 V of big data from the beginning, the 5 V as mentioned in Ref. [62] includes volume, variety, velocity, veracity, and value. The designed cloud architectures for IoT applications take many models depending on the project manager’s perspective.
The model can be SaaS (Software as a Service), the customer in this case, does not have any knowledge about the platform architecture, the client only has a web interface or an API to interact with the provider platform, this model, in general, requires additional fees and the client still stuck in “Vendor lock-in,” this means that more complexity and costs will be charged by the client if for any reason, decides to switch to another service provider.
The second model is PaaS (Platform as a Service), the client in this case has multiple choices of software bricks that can be used on-demand to build IoT applications without worrying about server management. This model provides many bricks for IoT solutions such as device management, storage, connectivity with other IoT fleets, collection, and transmission, as well as some machine learning options for decision-making support. The advantage of this model is the great ability offered by the vendor to the client to customize the IoT applications based on the offered software catalogs. But unfortunately, this can have some additional hidden costs.
The third kind of model is licensed or on-premise. Here, the vendor only makes support available to the client. The client buys software packages and the license, then installs them in his own managed infrastructure. All the maintenance tasks are under the client’s responsibility. The open-source solutions are identical to the licensed model, the only difference is that the software packages are freely available, the solution maintenance is ensured by a community of volunteer developers. In some cases, the maintenance is performed by an enterprise and proposes the solution as a free package, while providing a paid version with other options. The tailor-made feature is another option adopted by many customers, it consists of engaging an external integrator to entirely conceive the IoT solution. In this case, the source code is owned by the application owner, he can use it subsequently to achieve the project evolutivity.
This layer is the most closer to the customer, it is generally used to ensure user-machine interaction, it defines how data is presented to the end-user depending on the user’s requirements. In most cases, this layer is a web-based application. Some users require desktop, mobile, or wearable applications. Practically, the application layer is hosted somewhere in the provider’s cloud to ensure the AAA (Anytime, Anywhere, Application) capability. The most important thing that the IoT solution designer should understand is what the final users attend from the solution, and how this job can be done.
Fog computing provides required resources at the edge of the network to deliver real-time services for demanding applications (e.g, video streaming, gaming, video analytics, and robot-fog interactions [63]). When it comes to IoT data processing on a large scale, we can distinguish between three processing concepts [64], as illustrated in Figure 3.
Available modes of processing for IoT applications.
The serverless function also called Function as a service (FaaS), refers to the simplest processing model where data are present in the input of a black box, the results of processing are then gathered in the output without any session stat. The second processing concept is called batch processing, here, data are processed in small parts and often simultaneously, this type of processing is considered in situations when a large amount of data need to be processed, input data are accessed in batches form, or data need complex processing. The last processing mode is called stream processing, it refers to on-the-fly processing where data are processed online and the results are delivered instantly, this mode of processing is appropriate in case of real-time results are needed. Since IoT applications are diversified and data are generated and sent continuously to fog computing nodes, each processing mode can be adopted for a specific scenario.
It was expected that a huge number of IoT devices will be online shortly, meaning that the amount of generated data will be also colossal. Resource management policy is a determining factor in evaluating the quality of service delivered to IoT devices and applications. This policy depends on many factors such as the nature of the application requiring the resource. If the application allows delay of processing, all its requests are forwarded to the cloud resources to be executed there. But if the application is time-sensitive, all its requests are served by fog computing nodes.
Geo-distribution is one of the primary characteristics of smart devices. An object is most of the time moving from one geographical area to another, this mobility generates delay and packet loss [57]. Fog computing has to provide necessary mechanisms and resources to facilitate fog users’ access at anytime, anywhere, and without any delay or loss, given that devices are highly distributed, handover is a critical mechanism among others that should be taken into account while conceiving and implementing fog computing architecture.
Most IoT devices have resource limitations in terms of communication, storage, and computation. As a direct result, the connected object needs a powerful infrastructure that can provide these requirements within a milliseconds scale. Cloud computing is known for its big latency, which makes it unsuitable for time-sensitive applications. On the other hand, the fog computing challenge is to provide necessary resources at the edge of the network to process data and serve IoT devices’ requests within milliseconds to a few seconds scale. Fog computing serves also the central cloud by sending reports for data visualization purposes [65].
Recently, IoT-generated data may represent the secret of an individual or an industry, indeed, they need to be protected in the transit phase and in-rest. The fog computing paradigm must ensure confidentiality-integrity and availability of data through efficient cryptographic algorithms. The security mechanisms offered by fog have to be light and less resource-consuming to be more adapted to the limited properties of end devices. In another hand, collected data are analyzed and treated locally in fog data centers instead of sending them through the internet to the cloud datacenter, this point helps a lot in data security reinforcement.
The exponential rise of IoT-generated data demands a reliable platform that can manage this huge amount of data. The temporary loss of connection is not an issue in the case of cloud computing scenarios. Whereas, a short loss of connection can lead to disastrous consequences for an autonomous vehicle system or an application impacting citizens’ safety.
This is another big challenge for fog computing, especially after the emergence of software-defined environments such as SDN (Software-Defined Networking), SDHI (Software-Defined Hardware Infrastructures), VNF (Virtual Network Function), virtualization, SDC (Software-Defined Computing), SDI (Software-Defined Infrastructures), SDS (Software-Defined Storage), and others. Implementation of such techniques in fog networking requires a radical change in fog computing infrastructure design. It is not simple as it looks, but once it is done, all the other benefits especially latency minimization are achieved.
By definition, the IoT objects collect and transmit data using wireless connections; fog computing also supports wireless D2D (Device to Device) connectivity, whereby the networks of devices can decrease significantly their energy consumption since a big amount of requests are executed in fog nodes. From another perspective, fog computing contributes to decrease cloud computing energy consumption because most of the IoT requests are onloaded to the border of the network.
This feature is widely required in fog computing infrastructure. The fog data centers need to support the load balancing, agility, and elasticity of runtime, these variables contribute to efficiently control the variation in fog computing workload. This challenge is strongly linked to geo-distribution, since it has been often required for the fog data center to be efficiently geo-distributed, in that way each fog datacenter serves IoT devices existing in its coverage area. The need for scalability is triggered by the instant and high demand for the workload that can be created by IoT devices.
It is obvious that IoT devices are limited in resources point of view, so onloading tasks to the fog layers reduce the computational complexity of IoT devices [66]. From another perspective, the fog/edge computing approach reduces network architecture complexity, as well as decreases the number of points of failures in IoT systems. Integrating ML capability in the fog layer minimizes the complexity of the decision-making process.
IoT architecture is becoming more heterogeneous day after day. A relevant definition of fog computing given by Yi et al. [67] mentioned that “
We mean by Blockchain a digital and distributed ledger that protects the history of any digital asset from any alteration or unauthorized modification, this protection results from the use of hashing, cryptographic techniques, public-private key functions, distributed databases, and processing, as well as consensus algorithms. Blockchain is historically conceived in the creation of Bitcoin [68] by “
The following sub-sections discuss the possible solutions on how Blockchain technology can be used in digital farming and smart agriculture. Each section discusses some of the most relevant platforms adopted in Blockchain use cases upon which IoT-based intelligent farming applications are based. After consulting this sub-section, the reader will discover an obvious complementarity between the use cases, it is up to the implementer of the Blockchain-based application to decide either to combine many use cases in one system or to focus on one use case in its contribution. Figure 4 illustrates the possible seven use cases of Blockchain in IF.
The possible use cases of Blockchain in intelligent farming.
It is difficult for the traditional vision of networks to provide the requirements of IoT-based IF systems notably latency, bandwidth, security, and reliability. A Blockchain-based security architecture proposed to monitor the integrity of IoT collected data by checking and preventing unhallowed alteration that can be caused by DDoS (Distributed Denial of Service) attacks on delivered data [72]. The Blockchain-based solutions for improvement of IoT security in green agriculture cover many areas [73] such as public key infrastructure support [74], machine learning-based systems [75], access control improvement [76, 77], reputation and trust use case [78, 79], amelioration of authentication and identification of IoT objects thanks to the bubble of trust system [80]. The bubble of trust is analogically a private VLAN (Virtual Local Area Network) of sensors, communication between sensors in the same bubble is fully private and secured because it must be validated by the Blockchain network, furthermore, no communication out of this bubble is authorized. Figure 5 shows a proposed scenario on how can Blockchain be applied to secure transactions in an IoT system. When the positioning system collects the location of the smart tractor, a transaction is occurred and is inserted in a new block, the generated block is sent to the other miners for checking the solution used in the mining process. Once the mining solution is validated, the block is addressed to the Blockchain nodes for validation, and stored in the Blockchain once it is verified. This process is fully decentralized and uses cryptography techniques and hashing.
A proposed scenario of a Blockchain-based IoT security optimization application.
Farmers are the weak link in the agri-food production chain, the price they got for their products does not reflect their real provided efforts due to the existence of multiple middle layers of buyers. This issue happens because they lack marketing opportunities, thus their products are not properly marketed, so they do not get the deserved price from the buyers. Thanks to Blockchain technology, farmers can reach more buyers and marketplaces than expected and can fairly discuss the right price of their goods. A decentralized farming approach named KHET is proposed by Paul et al. [81] to slightly reduce this issue, KHET platform enables farmers, companies, and buyers to communicate with each other, and make commitments based on the smart contract without any intermediary. With such a platform, farmers can finance their farming projects without requesting a loan from the bank. Figure 6 illustrates a proposed model of how can farmers make deals fairly with retailers using Blockchain technology. The farmer and the retailers must be registered in the public Blockchain system, each one is identified with a unique identifier, which is its digital wallet address. The deals are made on a dedicated agricultural platform which is channeled with the Blockchain system using a dedicated API, the role of the API is to retrieve and verify farmers’ and retailers’ addresses. The farmers are now able to check and discuss the prices of their products freely and fairly with all interested stakeholders and without a middle-man. If the farmer and the retailer accept the conditions, the smart contract is established and the amount of money can also be transferred from the retailer’s digital wallet to the farmer’s digital wallet using the digital money platform.
A proposed model of agricultural fair pricing application based on Blockchain technology.
To help farmers in their multiple investments and increase productivity, a new governmental subsidies distribution system should be adopted. The classical methods of distributing aids to farmers lack transparency due to information centralization and lack of coordination between agricultural stakeholders. With Blockchain, a decentralized ledger can be built to ensure agricultural information sharing in a secured manner. The digital ledger can be made publically available, thus farmers can see if subsidies go it should be, as well as how much each farmer receives as aid. In this context, Abraham and Santosh Kumar [82] proposed a Blockchain-based system to ensure transparency and reliability of the information in the subsidies system. The scenario proposed in Figure 7 provides a solution to deal with the problem of farmers’ identity management in a multi-collaborators environment, each farmer is identified by a chain code which is a smart contract installed on the peers of the private system of the AD (Agricultural Department), each AD uses a certificate to authenticate the transaction in the public Blockchain system and keep a private validated ledger. When the farmer sends a transaction, it is accepted or refused depending on the rules and the policy described in the chain code. Agricultural departments are interfaced with the Blockchain system to share the information securely with each other using the unique identity of the farmer. When a transaction occurs between one or more AD, it must be validated by the transaction verification system, which is composed of the other agricultural collaborators. According to this scenario, farmers’ information is transparent and reliable for all the agricultural collaborators, Thus, subsidies go to the one who deserves them.
A proposed scenario of single farmer identity management using Blockchain in a multi-collaborators environment.
Smart contract occurs when it is self-managed without middle parties which increases automation and decentralization of the tamper-proof of data, Ethereum Blockchain [83] and Hyperledger Fabric represent an example of platforms that support this kind of technology. They allow developers to implement their Blockchain layer and applications, such as smart contracts, in a decentralized way. The Blockchain-based IF use case enables the final consumers and the partners to have full knowledge about the agricultural product that they want to buy or to retail. The integration of the smart contract with IoT by Umamaheswari et al. [84] helps to build trust between farmers and consumers by providing information about the origin and the environment in which the product is grown and stored, as well as the ability to track the transaction path. Moreover, the implementation of smart contract in the agricultural process improves the CIA (Confidentiality, Integrity, Availability) of data storing method and enable the public to get a trustable license based on the comparison between the products’ stored information in the data private chain and those publically available [85]. Data sharing in the IF environment is one of the major challenges of the distributed and scalable IoT systems, this issue is managed by Ur Rahman et al. [86] through a data-sharing smart contract system with access control capability. The smart contract application is present in models proposed in Figures 6-10.
Farmers work hard and wait for the post-harvest stage, it is difficult for a farmer to imagine any damage in quantity or quality of his produce. Massive quantities of agricultural products are wasted before it reaches the retailer. This big wastage can be avoided by monitoring some environmental parameters in the storage area. Humidity, temperature, and CO2 concentration are some variables that can be tracked using IoT and sensors. Public ledgers using Blockchain allow to share information about the product storage operation between all the chain stakeholders, so big visibility about the product’s history is provided to all interested collaborators. Moreover, combining IoT and sensors to gather information about the inventory, and public ledgers to implement strategies to monitor this information can be a perfect way to manage inventories and logistics flows. Vendor-managed inventories (VMI) is a popular Blockchain-based collaborative inventory management policy, VMI might be founded on the smart contract between manufacturers, vendors, and buyers [87], consequently, each one of those collaborators can build its supply chain strategy and inventory policy management [88]. The proposed architecture in Figure 8 illustrates a Blockchain-based system for product inventory management. Farming, manufacturing, and supply chain processes are authenticated using smart contracts and share the products’ data in the Blockchain system publically available for consumers. All the transactions occurring between the consumer and the other stakeholders are managed and protected by the smart contract, the verified transaction are stored securely in the Blockchain. The consumer can check the information related to the products before ordering them, or track their safety on the farm, in the factory, or during the delivery process.
A proposed scenario of overseeing farm inventory using Blockchain.
Demonstrating the quality of a product in a producer-consumer relationship is the critical weakness of community-supported agriculture [89]. Without transparency and mechanisms of tracking and monitoring in the production process, consumers are unsure about the safety of the goods they buy and receive. The traceability frameworks based on Blockchain technology in the supply chain is an important key feature not only to ensure the security of the on-chain or off-chain encrypted and stored data, but also to overcome the big latency that can be generated when querying databases [90] either by the public community or by the relevant partners. Combining IoT, RFID, and QR (Quick Response) code with Blockchain helps to build powerful supply chain systems to track agricultural food from farmer to retailer and make product information accessible to all users [91]. Figure 9 shows a proposed model for a supply chain enhancement use case. The food information is shared in all the supply chain phases. IoT and sensors collect data related to the environment where the crop is grown, the manufacturing conditions, the shipment and logistic flow, and the retailing environment. The consumer through his mobile application generates a transaction (new command of a product) and checks the product’s shared details. On the other hand, the supplier can make his offer, the smart contract is for protecting the valid transaction between consumer and supplier, as well as storing the new transactions in the Blockchain system.
A proposed model of supply chain enhancement using Blockchain technology.
Modern farming requires the modernization of all its processes including FMS (Farming Management Software), traditional FMS are based on a classical client-server based-approach, this method does not satisfy the growing demand on inputs-outputs as well as enough security level for data protection. With Blockchain technology, more sophisticated and secured systems for supply chain management, smart greenhouse, and livestock are provided, so that farmers and analysts who care about data integrity and uncertainty will not worry anymore about intentional or accidental alterations that can be caused by one of the information flow manipulators. It is expected that the FMS market growth will reach $4.22 Billion by 2025 [92], thanks to the widespread of Blockchain solutions and the wide usage of IoT, sensors, as well as artificial intelligence in the farm management workflow. The model proposed in Figure 10 explains an FMS use case. A secured and decentralized management of the farm’s processes is achieved, the principal role of the smart contract is to authenticate all the decentralized processes and ensure the integrity of the transactions that can be occurred between them. The data gathered in each decentralized process are shared with the public consumers through the public Blockchain system, the consumer can check the origin, the expiry date, and other information related to the warehousing with a simple scan of the QR code of the product. If the consumer is satisfied, he/she can supply orders to the farmers, and the smart contract is established. The farm distributed processes and the consumers’ orders are managed using the FMS decentralized consol.
A proposed Blockchain-based FMS scenario.
An overview of the published literature on the actual status of ICT usage in digital farming, particularly IoT-fog/edge/cloud computing, and Blockchain technologies reveals that most growers are interested in understanding the optimum conditions in open-field and closed-field crop production that results in reducing inputs, and at the same time maximized crop yield and quality. Our previous studies and survey show that some of the trending research topics in this context include (1) development of digital twin models that receives live data from various wireless sensors for improving efficiency of crop production systems [93], (2) adaptation of multi-robot platforms for wireless and IoT data collection [94], (3) health assessment, stress identification, and early disease detection using UAV remote sensing [95], (4) development of soil-test kits that can be mounted on mobile-robots for spontaneous determination of macronutrients in soil [96], (5) yield prediction and yield estimation using model-based and AI algorithms [97, 98, 99], (6) evaluation of crop growth environment prior to the actual cultivation for preventing yield loss (i.e., predictive models that can be leveraged as a part of digital twin) [100], (7) development of virtual orchard models using photogrammetry [101], (8) smart irrigation with solar powered IoT controlled actuators [102], (9) reducing time losses of machinery and increasing their field efficiency by using fleet management software [103], and (10) robotic weeding and harvesting [104, 105]. The success of such systems in our point of view is intimately linked to some important factors like the accuracy and complexity of ML/DL algorithms used to make IF decisions, as well as the availability of enough datasets to train and validate the ML/DL algorithms. From a Blockchain point of view, the horizontal and vertical scalability of IoT systems introduces more complexity in data sharing models within IF systems. The success of Bitcoin, as a result of Blockchain, is proven but the mutual collaboration between Blockchain contributors requires more maturity. Moreover, more efforts and works have to be provided to sensitize the public, the community of regulators, and the contributors about the need to invest in Blockchain development, without forgetting to address the scalability challenge (technologically speaking, it has a direct impact on the number of transactions). Furthermore, farmers in IF ecosystems need to make payments and receive subsidies from the government using cryptocurrency, transactions in this situation are susceptible to be targeted with selfish mining [106]. Blockchain is an open system, any miner can join the chain, and selfish miners can outperform honest miners and then can threaten the security of the transaction. It is a fact that Blockchain frameworks and updates for coding are publicly available, but they often lack the needed level of validation and verification against bugs, security breaches, and errors [107], so new researches and efforts are required in this direction.
Another important needed research is how to achieve interoperability between the Blockchain projects namely cross-chain, or between Blockchain and the exiting data models. The required interoperability in Blockchain enables users to take the full benefits of distributed Blockchain in terms of sharing information smoothly. As the main purpose of Blockchain is to fight against the centralization aspect, a big concern should be given to show how to build a strategy to share agricultural data (known crops diseases and solutions, best practices to increase yield) between farmers’ decentralized ecosystems. The environmental impact of these technologies is always ignored or never addressed. Since sensors and electromagnetic fields generated by gateways are directly interacting with animals, soil, and vegetation, a serious study should be made to evaluate the degree of impact that the waste material of such technologies can have on the environment.
The efficiency and effectiveness of agriculture are driven by machine learning and deep learning techniques, these two mechanisms enable machines to learn and analyze data without even being programmed. ML/DL has emerged simultaneously with the Big data discipline to detect relationships, analyze patterns, and make predictions in farming activities. An example of applying a supervised machine learning algorithm with multiple distance detection sensors for autonomous navigation of a field agent robot is proposed by the SunBot project and shown in Figure 11. This robot is used for health assessment inside berry orchards and to collect data for supporting digital agriculture. Since traditional approaches and methods for farming management do not allow to increase productivity, farms nowadays need to be partially or fully automated using IoT systems to collect data, and ML/DL to make data inspections and drive the decision-making tasks. ML/DL technology helps farmers and scientists to select the appropriate species that respond to specific requirements in terms of diseases resistance, adaptation for specific aquatic or soil conditions, this classification task was quite tedious for farmers or scientists, but with ML/DL, a huge quantity of unorganized data is gathered and analyzed automatically to finally choose which genome is suitable for breeding. In some cases, such as plant health monitoring, it is needed to compare plants according to their colors, leaf morphology, and shapes, in that case, ML/DL can be the solution to perform the fast and accurate classification. In this context, Thaiyalnayaki et al. [108] used SVM to classify soybean diseases, and [109] performed plant leaf diseases classification based on visible symptoms.
Application of machine learning as a knowledge-based control approach for assisted navigation of a four-wheel steering field robot agent. Source: SunBot.de.
Soil management is another farming process that has benefited from ML/DL and IoT technologies, the buried sensors collect real-time data about the underground ecosystems such as temperature and moisture, and transfer them to ML/DL algorithms to estimate the quantity of water needed for irrigation, or evaluate the quantity of nutrients required for optimal growth of crops. Superficial sensors play a major role in measuring temperature, humidity, pressure, evaporation, and evapotranspiration, these climatological and hydrological parameters among others can be used by ML/DL algorithms to estimate exactly how much water is needed to irrigate a given surface area without any wastage. To avoid wastage related to weather forecast uncertainty, Chen et al. [110] used a short-term weather forecasts method to propose an optimal irrigation strategy. Another important role of ML/DL in intelligent farming is the accurate yield prediction in quantity and quality, this prediction can be useful in crop monitoring tasks and market price forecasting. From this vision, many popular ML/DL algorithms are compared in Ref. [111] in terms of three crops yield prediction, they reported good prediction skills of the SVM ML algorithm compared to the other tested ML/DL methods. Traditional methods to control crops diseases widely spread pesticides in all the field, this treatment method leads to wastage and does not ensure the required level of efficiency, as well as harming of environment. Modern farms use computer vision techniques to accurately detect where to apply pesticides, when to apply, how much is needed, and use drones to apply pesticides with high precision. Consequently, more financial benefits are won by the farmer with no environmental side effects. Weeds density detection and treatment are examples of computer vision use case that was applied by [112] to control the area of treatment.
Like crops management monitoring, there is livestock management monitoring, the use of IoT and ML/DL in this farming activity enables farmers to predict the productivity of meets and eggs based on actual or past data. For example, a drone can make a scan of the field and count the number and the position of the cattle. A computer vision system with smart cameras can monitor the mental condition of cows to detect their preferred time of milking or the quantity of feeds they want, as well as the amount of nutrients in their milk using sensors. The visible symptoms detected through computer vision techniques are used to measure animal welfare by monitoring the health conditions of animals, and predicting if a member of the cattle is sick or wants to eat or to drink.
Connectivity, as we said earlier, is an important component in IoT smart systems, this component is a challenging issue in rural environments where cellular network coverage may be absent, or only 2G networks are available, in this kind of cellular network, a limited number of devices can be supported that leads to a lack or reduced performance in data transfer. Nowadays, 3G/4G cellular networks are enough to build usual and smart farming applications. However, to unlock the potentials of IoT systems, two promising connectivity solutions, according to McKinsey Global Institute [113], are expected to be developed, these technologies are being referred to as “advanced” and “frontier.” An example includes IoT-based collision avoidance sensors for autonomous electrical mowers that are capable of transmitting their distance measurement via WiFi and LoRa. While the main communication between different electrical control units (ECU) for such system still relies on CANBUS and the detected distances can be logged on an onboard SD card (Figure 12), but the use of IoT-based ECUs that are independent of GPS and WiFi, provide the operator with LoRa messages for real-time monitoring of the mower status. This approach also makes possible simple switch control of the device in remote areas where WiFi and mobile coverage is not available. The architecture of this system is shown in Figure 12.
Perception system with IoT-based LPWAN sensors for collision avoidance of a robotic mower. Source: SunBot.de.
The advanced connectivity represents the next generation of already existing infrastructures, we mention here the upgrade that is occurring by providers of 4G technology toward 5G, this upgrade offers more improvement in speed, bandwidth, and latency, and the number of supported devices will be increased as well. For now, the evolution of wired connectivity, such as optical fibers, can offer the best performances in terms of latency, bandwidth, and speed especially in the core of the network, or in environments where mobility is not a crucial factor. Not Far from wireless networks, the Wi-Fi Alliance has certified the new standard 802.11ax known as Wi-Fi 6/6Extended, this new connectivity solution offers for devices a wide range of frequency and improved gain of speed that was estimated to achieve 40%, the theoretical speed of the network was estimated to reach 10 Gb/s, the Wi-Fi 6E offers 11 Gb/s as a theoretical speed with larger spectrum channels. These advantages enable IF devices to be connected seamlessly and smoothly, and the number of supported devices will be improved as well. The revolution in connectivity solutions has also been made by short-range technologies (Bluetooth, Wi-Fi, RFID) and low power wide area networks (LPWAN, LoRa, LoRaWan, NB-IoT), these technologies are usually used for tagging, tracking, or identification. These technologies have become more sophisticated and adapted for seamless connectivity in intelligent farming. The frontier connectivity is mostly designed for high mobility systems that need high speed, reliability, security, and minimal latency. Low earth orbit (LEO) and 5G networks are two options that will be developed to satisfy all IoT requirements. LEO constellations provide seamless connectivity services for IoT-based IF systems installed in distributed rural areas, or in zones where the terrestrial network is not available, so satellite coverage is needed. The other option of frontier connectivity is the 5G cellular networks, which promises to combine all the advantages of wired fiber in the air to be more adapted to IoT systems and wireless sensor networks.
In remote areas, it is more adapted to use wireless devices as they allow to cover wider areas, but the energy consumed by these devices and their limited source of energy creates a big challenge that needs to be addressed. Figure 13 shows multiple solar-powered LoRa sensors that have been deployed in different berry orchards in the state of Brandenburg in Germany for IoT monitoring of agricultural parameters (i.e., air and soil temperature, relative humidity, soil moisture, leaf wetness, light condition, and dew-point temperature). The wider area the IF system covers, the more power is consumed, some solutions are proposed to solve this issue, such as photovoltaic panels and the choice of low power consumption sensors. For instance, if BLE or low power consumption devices are used, the coverage area will be reduced because energy consumption will also be reduced, but if a wider communication range is needed, Wi-Fi connectivity can be adopted but energy consumption will be high. Technologies like LPWAN, LoRa, and LoRaWan adopt more efficient energetic strategies and a high communication range. Another connectivity limitation is the wireless signal quality. In remote areas where geographical issues are encountered, the wireless signal may have an attenuation problem because of multiple environmental obstacles or electromagnetic noises that can be introduced. The propagation of wireless signals can also be an issue that can be mitigated by installing signal repeaters or designing more efficient topologies such as mesh. The IoT and WSN systems management is another solution to reduce the connectivity limitations of intelligent farming systems, some of the management best practices are: (1) Designing an optimal size of the sensor network, here the number of sensors and the number of intermediary nodes to reach the gateway are to be considered because this factor impacts the communication range and the latency of data transmission. (2) The calibration of all WSN nodes whether sensors or gateways, this maintenance action improves the lifetime of the battery, especially in devices that operate in a wide range [114]. (3) Using optimized transmission protocols, many protocols are identified in the literature as efficient solutions to optimize transmission tasks, either to save the energy of the battery, to optimize the routing strategy, or to increase the coverage area.
Implementation of multiple solar-powered LoRa sensors in different berry orchards for IoT monitoring of field parameters. Source: SunBot.de.
Other issues that are encountered when designing an IoT-based intelligent farming system are related to interoperability [115], technological development, data heterogeneity management, scalability and flexibility of the system, fault tolerance, complexity of the system and the harsh environment, energetic issue, and the need for professionals to implement and manage the system. The interoperability issue takes four different formats, it can be technical, organizational, semantic, or synthetical, all of these four components are interdependent, but the most common issue is the technical one, this is occurred due to the hardware and software differences between manufacturers, these differences imply heterogeneity in protocols and connectivity standards, so when implementing the IF system, the farmer finds himself in front of many incompatible technical choices that he should manage particularly if there is an already existing system that it has to be taken into account. The integration issue can go beyond hardware compatibility to software conflicts that can create a new challenge of integrating new IoT points with the existing management software or vice-versa. The velocity of technological development is another issue of IoT implementation in IF, the hardware and the software related to IoT systems are evolving rapidly, which leads to the continuous emergence of new efficient frameworks, the upgrade process can be expensive in terms of infrastructure or maintenance. The scalability and flexibility of the IF system measure the level of opening, centralization, ease of integration with other existing systems and platforms, and ability to scale the system in terms of the number of nodes and storage, this issue represents an example of organizational interoperability. We rarely find all the implemented components of the IoT system from the same manufacturer, this technological heterogeneity and the lack of a global standard that unifies the format of data managed by each technology is challenging for the farmer. Some efforts in this context have been made by the Agricultural Industry Electronics Foundation (AEF) to propose the ISOBUS database (actual version is ISO 11783-1:2017) as an attempt to fill the heterogeneity in data format for agricultural machinery, this issue represents an example of semantic interoperability. The fault-tolerance measures the robustness of the designed IF system. When implementing the IoT-based IF system, the farmer is invited to manage all the hardware faults and system errors that can be occurred, the fewer harmful events the system generates, the more reliability the system has. However, farmers need to have particular skills for better management of these damaging events. As we discussed before, the power strategy in IF systems represents a big issue that makes energetic barriers in front of IoT systems implementation and needs to be taken into account. Because the farming system is composed of multiple heterogeneous hardware and software components, the management and the integration tasks could be more or less difficult depending on the level of complexity generated by the adopted topology, the interoperability between the elements of the system, and the opening degree of the adopted technology. In fact, the complexity is not an issue for the farmer only, but the manufacturers also should consider it while designing their products. The reliability and efficiency of the IF system are greatly impacted by the environment where it is deployed, geographical and climatological characteristics such as high temperature, wind speed, heavy rain, and dusty environments can destroy the sensors or can make them totally out of service [116]. Thus, choosing the hardware that resists environmental damages is considered a big responsibility that should be considered when implementing the IoT-based IF system. Figure 14 shows a modular IoT solution with multiple LoRa sensors and gateways that have been custom-built for the SunBot project to withstand harsh field conditions and overcome the issues with WiFi instability. Each sensor is benefitting from multiple transmitters to reduce the probability of signal loss, and multiple gateways to ensure data uploads to the private cloud.
Redundant LoRa sensors with modular accessories and multiple transmitters and gateways to overcome uncertainties and connectivity issues in actual field conditions. Source: SunBot.de.
The interactions between the human and virtual world are increasingly developing day after day, thanks to the widespread connectivity solutions and the ubiquity of connected objects that rapidly become smart. ML/DL also is one of the promising topics that gain recently the big attention of the research community since it capitalizes the efforts made in IoT data management fields and the evolution of Fog/cloud computing paradigms. In this survey, we discussed the IoT-based systems’ requirements and shed light on the components of an intelligent farming IoT model as well as the open challenges resulting from the integration of IoT systems and fog computing technology. We talked later about Blockchain technology, its applications to improve the intelligence and the security of the farming field. From another hand, we discussed the needed researches to apply Blockchain more accurately in the farming domain. This paper is closed with a discussion about the main limitations that the implementation of IoT in intelligent farming is facing. In summary, the significant results of this survey can be summarized in the three following points—(1) this survey investigates the implementation of ICT in farming environments to solve many current serious issues related to management methods. IoT-based applications combined with machine learning are complete solutions to efficiently improve crop yields without wasting too much resources. The second result concerns Blockchain technology that can be integrated with IoT-based farming systems to provide efficient security solutions and build trust between farmers each other, or between farmers and consumers. Furthermore, we enable the reader to discover the seven significant applications of Blockchain in the intelligent farming field to improve security in IoT systems, fair pricing, agricultural subsidies oversight, the smart contract to securely manage the relationships between all the farming stakeholders, farm inventory overseeing, amelioration of supply chain and farm management software. This study also summarizes the open challenges resulting from the integration of IoT with fog/edge mining that creates many research problematics as well as makes the implementation of such solutions in the farming world very challenging tasks. (2) Many previous papers addressed the issue of implementing ICT in farming processes, but this work particularly elaborated the transition from cloud computing to fog/edge computing to serve IoT applications and added the integration of Blockchain in the farming field, its benefits, challenges, and applications. Finally, some recommended researches are needed to concretize the implementation of the proposed Blockchain models and propose another model for each farming activity. From another hand, the development of Blockchain technology requires serious investment efforts to provide a complete legal arsenal for better and safe implementation. (3) Although Blockchain technology is designed to build trust, its implementation in the intelligent farming workflow is still confronting many barriers related to the lack of trust [117] notably regulatory uncertainty (with 48%), lack of trust among users (45%), separate Blockchain systems not working together (41%), inability to scale (21%), intellectual property concerns (30%), and audit-compliance concerns (20%).
Our journals are currently in their launching issue. They will be applied to all relevant indexes as soon as they are eligible. These include (but are not limited to): Web of Science, Scopus, PubMed, MEDLINE, Database of Open Access Journals (DOAJ), Google Scholar and Inspec.
\n\nIntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Global Crises",subtitle:null,isOpenForSubmission:!0,hash:"5f61f975031e13ee705d8b5853f1aa58",slug:null,bookSignature:"Dr. David Eller",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:[{id:"476616",title:"Dr.",name:"Jack",surname:"Eller",slug:"jack-eller",fullName:"Jack Eller"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11453",title:"Biomimetics - Bridging the Gap",subtitle:null,isOpenForSubmission:!0,hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",slug:null,bookSignature:"Prof. Ziyad S. Haidar",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",editedByType:null,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11456",title:"Autonomous Mobile Mapping Robots",subtitle:null,isOpenForSubmission:!0,hash:"405e1f7c0ef62700f4d590722cf428be",slug:null,bookSignature:"Dr. Janusz Bȩdkowski",coverURL:"https://cdn.intechopen.com/books/images_new/11456.jpg",editedByType:null,editors:[{id:"63695",title:"Dr.",name:"Janusz",surname:"Bȩdkowski",slug:"janusz-bdkowski",fullName:"Janusz Bȩdkowski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11459",title:"Soft Robotics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"06e947238d5d4ea1162509a5d66de887",slug:null,bookSignature:"Dr. Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11459.jpg",editedByType:null,editors:[{id:"15068",title:"Dr.",name:"Mahmut",surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:43},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:69},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:500},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"370",title:"Photobiology",slug:"photobiology",parent:{id:"41",title:"Plant Biology",slug:"agricultural-and-biological-sciences-plant-biology"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:96,numberOfWosCitations:268,numberOfCrossrefCitations:83,numberOfDimensionsCitations:299,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"370",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"2033",title:"Artificial Photosynthesis",subtitle:null,isOpenForSubmission:!1,hash:"e67514ac1c4937a3a5ccd6ff411efba2",slug:"artificial-photosynthesis",bookSignature:"Mohammad Mahdi Najafpour",coverURL:"https://cdn.intechopen.com/books/images_new/2033.jpg",editedByType:"Edited by",editors:[{id:"65280",title:"Dr.",name:"Mohammad",middleName:"Mahdi",surname:"Najafpour",slug:"mohammad-najafpour",fullName:"Mohammad Najafpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"876",title:"Advances in Photosynthesis",subtitle:"Fundamental Aspects",isOpenForSubmission:!1,hash:"123b06815a236b28ddccd1713ea1fd6b",slug:"advances-in-photosynthesis-fundamental-aspects",bookSignature:"Mohammad Mahdi Najafpour",coverURL:"https://cdn.intechopen.com/books/images_new/876.jpg",editedByType:"Edited by",editors:[{id:"65280",title:"Dr.",name:"Mohammad",middleName:"Mahdi",surname:"Najafpour",slug:"mohammad-najafpour",fullName:"Mohammad Najafpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1626",title:"Bioluminescence",subtitle:"Recent Advances in Oceanic Measurements and Laboratory Applications",isOpenForSubmission:!1,hash:"4b82bb841291689ae38732fce94df4a2",slug:"bioluminescence-recent-advances-in-oceanic-measurements-and-laboratory-applications",bookSignature:"David Lapota",coverURL:"https://cdn.intechopen.com/books/images_new/1626.jpg",editedByType:"Edited by",editors:[{id:"103205",title:"Dr.",name:"David",middleName:null,surname:"Lapota",slug:"david-lapota",fullName:"David Lapota"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"28386",doi:"10.5772/26875",title:"A Review: Polyamines and Photosynthesis",slug:"a-review-polyamines-and-photosynthesis",totalDownloads:4647,totalCrossrefCites:10,totalDimensionsCites:34,abstract:null,book:{id:"876",slug:"advances-in-photosynthesis-fundamental-aspects",title:"Advances in Photosynthesis",fullTitle:"Advances in Photosynthesis - Fundamental Aspects"},signatures:"Sheng Shu, Shi-Rong Guo and Ling-Yun Yuan",authors:[{id:"68090",title:"Dr.",name:"Shirong",middleName:null,surname:"Guo",slug:"shirong-guo",fullName:"Shirong Guo"},{id:"72752",title:"Mr.",name:"Sheng",middleName:null,surname:"Shu",slug:"sheng-shu",fullName:"Sheng Shu"},{id:"119462",title:"Dr.",name:"Yuan",middleName:null,surname:"Ling-Yun",slug:"yuan-ling-yun",fullName:"Yuan Ling-Yun"}]},{id:"28380",doi:"10.5772/27737",title:"High-CO2 Response Mechanisms in Microalgae",slug:"high-co2-response-mechanism-in-microalgae",totalDownloads:5293,totalCrossrefCites:5,totalDimensionsCites:30,abstract:null,book:{id:"876",slug:"advances-in-photosynthesis-fundamental-aspects",title:"Advances in Photosynthesis",fullTitle:"Advances in Photosynthesis - Fundamental Aspects"},signatures:"Masato Baba and Yoshihiro Shiraiwa",authors:[{id:"71335",title:"Dr.",name:"Yoshihiro",middleName:null,surname:"Shiraiwa",slug:"yoshihiro-shiraiwa",fullName:"Yoshihiro Shiraiwa"},{id:"74688",title:"MSc.",name:"Masato",middleName:null,surname:"Baba",slug:"masato-baba",fullName:"Masato Baba"}]},{id:"28376",doi:"10.5772/26838",title:"Chloroplast Photorelocation Movement: A Sophisticated Strategy for Chloroplasts to Perform Efficient Photosynthesis",slug:"chloroplast-photorelocation-movement-a-sophisticated-strategy-for-chloroplasts-to-perform-efficient-",totalDownloads:3036,totalCrossrefCites:12,totalDimensionsCites:28,abstract:null,book:{id:"876",slug:"advances-in-photosynthesis-fundamental-aspects",title:"Advances in Photosynthesis",fullTitle:"Advances in Photosynthesis - Fundamental Aspects"},signatures:"Noriyuki Suetsugu and Masamitsu Wada",authors:[{id:"67982",title:"Prof.",name:"Masamitsu",middleName:null,surname:"Wada",slug:"masamitsu-wada",fullName:"Masamitsu Wada"}]},{id:"29426",doi:"10.5772/31040",title:"The Enhancement of Photosynthesis by Fluctuating Light",slug:"the-enhancement-of-photosynthesis-by-fluctuating-light",totalDownloads:3939,totalCrossrefCites:6,totalDimensionsCites:27,abstract:null,book:{id:"2033",slug:"artificial-photosynthesis",title:"Artificial Photosynthesis",fullTitle:"Artificial Photosynthesis"},signatures:"David Iluz, Irit Alexandrovich1 and Zvy Dubinsky",authors:[{id:"85328",title:"Dr.",name:"David",middleName:null,surname:"Iluz",slug:"david-iluz",fullName:"David Iluz"}]},{id:"28369",doi:"10.5772/29161",title:"Carotenoids and Photosynthesis - Regulation of Carotenoid Biosyntesis by Photoreceptors",slug:"carotenoids-and-photosynthesis-regulation-of-carotenoid-biosyntesis-by-photoreceptors",totalDownloads:4674,totalCrossrefCites:9,totalDimensionsCites:20,abstract:null,book:{id:"876",slug:"advances-in-photosynthesis-fundamental-aspects",title:"Advances in Photosynthesis",fullTitle:"Advances in Photosynthesis - Fundamental Aspects"},signatures:"Claudia Stange and Carlos Flores",authors:[{id:"76724",title:"Dr.",name:"Claudia",middleName:null,surname:"Stange",slug:"claudia-stange",fullName:"Claudia Stange"}]}],mostDownloadedChaptersLast30Days:[{id:"29426",title:"The Enhancement of Photosynthesis by Fluctuating Light",slug:"the-enhancement-of-photosynthesis-by-fluctuating-light",totalDownloads:3950,totalCrossrefCites:6,totalDimensionsCites:27,abstract:null,book:{id:"2033",slug:"artificial-photosynthesis",title:"Artificial Photosynthesis",fullTitle:"Artificial Photosynthesis"},signatures:"David Iluz, Irit Alexandrovich1 and Zvy Dubinsky",authors:[{id:"85328",title:"Dr.",name:"David",middleName:null,surname:"Iluz",slug:"david-iluz",fullName:"David Iluz"}]},{id:"28376",title:"Chloroplast Photorelocation Movement: A Sophisticated Strategy for Chloroplasts to Perform Efficient Photosynthesis",slug:"chloroplast-photorelocation-movement-a-sophisticated-strategy-for-chloroplasts-to-perform-efficient-",totalDownloads:3040,totalCrossrefCites:12,totalDimensionsCites:28,abstract:null,book:{id:"876",slug:"advances-in-photosynthesis-fundamental-aspects",title:"Advances in Photosynthesis",fullTitle:"Advances in Photosynthesis - Fundamental Aspects"},signatures:"Noriyuki Suetsugu and Masamitsu Wada",authors:[{id:"67982",title:"Prof.",name:"Masamitsu",middleName:null,surname:"Wada",slug:"masamitsu-wada",fullName:"Masamitsu Wada"}]},{id:"28373",title:"Photosynthesis in Lichen: Light Reactions and Protective Mechanisms",slug:"photosynthesis-in-lichen-light-reactions-and-protective-mechanisms",totalDownloads:6336,totalCrossrefCites:4,totalDimensionsCites:13,abstract:null,book:{id:"876",slug:"advances-in-photosynthesis-fundamental-aspects",title:"Advances in Photosynthesis",fullTitle:"Advances in Photosynthesis - Fundamental Aspects"},signatures:"Francisco Gasulla, Joaquín Herrero, Alberto Esteban-Carrasco, Alfonso Ros-Barceló, Eva Barreno, José Miguel Zapata and Alfredo Guéra",authors:[{id:"65848",title:"Prof.",name:"Alfredo",middleName:null,surname:"Guéra",slug:"alfredo-guera",fullName:"Alfredo Guéra"},{id:"75273",title:"Prof.",name:"José Miguel",middleName:null,surname:"Zapata",slug:"jose-miguel-zapata",fullName:"José Miguel Zapata"},{id:"75275",title:"MSc",name:"Joaquín",middleName:null,surname:"Herrero",slug:"joaquin-herrero",fullName:"Joaquín Herrero"},{id:"75277",title:"Prof.",name:"Eva",middleName:null,surname:"Barreno",slug:"eva-barreno",fullName:"Eva Barreno"},{id:"75280",title:"Prof.",name:"Alberto",middleName:null,surname:"Esteban-Carrasco",slug:"alberto-esteban-carrasco",fullName:"Alberto Esteban-Carrasco"},{id:"75282",title:"Prof.",name:"Alfonso",middleName:null,surname:"Ros-Barceló",slug:"alfonso-ros-barcelo",fullName:"Alfonso Ros-Barceló"},{id:"75283",title:"Dr.",name:"Francisco",middleName:null,surname:"Gasulla",slug:"francisco-gasulla",fullName:"Francisco Gasulla"}]},{id:"28386",title:"A Review: Polyamines and Photosynthesis",slug:"a-review-polyamines-and-photosynthesis",totalDownloads:4656,totalCrossrefCites:10,totalDimensionsCites:35,abstract:null,book:{id:"876",slug:"advances-in-photosynthesis-fundamental-aspects",title:"Advances in Photosynthesis",fullTitle:"Advances in Photosynthesis - Fundamental Aspects"},signatures:"Sheng Shu, Shi-Rong Guo and Ling-Yun Yuan",authors:[{id:"68090",title:"Dr.",name:"Shirong",middleName:null,surname:"Guo",slug:"shirong-guo",fullName:"Shirong Guo"},{id:"72752",title:"Mr.",name:"Sheng",middleName:null,surname:"Shu",slug:"sheng-shu",fullName:"Sheng Shu"},{id:"119462",title:"Dr.",name:"Yuan",middleName:null,surname:"Ling-Yun",slug:"yuan-ling-yun",fullName:"Yuan Ling-Yun"}]},{id:"28380",title:"High-CO2 Response Mechanisms in Microalgae",slug:"high-co2-response-mechanism-in-microalgae",totalDownloads:5296,totalCrossrefCites:5,totalDimensionsCites:30,abstract:null,book:{id:"876",slug:"advances-in-photosynthesis-fundamental-aspects",title:"Advances in Photosynthesis",fullTitle:"Advances in Photosynthesis - Fundamental Aspects"},signatures:"Masato Baba and Yoshihiro Shiraiwa",authors:[{id:"71335",title:"Dr.",name:"Yoshihiro",middleName:null,surname:"Shiraiwa",slug:"yoshihiro-shiraiwa",fullName:"Yoshihiro Shiraiwa"},{id:"74688",title:"MSc.",name:"Masato",middleName:null,surname:"Baba",slug:"masato-baba",fullName:"Masato Baba"}]}],onlineFirstChaptersFilter:{topicId:"370",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"August 7th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",institutionString:null,institution:{name:"Universidade Paulista",institutionURL:null,country:{name:"Brazil"}}},{id:"191123",title:"Dr.",name:"Juan José",middleName:null,surname:"Valdez-Alarcón",slug:"juan-jose-valdez-alarcon",fullName:"Juan José Valdez-Alarcón",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBfcQAG/Profile_Picture_1631354558068",institutionString:"Universidad Michoacana de San Nicolás de Hidalgo",institution:{name:"Universidad Michoacana de San Nicolás de Hidalgo",institutionURL:null,country:{name:"Mexico"}}},{id:"161556",title:"Dr.",name:"Maria Dos Anjos",middleName:null,surname:"Pires",slug:"maria-dos-anjos-pires",fullName:"Maria Dos Anjos Pires",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS8q2QAC/Profile_Picture_1633432838418",institutionString:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}},{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLXpQAO/Profile_Picture_1630044895475",institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",institutionURL:null,country:{name:"Romania"}}},{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic",profilePictureURL:"https://mts.intechopen.com/storage/users/92185/images/system/92185.jfif",institutionString:'Scientific Veterinary Institute "Novi Sad"',institution:{name:'Scientific Veterinary Institute "Novi Sad"',institutionURL:null,country:{name:"Serbia"}}}]},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"175762",title:"Dr.",name:"Alfredo J.",middleName:null,surname:"Escribano",slug:"alfredo-j.-escribano",fullName:"Alfredo J. Escribano",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGnzQAG/Profile_Picture_1633076636544",institutionString:"Consultant and Independent Researcher in Industry Sector, Spain",institution:null},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}},{id:"216995",title:"Prof.",name:"Figen",middleName:null,surname:"Kırkpınar",slug:"figen-kirkpinar",fullName:"Figen Kırkpınar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMzxQAG/Profile_Picture_1625722918145",institutionString:null,institution:{name:"Ege University",institutionURL:null,country:{name:"Turkey"}}}]},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Dr.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:null}]}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",hash:"727e7eb3d4ba529ec5eb4f150e078523",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 22nd 2022",isOpenForSubmission:!0,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12222",title:"Advances and Challenges in Microplastics",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",hash:"a36734a551e0997d2255f6ce99eff818",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11650",title:"Aquifers - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",hash:"27c1a2a053cb1d83de903c5b969bc3a2",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 12th 2022",isOpenForSubmission:!0,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12223",title:"Sustainable Management of Natural Resources",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",hash:"1881a08bbd8f5dc1102c5cb7c635bc35",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 19th 2022",isOpenForSubmission:!0,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11668",title:"Mercury Pollution",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",hash:"0bd111f57835089cad4a9741326dbab7",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:47,paginationItems:[{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82608",title:"Early Management of Dental Trauma in the Era of COVID-19",doi:"10.5772/intechopen.105992",signatures:"Khairul Bariah Chi Adam, Haszelini Hassan, Pram Kumar Subramaniam, Izzati Nabilah Ismail, Nor Adilah Harun and Naziyah Shaban Mustafa",slug:"early-management-of-dental-trauma-in-the-era-of-covid-19",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82767",title:"Teeth Avulsion",doi:"10.5772/intechopen.105846",signatures:"Manal Abdalla Eltahir, Randa Fath Elrahman Ibrahim and Hanan Alharbi",slug:"teeth-avulsion",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82288",title:"Dental Emergency and Conditions",doi:"10.5772/intechopen.105495",signatures:"Navneet Kaur",slug:"dental-emergency-and-conditions",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"81961",title:"Antioxidants as an Adjuncts to Periodontal Therapy",doi:"10.5772/intechopen.105016",signatures:"Sura Dakhil Jassim and Ali Abbas Abdulkareem",slug:"antioxidants-as-an-adjuncts-to-periodontal-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:32,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},subseriesFiltersForOFChapters:[{caption:"Prosthodontics and Implant Dentistry",value:2,count:22,group:"subseries"},{caption:"Oral Health",value:1,count:25,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"July 27th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.png",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:3},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:245,paginationItems:[{id:"196707",title:"Prof.",name:"Mustafa Numan",middleName:null,surname:"Bucak",slug:"mustafa-numan-bucak",fullName:"Mustafa Numan Bucak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196707/images/system/196707.png",biography:"Mustafa Numan Bucak received a bachelor’s degree from the Veterinary Faculty, Ankara University, Turkey, where he also obtained a Ph.D. in Sperm Cryobiology. He is an academic staff member of the Department of Reproduction and Artificial Insemination, Selçuk University, Turkey. He manages several studies on sperms and embryos and is an editorial board member for several international journals. His studies include sperm cryobiology, in vitro fertilization, and embryo production in animals.",institutionString:"Selçuk University, Faculty of Veterinary Medicine",institution:null},{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",biography:"Yusuf Bozkurt has a BSc, MSc, and Ph.D. from Ankara University, Turkey. He is currently a Professor of Biotechnology of Reproduction in the field of Aquaculture, İskenderun Technical University, Turkey. His research interests include reproductive biology and biotechnology with an emphasis on cryo-conservation. He is on the editorial board of several international peer-reviewed journals and has published many papers. Additionally, he has participated in many international and national congresses, seminars, and workshops with oral and poster presentations. He is an active member of many local and international organizations.",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",country:{name:"Turkey"}}},{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",biography:"Dr. Sergey Tkachev is a senior research scientist at the Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia, and at the Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia. He received his Ph.D. in Molecular Biology with his thesis “Genetic variability of the tick-borne encephalitis virus in natural foci of Novosibirsk city and its suburbs.” His primary field is molecular virology with research emphasis on vector-borne viruses, especially tick-borne encephalitis virus, Kemerovo virus and Omsk hemorrhagic fever virus, rabies virus, molecular genetics, biology, and epidemiology of virus pathogens.",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",country:{name:"Russia"}}},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",biography:"Amlan K. Patra, FRSB, obtained a Ph.D. in Animal Nutrition from Indian Veterinary Research Institute, India, in 2002. He is currently an associate professor at West Bengal University of Animal and Fishery Sciences. He has more than twenty years of research and teaching experience. He held previous positions at the American Institute for Goat Research, The Ohio State University, Columbus, USA, and Free University of Berlin, Germany. His research focuses on animal nutrition, particularly ruminants and poultry nutrition, gastrointestinal electrophysiology, meta-analysis and modeling in nutrition, and livestock–environment interaction. He has authored around 175 articles in journals, book chapters, and proceedings. Dr. Patra serves on the editorial boards of several reputed journals.",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",country:{name:"India"}}},{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",biography:"László Babinszky is Professor Emeritus, Department of Animal Nutrition Physiology, University of Debrecen, Hungary. He has also worked in the Department of Animal Nutrition, University of Wageningen, Netherlands; the Institute for Livestock Feeding and Nutrition (IVVO), Lelystad, Netherlands; the Agricultural University of Vienna (BOKU); the Institute for Animal Breeding and Nutrition, Austria; and the Oscar Kellner Research Institute for Animal Nutrition, Rostock, Germany. In 1992, Dr. Babinszky obtained a Ph.D. in Animal Nutrition from the University of Wageningen. His main research areas are swine and poultry nutrition. He has authored more than 300 publications (papers, book chapters) and edited four books and fourteen international conference proceedings.",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"201830",title:"Dr.",name:"Fernando",middleName:"Sanchez",surname:"Davila",slug:"fernando-davila",fullName:"Fernando Davila",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201830/images/5017_n.jpg",biography:"I am a professor at UANL since 1988. My research lines are the development of reproductive techniques in small ruminants. We also conducted research on sexual and social behavior in males.\nI am Mexican and study my professional career as an engineer in agriculture and animal science at UANL. Then take a masters degree in science in Germany (Animal breeding). Take a doctorate in animal science at the UANL.",institutionString:null,institution:{name:"Universidad Autónoma de Nuevo León",country:{name:"Mexico"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",slug:"miguel-quaresma",fullName:"Miguel Quaresma",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309250/images/9059_n.jpg",biography:"Miguel Nuno Pinheiro Quaresma was born on May 26, 1974 in Dili, Timor Island. He is married with two children: a boy and a girl, and he is a resident in Vila Real, Portugal. He graduated in Veterinary Medicine in August 1998 and obtained his Ph.D. degree in Veterinary Sciences -Clinical Area in February 2015, both from the University of Trás-os-Montes e Alto Douro. He is currently enrolled in the Alternative Residency of the European College of Animal Reproduction. He works as a Senior Clinician at the Veterinary Teaching Hospital of UTAD (HVUTAD) with a role in clinical activity in the area of livestock and equine species as well as to support teaching and research in related areas. He teaches as an Invited Professor in Reproduction Medicine I and II of the Master\\'s in Veterinary Medicine degree at UTAD. Currently, he holds the position of Chairman of the Portuguese Buiatrics Association. He is a member of the Consultive Group on Production Animals of the OMV. He has 19 publications in indexed international journals (ISIS), as well as over 60 publications and oral presentations in both Portuguese and international journals and congresses.",institutionString:"University of Trás-os-Montes and Alto Douro",institution:{name:"University of Trás-os-Montes and Alto Douro",country:{name:"Portugal"}}},{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"283019",title:"Dr.",name:"Oudessa",middleName:null,surname:"Kerro Dego",slug:"oudessa-kerro-dego",fullName:"Oudessa Kerro Dego",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/283019/images/system/283019.png",biography:"Dr. Kerro Dego is a veterinary microbiologist with training in veterinary medicine, microbiology, and anatomic pathology. Dr. Kerro Dego is an assistant professor of dairy health in the department of animal science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. He received his D.V.M. (1997), M.S. (2002), and Ph.D. (2008) degrees in Veterinary Medicine, Animal Pathology and Veterinary Microbiology from College of Veterinary Medicine, Addis Ababa University, Ethiopia; College of Veterinary Medicine, Utrecht University, the Netherlands and Western College of Veterinary Medicine, University of Saskatchewan, Canada respectively. He did his Postdoctoral training in microbial pathogenesis (2009 - 2015) in the Department of Animal Science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. Dr. Kerro Dego’s research focuses on the prevention and control of infectious diseases of farm animals, particularly mastitis, improving dairy food safety, and mitigation of antimicrobial resistance. Dr. Kerro Dego has extensive experience in studying the pathogenesis of bacterial infections, identification of virulence factors, and vaccine development and efficacy testing against major bacterial mastitis pathogens. Dr. Kerro Dego conducted numerous controlled experimental and field vaccine efficacy studies, vaccination, and evaluation of immunological responses in several species of animals, including rodents (mice) and large animals (bovine and ovine).",institutionString:"University of Tennessee at Knoxville",institution:{name:"University of Tennessee at Knoxville",country:{name:"United States of America"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",country:{name:"Spain"}}},{id:"309529",title:"Dr.",name:"Albert",middleName:null,surname:"Rizvanov",slug:"albert-rizvanov",fullName:"Albert Rizvanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309529/images/9189_n.jpg",biography:'Albert A. Rizvanov is a Professor and Director of the Center for Precision and Regenerative Medicine at the Institute of Fundamental Medicine and Biology, Kazan Federal University (KFU), Russia. He is the Head of the Center of Excellence “Regenerative Medicine” and Vice-Director of Strategic Academic Unit \\"Translational 7P Medicine\\". Albert completed his Ph.D. at the University of Nevada, Reno, USA and Dr.Sci. at KFU. He is a corresponding member of the Tatarstan Academy of Sciences, Russian Federation. Albert is an author of more than 300 peer-reviewed journal articles and 22 patents. He has supervised 11 Ph.D. and 2 Dr.Sci. dissertations. Albert is the Head of the Dissertation Committee on Biochemistry, Microbiology, and Genetics at KFU.\nORCID https://orcid.org/0000-0002-9427-5739\nWebsite https://kpfu.ru/Albert.Rizvanov?p_lang=2',institutionString:"Kazan Federal University",institution:{name:"Kazan Federal University",country:{name:"Russia"}}},{id:"210551",title:"Dr.",name:"Arbab",middleName:null,surname:"Sikandar",slug:"arbab-sikandar",fullName:"Arbab Sikandar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210551/images/system/210551.jpg",biography:"Dr. Arbab Sikandar, PhD, M. Phil, DVM was born on April 05, 1981. He is currently working at the College of Veterinary & Animal Sciences as an Assistant Professor. He previously worked as a lecturer at the same University. \nHe is a Member/Secretory of Ethics committee (No. CVAS-9377 dated 18-04-18), Member of the QEC committee CVAS, Jhang (Regr/Gen/69/873, dated 26-10-2017), Member, Board of studies of Department of Basic Sciences (No. CVAS. 2851 Dated. 12-04-13, and No. CVAS, 9024 dated 20/11/17), Member of Academic Committee, CVAS, Jhang (No. CVAS/2004, Dated, 25-08-12), Member of the technical committee (No. CVAS/ 4085, dated 20,03, 2010 till 2016).\n\nDr. Arbab Sikandar contributed in five days hands-on-training on Histopathology at the Department of Pathology, UVAS from 12-16 June 2017. He received a Certificate of appreciation for contributions for Popularization of Science and Technology in the Society on 17-11-15. He was the resource person in the lecture series- ‘scientific writing’ at the Department of Anatomy and Histology, UVAS, Lahore on 29th October 2015. He won a full fellowship as a principal candidate for the year 2015 in the field of Agriculture, EICA, Egypt with ref. to the Notification No. 12(11) ACS/Egypt/2014 from 10 July 2015 to 25th September 2015.; he received a grant of Rs. 55000/- as research incentives from Director, Advanced Studies and Research, UVAS, Lahore upon publications of research papers in IF Journals (DR/215, dated 19-5-2014.. He obtained his PhD by winning a HEC Pakistan indigenous Scholarship, ‘Ph.D. fellowship for 5000 scholars – Phase II’ (2av1-147), 17-6/HEC/HRD/IS-II/12, November 15, 2012. \n\nDr. Sikandar is a member of numerous societies: Registered Veterinary Medical Practitioner (life member) and Registered Veterinary Medical Faculty of Pakistan Veterinary Medical Council. The Registration code of PVMC is RVMP/4298 and RVMF/ 0102.; Life member of the University of Veterinary and Animal Sciences, Lahore, Alumni Association with S# 664, dated: 6-4-12. ; Member 'Vets Care Organization Pakistan” with Reference No. VCO-605-149, dated 05-04-06. :Member 'Vet Crescent” (Society of Animal Health and Production), UVAS, Lahore.",institutionString:"University of Veterinary & Animal Science",institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}},{id:"311663",title:"Dr.",name:"Prasanna",middleName:null,surname:"Pal",slug:"prasanna-pal",fullName:"Prasanna Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311663/images/13261_n.jpg",biography:null,institutionString:null,institution:{name:"National Dairy Research Institute",country:{name:"India"}}},{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",country:{name:"United Kingdom"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",biography:"Samir El-Gendy is a Professor of anatomy and embryology at the faculty of veterinary medicine, Alexandria University, Egypt. Samir obtained his PhD in veterinary science in 2007 from the faculty of veterinary medicine, Alexandria University and has been a professor since 2017. Samir is an author on 24 articles at Scopus and 12 articles within local journals and 2 books/book chapters. His research focuses on applied anatomy, imaging techniques and computed tomography. Samir worked as a member of different local projects on E-learning and he is a board member of the African Association of Veterinary Anatomists and of anatomy societies and as an associated author at local and international journals. Orcid: https://orcid.org/0000-0002-6180-389X",institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"246149",title:"Dr.",name:"Valentina",middleName:null,surname:"Kubale",slug:"valentina-kubale",fullName:"Valentina Kubale",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246149/images/system/246149.jpg",biography:"Valentina Kubale is Associate Professor of Veterinary Medicine at the Veterinary Faculty, University of Ljubljana, Slovenia. Since graduating from the Veterinary faculty she obtained her PhD in 2007, performed collaboration with the Department of Pharmacology, University of Copenhagen, Denmark. She continued as a post-doctoral fellow at the University of Copenhagen with a Lundbeck foundation fellowship. She is the editor of three books and author/coauthor of 23 articles in peer-reviewed scientific journals, 16 book chapters, and 68 communications at scientific congresses. Since 2008 she has been the Editor Assistant for the Slovenian Veterinary Research journal. She is a member of Slovenian Biochemical Society, The Endocrine Society, European Association of Veterinary Anatomists and Society for Laboratory Animals, where she is board member.",institutionString:"University of Ljubljana",institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",biography:"Dr. Fonseca-Alves earned his DVM from Federal University of Goias – UFG in 2008. He completed an internship in small animal internal medicine at UPIS university in 2011, earned his MSc in 2013 and PhD in 2015 both in Veterinary Medicine at Sao Paulo State University – UNESP. Dr. Fonseca-Alves currently serves as an Assistant Professor at Paulista University – UNIP teaching small animal internal medicine.",institutionString:null,institution:{name:"Universidade Paulista",country:{name:"Brazil"}}},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",biography:"María de la Luz García Pardo is an agricultural engineer from Universitat Politècnica de València, Spain. She has a Ph.D. in Animal Genetics. Currently, she is a lecturer at the Agrofood Technology Department of Miguel Hernández University, Spain. Her research is focused on genetics and reproduction in rabbits. The major goal of her research is the genetics of litter size through novel methods such as selection by the environmental sensibility of litter size, with forays into the field of animal welfare by analysing the impact on the susceptibility to diseases and stress of the does. Details of her publications can be found at https://orcid.org/0000-0001-9504-8290.",institutionString:null,institution:{name:"Miguel Hernandez University",country:{name:"Spain"}}},{id:"350704",title:"M.Sc.",name:"Camila",middleName:"Silva Costa",surname:"Ferreira",slug:"camila-ferreira",fullName:"Camila Ferreira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/350704/images/17280_n.jpg",biography:"Graduated in Veterinary Medicine at the Fluminense Federal University, specialist in Equine Reproduction at the Brazilian Veterinary Institute (IBVET) and Master in Clinical Veterinary Medicine and Animal Reproduction at the Fluminense Federal University. She has experience in analyzing zootechnical indices in dairy cattle and organizing events related to Veterinary Medicine through extension grants. I have experience in the field of diagnostic imaging and animal reproduction in veterinary medicine through monitoring and scientific initiation scholarships. I worked at the Equus Central Reproduction Equine located in Santo Antônio de Jesus – BA in the 2016/2017 breeding season. I am currently a doctoral student with a scholarship from CAPES of the Postgraduate Program in Veterinary Medicine (Pathology and Clinical Sciences) at the Federal Rural University of Rio de Janeiro (UFRRJ) with a research project with an emphasis on equine endometritis.",institutionString:null,institution:null},{id:"41319",title:"Prof.",name:"Lung-Kwang",middleName:null,surname:"Pan",slug:"lung-kwang-pan",fullName:"Lung-Kwang Pan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41319/images/84_n.jpg",biography:null,institutionString:null,institution:null},{id:"125292",title:"Dr.",name:"Katy",middleName:null,surname:"Satué Ambrojo",slug:"katy-satue-ambrojo",fullName:"Katy Satué Ambrojo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/125292/images/system/125292.jpeg",biography:"Katy Satué Ambrojo received her Veterinary Medicine degree, Master degree in Equine Technology and doctorate in Veterinary Medicine from the Faculty of Veterinary, CEU-Cardenal Herrera University in Valencia, Spain.Dr. Satué is accredited as a Private University Doctor Professor, Doctor Assistant, and Contracted Doctor by AVAP (Agència Valenciana d'Avaluació i Prospectiva) and currently, as a full professor by ANECA (since January 2022). To date, Katy has taught 22 years in the Department of Animal Medicine and Surgery at the CEU-Cardenal Herrera University in undergraduate courses in Veterinary Medicine (General Pathology, integrated into the Applied Basis of Veterinary Medicine module of the 2nd year, Clinical Equine I of 3rd year, and Equine Clinic II of 4th year). Dr. Satué research activity is in the field of Endocrinology, Hematology, Biochemistry, and Immunology in the Spanish Purebred mare. She has directed 5 Doctoral Theses and 5 Diplomas of Advanced Studies, and participated in 11 research projects as a collaborating researcher. She has written 2 books and 14 book chapters in international publishers related to the area, and 68 scientific publications in international journals. Dr. Satué has attended 63 congresses, participating with 132 communications in international congresses and 19 in national congresses related to the area. Dr. Satué is a scientific reviewer for various prestigious international journals such as Animals, American Journal of Obstetrics and Gynecology, Veterinary Clinical Pathology, Journal of Equine Veterinary Science, Reproduction in Domestic Animals, Research Veterinary Science, Brazilian Journal of Medical and Biological Research, Livestock Production Science and Theriogenology, among others. Since 2014 she has been responsible for the Clinical Analysis Laboratory of the CEU-Cardenal Herrera University Veterinary Clinical Hospital.",institutionString:null,institution:null},{id:"201721",title:"Dr.",name:"Beatrice",middleName:null,surname:"Funiciello",slug:"beatrice-funiciello",fullName:"Beatrice Funiciello",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201721/images/11089_n.jpg",biography:"Graduated from the University of Milan in 2011, my post-graduate education included CertAVP modules mainly on equines (dermatology and internal medicine) and a few on small animal (dermatology and anaesthesia) at the University of Liverpool. After a general CertAVP (2015) I gained the designated Certificate in Veterinary Dermatology (2017) after taking the synoptic examination and then applied for the RCVS ADvanced Practitioner status. After that, I completed the Postgraduate Diploma in Veterinary Professional Studies at the University of Liverpool (2018). My main area of work is cross-species veterinary dermatology.",institutionString:null,institution:null},{id:"291226",title:"Dr.",name:"Monica",middleName:null,surname:"Cassel",slug:"monica-cassel",fullName:"Monica Cassel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/291226/images/8232_n.jpg",biography:'Degree in Biological Sciences at the Federal University of Mato Grosso with scholarship for Scientific Initiation by FAPEMAT (2008/1) and CNPq (2008/2-2009/2): Project \\"Histological evidence of reproductive activity in lizards of the Manso region, Chapada dos Guimarães, Mato Grosso, Brazil\\". Master\\\'s degree in Ecology and Biodiversity Conservation at Federal University of Mato Grosso with a scholarship by CAPES/REUNI program: Project \\"Reproductive biology of Melanorivulus punctatus\\". PhD\\\'s degree in Science (Cell and Tissue Biology Area) \n at University of Sao Paulo with scholarship granted by FAPESP; Project \\"Development of morphofunctional changes in ovary of Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae)\\". She has experience in Reproduction of vertebrates and Morphology, with emphasis in Cellular Biology and Histology. She is currently a teacher in the medium / technical level courses at IFMT-Alta Floresta, as well as in the Bachelor\\\'s degree in Animal Science and in the Bachelor\\\'s degree in Business.',institutionString:null,institution:null},{id:"442807",title:"Dr.",name:"Busani",middleName:null,surname:"Moyo",slug:"busani-moyo",fullName:"Busani Moyo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Gwanda State University",country:{name:"Zimbabwe"}}},{id:"439435",title:"Dr.",name:"Feda S.",middleName:null,surname:"Aljaser",slug:"feda-s.-aljaser",fullName:"Feda S. Aljaser",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"423023",title:"Dr.",name:"Yosra",middleName:null,surname:"Soltan",slug:"yosra-soltan",fullName:"Yosra Soltan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"349788",title:"Dr.",name:"Florencia Nery",middleName:null,surname:"Sompie",slug:"florencia-nery-sompie",fullName:"Florencia Nery Sompie",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sam Ratulangi University",country:{name:"Indonesia"}}},{id:"428600",title:"MSc.",name:"Adriana",middleName:null,surname:"García-Alarcón",slug:"adriana-garcia-alarcon",fullName:"Adriana García-Alarcón",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428599",title:"MSc.",name:"Gabino",middleName:null,surname:"De La Rosa-Cruz",slug:"gabino-de-la-rosa-cruz",fullName:"Gabino De La Rosa-Cruz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428601",title:"MSc.",name:"Juan Carlos",middleName:null,surname:"Campuzano-Caballero",slug:"juan-carlos-campuzano-caballero",fullName:"Juan Carlos Campuzano-Caballero",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"319576",title:"Prof.",name:"Nikolay",middleName:null,surname:"Boyadjiev",slug:"nikolay-boyadjiev",fullName:"Nikolay Boyadjiev",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v4b3cQAA/Profile_Picture_2022-06-07T08:30:58.jpeg",institutionString:null,institution:{name:"Medical University Plovdiv",institutionURL:null,country:{name:"Bulgaria"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/18806",hash:"",query:{},params:{id:"18806"},fullPath:"/profiles/18806",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()