Effect of substrates on plant height and number of leaves of tomato during vegetation
\r\n\tThere will be a chapter on secondary causes of sexual dysfunction disorders related to diabetes, cardiovascular disease, and obesity. A chapter on remedial measures to enhance sexual activity and maintain human relationships will be discussed. As there is a growing number of cancer survivors a chapter on cancer-related sexual dysfunction will be welcomed for including it.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"b988fda30a4e2364ee9d47e417bd0ba9",bookSignature:"Dr. Dhastagir Sultan Sheriff",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",keywords:"Sex, Sexual Response Cycle, Erection, Premature Ejaculation, Libido, Orgasm, Painful Intercourse, Psychological, Female, Lack of Desire, Erectile Disorders, Pain Disorders",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 8th 2022",dateEndSecondStepPublish:"May 6th 2022",dateEndThirdStepPublish:"July 5th 2022",dateEndFourthStepPublish:"September 23rd 2022",dateEndFifthStepPublish:"November 22nd 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dhastagir Sultan Sheriff is a life member of the European Society for Human Reproduction and Early Human Development, Association of Physiologists and Pharmacologists of India, member of the National Academy of Medical Sciences, New Delhi, and resource person for UNESCO for Medical and Bioethics. Dr. Sheriff has authored five books including a textbook on medical biochemistry with additional interest in human sexology. He has done extensive research in andrology, sex education, and counseling.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",middleName:null,surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff",profilePictureURL:"https://mts.intechopen.com/storage/users/167875/images/system/167875.jpg",biography:"Dhastagir Sultan Sheriff is a life member of the European Society for Human Reproduction and Early Human Development, Association of Physiologists and Pharmacologists of India, member of the National Academy of Medical Sciences, New Delhi, and resource person for UNESCO for Medical and Bioethics. Dr. Sheriff has authored five books including a textbook on medical biochemistry with additional interest in human sexology. He had editorials written in the British Journal of Sexology, Journal of Royal Society of Medicine, Postgraduate Medicine, and Scientist. He was a former Rotarian, Citizen Ambassador, and was selected for the Ford Foundation Fellowship.",institutionString:"University of Benghazi",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Benghazi",institutionURL:null,country:{name:"Libya"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6934",title:"Psycho-Social Aspects of Human Sexuality and Ethics",subtitle:null,isOpenForSubmission:!1,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:"psycho-social-aspects-of-human-sexuality-and-ethics",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7163",title:"Infertility, Assisted Reproductive Technologies and Hormone Assays",subtitle:null,isOpenForSubmission:!1,hash:"6db6e4ccb7088f17f819121f7eb6424d",slug:"infertility-assisted-reproductive-technologies-and-hormone-assays",bookSignature:"Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/7163.jpg",editedByType:"Edited by",editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48099",title:"Effect of Different Growing Substrates on Physiological Processes, Productivity and Quality of Tomato in Soilless Culture",doi:"10.5772/59547",slug:"effect-of-different-growing-substrates-on-physiological-processes-productivity-and-quality-of-tomato",body:'The most innovative technology of plants growing in greenhouses is growing plants in mineral substrates such as rockwool, vermiculite, perlite, zeolite, ceramsite and others. The origin of substrates is different, some of them are of natural origin while others are produced artificially [1-3]. They also differ in their physical, chemical, and biological properties. Therefore, substrate selection is one of the most important factors affecting plant growth and development in the greenhouse and influencing vegetable quality.
Vegetable-growing rockwool is a widely used substrate for growing of tomatoes and cucumbers under commercial production system. However, one of the biggest disadvantages of this substrate is the need to utilize it. Currently for growing vegetables’ different natural substrates are also used and one of these is coconut fiber [4-7]. Substrates of coconut fiber are produced in most countries (like Polland, Netherlands, Belgium, Chezch Republic). Current recycling technologies allow to produce different products in its quality which have its advantages compared to other substrates which are used in greenhouses for growing vegetable [8]. Ready to use coconut fiber substrate may look like dry brick, non-pressed pack as well as blocks’ shape. Blocks of coconut fiber are widely used in floriculture, especially for growing roses and gerbera [9,10]. Coconut fiber is a absolutely (100%) organic substrate which is made from recycling the shells of coconuts. It is inert substrate as it does not dissolve upon utilization, size does not change but restrains huge amount of water (more than rockwool). Coconut fiber has other properties such as it is typical to absorb warmth, do not get salty, and it has no pathogens and seeds of weeds [6,11,12]. Substrate of coconut fiber is an alternative for rockwool, no problems appears after utilization. This substrate also has its advantages over rockwool for example; structure of coconut fiber does not change for several years due to its high lignin content. The same structure lasts for 3-4 years. In this way, substrate may be used for few years [8]. Results of last investigations showed that coconut fiber were sufficient substrates for growing of some plants especially for vegetables and grower use these materials as growing media in greenhouse cultures [13]. Albaho and others [14] argued that coconut fiber and its mixes with other substrates could be used as alternative substrate for tomato growing.
Peat and their mixes with perlite, vermiculite, zeolite are the most widely used substrates in greenhouse. In most countries there are analyzed features of zeolite and possibilities to use it for growing of vegetables [15-17]. Zeolites are hydrated crystalline aluminosilicate minerals of natural occurence, structured in rigid third dimension net. This is ecologically clean, inert and non-toxic substance. It is characterized by ion exchange and adsorption features [18,19]. According to Russian scientist, one of the most promising fields of plant-growing is use of natural zeolite as a substrate for seedlings and vegetables to grow [20,21]. There are different reports related to use of zeolite as substrates in hydroponic culture. Technologies of growing cucumbers, tomatoes and green vegetables in zeolite were created in Russia [17,22]. There were also analyzed opportunities how zeolite as a substrate and its mixes with peat could be used in greenhouses [16,19]. It was found that using zeolite less nutrients is missed, efficiency of mineral fertilizer increases. There were analyzed options of using zeolite to grow seddlings of vegetables as well as potted plants [23-25]. Gül and others [26] concluded that the use of zeolite led to increased lettuce plant growth. Most scientific researches reveal the effect of substrates for vegetables productivity [27-29]. Gruda [30] states that it is possible to improve the quality of fruit if suitable substrate is chosen. Other researches show effect of substrates and its mixes for vegetable quality [23,29,31-33].
The aim of this study was to estimate of rockwool and coconut fiber substrates on productivity and quality of tomato hybrids ‘Raissa’ and ‘Admiro’. In addition to establish the optimal amount of zeolite in peat substrate and to evaluate the influence of zeolite-peat mixes on productivity and quality of tomato hybrid ‘Ronaldo’.
The investigations were carried out at the Institute of Horticulture, in the Multi Rovero 640 TR (“Rovero”, the Netherlands) greenhouse covered with a double polymer film. The tomatoes were sown at the beginning of February and the seedlings were grown in rockwool growing cubes on the shelvings in a heated nursery and lighted additionally by high pressure sodium lamps (Philips SON-T Agro). At the beginning of March the seedlings were transplanted in the greenhouse (Figure 1). The plant density in the greenhouse was 2.5 plants per m-2. The end of tomato vegetation was the middle of October. Two factors were investigated: factor A – tomato hybrids: a0 – ‘Raissa’, a1 – ‘Admiro’, factor B – substrate: b0 – rockwool, b1 – coconut fiber. Plot area – 8 m2. Four replications were done in a randomized block design.
The investigations were carried out at the Institute of Horticulture, in the Multispan 9.60 SR (“Richel”, France) greenhouse covered with a double polymer film. The tomato seedlings were grown in polymer pots filled with peat substrate (Profi 1, Durpeta, Lithuania) (pH 5-6) on the shelvings in a heated nursery and lighted additionally by high pressure sodium lamps (Philips SON-T Agro). In the greenhouse the plants were grown in 25 l peat bags (1 bag – 2 plants) (Figure 2). The plant density was 2.5 plants per m-2. The start of tomato vegetation was the beginning of February and the end was the middle of October. The investigation object was hybrid ‘Ronaldo’. Different substrates were investigated: a0 – peat, a1 – peat + zeolite (15%), a2 – peat + zeolite (30%). Plot area – 9.6 m2. Three replications were done in a randomized block design.
Tomato in coconut fiber substrate
Tomato in peat bags
In both greenhouses the tomatoes were grown using drip irrigation and fertilized with “Nutrifol” (green, NPK 8-11-35 plus microelements - S, MgO, Mn, B, Zn, Cu, Co, Mo, Fe) (first half of the vegetation), “Nutrifol” (brown, NPK 14-10-25 plus microelements - S, MgO, Mn, B, Zn, Cu, Co, Mo, Fe) (second half of vegetation), magnesium sulphate, calcium and ammonium nitrate fertilizers. There was prepared solution, which was diluted with water in a ratio of 1: 100, and plants were fertilized taking into the account the growth stage (4-15 times a day). Nitric acid was used for water acidification. The concentration of salts in the nutrient solution was EC 2.6–3.0, acidity – pH 5.5–5.8.
During the investigation the plant height was measured at three times during vegetative growth each 10 days after transplanting the seedlings in the greenhouse and the leaves were also counted.
For sample preparation of photosynthetic pigment 0.2 g of fresh weight were ground with 0.5 g CaCO3 (Sigma-Aldrich, Germany) and extracted in 100% acetone (Merck, Germany), according to Vetsthtein [34]. Spectrophotometric analysis (spectrophotometer Genesys 6, USA) and quantification of total chlorophylls
To determine dry weight tomato leaves and fruits were dried in a drying oven (Venticell,MBT, Czech Republik) at 105 °C for 24 h. The content of dry matter and photosynthetic pigments in leaves were established at three times during entire growth phase, such as measurement I - at the beginning of flowering, measurement II – at the start of yielding, measurement III – at full yielding.
The phytomonitoring investigations were carried out on the tomatoes grown in different substrates. The physiological processes of tomato ‘Raissa‘ F1 were investigated using a phytometric system “LPS-03” created by “PthyTech Ltd.”(Figure 3). The following sensors were used for the investigations such as sap water flow, stem diameter evolution, fruit diameter evolution and leaf-air temperature differences (Figure 4). The data of these sensors reflect the plant response to various growing conditions best. In addition, microclimate parameter sensors (those of air temperature and total irradiance) were used. The sensors were fixed according to “PhyTech Ltd.” recommendations [35,36]. The sensors of stem diameter evolution, stem flux rate and leaf-air temperature were used as indirect indicators of transpiration. The plants were measured for five days.
The phytometric system LPS-03
Fruit diameter sensor
The tomato yield was recorded at every harvest. Tomato fruits were harvested three times a week, next they were separated into marketable and non-marketable ones. Total yield were calculated by aggregating each harvest.
The biochemical composition of tomato fruits was investigated at the Laboratory of Biochemistry and Technology, Institute of Horticulture. The following methods were applied in establishing the composition: sugars – by AOAC method [37], carotenoids – spectrophotometrically by Genesys10 UV/VIS spectrophotometer (Thermo Spectronic, Rochester, USA) [38], nitrates – by potentiometrical method using an ion selective electrode [39]. The total soluble solids were determined by a digital refractometer (ATAGO PR-32, Atago Company, Japan). The dry matter content was determined by the air oven method after drying at 105 °C in a Universal Oven ULE 500 (Memmert GmbH+Co. KG, Schwabach, Germany) to a constant weight [40]. Ascorbic acid content was measured by titration with 2.6-dichlorphenolindophenol sodium salt using chloroform for intensely coloured extracts [37]. Titrable acidity was measured by titrating 10 g of pulp that had been homogenised with 100 ml distilled water. The initial pH of the sample was recorded before titration with 0.1 N NaOH to final pH 8.2. The acidity was expressed as the percentage of citric acid equivalent to the quantity of NaOH used for the titration.
The data were analysed by ANOVA statistical package [41]. The Fisher’s LSD was used to determine significant treatment effects. Statistical significance was evaluated at p≤0.05.
During vegetation the tomato hybrids grown in different substrates grew and developed differently. The height and leaf number depended both on the substrate used and on the hybrid itself (Table 1). Tomatoes ‘Raissa‘ F1 grown in a coconut fiber substrate were 8.1–9.2% higher (insignificant difference) compared with the plants grown in rockwool. Moreover, they had a larger number of leaves. The plants of hybrid ‘Admiro’ grown in the coconut fiber substrate were slightly lower during the first and the second measures taken (insignificant difference) compared with those grown in rockwool. During the third measure taking the height of this hybrid was equal in both substrates. The ‘Admiro‘ plants grown in rockwool and coconut fiber had the same number of leaves.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|||
‘Raissa’ F1\n\t\t\t | \n\t\t||||||
Rockwool | \n\t\t\t75.0 | \n\t\t\t13.5 | \n\t\t\t98.0 | \n\t\t\t17.0 | \n\t\t\t125.4 | \n\t\t\t21.2 | \n\t\t
Coconut fiber | \n\t\t\t81.1 | \n\t\t\t14.4 | \n\t\t\t107.1 | \n\t\t\t18.1 | \n\t\t\t136.9 | \n\t\t\t21.7 | \n\t\t
LSD05\n\t\t\t | \n\t\t\t30.6 | \n\t\t\t1.7 | \n\t\t\t32.6 | \n\t\t\t2.5 | \n\t\t\t33.9 | \n\t\t\t1.5 | \n\t\t
‘Admiro’ F1\n\t\t\t | \n\t\t||||||
Rockwool | \n\t\t\t79.5 | \n\t\t\t14.6 | \n\t\t\t103.4 | \n\t\t\t17.7 | \n\t\t\t130.8 | \n\t\t\t21.2 | \n\t\t
Coconut fiber | \n\t\t\t75.6 | \n\t\t\t13.9 | \n\t\t\t102.0 | \n\t\t\t17.5 | \n\t\t\t131.6 | \n\t\t\t21.0 | \n\t\t
LSD05\n\t\t\t | \n\t\t\t17.7 | \n\t\t\t1.1 | \n\t\t\t21.8 | \n\t\t\t1.8 | \n\t\t\t20.7 | \n\t\t\t0.7 | \n\t\t
Effect of substrates on plant height and number of leaves of tomato during vegetation
The content of dry matter in the tomato leaves depended on the substrate (Figure 5). Both hybrids grown in rockwool accumulated a higher content of dry matter in their leaves during vegetation compared with those grown in coconut fiber. The content of dry matter in the leaves of tomatoes ‘Raissa’ F1 grown in rockwool was 2.6–8.1% higher (depending on measuring) compared with those grown in the coconut fiber substrate (Figure 5 a). The content of dry matter in the leaves of tomato hybrid ‘Admiro’ grown in rockwool was higher in all measures taken (Figure 5 b) (insignificant differences).
Effect of substrates on dry matter content in leaves of tomatoes ‘Raissa’ F1 (a) and ‘Admiro’ F1 (b) during vegetation
The photosynthetic pigment content in the leaves of tomatoes depended on the substrate as well (Table 2). A higher amount of photosynthetic pigments was accumulated in the leaves of both hybrids grown in rockwool. The chlorophyll a + b amount in the leaves of tomato hybrid ‘Raissa’ was higher by 3.4%; in the case of tomato hybrid ‘Admiro’ it was 7.0% higher compared with the leaves of the tomatoes grown in the coconut fiber substrate. The chlorophyll a to b ratio in the leaves of both tomato hybrids grown in different substrates was almost similar. The content of carotenoids in the leaves of the tomatoes grown both in rockwool and coconut fiber was more or less the same during vegetation. A slightly lower content was accumulated in the tomatoes grown in the coconut fiber substrate.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t||||
\n\t\t\t | \n\t\t\t\n\t\t\t | \n\t\t\t\n\t\t\t | \n\t\t|||
‘Raissa‘ F1\n\t\t\t | \n\t\t|||||
Rockwool | \n\t\t\t1.33 | \n\t\t\t0.50 | \n\t\t\t1.82 | \n\t\t\t2.66 | \n\t\t\t0.39 | \n\t\t
Coconut fiber | \n\t\t\t1.28 | \n\t\t\t0.48 | \n\t\t\t1.76 | \n\t\t\t2.67 | \n\t\t\t0.37 | \n\t\t
LSD05\n\t\t\t | \n\t\t\t0.21 | \n\t\t\t0.09 | \n\t\t\t0.30 | \n\t\t\t0.03 | \n\t\t\t0.06 | \n\t\t
‘Admiro‘ F1\n\t\t\t | \n\t\t|||||
Rockwool | \n\t\t\t1.34 | \n\t\t\t0.50 | \n\t\t\t1.84 | \n\t\t\t2.68 | \n\t\t\t0.39 | \n\t\t
Coconut fiber | \n\t\t\t1.24 | \n\t\t\t0.47 | \n\t\t\t1.72 | \n\t\t\t2.64 | \n\t\t\t0.36 | \n\t\t
LSD05\n\t\t\t | \n\t\t\t0.06 | \n\t\t\t0.05 | \n\t\t\t0.11 | \n\t\t\t0.14 | \n\t\t\t0.01 | \n\t\t
Effect of substrates on photosynthetic pigment content and the chlorophyll a to b ratio in leaves of tomato
The intensity of photosynthesis depended on the hybrid of tomato (Figure 6). The photosynthesis intensity of tomato hybrid ‘Admiro’ was slightly higher compared with those grown in the coconut fiber substrate. The highest intensity of photosynthesis was established with tomato hybrid ‘Raissa’, when grown in the coconut fiber substrate.
Effect of substrates on photosynthesis intensity of two tomato hybrids viz., ‘Admiro’ and ‘Raissa’
The phytomonitoring investigations were carried out for five days. During the investigations the air temperature within the plant growing zone was about 25 °C and judging from the total irradiance fluctuations the days were overcast with gaps in the clouds (Figure 7). According to the stem flux rate, stem diameter evolution and the difference in leaf-air temperature it is possible to assess the intensity of transpiration and the overall turnover of water in a plant (Figures 8 and 9). The variation of these indicators during 24 hours was similar both in the tomatoes grown in rockwool and in the coconut fiber substrate. In the middle of the day the stem flux rate increased, the stem diameter decreased and the leaf temperature was practically always lower than that of the air. Therefore, it can be proposed that the transpiration in tomatoes was very intensive and a low stem gain per 24 hours indicates that the plants were not supplied with water sufficiently. The tomatoes grown in coconut fiber demonstrated a higher leaf-air temperature difference compared with the tomatoes grown in rockwool. It can be proposed that the transpiration of the latter was less intensive. The more intensive transpiration in the tomatoes grown in coconut fiber had negative influence on fruit growth. Typically, fruits have to grow in a uniform fashion and this substrate practically stopped the daily growth and the growth returned to normal only in the second half of the night (Figure 10). The size increase of the tomatoes grown in rockwool was more uniform. Their growth slowed down in the middle of the day but it returned to normal again in the evening. It can be proposed that the tomatoes grown in coconut fiber substrate demonstrated a higher water demand compared with the tomatoes grown in rockwool.
The coconut fiber substrate had positive effect on the tomato yield (Figure 11). The yield of tomato hybrids ‘Raissa’ and ‘Admiro’ grown in coconut fiber was higher compared with those grown in rockwool (insignificant differences). The yield of tomato hybrid ‘Admiro’ was significantly higher compared with the yield of tomato hybrid ‘Raissa’ as there were more trusses on the plants formed and the number of fruits in a truss was higher. Somewhat higher early yield was obtained from the tomatoes grown in rockwool. The yield of non-marketable fruits from the tomatoes grown in different substrates was the same: it was 0.24 kg m-2 from tomato hybrid ‘Raissa\' in both substrates and 0.4 kg m-2 from tomato hybrid ‘Admiro‘.
Changes in environmental parameters in greenhouses used for investigating effects of different substrates on the growth, physiological processes and quality of tomato
Stem flux rate and stem diameter evolution of tomato hybrid ‘Raissa‘ F1 grown in rockwool (a) and coconut fiber (b)
Leaf-air temperature differences of tomato hybrid ‘Raissa‘ F1 grown in rockwool and coconut fiber substrates
Fruit diameter evolution of tomato hybrid ‘Raissa‘ F1 grown in rockwool and coconut fiber substrates
Effect of rockwool and coconut fiber on early and total yield of tomatoes plants grown under greenhouse condition
Tomato hybrid ‘Raissa’ formed 15 trusses both in rockwool and coconut fiber, however the number of fruits in a truss was different: the number was slightly higher in rockwool compared with coconut fiber (Table 3). Tomato hybrid ‘Admiro’ formed 15.5 trusses both in rockwool and coconut fiber and the number of fruits was the same. The substrate had no great influence on the average mass of a fruit. The fruit mass of the tomatoes grown in rockwool was slightly higher compared with those grown in coconut fiber. The fruits of tomato hybrid ‘Raissa’ were somewhat larger – the average mass of a fruit ranged from 137.1 g to 140.1 g, and the average mass of ‘Admiro’ fruit was between 131.0 g and 135.4 g.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
‘Raissa‘ F1\n\t\t\t | \n\t\t||
Rockwool | \n\t\t\t4.45 | \n\t\t\t140.1 | \n\t\t
Coconut fiber | \n\t\t\t4.17 | \n\t\t\t137.1 | \n\t\t
LSD05\n\t\t\t | \n\t\t\t3.18 | \n\t\t\t14.2 | \n\t\t
‘Admiro‘ F1\n\t\t\t | \n\t\t||
Rockwool | \n\t\t\t4.73 | \n\t\t\t135.4 | \n\t\t
Coconut fiber | \n\t\t\t4.93 | \n\t\t\t131.0 | \n\t\t
LSD05\n\t\t\t | \n\t\t\t1.91 | \n\t\t\t10.8 | \n\t\t
Effect of rockwool and coconut fiber on fruit number and average mass of tomatoes plants grown under greenhouse condition
Growing of tomatoes in different substrates had influence on the biochemical composition of fruits (Table 4). Tomato hybrid ‘Raissa’ grown in rockwool accumulated a higher amount of sugars, dry soluble solids and dry matter (insignificant difference). The amount of ascorbic acid in the fruits of the tomatoes grown in coconut fiber was 1.1 times higher compared with the fruits of the tomatoes grown in rockwool (insignificant difference). Different substrates had influence on the amount of nitrates in tomato fruits: the amount was higher in the tomato fruits grown in rockwool (insignificant difference).
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t \n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t||
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|||||||
‘Raissa‘ F1\n\t\t\t | \n\t\t|||||||||
Rockwool | \n\t\t\t3.25 | \n\t\t\t0.13 | \n\t\t\t3.38 | \n\t\t\t4.7 | \n\t\t\t8.8 | \n\t\t\t0.53 | \n\t\t\t2.7 | \n\t\t\t5.4 | \n\t\t\t185 | \n\t\t
Coconut fiber | \n\t\t\t2.12 | \n\t\t\t1.14 | \n\t\t\t3.26 | \n\t\t\t4.5 | \n\t\t\t9.5 | \n\t\t\t0.52 | \n\t\t\t2.6 | \n\t\t\t5.0 | \n\t\t\t172 | \n\t\t
LSD05\n\t\t\t | \n\t\t\t1.27 | \n\t\t\t0.32 | \n\t\t\t0.95 | \n\t\t\t1.9 | \n\t\t\t1.3 | \n\t\t\t0.05 | \n\t\t\t4.5 | \n\t\t\t0.6 | \n\t\t\t146.1 | \n\t\t
Effect of rockwool and coconut fiber on biochemical composition of tomato fruit
The admixture of zeolite into a peat substrate had effect on the height of plants. The tomatoes grown in peat-zeolite substrates were lower compared with those grown in peat (Table 5). The tomatoes grown in the peat + zeolite (30%) substrate were 3.1–5.9% lower (depending on measuring) compared with the plants grown in the peat substrate. The tomatoes grown in the peat + zeolite (15%) substrate were the lowest. A lower concentration of zeolite in peat had a greater effect on vegetative plant growth, i. e., the overground mass developed better. An asumption can be made that a greater concentration of zeolite had an effect of better root development but not on the overground plant section.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t||
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|
Peat | \n\t\t\t49.6 | \n\t\t\t71.0 | \n\t\t\t101.6 | \n\t\t
Peat + zeolite (15%) | \n\t\t\t51.1 | \n\t\t\t69.9 | \n\t\t\t100.0 | \n\t\t
Peat + zeolite (30%) | \n\t\t\t48.1 | \n\t\t\t67.0 | \n\t\t\t96.9 | \n\t\t
LSD05\n\t\t\t | \n\t\t\t8.4 | \n\t\t\t6.3 | \n\t\t\t6.9 | \n\t\t
Effect of peat and mixture of peat and zeolite substrates on tomato plant height during vegetation
At the beginning of vegetation the amount of dry matter in the leaves of the tomatoes grown in peat was higher compared with those grown in peat and zeolite substrates (Table 6). It was 5.3–8.2% more (Measurement I and II, respectively) compared with the leaves of the tomatoes grown in the peat + zeolite (15%) substrate and 1.1–11.6 % more (Measurement I and II, respectively) compared with the leaves of the tomatoes grown in the peat + zeolite (30%) substrate (insignificant differences). During the Measurement III it was established that the highest amount of dry matter in leaves was accumulated by the tomatoes grown in the peat + zeolite (30%) substrate. The amount was 7.5% higher compared with the leaves of the tomatoes grown in peat and 11.1% higher compared with the leaves of the tomatoes grown in the peat + zeolite (15%) substrate (significant difference). During the entire vegetation the lowest amount of dry matter was accumulated in leaves of the tomatoes grown in the peat + zeolite (15%) substrate.
The content of dry matter in the fruits of the tomatoes grown in different substrates during vegetation was different. The lowest amount of dry matter in the fruits was demonstrated by the tomatoes grown in the peat + zeolite (15 %) substrate. The average data of three measures revealed that the highest amount of dry matter in fruits was accumulated by the tomatoes grown in the peat + zeolite (30 %) substrate and it amounted to 6.4%.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|||
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|
Peat | \n\t\t\t11.08 | \n\t\t\t5.95 | \n\t\t\t10.31 | \n\t\t\t5.95 | \n\t\t\t10.06 | \n\t\t\t6.97 | \n\t\t
Peat + zeolite (15%) | \n\t\t\t10.24 | \n\t\t\t5.41 | \n\t\t\t9.79 | \n\t\t\t4.49 | \n\t\t\t9.74 | \n\t\t\t6.10 | \n\t\t
Peat + zeolite (30%) | \n\t\t\t9.93 | \n\t\t\t5.97 | \n\t\t\t10.20 | \n\t\t\t6.77 | \n\t\t\t10.82 | \n\t\t\t6.47 | \n\t\t
LSD05\n\t\t\t | \n\t\t\t2.23 | \n\t\t\t0.87 | \n\t\t\t2.35 | \n\t\t\t0.40 | \n\t\t\t0.74 | \n\t\t\t0.13 | \n\t\t
Effect of substrates on content of dry matter in leaves and fruits of tomatoes during vegetation
The tomatoes grown in peat and peat + zeolite (30%) substrates accumulated a higher content of chlorophyll compared with the tomatoes grown in the peat + zeolite (15%) substrate (Table 7). The content of chlorophyll was 10.5 %, chlorophyll b – 11.9% and chlorophyll a + b – 10.9% higher compared with the leaves of the tomatoes grown in the peat + zeolite (15%) substrate. The highest chlorophyll a to b ratio was established in the leaves of the tomatoes grown in peat. The carotenoid content was almost the same in the leaves of the tomatoes grown in all substrates.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t||||
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t \n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|
Peat | \n\t\t\t1.17 | \n\t\t\t0.47 | \n\t\t\t1.63 | \n\t\t\t2.54 | \n\t\t\t0.33 | \n\t\t
Peat + zeolite (15%) | \n\t\t\t1.05 | \n\t\t\t0.42 | \n\t\t\t1.47 | \n\t\t\t2.50 | \n\t\t\t0.30 | \n\t\t
Peat + zeolite (30%) | \n\t\t\t1.16 | \n\t\t\t0.47 | \n\t\t\t1.63 | \n\t\t\t2.47 | \n\t\t\t0.32 | \n\t\t
LSD05\n\t\t\t | \n\t\t\t0.21 | \n\t\t\t0.07 | \n\t\t\t0.27 | \n\t\t\t0.24 | \n\t\t\t0.07 | \n\t\t
Effect of peat and mixture of peat and zeolite substrates on photosynthetic pigment content and the chlorophyll a to b ratio in leaves of tomato
Zeolite had effect on yield earliness (Figure 12). During the first month of fruiting it ranged from 7.0 kg m–2 to 8.0 kg m–2 (depending on the substrate). The highest early yield was obtained while growing tomatoes in the peat + zeolite (15%) substrate. It was 11.1% higher compared with the tomatoes grown in peat alone and 14.3% higher than that obtained from the tomatoes grown in the peat + zeolite (30%) substrate (insignificant differences). The total yield was higher in the plants grown in peat and zeolite substrates. The extra yield depended on the amount of zeolite in peat. The yield of the tomatoes grown in the peat + zeolite (15%) substrate was 10.3% (significant difference) higher than that of the tomatoes grown in the peat substrate alone. This effect was related with zeolite’s property to accumulate and retain and then release the nutrients to the plants in due time. However, the admixture of higher amounts of zeolite to the substrate had practically no effect on the tomato yield.
The tomatoes grown in different substrates formed the same number of fruits in a truss. In all treatments the number of fruits per truss was between 4.40 and 4.44 u. However, the average fruit mass was slightly different between the treatments and ranged from 133.2 g to 138.1 g (Figure 13). The largest were the fruits of the tomatoes grown in the peat + zeolite (15%) substrate: their mass was 1.9 % higher compared with the tomatoes grown in peat only and 3.7% higher than tomato fruits in the peat + zeolite (30%) substrate (insignificant differences).
The admixture of zeolite into the peat substrate had influence on the biochemical composition of the tomato fruits (Table 8). The fruits of the tomatoes grown in peat-zeolite substrates accumulated less sugars, ascorbic acid and soluble solids. The admixture of zeolite into the peat substrate resulted in a 17.8 -19.6% higher titratable acidity amount (significant difference) compared with the tomatoes grown in peat. In addition, they accumulated a slightly higher amount of carotenoids.
Effect of substrates on early and total yield of tomatoes
Effect of substrates on average fruit mass of tomatoes
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t \n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Peat | \n\t\t\t5.03 | \n\t\t\t5.2 | \n\t\t\t22.0 | \n\t\t\t0.56 | \n\t\t\t5.5 | \n\t\t
Peat+zeolite (15%) | \n\t\t\t4.91 | \n\t\t\t5.1 | \n\t\t\t17.0 | \n\t\t\t0.67 | \n\t\t\t5.7 | \n\t\t
Peat+zeolite (30%) | \n\t\t\t4.71 | \n\t\t\t4.9 | \n\t\t\t18.2 | \n\t\t\t0.66 | \n\t\t\t5.6 | \n\t\t
LSD05\n\t\t\t | \n\t\t\t0.98 | \n\t\t\t0.4 | \n\t\t\t1.8 | \n\t\t\t0.02 | \n\t\t\t0.9 | \n\t\t
Effect of peat and mixture of peat and zeolite substrates on biochemical composition of tomato fruits
Results of most scientists researches showed that substrates had a significant effect on the plant growth, composition of leaf, total yield and fruit quality [27,31,42,43]. Researchers from different countries analysed the suitability of coco substrates (coconut dust, coco fiber and its mixtures) for growing of vegetables in greenhouses. Data of Lopez et al. [44] showed substrate of coconut dust is proper for growing of tomatoes in greenhouses. It is also characterised as substrate with higher qualities than Canadian peat. Researches of other scientists proved substrates of coconut fiber may be used as organic substrate for growing of plants [4]. In other researches coco substrates was compared to other substrates used in greenhouse vegetable-growing. There was analysed yield of plants while growing vegetables in coco substrate, perlite, rockwool, sawdust, rise husks [12,44-47]]. Coconut fiber was compared to substrate which is produced from waste composting 48]. Alifar et al. [49] investigated the effect of five different growing media for cucumbers’ growing. Results showed that the largest stem diameter, the highest biomass were obtained in cocopeat and perlite-cocopeat media. Fecondini and others [50] data reveal hybrid more than substrate where plants were grown in had more influence for phenological observations and biometric parameters of tomatoes. Our data showed the tomatoes grown in rockwool and coconut fiber grow evenly, height of the plants did not differ a lot.
In our research, physiological processes in tomatoes grown in coconut fiber substrate were similar to that were grown in rockwool. Increasing sap water flow, decreased diameter of stem and bigger difference of leaves and air temperatures showed that more intense transpiration was in tomatoes grown in coconut fiber substrate than in plants grown in rockwool (Figure 8 and 9). It may be assumed this had an influence for non-uniform fruit growth in this substrate compared to rockwool (Figure 10). According to physiological researches’ data it may be stated that absorption of substrates of coconut fiber and rockwool for water is different.
The content of carotenoid and chlorophyll pigments in the vegetables depend on growing conditions as well as on variety of vegetable [51,52]. According to Islam at al. [53] data there was no difference between content of chlorophyll and dry matter in the leafs of tomatoes grown in coconut fiber and rockwool substrates. There also was no difference on the amount of ascorbic acid in the fruits of tomatoes in these substrates. Our data showed the tomatoes grown in rockwool accumulated more dry matters and pigments of photosynthesis than those grown in coconut fiber substrate.
Various data show substrate has an influence on the yield of tomatoes. Some researches showed yield of tomatoes grown in coconut fiber substrates was higher than grown in other substrates, another researches did not show any difference in the yield [12,48,54]. Kobryn [55] stated bigger yield was got growing tomatoes in rockwool than in substrate Cocovita which is made of coconut palms straw. Jensen’s [45] research show there are no fundamental differences between the yield of tomatoes grown in different substrates (perlite, rockwool, coconut, etc.). Carrijo et al. [56] researches state tomatoes grown in coconut substrate were more fertile than those grown in sawdust. Halman [28] data show yield of cherry tomatoes grown in coconut and rockwool was similar. The tomatoes were grown in rockwool, peat, coconut fiber with a different admixture of chips. According to research data, the significantly highest total yield of plants was found in the case of plants grown in peat and in coconut fiber with a higher content of chips in relation to rockwool [57]. Our data showed the yield of tomatoes grown in coconut fiber was little bit higher than those grown in rockwool.
Most scientists found the type of substrate affected the quality of tomato fruit [28,48,58]. Selection of substrate has an influence not only on the yield of plants but on quality of the fruits as well as its beginning of yielding [59]. Growth, yield and fruit quality of tomato grown in coconut fiber were not different from those grown in rockwool [54]. Hallman [28] states the tomatoes grown in cocos substrate had more sugar, acids, there also was less ascorbic acid and licopene. Our data showed growing of tomatoes in rockwool and coconut substrate had an influence on the biochemical composition of fruits (Table 4). Tomato hybrid ‘Raissa‘ grown in rockwool accumulated more sugar, dry soluble solids and dry matter in the fruits but tomatoes grown in coconut fiber accumulated more ascorbic acid. The substrate had no influence on the average mass of a fruit. Our data showed the average mass of fruits was pretty similar growing tomatoes both in coconut fiber and rockwool.
Zeolite and coco substrates may be used in two ways: first, it may be used as a part of mixture of substrates, second, it may be used as only substrate for vegetable growing. There were researches done analyzing growth of tomatoes in mixed perlite and zeolite substrates, mixing both in different ratios [60,61]. According to data, better results were achieved growing tomatoes in zeolite and perlite substrates (ratio 1:1) than growing in cocos and perlite substrates [33]. There also was analyzed the influence of zeolite mixed with other substrates for peppers’, lettuce and various flowers yield as well as productivity [15,26,62]. Russian scientists results show lettuce grown in peat and zeolite substrates had smaller content of nitrates, there was bigger yield of cucumbers. Growing vegetable in zeolite substrate there was lower use of fertilizers [20,63]. Our data showed the admixture of zeolite into a peat substrate did not have significant influence for growth of plants. The tomatoes grown in peat and zeolite substrates were a little bit lower than those plants grown in peat.
Seeking for better evaluation of the influence of mixtures of substrates on the plants growth, there was found content of photosynthetic pigments in the leafs of tomatoes. The content of chlorophyll in the leafs of the plant is one of potential productivity indicators. It is often used aiming to find how any of the growing ways or environmental conditions affect the photosynthesis system of the plants. If growing conditions are inadequate, concentration of chlorophylls and ratio of chlorophylls a to b decreases. For the process of photosynthesis chlorophyll a is more important as it reacts to changing conditions of the environment rather [64,65]. Our data found differences between a chlorophyll content in the leafs ot tomatoes grown in different substrates. The smallest content was in the leaves of tomatoes grown in peat + zeolite (15%) substrate. Tomatoes grown in peat + zeolite (30%) substrate and peat only accumulated the same content of chlorophylls. Highest ratio of chlorophylls a to b was in the leaves of tomatoes grown in peat substrate. To sum up, positive impact of zeolite for synthesis of pigments of photosynthesis was not found.
Most researches found mixing of zeolite into other substrate has an influence on the quality of fruits. Aghdak et al. [66] in a study based on the effect of various substrates on qualitative properties of sweet pepper found that addition of zeolite to substrate improves quality of sweet pepper fruits. According to Angelis and other [67] results tomato fruit quality was affected only by tomato variety and not by substrate. Other data showed that no significant differences were found between type of substrate on the amount of total soluble solids, sugars and ascorbic acid in fruits of tomatoes [43,55]. Fecondini et al. [50] data showed hybrid but not the substrate plants were grown in had bigger impact for the yield of tomatoes. Our analysis showed that the content of titratable acidity was bigger in the fruits of tomatoes grown in peat-zeolite substrates.
According to different researchers, the admixture of zeolite into a peat substrate has positive influence on the yield of vegetables [14,68]. Ashraf [69] states, after admixture of zeolite into perlite and pumice not only the features of substrate improves but also the yield of tomatoes increases. Jankauskienė at al. [70] data show, growing of seedlings in peat-zeolite substrate had an influence on the quality of the seedlings though it did not have positive influence on the yield of these vegetables. It is important ratio of zeolite and other substrates, its size of fractions [23,71]. Berar et al. [72] data show after admixturing 25% zeolite into substrate there was found the biggest yield of tomatoes. Živković and others [73] reported admixturing zeolite into peat there was found 35% bigger yield of tomatoes, though the yield in the trials after admixturing 20% and 30% zeolite was the same. Cativelo [23] found more suitable substrate for growing of plants is admixtured substrate with 3-7% of zeolite compared to substrate which has 15% zeolite. Roses were grown in zeolite and perlite substrates mixed in different ratio. The biggest number of roses was picked and its quality was the best when roses were grown in zeolite and perlite substrate when ratio was 25 : 75 [74]. Our data showed smaller amount of zeolite in peat (15%) had bigger impact for yield of tomatoes and average mass of fruit. After admixturing bigger amount of zeolite into peat substrate (30%), the yield of tomatoes was not bigger but in the leafs of tomatoes there were accumulated more dry matters.
The content of dry matter and photosynthetic pigments in tomato leaves depended on the substrate: the tomatoes grown in rockwool accumulated higher dry matter and chlorophylls in leaves than those of tomatoes grown in coconut fiber substrate. The intensity of photosynthesis depended on the hybrid of tomato. Photosynthesis intensity of tomato hybrid ‘Admiro’ was more intensive in rockwool and photosynthesis intensity of hybrid ‘Raissa’ – in coconut fiber substrate. Tomato transpiration was intensive in both substrates, but small stem increase in 24 hours showed insufficient supply of water for plants. This delayed fruit growth in day, especially of these tomatoes, which were grown in coconut fiber substrate. The yield of tomatoes grown in coconut fiber substrate was bigger than this one of tomatoes grown in rockwool. The ascorbic acid content in tomatoes fruit which were grown in coconut fiber was higher than in fruit of tomatoes grown in rockwool.
Plants grown in peat-zeolite substrates were lower. The admixture of zeolite into a peat substrate did not influence significantly dry matter accumulation in tomato leaves. The highest chlorophyll a to b ratio was in the leaves of tomatoes grown in peat substrate. Thus, the positive effect the admixtures of zeolite into peat substrate on synthesis of photosynthetic pigments were observed.
Admixture of zeolite into peat substrate affected the volume of the yield and the average fruit mass. The yield of tomatoes grown in peat + zeolite (15%) substrate was the highest. The tomatoes grown in peat + zeolite (15%) substrate recorded the highest average fruit mass. The tomatoes grown in peat-zeolite substrates accumulated less sugar, ascorbic acid, soluble solids, however, higher amount of titratable acidity and carotenoids.
In recent years, many different kinds of materials and techniques have been developed for improved analytical measurements [1, 2, 3, 4, 5, 6, 7]. However, in order to be generally applicable, most materials should have several key properties. These desired properties include, but are not limited to (1) simplicity of preparation (e.g. development involves simply mixing two chemical solutions), (2) tunability (easy introduction of uniform multifunctionality through simple variations), and (3) limited or no toxicity (can be easily designed using materials that are already Food and Drug Administration (FDA) approved). As an example of the latter material, the near infrared (NIR) dye, indocyanine green, for near infrared fluorescence measurements has received early approval by the FDA [7].
On the basis of the above considerations, a wide variety of materials and nanomaterials have been developed and employed for bioanalytical and environmental measurements. In regard to nanomaterials, studies reveal that in general primary properties such as spectra, colorimetric response, and magnetism are size dependent and somewhat tunable. Some of these materials, including carbon dots and silicon dots, exhibit very low cytotoxicities. However, other nanomaterials such as carbon nanotubes and quantum dots have considerably higher toxicities. In some cases, e.g. P-dots and nanogels [8, 9, 10], toxicity depends on the type of polymer used. Aqueous co-ordination complexes are another category of materials and nanomaterials with variable toxicities that have recently been used for analytical and environmental applications [11, 12].
We believe that when one does an exhaustive examination of the literature and considers the inherent properties identified above for improved analytical measurements, a logical conclusion is that ILs, GUMBOS, and nanomaterials derived from GUMBOS (nanoGUMBOS) represent novel classes of materials that best satisfies all of the above properties. Both ILs and GUMBOS are based on use of organic salts. Examples of typical ions used in these salts (ILs and GUMBOS) are shown in Figure 1.
Typical cations and anions used for ILs/GUMBOS production.
These materials are continually being explored for improved analytical measurements. In fact, the literature on development of novel methodologies based on use of ionic liquids (ILs), a group of uniform materials based on organic salts (GUMBOS), and nanoGUMBOS is increasing at an ever-expanding rate. For example, numerous studies from the literature can be cited for utility of such materials in diverse areas such as antibiotics [13, 14, 15], cancer therapy [16, 17, 18, 19, 20, 21, 22, 23, 24], hydrogels [25, 26], cellular imaging [27, 28], chirality [29, 30, 31, 32, 33], dye-sensitized solar cells (DSSCs) [34, 35, 36], extractions [37, 38, 39], gel electrophoresis [40, 41], detection of reactive oxygen species [42], liquid crystals [43], mass spectrometry [44], nanomaterials [45, 46, 47, 48, 49, 50, 51, 52], optoelectronics [53, 54, 55, 56], sensors [57, 58, 59, 60, 61], separation science [62, 63], spectroscopy [64, 65, 66, 67], volatile organic compounds (VOCs) [68, 69, 70, 71, 72, 73, 74, 75], as well as a number of patents and patent applications [76, 77, 78]. Figure 2 provides an abbreviated summary of numerous applications of ILs and GUMBOS.
Applications of ILs/GUMBOS in different research areas.
We note that GUMBOS and nanoGUMBOS are solid phase organic salts (m.p. > 25 °C and < 250 °C) and ILs are typically liquids or low melting solids (m.p. < 100 °C). See Figure 3 below for differentiation between ILs and GUMBOS in terms of melting points. Therefore, some GUMBOS (and nanoGUMBOS) materials fit into the general category of frozen ILs since ILs from 100 °C down to 25 °C are solids. However, many GUMBOS materials are outside the generally accepted temperature range for ILs. Accordingly, a new, more general term of GUMBOS, as defined above, was adopted to apply to this entire class of solid phase organic salts. To date, numerous strategies for this kind of chemistry have been developed. In this chapter, we desire to discuss some of these applications in detail, particularly as applied to the general area of analytical and environmental chemistry.
Melting points range of ILs and GUMBOS.
ILs have been recognized for their properties such as non-volatility, viscosity, negligible vapor pressure, high ionic strength, thermal stability, and low toxicity, among others [79]. As a result of these important properties, ILs were initially designated as green and designer solvents (i.e. first generation ILs) [80]. Eventually, due to their high tunability, new ILs were strategically designed for a variety of functional materials, including lubricants, catalysts, energy materials, etc. [81, 82, 83, 84, 85, 86]. These types of ILs are known as second generation ILs. Finally, major interest has focused on development of new ILs (third generation ILs) for biological applications to achieve biocompatible and low toxic compounds through use of bio-counterions [87, 88]. Moving forward, more attention from the scientific community has focused on development, or recycling of, various molecules into solid phase materials (frozen ILs or GUMBOS) for several biological applications [17, 89, 90, 91]. In this section, the use of frozen ILs and GUMBOS for biological applications such as cancer and antibiotic therapies are discussed.
Cancer is the second leading cause of death in the United States and is a major health concern worldwide [92]. Treatment of cancer typically includes surgery, radiotherapy, hormone therapy, immunotherapy and/or chemotherapy [93]. Effectiveness of these treatments depends upon several factors, such as stage of cancer at the moment of diagnosis, general health of the individual, size and type of tumor, among others. In general, treatment of a person with cancer will involve a combination of therapies as a result of these several factors, and chemotherapy is the most commonly employed treatment. Unfortunately, chemotherapy will often be accompanied with several adverse effects, such as nausea, vomiting, diarrhea, fatigue, malnutrition, anemia, hepatotoxicity, nephrotoxicity, among others [94, 95, 96]. These side effects are the result of high toxicity of typical chemotherapeutic agents that generally lack selectivity toward carcinogenic cells. For all of these reasons, over the past decades major attention has focused on developing new chemotherapeutic agents that are selectively toxic to cancer cells [97, 98, 99]. Moreover, investigations have also focused on early detection methods that involve use of tumor-targeting dyes, as well as near infrared (NIR) dyes for detection, photothermal therapy (PTT) and photodynamic therapy (PDT) [100, 101, 102, 103].
Due to their relatively high division rate and subsequent growth relative to normal cells, cancer cells use more energy [104, 105, 106]. It is well established that the mitochondria are organelles that synthesize adenosine triphosphate (ATP), which is the energy source of cells. As a result, mitochondria in tumor cells have a higher negative mitochondrial membrane potential as compared to normal cells. For this reason, major interest has been directed toward study of cationic compounds as well as positively charged vesicles as chemotherapeutic agents. Several publications from the literature document that these type of compounds are attracted to, and accumulate more selectively, in this organelle of cancer cells, resulting in disruption of ATP synthesis and subsequent induction of cell death [16, 17, 22, 89, 107, 108].
Cationic rhodamine dyes have been studied as mitochondrial targeting agents as early as the 1970s [109, 110, 111, 112, 113, 114]. Furthermore, studies with rhodamine dyes demonstrate that these dyes are toxic to cells above certain concentrations [115, 116]. In contrast, it has been previously reported that hydrophobicity of drugs may improve cellular uptake and distribution inside cancer cells [117]. For this reason, Magut et al. hypothesized that counterion variation in rhodamine 6G dye ([R6G]+) may tune its hydrophobicity [22]. In this regard, four anions: ascorbate ([Asc]−), trifluoremethanesulfonate ([OTf]−), tetraphenylborate ([TPB]−) and bis(perfluoroethylsulfonyl)imide ([BETI]−) were employed to synthesize, through a simple metathesis reaction, four R6G-based GUMBOS. Relative hydrophobicities for each GUMBOS were determined, and the following trend in increasing hydrophobicity from [R6G][Asc] < [R6G][OTf] < [R6G][TPB] < [R6G][BETI] was observed in this study. Clearly, anion variation affected and tuned hydrophobicity, along with other physico-chemical properties, of the parent dye. The low water solubility of these compounds allowed synthesis of nanoGUMBOS through a simple reprecipitation method.
Following this study, other researchers focused on evaluating the mechanism of action and internalization of [R6G][BETI] nanoGUMBOS in cells [18]. In that study, Bhattarai and coworkers performed a series of
It has been previously reported in the literature that there is a strong correlation between size, hydrophobicity, and surface charge of nanomaterials as related to resultant toxicity against cancer cells [118, 119]. Moreover,
CDs structures and TEM images of [R6G][BETI] nanoGUMBOS in absence and presence of CDs.
Compound | Size (nm) | Zeta potential (mV) | IC50 MDA-MB-231 (μg mL−1) | IC50 MiaPaca (μg mL−1) |
---|---|---|---|---|
[R6G][TPB] control | 105 ± 16 | −23.1 ± 1.2 | 7.3 ± 1.1 | 0.75 ± 0.05 |
[R6G][TPB] HP-α-CD | 55 ± 6 | −27.2 ± 1.5 | 2.6 ± 0.2 | 0.37 ± 0.03 |
[R6G][TPB] HP-β-CD | 44 ± 4 | −29.5 ± 1.1 | 2.7 ± 0.3 | 0.39 ± 0.06 |
[R6G][TPB] γ-CD | 69 ± 6 | −28.3 ± 0.9 | 1.4 ± 0.3 | 0.24 ± 0.04 |
[R6G][BETI] control | 99 ± 12 | −24.3 ± 1.2 | 4.2 ± 0.4 | 0.45 ± 0.05 |
[R6G][BETI] HP-α-CD | 68 ± 8 | −29.0 ± 1.1 | 1.6 ± 0.3 | 0.24 ± 0.03 |
[R6G][BETI] HP-β-CD | 66 ± 4 | −30.1 ± 0.8 | 1.7 ± 0.2 | 0.26 ± 0.04 |
[R6G][BETI] γ-CD | 80 ± 5 | −29.8 ± 1.6 | 2.3 ± 0.4 | 0.30 ± 0.03 |
Size, zeta potential, IC50 for MDA-MB-231 and MiaPaca cell lines for parent and CD-templated nanoGUMBOS [17].
Another approach from this laboratory involved use of an IR-780 dye to synthesize GUMBOS and nanoGUMBOS [16]. IR-780 is a NIR fluorescent dye that has been studied as a possible theranostic agent since it can be employed as an imaging agent as well as a photothermal and photodynamic agent [123, 124, 125]. In this regard, Chen et al. synthesized three IR-780-based GUMBOS through a simple metathesis reaction [16]. Anions evaluated in that study were [Asc]−, [OTf]−, and [BETI]−. Relative hydrophobicity and spectroscopic properties of these GUMBOS were evaluated and compared to the parent compound [IR-780][I]. These researchers found the following hydrophobicity trend: [IR-780][BETI] > [IR-780][I] > [IR-780][OTf] > [IR-780][Asc]. As a result of these larger hydrophobicity values, nanoGUMBOS synthesis was performed through a simple reprecipitation method. Cytotoxicity of [IR-780][BETI] nanoGUMBOS and [IR-780][I] nanomaterials were studied
Relative cell viability was evaluated for each nanoGUMBOS in normal breast cells. These researchers found that all nanoGUMBOS studied were more selectively cytotoxic against cancer cell lines. Results observed after cellular uptake and fluorescence microscopy studies of each nanomaterial allowed these researchers to conclude that nanoGUMBOS, especially [IR-780][BETI], were internalized and accumulated within the mitochondria in higher amounts than with the parent compound. It has been previously reported in the literature that mitochondrial accumulation of [IR-780][I] is followed by cellular apoptosis [126]. In addition, these researchers investigated nanoGUMBOS as inducers of necrosis or mitochondrial disruptors, by employing a mitochondrial toxicity assay. Evaluation of these results showed that nanoGUMBOS presented behavior similar to [IR-780][I] nanomaterials and acted as mitochondrial toxins by inhibiting oxidative phosphorylation. In summary, nanoGUMBOS synthesized in this work represented great potential as possible chemotherapeutic agents along with a strategic advantage as compared to other reported nanomaterials that require complicated synthetic procedures and labels to increase selectivity against cancer cells [127, 128, 129, 130].
In another work, Chen and coworkers evaluated
TEM images of (a) [IR-780][TPB] nanoGUMBOS, (b) CD-[IR-780][TPB] nanoGUMBOS (scale bar represents 500 nm). (c)
Additionally, cell viability of CD-[IR-780][TPB] nanoGUMBOS were evaluated using MDA-MB-231 and Hs578T cell lines with NIR laser irradiation (808 nm). This resulted in a further decrease in IC50 values for these nanomaterials. Furthermore, these results demonstrate that CD-[IR-780][TPB] nanoGUMBOS represent highly potent chemo- and photothermal therapeutic agents. Finally, Chen et al. also evaluated
Broadwater et al. combined heptamethine cyanine cation ([Cy]+) with several anions, such as iodide ([I]−), hexafluoroantimonate ([SbF6]−), and hexafluorophosphate ([PF6]−), o-carborane ([CB]−), along with bulkier anions such as tetrakis(4-fluorophenyl)borate ([FPhB]−), cobalticarborane ([CoCB]−), tetrakis (pentafluorophenyl) borate ([TPFB]−), tetrakis[3,5-bis(trifluoro methyl)phenyl]borate ([TFM]−), and Δ-tris(tetrachloro-1,2-benzene diolato) phosphate(V) ([TRIS]−) to obtain several Cy-based organic salts [131]. Redox values, zeta potentials, HOMO energy level, as well as optical properties of all [Cy]-based organic salts were determined in that study. These results demonstrated that counterion exchange allowed tuning of HOMO energy levels of [Cy]+. However, absorbance of all synthesized Cy-based organic salts spectra remained essentially the same.
The above cited authors then synthesized nanoparticles through a simple reprecipitation method. All Cy-based organic salts nanoparticles were determined to have an average size between 5–9 nm and were stable for 22 days. Following these experiments, Broadwater and collaborators evaluated cytotoxicity and phototoxicity of Cy-based organic salt nanoparticles against two different cell lines: human lung carcinoma (A549) and metastatic human melanoma (WM1158) in the absence and presence of 850 nm light. These results indicated that [I]−, [SbF6]−, and [PF6]−, [CB]− presented high cytotoxicity under both condition evaluated, making these compounds good candidates as chemotherapeutic agents. When [Cy]+ was paired with [FPhB]− and [CoCB]− anions, nanoparticles of these compounds were determined to be slightly toxic at concentrations of 7.5 μM without NIR irradiation. However, when these compounds were irradiated with NIR laser, they were highly toxic at 5.5 μM concentrations, which indicates that [Cy][FPhB] and [Cy][CoCB] presented high potential as phototoxic agents. In contrast, compounds where [Cy]+ was combined with bulky anions: [TPFB]−, [TFM]−, and [TRIS]− showed non-cytotoxicity against lung cancer cells. As a result, Broadwater, et al. concluded that these compounds could be employed as imaging agents. Based on cytotoxicity studies, the authors proved that toxicity of [Cy]+ dye was tuned through counterion exchange. Finally, these authors evaluated
Antibiotics were introduced into modern medical practices in the 19th century with the discovery of sulfonamides in the 1930s and penicillin in the 1940s [132, 133, 134]. Without such medication, people often died from infections such as syphilis, gonorrhea, and pneumonia. Thus, use of these antibiotics represented the saving of many thousands of lives and a new era in medicine [135, 136]. Nevertheless, over the years since such discoveries, increased production, indiscriminate use, and over consumption of antibiotics has created an unfortunate outcome of antibiotic and multi-antibiotic resistant bacteria [137, 138, 139]. For this reason, the scientific community has begun to focus on syntheses of new antibiotics that could provide alternative therapies in order to avoid bacterial resistance mechanisms. However, syntheses of completely new antibiotics require great ingenuity, intense synthetic prowess, excellent purification, and considerable resources [140, 141, 142]. As an alternative to the foregoing strategy, several research groups have applied an ion metathesis strategy for antibiotic renewal and enhancement. Thus, recycling of current antibiotics have become a reality.
Florindo et al. synthesized ampicillin based ILs employing triethylammonium ([TEA]+), choline ([N1112OH]+), trihexyltetradecylphosphium ([P66614]+), 1-ethyl-3-methylimidazolium [C2MIm]+, 1-hydroxy-ethyl-3-methylimidazolium [C2OHMIm]+ and cetylpyridinium [C16Pyr]+ as cations to tune crystalline forms and pharmaceutical properties [143]. In that study, water solubility, octanol/water partition coefficient (Ko/w), and phospholipid/water partition (Kp) of synthesized compounds were evaluated. Water solubility of active pharmaceutical ingredients (API) is of great importance because it determines the accessibility and distribution of API within the body. Using water solubility results at room temperature and at 37 °C, the following trend was observed: [C2OHMIM][Amp] > [N1112OH][Amp] > [C2MIM][Amp] > [TEA][Amp]. All Amp-based ILs studied showed lower solubility as compared to [Na][Amp] at room temperature. However, cations with hydroxyl groups presented higher solubility at 37 °C than the parent compound. In contrast, Amp-ILs with longer carbon chains, such as [P66614]+ and [C16Pyr]+, showed Kp values higher than the parent compound, indicating that these compounds could interact better with cellular membranes. Based on results obtained in this study, [N1112OH][Amp] provided the most promising pharmaceutical properties with higher solubility, lower cytotoxicity, lower inflammation response and similar Ko/w relative to the parent compound. Thus, these researchers confirmed that pharmaceutical properties from [Na][Amp] could be finely tuned through simple counterion exchanges.
In another study, the same researchers synthesized ciprofloxacin and norfloxacin fluoroquinolones (FQ) based protic ionic liquids (PILs) through reaction with mesylic acid ([Mes][H]), gluconic acid ([Glu][H]), and glycolic acid ([Gly][H]) to tune their crystalline forms and pharmaceutical properties to enhance their bioavailability [144]. In this case, similar properties as in previous studies were evaluated [143]. The authors observed a clearly increasing trend in aqueous solubility depending on the anion present in FQ-PILs: [Gly]− < [Mes]− < [Glu]−. These observations were in agreement with Ko/w studies obtained by these researchers. Similar Kp results for parent FQs were obtained for their respective organic salts, which indicated that interactions with cellular membranes were not affected. Based on these results, Florindo et al. concluded that FQ-based organic salts studied in this work presented high potential as alternatives to the original antibiotics.
Santos, et al. employed two FQs (ciprofloxacin and norfloxacin) to synthesize active pharmaceutical ingredient (API)-based ILs by combining their salts with the following cations: [N1112OH]+, [C16Pyr]+, 1-ethyl-3-methylimidazolium [C2MIm]+, 1-hydroxy-ethyl-3-methylimidazolium [C2OHMIM]+, 1-(2-hydroxyethyl)-2,3-dimethylimidazolium [C2OHDMIm]+, and 1-(2-methoxyethyl)-3-methylimidazolium ([C3OMIm]+) [145]. Water solubility of the synthesized compounds were evaluated, and the following trend was observed: [EMIM]+ < [Ch]+ < [C2OHDMIM]+ ≈ [C3OMIM]+ < [C2OHMIM]+. This trend was similar to results reported in a previous study from the same group [145]. The authors determined IC50 concentrations of these FQ-ILs in this study against three bacteria:
Frizzo et al. employed sodium ibuprofen ([Na][Ibu]) and sodium docusate to synthesize API-based ILs [146]. Sodium cations in the parent compounds were replaced with ranitidine ([Ran]+), diphenhydramine, glycine, or glycine ethyl cations. In this work, these researchers tested all synthesized compounds along with parent compounds against several types of bacteria and species of
Ferraz et al. [147] also employed amoxicillin ([seco-Amx]−) and penicillin G ([seco-Pen]−) in combination with imidazolium, choline, ammonium, phosphonium and pyridinium cations to synthesize antibiotic based API-ILs. Resistant and sensitive Gram positive and Gram negative bacteria, including methicillin resistant
Cole and coworkers proposed recycling of antibiotics into GUMBOS [15]. In this work, ampicillin based GUMBOS (Amp-GUMBOS) were synthesized through a simple metathesis reaction where a sodium cation was replaced by hexadecyl-methyl-imidazolium ([C16MIm]+), hexadecyl-dimethyl-imidazolium ([C16M2Im]+) and [C16Pyr]+. These Amp-ILs were tested against Gram negative and positive bacteria and compared to parent compounds. Interestingly, MIC values obtained for Amp-GUMBOS in these experiments demonstrated that these concentrations were between 2 to 43 times lower than MIC values determined for ampicillin.
Following their previous studies, Cole and co-workers employed chlorhexidine and ampicillin to synthesize antibacterial GUMBOS [14]. These two antibacterial agents are commonly used in veterinary practices to treat and/or prevent the presence of
In another work, Cole and coworkers recycled four β-lactam antibiotics (ampicillin, cephalothin, carbenicillin and oxicilin) into GUMBOS, by combining them with chlorhexidine diacetate [151]. Twenty-five bacteria isolates were obtained from several sources, where most of these were resistant or multi-resistant to antibiotics. These four β-lactam – based chlorhexidine GUMBOS were tested against these isolates. Results obtained by Cole and coworkers demonstrated that these β-lactam – based chlorhexidine GUMBOS were more effective against these isolates with MIC values in a range between 0.1 to 32 μM as compared to parent compounds with higher MIC (5 to >1250 μM). Moreover, in this report Cole et al. evaluated if these GUMBOS presented a synergetic, additive or antagonist effect relative to their unreacted mixtures of stoichiometric equivalents. Interestingly, these researchers found that for most GUMBOS studied, the observed effect was synergetic [152].
Sensing strategies for a variety of systems, from biological targets [157], environmental and regulatory applications [158, 159], mechanical integrity of structures [160, 161, 162], and more [60, 163], are continuously under investigation in the scientific community. In general, recognition can be categorized into two different methodologies: targeted and non-targeted [164]. Targeted strategies require materials that are designed to respond to specific analyte(s) and thus, require a high degree of specificity for singular analytes [63, 159, 165]. Differential strategies, however, can potentially provide information within convoluted and complex mixtures based on several non-specific sensors or one sensor with multi-layered responses to different analytes [166]. In the following sections, solid-state ionic materials for various sensing applications are discussed.
Previous investigations using fluorescent imaging with solid-state ionic materials have undergone scrutiny to prevent or reduce self-quenching between dye molecules in order to enhance properties such as excitation energy transfer and achieve on/off switching in nanoparticle structures [167, 168, 169, 170, 171, 172]. Traditionally, dye self-quenching has been rectified by introducing bulky side-chains into the molecular structure via synthetic organic chemistry [172, 173, 174]. However, this type of strategy requires several synthetic and purification steps that result in increased expense. In contrast, large counterions were observed to also inhibit this self-quenching phenomenon in a much more facile manner through a simple ion metathesis reaction [28, 50]. Several research groups have capitalized on this strategy to study polymeric nanoparticle encapsulated rhodamine-derived GUMBOS, respective photophysical properties, and cellular uptake ability for imaging applications along with targeting agents to provide organelle contrast [28, 172, 175, 176].
More recently, researchers have diversified beyond cellular imaging techniques. For example, Severi et al. have explored polymer encapsulation of nanoprobes that undergo efficient Förster resonance energy transfer (FRET) for potential point-of-care applications with smartphones [177]. In this study, ester-modified cations rhodamine 110 and 6G cations ([R110]+ and [R6G]+, respectively) were employed as FRET donor dyes with bulky tetrakis[3,5-bis(1,1,1,3,3,3-hexafluoro-2-methoxy-2-propyl)phenyl]borate trihydrate ([F12]−) and tetrakis(perfluoro-tertbutoxy)aluminate ([F9-Al−]) counterions [176]. These Ion pairs were encapsulated with DNA cancer marker (survivin) targeted polymer nanoparticles, which were also functionalized using a red-emitting oligonucleotide-functionalized dye as a FRET acceptor. After nanoparticle size, quantum yield (QY), FRET acceptor concentration optimization, and evaluation of FRET capabilities, encapsulated [R6G][F9-Al] nanoprobes were evaluated for red, green, blue (RGB) survivin DNA marker detection in solution using fluorescence spectroscopy. These researchers found that their designed system had a limit of detection of 3pM. Upon optimization of microscopic and digital imaging, these researchers also found that using an iPhone SE, [R6G][F9-Al] as an encapsulated FRET donor in their designed nanoprobe allowed a 10pM limit of detection. Thus, these researchers demonstrated that [R6G][F9-Al] was successfully employed as a visualization agent for potential development of a point of care ratiometric imaging method.
In another study, McNeel et al. expanded upon counterion metathesis by synthesizing a strategic three-component nanoGUMBOS compound for selective imaging of breast cancer cells [27]. Two of three components selected were dianionic fluorescein ([FL]2−) and cationic rhodamine B ([RhB]+), which could undergo pH-dependent FRET [178]. These researchers approached their triple-GUMBOS synthetic design through pH manipulation with [FL]2−, rhodamine B chloride [RhB][Cl], and [P66614][Cl] as a hydrophobic agent, to yield [P66614][RhB][FL] triple GUMBOS. The resultant compound was then employed for nanoGUMBOS synthesis, and when precipitated from water with neutral pH, nanoparticles of approximately 4.4 nm ± 0.7 nm were obtained. However, when using other pH values for nanoGUMBOS synthesis, these researchers determined that nanoGUMBOS sizes and size distributions varied. Absorbance and fluorescence emission properties from low to high pH values were reported, and noticeable ratiometric changes in spectra were observed. A linear ratiometric trend corresponding to pH-dependent FRET responses was observed between moderate pH values (approximately pH 5.0 to 7.0), from which quantitative information may be derived. To further demonstrate the applicability of this three-component nanoGUMBOS system, these investigators also conducted fluorescence microscopy imaging studies with normal and cancerous breast cells. These studies demonstrated that nanoGUMBOS maintained clear selectivity for breast cancer cells since, as cells were illuminated. In contrast, normal cells remained dim. Therefore, three-component nanoGUMBOS were determined useful for both pH sensing and fluorescence imaging of breast cancer cells without the use of polymer encapsulation [27].
Another application for FRET-based sensing of solid-state ionic materials is described by Ashokkumar et al. [179]. In this work, oxygen sensing nanoparticle probes for cellular systems were developed using a polymer encapsulated novel cyanine dye called [BlueCy]+ tetrakis(pentafluorophenyl) borate ([F5-TPB]−) or [BlueCy][F5-TPB] that was also loaded with oxygen sensing platinum octaethylporphyrin (PtOEP) as a FRET acceptor. In this case, [BlueCy]+ was designed as FRET donor and synthesized from two cyanine dyes: 2-methyl-3-octadecylbenzo[d]thiazol-3-ium iodide and 3-methyl-2-(methylthio)benzo[d]thiazol-3-ium iodide. After dye encapsulation into poly(methyl methacrylate-co-methacrylic acid) and poly(lactic-co-glycolic acid), PMMA-MA and PLGA, respectively, it was determined that both dyes were successfully incorporated into PMMA-MA. Nanoparticle sizes, PtOEP loading, and photophysical properties were evaluated. These investigators determined that dye encapsulated PMMA-MA nanoparticles were 40 nm in diameter with 17% QY after reprecipitation from dioxane. Moreover, after testing several ratios of donor dye loadings, ratios of 1:100 (PtOEP:[BlueCy][F6-TPB]) demonstrated good FRET efficiency. Solution based experiments for oxygen sensing were performed, and ratiometric trends were demonstrated for oxygen rich and poor environments. After confirming low phototoxicity when incubated with HeLa cells, the investigators conducted further studies with FRET nanoparticles in low and normal oxygen environments. HeLa cells were incubated with FRET nanoparticles in a microfluidic device, and an oxygen gradient was introduced by application of an oxygen scavenger. Resultant emission gradients were observed after fluorescent microscopic images were obtained. Ultimately, these researchers demonstrated the utility of their nanoprobe for detection of cancer cells via microfluidic application. As a result, the authors concluded that this probe could also be used to visualize oxygen gradients in cancerous cells.
In another study from the Warner research group, nanoGUMBOS were synthesized and evaluated as ratiometric sensors for reactive oxygen species (ROS) [42]. Cong et al. designed binary nanoGUMBOS using reprecipitation of 1,1′-diethyl-2,2′-cyanine and 1,1′-diethyl-2,2′-carbocyanine bis(perfluoroethylsulfonyl) imide ([PIC][NTf2] and [PC][NTf2], respectively). Optimal FRET efficiency was determined to be 10:1 [PIC]:[PC] molar ratio, and binary nanoparticles shapes were classified as nanodiamonds with spectrally consistent J-aggregation. Analysis of variance (ANOVA) was employed to investigate reactivity of ROS with nanoGUMBOS. Significant differences were observed for hydroxyl radical (•OH) over four other evaluated ROS, indicating selectivity of this binary nanoGUMBOS system toward •OH species. Moreover, these investigators observed a linear trend for ratiometric sensing of this probe at various concentrations of •OH in the presence of singlet oxygen (1O2). Further, potential applications in imaging were investigated, nanoGUMBOS were incubated with breast cancer cells and exposed to oxidative stress. Fluorescence emission changes before and after oxidative stress indicated results in agreement with solution-based studies. Therefore, a binary ratiometric nanoGUMBOS probe was developed for potential quantitative ROS imaging studies using a facile method.
Biosensing of mixtures of biomarkers and/or proteins is of particular interest for disease diagnosis and treatment [180, 181, 182]. Many current methods, such as enzyme-linked immunosorbent assay (ELISA) or polyacrylamide gel electrophoresis (PAGE) coupled to mass spectrometry, require expensive resources and labor intensive steps [182, 183, 184]. Organic salts are of increasing interest for development of fluorescent sensor arrays for protein detection and discrimination as they are easily tunable for increasing hydrophobicity, traditionally more stable upon ion exchange, and require little resources for purification [90].
Galpothdeniya and coworkers used partially selective 6-(p-toluidino)-2-naphthalenesulfonate sodium salt ([TNS][Na]) in an ion exchange metathesis reaction with cations tetrabutylphosphonium ([P4444]+), benzyltriphenylphosphonium ([BTP]+), 4-nitrobenzyltriphenylphosphonium ([4NBP]+), and tetraphenylphosphonium ([TPP]+) in order to obtain four different GUMBOS [59]. These investigators rationalized that, as a result of partial selectivity to hydrophobic regions of proteins, TNS-based GUMBOS would make facile, suitable candidates to generate a sensor array for proteins. Proteins such as human serum albumin (HSA), fibrinogen, α-antitrypsin (α-Ant), immunoglobulin G (IgG), β-lactoglobulin (β-Lac), ribonuclease A (RNaseA), α-chymotrypsin (α-CTP), transferrin (Trans), lysozyme (Lys) were used for sensor array development. Sensor responses were collected at various concentrations of proteins.
As a result of notably larger sensor responses, [TNS]-based GUMBOS were determined to have highest sensitivity to HSA, α-Ant, and β-Lac proteins. For this reason, the investigators employed responses for sensor responses to different concentrations of HSA, α-Ant, and β-Lac for multivariate analysis. Both sensor response values and corresponding protein concentrations were employed to build a principal component analysis (PCA) model. By employing the first two principal components (PCs), which accounted for 99.72% of the variance, a linear discriminant analysis (LDA) model with cross-validation was constructed reaching 100% discrimination accuracy. These researchers noted that the highest sensor responses were obtained for HSA and α-Ant. Thus, these sensor responses were employed to generate anther PCA model in order to evaluate discrimination between these two proteins regardless of protein concentration. In this model, the first two PCs accounted for 99.91% variance, and LDA with cross-validation resulted in 91.7% accuracy. To improve this accuracy, these investigators normalized sensor responses for each protein, constructed a PCA model with the first three PCs corresponding to 98.29% variance. These three PCs were employed for LDA construction and, with cross-validation, accuracy resulted in 100% discrimination. Furthermore, five mixtures of different HSA: α-Ant ratios were evaluated for mixture discrimination analysis. In this case, PCA followed by LDA resulted in 100% discrimination accuracy. Thus, TNS-GUMBOS were evaluated and confirmed as useful materials for protein sensor arrays for analyses of serum proteins HSA, α-Ant, and β-Lac.
More recently, Pérez and coworkers developed a nanoGUMBOS sensor array based on three fluorescent thiacarbocyanine ([TC0]+, [TC1]+, and [TC2]+) dyes with two anions ([BETI]− and [NTf2]−) for discrimination of several proteins [182]. NanoGUMBOS and microGUMBOS of these six compounds varied in size and shape, from circular shapes with [TC0][NTf2] and sizes around 25 nm, to [TC1][BETI] with rod-like shapes and an average size of 1.2 ± 0.5 μm by 0.21 ± 0.08 μm, and [TC2][NTf2] displayed triangular profiles with average dimensions 200 ± 10 nm by 177 ± 80 nm. Aggregates of nanoGUMBOS of [TC0]- and [TC2]-GUMBOS exhibited absorbance spectral characteristics representative of H-aggregation, while [TC1][NTf2] and [TC1][BETI] both resulted in spectral peaks representative of J-aggregation.
In the above study, seven proteins were investigated, including the four most abundant serum proteins: HSA, IgG, transferrin (Trans), and fibrinogen (Fib), along with three non-serum proteins hemoglobin (Hb), cytochrome C (CytC), and lysozyme (Lys), with each protein exhibiting different physical characteristics. The investigators observed different response patterns for each protein. In this work, these researchers determined that employing raw data was optimal for constructing an LDA model, in which 100% discrimination accuracy of proteins was achieved. Among different protein concentrations, sensor responses were determined to be stable between 0.1 to 20 μg/mL. Mixtures of two proteins, HSA and Hb, were also investigated in this work. Various weight ratios of HAS:Hb mixtures from 100% HSA to 100% Hb, were evaluated and 100% accuracy was achieved when LDA was constructed using these response patterns. However, 80:20 HSA:Hb was observed to be an outlier with the lowest canonical score values, and further analysis using hierarchical cluster analysis determined this dataset to be less related to other ratios. Protein spiked artificial urine with 5 μg/mL protein concentration was employed to evaluate sensor array performance in real samples, and LDA model performance achieved 100% discrimination accuracy. Thus, a series of TC-based GUMBOS were successfully synthesized into nanoGUMBOS and microGUMBOS and developed as protein sensor arrays capable of 100% discrimination in complex mixtures.
ILs have been explored for quartz crystal microbalance (QCM) applications as chemosensors for detection and discrimination of volatile organic compounds (VOC) [185, 186, 187, 188]. However, for these investigations, differentiation of VOCs sensor response relied on concentration and molecular composition of an analyte. In 2012, Regmi and coworkers developed a system to correlate sensor responses using GUMBOS-polymer composite [75]. In this work, investigators characterized and explored the responses of cellulose acetate and 1-butyl-2,3-dimethylimidazolium hexafluorophosphate (CA-[BM2IM][PF6]). By carefully evaluating characteristic responses upon exposure to control sensors, composite material, and confirming results using molecular dynamic simulations, investigators determined that sensor response recorded as changes in frequency were directly proportional to changes in motional resistance. Thus, these researchers successfully derived molecular weight trends from their composite sensor.
Another exploration demonstrated that counterion exchange using only GUMBOS coatings on quartz crystal resonators (QCRs) could provide VOC differentiation. In 2015, Regmi et al. explored trihexyltetradecylphosphium copper phthalocyanine-3,4′,4″,4″’-tetrasulfonic acid ([P66614]4[CuPcS4]) and trihexyltetradecylphosphium copper(II) meso-tetra(4-carboxyphenyl)porphyrin ([P66614]4[CuTCPP]) as sensing materials [73]. Each GUMBOS sensor successfully allowed detection of a variety of VOCs, such as acetone, acetonitrile, nitromethane, toluene, chloroform (CHCl3), methanol (MeOH), ethanol (EtOH), 2-propanol, 1-propanol, 1-butanol, and 3-methyl-1-butanol. Both sensor responses readily allowed detection of multiple alcohols at relatively low detection limits when compared to other polar and nonpolar analytes. When compared to IL trihexyltetradecylphosphium bis(trifluoromethanesulfonimide), [P66614]4[CuTCPP] provided higher frequency response signals upon exposure to MeOH vapor, and more rapidly achieved baseline with efficient replicate results. Thus, these investigators demonstrated that use of copper(II) porphyrin counterion in GUMBOS allowed investigators to achieve high selectivity in sensor responses to VOCs [73]. Since these reports, there have been other explorations into IL and/or polymer-IL composite responses for VOC detection, and many have attained discrimination via statistical techniques to access virtual and multi-sensor arrays [69, 70, 71, 72, 189].
Since VOCs are frequently found as complex mixtures, Vaughan et al. have proposed development of a multi-sensor array (MSA) employing copper(II) phthalocyanine or [CuPcS4]-based GUMBOS sensors [68]. An example of such a sensory coating scheme is shown in Figure 6. VOCs studied represent compounds from different classes, such as dichloromethane (DCM), MeOH, 1-propanol, toluene, CHCl3, heptane, hexane, and benzene. In this work, [P4444]+, tributyl-n-octylphosphonium ([P4448]+), tetrabutylammonium ([TBA]+), 3-(dodecyldimethyl-ammonio)propanesulfonate ([DDMA]+) were employed as cations for [CuPcS4]4− to generate four different sensory coatings. Each coating displayed different layering characteristics as determined by SEM. Upon exposure to VOCs, each sensor presented analyte specific response patterns. Using original data, and quadratic discriminant analysis (QDA) with cross-validation, the resultant accuracy was determined to be 98.6%. Thus, [CuPcS4]-based GUMBOS responses were successfully employed to build a VOC-MSA to achieve high accuracy discrimination [68].
(a) Representative example of GUMBOS coated QCR; (b) analyte sensing and harmonic wave pattern of QCR on electrode surface.
With increasing global commercialization of state-of-the-art optoelectronic displays, the demand for higher performance and flexible materials has also increased [107, 108, 109, 110]. In general, these devices are comprised of emissive layers between electrodes along with several other electronically active layers. Organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) have been the central target for a multitude of research groups, from organic emissive layer development to full device performance [107, 108, 109, 110, 111]. Counterion strategies using cations and anions within active layers for enhancement on optoelectronic device fabrication to effects on emission and device function will be discussed in the following sections.
Scientists have optimized several characteristics for targeted OLED development where they require consistent uniformity of emissive layers for potential manufacturing production [190], low crystallinity to prevent non-linear optical activity [191, 192], resistance to oxidation and water [193], and high thermal stability and optical purity [194]. Ionic transition metal complexes (ITMCs) are of huge interest as a wide range of emissive hues is easily achievable, synthesis is relatively simple, and they have desirable luminescent properties [195]. However, traditional methods of OLEDs fabrication involves vacuum evaporation deposition, or vacuum thermal evaporation (VTE) [196], which involves uniform coating of emissive layers [197].
In this regard, Dongxin Ma and coworkers have investigated four cationic iridium complexes as candidates for VTE through counterion control [195]. By incorporating large non-coordinating anions, these investigators achieved VTE iridium-based ionic emissive layers. The anions [PF6]−, [TPFB]−, and tetrakis[3,5-bis(trifluoromethyl)phenyl]borate ([BArF]−) were employed for quantum chemical calculations, and the investigators determined that distances between iridium and boron atoms were larger than 8 Å with both [TPFB]− and [BArF24]− counterions. In comparison, distances between iridium and phosphorous was determined to be 6 Å, as a result of a larger partial positive charge on the phosphorous atom. Compounds synthesized from metathesis with bulkier anions [TPFB]− and [BArF24]− were employed for device fabrication using VTE as larger interatomic distances were presumed more suitable for phase transition, and device performance was evaluated. These investigators found devices ranged from blue to red-orange with external quantum efficiencies (EQEs) ranging from 1.2% (blue emission) to 8.1% (yellow emission) [195]. In 2018, these anions were also employed to produce two red-orange devices based on cationic iridium compounds, and these compounds were useful as dopants in 4,4′,4″-tris(carbazol-9-yl)triphenylamine emissive layers (TCTA) to produce white OLEDs with Commission Internationale de L’Eclairage (CIE) coordinate values equal to (0.33, 0.34), that were near to the required values (0.33, 0.33) [198].
More recently, Bai and coworkers investigated counterion-tuning strategies for a sky-blue fluorescent Ir-cation for VTE [199]. Instead of boron-based anions to improve VTE, the investigators strategically focused on bulky sulfonate-containing anions that also contained electron-deficient oxadiazole and triazine structures, such as 3,5-bis(5-(4-(tert-butyl)phenyl)-1,3,4-oxadiazol-2-yl)benzenesulfonate ([OXD-7-SO3]−), 4-(4,6-diphenyl-1,3,5-triazin-2-yl)benzenesulfonate ([TRZ-p-SO3]−), and 3-(4,6-diphenyl-1,3,5-triazin-2-yl)benzenesulfonate ([TRZ-m-SO3]−). These structures were expected to not only provide VTE capabilities, but also improve carrier transport and trapping efficiencies that would improve overall efficiency and blue-emission of OLEDs. These researchers concluded that devices fabricated with [TRZ-m-SO3]− and [TRZ-p-SO3]− anions resulted in better overall device performances, slightly decreased CIE x-coordinate value, and displayed the largest external quantum efficiencies (EQEs) of 12.3 and 12.4%, respectively [199].
Carbazole-containing compounds with expanded conjugation are known to provide efficient blue emission, although they often require high labor and resource costs. In this regard, Siraj et al. synthesized carbazole imidazolium iodide ([CI][I]) along with analogues containing [OTf]−, [NTf2]−, and [BETI]− anions as respective GUMBOS in an efficient manner [54]. These GUMBOS were then compared to parent [CI][I] to evaluate counterion effects on thermal and photochemical properties that relate to performance for blue-emitters for OLEDs. In this study, non-uniform packing was observed in all GUMBOS as a result of cation structure. All ion-exchanged GUMBOS also demonstrated significantly higher thermal stabilities with onset degradation temperatures ranging from 310 to 417 °C as determined by thermal gravimetric analysis (TGA), where increasing size of anion yielded increased degradation temperature ([I] < [OTf]− < [NTf2]− < [BETI]−). Similarly, QYs were increased with ion exchanges. In methanolic solution, [CI][BETI] was determined to have the largest QY of 99%, followed by [CI][OTf] with 94%, [CI][NTf2] with 73%, and [CI][I] with 25%. Thus, this demonstrated that hydrophobic counterion exchange affects photophysical properties of the CI-cation.
While VTE has dominated OLED manufacturing, it often requires expensive equipment and is both energy and time consuming [200]. For this reason, several researchers have explored solution processing methods, such as spin coating [200], electrospray deposition [54], along with other methods [201, 202] to provide faster, more inexpensive fabrication procedures [203]. In this report, [CI][OTf], [CI][NTf2], and [CI][BETI] GUMBOS were used to fabricate thin films on quartz glass with electrospray deposition [204], and uniform coating was achieved and confirmed by scanning electron microscopy and fluorescence microscopic analysis. Solid-state emission spectra displayed very slight red-shifting from methanolic spectra of ion-metathesis GUMBOS. In addition, photostabilities were investigated, and [CI][BETI] displayed an irradiation-induced increase in photostability. In contrast, [CI][OTf] and [CI][NTf2] were relatively stable while irradiated for 3000 s. Moreover, cyclic voltammetry and quantum chemical calculations further supported spectral properties of evaluated CI-based GUMBOS.
In 2016, Zhang and coworkers designed a novel cyanopyridinium stilbene cation ([Py]+) in order to examine the influence of counterion effects on solid-state photophysical properties [205]. Chloride ([Cl]−), nitrate ([NO3]−), tosylate ([OTs]−), and [TPB]− anions were employed in this study to form Ion pairs, and the resultant compounds showed little fluorescence in solution. When explored as films, blue-shifting of emission peaks occurred and increased with increasing hydrophobicity of counterions; QYs also increased following this trend. However, [Py][TPB] GUMBOS were non-emissive in solid-state. In order to understand this variance in trend, investigators used X-ray crystallography and quantum chemical calculations. From these studies, the authors determined that dimeric fluorophore aggregates were responsible for emission in GUMBOS. In [Py][TPB], fluorophores became dilute as a result of bulky anions, resulting in very weak fluorescence emission. This was also confirmed in quantum chemical studies, where intramolecular charge transfer characteristics were confirmed through prediction of frontier molecular orbital placement to reveal donor-σ-acceptor properties for dimeric stacking.
In another study, expansion of applications of the propidium dication ([P]2+) was investigated by exchanging iodide counterions for [OTf]−, [NTf2]−, and [BETI]− anions to generate P-based GUMBOS for potential solid-state applications [53]. Thermal, spectral, photo-physical, computational, and electrochemical properties were investigated for all P- based GUMBOS. While [P][OTF] retained physical properties similar to parent dye, such as solubility in more polar solvents, thermal degradation, and higher relative crystallinity, similar to the parent compound. In contrast, [P][NTf2] and [P][BETI] GUMBOS were more soluble in hydrophobic solvents, more amorphous, and displayed higher thermal stability. A trend was observed where increasing solvent hydrophobicity increased fluorescence lifetime and QY values. The highest fluorescence lifetime and QY for [P][BETI], followed by [P][NTf2], was observed in DCM. In this regard, the authors proposed that this effect may be a result of hydrophobic counterion stabilization of excited-state [P]2+, a phenomenon that resembles the original sensing behavior of the parent compound [P][I] [206]. These investigators also performed cyclic voltammetry to determine oxidation and reduction potentials for each P-based GUMBOS, as well as solution-phase QY calculations. It was determined through computational experiments that electronic transitions would lead to an increased propensity for torsional twisting in the solid state [207]. From these studies, the authors concluded that by simple counterion exchange, applications for propidium dication may be expanded beyond biological probes to potential candidates in optoelectronic devices [53].
Dye-sensitized solar cells (DSSCs) are an emerging next-generation technology in OPVs [208]. Through intrinsic characteristics such as natural transparency, good efficiency in low light conditions, flexible substrate production and more, applications may be expanded to windows, indoor fixtures, and wearable electronics [209, 210]. Incorporation of two or more complementary sensitizing dyes allows for potential absorption of all wavelengths of sunlight to achieve much higher power conversion efficiencies (PCEs) [208, 211, 212, 213, 214]. When implemented in this field, tunable investigations of co-sensitizing dyes that are also ionic and primarily limited to structural variations of zwitterionic squaraine-heptamethine structures rather than ion pairs [215, 216]. Polymethine, or cyanine dyes, however, have been extensively studied in OPV technologies, and several groups have begun explorations into counterion application in DSSCs [217, 218, 219, 220, 221, 222].
In 2012, Jordan et al. from the Warner research group reported synthesis and characterization of [PIC][NTf2] and [PIC][BETI], along with fabrication of respective nanoGUMBOS [36]. Optical properties were compared to the parent [PIC][I], and nanoGUMBOS were synthesized and characterized using TEM and scanning electron microscopy (SEM). Optical properties of the resultant PIC-based nanoGUMBOS were also investigated. These investigators concluded that [PIC][NTf2] nanodiamonds resulted in a significant increase in fluorescence emission intensity, which could be a result of J-aggregation. The authors hypothesized that [PIC][BETI] nanorods from H-aggregates only slightly increased fluorescence intensity. In 2014, Sarkar and coworkers investigated morphology, size, and current–voltage characteristics of these PIC-based nanoGUMBOS using atomic force microscopy (AFM) and conductive probe-AFM (CP-AFM) [56]. Results from CP-AFM indicated that when the voltage was swept between 1 and − 1 Volts, current values within the range of approximately 10−7 to 10−8 Amps could be achieved. Raman spectroscopy was employed to monitor anion effects on aggregation changes via changes in intensity. These researchers confirmed that [PIC][NTf2] nanoGUMBOS exhibited J-aggregation while H-aggregation was observed in [PIC][BETI] nanoGUMBOS. Thus, researchers from both investigations showcased anion dependent nanoparticle morphology and respective effects on spectral and electrochemical properties of broadly absorbing PIC-based nanoGUMBOS that had potential uses in DSSCs.
Kolic et al. have investigated different GUMBOS, including the aforementioned PIC-based GUMBOS, to determine effects on DSSC performances [34]. These dyes were employed as energy relay dyes (ERDs) in electrolyte solutions, where FRET occurs to donate electrons from ERD molecules in electrolyte solution to photosensitizing dye at the electrode surface. Figure 7 represents a proposed scheme for electron transfer processes involving GUMBOS-ERDs DSSCs. Photoactive dyes such as rhodamine B ([RhB]+), [PIC]+, thiacarbocyanine ([TC1]+), and tetracarboxyphenylporphine ([TCPP]4−) precursors underwent ion exchange with appropriate counterions, such as [NTf2]−, [BETI]−, and [P66614]+, and were further evaluated for counterion effects on ERD performance. Among various GUMBOS studies, investigators determined that [RhB][NTf2] and [P66614]4[TCPP] GUMBOS yielded most promising PCEs devices. These investigators hypothesized that this was a result of inherent high molar extinction coefficients and QYs for these respective compounds. They also noted that devices employing [NTf2]− anions resulted in higher respective device efficiencies than those of the parent dye or [BETI]− anions. One deviation of this trend, however, was the case of [TC1][TPB], which demonstrated a much higher QY. Overall, these authors were able to elucidate anion trends for GUMBOS-ERDs and confirm their utility as FRET cosensitizing agents in DSSCs [34].
Schematic of DSSCs fabricated with GUMBOS-ERDs and potential operational mechanism [
Other works have recently focused on incorporating metal-based GUMBOS as redox shuttles for sensitizer regenerating agents in DSSCs as well. In 2016, Huckaba and coworkers employed a cobalt(II/III) redox shuttle ([Co(bpy)3]2+/3+) with [NTf2]− as a non-coordinating anion with indolizine sensitizers [223]. Device PCEs ranged from 3.04 to 8.10% efficiencies, which were comparable to employing common redox shuttle, iodide/triiodide (I−/I3−) (3.74–7.99%). Additionally, a copper(I/II) redox shuttle ([Cu(tmby)2]+/2+) with [NTf2]− counterion was recently employed with indoline derivatives as sensitizers [224]. This study determined that this redox system rapidly regenerated indoline dyes within the range of tens of nanoseconds, several orders of magnitude faster than cobalt(II/III) shuttle [Co(bpy)3]2+/3+[NTf2]3/2 [224]. As a result of the volatility of the organic solvent employed in electrolyte solutions, some groups have expanded investigations into non-volatile routes for DSSC fabrication [211, 225, 226]. Cao and coworkers have developed a solid-state DSSC (ssDSSC) based on [Cu(tmby)2]+/2+[NTf2]2 redox shuttle for a hole transport layer [227]. In comparison to other copper redox shuttles, PCEs were determined to be much higher with this novel ssDSSC at 11% versus 4.5 or 2%, respectively. Thus, using their trilayered approach with co-sensitizer (Y123) and their solid-state hole transport material, scientists successfully demonstrated charge separation in a novel ssDSSC.
Work function (WF) is a metric by which charge transfer at electrodes is measured to determine electron injection efficiencies of optoelectronics [228]. For this reason, many groups have targeted improving device efficiency by optimizing charge transport at interfacial layers by including electroactive coatings[228, 229, 230]. Incorporating ethoxylated polyethylenimine (PEIE) at electrode interfaces of OLEDs was previously demonstrated by Zhou and coworkers to reduce WF [231]. In 2019, Ohisa et al. hypothesized that incorporation of tetraalkylammonium salts ([TRA][X]) into PEIE layers could further reduce required WFs for OLEDs [231, 232]. Alkyl chain lengths that varied between tetraethyl ([TEA]+), tetrabutyl ([TBA]+), and tetrahexyl ([THA]+) ammonium groups were studied in this report. Different anions were employed, and a series of salts were investigated for each ammonium cations. Anions employed ranged from [Cl]−, bromine ([Br]−), [I]−, acetyl ([Ac]−), thiocyanate ([SCN]−), or tetrafluoroborate ([BF4]−). Ultimately, 30 wt % [TBA][X] incorporation into PEIE layer at cathode interfaces improved WF as determined by ultraviolet photoelectron spectroscopy [232]. Researchers determined that anions with strong electron donating characteristics, such as [SCN]− and [Ac]−, resulted in the largest reduction of WF, while small halides provided the lowest WF change.
Investigators continued their investigations with chain length studies using [TEA][Cl] and [THA][Cl] dopants in PEIE electrode coatings and studying WF values. Results indicated that longer chain lengths provided larger steric hindrance, and thus, weaker electron accepting ability. Overall, WF decreased as hypothesized; however, devices with PEIE:[TBA][SCN] doping resulted in an unexplained increase in drive voltage. In general, this work demonstrates anion influence on WF and electronic efficiencies in LEDs [232]. More recently, Duan and coworkers expanded this work to include anion exchange effects on polyelectrolytes inspired by PEIE design [233]. These investigators incorporated ammonium cations into the PEIE backbone and used several sulfonate anions, such as dimethyl sulfonate ([MSB]−), benzylsulfonate ([BSB]−), and diethyl sulfonate ([ESB]−), to examine effects on WF for polymer solar cells. Notably, these researchers found that smaller anions, e.g. [ESB]− and [MSB]−, yielded devices with more efficient electron transport characteristics and better performance than devices with [BSB]−. Interestingly, devices with [PEIE][ESB] demonstrated the highest PCE (10.44%) with 8 nm thickness at minimal light soaking [233].
In another work, Sato and coworkers investigated counterion exchange effects on a polymerized IL system to reduce WF at the electron-injection layer to provide sufficient electrons to the semiconducting layer [231]. These investigators employed two fluorinated anions to produce polydiallylammonium polymeric ILs [poly(DDA)][NTf2] and [poly(DDA)][BETI], respectively. Both polymers were evaluated and compared to their parent PIL [poly(DDA)][Cl]. Hydrophobicities were studied via water contact angle measurements between film samples and water droplets. As anticipated, larger contact angles were observed for the more hydrophobic anions [NTf2]− and [BETI]− as compared with [Cl]−, 80.1, 80.8 and 19.1o, respectively. Noticeable increases in 5% onset degradation temperatures of the polymers were also observed upon conversion from PIL to polymer-ion exchanges, from 285 °C in [poly(DDA)][Cl] to 394 and 395 °C with [poly(DDA)][NTf2] and [poly(DDA)][BETI], respectively. Both ion-exchanged polymer-ILs reduced WF when they were incorporated at the cathode interface and increased WF when employed at the anode, which indicates that they are suitable interfacial coatings for OLED development. After device optimization as electron injection layers, the authors reported a best device performance of 9.00% maximum EQE with [poly(DDA)][NTf2]. Overall, these researchers demonstrated the benefits of hydrophobic counterion exchange for PILs and their utility for OLEDs applications at electrode interfaces.
Much like room temperature ILs, the ionic properties of frozen ILs and GUMBOS lend to high tunability as a result of the exponential combinations possible of known anions and cations. This important characteristic allows for strategic design of specific GUMBOS for a targeted analytical task. This chapter summarized a few examples of possible GUMBOS applications. Moreover, it has been demonstrated that several physico-chemical properties of these compounds are improved in solid state as compared to liquid phase organic salts. For these reasons, we hypothesize that implementation of solid-phase ILs and GUMBOS in the analytical and materials fields will increase in the future.
The authors gratefully acknowledge financial support through NASA cooperative agreement NNX 16AQ93A under contract number NASA/LEQSF (2016-2019)-Phase 3-10, and the National Science Foundation under Grant Nos. CHE-1905105 and HRD-1736136. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
The authors declare no conflict of interest.
IntechOpen publishes different types of publications
",metaTitle:"Types of publications",metaDescription:"IntechOpen publishes different types of publications",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\\n\\nEdited Volumes can be comprised of different types of chapters:
\\n\\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\\n\\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\\n\\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\\n\\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\\n\\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\\n\\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\\n\\nTYPES OF MONOGRAPHS:
\\n\\nSingle or multiple author manuscript
\\n\\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\\n\\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\\n\\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\\n"}]'},components:[{type:"htmlEditorComponent",content:"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\n\nEdited Volumes can be comprised of different types of chapters:
\n\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\n\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\n\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\n\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\n\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\n\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\n\nTYPES OF MONOGRAPHS:
\n\nSingle or multiple author manuscript
\n\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\n\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\n\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11660},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11867",title:"Echocardiography",subtitle:null,isOpenForSubmission:!0,hash:"d9159ce31733bf78cc2a79b18c225994",slug:null,bookSignature:"Dr. Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",editedByType:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11698",title:"Pigmentation Disorders",subtitle:null,isOpenForSubmission:!0,hash:"2ac6c9f424eec37ed85232c2c97ef6f6",slug:null,bookSignature:"Associate Prof. Shahin Aghaei",coverURL:"https://cdn.intechopen.com/books/images_new/11698.jpg",editedByType:null,editors:[{id:"64024",title:"Associate Prof.",name:"Shahin",surname:"Aghaei",slug:"shahin-aghaei",fullName:"Shahin Aghaei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11701",title:"Magnetic Resonance Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"ba8e8f4710bed414568846f8162a4942",slug:null,bookSignature:"Prof. Ahmet Mesrur Halefoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/11701.jpg",editedByType:null,editors:[{id:"51736",title:"Prof.",name:"Ahmet Mesrur",surname:"Halefoğlu",slug:"ahmet-mesrur-halefoglu",fullName:"Ahmet Mesrur Halefoğlu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11521",title:"Internal Combustion Engines - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"99cc881bcb3efe05085f2728ccbeab6b",slug:null,bookSignature:"Prof. Akaehomen Akii Ibhadode",coverURL:"https://cdn.intechopen.com/books/images_new/11521.jpg",editedByType:null,editors:[{id:"253342",title:"Prof.",name:"Akaehomen",surname:"Ibhadode",slug:"akaehomen-ibhadode",fullName:"Akaehomen Ibhadode"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:264},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4798},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1408",title:"Industrial Development",slug:"industrial-development",parent:{id:"65",title:"Development Economics",slug:"development-economics"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:15,numberOfWosCitations:59,numberOfCrossrefCitations:71,numberOfDimensionsCitations:115,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1408",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6291",title:"Digital Transformation in Smart Manufacturing",subtitle:null,isOpenForSubmission:!1,hash:"0a889d0839f7d4e2639d44c429a20906",slug:"digital-transformation-in-smart-manufacturing",bookSignature:"Antonella Petrillo, Raffaele Cioffi and Fabio De Felice",coverURL:"https://cdn.intechopen.com/books/images_new/6291.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"58010",doi:"10.5772/intechopen.72304",title:"Fourth Industrial Revolution: Current Practices, Challenges, and Opportunities",slug:"fourth-industrial-revolution-current-practices-challenges-and-opportunities",totalDownloads:6447,totalCrossrefCites:44,totalDimensionsCites:70,abstract:"The globalization and the competitiveness are forcing companies to rethink and to innovate their production processes following the so-called Industry 4.0 paradigm. It represents the integration of tools already used in the past (big data, cloud, robot, 3D printing, simulation, etc.) that are now connected into a global network by transmitting digital data. The implementation of this new paradigm represents a huge change for companies, which are faced with big investments. In order to benefit from the opportunities offered by the smart revolution, companies must have the prerequisites needed to withstand changes generated by “smart” system. In addition, new workers who face the world of work 4.0 must have new skills in automation, digitization, and information technology, without forgetting soft skills. This chapter aims to present the main good practices, challenges, and opportunities related to Industry 4.0 paradigm.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Antonella Petrillo, Fabio De Felice, Raffaele Cioffi and Federico\nZomparelli",authors:[{id:"161682",title:"Prof.",name:"Fabio",middleName:null,surname:"De Felice",slug:"fabio-de-felice",fullName:"Fabio De Felice"},{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"},{id:"205141",title:"Dr.",name:"Federico",middleName:null,surname:"Zomparelli",slug:"federico-zomparelli",fullName:"Federico Zomparelli"},{id:"208748",title:"Dr.",name:"Raffaele",middleName:null,surname:"Cioffi",slug:"raffaele-cioffi",fullName:"Raffaele Cioffi"}]},{id:"59319",doi:"10.5772/intechopen.73575",title:"Human Capital in the Smart Manufacturing and Industry 4.0 Revolution",slug:"human-capital-in-the-smart-manufacturing-and-industry-4-0-revolution",totalDownloads:2565,totalCrossrefCites:15,totalDimensionsCites:32,abstract:"The purpose of this chapter is to highlight the important role of human capital management in the Smart Manufacturing and Industry 4.0 revolution. Two hundred years ago, industrial revolution in the west has transformed or evolved from mechanical production driven or powered by water, and to date, we are in an era characterised by cyber physical systems. This transformation or industrial revolution has been driven by humans using creative minds to solve problems that were confronted. The Industrial 1.0 Revolution around 1700 AD, mass production was carried out by mechanical production powered by water (steam engines), which was labour intensive. The more manpower an industrial organisation has, the more goods and services would be produced, though this could take long to reach the market but that was the industrial system at that time. From mechanical production powered by steam engines between 1700s and 1800s to the second Industrial Revolution mass production powered by electricity between 1800s and 1900s to the third Industrial Revolution powered by electronic and IT automation and finally to Industry 4.0 Revolution cyber systems in 2000 and beyond, human capital has generated innovative solutions to human problems more than ever before. Today, human capital is not only creative, but rather a super human capital.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Joseph Evans Agolla",authors:[{id:"210562",title:"Dr.",name:"Joseph",middleName:"Evans",surname:"Agolla",slug:"joseph-agolla",fullName:"Joseph Agolla"}]},{id:"57956",doi:"10.5772/intechopen.72115",title:"Renewing a University to Support Smart Manufacturing Within a Region",slug:"renewing-a-university-to-support-smart-manufacturing-within-a-region",totalDownloads:1293,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"This chapter focuses on the topic of renewing a university in order to be able to support the adaptation of smart manufacturing and Industry 4.0 within a region. The chapter introduces Industry 4.0 as a framework for regional development. Factors related to Industry 4.0 related renewal in the region are identified and discussed further. An idea of how to apply Industry 4.0 as a framework for renewal of a multidisciplinary university’s structure and curricula is introduced. Also, a case study for applying Industry 4.0 as a framework for increasing competitiveness in the region is introduced.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Heikki Ruohomaa, Mikko Mäntyneva and Vesa Salminen",authors:[{id:"213277",title:"Dr.",name:"Mikko",middleName:null,surname:"Mäntyneva",slug:"mikko-mantyneva",fullName:"Mikko Mäntyneva"},{id:"214041",title:"Mr.",name:"Heikki",middleName:null,surname:"Ruohomaa",slug:"heikki-ruohomaa",fullName:"Heikki Ruohomaa"},{id:"214042",title:"Dr.",name:"Vesa",middleName:"Kalevi",surname:"Salminen",slug:"vesa-salminen",fullName:"Vesa Salminen"}]},{id:"58030",doi:"10.5772/intechopen.72312",title:"Manufacturing Transformation toward Mass Customization and Personalization in the Traditional Food Industry",slug:"manufacturing-transformation-toward-mass-customization-and-personalization-in-the-traditional-food-i",totalDownloads:1612,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Digital transformation of the manufacturing process in high-tech has been underway for a long time. On the other hand, the transformation in low-tech and traditional industries progresses more slowly. Especially, the human factor is greater in the food manufacturing industry, which retains many more labor-intensive elements. This is because the development of foods was traditionally customized to the cultures of particular regions, so many foods were not suitable for mass production, which has led to the high level of personal skills. However, new trends have been shown recently in the sake manufacturing industry. Head craftsmen at a sake brewery, known as Toji, have managed the entirety of the manufacturing process and determined the length and timing of each process for hundreds of years. In these circumstances, some sake breweries have started to make sake in a new way that breaks with tradition. They implement smart manufacturing and customization to respond to diversified customer needs without altering the product price through the digitization of the manufacturing process and the formalization of personal skills. This chapter also discusses the prospects of this transition and considers its effects on the industry with theoretical framework and social background of manufacturing transformation.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Daisuke Kanama",authors:[{id:"210580",title:"Associate Prof.",name:"Daisuke",middleName:null,surname:"Kanama",slug:"daisuke-kanama",fullName:"Daisuke Kanama"}]},{id:"58105",doi:"10.5772/intechopen.71798",title:"A Research Agenda of Industry 4.0 from the Czech Perspective",slug:"a-research-agenda-of-industry-4-0-from-the-czech-perspective",totalDownloads:1401,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Although the Czech Republic ranks among the most industrialized countries in Europe, it is not prepared for the coming of technological changes. For a country to take advantage of emerging technologies and the GDP growth and jobs they bring, it must be highly digitalized. Therefore, the chapter is intended to provide the Czech Republic Industry 4.0 approach with the latest issues to the Fourth Industrial Revolution. The chapter aims not only to point out possible directions of development, to define proposals for measures that can support the economy and industrial base, but also to help prepare the stakeholders from the public and private sector for technological change. This chapter is based on information gathered through extensive documents using print media and research databases of European Commission focused on digital economy and society, and we also employed the available Digital Transformation Scoreboard, Digital Transformation Monitor, Europe’s digital Progress Report, Digital Index of Roland Berger, and Czech strategic digital transformation documents to systematize a research agenda of Industry 4.0. The chapter is expected to help in reviewing national digital performance strategies, and an overview of the collected outputs may help other entities to the process digitizing a society efficiently.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Pavel Adámek",authors:[{id:"220805",title:"Ph.D.",name:"Pavel",middleName:null,surname:"Adámek",slug:"pavel-adamek",fullName:"Pavel Adámek"}]}],mostDownloadedChaptersLast30Days:[{id:"58010",title:"Fourth Industrial Revolution: Current Practices, Challenges, and Opportunities",slug:"fourth-industrial-revolution-current-practices-challenges-and-opportunities",totalDownloads:6444,totalCrossrefCites:44,totalDimensionsCites:70,abstract:"The globalization and the competitiveness are forcing companies to rethink and to innovate their production processes following the so-called Industry 4.0 paradigm. It represents the integration of tools already used in the past (big data, cloud, robot, 3D printing, simulation, etc.) that are now connected into a global network by transmitting digital data. The implementation of this new paradigm represents a huge change for companies, which are faced with big investments. In order to benefit from the opportunities offered by the smart revolution, companies must have the prerequisites needed to withstand changes generated by “smart” system. In addition, new workers who face the world of work 4.0 must have new skills in automation, digitization, and information technology, without forgetting soft skills. This chapter aims to present the main good practices, challenges, and opportunities related to Industry 4.0 paradigm.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Antonella Petrillo, Fabio De Felice, Raffaele Cioffi and Federico\nZomparelli",authors:[{id:"161682",title:"Prof.",name:"Fabio",middleName:null,surname:"De Felice",slug:"fabio-de-felice",fullName:"Fabio De Felice"},{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"},{id:"205141",title:"Dr.",name:"Federico",middleName:null,surname:"Zomparelli",slug:"federico-zomparelli",fullName:"Federico Zomparelli"},{id:"208748",title:"Dr.",name:"Raffaele",middleName:null,surname:"Cioffi",slug:"raffaele-cioffi",fullName:"Raffaele Cioffi"}]},{id:"58030",title:"Manufacturing Transformation toward Mass Customization and Personalization in the Traditional Food Industry",slug:"manufacturing-transformation-toward-mass-customization-and-personalization-in-the-traditional-food-i",totalDownloads:1611,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Digital transformation of the manufacturing process in high-tech has been underway for a long time. On the other hand, the transformation in low-tech and traditional industries progresses more slowly. Especially, the human factor is greater in the food manufacturing industry, which retains many more labor-intensive elements. This is because the development of foods was traditionally customized to the cultures of particular regions, so many foods were not suitable for mass production, which has led to the high level of personal skills. However, new trends have been shown recently in the sake manufacturing industry. Head craftsmen at a sake brewery, known as Toji, have managed the entirety of the manufacturing process and determined the length and timing of each process for hundreds of years. In these circumstances, some sake breweries have started to make sake in a new way that breaks with tradition. They implement smart manufacturing and customization to respond to diversified customer needs without altering the product price through the digitization of the manufacturing process and the formalization of personal skills. This chapter also discusses the prospects of this transition and considers its effects on the industry with theoretical framework and social background of manufacturing transformation.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Daisuke Kanama",authors:[{id:"210580",title:"Associate Prof.",name:"Daisuke",middleName:null,surname:"Kanama",slug:"daisuke-kanama",fullName:"Daisuke Kanama"}]},{id:"59319",title:"Human Capital in the Smart Manufacturing and Industry 4.0 Revolution",slug:"human-capital-in-the-smart-manufacturing-and-industry-4-0-revolution",totalDownloads:2563,totalCrossrefCites:15,totalDimensionsCites:32,abstract:"The purpose of this chapter is to highlight the important role of human capital management in the Smart Manufacturing and Industry 4.0 revolution. Two hundred years ago, industrial revolution in the west has transformed or evolved from mechanical production driven or powered by water, and to date, we are in an era characterised by cyber physical systems. This transformation or industrial revolution has been driven by humans using creative minds to solve problems that were confronted. The Industrial 1.0 Revolution around 1700 AD, mass production was carried out by mechanical production powered by water (steam engines), which was labour intensive. The more manpower an industrial organisation has, the more goods and services would be produced, though this could take long to reach the market but that was the industrial system at that time. From mechanical production powered by steam engines between 1700s and 1800s to the second Industrial Revolution mass production powered by electricity between 1800s and 1900s to the third Industrial Revolution powered by electronic and IT automation and finally to Industry 4.0 Revolution cyber systems in 2000 and beyond, human capital has generated innovative solutions to human problems more than ever before. Today, human capital is not only creative, but rather a super human capital.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Joseph Evans Agolla",authors:[{id:"210562",title:"Dr.",name:"Joseph",middleName:"Evans",surname:"Agolla",slug:"joseph-agolla",fullName:"Joseph Agolla"}]},{id:"57567",title:"Digital Smart Jewelry: Next Revolution of Jewelry Industry?",slug:"digital-smart-jewelry-next-revolution-of-jewelry-industry-",totalDownloads:1920,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The purpose of this article is to examine business potential of digital smart jewelry. When jewelry has tens of thousands of years of history, it is interesting to find out what people think of jewelry that contains technology. The study was conducted as an action research, in which researchers acted as main innovators of smart jewelry. The smart jewelry can be divided into two main product groups: the esthetic light jewelry and the functional jewelry. Six different jewelry prototypes were manufactured–three pieces for both product groups, after which they were tested by potential and nonpotential users. According to study, the smart jewelry seems to have business potential, but as often with radical products and new markets, it will take time. Forty percent of potential users saw the smart jewelry as fun, cool, fantastic, and an inevitable future. On the other hand, 25% kept them as obnoxious. The functional jewelry seems to have much more potential target groups and users than the light jewelry. As wearable technology and the Internet of things become more common, the smart jewelry market will probably grow as well. The healthcare and wellness industry is a particular force for growth.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Erno Salmela and Ivary Vimm",authors:[{id:"101139",title:"Dr.",name:"Erno",middleName:null,surname:"Salmela",slug:"erno-salmela",fullName:"Erno Salmela"},{id:"212446",title:"Mr.",name:"Ivary",middleName:null,surname:"Vimm",slug:"ivary-vimm",fullName:"Ivary Vimm"}]},{id:"57960",title:"Influence of Strategic Technology Management on Smart Manufacturing: The Concept of ‘Smart Manufacturing Management’",slug:"influence-of-strategic-technology-management-on-smart-manufacturing-the-concept-of-smart-manufacturi",totalDownloads:1307,totalCrossrefCites:1,totalDimensionsCites:0,abstract:"As technology advances, organisations are moving towards adapting the best options so as to enjoy a competitive edge. The performance of firms, besides other factors, relies on effective management of these technologies. Strategic management of these technologies is of interest to firms, but studies on this have been restricted to studies in the West. A study carried out by the author helped to analyse which of the technology strategy (TS) and technology management (TM) factors are related to performance of firms. Additionally, it was explored if any of these factors are related to nature and size of the firm. The research focused on high-technology manufacturing industries; some of which employed advanced manufacturing. This chapter will introduce the concepts of strategic technology management and smart manufacturing, provide a critical analysis of literature on the work done in these areas, discuss results of a study done on the application of STM in a high-technology manufacturing sector and extend the results of research to smart manufacturing. It is concluded that a good STM can guide smart manufacturing in enhancing firm productivity and achieving a competitive advantage.",book:{id:"6291",slug:"digital-transformation-in-smart-manufacturing",title:"Digital Transformation in Smart Manufacturing",fullTitle:"Digital Transformation in Smart Manufacturing"},signatures:"Arif Sikander",authors:[{id:"212047",title:"Dr.",name:"Arif",middleName:null,surname:"Sikander",slug:"arif-sikander",fullName:"Arif Sikander"}]}],onlineFirstChaptersFilter:{topicId:"1408",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"23",title:"Education and Human Development",doi:"10.5772/intechopen.100360",issn:null,scope:"\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"August 12th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA and her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:11,paginationItems:[{id:"83053",title:"Apologies in L2 French in Canadian Context",doi:"10.5772/intechopen.106557",signatures:"Bernard Mulo Farenkia",slug:"apologies-in-l2-french-in-canadian-context",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:[{name:"Bernard",surname:"Mulo Farenkia"}],book:{title:"Second Language Acquisition - Learning Theories and Recent Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11480.jpg",subseries:{id:"89",title:"Education"}}},{id:"82903",title:"Walking Accessibility to Primary Healthcare Services: An Inequity Factor for Olders in the Lisbon Metropolitan Area (Portugal)",doi:"10.5772/intechopen.106265",signatures:"Eduarda Marques da Costa, Ana Louro, Nuno Marques da Costa, Mariana Dias and Marcela Barata",slug:"walking-accessibility-to-primary-healthcare-services-an-inequity-factor-for-olders-in-the-lisbon-met",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82622",title:"Contemporary Geographical Gerontology: Reconciling Space and Place in Population Ageing",doi:"10.5772/intechopen.105863",signatures:"Hamish Robertson",slug:"contemporary-geographical-gerontology-reconciling-space-and-place-in-population-ageing",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hamish",surname:"Robertson"}],book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82610",title:"Perspective Chapter: The Role of Learning Styles in Active Learning",doi:"10.5772/intechopen.105964",signatures:"Armando Lozano-Rodríguez, Fernanda Inez García-Vázquez and José Luis García-Cué",slug:"perspective-chapter-the-role-of-learning-styles-in-active-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:11,paginationItems:[{id:"83053",title:"Apologies in L2 French in Canadian Context",doi:"10.5772/intechopen.106557",signatures:"Bernard Mulo Farenkia",slug:"apologies-in-l2-french-in-canadian-context",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:[{name:"Bernard",surname:"Mulo Farenkia"}],book:{title:"Second Language Acquisition - Learning Theories and Recent Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11480.jpg",subseries:{id:"89",title:"Education"}}},{id:"82903",title:"Walking Accessibility to Primary Healthcare Services: An Inequity Factor for Olders in the Lisbon Metropolitan Area (Portugal)",doi:"10.5772/intechopen.106265",signatures:"Eduarda Marques da Costa, Ana Louro, Nuno Marques da Costa, Mariana Dias and Marcela Barata",slug:"walking-accessibility-to-primary-healthcare-services-an-inequity-factor-for-olders-in-the-lisbon-met",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82622",title:"Contemporary Geographical Gerontology: Reconciling Space and Place in Population Ageing",doi:"10.5772/intechopen.105863",signatures:"Hamish Robertson",slug:"contemporary-geographical-gerontology-reconciling-space-and-place-in-population-ageing",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hamish",surname:"Robertson"}],book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82610",title:"Perspective Chapter: The Role of Learning Styles in Active Learning",doi:"10.5772/intechopen.105964",signatures:"Armando Lozano-Rodríguez, Fernanda Inez García-Vázquez and José Luis García-Cué",slug:"perspective-chapter-the-role-of-learning-styles-in-active-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81909",title:"Educational Paradigm with Ubuntu Mindset: Implications for Sustainable Development Goals in Education",doi:"10.5772/intechopen.104929",signatures:"George Frempong and Raavee Kadam",slug:"educational-paradigm-with-ubuntu-mindset-implications-for-sustainable-development-goals-in-education",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82243",title:"The Language that Grade R Students Use to Achieve the Envisaged Mathematics Outcomes, a South African Perspective",doi:"10.5772/intechopen.105446",signatures:"Shakespear M. Chiphambo and Nosisi N. Feza",slug:"the-language-that-grade-r-students-use-to-achieve-the-envisaged-mathematics-outcomes-a-south-african",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:3,group:"subseries"},{caption:"Education",value:89,count:8,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:303,paginationItems:[{id:"280338",title:"Dr.",name:"Yutaka",middleName:null,surname:"Tsutsumi",slug:"yutaka-tsutsumi",fullName:"Yutaka Tsutsumi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/280338/images/7961_n.jpg",biography:null,institutionString:null,institution:{name:"Fujita Health University",country:{name:"Japan"}}},{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"117248",title:"Dr.",name:"Andrew",middleName:null,surname:"Macnab",slug:"andrew-macnab",fullName:"Andrew Macnab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"322007",title:"Dr.",name:"Maria Elizbeth",middleName:null,surname:"Alvarez-Sánchez",slug:"maria-elizbeth-alvarez-sanchez",fullName:"Maria Elizbeth Alvarez-Sánchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",country:{name:"Mexico"}}},{id:"337443",title:"Dr.",name:"Juan",middleName:null,surname:"A. Gonzalez-Sanchez",slug:"juan-a.-gonzalez-sanchez",fullName:"Juan A. Gonzalez-Sanchez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico System",country:{name:"United States of America"}}},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}}]}},subseries:{item:{id:"23",type:"subseries",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82465",title:"Agroforestry: An Approach for Sustainability and Climate Mitigation",doi:"10.5772/intechopen.105406",signatures:"Ricardo O. Russo",slug:"agroforestry-an-approach-for-sustainability-and-climate-mitigation",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82754",title:"Impact of Revegetation on Ecological Restoration of a Constructed Soil in a Coal Mining in Southern Brazil",doi:"10.5772/intechopen.105895",signatures:"Lizete Stumpf, Maria Bertaso De Garcia Fernandez, Pablo Miguel, Luiz Fernando Spinelli Pinto, Ryan Noremberg Schubert, Luís Carlos Iuñes de Oliveira Filho, Tania Hipolito Montiel, Lucas Da Silva Barbosa, Jeferson Diego Leidemer and Thábata Barbosa Duarte",slug:"impact-of-revegetation-on-ecological-restoration-of-a-constructed-soil-in-a-coal-mining-in-southern-",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82828",title:"Vegetation and Avifauna Distribution in the Serengeti National Park",doi:"10.5772/intechopen.106165",signatures:"Ally K. Nkwabi and Pius Y. Kavana",slug:"vegetation-and-avifauna-distribution-in-the-serengeti-national-park",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82808",title:"Climate Change and Anthropogenic Impacts on the Ecosystem of the Transgressive Mud Coastal Region of Bight of Benin, Nigeria",doi:"10.5772/intechopen.105760",signatures:"Patrick O. Ayeku",slug:"climate-change-and-anthropogenic-impacts-on-the-ecosystem-of-the-transgressive-mud-coastal-region-of",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82525",title:"Perspective Chapter: Daphnia magna as a Potential Indicator of Reservoir Water Quality - Current Status and Perspectives Focused in Ecotoxicological Classes Regarding the Risk Prediction",doi:"10.5772/intechopen.105768",signatures:"Sara Rodrigues, Ivo Pinto, Sandra Nogueira and Sara C. Antunes",slug:"perspective-chapter-daphnia-magna-as-a-potential-indicator-of-reservoir-water-quality-current-status",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82697",title:"Analyzing the Evolution of Land-Use Changes Related to Vegetation, in the Galicia Region, Spain: From 1990 to 2018",doi:"10.5772/intechopen.106015",signatures:"Sérgio Lousada and José Manuel Naranjo Gómez",slug:"analyzing-the-evolution-of-land-use-changes-related-to-vegetation-in-the-galicia-region-spain-from-1",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"José Manuel",surname:"Naranjo Gómez"},{name:"Sérgio",surname:"Lousada"}],book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82563",title:"Impacts of Human Activities on the High Mountain Landscape of the Tatras (Example of the Border Area of the High and Belianske Tatras, Slovakia)",doi:"10.5772/intechopen.105601",signatures:"Veronika Piscová, Juraj Hreško, Michal Ševčík and Terézia Slobodová",slug:"impacts-of-human-activities-on-the-high-mountain-landscape-of-the-tatras-example-of-the-border-area-",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82362",title:"Studies on the Short-Term Effects of the Cease of Pesticides Use on Vineyard Microbiome",doi:"10.5772/intechopen.105706",signatures:"Simona Ghiță, Mihaela Hnatiuc, Aurora Ranca, Victoria Artem and Mădălina-Andreea Ciocan",slug:"studies-on-the-short-term-effects-of-the-cease-of-pesticides-use-on-vineyard-microbiome",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82297",title:"The Climate Change-Agriculture Nexus in Drylands of Ethiopia",doi:"10.5772/intechopen.103905",signatures:"Zenebe Mekonnen",slug:"the-climate-change-agriculture-nexus-in-drylands-of-ethiopia",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"81999",title:"Climate Change, Rural Livelihoods, and Human Well-Being: Experiences from Kenya",doi:"10.5772/intechopen.104965",signatures:"André J. Pelser and Rujeko Samanthia Chimukuche",slug:"climate-change-rural-livelihoods-and-human-well-being-experiences-from-kenya",totalDownloads:32,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/187772",hash:"",query:{},params:{id:"187772"},fullPath:"/profiles/187772",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()