Reconstruction algorithm results for disc position tested in artificial image
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"10369",leadTitle:null,fullTitle:"Applications of RNA-Seq in Biology and Medicine",title:"Applications of RNA-Seq in Biology and Medicine",subtitle:null,reviewType:"peer-reviewed",abstract:"This book evaluates and comprehensively summarizes the scientific findings that have been achieved through RNA-sequencing (RNA-Seq) technology. RNA-Seq transcriptome profiling of healthy and diseased tissues allows FOR understanding the alterations in cellular phenotypes through the expression of differentially spliced RNA isoforms. Assessment of gene expression by RNA-Seq provides new insight into host response to pathogens, drugs, allergens, and other environmental triggers. RNA-Seq allows us to accurately capture all subtypes of RNA molecules, in any sequenced organism or single-cell type, under different experimental conditions. Merging genomics and transcriptomic profiling provides novel information underlying causative DNA mutations. Combining RNA-Seq with immunoprecipitation and cross-linking techniques is a clever multi-omics strategy assessing transcriptional, post-transcriptional and post-translational levels of gene expression regulation.",isbn:"978-1-83962-815-3",printIsbn:"978-1-83962-686-9",pdfIsbn:"978-1-83962-816-0",doi:"10.5772/intechopen.91555",price:119,priceEur:129,priceUsd:155,slug:"applications-of-rna-seq-in-biology-and-medicine",numberOfPages:142,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"62399ea4ed0544b946dcbd1853b2d1b8",bookSignature:"Irina Vlasova-St. Louis",publishedDate:"October 13th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10369.jpg",numberOfDownloads:1117,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:1,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:1,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 25th 2020",dateEndSecondStepPublish:"October 23rd 2020",dateEndThirdStepPublish:"December 22nd 2020",dateEndFourthStepPublish:"March 12th 2021",dateEndFifthStepPublish:"May 11th 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"211159",title:"Prof.",name:"Irina",middleName:null,surname:"Vlasova-St. Louis",slug:"irina-vlasova-st.-louis",fullName:"Irina Vlasova-St. Louis",profilePictureURL:"https://mts.intechopen.com/storage/users/211159/images/system/211159.png",biography:"Dr. Vlasova-St. Louis earned her MD and Ph.D. degrees from Ural State Medical Academy, Russia. She completed her postdoctoral training at the University of Minnesota, USA, and fellowship sponsored by the Lymphoma Research Foundation. She served as an Assistant Professor at the Department of Medicine, University of Minnesota. \r\nDr. Vlasova-St. Louis has expertise in several biological disciplines including infectious diseases, immunology, and bioinformatics. By integrating state-of-the-art techniques such as next-generation sequencing, she made numerous biomedical discoveries studying normal and pathological conditions at the molecular, cellular, and organismal levels. \r\nCurrently, Dr. St. Louis is a COVID-19 Associate, sponsored by the Association of Public Health Laboratories and the Center for Disease Control and Prevention. She leads the molecular surveillance program of novel SARS-CoV-2 variants. Additionally, she is conducting research at Johns Hopkins University within the Advanced Academic Program: Individualized Genomics and Health.",institutionString:"University of Minnesota",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Johns Hopkins University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"380",title:"Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology-biochemistry-molecular-biology"}],chapters:[{id:"78478",title:"Introductory Chapter: Applications of RNA-Seq Diagnostics in Biology and Medicine",doi:"10.5772/intechopen.99882",slug:"introductory-chapter-applications-of-rna-seq-diagnostics-in-biology-and-medicine",totalDownloads:116,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:null,signatures:"Irina Vlasova-St. Louis",downloadPdfUrl:"/chapter/pdf-download/78478",previewPdfUrl:"/chapter/pdf-preview/78478",authors:[{id:"211159",title:"Prof.",name:"Irina",surname:"Vlasova-St. Louis",slug:"irina-vlasova-st.-louis",fullName:"Irina Vlasova-St. Louis"}],corrections:null},{id:"76720",title:"RNA Sequencing in Potentially Malignant Disorders",doi:"10.5772/intechopen.97712",slug:"rna-sequencing-in-potentially-malignant-disorders",totalDownloads:181,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"RNA sequencing is a molecular technique which utilizes next generation sequencing to identify and quantify ribonucleic acid (RNA) in a given sample. This technique is utilized in the detection of changes in gene expression. Potentially malignant oral disorders are one of the most troublesome lesions seen in the oral cavity which predisposes to the development of oral cancer. Though there are many methods employed in the diagnosis of these disorders, biopsy followed by histological examination is the gold standard procedure followed in the diagnosis. RNA sequencing has been receiving attention among researchers. Many studies have been conducted to analyze the application of RNA sequencing in the diagnosis of PMODs as well as in the malignant transformation to oral squamous cell carcinoma. The article attempts to summarize the progress in RNA sequencing pertaining to Potentially malignant disorders.",signatures:"Ramya Ramadoss, Rajkumar Krishnan, Lekshmy Jayan and Priyadharini Shankaran",downloadPdfUrl:"/chapter/pdf-download/76720",previewPdfUrl:"/chapter/pdf-preview/76720",authors:[{id:"334988",title:"Dr.",name:"Ramya",surname:"Ramadoss",slug:"ramya-ramadoss",fullName:"Ramya Ramadoss"},{id:"334997",title:"Dr.",name:"Rajkumar",surname:"Krishnan",slug:"rajkumar-krishnan",fullName:"Rajkumar Krishnan"},{id:"350018",title:"Dr.",name:"Lekshmy",surname:"Jayan",slug:"lekshmy-jayan",fullName:"Lekshmy Jayan"},{id:"415408",title:"Dr.",name:"Priyadharini",surname:"Shankaran",slug:"priyadharini-shankaran",fullName:"Priyadharini Shankaran"}],corrections:null},{id:"75458",title:"Insights into Oropharyngeal Microbiota, Biofilms and Associated Diseases from Metagenomics and Transcriptomic Approaches",doi:"10.5772/intechopen.96449",slug:"insights-into-oropharyngeal-microbiota-biofilms-and-associated-diseases-from-metagenomics-and-transc",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Oral cavity is an ecologically complex environment and hosts a diverse microbial community. Most of these organisms are commensals, however, on occasion, some have the potential to become pathogenic causing damage to the human host. Complex interactions between pathogenic bacteria, the microbiota, and the host can modify pathogen physiology and behavior. Most bacteria in the environment do not exist in free-living state but are found as complex matrix enclosed aggregates known as biofilms. There has been research interest in microbial biofilms because of their importance in industrial and biomedical settings. Bacteria respond to environmental cues to fine-tune the transition from planktonic growth to biofilm by directing gene expression changes favorable for sessile community establishment. Meta-approaches have been used to identify complex microbial associations within human oral cavity leading to important insights. Comparative gene expression analysis using deep sequencing of RNA and metagenomics studies done under varying conditions have been successfully used in understanding and identifying possible triggers of pathogenicity and biofilm formation in oral commensals.",signatures:"Richa Priyadarshini, Karthik Krishnan and Rashmi Niranjan",downloadPdfUrl:"/chapter/pdf-download/75458",previewPdfUrl:"/chapter/pdf-preview/75458",authors:[{id:"262335",title:"Dr.",name:"Richa",surname:"Priydarshini",slug:"richa-priydarshini",fullName:"Richa Priydarshini"},{id:"263707",title:"Dr.",name:"Karthik",surname:"Krishnan",slug:"karthik-krishnan",fullName:"Karthik Krishnan"},{id:"346817",title:"Ms.",name:"Rashmi",surname:"Niranjan",slug:"rashmi-niranjan",fullName:"Rashmi Niranjan"}],corrections:null},{id:"76156",title:"Assessing Host-Pathogen Interaction Networks via RNA-Seq Profiling: A Systems Biology Approach",doi:"10.5772/intechopen.96706",slug:"assessing-host-pathogen-interaction-networks-via-rna-seq-profiling-a-systems-biology-approach",totalDownloads:172,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"RNA sequencing is a valuable tool brought about by advances in next generation sequencing (NGS) technology. Initially used for transcriptome mapping, it has grown to become one of the ‘gold standards’ for studying molecular changes that occur in niche environments or within and across infections. It employs high-throughput sequencing with many advantages over previous methods. In this chapter, we review the experimental approaches of RNA sequencing from isolating samples all the way to data analysis methods. We focus on a number of NGS platforms that offer RNA sequencing with each having their own strengths and drawbacks. The focus will also be on how RNA sequencing has led to developments in the field of host-pathogen interactions using the dual RNA sequencing technique. Besides dual RNA sequencing, this review also explores the application of other RNA sequencing techniques such as single cell RNA sequencing as well as the potential use of newer techniques like ‘spatialomics’ and ribosome-profiling in host-pathogen interaction studies. Finally, we examine the common challenges faced when using RNA sequencing and possible ways to overcome these challenges.",signatures:"Sudhesh Dev Sareshma and Bhassu Subha",downloadPdfUrl:"/chapter/pdf-download/76156",previewPdfUrl:"/chapter/pdf-preview/76156",authors:[{id:"146264",title:"Dr.",name:"Bhassu",surname:"Subha",slug:"bhassu-subha",fullName:"Bhassu Subha"},{id:"346140",title:"M.Sc.",name:"Sudhesh Dev",surname:"Sareshma",slug:"sudhesh-dev-sareshma",fullName:"Sudhesh Dev Sareshma"}],corrections:null},{id:"77730",title:"Diagnostic Applications for RNA-Seq Technology and Transcriptome Analyses in Human Diseases Caused by RNA Viruses",doi:"10.5772/intechopen.99156",slug:"diagnostic-applications-for-rna-seq-technology-and-transcriptome-analyses-in-human-diseases-caused-b",totalDownloads:189,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Human diseases caused by single-stranded, positive-sense RNA viruses, are among the deadliest of the 21st Century. In particular, there are two notable standouts: human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Detection of these disease-causing viral transcripts, by next-generation RNA sequencing (RNA-Seq), represents the most immediate opportunity for advances in diagnostic, therapeutic, and preventive applicability in infectious diseases (e.g., AIDS and COVID-19). Moreover, RNA-Seq technologies add significant value to public health studies by first, providing real-time surveillance of known viral strains, and second, by the augmentation of epidemiological databases, construction of annotations and classifications of novel sequence variants. This chapter intends to recapitulate the current knowledge of HIV and SARS-CoV-2 transcriptome architecture, pathogenicity, and some features of the host immune response. Additionally, it provides an overview of recent advances in diagnostic sequencing methodologies and discusses the future challenges and prospects on the utilization of RNA-Seq technologies.",signatures:"Irina Vlasova-St. Louis, Andrew Gorzalski and Mark Pandori",downloadPdfUrl:"/chapter/pdf-download/77730",previewPdfUrl:"/chapter/pdf-preview/77730",authors:[{id:"211159",title:"Prof.",name:"Irina",surname:"Vlasova-St. Louis",slug:"irina-vlasova-st.-louis",fullName:"Irina Vlasova-St. Louis"},{id:"414700",title:"Dr.",name:"Andrew",surname:"Gorzalski",slug:"andrew-gorzalski",fullName:"Andrew Gorzalski"},{id:"414701",title:"Dr.",name:"Mark",surname:"Pandori",slug:"mark-pandori",fullName:"Mark Pandori"}],corrections:null},{id:"76430",title:"Recent Applications of RNA Sequencing in Food and Agriculture",doi:"10.5772/intechopen.97500",slug:"recent-applications-of-rna-sequencing-in-food-and-agriculture",totalDownloads:354,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"RNA sequencing (RNA-Seq) is the leading, routine, high-throughput, and cost-effective next-generation sequencing (NGS) approach for mapping and quantifying transcriptomes, and determining the transcriptional structure. The transcriptome is a complete collection of transcripts found in a cell or tissue or organism at a given time point or specific developmental or environmental or physiological condition. The emergence and evolution of RNA-Seq chemistries have changed the landscape and the pace of transcriptome research in life sciences over a decade. This chapter introduces RNA-Seq and surveys its recent food and agriculture applications, ranging from differential gene expression, variants calling and detection, allele-specific expression, alternative splicing, alternative polyadenylation site usage, microRNA profiling, circular RNAs, single-cell RNA-Seq, metatranscriptomics, and systems biology. A few popular RNA-Seq databases and analysis tools are also presented for each application. We began to witness the broader impacts of RNA-Seq in addressing complex biological questions in food and agriculture.",signatures:"Venkateswara R. Sripathi, Varsha C. Anche, Zachary B. Gossett and Lloyd T. Walker",downloadPdfUrl:"/chapter/pdf-download/76430",previewPdfUrl:"/chapter/pdf-preview/76430",authors:[{id:"78209",title:"Dr.",name:"Lloyd T.",surname:"Walker",slug:"lloyd-t.-walker",fullName:"Lloyd T. Walker"},{id:"188207",title:"Dr.",name:"Venkateswara R.",surname:"Sripathi",slug:"venkateswara-r.-sripathi",fullName:"Venkateswara R. Sripathi"},{id:"337641",title:"MSc.",name:"Varsha C.",surname:"Anche",slug:"varsha-c.-anche",fullName:"Varsha C. Anche"},{id:"337643",title:"Mr.",name:"Zachary B.",surname:"Gossett",slug:"zachary-b.-gossett",fullName:"Zachary B. Gossett"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3203",title:"Oxidative Stress and Chronic Degenerative Diseases",subtitle:"A Role for Antioxidants",isOpenForSubmission:!1,hash:"7014dbaa632114f7220802475ccd0402",slug:"oxidative-stress-and-chronic-degenerative-diseases-a-role-for-antioxidants",bookSignature:"José A. Morales-González",coverURL:"https://cdn.intechopen.com/books/images_new/3203.jpg",editedByType:"Edited by",editors:[{id:"109774",title:"Dr.",name:"Jose Antonio",surname:"Morales-Gonzalez",slug:"jose-antonio-morales-gonzalez",fullName:"Jose Antonio Morales-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5407",title:"The Transcription Factor Nrf2",subtitle:null,isOpenForSubmission:!1,hash:"0788a269796226b416cf12529a57ecbb",slug:"a-master-regulator-of-oxidative-stress-the-transcription-factor-nrf2",bookSignature:"Jose Antonio Morales-Gonzalez, Angel Morales-Gonzalez and Eduardo Osiris Madrigal-Santillan",coverURL:"https://cdn.intechopen.com/books/images_new/5407.jpg",editedByType:"Edited by",editors:[{id:"109774",title:"Dr.",name:"Jose Antonio",surname:"Morales-Gonzalez",slug:"jose-antonio-morales-gonzalez",fullName:"Jose Antonio Morales-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7346",title:"Biogenic Amines",subtitle:null,isOpenForSubmission:!1,hash:"0438601a19ebd4d9dd37f88692b4196a",slug:"biogenic-amines",bookSignature:"Charalampos Proestos",coverURL:"https://cdn.intechopen.com/books/images_new/7346.jpg",editedByType:"Edited by",editors:[{id:"198333",title:"Dr.",name:"Charalampos",surname:"Proestos",slug:"charalampos-proestos",fullName:"Charalampos Proestos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8095",title:"Liposomes",subtitle:"Advances and Perspectives",isOpenForSubmission:!1,hash:"02b0d76190d551561ad19af0c80f98f2",slug:"liposomes-advances-and-perspectives",bookSignature:"Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/8095.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6365",title:"Molecular Docking",subtitle:null,isOpenForSubmission:!1,hash:"ca23ec77de0bb7a434608335e1d6a963",slug:"molecular-docking",bookSignature:"Dimitrios P. Vlachakis",coverURL:"https://cdn.intechopen.com/books/images_new/6365.jpg",editedByType:"Edited by",editors:[{id:"179110",title:"Dr.",name:"Dimitrios",surname:"Vlachakis",slug:"dimitrios-vlachakis",fullName:"Dimitrios Vlachakis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6397",title:"Free Radicals, Antioxidants and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"7b0703d537f4f738f46848aac66f5d34",slug:"free-radicals-antioxidants-and-diseases",bookSignature:"Rizvan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/6397.jpg",editedByType:"Edited by",editors:[{id:"40482",title:null,name:"Rizwan",surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",isOpenForSubmission:!1,hash:"0ad18ab382e2ffb9ff202d15282297eb",slug:"biophysical-chemistry-advance-applications",bookSignature:"Mohammed A. A. Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",editedByType:"Edited by",editors:[{id:"137240",title:"Prof.",name:"Mohammed",surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6486",title:"Glutathione in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"23fb1f2e0cea5cf004d57bc8c0d46ce4",slug:"glutathione-in-health-and-disease",bookSignature:"Pinar Erkekoglu and Belma Kocer-Gumusel",coverURL:"https://cdn.intechopen.com/books/images_new/6486.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pınar",surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6966",title:"Lipid Peroxidation Research",subtitle:null,isOpenForSubmission:!1,hash:"f1f45176e765ecb65a1c6d1496e75b5b",slug:"lipid-peroxidation-research",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/6966.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,isOpenForSubmission:!1,hash:"de9fa48c5248dbfb581825b8c74f5623",slug:"peptide-synthesis",bookSignature:"Jaya T. Varkey",coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",editedByType:"Edited by",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"67216",slug:"corrigendum-to-open-abdomen-the-surgeons-challenge",title:"Corrigendum to: Open Abdomen: The Surgeons’ Challenge",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/67216.pdf",downloadPdfUrl:"/chapter/pdf-download/67216",previewPdfUrl:"/chapter/pdf-preview/67216",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/67216",risUrl:"/chapter/ris/67216",chapter:{id:"64137",slug:"open-abdomen-the-surgeons-challenge",signatures:"Juan José Santivañez Palominos, Vergara Arturo and Cadena Manuel",dateSubmitted:"May 7th 2018",dateReviewed:"September 10th 2018",datePrePublished:null,datePublished:"May 10th 2019",book:{id:"7046",title:"Wound Healing",subtitle:"Current Perspectives",fullTitle:"Wound Healing - Current Perspectives",slug:"wound-healing-current-perspectives",publishedDate:"May 10th 2019",bookSignature:"Kamil Hakan Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/7046.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"30612",title:"Prof.",name:"Kamil Hakan",middleName:null,surname:"Dogan",slug:"kamil-hakan-dogan",fullName:"Kamil Hakan Dogan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"257817",title:"Prof.",name:"Manuel",middleName:null,surname:"Cadena",fullName:"Manuel Cadena",slug:"manuel-cadena",email:"manuelcade@gmail.com",position:null,institution:null}]}},chapter:{id:"64137",slug:"open-abdomen-the-surgeons-challenge",signatures:"Juan José Santivañez Palominos, Vergara Arturo and Cadena Manuel",dateSubmitted:"May 7th 2018",dateReviewed:"September 10th 2018",datePrePublished:null,datePublished:"May 10th 2019",book:{id:"7046",title:"Wound Healing",subtitle:"Current Perspectives",fullTitle:"Wound Healing - Current Perspectives",slug:"wound-healing-current-perspectives",publishedDate:"May 10th 2019",bookSignature:"Kamil Hakan Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/7046.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"30612",title:"Prof.",name:"Kamil Hakan",middleName:null,surname:"Dogan",slug:"kamil-hakan-dogan",fullName:"Kamil Hakan Dogan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"257817",title:"Prof.",name:"Manuel",middleName:null,surname:"Cadena",fullName:"Manuel Cadena",slug:"manuel-cadena",email:"manuelcade@gmail.com",position:null,institution:null}]},book:{id:"7046",title:"Wound Healing",subtitle:"Current Perspectives",fullTitle:"Wound Healing - Current Perspectives",slug:"wound-healing-current-perspectives",publishedDate:"May 10th 2019",bookSignature:"Kamil Hakan Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/7046.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"30612",title:"Prof.",name:"Kamil Hakan",middleName:null,surname:"Dogan",slug:"kamil-hakan-dogan",fullName:"Kamil Hakan Dogan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11749",leadTitle:null,title:"TEST BOOK Sara Tikel",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tLorem ipsum dolor sit amet, consectetur adipiscing elit. In at mauris lobortis, dapibus justo nec, suscipit lacus. Fusce tincidunt et sapien in congue. Sed rhoncus neque non dapibus auctor. Pellentesque non viverra dui, a tincidunt sapien. Fusce maximus mauris diam, et eleifend neque tincidunt quis. Interdum et malesuada fames ac ante ipsum primis in faucibus. Vestibulum et leo eget nisl varius rutrum sed in nulla. Nullam a finibus enim, nec rhoncus felis. Quisque ut imperdiet nunc, sed facilisis dui. Nulla molestie semper viverra. Aliquam pharetra magna ex, in vestibulum arcu condimentum in. Nulla ut felis porttitor, tincidunt dui at, imperdiet eros. Nam malesuada imperdiet tellus. Etiam id dolor efficitur, elementum tortor vel, eleifend sem.
\r\n\r\n\tEtiam quis lacus lacinia, ullamcorper massa sed, bibendum arcu. Curabitur tempor lacus at leo cursus sagittis. Nullam eleifend eleifend blandit. Nunc eget neque nisl. Nam nisi dolor, finibus non facilisis non, consequat vitae urna. Nunc non ligula augue. Nullam eros erat, mollis eget mattis id, ornare fringilla tellus.
\r\n\r\n\tDuis bibendum suscipit purus, eu cursus nisl malesuada sed. Maecenas ornare, magna ac finibus tristique, leo nisl bibendum justo, vel ultrices erat mauris placerat massa. Suspendisse feugiat nunc erat. Integer fringilla vitae lectus eu feugiat. Suspendisse sodales ligula quis nisl tempus, sit amet congue felis commodo. Aliquam erat volutpat. Suspendisse eu libero commodo, dapibus dui ultrices, vehicula nunc. Donec condimentum tortor in nibh pulvinar, quis iaculis augue fringilla.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"4e86746f4502bf52c8b1ceaa824de720",bookSignature:"",publishedDate:null,coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",keywords:"Lorem, Ipsum, Dolor, Amet",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 22nd 2021",dateEndSecondStepPublish:"December 20th 2021",dateEndThirdStepPublish:"February 18th 2022",dateEndFourthStepPublish:"May 9th 2022",dateEndFifthStepPublish:"July 8th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"6 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:"BE",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:null,chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444312",firstName:"Sara",lastName:"Tikel",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444312/images/20015_n.jpg",email:"sara.t@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"39334",title:"Detection of Craters and Its Orientation on Lunar",doi:"10.5772/48526",slug:"detection-of-craters-and-its-orientation-on-lunar",body:'Craters are features commonly used as research landmarks compared with the other landforms such as rocks, mountains, cliffs and many others. Because of their simple and unique geometry and relatively established appearance under different conditions, the authors decided to select craters as ideal landmarks for detection and spacecraft localization. This chapter focuses on identification of craters in terms of their characteristics and detection of these visual features of the moon to determine a safe landing site for a lunar Lander. Cheng et al. proposed using craters as landmarks for navigation purposes because the geometric model grants a robust detection under different lighting conditions. Moreover, craters appear in enough density on most planetary system bodies of interest and they are also known to have fairly stable appearance or shapes over time or under different conditions and environments. These special features make them an appropriate type of landmark to observe. Currently, there is a lot of on-going studies mainly on craters detection and optical navigation systems for the moon and these studies still adopt a complex and similar approach such as detection using the Hough transform method. To part from this limitation, the authors decided to build a simple algorithm for detecting craters on the moon’s surface which will detect the craters based on two important measurements including the distance and angle measurements. The advantages of using this approach are threefold: (1) its uncomplicatedness (2) fast detection (3) can be used further in ellipse reconstruction algorithm to determine the position and orientation of the crater. This chapter will discuss the method of employing MATLAB and image processing tool on an optical image as well as the morphological image detection fundamentals. In addition, some geometrical projection analysis in reconstructing an ellipse as a disc will be evaluated in order to obtain the orientation of the disc (crater) for an autonomous optical navigation system.
The first lunar exploration spacecraft named Luna 1 was flown to the moon on January 1959 [21]. Nonetheless, this mission did not give too much impact as it did not land on the moon itself. Due to the enthusiasm to continue the journey of previous research pioneers, Luna 2 became the first spacecraft to land on the moon’s surface in late 1959 [21]. These histories of moon explorations became a motivation for a new researcher and moon explorer to find out more about Lunar and its unique features.
A crater plays a vital feature to estimate the age of the moon’s surface when any sample specimen is not available [10, 11]. An autonomous crater detection algorithm will help space research scientists to reduce their laboratory works of manually identifying those craters. Previously, several automatic and semi-automatic crater detection algorithms were proposed [12], but their accuracy was not enough for craters chronology and they have yet to be fully tested for practical uses (example: spacecraft navigation). Craters chronology means the history or the sequence of events that formed the craters on the moon’s surface and the variety of its features. Optical Landmark Navigation using craters on the planetary surface was first used operationally by the Near Earth Asteroid Rendezvous (NEAR) mission [15, 16]. This mission is to determine the spacecraft orbits and the range of the body for close flybys condition and low attitude orbiting [13].
Many planetary missions such as SELENE (Selenological and Engineering Explorer) and Clementine take the images of the moon’s surface for on-going research. This attention to the moon exploratory especially will help us divulge the unimagined information and characteristics of planetary science specifically on the moon’s surface. In 2006, a Japanese Lunar Orbiting Spacecraft was launched and was expected to bring a large amount of useful data for on-going planetary research. However, it is known that the images taken under the low sun elevation, such as those from ‘Lunar Orbiter’ and ‘Apollo’ are suitable for crater detection as mentioned before to differentiate the ‘light and dark patches’ for sooner analysis.
Current descent and landing technology for planetary operations, such as those of lunar, is performed by a landing error ellipse greater than 30x100 kilometres without terrain recognition or hazard avoidance capability. Most of the previous research on lunar pin point landing specifically has a limitation such that requires
A spacecraft mission on the moon involving Entry, Descent and Landing (EDL) requires precise and intelligent landing techniques. There were numerous previous research efforts and various methods used to determine such landing sites that are safe for a moon Lander. Trying to get a new technique that can search for free hazards locations, this paper will propose an intelligent algorithm described as craters identification algorithm in order to recognize and detect craters consistently and repeatedly over most of the moon’s surface. In addition, using geometric recognition techniques, the authors we can also determine the position, attitude, velocity and angular velocity of the spacecraft; the four important parameters used to land safely on the moon by finding a match of those detecting craters to a database containing the 3D locations of the craters (internal lunar atlas).
The lunar surface consists of several hazardous characteristics such as rocks, mountain, boulders, slopes and mainly craters. Particularly, in this paper, the authors choose craters as primary hazard detection because of its geometric shape which makes it easy to identify using image detection codes. Over the years, craters are created as a result of a continuous bombardment of objects from outer space like meteorites, asteroids and comets. All of them strike the lunar surface at various speeds, typically 20 kilometres per second. In addition, unlike the earth, there is no atmosphere on the moon to protect it from collision with other potential impactors.
Previous researchers such as Cheng and Ansar [5] proposed a feature detector and tracker algorithm for detecting craters as mapped landmarks and matched those using applications during EDL for the spacecrafts. In a sequence, one can also determine the position and velocity of the spacecraft using the desired parameters achieved by the matched craters technique mentioned above. For this approach, craters are classified based on their size and orientation of their outlining ellipses. There are databases of previously matched craters to detect the desired impact craters. Position is estimated using subset middle values of at least three matched craters in a linear pose estimation algorithm [6]. By combining the average velocity between two image based position and computed velocity by integrating the accelerometer reading, the actual velocity is dictated by the output of the image processing algorithm.
Continuously, there were preceding research on On-board hazard detection and avoidance for a safe landing which has aimed to autonomously detect the hazards near the landing site and determine a new landing site free from those hazards [7]. In order to detect the potential hazards on the moon’s surface, there are specific requirements as agreed by the ALHAT project which will detect the hazards that are 0.3 meters tall or higher and slopes that are 5 degrees or greater mainly for the craters. Moreover, the requirement is not just to detect the hazards with the above mentioned criteria but also must be able to find a safe landing site with a diameter around 15 meters over most of the moon’s surface. This proposed system is achieved by using the imaging LIDAR sensors to get the direct measurements of the lunar surface elevation from high altitude. Besides, the probability of the existence of a hazard free landing site is determined as a function of a Lander diameter, hazard map area and rock coverage, and together these procedures are used as guidance for LIDAR sensors and the overall Navigation and Control Architecture.
Terrain sensing and recognition functions for safe land site determination [
Hazard Detection Avoidance (HDA) and Terrain Relative Navigation (TRN) are on-board capabilities that use sensing and computing technologies to achieve optical safe and precise terrain navigation within 100 meters of a predetermined location on the lunar’s surface [8]. They are based on three methods including global position estimation, local position estimation and velocity estimation as illustrated in Figure 1 above. All these functions can be realized using passive imaging or active range sensing. One of the TRN approaches is by using pattern matching which requires
Continuous research in developing the greyscale imagery mainly on detecting landform is still being explored within these past few years. In order to detect craters of any particular planetary bodies, one of the approaches is by using the Hough Transform shape detecting assignments [9]. The proposed algorithm focuses on detection of the (sensor independent) geometric features of the impact craters (i.e centre position, craters radius) as well as identification of sensor dependant geometric features such (i.e rim height) as a following task. The use of a simple model (circular shape) for craters detection makes it possible to exploit the algorithm in different operational environments (i.e recognition of Earth and other planetary craters in the Solar System) using data attained by dissimilar sensors such as Synthetic Aperture Radar (SAR). Because of its complex algorithm, Hough Transform is not directly employed to the original image. Some pre-processing steps are necessary to obtain better result and performance of the system as illustrated in Figure 2 below. The Hough Transform has been built by Paul Hough (1962) for the identification of lines in pictures. Describing a circle represented by lines, if the radius is r and centre coordinates represent (a, b), then the parametric representation of a circle:
R (x, y) = {x = a + r cos θ, y = b + r sin θ}
where θ = [0, 2π]
Each point (x, y) represents a, b and r parameter is mapped in a cone surface that has the following representation:
H (a, b, r) = {a = x - r cos θ, b = y – r sin θ}
where θ = [0, 2π]
Result obtained using Hough Transform in SAR (Synthetic Aperture Radar) Image [
There is also multiple approach algorithms in detecting craters on the lunar’s surface as proposed by Sawabe, Matsunaga and Rokugawa, 2005. It is known that the crater’s feature changes according to its size. Small craters form a simple circle, and the larger its size, the more complex its shape becomes [3]. This change in feature poses difficult problems to detect craters with different sizes by a single approach. In their data-dependant based algorithm, they defined that a crater is a circular topographical feature in images and a minimum detection crater size is two pixels in radius [13] and it uses data from SELENE (Selenological and Engineering Explorer) to visualize the surface geological settings and the subsurface structure of the Lunar. These approaches are different to the authors’ research as they consider the crater to bean ellipse for their detection algorithm. The authors also propose the data independent based algorithm. Four different methods were used with the crater detecting algorithm to find (1) ‘shady and sunny’ patterns in images with low sun angle, (2) circular features in edge images (3)curves and circles in thinned and connected edge lines, and (4)discrete or broken circular edge lines using fuzzy Hough transform. Besides, the detected craters are also classified by spectral characteristics derived from Clementine UV-Vis multi-spectral images [13]. The main advantages of the proposed algorithm compared to the previous one are that the detection algorithm is uncomplicated and it has an outstanding successful rate of detections. These methods of detection and their determination of accuracy will be evaluated in the experimental results afterwards.
In Landmark Based Pinpoint Landing Simulator (LAMPS) by Cheng and Ansar, a robust yet complex crater detection algorithm has been developed for autonomous spacecraft navigation. Based on their research, craters might have a random appearance based on their ages and sizes. For example, younger craters may have sharper and regular rims [14]. Spatial densities of craters also form the primary basis for assessing the relative and absolute ages of geological units on planetary surfaces [14]. However, typical craters will have ellipse shape in their rims, with a light to dark pattern that is dictated by the sun azimuth and elevation as well as its own topography. In fact, this statement is very similar to the authors’ own approach in defining a crater as a composition of light and dark patch. Technically, Cheng and Ansar approach algorithm consists of five major steps which are edge detection, rim edge grouping, ellipse fitting, precision fitting and crater confidence evaluation. Another important property of landmark based detection system is the use of spacecraft pinpoint landing (PPL) for autonomous navigation method. To decrease the probability of landing on a hazard surface, one of the two safe landing proposals must be taken into account: craters hazard detection avoidance, which will detect all hazardous craters upon landing on the moon’s surface or pinpoint landing which determines the Lander’s position in real time and guide the spacecraft to a safe and free landing site, away from those hazards (craters).
According to recent studies on the size and frequency of the craters on a Mars’ surface [17], a sufficient number of adequately sized craters for determining spacecraft position are very likely to be found in descent imagery. For an instance, if the image was taken using a camera field of 45 degrees and is taken from 8km above the surface, there will be an average of 94 craters of less than 200m in diameter. Ideally, from this situation, these craters can be used as landmarks to match a pre-existing crater database and therefore to determine the position of the Lander. This approach of pattern matching will be further used as future works in the authors’ research. For the time being, the authors have proposed to use a projection geometry concept in determining the orientation and position of the spacecraft using two vital equations that were discussed later.
As in Figure (3) below, the proposed pinpoint landing is as follow. First, the landing site is pre-determined on the targeted body (moon’s surface, Mars’ surface, etc) on the earth using orbital imagery, and the landmarks within the landing ellipse (red ellipse) are mapped. During EDL, its preliminary position prior to the landmarks and selected landing site is determined. The Lander’s position is then frequently tracked and guided using continuous updates of the Lander’s position and the velocity all the way through the descent.
Craters pattern matching for position estimation of the spacecraft during EDL [
This reliable topography-based Craters Detection Algorithm that the authors are proposing in this chapter is mainly based on a real image (optical image) analysis and morphological Image Analysis. There are various stages of coding in order to get a satisfactory result, provided that the sun’s elevation angle is known. This algorithm is suitable for any optical images taken from ‘Lunar Orbiter’ or ‘Apollo’ sources. The Algorithm flowchart is presented in Figure (4) below:
Flowchart of the proposed Craters Detection Algorithm
In the proposed craters detection algorithm, the authors used the original image (3D optical image) of the moon’s surface. Originally, this image is a coloured image. For pre-processing step, the authors invented a colour conversion technique which started/originated from RGB (red,green,blue) image to HSV (hue,saturation,value) image using rgb2hsv function in MATLAB. Converting the RGB image to HSV image is basically the transformational of colours from RGB space into HSV space. Value (brightness) gives the amount of light in the colour; hue describes the dominant wavelength which determines the colour type while saturation indicated the vibrancy of the colour. The vital reason for this colour conversion is that the authors want to analyze only one of the entities that is Value entity in HSV component range 0(tend to be dark) to 1(tend to be light) which is then further used in the thresholding calculation. Besides, HSV plane is more popular in analyzing images because of its similarities to the way human intends to recognize colour. RGB and CMYK (Cyan, Magenta, Yellow and Black) colour models are additive and subtractive models respectively, defining colour in terms of the combination of primary colours whilst HSV encapsulates information about a colour in terms of its familiarity to the human adaptation such as; what colour is it? How light and dark the picture is? Or what is the colour vibrant?
For thresholding purposes, a similar approach as Sawabe et al’s [13] has been implemented and is discussed thoroughly in the technical section. The purpose of applying a threshold is to distinguish the craters on the moon’s surface to light and dark patches groups. Thresholding is the simplest method of image segmentation. This segmentation procedure is to classify the pixels into object pixel (light and dark patch) and non object pixel (background). In this classification of images, it is clearly seen that a crater is formed by two different patterns that are light and dark patches under a different angle of sun beam. The authors use this property of craters in order to analyze and detect them on a lunar’s surface. These light and dark patches pattern is distinguished based on the values of pixel’s intensity for both images. For an instance, alight patch is determined by a pixel value that is below the threshold brightness calculated whilst a dark patch is determined from a pixel by a pixel value that is above the similar threshold brightness calculated.
Furthermore, in morphology image analysis, erosion and dilation is applied as a combined analysis to the tested image. These two operations can be described simply in terms of adding or removing pixels from the binary image according to certain rules which depend on the pattern of neighbouring pixels. Erosion removes pixel from features in an image or equally turns pixel OFF that were originally ON [20]. Fundamentally, erosion can entirely remove extraneous pixels representing point noise or line defects which are only a single pixel wide. The image that is processed using erosion and dilation are shown in Figure (9) below for better visualization. These two methods are discussed entirely in the experimental results section (craters detection algorithm results) later. Another method is called dilation, which is widely used to add pixels. The dilation rule is that for erosion, is to add (set to ON) any background pixel which touches another pixel that is already part of a foreground region [20]. This will add a layer of pixels around the periphery of all regions which results in dimension increment and may cause images to merge or expand.
In centroid determination, the authors use ‘regionprops’ function to get every centre for each light and dark blob classified previously. After that, the authors then have to link the blobs together in a single picture. As a result, the final image will comprise a group of clusters or patches that correspond to craters on the moon’s surface. These groups of blobs (light and dark patches) will then be used to measure the minimum distance and angle between each of them. First, the algorithm will calculate all the distances of every patch and will pick only the minimum distance. The light patches with minimum distances that are attached to the dark patches will be considered craters as a first step. Second, every angle between the known input sun vector and pairing patches vector is calculated using a scalar product or dot product. Technically, all these methods will be elaborated further in the technical section and experimental results section.
In the geometric analysis, there are several stages that can be determined as Figure 5 below:
Flowchart of Geometrical Analysis
Users must consider a crater as an ellipse in a real image. This method of consideration will convert an ellipse in a 2D image into a circle on a plane using Conical Projection Analysis. Any ellipse will appear to be a circle from a certain point of views. In other words, an ellipse will be projected into a circle at a certain projection point. At the final stage, this method will be able to calculate the orientation and position of a crater (disc in shape) that is being detected before through the proposed detection algorithm.
Mathematically, an ellipse can be defined as the locus of all points on the plane whose distances R1 and R2 (as Figure 6 below) to two fixed points added to the same constant and can be notified as:
R1 + R2 = 2a
where a = semi major axis and the origin of the coordinate system is at one of the foci (-c,0) and (c,0). These two focis are chosen to be identical with the bounding ellipse algorithm equation. It is sometimes defined as a conical section from cutting a circular conical or cylindrical surface with an oblique plane. There are five vital parameters in ellipse including semi-major axis denoted as a, semi-minor axis denoted as b, centre, c of ellipse in X-coordinate, Xc, centre of ellipse in Y-coordinate, Yc, and an angle of rotation denoted as ω. The ellipse with all the parameters can be illustrated as below:
Ellipse
An ellipse that lies along the horizontal X-axis with foci points F1 (-c, 0) and F2(c, 0) as can be shown in Figure (6) above, will have an equation of
x2/a2 + y2/(a2-c2) = 1 where a > c for the ellipse
For an ellipse, the distance c between the centre and a focus is less than the distance a between the centre and foci, so a2-c2 is positive and a new constant b>0 is introduced by setting [2]:
b2 = a2 – c2 for ellipses
Hence the equation of an ellipse with F1 (-a, 0) and F2 (a, 0) is simplified to
x2/a2 + y2/b2 = 1 where 0 < b < a
For both the hyperbola and the ellipse, a number e, called the eccentricity is introduced by setting [2]:
e = c/a or e = √ (a2-b2)/a
In this mathematical and geometrical analysis, the authors started to brief in ellipse equations and rotation matrix first which are going to be analyzed soon in the bounding ellipse algorithm and for the reconstruction of ellipse to a circle on a 2-D plane. These methods are beneficial to determine the orientation and the position of the spacecraft during Entry, Descent and Landing (EDL) applications. In this case, the rotation matrix for an ellipse can be illustrated as Figure 4 below:
Rotation Ellipse
In S frame as in figure 7 above, it can be shown/demonstrated that using a standard ellipse equation, the x” and y” can be expressed as
(x”)2/a2 + (y”)2/b2 = 1 where 0 < b < a
Where
and
After substitution of these three vital equations, new formula for the rotation ellipse, which is also the bounding ellipse equation:
Again, the rotation ellipse can also be expressed through this formula:
Where
Thus, by comparing the equations of 12 and 13 above, the authors express all the ellipse parameters a,b,c (Xc and Yc) and ω in terms of this
Furthermore, the other two ellipse parameters Xc and Yc values can be determined straight away from the bounding ellipse algorithm.
This is the first method used in the geometrical analysis and the reason of using it is to get the bounding ellipse around the targeted patch. This is further used in a final stage of this section that is reconstruction or projection of the ellipse to a circle in a 2-D plane. The bounding ellipse takes five inputs of the ellipse parameters described previously, which are semi-major axis a, semi-minor axis b, centre of ellipse in x-coordinate Xc, centre of ellipse in y-coordinate Yc and rotation angle ω. These five parameters are embedded in the A matrix produced by this algorithm as an output along with the Xc and Yc values. In order to draw the bounded ellipse the authors need to express all those ellipse parameters in terms of the entities
Where:
B = is the radius of a disc (craters that the authors model as a disc)
α= is the arc length of the semi-major axis
β= is the arc length of the semi-minor axis
This is the reconstruction or projection ellipse equations where the authors consider an ellipse as a half-length along the axis symmetry, which is taken to 0 that is A=0. In this case, the authors need to model the crater bounded as a disc. That is the reason for the half-length along the axis symmetry A, is taken to 0. A in this case is not the attributes of the matrix determined previously. The authors have to deal with those two equations above where as can be seen the equation
There are different mathematical equations and fundamentals applied during this project development. In order to make the project runs smooth as planned; the authors have divided the logical structures of the project into three different sections:
This project involved the development of the detection algorithm using MATLAB image processing tool and an image of the moon’s surface. It is mainly based on the binary image and morphological image analysis. At the first stage, the authors introduce the concept of HSV (Hue, Saturation, and Value) as well as morphology image investigation such as dilation and erosion to exploit the real image. The Hue is expressed as an angle around a colour hexagon mainly using the real axis as 0° axis. The Value is measured along the cone and has two different conditions. If V=0, the end of the axis is represented by black and white if V=1at the end of the axis is represented by white [4]. The Saturation is the purity of the colour and is measured as the distance from the V axis looking at the hue, saturation and value hexagonal cone.
The HSV colour system is based on cylindrical coordinates. Mathematically, converting form RGB (Red, Green and Blue) image to HSV is actually developing the equation from the Cartesian coordinates to cylindrical coordinates. To reduce the complicatedness of analysis on image detection, the authors analysed a 2-D optical image. The threshold for the image is set using intelligent approach from Sawabe, Natsunaga and Rokugawa in classifying the images as can be shown in equations (20) below. By using this approach, images were classified into two components that are light and dark patches or obviously known as ‘sunny and shady patches’. Ideally, these two groups of patches are easily recognizable if the image was taken under low sun elevation. These patterns of light and dark patches were detected when all these equations [13] are satisfied:
Rmin<Rm -
Rmax>Rm +
Pmin<Pmax
Where Rmin indicates the minimum pixel value, Rmax indicates the maximum pixel value; Rm indicates the average pixel value and indicates the standard deviation in the small area including the targeted patches. Pmin and Pmax indicate the positions at the minimum and maximum value pixels from the direction of the sun radiation or sun vector [13].
Apart from that, there are two basic fundamentals on morphological operation applied in the algorithm which are dilation and erosion. Dilation is an operation that grows or expands objects in a binary image. This can be represented by a matrix of 1’s and 0’s but usually it is convenient to show only the 1’s group. The dilation between two images A and B, is denoted by A B and is defined as [1]:
Nevertheless, erosion shrinks or thins objects in a binary image, which is the opposite case of the dilation operation. The mathematical definition of erosion can be expressed as [1] and the result of eroded and dilated image is shown in Figure 8 as below. This can be compared to the original image in Figure (9):
Image after dilation and erosion were applied
The previous stages are then followed by another image analysis methodology that is
To classify and consider this region of interest as a crater, the authors proposed two ways of detection which are minimum distance measurement and angle detection based on the known sun vector. In the distance measurement, the minimum distances between each of the centroids calculated previously are determined using this formula:
|Distance| = √[(x2-x1)2 + (y2-y1)2] = |r|
where |Distance| is the measurement of distance between two pairing patches (light and dark), x2 and x1 are the x-component of the centroids and y2,y1 are the centroid’s component of the y-axis respectively. In the angle determination, the authors give an input for the sun vector which is known by looking at the sunray effect at those craters (the position of the light and dark shades). This algorithm will then compute each of the angles of every pairing blob with their minimum distances to the sun vector added input using scalar product or dot product in the vector analysis which is:
Where r = vector of each pairing blobs
s = sun vector
|r| = distance/length of each pairing blobs
|s| = distance of sun vector = unit vector = 1
θ = angle between sun vector and vector of each pairing blobs
Each of the pairing blobs angle is calculated using the above equation and those who has a minimum angle to with known sun vector and has a minimum distance calculated previously will be considered and stored as a crater. Oppositely, those who are against the direction and have the maximum angles to the sun vector will be scrapped and considered noise. At the end of these two measurements (distance and angle), the authors managed to get the best eight craters using this reliable craters detection algorithm.
The geometrical part is mainly based on the mathematical analysis on vector calculus, the rotation matrix, ellipse equations and also the mathematical applications to determine two major features that is the orientation of a crater that has been modelled as a disc and the position of the disc after projection. These two features make a vital solution to have a safe landing on the moon’s surface. Firstly, from the previous codes, the authors choose one of the best eight in a crater’s list to run a bounding ellipse algorithm around the targeted crater. The bounding ellipse algorithm input the P matrix which is composed from the targeted crater itself. The tolerance of the bounding image is set to get more precise result. As discussed above in the methodology section, the output of this algorithm will be the A matrix and c, the centre of the ellipse. A matrix is in the form of
First, the input of this algorithm is the five primary parameters of the ellipse that are a, b, Xc, Yc, ω, the half-length of the semi major axis is denoted as capital A, and the half-length of the semi-minor axis is denoted as capital B. This reconstruction vision is to model the craters or projected ellipse as a disc. Mathematically, the concepts are adapted by taking the focal point as an origin of a camera frame and the x-axis is aligned with the focal axis of the camera and x > 0 is what the camera is looking for. Furthermore, the image plane is always assumed to be in front of the focal point rather than those in practice. Taking this objective into account, the half-length of the semi major axis A is taken to 0 because it is a disc. In comparison, the half-length of the semi-minor axis B is actually the radius of the crater or a disc. This reconstruction or projection ellipse algorithm is based on Stephen’s proposed complex method on reconstruction spheroid. The authors will use the equation 17 previously to determine the orientation of a disc or crater that the authors modelled from the reconstruction algorithm.
In this section, some experimental results are reported which were obtained by applying craters detection algorithm. In particular, the authors choose real images (optical images) of the moon’s surface and develop the codes mainly based on the binary image analysis and morphological techniques. As mentioned before, this is the independent algorithm which does not depend on the data elevation map as well as past and future imaging data, which is the advantage compared to other detection algorithms proposed previously. There are seven stages to develop this algorithm as mentioned in the methodology (refer to the flowchart). The authors will discuss the results from the first stage until the last stage by attaching the result image for a better view and understanding of the concept used for analysis.
Erosion and dilation are two fundamentals in Morphological Image Analysis. In Figures 10 and 11, the erosion and dilation are experimented in a combined process for dark patches and light patches. For an ideal result, the authors just used the eroded image for both light and dark patches by adding them together in a single picture for centroid detection later. If the authors take consideration of both the dilation and erosion process as a combined process, the image itself will produce too much noise as shown in the figure above. For centroid determination, therefore, the authors want the noise to be kept at a minimum level in order to attach valid pairing patches and in order to produce minimum small blobs or patches that do not have their pairs (light and dark patch). This is also to reduce the processing time (running time) and complexity of centroid calculation.
Real Image of Craters (Optical Image)
Erosion and Dilation for dark patches
Erosion and Dilation for light patches
Threshold Image
Secondly, after converting the RGB image plane to HSV image plane and taking into consideration only the ‘
Centroid Determination using ‘regionprops’ function
Centroid determination stage is completed by using the ‘regionprops’ function in Matlab and this is basically to compute the desired region properties or targeted properties. This step also attached the pairing patches together to form a complete crater for further analysis. Regionprops only takes the label matrix as an input. Therefore, the authors have to pre-process the image by labelling it first using ‘bwlabel’ function along with regionprops function later. In MATLAB, bwlabel is used to label the connected components in binary image and bwlabel also supports the 2-D inputs only. After labeling the entire target then only the authors can use them in a memory with regionprops. Regionprops takes this labelled component as an input and return them with an image of centroid determination labelled as a cross (*) symbol as in Figure (13) above. For a smoother image, the authors apply another function in MATLAB called bwareaopen to remove all of the unnecessary objects or all connected components (objects) that are fewer than P pixels set, producing another binary image.
The final stage of this craters detection algorithm is minimum radial distance and angle calculation. The authors have tested the algorithm with two different image conditions (different sun angles and background noises). According to the algorithm, the authors can select the number of craters to be detected by the system. The users can choose how many craters to be detected by the system based on the original image taken. As for this case, it will select the eight best craters that satisfy the minimum distance and angle conditions by assuming that the sun direction is known. An image of the landing site on the moon’s surface has to be captured first and the amounts of craters needs to be detected are calculated manually. Based? on the original image, the authors have assumed the sun direction by identifying the shade and sunny pattern locations that formed the craters If the image has less than eight craters, then the system will choose the maximum number of craters on the image. If one deals with the image with many craters, he/she can choose any number that he/she wants to detect based on the original image, which has to be captured first prior to the detection. Although sometimes the system will detect the craters with wrong pairing patches (light patches connected to the wrong dark patch and vice versa) the Lander should understand that one of them might still be one of the hazards that have to be avoided during landing application. The radial distance is calculated for each of the pairs detected in green lines as in Figures (14) and (15) below and using the equation (23) and, the shortest distance between adjacent pairs (light and dark patch) is chosen as a preliminary result for further angle calculations.
After the light patches were connected to the dark patches with a minimum distance between them, then the system will calculate the minimum angle by inputting the direction of the sun (assuming that the authors know the sun’s angle) and later comparing it with the pairing patches angle using the dot product (equation 24) as has been thoroughly described in the methodology section. By taking into account both techniques (minimum distance and angle), the authors can determine the best craters that they want on an image. The final craters detected will be denoted in yellow lines as shown in Figures (14) and (15) below.
Ideally, this algorithm will work on any images that have a clear pattern of light and dark patches and the authors do not even have to know the important parameters such as radius, gradient and etc of the craters. Unfortunately, this algorithm will work effectively on the image that has a clear pattern of these light and dark patches only. A crater with a clear pattern in this context will have clear features of light and dark patches that constitute one crater. To determine the accuracy of the algorithm created by the authors, the authors will provide a figure taken from two separate images tested by this algorithm. The final results have to be compared with the real image in order to determine which craters are true. In a real scenario, all craters detected will be considered hazards even though they are connected to the wrong pair of light or dark patches.
Comparing the results taken from Image 1to the original image (real image of the moon’s surface), there are eleven valid craters or true craters after pre-processing (after erosion and noise reduction (
Based on the original Image 1 as can be illustrated in Figure (14) below
Sun direction: 10 degrees
Manual Detection (number of craters after pre-processed): 11
Automatic Detection (number of craters detected): 8
8/11 x 100 = 73% accuracy
Craters detected from Image 1 in yellow line based on distance and angle measurements
Based on the original Image 2 as can be illustrated in Figure (15) below
Sun direction: > 10 degrees
Manual Detection (number of craters detected after pre-processed): 10
Automatic Detection (number of craters detected): 8
8/10 x 100 = 80% accuracy
Craters detected from Image 2 in yellow line based on distance and angle measurements
In Figure (15) above, yellow lines, which denote as craters are detected with a minimum distance and angle detection while green lines, which denote as craters are detected with a minimum distance only prior to the minimum angle detection. This angle detection will be a final stage in defining the craters based on the light and dark patch pattern (sometimes denoted as sunny and shady parts) and the final craters are those with yellow lines. By comparison, the accuracy of the algorithm based on these two images with different types of craters, angle (Sun) and lighting condition is said to be 77% and it is quite a satisfactorily accurate.
This accuracy factor can be improved if the authors know exactly the sun elevation angle since in this research; the authors just assumed the angle and the value is not really accurate. In a real application, this sun angle can be measured separately using the satellite, altimeter or radar prior to this detection process and the value will be more accurate. Besides, this algorithm will detect the craters that are above 0.0265 meters in image size (100 pixels). This can be vouched by using the ‘
In the geometrical analysis section, the authors start with the bounding ellipse algorithm using the information from the previous proposed craters detection algorithm to bound the targeted blob as shown in Figure 18 above. The blob is selected randomly from the true craters detected by the detection algorithm such as in figure (16) above by labelling the targeted output using ‘
Targeted blobs chosen randomly from the matched true pairs in distance and angle measurement using bwlabel function.
After the authors obtain the bounding ellipse around the targeted patch as in shown in the figure below, the next step is to reconstruct the bounded crater using ellipse reconstruction algorithm. As a result, the authors will get a circle which suggests that the camera is pointing straight vertically to the lunar’s surface.
Bounded crater using bounding ellipse algorithm and Image plane ellipse algorithm in green circle line
As can be seen in Figure (17) above, a circle, instead of an ellipse, appeared after the authors ran the bounding ellipse algorithm along with the image plane ellipse algorithm. This is because the semi major axis a is actually similar to the semi minor axis b, so a circle is produced. In fact, this means that actually the camera is pointing down vertically straight to the moon’s surface providing an angle of around 90 degrees relative to the moon’s surface. Next, the reconstruction ellipse algorithm took the input of a, b, centre (Xc,Yc), A, B and produced the output of the orientation
This algorithm is about to model a crater as a disc and reconstruct an ellipse to a circle in 2 dimension (2-D) plane in order to determine the position and orientation of a crater relative to the spacecraft. For the first case, the authors used a real image which is an optical image. To realize the above purposes, the authors have assumed several altitudes from the spacecraft to the moon’s surface. As mentioned before, after the authors performed the bounding algorithm and drew the bounding ellipse on a particular targeted crater, the authors have an image of a circle that bound a targeted crater rather than an ellipse, and therefore the authors have an assumption that the camera on the spacecraft is pointing vertically, almost 90 degrees from above in angle if measured from a flat lunar’s surface. From bounding ellipse algorithm, the authors have determined the image plane ellipse parameters and the results show that the semi-major axis,
In real applications, the lunar’s surface is not flat, and the crater is not straight below the camera. In this case, the authors had determined a circle in bounding ellipse algorithm that bounds a certain target; hence the authors made this assumption as the above figure. By looking at the figure above, the focal axis line is not really parallel to the centre of the disc hence the perspective distortion would have an effect as being described further in the next section. When the authors set A = 0 it is important to bear in mind that the ellipse will become a disc and this means that
In a real situation, the altitude assumptions above are measured prior to the landing purposes. This altitude is usually measured by the altimeter or the satellite. Before the authors can construct the position a disc, they must determine the orientation first. This orientation and position of the disc is obtained from the equations (18) and (19) previously. As being mentioned before, the orientation equation is free from the term B and can be determined fully from the reconstruction algorithm. The orientation of the disc can be described as a unit vector that gives the direction of the centre of the disc. It is a positive value since the crater can be seen positioned upwards rather than downwards (negative side).
An ellipse will be detected on the image plane for each disc that is visible on the camera’s view. For each ellipse detected, there will be two discs reconstructed in 3-D space in terms of its orientation and position as well; one is pointing away from the plane which is a true direction while the other will be pointing in the wrong direction. As can be seen in the result above, the authors have the orientations of (1.0000,-0.0000, 0.0000) and (1.0000,-0.0049,-0.0007). This ambiguity case can be removed by taking into consideration that from a camera’s perspective, a disc will only be seen if they are orientated upwards (positive values) rather than downwards (negative values). So, using the information above, it is clear that the image plane is one unit away (P (1, 0, 0)) from the origin (of a camera at the spacecraft) which is the orientation of the spacecraft itself. The readers should be also reminded that in this case, the orientation vector is the unit vector that gives the direction of the centre of the crater. Hence, this orientation vector is also considered the normal vector of the crater that is pointing upward.
As can be seen in this second solution of these orientations, there is an error when the authors calculate the vector unit of this orientation which has to be 1. One of the drawbacks when the authors use MATLAB is that it will always round the value, for example 0.99995 to 1. That is why those (1.0000,-0.0049,-0.0007) values when squared, summed them all and squared root them back, the authors will have more than 1. By theory, this value should be 1 and the reason for this error is maybe due to MATLAB that has rounded the value of 1.0000 that lies on the x axis.
Furthermore, in order to evaluate the error of the ellipse that the authors reconstruct, the ellipse itself has an error on the image. This is because of the digitization of a real shape that has an inherent loss of information c compared with the original shape. One should notice that there is no possibility that the original ellipse can be recovered from the digital ellipse but the errors can be optimized by increasing the picture resolution of an image. If the image is unclear or has a poor resolution, the authors can pre-process the image to reduce the presence of noise in the original image by using a smoothing technique [9]. This smoothing technique is carried out by implementing the low-pass filter to the original image. The main purpose is to attenuate the high-spatial frequencies by keeping the low spatial frequencies of the signal strength [9].
Besides, what cause the error are the uncertainties that appear from hardware (altimeter, satellite, or radar), software (MATLAB) and also the landing site topography itself. In a real situation, the sensor noise that comes from the altimeter also has to be considered a noise as it will affect the accuracy of the results determined by the system.
The higher the successful detection rate is, the lesser the false alarm rate will be. When the detection rate is 80%, the false alarm rate is just 17% whereas for the detection rate of 73%, the false alarm rate increases to 25%. The authors have plotted the graph of successful rate detection versus the false alarm rate as can be shown in Figure (18) below. The FAR (False Alarm Rate) is the percentage of non-signals that were detected as signals (craters) and is calculated based on the number of false alarms and the correct-rejections which can be formulated as [19]:
FAR = Num. Of False alarms/(Num. Of False alarms + Number of Correct-Rejections)
The number of false alarm in this case can be referred to as a signal that was not presented but was mistakenly detected by the system whilst correct rejections can be referred to as a signal that was not presented and not detected by the system at all. The lesser false alarm rate in the system is, the better the system/algorithm will be. The main reason that brought these false alarms is the assumption of the sun angle that will lead to a faulty detection of true crater pair (true light patch connected to a true dark patch) hence will decrease the accuracy of the detection rate.
As in any true scenario, an image has to be captured first before the system can detect the safe landing sites that are free from hazards (craters). As mentioned before, this algorithm is assuming that the authors know the sun’s direction and will be using the sun angle as one of the steps to detect the craters on the moon’s surface. But, there will be some errors when the authors assume the sun angle without knowing its true direction. This assumption will affect the algorithm to pick up the wrong pairs (light patches will be connected to wrong dark patches and vice versa). Nowadays, the authors can obviously determine the sun elevation by many ways from the satellite system or LIDAR.
Relationship between successful detection rate and false alarm rate for the proposed craters detection algorithm
This algorithm is not effective on a noisy image with lots of tiny craters, undesired features that look like a crater, the craters’ rims which are overlapping and segmented as well as a blurry image. Besides, an image with a too high or too low of sun elevation angle will make the system unable to differentiate the pattern (the light and the dark patches/blobs) and thus, influence the craters to be rarely detected by the system/algorithm. The algorithm will work accurately/efficiently with a sun elevation angle between 10 degrees to 50 degrees based on the experimentations under different image conditions earlier. With noisy image, the only way to reduce the tiny blobs is by using the function in MATLAB called ‘
Low detection of craters by the algorithm because of too many unnecessary blobs (tiny blobs)
However, for the advantages, the algorithm itself can detect the craters without knowing the main parameters such as the size (radius/diameter or the gradient of the craters). It is an uncomplicated detection algorithm and has a fast detection performance. Under a clear image (low noise, good lightning condition and ideal sun elevation angle) where the pattern is easily distinguishable, the accuracy will be much higher. Besides, the craters detection is independent of the shape detection whether it is a circle or an ellipse.
In comparison to other techniques in terms of performance, this craters detection algorithm also has an understanding performance in terms of accuracy measurement to the previous algorithm proposed by Sawabe, Matsunaga and Rokugawa in 2005. As highlighted and calculated above, it is proven that the craters detection algorithm has an accuracy detection of 77% based on the two images tested above. This understanding percentage measurement is based on how much craters are detected compared with the pre-processed image as in Figures (14) and (15) above. The detected craters are measured from groups of pairing patches (light and dark) with minimum distances and angles detection.
This proposed craters detection algorithm by the authors can be improved by introducing more approaches like edge detections of each crater and evaluating more techniques from the morphological image analysis. To experiment more with the image morphology, the authors have tested the edge detection method using
Edge detections using ‘prewitt’ detector
In comparison to the multiple approaches craters detection and automate craters classification algorithm proposed by Sawabe, Matsunaga and Rokugawa in 2005, the algorithm has an accuracy of 80%. Four approaches are implemented in the craters detection algorithm to find shady and sunny patters in images with low sun angles, circular features in edge images, curves and circles in thinned and connected edge lines and discrete or broken circular edge lines using fuzzy Hough transform. In this particular research, they have considered a crater as a circle and used circular Hough transform to detect circular feature of a crater. The detected crater is then classified by spectral characteristics derived from Clementine UV-Vis multi-spectral images. Although it has more percentage of accuracy compared with the algorithm proposed by the authors, it has a limitation such as the crater has to be assumed to be a circle before it can be used to detect a crater. If the authors have an ellipse in the image, then it will be difficult to use this method of detection.
Edge Detection using ‘canny’ detector
Previously, there were quite a number of craters detection algorithms using Hough Transform especially using circular features detection as proposed by E.Johnson, A.Huertas, A.Werner and F.Montgomery in their paper [7]. As emphasized above, a camera will capture an ellipse if the image is taken from a certain angle and certain distance relative to the moon’s surface. An ellipse will have five dimensions that have to be considered in the Hough algorithm when detecting shapes. An ellipse is more complicated to be detected than a circle because a circle just has 3 dimensions to be considered. It will certainly have a complex codes hence will take a longer time to construct. That is the reason why the authors have created an uncomplicated and robust algorithm in detecting hazards mainly craters on the moon’s surface for easy implementation.
To test the algorithm with various image types, the authors have created a two dimension (2-D) image as given in Figure (22) using Adobe Photoshop with its axis of symmetry of a half-length A=0 (to model it as a disc) and degenerate axes of a half-length, B=48. The objective is to determine the position of the centre of the disc reconstructed from the reconstruction algorithm and to compare it with the known centre position determined by the Bounding Ellipse Algorithm. The ellipse created has a position of q = (168.5469, 140.0172).The image generated is 494x494 pixels. The image plane ellipse determined by the Bounding Ellipse algorithm is described as:
a = 133.998 pixels
b = 48.934 pixels
Xc = 168.5469 pixels
Yc = 140.0172pixels
omegha degrees, ω = -0.0017 degrees
Artificial Image in 2-D created using Adobe Photoshop
To centralize the coordinate system and scale the image, it requires a translation of half of the image dimensions. The reconstruction algorithm is then used to determine the position and orientation of the modelled disc after taking into account the camera’s parameter as below:
The ellipses generated in Figure (23) above will undergo the same process as the authors performed on the real image (optical) previously using the same method of detection. For the reconstruction results, the authors will be judging two planes namely plane y and plane z to determine the position of the disc reconstructed. This is because, as being set in the algorithm, the centre coordinate of the 2-D plane is at [Zc,Yc]. Thus, the results of the position of the disc will be analyzed in two dimensions only namely Zc and Yc. This reconstructed position will be compared with the centroid’s position calculated by the bounding ellipse algorithm. At the end of the experiment, the results from the reconstructed algorithm are satisfactory and similar to the results from the bounding ellipse algorithm. The positional error evaluated for both two solutions are shown in the table below. The one which has a low error will be taken as a true position. As can be seen in the results below, the positional errors are quite high from both solutions that are 8.8722 and 8.8715. Therefore, the authors take the solution 2 as a disc reconstructed position.
Artificial image of ellipse processed using minimum bounding ellipse with Khachiyan Algorithm
The positional errors are evaluated as shown in Table (3) below. Unlike before, the causes of the errors in the disc position are something similar to what were discussed in the previous 4.1.2.4 section. The positional error can be in any circumstances such as pixellation, the bounding ellipse algorithm error, MATLAB rounding figures as described before, uncertainties from the hardware and the like. These are the reasons why the authors tend to have quite a high number of errors on the position determination part. Besides, when the authors have the ellipse that is too eccentric, both the outputs of the reconstruction algorithm will become complex.
The ellipse bounding algorithm also has an error in bounding the targeted patch. As can be seen in the Figure (26) above, the targeted ellipse is not totally bounded by the red lines and this will affect the output of the image plane ellipse parameter such as semi major axis and semi minor axis. Hence, these parameters will also affect the output of the reconstruction algorithm and will cause errors in the disc’s position. In practice, the way to overcome this problem is by reducing the eccentricity of the image plane ellipse or by increasing the eccentricity of the spheroid to be reconstructed. The results of this disc reconstruction algorithm are shown in the table below:
Position, q Taken A=2; B = 6 ; | Xc = 163.2225 Yc = 147.1142 | Xc = 163.2224 Yc = 147.1137 |
8.8722 | 8.8715 | |
Orientation, p Where A=2 and B=6 | 1.0000 0.0038 0.0016 | 1.0000 -0.0085 -0.0036 |
Reconstruction algorithm results for disc position tested in artificial image
As for the orientation part, the authors will take the positive one which has to be (1.0000, 0.0038, 0.0016) similar to those in the real optical image. As discussed before, the orientations for the crater will only be seen if they are orientated upwards (positive values) rather than downwards (negative values). Therefore, after taking into account the above condition, the authors can eliminate the negative orientation. Further, the evaluation of error in the orientation part is similar to the one with the real image as discussed in previous section.
This paper focuses primarily on the identification and detection of craters on a lunar’s surface. To realize these goals, an algorithm to detect craters which happen to be the main hazardous features on lunar is proposed. The authors divided the evaluation of this algorithm into a flowchart as presented in the methodology section. First, using the original image of craters on the moon’s surface, the authors convert the RGB image plane to HSV image plane and analyze only the Value parameter of a HSV plane. Further, the thresholding is applied to the image for classification using this Value and thresholding approaches by Sawabe et al. After these classifications of images between light and dark patches, the authors have labelled them and determined the centre of each patch using ‘regionprops’ function. This stage is then followed by a vital stage in determining the best craters of all using two proposed methods: the minimum distance determination and angle measurement. This is a new and simple method proposed by the authors in detecting craters as main hazardous features on the moon’s surface.
For precise moon landing, the authors then proposed the geometrical analysis consisted of projection or reconstruction of the ellipse to a 2-D circle on an image plane. At this stage, the authors applied the bounding ellipse algorithm as a first step in modelling a crater as a disc. The authors then calculated all the ellipse parameters using the information embedded in the output of bounding ellipse algorithm, then drew the bounding ellipse around the targeted patch. This output will then be used in ellipse reconstruction algorithm in order to get the orientation,
There are some limitations that have to be stated here for further extension and modification. For the craters detection algorithm, it is dependent on the sun angles and these assumptions will lead to an error of detecting a true pair (light and dark pairing patch). In addition, there are uncertainties as discussed before from the software (MATLAB) and the hardware itself in a real application (altimeter to measure the altitude). The Hough method seems to give more precise results but have a constraint in the shape of a crater itself. For an instance, the reconstruction needs to analyze a crater as an ellipse model instead of a circle. In Hough ellipse transformation, the authors have to analyze the ellipse in 5 dimensions instead of 3 dimensions in a circle. These limitations make the Hough Transform method to be unreliable and make its computational method a burden to use together with this craters detection algorithm
For future works, this useful research can be extended to a crater pattern matching as described in the Literature Review section above. Craters Pattern matching is proposed by previous researchers to attain the position and velocity estimation of a spacecraft and a Lander during Entry, Descent and Landing (EDL) purposes and also for autonomous precision landing purposes. By making a pattern matching, one can get the differentiation between the position determined by the pattern matching and those from the reconstruction algorithm. The errors in the crater’s position between these two methods can be evaluated to determine which is better in a real application. In reality, the lunar’s surface is not flat and the camera parameters will not usually estimate perfectly. The image does require scaling, but the true amount is impossible to be identified without also knowing the camera’s specifications (focal length and field of view). In most cases, the picture is not usually taken straight at the centre of the image and perspective distortion will have an effect as discussed before. As none of these are true in real applications, the need of the reconstruction algorithm to find the position of the crater is high. The crater’s position determination and evaluation of this reconstruction algorithm were discussed in detail in the previous section. Then, the authors can determine the velocity of the spacecraft based on the position and the orientation of the crater. The idea is, if the authors can find the position and orientation in a single frame, then the velocities are the difference from one frame to the other one. Therefore, this research has a great valuable for future works. In addition, this research is a very worthy research indeed and has valuable benefits to any spacecraft missions in order to avoid the hazardous craters (feature proposed) and for a moon Lander to have a precise landing on a Lunar. Besides, the authors can compare the position determined using equation
Twenty years ago, the idea of superiority of cognitive behavioral therapy (CBT) was dominated in the evidence-based approach. The exponential growth in evidence-based research on psychotherapy had fundamentally changed the situation. Modern meta-analyses and systematic reviews indicate a lack of benefits in the effectiveness of various CBT techniques, psychodynamic therapy, and supportive psychotherapy for a wide range of posttraumatic, anxiety, and depressive disorders. Researchers note only the traditionally wide representation of the CBT methods, but do not indicate their therapeutic advantage, stating the reliable effectiveness of different psychotherapies [1, 2, 3, 4]. The effect sizes for CBT, psychodynamic therapy, relaxation training, non-directive therapy, self-evaluating therapy, mindfulness meditation, psychodynamic and metacognitive therapies, anxiety management training for generalized anxiety disorder (GAD) ranged from moderate to high (r = 0.76).
The distinct and comparable effectiveness of a wide range of psychotherapy methods stimulates researchers to explore the general, universal mechanisms of psychotherapy. In recent years, evidence-based studies of psychotherapy have gone beyond the standard for assessing effectiveness, switching to the study of the psychologic and neuronal mechanisms of psychotherapy. The number of studies of psychotherapy psychologic and neuronal (f-MRI-, s-MRI-based) mechanisms over the past decade has increased five times—for psychometric, and more than 10 times—for neuronal methods. Based on f-MRI-, s-MRI-based studies of the neuronal mechanisms, different psychotherapy methods have shown the involvement of brain areas responsible for self-awareness, self-regulation, regulation of attention, self-perception, semantic processes [5, 6].
Widespread methods of psychotherapy have a limited (40–100 years) life cycle: formation, development, maturity, decline, and loss of relevance. The methods of psychotherapy are grouped into psychotherapeutic approaches that are more historically stable in comparison with separate methods. The methods of psychotherapy, which became the basis for the formation of psychotherapeutic approaches, as a rule, live longer than others. Orthodox psychoanalysis [7, 8, 9, 10, 11, 12, 13] and A. Beck’s cognitive therapy [14, 15, 16] can serve as canonical illustrations. The historicity of the psychotherapeutic methods presupposes their involvement in the historical process, conditioned by social changes, while within the psychotherapy the personified narrative of its methods development dominates (one of the examples is the relatively recent history of Ericksonian hypnosis [17, 18, 19]).
Any developed and demanded method of psychotherapy creates and maintains hermeneutic semantic structure, explaining a person, disorder, and therapy. The problem is that psychotherapeutic hermeneutics of the methods are not consistent (for example, for psychodynamic and behavioral therapy), which does not affect the comparable clinical effectiveness of the methods.
The data of evidence-based studies of psychotherapy, the aspect of its historicity, comparison of the interpretative constructs of separate methods potentiate the search for common, universal mechanisms of psychotherapy, and their direct use in psychotherapeutic practice. Based on the above logic, in the late 1990s and early 2000s, the author elaborated the three-component, structural-dynamic theory of psychotherapy, which in the 2010s turned into the basis for development of the positive-dialog psychotherapy (PDP) method that underwent an evidence-based assessment, highlighting predictors of its efficiency.
Since human life is carried out on social, psychological, biological levels, then effective clinical psychotherapy will inevitably be systematically implemented at the same sociocultural, psychological, and biological levels. Therefore, the explanation of the general theoretical approach to psychotherapy will be based on a systemic analysis on the sociopsychological (cultural), psychological, and biological levels [20, 21].
The ethnocultural context, undoubtedly, is accepted by modern psychotherapy as traditional therapeutic practices, which partly are incorporated into modern therapies (an example of mindfulness meditation [22, 23, 24, 25]). Nevertheless, the interaction of society, culture, and psychotherapy methods, in which psychotherapy in any society develops in response to current social dynamics and requests, does not become a significant area of the research in psychotherapy. However, if the conditionality of psychotherapy by society exists, then it should manifest since the first steps of social life development, being realized in archaic forms of therapy.
Shamanism is a traditional religiosity worldview of the indigenous ethnic groups of Siberia [5, 6, 7, 8, 9], which exists from the Neolithic era. It is founded on faith in spirits and the existence of special intermediaries between the world of people and the worlds of spirits—shamans, who are elected by spirits and endowing with special abilities.
The shaman’s universe consists of three worlds: the “upper”—skiey, the “middle”—earthly, and the “lower”—underground. People inhabit the “middle” world, the spirits—"upper” and “lower.” The shaman possesses the helper spirits, which supports him in guarding his relatives from the life troubles. The shamanic ability is inherited, the transformation into a shaman occurs as a result of the “shamanic disease” [26, 27, 28, 29]. Shamans divided due to their supernatural capabilities into great and medium ones [26, 27]. Great shamans can visit all three worlds and possess the entire shamanistic practice arsenal. Medium shamans can visit only the middle and lower worlds. Siberian Yakuts divide the shamans into good and evil. Evil shamans—“eduns” are able to bring both benefit and harm, “eat” the “kut” (life force) of a person. The strength of the shaman is determined by the amount of helper spirits. The great shaman has helper spirits from all three worlds. Medium shamans have helper spirits from the middle and lower world.
The main reason of illness in Siberian shamanism is the abduction of the patient’s “kut” by spirits of the upper or lower world [26, 27, 28, 29]. Less often, an evil spirit infuses a person. The treatment’s goal consists in returning of the stolen “kut” or in expelling an evil spirit. The basic component of shaman’s therapeutic practice is the ritual of “kamlanie” [26, 27, 28, 29, 30], which consists of (1) divination and (2) therapeutic “kamlanie” ritual. The divination’s aim presents “causal,” “pathogenetic” diagnostics that includes: identification of the disease typology (mental, somatic); determination of its cause (abduction of “kut” by the spirit, or the introduction of an evil spirit); identification of “pathogenic” spirit’s “personality” and “domicile.” The “kamlanie” is night ritual, its duration is varied from several hours to several nights. The venue is the patient’s home. The patient, his relatives, and fellow villagers are becoming ritual member. During the “kamlanie,” shaman, striking a tambourine with a mallet, moves around the patient, dances, declares his own poetic improvisations on traditional themes. The script of” kamlanie” includes gathering the shaman’s helper spirits, diagnostics of disease, demonstration of the shaman’s supernatural abilities, communication with pathogenic spirits aimed at restoring the patient’s health, stating the results of ritual, and dismission of the helper spirits. Conducting the “kamlanie” shaman keeps in touch with the patient and the audience for potentiation of the ritual effectiveness, demonstrates his supernatural abilities (flying, sinking into the ground, bloodlessly inflicting wounds on himself, etc.). It is considered that during “kamlanie” shaman develops controlled trance keeping full contact with the audience [27]. In case of abduction of the patient’s “kut” by spirits, the shaman travels to the upper or lower worlds during the “kamlanie” and, if successful, takes away, redeems the “kut” from the abductor, leaving them something in exchange, and returns the “kut” to the patient [26, 27, 28, 29]. The details of the ritual journey are described by the shaman in his chant to all participants, who react vividly to what is happening, often becoming trance witnesses of the shaman’s journey and support him.
The results of “kamlanie” are distributed in the range from patient’s recovery, temporary improvement, to lack of effect, and worsening of the condition. The absence of a sufficient effect indicates the need for repeated “kamlanie” by the same shaman, or addressing to another, more experienced and powerful [27, 28].
As an example of therapeutic ritual of primitive farmers, let us analyze the Ndembu (Africa) isoma ritual described by V. Turner, the goal of which is to cure women infertility [31]. Infertility is caused by too strong connection of a married woman with the “male side,” for which a deceased relative of a woman on the maternal side harms her fertility. He goes to the headwaters of the river flowing near the matrilineal village and utters a spell—“chisaku,” which awakens the “shadow” of isoma, who comes to a victim in a dream in the guise of the spirit of Mwenga, whose clothes bind and block female fertility.
Ritual divination precedes the treatment. The isoma treatment contains: finding by the healers the burrows of a rat near the river where the isoma spell was pronounced; instillation of “medicines,” with the utterance of a spell; digging of “hot” and “cold” sacred pits connected by a tunnel, clearing the ritual space around; giving a woman a white chicken—a symbol of fertility, wetting spouses with “medicines”; passage of spouses from the “hot” pit to the “cold” pit through the tunnel; drinking beer by participants, sprinkling of spouses with “medicines”; decapitation of the red rooster—the destruction of “chisaku”; re-sprinkling of spouses with “medicines”; singing ritual songs of life cycle by adherents.
The worldview of the Russian peasantry of that historical period has a religious and magical basis [32, 33]. The Orthodox Christian shell is saturated with the pagan, ritual-magical content. The World consists of Heaven with Paradise, Earth, underground Hell. The world is ruled by the Lord God, the Lord of Hell is the Devil, Man lives on Earth. The world is full of supernatural forces of Good and Evil, good and evil spirits associated with the forces of Paradise and Hell. The Earth is inhabited by pagan spirits of nature, polarized between Good and Evil, or ambivalent. At the same time, earthly life presents the subject of the natural factors influences.
A person is able to directly appeal to God, angels, saints; however, without priests, part of the necessary rites is impossible. A person can directly appeal to the forces of Evil, but this interaction is improved due to intermediaries—witches and sorcerers. Influence on supernatural powers is carried out in the form of prayers, verbal ritual magic, subject-ritual magic. The diseases’ reasons are divided into natural and supernatural [33]. Natural reasons of illness: colds, physical overstrain. A cold is caused by general feeling of cold, it includes: rheumatism, fever, typhoid, erysipelas, pulmonary diseases. Physical overstrain generates such diseases as “navel disruption” (diseases of the musculoskeletal system, gastrointestinal disorders). The pathological process develops from outside to inside, if it penetrates deeply, a person will die. Therefore, it is necessary to move the disease out. Dissemination to inside occurs with blood flow; therefore, “bad” and “stagnant” blood must be “released.”
Supernatural diseases can be sent by God, as a punishment for sins, sometimes as a teaching. Fighting such diseases is useless. More often, diseases are sent by pagan spirits (leshiy, kikimora) or by the Devil. The Devil is the father of all diseases, diseases sent by the Devil are the most difficult to treat. Diseases can be caused by people mediating the influence of evil spirits (spoilage, evil eye, fright) [32, 33, 34, 35]. Evil eye can be sent by healers, sorcerers, witches [36]. Evil eye can be temporary, or permanent, until death. The incurable Evil eye can be removed by the sorcerer who sent it or by a stronger sorcerer.
A wide range of people are involved in magical, spell-ritual therapy: sorcerers, and witches, medicine men, holy elders, clergymen [32, 33, 34, 35]. Sorcerers and witches are intermediaries between man and evil spirits, the Devil. The magical action of the sorcerer and witch on man and nature is based on rituals and spells. Sorcerers and witches are capable of sending evil eye, triggering disease on people and livestock, causing adverse weather events. At the same time, they can treat diseases, especially those sent by them; however, this treatment, being effective, uses devilish power. The medicine men mainly serve as intermediaries between man and God, although in some cases they cooperate with evil spirits. Through spells and prayers, they have the ability to heal people and animals and send diseases. The healing function of the clergyman is based on exorcism. [33]. The holy elders, having a constant connection with the divine world, are able to realize direct and indirect (through prayers, rituals) harmonizing and healing effects on people. In the treatment by witchcraft and prayer, the therapeutic ritual uses spells—special formulaic texts.
Spells are generated by myths, being myth’s abbreviations, applications [37]. The general scheme of the spell and the myth: action—change (new state)—action, taking into account the achieved new state—the desired result. The spell formula has a complex semantic structure, is saturated with mythological and ritual symbolism, but is opaque, hidden from the healer and the patient [37]. For both the spell presents the mandatory formula that includes set of sacred magic symbols, listing them in the prescribed sequence provides the desired result.
If treatment is unsuccessful, its intensity should be increased. If the treatment with an appeal to God does not help, it is radicalized by an appeal to the Devil, an evil spirit (through an intermediary sorcerer).
The effectiveness of all considered archaic therapeutic rituals is due to: the way of life in a certain historical era; correspondence of magical action to the way of life at the given stage of social development; the presence in the mass consciousness, culture of the community of the initial knowledge about rituals and their action. For each historical era, magical action presents an analogue of life-sustaining activity. For collector and hunter societies, the most universal way of activity was the territorial movement, because only it could lead to the goal of obtaining food and maintaining life. In a primitive agricultural society, life became hand-made, manual labor—manual manipulations with objects provided life. With the advent of developed social institutions, the oral and written speech of the rulers, the carrier of verbal-symbolic action, began to play a decisive role in people’s life and therapeutic rituals.
The magical action in its historical development passed through analogic stages, manifesting in: the magic of movement in territorial space—flight of a shaman to the upper and lower worlds; manual-subject magic—rites of primitive farmers; verbal-symbolic magic spells. Such distinction is partly relative, since any magic is symbolic and already in the magical actions of the shaman all three types of magic are present as elements, but, nevertheless, their predominant representation in each case is different. The degree of participation of social group in the transition from shamanistic and agricultural therapeutic rituals to spells decreases, the magical effect from public becomes more and more individual.
The magical therapeutic ritual’s historical transformation, especially in the transition to spells, is accompanied by significant reduction, simplification of the ritual to a rather short verbal formula. The symbolism of therapeutic rituals during their historical transformation also changes significantly. The semantic content of the symbols of the ritual with the historical simplification of the form becomes more ambiguous, due to the absorption of the main symbolic constructs of previous rituals. Ritual symbolism develops from primary, concrete subject to secondary, universal, abstract-symbolic, replacing the multiple primary symbols of a given method of magical action with a basic symbol expressing the essence of such magical actions. In the process of historical development, ritual symbolism becomes increasingly incomprehensible to the performer and user of the ritual, which is most typical for spells.
The most important condition for the effectiveness of magical therapeutic rituals is the knowledge by all members of the community of the mythology of the world order, the nature of the disease and “therapist,” the scenario and, the possible outcomes of the ritual. It is obvious that ritual mythology is localized in the mass consciousness of the community, its culture.
Modern psychotherapy is represented by a great number of methods, grouped into three main approaches: psychodynamic, cognitive-behavioral, existential; the aggregate analysis of which in a single chapter is impossible. Therefore, in an extremely formal way, the iconic methods of Western psychotherapy (classical psychoanalysis, object relations therapy, cognitive therapy) and the Russian method of personality-oriented psychotherapy will be analyzed.
According to the mature Freud [7, 8, 9, 10, 11, 12, 13], the model of personality is represented by three components: Id (unconsciously biological, reduced to energy of libido), Ego (core of personality, constantly matching the requirements of Reality, Id, and Super-ego), Super-ego (social, formed in childhood on the basis of the Oedipus or Electra complexes and subsequently unchanged). The Id presents main motivational sphere, the Ego is its interpreter. Sexual libidinal and genital functions are separated. The libido in its development goes through the oral, anal-sadistic, genital stages, forming the Oedipus complex (the period of the son’s heightened attachment to the mother, with hostility to the father) or the Electra complex (the period of the daughter’s heightened attachment to the father, with the hostility to the mother). In addition to the libido, the Id includes the death instinct (Thanatos)—the desire for self-destruction, expressed in acts of hetero- and auto-aggression, the existence of the individual is a compromise between them. Personal anxiety is caused by pressure on the Ego of Reality, Id, Super-ego. The Ego is saved from the emerging stress through the mechanisms of psychological defenses.
Neurosis is the consequence of an unsuccessful defense process, the result of a weakening of the Ego’s strength due to the pressure of the Id and the dissipation of energy to counter this pressure, or neurosis is a conflict between the Super-ego and the Ego. The roots of neurosis are in early childhood. The goal of psychoanalytic therapy is to resolve the neurotic conflict, i.e., strengthening the Ego, its independence from the Super-ego, changing its organization, and expanding the field of perception with the possibility of a more complete mastering of Id.
Classical psychoanalysis includes the steps of: material production, analysis, working alliance. The main methods of material production are: free associations, transfer, resistance. Analysis of the patient’s material includes: confrontation, clarification, interpretation, study. The working alliance implies a rational relationship between the patient and the analyst, which makes the process of psychotherapy goal-oriented. Essential methods of psychoanalysis are also: the “rule of abstinence” and “the analyst as a mirror.” The “rule of abstinence” is based on the patient’s suffering in the process of analysis, and the suffering must reach such an extent that it becomes effective in work. The term “analyst as a mirror” implies a behavior in which the analyst remains “dark,” impenetrable to the patient, but not cold-heartless.
The development of psychoanalytic theory led to the formation of the theory and therapy of object relations [38, 39, 40], the distinguishing feature of which is the shift in emphasis from instinct to relationship. In order to understand an individual, it is necessary to understand his self-representations, ideas about objects and object relations. This inevitably leads to an understanding of the individual’s early relationships with the person who provided the main care for him. The individual, on the basis of early experiences, forms patterns, stereotypes that subsequently affect perception, thinking, feeling, and establishing relationships. Disturbance of the object relations of the developing Ego will determine the roots of all psychopathological conditions [41]. The main problem is the defect of the environment or the lack of sufficiently good maternal care. Therapy of object relations is built as a replacement therapy. It involves replacing bad objects with good ones. Its objective is to give the patient relationships in which the “frozen parts” of his Self would have gained the opportunity to develop, in which the impaired development would be restored, making it possible for the patient to reborn. The intervention requires a good relationship between the psychoanalyst and the patient. Therapy uses “good” personal relationships to eliminate the harm from early “bad” relationships [38]. Regression and transference analysis presents important components of the intervention. The psychoanalyst, with some delay, corrects that which initially failed to make the “insufficiently good” mother [38].
A. Beck’s cognitive therapy [14, 15, 16] explores the idea that the words and thoughts of people are of great importance. Along with conscious thoughts, unconscious, automatic thoughts are arising. Automatic thoughts consist of ideas that other people consider irrational (however, they seem quite reasonable to the person), as well as the rules and laws, according to which the person judges behavior actions and strategies. These rules can lead to non-adaptive actions. People react to events interpreting them depending on their influence on individual’s Self. The result of the interpretations generates various emotions. Interpretations containing a distortion of reality lead to emotional disorders, which are disorders of thinking. Disturbed thinking includes personalization of events, polarizing thoughts, applying rules in an unconditional manner.
Cognitive therapy aims to weaken emotional disorders by correcting false interpretations of reality and erroneous judgments. The therapist and patient establish a cooperative relationship with attention to solving problems, rather than correcting personal defects.
A. Beck with colleagues and followers has developed effective approaches to the treatment of depressive, anxiety, phobic, personality disorders.
V. M. Myasishchev, the founder of personality-oriented psychotherapy, [20, 42], defined personality as a social formation, a system of relations with people, forming in ontogenesis, in the given sociohistorical and economic, everyday conditions. Relations present a conscious, empirical-selective psychological connection of a person with various aspects of life, expressed in his actions, reactions, experiences. Relationships are characterized by: level of activity, the interrelations of rational and irrational, conscious and unconscious, stability and instability. From the psychology of relations’ standpoint, neurosis is a psychogenic, caused by conflicts neuropsychic disorder based on the disturbance of personality-significant relationships. The goals and objectives of personality-oriented therapy [20, 42, 43] are: the study of personality, the specifics of the patient’s relationship system; the study of etiopathogenetic mechanisms of the onset and preservation of a neurotic state; the achievement of patient awareness of the cause-effect relationship of a relationship system and disease; help the patient in a reasonable resolution of a situation; change in the patient’s relationship with behavior correction. The applied methods of psychotherapy are individual and group, using the mechanisms of group dynamics.
Preceding analysis of the methods of archaic magical therapy revealed several important points. Let us emphasize two: (1) the conditionality of the form and context of magical action and therapy by actual social life and ideology; (2) at the next step in the development magic ritual introjects and retains in a symbolic form, the previous magical action. The question arises, are these points of magical therapeutic rituals’ development persist in the field of modern psychotherapy? The answer is positive.
Thus, the early basic psychoanalytic construct of the irrationality of mental life, according to E. Fromm [44, 45, 46, 47], is secondary and reflects the idea of irrationality that prevailed in the West on the eve of World War I. It also seems logical that therapy of object relations and cognitive therapy, which emerged in the era of the successful post-war reconstruction of Western Europe in the 1950s on the basis of the Marshall Plan, implement therapy as a positive, rational reconstruction of the psyche, distorted in the early period of development, based on corrective cooperation. Russian personality-oriented therapy in its interpretation of personality is based on the definition of K. Marx (a person is a set of social relations) [48], which became part of the ideology of the Soviet period.
All of the above methods of therapy should be accepted by the patient on the base of understanding, causing his confidence in their efficacy, when patient correlates the therapeutic information with own model of the world and disease.
It should be recognized that orthodox psychoanalysis had a profound impact not only on the development of all subsequent psychotherapy, introducing its own positive or negative introjects (including the examples given earlier), but also became a component of Western culture and mass consciousness. In general, psychotherapy, as well as magic therapy, appears to be a secondary phenomenon in relation to social life, worldview, mass consciousness, historically changing after the changes in the latter. The relative simplicity and integrity of social life, worldview, mass consciousness of the times of magic therapy generate its universalism, the limited set of concepts and means, fully incorporated into social life and culture. And, on the contrary, the complexity and differentiation of modern social life, worldview, and mass consciousness give rise to sufficient isolation, specificity of concepts and means of psychotherapy, creating the impression of its self-sufficiency.
Modern methods of psychotherapy are dualistic, have a well-defined theoretical basis and set of techniques, developing in response to an actual, but less conscious social, cultural requests.
So, the analysis showed that psychotherapy in its historical development follows social life, changing in mass consciousness [21, 49, 50].
Seeking medical help for various diseases, the patient already has initial common ideas about the presence and characteristics of diseases, about how he will be provided with medical care on the base of his own experience of diseases and certain general cultural knowledge and norms. In the most general form, the provision of medical care is understood as step-by-step sequential: “examination,” “diagnostics,” “treatment.” Certain knowledge about diseases, their severity, outcomes, sequence, types, and forms of medical care are acquired by a person both directly, through the experience of diseases and their treatment, and indirectly, through the experience of other people’s illnesses, accumulated, transformed from the surrounding sociocultural environment, social networks.
The author considers that people’s ideas about the causes of diseases and their treatment are not accidental and form a complex system that can be defined as a “Model of Illness and Therapy” (MDT), the repository of which is the mass, everyday consciousness [21, 49, 50, 51]. “Model of a disease” is people’s set of the most generalized, averaged knowledge, ideas, opinions about diseases, their types, causes, treatment types, and outcomes. The “Model of the Disease” is inextricably linked with the “Model of Therapy”—a set of generalized, middling knowledge, judgments, opinions, and ideas about methods of treatment, their effectiveness, mechanisms.
The MDT—the medical component of mass consciousness is practically unexplored, while its study is of considerable interest not only for psychotherapy, ore therapeutic disciplines in general, but, undoubtedly, for sociology, social psychology too. The MDT of mass consciousness is a component of the “Model of the World” (MW) of mass consciousness, which represents a systematic description of the world and man. From the standpoint of psychotherapy, one should single out in the MW of mass consciousness such a component as “Model of the problem and its solution.”
In typical cases, in the process of treatment of diseases, medical measures do not go beyond the traditional, stage-by-stage “Examination,” “Diagnostics,” and “Therapy” of MDT; therefore, the patient’s acceptance of the treatment is in line with his expectations. Modern methods of psychotherapy are probably the least traditional from the standpoint of the actual MDT and therefore must use the means to maintain social attractiveness and effectiveness. Traditional, generally accepted methods of psychotherapy (psychoanalysis, cognitive-behavioral therapy) have already been assimilated by the MDT of the Western mass consciousness. New psychotherapy methods that have developed their own techniques are not included in the MDT of mass consciousness and need to be explained to patients. Therefore, all relatively new methods of psychotherapy at the beginning of work with a patient include the presentation of a connecting script of subsequent therapy, with description of goals, objectives, normative roles, procedures, and expected results. Such a connecting script can be presented in a structured form at the beginning of therapy, or it will be clarified during therapy, at its beginning.
Thus, the development of modern psychotherapy, as well as the historical dynamics of archaic forms of therapy, is determined by uniform laws.
The conceptual foundations of the current psychotherapeutic system are in accordance with its contemporary MDT of mass consciousness. The relative discrepancies between the psychotherapeutic system and the model of illness and therapy are overcome with the help of a “Connecting Script” that allows to overcome the differences existing between them.
The development of psychotherapy and the dynamics of the MDT represent a single dialectical process with a system of direct and feedback connections, in which the historical, socially determined dynamics of mass consciousness and the MDT determine the development of psychotherapy, while the theoretical foundations of the psychotherapeutic system, which formulated and proposed the solution of urgent existential problems, are included in the social ideology, penetrating into the mass consciousness.
The process of historical development of the mass consciousness MDT and psychotherapy has a qualitative integrity, continuity and is based on the accumulation, specific “conservation” of the previous traditional social models of decision. This is illustrated by the pseudo-spontaneous restoration of the semantic structure of the rites of passage [21] in modern group psychotherapy, using the ritual cliché, crystallized millennia earlier for solving of similar problems.
The author became interested in the nature of psychotherapy after the archaization of his patients’ attitudes toward his psychotherapy. For explanation, the hypothesis of archaization of mass consciousness was proposed as a result of a social deadlock developing in the life of the late USSR on the eve of the 1990s [21, 49, 50, 51]. In those years in Russia happened a boom in extrasensory healing, newspapers talked about magicians, A. Kashpirovsky, A. Chumak, D. Davitashvili consistently became TV stars, replacing each other. The author, observing breathtaking events, became interested in the possibility of an experimental study of the initial representations of people about diseases and their therapy (MDT) and the search for signs of archaization of these representations in: 1) an experimentally created deadlock situation; 2) persons involved in training in psychic therapy. Such a study was implemented, its results are described below.
The method “Model of Disease and Therapy” was developed by the author for study of human representations about the effectiveness of various types of diseases treatment. The method is based on the principle of rank grid method of D. Bannister [52]. The rank grid presents a matrix filled in during the survey, which includes elements and constructs. Elements are groups of objects from a specific area that are reasonably related. Constructs are bipolar-scaled features that relate to the area characterized by the elements.
Our test uses the possible outcomes of different treatments as seven elements [21, 49]: (1) treatment is useless; (2) treatment brings minor temporary improvement; (3) treatment brings clear temporary relief; (4) treatment leads to gradual significant improvement in the condition; (5) treatment leads to gradual recovery; (6) treatment leads to rapid full recovery; (7) treatment leads to sudden full recovery.
The constructs were described by the language of the average patient. The 14 constructs describe various types of treatment, from traditional magical, attributed to “traditional medicine,” to conventional in medicine, and finally, high-tech: (1) treatment of a person with extraordinary abilities in recognizing and treating diseases, for example, a psychic who has the ability to sense the biofield and use it for therapeutic effects; (2) treatment by an experienced chiropractor; (3) treatment by an experienced healer, treating with special herbs, potions, spells; (4) treatment by a qualified psychotherapist (hypnosis, autogenous training, group psychotherapy, other types of psychotherapy); (5) treatment with medical massage; (6) treatment by a qualified acupuncturist; (7) treatment with medical tinctures, potions, drops, prescribed by a doctor; (8) treatment with pills, prescribed by a doctor; (9) treatment with subcutaneous, intramuscular injections, prescribed by a doctor; (10) treatment with intravenous injections, droppers, prescribed by a doctor; (11) treatment with electrical procedures (such as electrophoresis); (12) treatment with balneological agents (baths, mud); (13) treatment by surgical means (operations); (14) treatment with modern technical means (laser, radioactive substances, ultrasound, and others).
The procedure of psychological research was as follows. All seven elements and the first construct are presented to the subject. The subject is asked to indicate the element (treatment result) that most fully characterizes the given construct (type of therapy). The indicated element is removed from, and the subject is again asked to indicate the element (treatment result), most completely, of the remaining, characterizing this construct (type of therapy). The procedure is repeated until the last element remains. When all seven elements are ranked by one construct, construct 2 is presented, its ranking procedure is carried out, similar to the ranking of construct 1. After the ranking is completed by seven elements of all 14 constructs, a 7 × 14 element ranking matrix is obtained.
Modern man has not only a general representation about medicine, but also distinguishes between its individual areas: diseases in general, therapy, surgery, oncology, infections, etc. Therefore, the method provides, on the base of goal setting of a concrete study, the assessment of representations about a specific field of medicine by highlighting the testing theme that is demonstrated to the subject in the testing cycle, when working with constructs and elements.
The ranking results are entered in the protocol form (with a 7 × 14 matrix). Constructs are columns, elements are rows. To assess the group results, the indicator of the sum of the scores of the relationships for each construct of the individual matrix, proposed by D. Bannister, was used; it characterizes the general variance explained by this construct. For each pair of rankings of individual matrix, using Spearman’s rank correlation coefficient, the scores of the relationship (p2 × 100) are calculated, which are then summed up for each construct without taking into account the sign. The sums of the scores of the relationships of the 14 constructs of the tested selected groups were subsequently subjected to the standard procedure of factor analysis by the method of principal components.
Revealing the archaization of representations about diseases and their therapy in adult subjects in a situation of an experimental impasse.
Comparison of the archaization of representations about diseases and their therapy in adult subjects in an experimental situation with the archaization of representations of diseases and their therapy in adult subjects who reacted to a social dead-end situation.
To achieve the first goal in 1989 (3 years after the Chernobyl disaster), 60 workers of the factory in the city of Mozyr (70 km from the Chernobyl nuclear power station), during a preventive medical examination, on condition of voluntary informed consent, twice, with an interval of 5 minutes, were tested according to the MDT method; the theme of the first study is “Diseases in general,” the theme of the second study is “Diseases caused by radiation.” The author suggested that the second theme would actualize the experimental impasse and cause archaization of representations about diseases and their therapy. To achieve the second goal in 1990, during the period of active disintegration processes in the USSR, accompanied by a sharp increase in interest in psychic healing, 106 students at the “school of psychics” in the Ufa city, during a medical examination, on the basis of voluntary informed consent, a single test was carried out on the MDT method; research theme was “Diseases in general.” The author suggested that persons studying extrasensory healing during the collapse of the USSR had already, and most sharply, reacted to the social dead-end situation and would initially demonstrate archaization of representations about diseases and their therapy.
The study design for both groups included MDT testing method: for the Mozyr group—twice, with an interval of 5 minutes, using the first theme “Diseases in General” and the second—“Diseases caused by radiation”; for Ufa group once using the theme “Diseases in General.”
The Mozyr group consisted of 60 subjects, 37 women (62%), 23 men (38%), aged from 27 to 52 years (average age 38.5 ± 5.2 years). The Ufa group included 106 subjects, 68 women (64%), 38 men (36%), aged from 22 to 55 years (average age 43.4 ± 6.7 years). In the study, according to the design, the MDT method was applied, the themes “Diseases in General” and “Diseases caused by radiation” were used.
Statistical processing was performed using the Statistica 6.0 software. The sums of the scores of the relationships of Mozyr and Ufa groups were applied in factor analysis by the method of principal components.
The results of factor analysis of the MDT testing for the Mozyr group data are presented in Tables 1 and 2, and the analogous data for Ufa group in Table 3. The names of the factors were given on the basis of a generalized interpretation of the totality of the variables included in them. The definition “External” methods of therapy characterize the methods of therapy that act through the surface of the body, the skin. The definition “Internal” therapy refers to therapies that act primarily through the mouth or ears.
Factor | Factor name | Variables and their meanings |
---|---|---|
F1 | Conservative therapy | Tablets (0.83), Injections (0.81), Electrotherapy (0.76), Droppers (0.76), Tinctures (0.68), 0, Balneotherapy (0.67), Modern technical therapy (0.57) |
F2 | Radical therapy | Surgery (0.79), Modern technical therapy (0.57) |
F3 | Traditional therapy | Acupuncture (0.79), Massage (0.56) |
F4 | Methods of therapeutic mental influence | Psychotherapy (0.87), Psychic Treatment (0.59) |
F5 | — | Chiropractor Treatment (0.94) |
F6 | — | Healer’s Treatment (0.91) |
Number of subjects | 60 | |
Dispersion | 86% |
Mozyr factorial matrix of scores for the relationship of assessing the effectiveness of therapy for “diseases in general”.
Factor | Factor name | Variables and their meanings |
---|---|---|
F1 | “External” Methods of Therapy | Acupuncture (0.91), Massage (0.69), Electrotherapy (0.61), Balneotherapy (0.60), Modern technical therapy (0.56), Chiropractor treatment (0.94) |
F2 | “Internal” Methods of Therapy | Droppers (0.79), Psychotherapy (0.71), Injection (0.71), Tablets (0.71), |
F3 | Tinctures (0.87) | |
F4 | Healer’s Therapy (0.83) | |
F5 | Psychic Treatment (0.92) | |
F6 | Surgery (0.91) | |
Number of subjects | 60 | |
Dispersion | 88% |
Mozyr factorial matrix of scores for the relationship of evaluating the effectiveness of therapy for diseases associated with radiation.
Factor | Factor name | Variables and their meanings |
---|---|---|
F1 | Magic therapy | Healer’s treatment (0.76), Acupuncture (0.72), Psychotherapy (0.68), Chiropractor treatment (0.63) |
F2 | “Internal” Methods of Therapy | Injections (0.78), Droppers (0.74), Tinctures (0.59), Tablets (0.57) |
F3 | “External” Methods of Therapy | Electrotherapy (0.82), Balneotherapy (0.75), Massage (0.62) |
F4 | — | Modern technical therapy (0.73) |
F5 | — | Surgery (0.78) |
F6 | Psychic Treatment (0.83) | |
Number of subjects | 106 | |
Dispersion | 81% |
Ufa factorial matrix of scores for the relationship of assessing the effectiveness of therapy for “disease in general” by students of the school of psychics.
The factor matrix for evaluating the therapy of “disease in general” is presented in Table 1 and consists of six factors (the variables of which are given in decreasing order of significance). The first factor—“Conservative Therapeutic Methods of Treatment” includes: treatment with pills, injections, electrotherapy, treatment with droppers, tinctures, balneological treatment, treatment with modern technical means. The second factor—radical therapeutic methods of treatment includes: surgical treatment, treatment with modern technical means. The third factor is formed by traditional medical methods of manual treatment: acupuncture, medical massage. The fourth factor presents the methods of therapeutic mental influence: psychotherapy, psychic treatment. Factors 5 and 6 include single variables: treatment of the chiropractor and the healer.
The factor matrix for evaluating the therapy of “radiation-related diseases” by the Mozyr group is shown in Table 2 and consists of six factors (the variables of which are given in decreasing order of significance).
The first factor of “External” methods of therapy includes: acupuncture, massage, electrotherapy, balneological treatment, treatment with modern technical means, chiropractor treatment. The second factor of “Internal” methods of therapy includes: treatment with droppers, psychotherapy, treatment with injections, pills. Factors from the third to the sixth include, single variables: treatment with tinctures, treatment of a medicine man, treatment of a psychic, surgical treatment.
The survey of students of the school of psychics was carried out during the boom of psychic healing in the spring of 1990. The factor matrix of scores for the relationship of evaluating the effectiveness of therapy of the “disease in general” by the students of the school of psychics is given in Table 3 and consists of six factors (the variables are arranged in decreasing order of significance).
The first factor of Traditional magical methods of treatment includes: Healer’s treatment, Acupuncture, Psychotherapy, Chiropractor treatment. The second factor of medical methods of “internal” treatment includes: treatment with injections, droppers, tinctures, tablets. The third factor presents medical methods of “external” treatment, including: electrotherapy, balneotherapy, medical massage. Factors from three to six include single variables: Modern technical therapy, Surgery, Psychic treatment.
The first Mozyr factor matrix, which includes the subject’s assessments of supposed effectiveness of the treatment of “disease in general,” characterizes the MDT, which classifies various methods of therapy according to their presence in real life and adequately evaluates their significance: the dominance of conservative therapeutic methods, the important role of surgery and other modern technical methods, sufficient relevance, the proximity of traditional medical methods of acupuncture and massage. Psychotherapy, extrasensory therapy, chiropractor treatment, and a healer are combined, which justifiably gives grounds to define them as “Methods of therapeutic mental influence.”
The second Mozyr factor matrix, obtained during the examination of the same subjects, at the same time, but representing an extremely significant, threatening for those living in the Chernobyl zone, an assessment of the effectiveness of treatment of “diseases caused by radiation” (requiring essentially the same structure of medical care), is qualitatively different. The subjects unexpectedly divided the therapy methods based on the bipolar trait “external” and “internal”. Moderately significant in the previous “model of disease and therapy” and the most ancient of all traditional medical methods of treatment—acupuncture and massage, are assessed in the second survey as the most significant, leading the first factor of this matrix, which also includes the treatment of the chiropractor, while the indicator of surgical treatment, which headed the second factor of the first matrix, becomes the least significant. The MDT, actualized by the conditions of an experimental deadlock, loses its connection with the modern therapeutic reality and demonstrates different, archaic structure and content.
The factorial matrix for evaluating the effectiveness of treatment of “diseases in general” by students of the school of psychics is close to the Mozyr matrix of “diseases caused by radiation” and is also distant from modern therapeutic reality, since it highlights “internal” and “external” methods of treatment, reduces the importance of surgery. But, in contrast to the compared one, in this model the most significant are traditional methods of treatment (acupuncture, psychotherapy, chiropractor treatment), which acquire a magical coloring due to the leadership of the healer therapy in this group. It is interesting that the indicator of psychic treatment is highlighted by the students in the last factor of the matrix and, having a high significance (0.83), is separated from all other methods of treatment. This is due to the fact that extrasensory perception was understood by teachers and students as a fundamentally new, scientific, developing, if not refuting modern medicine, method of diagnosis, and therapy. The last factorial matrix reflects the most archaized MDT, which is acquiring a frankly magical coloring.
The division of therapy methods into “external” and “internal,” revealed in two archaized factor matrices, is, in author’s opinion, related to archaic MDT. This circumstance prompts the search for similar classifications of therapeutic techniques in traditional systems of therapy with archaic roots, which inevitably preserved, systematized, developed the provisions of the MDT of mass consciousness that corresponded to the period of their formation. The most developed traditional systems of therapy are the Chinese, Tibetan and Arab ones. Indeed, these systems have developed fundamental concepts of the “external” and “internal” causes of diseases (in line with the ideas of the connection between the Universe and humans) about the clinic, diagnostics, “external” and “internal” treatment.
In classical Chinese medicine, the categories of “internal” and “external” are codified in the concept of yin-yang (yin corresponds to “internal” and yang to “external”) [53], they develop in the concept of the cycle of interconversions of Wu Xing, are included in dialectics “I Ching “(“ Books of Changes “) [54] and are most consistently implemented in the theory and practice of pulse diagnostics and zhen-chiu therapy [53]. In the Tibetan medical science Zhud-shi, the system of medicine is represented in the form of nine trees growing from three roots [55]. Four trees grow from the third root, the first symbolizes food and drink, the second—the way of life, the third—medicinal substances (“Man”) taken internally, the fourth symbolizes external methods of treatment, including surgery (“Shad”).
Avicenna, who reflected in the “Canon of Medicine” [56] the achievements of Arab-Persian medicine at the end of the first millennium, subdivided, referring to Galen, all diseases into external and internal, distinguishing three types of therapy: regimen and nutrition; drug administration (“internal” treatment); hand action (“external” treatment).
Thus, the similarity of two factorial matrices showing archaized MDT is a natural phenomenon based on the actualization of previous “models” accumulated, “conserved” in the mass consciousness in the course of the historical development of MDT. It should be noted that the first archaic factor matrix was obtained during a psychological examination and reflects the experimentally determined, individual regressive dynamics of the previously relevant modern MBT when the subject is placed in a situation that is insoluble from the standpoint of this model. The factor matrix of the psychics school students revealed the “background,” actual at the time of the survey, the most archaic of the three MDTs, obtained for persons who have a short interest in psychic therapy (4–6 months) and, for the most part, who had not previously thought about it. It can be reasonably assumed that this archaized MDT is a consequence of the regressive dynamics of the modern model under the influence of not an individual, but a socially conditioned cause, which in its meaning is close to an insoluble disease situation.
If we assume that the first, background factorial matrix of the Mozyr series reflects the modern MBT, the second—reflects the previous MBT; and the factorial matrix of students of the school of psychics reveals the most archaic of the three MBTs of mass consciousness; then the data structure of the models can be represented as follows.
Modern multicomponent MDT consists of blocks: (1) conservative therapy; (2) radical therapy; (3) traditional therapy, introjecting “external” and “internal” methods of treatment of the previous model; (4) therapy by psychic means (psychotherapy).
The previous two-component MDT consists of blocks of: (1) “external” methods of traditional therapy; (2) “internal” methods of traditional therapy.
The earliest of the compared, three-component-magical MBT consists of blocks: (1) spell-ritual magic therapy; (2) “external” methods of traditional therapy; (3) “internal” methods of traditional therapy.
It is principle that the second and third archaic MDTs were obtained with individual and socially conditioned regressive dynamics of the modern MDT. Consequently, modern MDT in a latent, mediated form contains previous MDT, which is possible only if MDT is a hierarchical, multilevel formation with the property of individual and social progressive historical development and regressive dynamics. So, MDT (both individual and social) is a systemic, hierarchical, multilevel formation, which can be represented as a hierarchical, multilayer “spherical” structure, each layer-level of which corresponds to a certain historical stage in its development. The functioning of such a structure is determined by the activity of the highest, modern layer-level of the MDT. If the upper layer-level of the model of the effectiveness of medical care does not correspond to the individual, it is inactivated, with the transition of systemic functions to the MDT of the lower level. The correspondence of the subordinate levels of the MDT to certain historical epochs is probably not literal, only the most essential, key elements are preserved.
The assimilation by the individual of the MDT of mass consciousness is provided by two mechanisms: “vertical” and “horizontal.” The “vertical” mechanism plays a decisive role in the formation of the structure of MDT, starting from the deep levels—at the first stages of socialization of the individual and is functioning in the general context of mastering culture, starting with its most archaized elements: myths, legends, fairy tales, signs, prejudices; in direct and indirect forms. The “horizontal” mechanism determines the detailed development of each individual level of the MDT and is based on the active interaction of the individual with the surrounding reality.
Three variants for the individual dynamics of MDT are possible. The first variant is progressive dynamics of MDT, in which, due to the assimilation by individual from mass consciousness of modern scientific paradigms of pathogenesis and therapy, with formation of higher level of model, which takes on system-forming functions, integrating and transforming the functions of the underlying layers levels. The second variant is regressive dynamics, with inactivation, due to the ineffectiveness of the treatment of the highest level of MDT and actualization of the underlying phylogenetically and ontogenetically preceding level of the model, which takes on system-forming functions. The third variant—reactivation dynamics, in which due to positive outcome of therapy there occurs a restoration of functioning of the initially “external” level of MBT, deactivated by the previous regressive dynamics.
Analyzing the structure and dynamics of the MDT, it is necessary to recognize the systemic unity, identity of such models of individual and general mass consciousness. The MDT presents a systemic block in the structure of MW of mass consciousness; therefore, it must preserve the basic principles of its organization. Mass consciousness represents a hierarchical, historically forming multilevel system, whose functioning is determined by the activity of the system-forming “external” level. Mass consciousness, MW as a system, undoubtedly has the progressive, regressive, reactivation dynamics discussed above.
Social tension, crisis from the position of the hierarchical system of mass consciousness can be considered as a discrepancy between the conditions of social life and the standards of the “external” level of the system, which should, according to our model, lead to a regressive dynamic of such a system, with the actualization of the historically previous level of mass consciousness, which takes system-forming functions. The disintegration processes that took place in the former USSR served as a vivid illustration of this provision. The regressive dynamics of the system of mass consciousness during social tension encompasses its highest level as a whole, deactivating all systemic blocks of MW, including MDT. Mass interest in various forms of archaic, magical healing, extrasensory therapy, growing during the intensification of social disintegration, is natural. The first wave of telepsychotherapy by A. Kashpirovsky in 1989 [57, 58] and in the 1990s was swallowed up by a flurry of “non-traditional,” “folk healing.” [34, 35, 59, 60, 61, 62, 63, 64]. The development of such “non-traditional folk healing” during the period of social disintegration of 1988–1991 obeyed a certain pattern and proceeded in the direction of successive actualization: the verbal-symbolic (example of telepsychotherapy by AM Kashpirovsky [57, 58]); manual (A. Chumak [49, 60], D. Davitashvili [61], and many others); extrasensory-trance therapy, with the experience of moving in space (flights to “space,” to “planets of the hierarchy,” etc., in a trance state) [21]. In 1992–1993, the return of verbal-symbolic, spell-ritual healing (the coming of Maria Stephanie and sorcerers of Russia [21, 49, 50], the resumption of A. Kashpirovsky activities) took place. The noted dynamics of “folk healing” corresponds to the initial regressive dynamics of the magic block of the MDT during the collapse of the USSR, in the reverse order to the historical development of magical action (proceeding from the magic of movement in space to manual-object magic and verbal-symbolic magic), followed by the initial reactivation dynamics of the “model” with a return to verbal-symbolic magic during the initial stabilization of statehood in Russia [21, 49, 50, 51].
Based on the analysis of the experimental psychological material, as well as the socially conditioned dynamics of the MDT during the collapse of the USSR, we propose the following structure [21, 49, 50]. Spherical, hierarchical MDT is represented by three main layers levels.
The original, the most ancient, “nuclear” layer level of the MDT is formed by magic therapy, which in turn includes three sublevels: the “deepest”, the most ancient sublevel of therapy by magical movement in space; next—manual (manual-manipulative-subject) magic therapy; historically the later, “external” sublevel of verbal-symbolic magical therapy.
The second, “intermediate” layer level of the MDT is formed by traditional therapy, which distinguishes the opposing “external” and “internal” methods of therapy.
The third, modern, “superficial” layer level of MDT includes conservative therapy, radical therapy, therapy with psychic means.
Moreover, the blocks of conservative and radical therapy of the outer layer-level are genetically related to the layer level of traditional “external” and “internal” therapy, while the block of therapy with psychic means—with the layer level of magic therapy, which is revealed during the regressive dynamics of MDT.
It should be noted that the actualization of archaic MBT happened before in the historical past, preceding and accompanying major social upheavals. So, on the eve of the Great French Revolution, the famous Anton Mesmer treated patients with “animal magnetism,” and on the eve of October, the gloomy figure of the “healer” of the court and aristocratic Petersburg Grigori Rasputin had “materialized.”
***
The MDT of mass consciousness, relevant in the process of therapy, plays the role of a specific communicative “language” of the patient and the therapist. The correspondence of the representations of the patient and the therapist about the disease and its treatment leads to the establishment of psychotherapeutic contact, with the inclusion of individual psychological and biological mechanisms of psychotherapy. The degree to which the MDT context matches the psychological and biological changes of the patient is fundamentally insignificant.
A comprehensive, experimental-psychological and historical analysis of the MBT of mass consciousness made it possible to: describe its historically formed multilevel structure and socially and personally determined dynamics; when studying the experimental and social regressive dynamics of MDT, to reveal the genetic affinity of superficial and deep structures. However, the momentary experimental regression of the formerly rational “model” transforming into “external–internal” and magical methods of therapy confirms the mythological essence of the modern MDT.
So, MDT is a mythological formation, and its hierarchical structure and dynamics are the structure and dynamics of mythology [21, 49, 50]. Since the MDT presents a systemic part of mass consciousness MW, the last is also a mythological formation. The lives of man and mankind are saturated with mythology.
The system of psychotherapy widespread in a certain society interacts satisfactorily with the actual MBT of mass consciousness. Such interaction is provided by adaptation of psychotherapy to the current MBT, generation of a connecting script and its subsequent exploitation. Psychotherapy, which qualitatively corresponds to the current MDT, inevitably is functioning as a mythological system. Thus, in a social context, psychotherapeutic systems are essentially mythological systems. The socially conditioned dynamics of MW and MDT generates the development of psychotherapy methods.
Clinical psychotherapy is based on therapeutic communication between individuals or a group of individuals. Effective therapeutic communication triggers and maintains in the patient intrapsychic, intrapersonal mechanisms of psychotherapy, which provide the patient with the final result [21, 49, 50].
The intrapsychic mechanisms of psychotherapy are obvious, since without them the therapeutic result is impossible. The obviousness of the latter is combined with the mirror-like pseudo-transparency of the psyche’s “black box,” in which the involved observer will see the desired content, which often presents a reflection of the applied communicative-interpersonal component of psychotherapy. The real intrapsychic mechanisms of the psychotherapeutic process are hidden “behind the mirror” of the individual’s psyche and may, probably, not coincide with the methodical prescriptions.
Psychological communication of psychotherapy is characterized by (a) a historically determined communicative style, (b) methodological goal-setting and instruments of therapy, (c) partial spontaneity of interpersonal interaction [21, 49, 50, 51, 65].
The concept of communicative styles [65] was formulated by the author in relation to hypnotherapy, in a comparative analysis of directive hypnosis, Ericksonian hypnosis, and the author’s method of Universal Hypnotherapy [66].
Communicative styles (of hypnotherapy) are determined by: (a) the approach to the use of the initial representations about the method of psychotherapy (hypnosis) among participants in therapeutic communication, (b) the peculiarities of the implementation of therapeutic communication at the verbal and nonverbal levels, (c) the ratio of the activities of the sides of psychotherapy (hypnotherapy), and (d) application of feedback by the therapist. It has been demonstrated that communicative styles of hypnotherapy are characterized by a natural historical sequence of appearance and development, from the Directive to Ericksonian hypnosis and, further, to Universal Hypnotherapy, since hypnotherapy translates historically relevant communicative styles of active influence of the mass consciousness [65]. Each communicative style has a characteristic profile of opportunities and limitations that work at the sociopsychological and psychological levels.
The concept of communicative style is applicable to any psychotherapy method. So, communicative styles are transferred to psychotherapy from everyday life, the historical dynamics of mass consciousness determines natural changes in therapeutic communication.
Psychotherapy as a methodology includes the methodological goal setting and methodological instruments [21, 49, 65, 66, 67]. The methodological component is determined by: theories underlying the applied methodological approaches to psychotherapy; methodological approaches embodied in specific psychotherapeutic techniques and patterns. Each method of psychotherapy reduces the general understanding of psychotherapy to this component.
Despite the requirement to adhere to the therapeutic protocol, both sides of the therapeutic process are represented by living people, who inevitably bring an element of unique spontaneity to the methodically regulated process. Therefore, the spontaneous-communicative component characterizes the influence of the individual-personal characteristics of the participants in the psychotherapeutic process (therapist and patient) in their real communicative interaction on the results of psychotherapy. The influence of the psychotherapist’s personality and his behavioral style on the results of psychotherapy has been widely studied earlier [21, 49, 68] and therefore is not the subject of our consideration.
In the process of clinical psychotherapy, the patient learns and assimilates a lot of new information about himself, disorder, the applied therapy, he manages to therapeutically modify and stabilize the modified state, behavior that provide the final therapeutic result. Psychotherapy undoubtedly uses a variety of learning mechanisms that are an important part of the intrapsychic component of psychotherapy [69, 70, 71, 72, 73, 74, 75, 76].
However, the author will highlight other, previously detected intrapsychic mechanisms described as the system of psychological adaptation of the personality [21, 49, 51, 68, 77].
In the 1980s and 1990s, the author investigated the dynamics of the MMPI basic scales before and after identical group hypnotherapy for two samples of patients with various types of Anxiety Disorders [21, 49, 68] (Mixed Anxiety-Depressive disorder, ASD, PTSD along with Dissociative and Somatoform disorders, OCD) (N = 145). Another group represented Anxiety Disorders due to Cerebrovascular disorder (N = 51). The design of the research included: (1) clinical estimation of psychotherapy efficiency; (2) analyses of MMPI data (basic validity and clinical scales) at the beginning and at the end of psychotherapy; (3) statistical analysis (descriptive statistics; means; nonparametric statistics [Wilcoxon matched pairs test] along with factor analysis—principal components method (varimax rotation)). For each clinical group of psychotherapy efficiency, we analyzed within the factor analysis the initial data, final data, and data on dynamics of psychotherapy (received by subtraction of final data from initial data).
Our study revealed two levels of the psychotherapy efficiency: significant improvement of the condition (equivalent of full recovery) with a full and persistent reduction of clinical disorders, and improvement of conditions with only partial or unstable reduction of clinical disorders [21, 49, 68]. This research has shown that patients, who displayed either significant improvement or improvement of conditions, differ from the very beginning and that there are two types of dynamics, which represent mechanisms of the therapeutic effect and final outcomes of psychotherapy.
We attributed positive dynamics of affective symptoms to the restoration of the Personal System of Psychic Adaptation (PSPA), which is the primary mechanism of positive change in cases of efficient psychotherapy for anxiety disorders. With regard to cognitive-behavioral parameters, the therapeutic dynamics were associated with developmental mechanisms of mostly supplementing and rebuilding the Personal System of Psychic Adaptation, which is the primary therapeutic mechanism in cases of efficient psychotherapy for Anxiety Disorders Due to Cerebrovascular Disorder.
In the 1980s, based on our research on outcomes from psychotherapy of anxiety and organic disorders, the author elaborated the model of Personal System of Psychological Adaptation (PSPA) [21, 49, 54, 68, 77]. PSPA is a spontaneously active homeostatic dynamic structure, which forms during ontogenesis and includes a hierarchy of adaptive mechanisms ranging from the earliest, most primitive and typical (similar to Freudian ego-defenses such as Regression, Replacement [78], etc., which are normal for early childhood) to mature, complex, individualized, and personal ones, which can be used as coping mechanisms. Hierarchical PSPA can be visualized as a spherical multilayered model (see Figure 1) involving the following components.
Concentric structure of levels of the hierarchical organization of adaptation mechanisms that form an expanding sphere around a “center” or the “Self.” The highest mature level of hierarchy of multilayer level mechanisms of psychological adaptation has a capability of transforming the interactions between the underlying levels.
Personal system of psychic adaptation.
PSPA dynamics may express themselves in regressive, reactivating or of progressive, forming transformations.
In cases of regressive dynamics (where there is relative inactivation of the highest, mature level of mechanisms of psychological adaptation) the underlying levels, ontogenetically antecedent to it, become primarily active and assume the role of regulatory functions overriding more advanced functions; this results in reorganization of the system of radial and spherical connections, and restoration of emotional and behavioral patterns of the previous stages of PSPA ontogenesis. Regressive dynamics is potentially convertible.
Reactivation dynamics became possible after previous PSPA regressive dynamics; it involves restoration of function of initially top level of psychological adaptations and of PSPA “normal functioning,” which has been disturbed by its previous regressive dynamics.
The formation of PSPA dynamics is possible through development of a higher level, which would overcome insufficiency and defectiveness of previous psychological adaptations of underlying levels.
In cases of anxious maladaptation (but not much disintegration), weakening in higher levels of PSPA adaptive mechanisms causes lower levels of adaptive mechanisms to acquire greater behavioral significance. (An example may be the development of dissociative symptoms in persons without a history of dissociative disorders in combat situations).
According to model, psychotherapeutic interventions [21, 49, 54, 68, 77] are especially suitable for cases of anxiety disorders in which there is a potential weakening of the PSPA due to regressive activation of early ontogenic adaptation mechanisms (i.e., dissociative, obsessive disorders) but also to a PSPA deficit, which is due to personality disorders or to organically based brain disorders.
Evidently, mechanisms of effective psychotherapy in cases of reversible psychogenic blocking and organically based PSPA deficit must be different. In instances of regressive dynamics of PSPA, “higher,” “normal” levels of psychological adaptation are deactivated psychogenically (or underutilized), in the course of maladaptive functioning, and the goal of psychotherapy is to facilitate their proper functioning again. In the case of deficit, the higher layer level of PSPA, which controls other functions, needs to be developed for the first time and as a result of psychotherapy efficiency, an opportunity for a normal psychic adaptation be formed. So, in psychotherapy of personality and organic disorders, the therapeutic efforts are similar to spontaneous developmental processes leading to formation of the PSPA hierarchy, which means that the patients need to acquire resources allowing for better adaptation.
The results of our empirical research on hypnotherapy outcomes have revealed that dynamics of efficient hypnotherapy with complete improvement in anxiety disorders is consistent with the mechanism of reactivation, and for organic disorders—with a mechanism of PSPA formation; whereas in cases of partial improvement, the psychological dynamics for anxious disorders corresponds to partial PSPA reactivation, and for organic disorders—to incomplete PSPA formation [21, 49, 54, 68, 77].
Consistent with the general resourcefulness model [79, 80, 81, 82, 83], our empirically based conclusion is that psychogenic blocking causes underutilization of resources. It also describes two different ways of native personal reintegration, which lead to recovery in cases of anxiety disorder. The first way of recovery, determined as PSPA reactivation, is more effective, simple, and needs fewer resources. The second way, namely PSPA formation, may be less effective and needs expanding acquisition of resources as PSPA formation requires acquisition through learning of new adaptive skills. In both instances (PSPA reactivation and PSPA formation), in the end the dynamic processes enable individuals to utilize their resourcefulness.
Research reveals the multidimensional nature (both culturally and personally based) of a psychological ability to maintain health and to prevent pathological disorders [79, 80, 81, 82, 83]. The mechanism of PSPA Reactivation is close to the Resourcefulness activation of latent personal qualities, while the PSPA Formation mechanism is linked to Resourcefulness as an ability to acquire new skills.
The patient’s participation in psychotherapy changes his consciousness, thinking, behavior on the basis of effective learning [69, 70, 71, 72, 73, 74, 75, 76].
Earlier, we formulated the hypothesis that successful psychotherapy should stimulate the process of neurogenesis in patients [84], now this assumption is supported [85]. In our study, it was shown that monopsychotherapy is effective in overcoming the states of anxiety and depression in anxiety disorders [86], which needs positive neurobiological changes.
The author is engaged in research on hypnosis and hypnotherapy [66]; therefore, his analysis of the biological mechanisms of psychotherapy is limited by this method and is applicable in relation to its essential analogues.
In the 1980s and 1990s, the author conducted research on the biological effect of a hypnotherapy course on the blood system, in relation to its clinical efficacy in anxiety disorders. The obtained clinical and experimental data revealed that hypnotherapy has a distinct, systemic, biological effect on the patient’s organism [66]. The following was found.
Hypnotherapy activates the systemic (stress-) readaptation processes that are reflected in changes in neurohormonal and neurotransmitter secretions; activities of the immunological system; activation of protein, bilirubin, and cholesterol exchange; etc.
Hypnotherapy activates protein metabolism and activity of several enzyme systems of the organism. Hypnotherapy has a positive influence on the metabolism of bilirubin. The activation of cholesterol metabolism, characterized by a significant reduction of its concentration in the blood, has a significant clinical importance. The observed decrease of cholesterol concentration in blood, normalizing its metabolism in the process of hypnotherapy, means the restoration of activity of cell membranes, cells, organs, and tissues, slowing down their aging.
The stressful, readaptive nature of hypnosis limits its therapeutic application, in that excessive intensity of hypnogenic stress may result in the maladaptation. Prolonged hypnotherapy may actually decrease and exhaust adaptable resources of an organism. Of course, the data of hypnotherapy should not be mechanically transferred to all methods of psychotherapy. But there is no reason to exclude the presence of a spectrum of biological mechanisms of psychotherapy associated with learning, neurogenesis, readaptation.
The performed analysis of sociopsychological, individual-psychological, biological components of psychotherapy allows to proceed to a systematic presentation of the three-component theory of psychotherapy, highlighting its main points [21, 49].
The existence of social, psychological, biological components of human nature predetermines the presence of sociopsychological, psychological, biological components of psychotherapy, which determine the patterns and mechanisms of the psychotherapeutic process.
The primary basis of the sociopsychological component of psychotherapy is the MDT, which represents the system block of MW of mass consciousness. The MDT of mass consciousness and an individual, being a historically developing hierarchical system, retains in a latent form previous information and is subject to socially conditioned and individual dynamics in progressive, regressive, reactivation variants.
The psychological component of the psychotherapeutic process is formed by communicative-interpersonal and intrapsychic components. We highlight intrapsychic component of psychotherapy that is described in the context of the PSPA—a spontaneous homeostatic ontogenetically formed hierarchical structure, which includes adaptive mechanisms that are consistently formed from early primitive, typological, to complex individualized, personal, which have regressive, reactivation, progressive dynamics.
The biological component of psychotherapy includes a complex of neurophysiological, organismic mechanisms that ensure the processes of readaptation, successful learning (including neurogenetic ones).
2. The psychotherapeutic process is based on complex psychological interaction and is carried out at two related levels of: sociopsychological, cultural interaction; interpersonal interaction founded on actual communicative style, methodological goal setting, and instruments of therapy, partially spontaneous interpersonal interaction.
Psychotherapeutic interaction at the sociopsychological level uses a connecting script that coordinates the theoretical and methodological tools of psychotherapy with the actual MDT of the patient. The actual MDT of mass consciousness plays the role of the communicational “language” between the patient and the therapist. The psychotherapeutic method may correspond to the actual MDT completely, partially, or differ from it. In the first case, the content of psychotherapy is understood and accepted by the patient initially and completely. In the second and third cases, when the content of psychotherapy does not correspond to the actual MDT, it becomes necessary to reconcile them. In such cases, the methods of psychotherapy, mainly at the beginning of work with the patient, use the connecting script that fills the existing semantic, logical gaps between the applied therapy and MDT. The initial or achieved correspondence between the patient’s MDT and the method of psychotherapy leads to the establishment of psychotherapeutic contact and includes individual psychological and biological mechanisms of psychotherapy, initiating the psychotherapeutic process.
3. The complex psychological interaction carried out in the course of the psychotherapeutic process generates and supports the systemic psychological and biological reactions of the individual to the psychotherapeutic action, including intrapsychic sanogenic mechanisms and a complex of organismic mechanisms (biological, neurophysiological, neurohormonal, etc.). In addition to the obvious mechanisms of effective learning, our study of psychotherapy at the intrapsychic level reveals the mechanisms of reactivation and formation of PSPA of the individual or their combination. We believe that at the biological level, psychotherapy engages mechanisms of stress-readaptive optimization of disturbed biological (and neurobiological) indicators.
The three-component theory of psychotherapy focuses on natural phenomena of human life at social, psychological, biological levels. The most significant data are obtained on the phenomenon of mass consciousness, its WM and MDT mythological nature, regressive dynamics in dead-end situations. The author is inspired by the fact that the modern mass consciousness in a latent, indirect, and common form preserves the entire historical totality of cultural ideas about the world and man (from the Stone Age to the present day). And the deepening regressive dynamics of mass consciousness is capable of consistently updating the previous levels of perception of the world, up to the most ancient ones. For the first time, the possibility of regressive dynamics of an individual’s ideas about illness and therapy in an experimentally created dead-end situation is shown. In the light of author’s research, the phenomenon of mass consciousness contains Jungian “collective unconsciousness.”
Psychotherapy presents a secondary phenomenon in relation to the current mass consciousness, everyday culture; therefore, the connecting scenario of psychotherapy becomes its most important means, the effectiveness of which increases in cases of cognizant application by therapist.
Modern psychotherapy is based on psychological communication, in which the therapist, as the architect of the project, together with the patient, builds a therapeutic result. The mechanisms of reactivation and the formation of a PSPA, which are triggered by the patient’s psyche autonomously, based on the characteristics of the disorder and the resources of the psyche, which are empirically identified by the author and consistent with a positive psychotherapeutic approach, are fundamental and enrich the understanding of psychotherapy.
The biological mechanisms of psychotherapy are inevitable for its active forms, are universal and based on the mechanisms of fixing positive experience (learning) and readaptation.
In the 2000s, a similarity between the PSPA model and the resilience/resourcefulness model (Selinski M., Pylowski J.) [79, 82, 83], developed from the position of positive psychology, was revealed. A positive psychotherapeutic approach [79, 80, 81, 82, 83] relies on the patient’s resources and his positive values, but not on overcoming psychological problems and symptoms. In contrast to the PSPA concept, which implies the neurobiological basis of the system of psychological adaptation of a person, the resilience and resourcefulness model has a philosophical foundation. Psychotherapeutic work in the resilience and resourcefulness model is based on stimulating corresponding mechanisms as positive targets of psychotherapy.
Positive-dialog psychotherapy (PDP) was developed by the author in the 2010s as a systemic, integrative, dialogically, procedurally, and causally oriented method of clinical psychotherapy intended for psychotherapy of anxiety, affective, personal, organic (with anxiety symptoms) disorders. PDP is based on the understanding of the psychotherapy process as the communicative staged dialog between therapist and patient using verbal and nonverbal means, carried out at the sociocultural, interpersonal, intrapersonal levels as a system of three dialogs: interpersonal dialog between patient and therapist, intrapersonal dialog of the patient, intrapersonal dialog of the therapist (when the therapist consciously builds such a systemic dialog). PDP includes three stages: diagnostic and psychoeducational with the conclusion of a psychotherapeutic contract (1 session), therapeutic (2–8–10–15 sessions), completion of therapy with an assessment of the results, recommendations (final session).
The psychotherapeutic process in PDP is realized as a sequential resolution of the patient’s systemic request for psychotherapy, which is a set of successively manifested, staged patient requests for psychotherapy that are resolved in the course of psychotherapy, which reflects (in reverse order) the history and biopsychosocial mechanisms of the formation of the disorder.
PDP is based on the protocol developed by the author [86]. The therapeutic intervention consists of three main components: (1) psychoeducational; (2) causal cognitive-orientated; and (3) hypnotherapeutic.
The psychoeducation component includes a didactic material covering the following information about: (1) anxiety as a normal reaction of mobilization, needed to cope or avoid a dangerous situation; (2) anxiety disorder and the phases of its development for PD and GAD, because of the “swinging” of anxiety reaction by a combination of social, biological, and psychogenic factors; and (3) possibilities of psychotherapeutic treatment of AD based on (a) the resolution of current psychogenic issues, (b) the excluding intoxicating mechanisms (if there are any), (c) the coping with phobic component (if it’s present), (d) the general increase of adaptive resources of the organism (through lifestyle rationalization), and (e) the normalization of vegetative regulation by psychotherapy or combination of psychotherapy with pharmacotherapy. The psychoeducational component of PDP is realized during the first therapy session, in an individual or group format.
The causal cognitive-orientated component of PDP has the following objectives: (1) Individual assimilation of the psychoeducational component. (2) Normalization of patient’s traumatic experiences during a panic attack (if there are any). (3) Stimulation of patient’s coping of anxiety triggers, restrictive behaviors, and phobias. (4) Stimulation of a healthy lifestyle with normalization of vegetative regulation. (5) Development of patient’s autonomous understanding and coping with problem situations. (6) Development of skills of positive thinking and attitude. The causal cognitive-orientated component of PDP is used during 2–7 sessions for about 20 min.
The hypnotherapeutic component of PDP uses the method of Universal Hypnotherapy (UH) [66, 67, 87], which contains the following therapeutic interventions: (1) Increase of self-identity and self-integrity. (2) Transformation of patient’s projections of his/her psychogenic and somatic-sensorial content. (3) Use of sedative and detachment influences of reproduced colors. (4) Stimulation of detachment of stress experience and completion of negative states and experiences based on modeling and realization of positive correct behavior. (5) Repeat of the interventions mentioned above (1–4). (6) Creation in hypnotherapy a positive vector semantic space for patient’s active therapeutic changes. The UH, done in the second part of a 1-h session of PDP, lasts for 40 min. The frequency of PDP sessions is three times a week; the total number of sessions varies from 8 to 15 (till the stable improvement of patient’s state). The UH method has previously been described in detail by the author in chapters of international monographs on positive psychology [67], hypnotherapy and hypnosis [66], psychotherapy [87], which allows, without repeating, to restrict ourselves to a reference to previously published available materials.
The implementation of the PDP, in accordance with the three-component theory of psychotherapy, includes the obligatory use of the connecting script component of psychotherapy involved in the implementation of: a general plan of subsequent psychotherapy; psychoeducational and causal cognitive-orientated components that explain the nature of (anxiety, affective, personality) disorder and the process of subsequent psychotherapy, hypnotherapy. The UH uses hypnotization and hypnotherapy scripts. The hypnotization script is realized before the beginning of hypnotherapy and allows effectively, in the interests of therapy, to transform the initial cultural ideas of the patient about hypnosis, hypnotization, with the achievement of a holistic acceptance by the patient of subsequent hypnotization and hypnotherapy. The patient’s assimilation of all psychoeducational material is based on scientific data in the fields of positive psychotherapy and hypnotherapy, but is built on understanding of the mythological nature of mass consciousness, the involvement of the patient’s imaginative thinking, and the dialogical form of information presentation. The PDP’s deliberate appeal to the mythological side of mass consciousness, shaped into a formal-logical, consistent, scientifically grounded psychoeducational shell, makes the PDP procedurally and clinically effective.
In 2010–2015, the author with the coworker [86] conducted a controlled study of the effectiveness of PDP for anxiety disorders. After diagnostic evaluation and completion of all questionnaires, 63 patients were randomly assigned to a treatment group or a waiting-list group. In the treatment group, patients went in therapy immediately and completed the self-report questionnaires at the end of the therapeutic process. Patients on a control waiting-list group were informed about a certain order for the beginning of the therapy and that they had to complete the questionnaires two times (the second time was 3 weeks after the first). The evaluation of psychometric data of the treatment group was carried out 3 weeks before the treatment, just before the start of treatment and at the end of treatment. The control waiting-list group was a control group for itself and for the first group. The study used psychometric and statistical methods accepted in the assessment of the treatment of anxiety disorders. Assuming a similarity of UH to mindfulness-based CBT methods, the study used additional psychometric estimation of UH mindfulness effect. The psychometric assessment used the symptomatic questionnaire SCL-90-R in Russian adaptation of N. Tarabarina [55], its scales: DEP, depression; ANX, anxiety; and GSI, general severity index, a measure of the overall psychological distress. The Spielberger State–Trait Anxiety Inventory (STAI) is a Russian adaptation of Hanin [56]. The following tools were also used: Beck’s depression inventory (BDI) [57]; Sheehan Clinical Anxiety Rating Scale (ShARS) [58]; and Five-Factor Mindfulness Questionnaire (FFMQ) [59], its short version. The FFMQ was adapted for Russian-speaking population by the authors. The Mindful Attention Awareness Scale (MAAS) [60] was adapted to Russian-speaking population by the authors. MMPI (clinical scales) and Resourcefulness for recovery inventory (RRI) [83] were used in the study of predictors of psychotherapy efficacy. The differentiation of the groups of full recovery and partial recovery was carried out using the author’s scale of systemic qualitative-quantitative assessment of the psychotherapy effectiveness [49, 86, 88], highlighting four gradations of the improvement degree: (1) significant improvement (full recovery), (2) improvement (partial recovery), (3) slight improvement, (4) lack of improvement. Grades are determined according to the following criteria: (1) the degree of reduction of clinical symptoms, (2) the degree of the patient’s conscious control of the current state, (3) the degree of activity in overcoming the disorder, (4) the dynamics of the patient’s dependence on the psychotherapist, (5) the stability of psychotherapeutic contact, (6) the patient’s own assessment of the degree of improvement.
The results of our controlled study of the effectiveness of PDP were described in the book “Hypnotherapy and Hypnosis” [87]. Therefore, in this chapter, we presented only the final data (Table 4) and the results of the comparison of the obtained results with the results of CBT methods based on mindfulness meditation (Table 5).
Scale | Therapy group n = 52 | Waiting list control group n = 25 | |||||
---|---|---|---|---|---|---|---|
M | SD | d (before-after) | M | SD | d (before-after) | d (between the groups) | |
at baseline | 1.66 | 0.82 | 1.59 | 0.81 | |||
at the end of treatment | 0.941 | 0.83 | 0.87 | 1.742 | 0.90 | 0.18 | 0.92 |
at baseline | 1.85 | 0.93 | 1.75 | 0.89 | |||
at the end of treatment | 0.931 | 0.84 | 1.04 | 1.962 | 1.00 | 0.22 | 1.12 |
at baseline | 1.29 | 0.62 | 1.33 | 0.58 | |||
at the end of treatment | 0.741 | 0.59 | 0.89 | 1.352 | 0.58 | 0.03 | 1.04 |
at baseline | 37.35 | 11.11 | 36.16 | 11.12 | |||
at the end of treatment | 24.811 | 10.11 | 1.18 | 36.002 | 12.04 | 0.01 | 1.01 |
at baseline | 55.08 | 9.79 | 53.72 | 6.71 | |||
at the end of treatment | 48.121 | 9.27 | 0.73 | 55.563 | 9.90 | 0.22 | 0.78 |
at baseline | 19.54 | 10.24 | 19.80 | 10.20 | |||
at the end of treatment | 9.651 | 7.41 | 1.11 | 19.082 | 9.87 | 0.07 | 1.08 |
at baseline | 48.77 | 25.47 | 51.76 | 22.10 | |||
at the end of treatment | 22.041 | 14.99 | 1.28 | 48.402 | 29.43 | 0.13 | 1.13 |
at baseline | 71.54 | 9.28 | 71.68 | 8.95 | |||
at the end of treatment | 80.121 | 8.06 | 0.98 | 70.402 | 9.99 | 0.13 | 1.07 |
at baseline | 3.90 | 0.72 | 3.87 | 0.70 | |||
at the end of treatment | 4.351 | 0.71 | 0.63 | 3.824 | 0.68 | 0.07 | 0.76 |
Treatment effect.
p < 0.0001 (comparing with the baseline figures).
p ≤ 0.0001 (comparing with therapy group).
p < 0.001 (comparing with therapy group).
p < 0.002 (comparing with therapy group).
SCL-90 DEP, ANX, GSI—depression, anxiety and global severity index of symptom checklist 90; STAI-S—Spielberger anxiety inventory, state anxiety; STAI-T—Spielberger anxiety inventory, trait anxiety; BDI—Beck depression inventory; ShARS—Sheehan Clinical Anxiety Rating Scale; FFMQ-SF—Five-factor mindfulness questionnaire, short version, total score; MAAS—Mindfulness attention awareness scale. MPT group—monopsychotherapy group. PT + PPT group—psychotherapy + psychopharmacotherapy group with later pscyhopharmacotherapy withdrawal.
Authors | Diagnosis | Intervention | No of subjects | Scales | M1 | S1 | M2 | S2 | D-unbiased |
---|---|---|---|---|---|---|---|---|---|
Evans S. & co-authors | GAD | MBCT | 11 | BDI | 13.8 | 7.9 | 8.82 | 8.5 | 0.56 |
MAAS | 3.68 | 0.66 | 4.2 | 0.58 | 0.78 | ||||
Vollestad J. & co-authors | AD | MBSR | 31 | BDI | 17.3 | 9.3 | 8.5 | 9.1 | 0.93 |
SCL-90 GSI | 1.3 | 0.6 | 0.7 | 0.7 | 0.9 | ||||
FFMQ | 113.8 | 21.6 | 128.2 | 22.3 | 0.64 | ||||
Tukaev R., Kuznetsov V. | GAD, PD | PDP (UH) | 52 | BDI | 19.54 | 10.24 | 9.65 | 7.41 | 1.11 |
SCL-90 ANX | 1.85 | 0.93 | 0.93 | 0.84 | 1.04 | ||||
SCL-90 GSI | 1.29 | 0.62 | 0.74 | 0.59 | 0.89 | ||||
SCL-90 DEP | 1.66 | 0.82 | 0.94 | 0.83 | 0.87 | ||||
FFMQ | 71.54 | 9.28 | 80.12 | 8.88 | 0.99 | ||||
MAAS | 3.9 | 0.72 | 4.35 | 0.71 | 0.63 |
The comparison of PDP (UH) MBCT, MBSR efficiency, and mindfulness effect in therapy of anxiety disorders.
The obtained results allow us to make a number of significant conclusions: (1) PDP is clinically effective for the treatment of PD and GAD, comparing with the wait list control group; (2) According to our data, PDP efficiency is comparable to the efficiency of Mindfulness-based Cognitive Therapy, Mindfulness-based Stress Reduction; (3) Moreover, UH produces a distinct mindfulness effect comparable to that for mindfulness-based CBT techniques.
Data from a controlled study allowed us to search for predictors of PDP efficacy [88]. According to the results of therapy and the systemic criteria of psychotherapy effectiveness, the sample was divided into groups of significant improvement (full recovery) and improvement (partial recovery). Differences in baseline indicators were found in selected groups for the “Health promoting factors” scales of the RRI (the greatest differences in scales: Positive Relationship with HCP- p < 0.0001, d = 1.24; Self-Responsibility- p = 0.0002, d = 1.19; Acceptance–p = 0.001, d = 1.13; Integration–p < 0.0001, d = 1.51; Minimizes loss–p = 0.0002, d = 1.17) and scales of the MMPI method (the greatest differences for the masculinity /femininity scale—p = 0.0002, d = 1.1). Predictors of the effectiveness of psychotherapy have been identified with the help of the discriminant analysis, which appeared to be indicators of the Integration and Positive values of the RRI and the Masculinity/Femininity of the MMPI. Our findings verify actuality of a positive approach in psychotherapy and interrelation between resourcefulness concept and PSPA through the psychotherapy effectiveness systemic criteria.
The data obtained in a controlled trial indicate a high clinical efficacy of the PDP method, revealing its distinct mindfulness effect. Additionally, a pure final delineation of full recovery and partial recovery groups made it possible to establish their initial difference in a number of psychometric indicators of RRI and MMPI, not only substantiating the concepts of PSPA, resourcefulness, and a positive psychotherapeutic approach in general, but also localizing the basic mechanisms of psychotherapy in structures and therapeutic dynamics of Self.
The chapter context consistently describes the general three-component structural-dynamic theory of psychotherapy, substantiating the historical complementarity of therapies to the current state of the society mass consciousness. The analysis of mass consciousness, its mythological nature, historically formed structure and dynamics is carried out. The study of the application of therapeutic practices allows to form the concept of psychotherapy’s connecting script and to describe its practical realization in PDP. On the basis of an empirical study of the psychological component of psychotherapy, the author elaborated the PSPA model, described three variants of its dynamics and psychotherapeutic actualization of mechanisms of PSPA reactivation and the formation. The conceptual affinity of the PSPA model to the concept of resilience/resourcefulness of positive psychology is demonstrated. The brief description of the biological component of psychotherapy is built using mechanisms of learning, readaptation, and probable mechanisms of neurogenesis.
The implementation of the PDP method is based on the methodology of the general three-component structural-dynamic theory of psychotherapy. PDP is realized as a sequential resolution of the patient’s systemic request for psychotherapy, it uses the therapeutic protocol, opening a way for evidence-based studies of the effectiveness of PDP for anxiety disorders, searching of predictors of the therapy effectiveness. The results confirm the effectiveness of the given method, comparable to the corresponding effectiveness of modern CBT methods.
In the process of long-term studies, it became clear that the PSPA model, the empirically developed criteria for the psychotherapy effectiveness, and the identified psychometric predictors of the psychotherapeutic effect undeniably address the mechanisms of effective psychotherapy to the psychological structures of the Self and its dynamics. It should be emphasized that comparable results have been obtained in modern neurophysiological studies [5, 6], which indicates the involvement of neuroanatomical zones responsible for self-presentation and semantic processes at various psychotherapies for anxiety and depressive disorders.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134178},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"16,19,25"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11732",title:"Multiple Pregnancy - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"70396c6f5f2928c422c1eaf6d33c6269",slug:null,bookSignature:"Prof. Hassan S Abduljabbar",coverURL:"https://cdn.intechopen.com/books/images_new/11732.jpg",editedByType:null,editors:[{id:"68175",title:"Prof.",name:"Hassan",surname:"Abduljabbar",slug:"hassan-abduljabbar",fullName:"Hassan Abduljabbar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11682",title:"Rare Diseases - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"ad68db8a4109ae3acc0d3f001a2f4fde",slug:null,bookSignature:"Dr. John Kanayochukwu Nduka",coverURL:"https://cdn.intechopen.com/books/images_new/11682.jpg",editedByType:null,editors:[{id:"107866",title:"Dr.",name:"John Kanayochukwu",surname:"Nduka",slug:"john-kanayochukwu-nduka",fullName:"John Kanayochukwu Nduka"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11677",title:"New Insights in Mammalian Endocrinology",subtitle:null,isOpenForSubmission:!0,hash:"c59dd0f87bbf829ca091c485f4cc4e68",slug:null,bookSignature:"Prof. Muhammad Subhan Qureshi",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",editedByType:null,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11880",title:"Health Literacy - Advances and Trends",subtitle:null,isOpenForSubmission:!0,hash:"936246c4939223eb851ae4df22d15423",slug:null,bookSignature:"Dr. Carlos Miguel Rios-González",coverURL:"https://cdn.intechopen.com/books/images_new/11880.jpg",editedByType:null,editors:[{id:"196288",title:"Dr.",name:"Carlos",surname:"Rios-González",slug:"carlos-rios-gonzalez",fullName:"Carlos Rios-González"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11583",title:"Parkinson’s Disease - Animal Models, Current Therapies and Clinical Trials",subtitle:null,isOpenForSubmission:!0,hash:"99788a4a7f9ee0b4de55de293a2ed3d0",slug:null,bookSignature:"Prof. Sarat Chandra Yenisetti",coverURL:"https://cdn.intechopen.com/books/images_new/11583.jpg",editedByType:null,editors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11687",title:"Bariatric Surgery - Past and Present",subtitle:null,isOpenForSubmission:!0,hash:"c8ee32c7f77d3b4b190c87379af61b01",slug:null,bookSignature:"Associate Prof. Burhan Hakan Kanat and Dr. Nizamettin Kutluer",coverURL:"https://cdn.intechopen.com/books/images_new/11687.jpg",editedByType:null,editors:[{id:"183319",title:"Associate Prof.",name:"Burhan",surname:"Kanat",slug:"burhan-kanat",fullName:"Burhan Kanat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11587",title:"Updates on ADHD - New Approaches to Assessment and Intervention",subtitle:null,isOpenForSubmission:!0,hash:"e0718a84e5fda7ed4287095c3ef27dae",slug:null,bookSignature:"Dr. Celestino Rodríguez Pérez and Mrs. Debora Areces",coverURL:"https://cdn.intechopen.com/books/images_new/11587.jpg",editedByType:null,editors:[{id:"85114",title:"Dr.",name:"Celestino",surname:"Rodríguez Pérez",slug:"celestino-rodriguez-perez",fullName:"Celestino Rodríguez Pérez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11877",title:"Ergonomics - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"8b7474730a8f1ec6615e66e12a72b4b5",slug:null,bookSignature:"Dr. Orhan Korhan",coverURL:"https://cdn.intechopen.com/books/images_new/11877.jpg",editedByType:null,editors:[{id:"101698",title:"Dr.",name:"Orhan",surname:"Korhan",slug:"orhan-korhan",fullName:"Orhan Korhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:114},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:127},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science",parent:{id:"3",title:"Health Sciences",slug:"health-sciences"},numberOfBooks:37,numberOfSeries:1,numberOfAuthorsAndEditors:951,numberOfWosCitations:839,numberOfCrossrefCitations:609,numberOfDimensionsCitations:1331,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"25",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11008",title:"Sheep Farming",subtitle:"Herds Husbandry, Management System, Reproduction and Improvement of Animal Health",isOpenForSubmission:!1,hash:"992f691327b36848b6e1137b70d921d5",slug:"sheep-farming-herds-husbandry-management-system-reproduction-and-improvement-of-animal-health",bookSignature:"Manuel Gonzalez Ronquillo and Carlos Palacios Riocerezo",coverURL:"https://cdn.intechopen.com/books/images_new/11008.jpg",editedByType:"Edited by",editors:[{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10751",title:"Bovine Science",subtitle:"Challenges and Advances",isOpenForSubmission:!1,hash:"9e3eb325f9fce20e6cefbce1c26d647a",slug:"bovine-science-challenges-and-advances",bookSignature:"Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/10751.jpg",editedByType:"Edited by",editors:[{id:"112070",title:"Dr.",name:"Muhammad",middleName:null,surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10589",title:"Mastitis in Dairy Cattle, Sheep and Goats",subtitle:null,isOpenForSubmission:!1,hash:"10a5864ea0e1e21ee67aa2b55f51f465",slug:"mastitis-in-dairy-cattle-sheep-and-goats",bookSignature:"Oudessa Kerro Dego",coverURL:"https://cdn.intechopen.com/books/images_new/10589.jpg",editedByType:"Edited by",editors:[{id:"283019",title:"Dr.",name:"Oudessa",middleName:null,surname:"Kerro Dego",slug:"oudessa-kerro-dego",fullName:"Oudessa Kerro Dego"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"8ffe43a82ac48b309abc3632bbf3efd0",slug:"advanced-studies-in-the-21st-century-animal-nutrition",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",editedByType:"Edited by",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,isOpenForSubmission:!1,hash:"b91512e31ce34032e560362e6cbccc1c",slug:"canine-genetics-health-and-medicine",bookSignature:"Catrin Rutland",coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9081",title:"Equine Science",subtitle:null,isOpenForSubmission:!1,hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",slug:"equine-science",bookSignature:"Catrin Rutland and Albert Rizvanov",coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,isOpenForSubmission:!1,hash:"32ef5fe73998dd723d308225d756fa1e",slug:"reproductive-biology-and-technology-in-animals",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",editedByType:"Edited by",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",isOpenForSubmission:!1,hash:"2aa2a9a0ec13040bbf0455e34625504e",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",bookSignature:"Naceur M'Hamdi",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",editedByType:"Edited by",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:37,seriesByTopicCollection:[{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],seriesByTopicTotal:1,mostCitedChapters:[{id:"41563",doi:"10.5772/53504",title:"Fish Cytokines and Immune Response",slug:"fish-cytokines-and-immune-response",totalDownloads:5555,totalCrossrefCites:21,totalDimensionsCites:60,abstract:null,book:{id:"3193",slug:"new-advances-and-contributions-to-fish-biology",title:"New Advances and Contributions to Fish Biology",fullTitle:"New Advances and Contributions to Fish Biology"},signatures:"Sebastián Reyes-Cerpa, Kevin Maisey, Felipe Reyes-López, Daniela Toro-Ascuy, Ana María Sandino and Mónica Imarai",authors:[{id:"92841",title:"Dr.",name:"Mónica",middleName:null,surname:"Imarai",slug:"monica-imarai",fullName:"Mónica Imarai"},{id:"153780",title:"Dr.",name:"Sebastian",middleName:null,surname:"Reyes-Cerpa",slug:"sebastian-reyes-cerpa",fullName:"Sebastian Reyes-Cerpa"},{id:"157025",title:"Dr.",name:"Kevin",middleName:null,surname:"Maisey",slug:"kevin-maisey",fullName:"Kevin Maisey"},{id:"157026",title:"Dr.",name:"Felipe",middleName:"Esteban",surname:"Reyes-López",slug:"felipe-reyes-lopez",fullName:"Felipe Reyes-López"},{id:"157027",title:"MSc.",name:"Daniela",middleName:null,surname:"Toro-Ascuy",slug:"daniela-toro-ascuy",fullName:"Daniela Toro-Ascuy"},{id:"157028",title:"Dr.",name:"Ana",middleName:null,surname:"Sandino",slug:"ana-sandino",fullName:"Ana Sandino"}]},{id:"39623",doi:"10.5772/50192",title:"Use of Yeast Probiotics in Ruminants: Effects and Mechanisms of Action on Rumen pH, Fibre Degradation, and Microbiota According to the Diet",slug:"use-of-yeast-probiotics-in-ruminants-effects-and-mechanisms-of-action-on-rumen-ph-fibre-degradation-",totalDownloads:7907,totalCrossrefCites:17,totalDimensionsCites:38,abstract:null,book:{id:"2991",slug:"probiotic-in-animals",title:"Probiotic in Animals",fullTitle:"Probiotic in Animals"},signatures:"Frédérique Chaucheyras-Durand, Eric Chevaux, Cécile Martin and Evelyne Forano",authors:[{id:"151065",title:"Dr.",name:"Frederique",middleName:null,surname:"Chaucheyras-Durand",slug:"frederique-chaucheyras-durand",fullName:"Frederique Chaucheyras-Durand"},{id:"151068",title:"Mr.",name:"Eric",middleName:null,surname:"Chevaux",slug:"eric-chevaux",fullName:"Eric Chevaux"},{id:"151069",title:"Dr.",name:"Evelyne",middleName:null,surname:"Forano",slug:"evelyne-forano",fullName:"Evelyne Forano"},{id:"160177",title:"Dr.",name:"Cécile",middleName:null,surname:"Martin",slug:"cecile-martin",fullName:"Cécile Martin"}]},{id:"28679",doi:"10.5772/32100",title:"Values of Blood Variables in Calves",slug:"values-of-blood-variables-in-calves",totalDownloads:9604,totalCrossrefCites:16,totalDimensionsCites:36,abstract:null,book:{id:"1667",slug:"a-bird-s-eye-view-of-veterinary-medicine",title:"A Bird's-Eye View of Veterinary Medicine",fullTitle:"A Bird's-Eye View of Veterinary Medicine"},signatures:"Martina Klinkon and Jožica Ježek",authors:[{id:"90171",title:"Prof.",name:"Martina",middleName:null,surname:"Klinkon",slug:"martina-klinkon",fullName:"Martina Klinkon"}]},{id:"16107",doi:"10.5772/16563",title:"Effect of Cryopreservation on Sperm Quality and Fertility",slug:"effect-of-cryopreservation-on-sperm-quality-and-fertility",totalDownloads:15477,totalCrossrefCites:10,totalDimensionsCites:35,abstract:null,book:{id:"185",slug:"artificial-insemination-in-farm-animals",title:"Artificial Insemination in Farm Animals",fullTitle:"Artificial Insemination in Farm Animals"},signatures:"Alemayehu Lemma",authors:[{id:"25594",title:"Dr.",name:"Alemayehu",middleName:null,surname:"Lemma",slug:"alemayehu-lemma",fullName:"Alemayehu Lemma"}]},{id:"57645",doi:"10.5772/intechopen.71780",title:"Antibiotics in Chilean Aquaculture: A Review",slug:"antibiotics-in-chilean-aquaculture-a-review",totalDownloads:1939,totalCrossrefCites:17,totalDimensionsCites:29,abstract:"Aquaculture in Chile has been practiced since the 1920s; however, it was not until the 1990s that aquaculture became an important sector here. Important species in Chilean aquaculture include salmonids, algae, mollusks, and turbot. Salmonids are the dominant species in Chilean aquaculture for both harvest volume and export value, their production reaching greater than 800-thousand tons in 2015. However, this growth has been accompanied by an increase in disease presence, requiring greater drug use to control. This increase in drug use is an environmental and public health concern for the authorities, the salmon industry itself, and the destination markets. In this chapter, we review the literature on drug use, antibiotic resistance, regulatory framework, and alternatives, with focus on Chile.",book:{id:"6179",slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Ivonne Lozano, Nelson F. Díaz, Susana Muñoz and Carlos Riquelme",authors:[{id:"208847",title:"Dr.",name:"Ivonne",middleName:null,surname:"Lozano",slug:"ivonne-lozano",fullName:"Ivonne Lozano"},{id:"208895",title:"Dr.",name:"Nelson F.",middleName:null,surname:"Díaz",slug:"nelson-f.-diaz",fullName:"Nelson F. Díaz"},{id:"208897",title:"Dr.",name:"Carlos",middleName:null,surname:"Riquelme",slug:"carlos-riquelme",fullName:"Carlos Riquelme"},{id:"208898",title:"MSc.",name:"Susana",middleName:null,surname:"Muñoz",slug:"susana-munoz",fullName:"Susana Muñoz"}]}],mostDownloadedChaptersLast30Days:[{id:"56612",title:"Reproduction in Goats",slug:"reproduction-in-goats",totalDownloads:2892,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Reproductive activity of the goat begins when the females reach puberty, which happens at 5 months of age. The ovarian or estrous cycle is the period between two consecutive estrus. It is also the time that lasts the development of the follicle in the ovary, until rupture occurs and ovulation takes place, which coincides with the appearance of estrus. This chapter will describe the physiological and endocrinological bases of estrus in the goat. Likewise, factors affecting the presence of estrus and ovulation will be described. At another point, synchronization of estrus and ovulation, factors affecting the presence of estrus and external symptoms of estrus, will be described. To achieve synchronization of estrus or induction of ovulation within or outside the breeding season, it may be necessary to manage light hours, male effect, and/or use of hormones. The importance of artificial insemination is described, as well as the current situation of this technique worldwide. Currently, the techniques of artificial insemination in goats have been limited worldwide, due to the lack of resources of producers and trained technicians. The techniques of artificial insemination with estrous synchronization programs and ovulation with current research results will be described.",book:{id:"5987",slug:"goat-science",title:"Goat Science",fullTitle:"Goat Science"},signatures:"Fernando Sánchez Dávila, Alejandro Sergio del Bosque González\nand Hugo Bernal Barragán",authors:[{id:"201830",title:"Dr.",name:"Fernando",middleName:"Sanchez",surname:"Davila",slug:"fernando-davila",fullName:"Fernando Davila"},{id:"206127",title:"Dr.",name:"Alejandro Sergio",middleName:null,surname:"Del Bosque-Gonzalez",slug:"alejandro-sergio-del-bosque-gonzalez",fullName:"Alejandro Sergio Del Bosque-Gonzalez"},{id:"206128",title:"Dr.",name:"Hugo",middleName:null,surname:"Bernal-Barragán",slug:"hugo-bernal-barragan",fullName:"Hugo Bernal-Barragán"}]},{id:"58095",title:"The Innovative Techniques in Animal Husbandry",slug:"the-innovative-techniques-in-animal-husbandry",totalDownloads:3766,totalCrossrefCites:4,totalDimensionsCites:8,abstract:"Technology is developing rapidly. In this development, the transfer of computer systems and software to the application has made an important contribution. Technologic instruments made farmers can work more comfortable and increased animal production efficiency and profitability. Therefore, technologic developments are the main research area for animal productivity and sustainability. Many technologic equipment and tools made animal husbandry easier and comfortable. Especially management decisions and applications are effected highly ratio with this rapid development. In animal husbandry management decisions that need to be done daily are configured according to the correctness of the decisions to be made. At this point, smart systems give many opportunities to farmers. Milking, feeding, environmental control, reproductive performance constitute everyday jobs most affected by correct management decisions. Human errors in this works and decisions made big effect on last product quality and profitability are not able to be risked. This chapter deal with valuable information on the latest challenges and key innovations affecting the animal husbandry. Also, innovative approaches and applications for animal husbandry are tried to be summarized with detail latest research results.",book:{id:"6384",slug:"animal-husbandry-and-nutrition",title:"Animal Husbandry and Nutrition",fullTitle:"Animal Husbandry and Nutrition"},signatures:"Serap Göncü and Cahit Güngör",authors:[{id:"215579",title:"Prof.",name:"Serap",middleName:null,surname:"Goncu",slug:"serap-goncu",fullName:"Serap Goncu"},{id:"218971",title:"Dr.",name:"Cahit",middleName:null,surname:"Güngör",slug:"cahit-gungor",fullName:"Cahit Güngör"}]},{id:"58486",title:"Quality of Chicken Meat",slug:"quality-of-chicken-meat",totalDownloads:3290,totalCrossrefCites:18,totalDimensionsCites:26,abstract:"Chicken meat is considered as an easily available source of high-quality protein and other nutrients that are necessary for proper body functioning. In order to meet the consumers’ growing demands for high-quality protein, the poultry industry focused on selection of fast-growing broilers, which reach a body mass of about 2.5 kg within 6-week-intensive fattening. Relatively low sales prices of chicken meat, in comparison to other types of meat, speak in favor of the increased chicken meat consumption. In addition, chicken meat is known by its nutritional quality, as it contains significant amount of high-quality and easily digestible protein and a low portion of saturated fat. Therefore, chicken meat is recommended for consumption by all age groups. The technological parameters of chicken meat quality are related to various factors (keeping conditions, feeding treatment, feed composition, transport, stress before slaughter, etc.). Composition of chicken meat can be influenced through modification of chicken feed composition (addition of different types of oils, vitamins, microelements and amino acids), to produce meat enriched with functional ingredients (n-3 PUFA, carnosine, selenium and vitamin E). By this way, chicken meat becomes a foodstuff with added value, which, in addition to high-quality nutritional composition, also contains ingredients that are beneficial to human health.",book:{id:"6384",slug:"animal-husbandry-and-nutrition",title:"Animal Husbandry and Nutrition",fullTitle:"Animal Husbandry and Nutrition"},signatures:"Gordana Kralik, Zlata Kralik, Manuela Grčević and Danica Hanžek",authors:[{id:"207236",title:"Dr.",name:"Gordana",middleName:null,surname:"Kralik",slug:"gordana-kralik",fullName:"Gordana Kralik"},{id:"227281",title:"Prof.",name:"Zlata",middleName:null,surname:"Kralik",slug:"zlata-kralik",fullName:"Zlata Kralik"},{id:"227283",title:"Dr.",name:"Manuela",middleName:null,surname:"Grčević",slug:"manuela-grcevic",fullName:"Manuela Grčević"},{id:"227284",title:"BSc.",name:"Danica",middleName:null,surname:"Hanžek",slug:"danica-hanzek",fullName:"Danica Hanžek"}]},{id:"56453",title:"Goat System Productions: Advantages and Disadvantages to the Animal, Environment and Farmer",slug:"goat-system-productions-advantages-and-disadvantages-to-the-animal-environment-and-farmer",totalDownloads:4328,totalCrossrefCites:5,totalDimensionsCites:21,abstract:"Goats have always been considered very useful animals. Goats success is related to its excellent adaptability to the difficult mountain conditions, extreme weather and low value feed acceptance, versatile habits and high production considering their size. These are some reasons because goats are among the first animals to be domesticated. In terms of evolution, goats could be separated by their dispersion area in three large groups: the European, the Asian, and the African. Global goat populations, mainly in Africa and in Asia, have increased for centuries but very strongly in the past decades, well above the world population growth. They are also used for forest grazing, an integrated and alternative production system, very useful to control weed growth reducing fire risk. Despite some exceptions, no large‐scale effort to professionalize this industry has been made so far. There are consumers for goat dairy products and there is enough global production, but misses a professional network between both. Regarding goat meat, the world leadership also stays in Africa and Asia, namely in China, and there is a new phenomenon, the spreading of goat meat tradition through Europe due to migrants from Africa and other places with strong goat meat consumption.",book:{id:"5987",slug:"goat-science",title:"Goat Science",fullTitle:"Goat Science"},signatures:"António Monteiro, José Manuel Costa and Maria João Lima",authors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"},{id:"203680",title:"Prof.",name:"Maria João",middleName:null,surname:"Lima",slug:"maria-joao-lima",fullName:"Maria João Lima"},{id:"203683",title:"MSc.",name:"José Manuel",middleName:null,surname:"Costa",slug:"jose-manuel-costa",fullName:"José Manuel Costa"}]},{id:"70760",title:"Induction and Synchronization of Estrus",slug:"induction-and-synchronization-of-estrus",totalDownloads:1716,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Estrus cycle is a rhythmic change that occur in the reproductive system of females starting from one estrus phase to another. The normal duration of estrus cycle is 21 days in cow, sow, and mare, 17 days in ewe, and 20 days in doe. The species which exhibit a single estrus cycle are known as monstrous and species which come into estrus twice or more are termed polyestrous animals. Among them some species have estrus cycles in a particular season and defined as seasonal polyestrous. It includes goats, sheep, and horses. On the other hand, cattle undergo estrus throughout the year. The estrus inducers can grossly be divided into two parts, that is, non-hormonal and hormonal. Non-hormonal treatments include plant-derived heat inducers, mineral supplementation, uterine and ovarian massage, and use of Lugol’s iodine. The hormones that are used in estrus induction are estrogen, progesterone, GnRH, prostaglandin, insulin, and anti-prolactin-based treatment. Synchronization can shorten the breeding period to less than 5 days, instead of females being bred over a 21-day period, depending on the treatment regimen. The combination of GnRH with the prostaglandin F2α (PGF2α)- and progesterone-based synchronization program has shown a novel direction in the estrus synchronization of cattle with the follicular development manipulation.",book:{id:"8545",slug:"animal-reproduction-in-veterinary-medicine",title:"Animal Reproduction in Veterinary Medicine",fullTitle:"Animal Reproduction in Veterinary Medicine"},signatures:"Prasanna Pal and Mohammad Rayees Dar",authors:[{id:"299126",title:"Dr.",name:"Mohammad Rayees",middleName:null,surname:"Dar",slug:"mohammad-rayees-dar",fullName:"Mohammad Rayees Dar"},{id:"311663",title:"Dr.",name:"Prasanna",middleName:null,surname:"Pal",slug:"prasanna-pal",fullName:"Prasanna Pal"}]}],onlineFirstChaptersFilter:{topicId:"25",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82457",title:"Canine Hearing Management",slug:"canine-hearing-management",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.105515",abstract:"The United States military employs multipurpose canines as force multipliers. A newly developed baseline audiology program applicable to noise effects on the hearing threshold for these dogs has just been developed by the University of Cincinnati FETCHLAB using brainstem auditory evoked potentials to detect estimated threshold shifts in this population. Dogs that are routinely deployed are subject to consistent exposure to noise in the field. Few investigations have focused on the effects of transport noise on the auditory system in multipurpose dogs. The consequence of these dogs having a significant hearing threshold shift is a failure of the dog to properly respond to voice commands and to miss critical acoustic cues while on target. This chapter specifically discusses the baseline protocol for audiological testing of special operations’ multipurpose canines related to helicopter transport.",book:{id:"11580",title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg"},signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne"},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.105085",abstract:"The unique diversity of parvoviral vectors with innate antioncogenic properties, autonomous replication, ease of recombinant vector production and stable transgene expression in target cells makes them an attractive choice as viral vectors for gene therapy protocols. Amongst various parvoviruses that have been identified so far, recombinant vectors originating from adeno-associated virus, minute virus of mice (MVM), LuIII and parvovirus H1 have shown promising results in many preclinical models of human diseases including cancer. The adeno-associated virus (AAV), a non-pathogenic human parvovirus, has gained attention as a potentially useful vector. The improved understanding of the metabolism of vector genomes and the mechanism of transduction by AAV vectors is leading to advancement in the development of more sophisticated AAV vectors. The in-depth studies of AAV vector biology is opening avenues for more robust design of AAV vectors that have potentially increased transduction efficiency, increased specificity in cellular targeting, and an increased payload capacity. This chapter gives an overview of the application of autonomous parvoviral vectors and AAV vectors, based on our current understanding of viral biology and the state of the platform.",book:{id:"11580",title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg"},signatures:"Megha Gupta"},{id:"82170",title:"Equine Stress: Neuroendocrine Physiology and Pathophysiology",slug:"equine-stress-neuroendocrine-physiology-and-pathophysiology",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.105045",abstract:"This review presents new aspects to understanding the neuroendocrine regulation of equine stress responses, and their influences on the physiological, pathophysiological, and behavioral processes. Horse management, in essence, is more frequently confirmed by external and internal stress factors, than in other domestic animals. Regardless of the nature of the stimulus, the equine stress response is an effective and highly conservative set of interconnected relationships designed to maintain physiological integrity even in the most challenging circumstances (e.g., orthopedic injuries, abdominal pain, transport, competitions, weaning, surgery, and inflammation). The equine stress response is commonly a complementary homeostatic mechanism that provides protection (not an adaptation) when the body is disturbed or threatened. It activates numerous neural and hormonal networks to optimize metabolic, cardiovascular, musculoskeletal, and immunological functions. This review looks into the various mechanisms involved in stress responses, stress-related diseases, and assessment, prevention or control, and management of these diseases and stress. Stress-related diseases can not only be identified and assessed better, given the latest research and techniques but also prevented or controlled.",book:{id:"10665",title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg"},signatures:"Milomir Kovac, Tatiana Vladimirovna Ippolitova, Sergey Pozyabin, Ruslan Aliev, Viktoria Lobanova, Nevena Drakul and Catrin S. Rutland"},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.104846",abstract:"Canine parvovirus-2 (CPV-2) is a highly contagious and key enteropathogen affecting the canine population around the globe by causing canine parvoviral enteritis (CPVE) and vomition. CPVE is one of the the leading causes of morbidity and mortality in puppies and young dogs. Over the years, five distinct antigenic variants of CPV-2, namely CPV-2a, CPV-2b, new CPV-2a, new CPV-2b, and CPV-2c, have emerged throughout the world. CPV-2 infects a diverse range of wild animals, and the newer variants of CPV-2 have expanded their host range to include felines. Despite the availability of highly specific diagnostics and efficacious vaccines, CPV-2 outbreaks have been reported globally due to the emergence of newer antigenic variants, expansion of the viral host range, and vaccination failures. The present chapter describes the latest information pertaining to virus properties and replication, disease manifestations in animals, and an additional recent updates on diagnostic, prevention and control strategies of CPV-2.",book:{id:"11580",title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg"},signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy"},{id:"81271",title:"The Diversity of Parvovirus Telomeres",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalDimensionsCites:0,doi:"10.5772/intechopen.102684",abstract:"Parvoviridae are small viruses composed of a 4–6 kb linear single-stranded DNA protected by an icosahedral capsid. The viral genes coding non-structural (NS), capsid, and accessory proteins are flanked by intriguing sequences, namely the telomeres. Telomeres are essential for parvovirus genome replication, encapsidation, and integration. Similar (homotelomeric) or different (heterotelomeric) at the two ends, they all contain imperfect palindromes that fold into hairpin structures. Up to 550 nucleotides in length, they harbor a wide variety of motifs and structures known to be recognized by host cell factors. Our study aims to comprehensively analyze parvovirus ends to better understand the role of these particular sequences in the virus life cycle. Forty Parvoviridae terminal repeats (TR) were publicly available in databases. The folding and specific DNA secondary structures, such as G4 and triplex, were systematically analyzed. A principal component analysis was carried out from the prediction data to determine variables signing parvovirus groups. A special focus will be put on adeno-associated virus (AAV) inverted terminal repeats (ITR), a member of the genus Dependoparvovirus used as vectors for gene therapy. This chapter highlights the diversity of the Parvoviridae telomeres regarding shape and secondary structures, providing information that could be relevant for virus-host interactions studies.",book:{id:"11580",title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg"},signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo"},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalDimensionsCites:0,doi:"10.5772/intechopen.99671",abstract:"Veterinary physiology is a basic curricular unit for every course within the veterinary field. It is mandatory to understand how the animal body works, and what to expect of a healthy body, in order to recognize any misfunction, and to be able to treat it. Classic physiology teaching involves wet labs, much equipment, many reagents, some animals, and a lot of time. But times are changing. In the 21st century, it is expected that the teaching and learning process can be more active and attractive, motivating students to learn better. It is necessary to understand what students like, and to introduce novelties into the school routine. The use of a game-based learning, using “new” technologies, creating virtual experiences and labs, reducing the costs of reagents, equipment, and especially reducing the use of animals, will be the future for physiology teaching.",book:{id:"10665",title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg"},signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala"}],onlineFirstChaptersTotal:14},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:2},{group:"subseries",caption:"Cell Physiology",value:11,count:8}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:739,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null},{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. from Integral University, Lucknow, India, with his work titled ‘Development and evaluation of silymarin nanoformulation for hepatic carcinoma’. Currently, he is an Assistant Professor of Pharmaceutics, at the Faculty of Pharmacy, Integral University. He has been teaching PharmD, BPharm, and MPharm students and conducting research in the novel drug delivery domain. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than twenty-four original journal articles, two edited books, four book chapters, and several scientific articles to his credit. He is a member of the American Association for Cancer Research, the International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"333824",title:"Dr.",name:"Ahmad Farouk",middleName:null,surname:"Musa",slug:"ahmad-farouk-musa",fullName:"Ahmad Farouk Musa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333824/images/22684_n.jpg",biography:"Dato’ Dr Ahmad Farouk Musa\nMD, MMED (Surgery) (Mal), Fellowship in Cardiothoracic Surgery (Monash Health, Aust), Graduate Certificate in Higher Education (Aust), Academy of Medicine (Mal)\n\n\n\nDato’ Dr Ahmad Farouk Musa obtained his Doctor of Medicine from USM in 1992. He then obtained his Master of Medicine in Surgery from the same university in the year 2000 before subspecialising in Cardiothoracic Surgery at Institut Jantung Negara (IJN), Kuala Lumpur from 2002 until 2005. He then completed his Fellowship in Cardiothoracic Surgery at Monash Health, Melbourne, Australia in 2008. He has served in the Malaysian army as a Medical Officer with the rank of Captain upon completing his Internship before joining USM as a trainee lecturer. He is now serving as an academic and researcher at Monash University Malaysia. He is a life-member of the Malaysian Association of Thoracic & Cardiovascular Surgery (MATCVS) and a committee member of the MATCVS Database. He is also a life-member of the College of Surgeons, Academy of Medicine of Malaysia; a life-member of Malaysian Medical Association (MMA), and a life-member of Islamic Medical Association of Malaysia (IMAM). Recently he was appointed as an Interim Chairperson of Examination & Assessment Subcommittee of the UiTM-IJN Cardiothoracic Surgery Postgraduate Program. As an academic, he has published numerous research papers and book chapters. He has also been appointed to review many scientific manuscripts by established journals such as the British Medical Journal (BMJ). He has presented his research works at numerous local and international conferences such as the European Association for Cardiothoracic Surgery (EACTS) and the European Society of Cardiovascular Surgery (ESCVS), to name a few. He has also won many awards for his research presentations at meetings and conferences like the prestigious International Invention, Innovation & Technology Exhibition (ITEX); Design, Research and Innovation Exhibition, the National Conference on Medical Sciences and the Annual Scientific Meetings of the Malaysian Association for Thoracic and Cardiovascular Surgery. He was awarded the Darjah Setia Pangkuan Negeri (DSPN) by the Governor of Penang in July, 2015.",institutionString:null,institution:{name:"Monash University Malaysia",country:{name:"Malaysia"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}}]}},subseries:{item:{id:"26",type:"subseries",title:"Machine Learning and Data Mining",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80168",title:"Benzimidazole: Pharmacological Profile",doi:"10.5772/intechopen.102091",signatures:"Mahender Thatikayala, Anil Kumar Garige and Hemalatha Gadegoni",slug:"benzimidazole-pharmacological-profile",totalDownloads:83,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80130",title:"Exploring the Versatility of Benzimidazole Scaffolds as Medicinal Agents: A Brief Update",doi:"10.5772/intechopen.101942",signatures:"Gopakumar Kavya and Akhil Sivan",slug:"exploring-the-versatility-of-benzimidazole-scaffolds-as-medicinal-agents-a-brief-update",totalDownloads:62,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79964",title:"The Anticancer Profile of Benzimidazolium Salts and Their Metal Complexes",doi:"10.5772/intechopen.101729",signatures:"Imran Ahmad Khan, Noor ul Amin Mohsin, Sana Aslam and Matloob Ahmad",slug:"the-anticancer-profile-of-benzimidazolium-salts-and-their-metal-complexes",totalDownloads:95,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79835",title:"Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside",doi:"10.5772/intechopen.101702",signatures:"Kashif Haider and Mohammad Shahar Yar",slug:"advances-of-benzimidazole-derivatives-as-anticancer-agents-bench-to-bedside",totalDownloads:128,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{title:"Infectious Diseases",id:"6"},selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/187620",hash:"",query:{},params:{id:"187620"},fullPath:"/profiles/187620",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()