In this chapter, we address the problem of data-gathering and aggregation (DGA) in navigation carrier ad hoc networks (NC-NET), in order to reduce energy consumption and enhance network scalability and lifetime. Several clustering algorithms have been presented for vehicle ad hoc network (VANET) and other mobile ad hoc network (MANET). However, DGA approach in harsh environments, in terms of long-range transmission, high dynamic topology and three-dimensional monitor region, is still an open issue. In this chapter, we propose a novel clustering-based DGA approach, namely, distributed multiple-weight data-gathering and aggregation (DMDG) protocol, to guarantee quality of service (QoS)-aware DGA for heterogeneous services in above harsh environments. Our approach is explored by the synthesis of three kernel features. First, the network model is addressed according to specific conditions of networked carrier ad hoc networks (NC-NET), and several performance indicators are selected. Second, a distributed multiple-weight data-gathering and aggregation protocol (DMDG) is proposed, which contains all-sided active clustering scheme and realizes long-range real-time communication by tactical data link under a time-division multiple access/carrier sense multiple access (TDMA/CSMA) channel sharing mechanism. Third, an analytical paradigm facilitating the most appropriate choice of the next relay is proposed. Experimental results have shown that DMDG scheme can balance the energy consumption and extend the network lifetime notably and outperform LEACH, PEACH and DEEC in terms of network lifetime and coverage rate, especially in sparse node density or anisotropic topologies.
Part of the book: Ad Hoc Networks