Summary of the patent search results.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5859",leadTitle:null,fullTitle:"Qualitative versus Quantitative Research",title:"Qualitative versus Quantitative Research",subtitle:null,reviewType:"peer-reviewed",abstract:"The objective of this book is to fill the gap combining several studies from qualitative and quantitative research methods. The various chapters presented here follow several approaches that researchers explore in different context. This book intends to contribute to better understanding of the application areas of qualitative research method and to show how these business practices in social sciences can stimulate in various areas.",isbn:"978-953-51-3286-8",printIsbn:"978-953-51-3285-1",pdfIsbn:"978-953-51-4774-9",doi:"10.5772/65619",price:119,priceEur:129,priceUsd:155,slug:"qualitative-versus-quantitative-research",numberOfPages:110,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"d5ed2bf861d5745f24ef585da095d217",bookSignature:"Sonyel Oflazoglu",publishedDate:"June 28th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5859.jpg",numberOfDownloads:11986,numberOfWosCitations:21,numberOfCrossrefCitations:17,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:34,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:72,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 12th 2016",dateEndSecondStepPublish:"November 2nd 2016",dateEndThirdStepPublish:"January 29th 2017",dateEndFourthStepPublish:"April 29th 2017",dateEndFifthStepPublish:"June 28th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"187211",title:"Dr.",name:"Sonyel",middleName:null,surname:"Oflazoglu",slug:"sonyel-oflazoglu",fullName:"Sonyel Oflazoglu",profilePictureURL:"https://mts.intechopen.com/storage/users/187211/images/5783_n.jpg",biography:"Sonyel Oflazoğlu is an assistant professor of Entrepreneurship and Marketing at the Department of Marketing, Mustafa Kemal University, Turkey. She got her MS degree from Mustafa Kemal University, Institute of Social Sciences, Business Administration, and then she worked as a research assistant at Ankara University, Faculty of Political Sciences, in 2003. In 2008, she got a fellowship from the European Union to study PhD candidate student as a visiting researcher at Bucks New University, England; she received her PhD degree in 2010. Her research focuses on business networks, qualitative and quantitative research methods, consumer behaviour and entrepreneurship and innovation. She has authored several journal articles and book chapters, which were published through international publishers. Currently Dr. Oflazoğlu is involved in several research projects on social sciences.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Mustafa Kemal University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"439",title:"Operation Management",slug:"business-management-and-economics-business-administration-operation-management"}],chapters:[{id:"54613",title:"Qualitative Method Versus Quantitative Method in Marketing Research: An Application Example at Oba Restaurant",doi:"10.5772/67848",slug:"qualitative-method-versus-quantitative-method-in-marketing-research-an-application-example-at-oba-re",totalDownloads:2397,totalCrossrefCites:3,totalDimensionsCites:7,hasAltmetrics:0,abstract:"The aim of this chapter is to present the unique aspects of the qualitative method that is rarely used against the quantitative method commonly used to obtain valid and reliable information in marketing research today. In this section, the qualitative method and the specific nature of the quantitative method are dealt with through an application beyond a theoretical‐based debate. In this context, a marketing research has been conducted on how to improve the quality of service of a restaurant operation that wants to increase the quality of the services it offers to its customers. Qualitative and quantitative methods were used simultaneously in the marketing research implemented. The specific directions that each step of the marketing research carried out and the way in which researchers should use these two methods in the marketing research are revealed through the application. As a result of the research, it has been determined that the quantitative findings about the work to be done in order to increase the service quality in the restaurant operation is numerically higher, but it is more limited in terms of guidance to the business managers. Findings obtained by the qualitative method are found to be more specific in terms of content and more functional at the point of guidance to the administrators.",signatures:"Yusuf Bilgin",downloadPdfUrl:"/chapter/pdf-download/54613",previewPdfUrl:"/chapter/pdf-preview/54613",authors:[{id:"198044",title:"Dr.",name:"Yusuf",surname:"Bilgin",slug:"yusuf-bilgin",fullName:"Yusuf Bilgin"}],corrections:null},{id:"54935",title:"Ethnography of Naming as a Religious Identity: Case of Antakya",doi:"10.5772/intechopen.68326",slug:"ethnography-of-naming-as-a-religious-identity-case-of-antakya",totalDownloads:1560,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Antakya is the central district of Hatay Province located in the eastern Mediterranean Region. Once populated by a variety of different ethno-religious communities, today it is still a place where Jewish, Christian, Sunni Muslim, and Arab Alevi (Nusayri) communities live together. This study is aimed at gaining insight into the naming preferences and naming rituals among different religious communities with a comparative perspective. The key question this study seeks to answer is how the religious belief to which people belong affects the names they are given and how the religious community draws a line between “self” and “other” based on the name. Names given to children or avoided as a taboo in different communities give the hints of a faith-based cultural memory a community established with its past. In this study, which is built on ethnography, field study method was utilized, and interviews were conducted with people from different communities. These interviews provided detailed insights into the variables people consider in naming their children, whether or not the religious identity to which they belong is influential in choosing a name, the naming experiences and rituals.",signatures:"Kadriye Şahin",downloadPdfUrl:"/chapter/pdf-download/54935",previewPdfUrl:"/chapter/pdf-preview/54935",authors:[{id:"198238",title:"Ph.D.",name:"Kadriye",surname:"Şahin",slug:"kadriye-sahin",fullName:"Kadriye Şahin"}],corrections:null},{id:"55098",title:"Research Methods in Library and Information Science",doi:"10.5772/intechopen.68749",slug:"research-methods-in-library-and-information-science",totalDownloads:4656,totalCrossrefCites:13,totalDimensionsCites:22,hasAltmetrics:1,abstract:"Library and information science (LIS) is a very broad discipline, which uses a wide rangeof constantly evolving research strategies and techniques. The aim of this chapter is to provide an updated view of research issues in library and information science. A stratified random sample of 440 articles published in five prominent journals was analyzed and classified to identify (i) research approach, (ii) research methodology, and (iii) method of data analysis. For each variable, a coding scheme was developed, and the articles were coded accordingly. A total of 78% of the articles reported empirical research. The rest 22% were classified as non‐empirical research papers. The five most popular topics were “information retrieval,” “information behaviour,” “information literacy,” “library services,” and “organization and management.” An overwhelming majority of the empirical research articles employed a quantitative approach. Although the survey emerged as the most frequently used research strategy, there is evidence that the number and variety of research methodologies have been increased. There is also evidence that qualitative approaches are gaining increasing importance and have a role to play in LIS, while mixed methods have not yet gained enough recognition in LIS research.",signatures:"Aspasia Togia and Afrodite Malliari",downloadPdfUrl:"/chapter/pdf-download/55098",previewPdfUrl:"/chapter/pdf-preview/55098",authors:[{id:"199801",title:"Dr.",name:"Aspasia",surname:"Togia",slug:"aspasia-togia",fullName:"Aspasia Togia"},{id:"200167",title:"Dr.",name:"Afrodite",surname:"Malliari",slug:"afrodite-malliari",fullName:"Afrodite Malliari"}],corrections:null},{id:"55873",title:"Assessment of Care for Cultural Competence in Healthcare Services: A Systematic Rewiev of Qualitative Studies",doi:"10.5772/intechopen.69477",slug:"assessment-of-care-for-cultural-competence-in-healthcare-services-a-systematic-rewiev-of-qualitative",totalDownloads:1568,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Background: Societies have a multicultural structure characterized by the spread of cultural diversity and having to live together with different ethnic origins, languages, and racial individuals. This requires that health professionals should adopt a care approach regarding cultural competence in order to prevent health inequalities due to cultural differences, to meet the health needs at desired level, and to enable maintenance of evidence‐based care. Objective: To assess the cultural competence of the care provided in healthcare services. Methods: Academic Search Complete, CINAHL, Proquest, Sage, and ScienceDirect databases were scanned; seven articles matching the criteria were evaluated. Findings: (1) The number of articles that examined clearly and comprehensively in the context of qualitative research relationship between cultural competence and healthcare services was few, (2) the results couldn’t be combined into a common pavilion because many of the studies have processed on independent topics by addressing different dimensions of cultural competence, (3) in studies, it has been found that important components of care such as mutual communication, trust‐based care environment, positive and non‐judgmental approaches of health professionals, clinical skills, and linguistic differences were effective for cultural competence of healthcare services.",signatures:"Seyma Demir and Yasemin Yildirim Usta",downloadPdfUrl:"/chapter/pdf-download/55873",previewPdfUrl:"/chapter/pdf-preview/55873",authors:[{id:"198029",title:"Associate Prof.",name:"Yasemin",surname:"Yıldırım Usta",slug:"yasemin-yildirim-usta",fullName:"Yasemin Yıldırım Usta"},{id:"200268",title:"MSc.",name:"Şeyma",surname:"Demir",slug:"seyma-demir",fullName:"Şeyma Demir"}],corrections:null},{id:"54805",title:"Limits and Possibilities to Combine Quantitative and Qualitative Approaches",doi:"10.5772/intechopen.68195",slug:"limits-and-possibilities-to-combine-quantitative-and-qualitative-approaches",totalDownloads:1805,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"This essay analyzes the main characteristics of quantitative and qualitative approaches to empirical social and human research, showing the extent to which they leverage each other, the advantages of their shared use and the limitations of this relationship. This theoretical and practical work discusses the principles of each strategy and its possible cooperation, proposing, in a didactic way, this gathering. It builds on more than 20 years research experience of the author, who, jointly with her group, has combined these approaches. This text concerns only empirical research, and, due to the limited space, focuses only on some classic authors and references with their seminal theories. It is organized as follows: (1) analysis of the different rationales of quantitative and qualitative approaches, (2) principles supporting cooperation between them, (3) prerequisites for articulation, and (4) proposed operationalization of such cooperation.",signatures:"Maria Cecília de Souza Minayo",downloadPdfUrl:"/chapter/pdf-download/54805",previewPdfUrl:"/chapter/pdf-preview/54805",authors:[{id:"198978",title:"Ph.D.",name:"Maria Cecília",surname:"De Souza Minayo",slug:"maria-cecilia-de-souza-minayo",fullName:"Maria Cecília De Souza Minayo"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6583",title:"Marketing",subtitle:null,isOpenForSubmission:!1,hash:"8ff1f842b67cc0b3301ea477c31d934b",slug:"marketing",bookSignature:"Sonyel Oflazo?lu",coverURL:"https://cdn.intechopen.com/books/images_new/6583.jpg",editedByType:"Edited by",editors:[{id:"187211",title:"Dr.",name:"Sonyel",surname:"Oflazoglu",slug:"sonyel-oflazoglu",fullName:"Sonyel Oflazoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2175",title:"Risk Management",subtitle:"Current Issues and Challenges",isOpenForSubmission:!1,hash:"c6406ba890ef4569efd8298e1121685d",slug:"risk-management-current-issues-and-challenges",bookSignature:"Nerija Banaitiene",coverURL:"https://cdn.intechopen.com/books/images_new/2175.jpg",editedByType:"Edited by",editors:[{id:"139414",title:"Dr.",name:"Nerija",surname:"Banaitiene",slug:"nerija-banaitiene",fullName:"Nerija Banaitiene"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"146",title:"Risk Management Trends",subtitle:null,isOpenForSubmission:!1,hash:"b787e4bce18617fb8b4778d72d78e25b",slug:"risk-management-trends",bookSignature:"Giancarlo Nota",coverURL:"https://cdn.intechopen.com/books/images_new/146.jpg",editedByType:"Edited by",editors:[{id:"10232",title:"Prof.",name:"Giancarlo",surname:"Nota",slug:"giancarlo-nota",fullName:"Giancarlo Nota"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5396",title:"Entrepreneurship",subtitle:"Practice-Oriented Perspectives",isOpenForSubmission:!1,hash:"297a3f7f82b2fba856f51501cf3e6864",slug:"entrepreneurship-practice-oriented-perspectives",bookSignature:"Mario Franco",coverURL:"https://cdn.intechopen.com/books/images_new/5396.jpg",editedByType:"Edited by",editors:[{id:"105529",title:"Dr.",name:"Mário",surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5748",title:"Theory and Application on Cognitive Factors and Risk Management",subtitle:"New Trends and Procedures",isOpenForSubmission:!1,hash:"3b1562b00413a902d3e060b18d00c92e",slug:"theory-and-application-on-cognitive-factors-and-risk-management-new-trends-and-procedures",bookSignature:"Fabio De Felice and Antonella Petrillo",coverURL:"https://cdn.intechopen.com/books/images_new/5748.jpg",editedByType:"Edited by",editors:[{id:"161682",title:"Prof.",name:"Fabio",surname:"De Felice",slug:"fabio-de-felice",fullName:"Fabio De Felice"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6535",title:"Contemporary Issues and Research in Operations Management",subtitle:null,isOpenForSubmission:!1,hash:"1cda5f95443dc740a295ff54da00793f",slug:"contemporary-issues-and-research-in-operations-management",bookSignature:"Gary P. Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/6535.jpg",editedByType:"Edited by",editors:[{id:"16974",title:"Dr.",name:"Gary",surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"72959",slug:"erratum-driving-control-technologies-of-new-high-efficient-motors",title:"Erratum - Driving Control Technologies of New High-Efficient Motors",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/72959.pdf",downloadPdfUrl:"/chapter/pdf-download/72959",previewPdfUrl:"/chapter/pdf-preview/72959",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/72959",risUrl:"/chapter/ris/72959",chapter:{id:"68411",slug:"driving-control-technologies-of-new-high-efficient-motors",signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",dateSubmitted:"April 1st 2019",dateReviewed:"July 2nd 2019",datePrePublished:"August 22nd 2019",datePublished:"March 25th 2020",book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",fullName:"Chang-Ming Liaw",slug:"chang-ming-liaw",email:"cmliaw@ee.nthu.edu.tw",position:null,institution:null},{id:"180324",title:"Dr.",name:"Kai-Wei",middleName:null,surname:"Hu",fullName:"Kai-Wei Hu",slug:"kai-wei-hu",email:"kaiweihu@hotmail.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308019",title:"MSc.",name:"Jia-Hsiang",middleName:null,surname:"Zhuang",fullName:"Jia-Hsiang Zhuang",slug:"jia-hsiang-zhuang",email:"abc0929352983@yahoo.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308021",title:"MSc.",name:"Shih-Wei",middleName:null,surname:"Su",fullName:"Shih-Wei Su",slug:"shih-wei-su",email:"nthu18356743@gmail.com",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}}]}},chapter:{id:"68411",slug:"driving-control-technologies-of-new-high-efficient-motors",signatures:"Chang-Ming Liaw, Min-Ze Lu, Ping-Hong Jhou and Kuan-Yu Chou",dateSubmitted:"April 1st 2019",dateReviewed:"July 2nd 2019",datePrePublished:"August 22nd 2019",datePublished:"March 25th 2020",book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"37616",title:"Prof.",name:"Chang-Ming",middleName:null,surname:"Liaw",fullName:"Chang-Ming Liaw",slug:"chang-ming-liaw",email:"cmliaw@ee.nthu.edu.tw",position:null,institution:null},{id:"180324",title:"Dr.",name:"Kai-Wei",middleName:null,surname:"Hu",fullName:"Kai-Wei Hu",slug:"kai-wei-hu",email:"kaiweihu@hotmail.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308019",title:"MSc.",name:"Jia-Hsiang",middleName:null,surname:"Zhuang",fullName:"Jia-Hsiang Zhuang",slug:"jia-hsiang-zhuang",email:"abc0929352983@yahoo.com.tw",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}},{id:"308021",title:"MSc.",name:"Shih-Wei",middleName:null,surname:"Su",fullName:"Shih-Wei Su",slug:"shih-wei-su",email:"nthu18356743@gmail.com",position:null,institution:{name:"National Tsing Hua University",institutionURL:null,country:{name:"Taiwan"}}}]},book:{id:"9290",title:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",subtitle:null,fullTitle:"Applied Electromechanical Devices and Machines for Electric Mobility Solutions",slug:"applied-electromechanical-devices-and-machines-for-electric-mobility-solutions",publishedDate:"March 25th 2020",bookSignature:"Adel El-Shahat and Mircea Ruba",coverURL:"https://cdn.intechopen.com/books/images_new/9290.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193331",title:"Dr.",name:"Adel",middleName:null,surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11454",leadTitle:null,title:"Contemporary Issues in Land Use Planning",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tRapid urbanization is one of the most important global change problems that land-use planners are facing worldwide. With increased population growth and urbanization, cities around the world are becoming more affluent and putting even greater pressures on various land uses. The greatest challenges include managing traffic and transportation, the urban sprawl of cities, and affordable housing in ways that can improve people’s health and social well-being in a city-based framework, keeping in mind qualitative principles of equity, public participation, and sustainability. The proposed book hopes to bring together leading scholars in the field of transportation or engineering, land use planning, affordable housing, and smart cities growth, to discuss contemporary land use issues and challenges facing cities in both developed and developing countries. The book is also intended to serve as important reference material for academics, land use planning professionals, and students around the globe seeking to understand contemporary land-use problems and innovative solutions.
",isbn:"978-1-80356-237-7",printIsbn:"978-1-80356-236-0",pdfIsbn:"978-1-80356-238-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"e669f527567e12a187e61b3dbb18155f",bookSignature:"Dr. Seth Appiah-Opoku",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11454.jpg",keywords:"Land Use, Transportation Interaction, Smart City, Housing, City Typology, Urbanization, Urban Sprawl, Affordable Housing, Transit Management, Squatter Settlement, Manufactured Home, Sustainability",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 9th 2022",dateEndSecondStepPublish:"March 9th 2022",dateEndThirdStepPublish:"May 8th 2022",dateEndFourthStepPublish:"July 27th 2022",dateEndFifthStepPublish:"September 25th 2022",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Seth Appiah-Opoku is a member of the American Institute of Certified Planners. He also served on the Technical Advisory Team that advised the government of Ghana on the preparation of a 40-year development plan for the country.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"137858",title:"Dr.",name:"Seth",middleName:null,surname:"Appiah-Opoku",slug:"seth-appiah-opoku",fullName:"Seth Appiah-Opoku",profilePictureURL:"https://mts.intechopen.com/storage/users/137858/images/system/137858.jpg",biography:"Dr. Seth Appiah-Opoku is a Professor of Geography at the University of Alabama, Tuscaloosa, AL, USA. He teaches World Regional Geography, Regional Geography of Africa, Environmental Management, Land Use Regulation, Principles of Planning, Regional Planning and Analysis, and also the Ghana Summer Abroad course. He is a member of the American Institute of Certified Planners and the editor of three books - The Need for Indigenous Knowledge in Environmental Impact Assessment: The Case of Ghana (Edwin Mellen Press, NY, June 2005), Environmental Land Use Planning (IntechOpen, 2012), and International Development (IntechOpen, 2017). His research focuses on international development, urban planning, ecotourism, environmental impact assessment, and resource development. He serves on the Editorial Boards of the Journal of Environmental Impact Assessment Review and the Environment and Social Psychology Journal. He also served as the editor of the Journal of African Geographical Review from 2016 to 2018. He has published scholarly articles in several renowned journals including Environmental Management, Society and Natural Resources, Environmental Impact Assessment Review, Journal of Cultural Geography, and Plan Canada. He served on the Technical Advisory Team that advised the government of Ghana on the preparation of a 40-year development plan for the country.",institutionString:"University of Alabama, Tuscaloosa",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Alabama, Tuscaloosa",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"2358",title:"Environmental Land Use Planning",subtitle:null,isOpenForSubmission:!1,hash:"45c4591d49ed3ff918fe563a30203cb2",slug:"environmental-land-use-planning",bookSignature:"Seth Appiah-Opoku",coverURL:"https://cdn.intechopen.com/books/images_new/2358.jpg",editedByType:"Edited by",editors:[{id:"137858",title:"Dr.",name:"Seth",surname:"Appiah-Opoku",slug:"seth-appiah-opoku",fullName:"Seth Appiah-Opoku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5468",title:"International Development",subtitle:null,isOpenForSubmission:!1,hash:"df06431aaa20f810b8d187e0db9b807d",slug:"international-development",bookSignature:"Seth Appiah-Opoku",coverURL:"https://cdn.intechopen.com/books/images_new/5468.jpg",editedByType:"Edited by",editors:[{id:"137858",title:"Dr.",name:"Seth",surname:"Appiah-Opoku",slug:"seth-appiah-opoku",fullName:"Seth Appiah-Opoku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8013",title:"Land Use Change and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"6b3aee3b93d95ecd84c41753486f7a83",slug:"land-use-change-and-sustainability",bookSignature:"Seth Appiah-Opoku",coverURL:"https://cdn.intechopen.com/books/images_new/8013.jpg",editedByType:"Edited by",editors:[{id:"137858",title:"Dr.",name:"Seth",surname:"Appiah-Opoku",slug:"seth-appiah-opoku",fullName:"Seth Appiah-Opoku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"67774",title:"Solvent Effects in Supramolecular Systems",doi:"10.5772/intechopen.86981",slug:"solvent-effects-in-supramolecular-systems",body:'\nFundamental nature’s operations are dominated and regulated by noncovalent interactions. Solvation demonstrates a key role in all these processes as it drastically influences the energetics of host-guest (Ho-G) interactions as well as the supramolecular recognition phenomena. In many occasions solvents can influence and modulate the supramolecular structure of complex systems through various possible interactions with solutes.
\nIn recent years a rapidly increasing interest and development in the field of supramolecular engineering have been observed. Specifically within the scope of modern materials and chemical science, the conducted research is continuously growing [1]. Fundamentally, the target is to create molecular systems by design, intending to regulate the interactions of complex building blocks in the solid and liquid state and to obtain desirable complex systems exhibiting multifunctional properties. Since the recent awarding of the Nobel Prize of chemistry to Jean-Pierre Sauvage, Fraser Stoddart, and Ben Feringa, this area has gained plenty of scientific attention [2]. The microenvironment-dependent complexation of supramolecular complexes provides a conventional tool for creating a vast variety of mechanically interlocked molecules, supramolecular architectures, and molecular machines. Rotaxanes and catenanes, which are at the heart of the development of “molecular machine” chemistry [3], are of principal importance. Under this framework, molecular machines that have been studied until today include molecular motors [4], shuttles [5], muscles [6], pumps [7], elevators [8], etc. Supramolecular chemistry showed an impulsive interest in molecular-engineered compounds, whereby complexes are formed from small molecular building blocks held together by reversible intermolecular noncovalent interactions such as van der Waals interactions, hydrogen bonding, electrostatic, π-π stacking, and hydrophobic interactions. Their design, control, and function compose new relevant interdisciplinary key enabling areas (KEA) of science and technology. In all these solvents and solvation are demonstrating a fundamentally important role. Ordinarily, solvents are categorized into two main categories cited as polar and nonpolar, whereby their efficacy is often characterized by their dielectric constants. Solvents with a dielectric constant of less than 15 are usually regarded to be nonpolar. Nonpolar solvents contain bonds between atoms with similar electronegativities, such as carbon and hydrogen. Polar solvents have large dipole moments and they comprise bonds between atoms with very different electronegativities, such as oxygen and hydrogen. The aforementioned solvents are additionally divided into polar aprotic and polar protic. The solvation efficacy in a predefined medium pays a key role in thermodynamics and kinetics especially in supramolecular host-guest interactions. This is profoundly correlated to changes in solubility, stability constant, reactivity, redox potential, and some spectral parameters. Host-guest association behaviors can essentially be controlled only by applying diverse solvent system, thus altering by demand their solvation properties. Hence, the solvation environment plays a dynamic role for supramolecular solutes, being able thus to affect the thermodynamics of complex systems. In general, the interactions involved in supramolecular systems are quite weaker than covalent bonds, and thus they can be highly controlled and reversible. Acknowledging the importance of the above, this chapter discusses the impact of solvents in various types of supramolecular systems.
\nOne of the key roles of solvents which are dominant in supramolecular chemistry is their role in supramolecular recognition. This is essential for systems consisting of a host (Ho) and a guest (G) (Figure 1). In solution solvent molecules can interact with Ho and G molecules through various types of noncovalent weak interactions, and this process readily affects the mutual interactions between the Ho and G counterparts. Consequently, the thermodynamics of their binding can be significantly altered simply by changing solvents. The most dominant interactions in Ho-G-S system (where S is a solvent) can be electrostatic (i.e., ion-ion, ion-dipole, dipole-dipole, or dipole-induced dipole interactions), H-bonding, van der Waals, or π-π interactions. Inevitably, the type of developed interactions is influenced by the physicochemical properties of the Ho, G, and S molecules [9].
\nIllustration of the equilibrium of the binding between a solvated Ho (blue) and a solvated G (orange) molecule involving the release of solvent molecules (red).
From a thermodynamic perspective, the simple equilibrium of Figure 1 is described by the equilibrium (association) constant which is connected to the thermodynamic activities of the Ho, G, and (Ho-G) species, i.e.,
The tremendous impact of solvent polarity on the supramolecular assembling is easily manifested through the following example by Nishimura and coworkers [11]. In their work by employing dynamic covalent chemistry, they managed to develop a complementary capsule-guest supramolecular system (Figure 2) behaving very differently in two deuterated solvents of interest: CDCl3 and C6D6.
\nSupramolecular assembly exploiting dynamic covalent chemistry. Reprinted with permission from Nishimura and coworkers [
Specifically, the thermodynamics of the supramolecular recognition were different in these two solvents with
Large solvent effects are also encountered in supramolecular complexation (SC) involving ionic and neutral, e.g., hydrophobic, entities. These effects are largely dependent of the nature of the target guest molecule for a given host molecule. Noteworthy, ionic and neutral SC often exhibits opposite solvent polarity dependencies. Two characteristic such examples are the SC of aromatic hydrophobic molecules by a cyclophanes and that of potassium ions by the crown ether 18-crown-6. For instance, Smithrud and Diederich observed five orders of magnitude higher association constant in water compared to the solvent carbon disulfide for a cyclophane/pyrene SC system [13]. The hydrophobic 3D cyclophane developed by Smithrud and Diederich involved a large cavity accessible to solvent molecules, and the huge
The above-described examples are fundamental for the development of complex supramolecular systems with possibilities of external control and the design of molecular machines. Focus of the next section is the effect of solvents on some characteristic molecular machines and switches.
\nRotaxanes, pseudorotaxanes, and catenanes are prominent members of the supramolecular family of compounds. They may be composed of both organic and inorganic (macro)molecules mechanically linked together. One of the latter parts may exhibit the ability to move in relation to the rest of the other parts. Due to this effect, many of these systems have been proposed for molecular machinery applications. In the case of rotaxanes bulky substitutes, the so-called stoppers are integrated in these systems preserving the stability of the supramolecular assembly. Pseudorotaxanes consist of the same structural units as rotaxanes, but do not include the aforementioned stoppering bulky substituents. In contrast, catenanes consist of two or more macrocyclic molecules tied together, forming chain-like supramolecular assemblies (Figure 3). The stability in all these systems is achieved through various types of weak interactions such as van der Waals forces, hydrophobic effects, hydrogen bonds, donor acceptor interactions, etc. Today a large number of scientific works have been published following the pioneering synthesis of the first rotaxane by Wasserman in 1960 [17]. Additional scientific support has been provided by a stream of publications by pioneering researchers such as Luttringhaus [18], Wasserman [17], Harrison [19], and Schill [20]. All of them dealt with the creation of functional molecular devices of high complexity and specialization.
\nFrom pseudorotaxanes to rotaxanes and catenanes.
Today multiple supramolecular structures have been created through the inclusion of a variety of linear axle-like molecules in the cavities of macromolecules such as crown ethers, cyclophanes, cyclodextrins (CD), etc. In this way numerous supramolecular systems exhibiting diverse one-, two-, and three-dimensional (1D, 2D, and 3D) architectures have been reported. The methodologies leading to catenanes and rotaxanes after assembling and pseudorotaxane formation are illustrated in the schematic representation of Figure 3.
\nInterlocking a part of a linear molecule of a rotaxane into the cavity of a macrocycle molecule is associated with a series of complex interaction phenomena. An important function that many of the aforementioned systems can undergo is that of molecular shuttling. This often happens when a macrocycle trapped onto a linear component (axle) is capable of moving reversibly between two or more Regions on the axle (often called stations), in response to external stimuli (e.g., electrochemical stimuli, irradiation, heating/cooling, and/or solvent polarity changes) [21].
\nAs already mentioned the main forces that hold these supramolecular structures together are relatively weak, and therefore the systems can undergo the described shuttling movement under mild external changes in a fully controlled manner [21]. Across all the potential driving forces, all the kind of energy inputs, and all aforementioned parameters, it is noteworthy that a simple change in solvent polarity can be harvested in order to induce a controllable molecular machine function (Figure 4). In this section the stimulating role of solvents on the function of interlocked systems is reviewed.
\nSchematic illustration of controllable switching of [2]rotaxanes through external stimuli.
One of the key/pioneering contributions in the field of solvent effects on the (multi)functional behavior of rotaxanes has been made by Leigh and coworkers. By applying chemistry similar to that occurring in natural systems and specifically in peptides, they managed to synthesize the rotaxanes of Figure 5A [22]. In both cases of rotaxanes of Figure 5A, the linear component consists of a glycylglycine chain and two diphenylmethane end groups (stoppers). The stabilization of these [2]rotaxanes is achieved through the development of hydrogens bonds between amide hydrogen of the macrocycle molecule with the carbonyl groups of the linear compound and vice versa. The resulted bonds are very stable when the rotaxanes are dissolved in non polar solvents such as CHCl3. However, when they are dissolved in polar solvents such as DMSO which can specifically interact with parts of these molecules, these bonds become unstable, and this results to a different molecular configuration for each of the two [2]rotaxanes. This solvent-driven feature is essential for triggering the switching ability of this supramolecular complex, thus functioning as a molecular machine, and has been a stimulating example for a number of later scientific works.
\n(A) The two rotaxanes by Leigh et al. [
In 2003 Da Ros et al. published a [2]rotaxane which performs a solvent-induced shuttling movement as shown in Figure 5B [23]. This [2]rotaxane consists of fullerene C60 group behaving as both a stoppering unit and a photoactive group. The amphiphilic nature of the rotaxane thread was used to shuttle the macrocycle from close to the fullerene spheroid (in nonpolar solvents) to far away (in polar solvents).
\nThe rotaxane is based on hydrogen bond-directed assembly of a benzylic amide macrocycle around a dipeptide thread, solvent-switchable molecular shuttles in a similar fashion to the work by Leigh et al. [22]. In nonpolar solvents, e.g., CH2Cl2 or CHCl3, the macrocycle forms hydrogen bonds with the peptide residue. In polar aprotic solvents such as DMSO, the hydrogen bonding between the macrocycle >NH group and the peptide carbonyl group is disrupted by the competing solvent interactions, and thus the macrocycle selectively stops over the alkyl chain [23].
\nIn 2005 Gschwind and coworkers published a series of [2]rotaxanes, containing a phenol-involving linear part, amide-involving macrocycles, and triphenylmethane-stoppering units [24]. The dumbbell molecule 1 of Figure 6 offers three diamide stations to the macrocyclic molecule in the protonated form of the [2]rotaxane. It was found that electrostatic interactions can modulate exceptionally well the speed of the mechanical motion between a fast- and a slow-motion state as a response to a reversible external solvent-provided stimulus. The electrostatic interactions in these rotaxanes are controllably regulated through solvent effects induced by altering the proportion of polar solvent in a binary solvent mixture. For example, when different amounts of DMSO are added to dichloromethane, solvent-driven shuttling modifications occur (Figure 6C). It was further found that the molecular wheel shuttling in deprotonated rotaxanes is hindered by the counter-cation held through electrostatic forces close to the anion at the axle-center region. Thus, the shuttling speed can easily be regulated by addition of acids and bases enabling a fast- and a slow-motion mode parallel to the on-off switching function.
\n(A) Various [2] rotaxanes by Gschwind and coworkers [
Cai and coworkers have a long-standing interest in the effects of solvents in the shuttling movements in mechanically interlocked compounds [25, 26, 27]. In 2012 they reported a [2]rotaxane molecular shuttle controlled by solvent. The rotaxane involved α-cyclodextrin (α-CD), dodecamethylene, and bipyridinium moieties as shown in Figure 7 [26]. Cai et al. discovered that the molecular shuttling in this [2]rotaxane can be driven by both solvent and temperature changes. They indeed demonstrated the shuttling process of α-CD along the linear thread in solvents of different polarities such as DMSO and H2O. The energy barrier in water was shown to be 4.0 kcal/mol higher than in DMSO. Water interacts favorably with the bipyridinium moieties, however, negligibly with the alkyl chain, and this yields to a higher free energy barrier in the case of water.
\nSolvent-induced shuttle movement in a [2]rotaxane. Reprinted with permission from Cai and coworkers [
Solvatochromism is a well-studied phenomenon occurring in many diverse systems. It is described as the change in color (
Various pyridinium-based solvatochromic
Plots of CT energy as a function of solvent polarity corresponding to (A) positive and (B) negative solvatochromism (G corresponds to ground and E to excited state).
When conducting a deep literature search, it is easily made obvious that there are not many examples of solvent-switchable supramolecular structures such as rotaxanes and catenanes exhibiting also solvatochromism. As mentioned above, solvatochromic supramolecular assemblies exhibit a strong change in position and sometimes the intensity of their absorption spectra, which is achieved by changing the polarity of the solvent (solvatochromic effect). This phenomenon is pronounced in electron acceptor-donor systems.
\nAn interesting example combining solvent-controlled shuttle movement in a rotaxane (see previous section) and solvatochromic behavior was reported by Günbaş et al. in 2011 (Figure 10) [39]. The solvatochromic behavior of their [2]rotaxane and its dumbbell-like precursor molecule was investigated in a variety of solvents of different polarities. It was observed that both compounds exhibited solvatochromic shifts in their absorption spectra when increasing the polarity of the solvent. Spectroscopic data showed a wavelength shift of 575 nm in toluene to 621 nm in DMSO for the molecule which corresponds to a positive solvatochromic shift. The observed values were attributed to the pyrrolidine group. For the [2]rotaxane, however, the solvatochromic changes were smaller. The absorbance was shifted from 608 to 621 nm when the solvent was changed from the nonpolar toluene to the highly polar DMSO. In general, both in the case of the [2]rotaxane and the dumbbell molecule, solvatochromic shifts were observed, indicating that polar solvent interacts stronger with the molecules and also stabilizes the excited state. Of course, this effect is stronger for the dumbbell molecule than for [2]rotaxane, an effect which could be attributed to interactions developed among the chromophore linear molecule and the macrocycle molecule.
\n(A) Shuttle movement in a [2]rotaxane and (B) solvatochromic shifts observed. Reprinted with permission from Günbaş et al. [
In 2007, Toma and his scientific team published a paper in which they disclosed the solvatochromic properties of a [2]rotaxane, which involved a β-cyclodextrin (β-CD) macrocycle [40]. The linear molecule of their rotaxane consisted of trans-1,4-di-[(4-pyridyl) ethylene] benzene (Figure 11) and trans ferrocyanide(II) anions ligated by the pyridyl groups of the linear molecule which act as stoppering groups. The UV-Vis absorption spectral analysis of {[FeII(CN)]2(BPEB)} (dumbbell) and the corresponding β-CD-involving rotaxane indicated that the dumbbell molecule exhibited two absorption bands, one around 352 nm and the other at 454 nm.
\nPioneering solvatochromic [2]rotaxane synthesis by Toma and coworkers [
During the addition of β-CD to the linear molecule solution, a wavelength shift was observed denoting the formation of the [2] rotaxane, which was attributable to the metal-to-ligand charge transfer (MLCT). The formation of [2]rotaxane resulted in a decrease in the energy of MLCT, i.e., a bathochromic shift from 454 to 479 nm. Commonly, the reaction of the iron complex (II) with N-heterocyclic substituents results in deep chromatic shifts of MLCT when the final products are dissolved in less polar solvents. In these systems the hydrophobic forces increase the solvatochromic effect. Thus, for the [2]rotaxane, the low-wavelength shift values are attributed to the inclusion of the β-CD cavity and to the selective solubilization of the rotaxane. This behavior could be related to the stabilization of the energy levels of the complex between β-CD and the ligand leading to a decrease in the energy of MLCT [41].
\nVarious other similar examples of solvation effects on rotaxane have been reported in the literature; one of these examples is the [2]rotaxane reported by Baer and Macartney in 2000 [41]. Cyclodextrin (CD) inclusion complexes with linear guest parts have been studied extensively using a variety of spectroscopic techniques. There have also been several reports of cyclodextrin (α- or β-CD)-based rotaxanes, polyrotaxanes, and catenanes using linear parts (L) containing biphenyl, stilbene, and azobenzene dyes. These [2]rotaxanes can be formed rapidly by the addition of [FeII(CN)5]3− stoppering units, and a cyclodextrin macrocyclic unit can be threaded by the linear Skeleton. It has been proven that such [2]rotaxanes exhibit intense metal-to-ligand charge transfer (MLCT) transition bands in the visible spectrum. This transition as mentioned above is prone to changes in energy and intensity induced by solvents (solvatochromism). Different ligands acting as the axial parts for series of rotaxanes have been exploited so far such as
Pyridine-involving ligands BPE, PCA, AZP, and APA (left) and the corresponding dumbbells and cyclodextrin-involving [2]rotaxanes (right).
In 2012 Deligkiozi et al. reported the synthesis of a [2]rotaxane consisting of a fully conjugated arylazo-based linear part entrapped in α-cyclodextrin and stoppered by bulky dinitrophenyl end groups [46]. Recording the UV-Vis spectra of both compounds, a broadband in the region 300–400 nm was observed, which was attributed to the π-π* transition of the group (▬N〓N▬). Comparing the spectra of the [2]rotaxane and the dumbbell precursor, a bathochromic shift was observed. Specifically, the maximum wavelength of the dumbbell precursor was positioned at 337 nm, whereas that of the [2]rotaxane was centered at 351 nm. This shift is attributed to the interaction of the α-CD cavity and the (▬N〓N▬) group of the dumbbell-like compound, which causes a decrease in the energy difference between the ground and excited states of the azo-compound leading to bathochromism. Both compounds were found to undergo
A) The dumbbell-shaped push-pull backbone developed by Deligkiozi et al. (top) and the corresponding cyclodextrin involving [2]rotaxanes (bottom). B) The bathochromic shifts of the MLCT band of the [2]rotaxane with α-cyclodextrin depicted in A observed in aqueous ethylene glycol mixtures. Reprinted with permission from: [
In some cases rotaxanes and catenanes can also exhibit solvent-dependent emission of light. A representative example is that by Baggerman et al. involving [2]rotaxanes and [3]rotaxanes bearing a tetraphenoxy perylene diimide core [51]. In their work Baggerman et al. observed the influence of hydrogen bonding developed between the amide and the wheel macrocycle of these rotaxanes on the optical behavior of the chromophore (perylene). Specifically, they showed that both absorption and fluorescence spectra are bathochromically shifted upon rotaxanation. All systems including the wheel-free axle (WFA) exhibited fluorosolvatochromism with red shifts of up to 47 nm (WFA case) and a reduced fluorosolvatochromism when going to the [2] rotaxanes and [3] rotaxanes [51]. On the other hand, Boer et al. very recently exploited the solvent-dependent excimer and exciplex emissive behavior of naphthalene diimide metallomacrocycles and catenanes and thus managed to perform a solution speciation of the metallosupramolecular complexes and their solvent-dependent nature [52].
\nSolvatochromism derived by an interaction of solvent molecules with a supramolecular system is characterized by various authors as “supramolecular solvatochromism.” In many cases the systems involve transition metals coordinated to ligands forming supramolecular architectures in which solvent molecules can be trapped or simply interact with parts of the system giving rise to different responses, e.g., in their electronic spectra.
\nA characteristic early such example is that reported by Lee and Kimizuka in 2002 [53]. In their studies they developed a lipid-packaged 1D supramolecular complex bearing platinum. The anionic lipids acted as counter anions of the positively charged Pt complex. The electronic spectra of the as described supramolecular complex were found to be readily influenced by solvent polarity and that the packaging of the complex is vital for the overall medium-responsive properties. Some years later, Kuroiwa et al. reported on the supramolecular solvatochromism of lipid-packaged, mixed-valence linear platinum complexes (Figure 14) which were investigated in dispersions employing the solvents CHCl3, chlorocyclohexane, and methylcyclohexane [54]. It was found that solid samples were all indigo-colored but displayed supramolecular thermochromism, attributed to heat-induced dissociation and concomitant recovery of coordination chains. The reassembled supramolecular complexes exhibited color changes depending on the solvent employed, and the CT energy measured was found to decrease as the polarity of the organic medium increases following the sequence: methylcyclohexane, benzene, chlorocyclohexane, CHCl3, and 1,2-dichloroethane.
\nStructure of the two Pt(IV) complexes of Kuroiwa et al. [
Such approaches gain more and more the attention of materials scientist as it could be envisioned that through mixing optical sensors and solvatochromic species or even aggregachromic compounds, the effects of various stimuli on the rheology of viscoelastic gels (VEGs) could be facilitated and this is considered as an important step before the development of new products based on VEGs becomes reality [55]. More recently, Nikolayenko et al. reported the supramolecular solvatochromic behavior of a dinuclear copper(II)-involving metallacycle [56]. The authors exploited the intense solvatochromic behavior of the CuII complex and the capacity of the macrocycle to trap small solvent molecules like tetrahydrofuran, diethyl ether, and pentane at temperatures well above their boiling points. The latter effect is attributed to the suitable guest shape and size which drastically limit lattice diffusion. Solvent exchange was found to induce intense color changes (Figure 15B) and sizable shifts in the visible region of the diffuse reflectance spectra (Figure 15B). The high intensity of the supramolecular solvatochromic effect is furthermore excellently illustrated through microphotographs of the variable colors of crystals.
\nA) Synthesis of [Cu2Cl4L2].2DMSO (1) from 1,10-[1,4-phenylenebis(methylene)]bis(2-methyl-1H-imidazole) and copper(II) chloride dihydrate. B) Visible-region diffuse reflectance spectra (bottom) quantitatively illustrate the broad-spectrum (540–624 nm) solvatochromism of 1–6. Reprinted with permission from: Nikolayenko et al.[
In the previous sections, the role of solvents in supramolecular functions and processes has been discussed. As described, in those cases solvents are capable of influencing the thermodynamics of supramolecular binding processes as well as the energetics of supramolecular systems so as to induce solvatochromism or some nano-mechanical functions like molecular shuttle movements in rotaxanes and catenanes or other conformational changes.
\nIn this section focus is placed on the effect of solvents in supramolecular architectures. Their regulating role in metallosupramolecular solids has been thoroughly investigated in recent years [57] as well as their aptitude to affect crystal growth and assembly and dynamic transformations. Many solvents especially those bearing N, O, or S atoms exhibit aptitude to coordinate (i.e., to specifically interact) with metals in various coordination complexes, and thus they are capable of forming new complexes. In these complexes solvent molecules can demonstrate a stabilizing role as building blocks and variation of the solvent can lead to alternative molecular architectures. A very nice example illustrating this ability of solvents is that of the assembly of the ligand 1,4-benzene dicarboxylic acid (
Different supramolecular architectures involving MgII, the ligand bda and one of the solvents DMA (a), EtOH (b), and DMF (c). Reprinted with permission from: Li et al. [
Another important feature of the solvents which readily affects the supramolecular architecture of coordination complexes is the steric effect they might introduce. Noro et al. reported the steric effect of different solvents with sp1-, sp2-, or sp3-hybridized coordinating atoms on the assembly of CuII(PF6)2 and the ligand 1,2-bis(4-pyridyl)ethane (
A) Illustration depicting the steric effect introduced by various types of solvents in the polymeric supramolecular architecture involving CuII and bpe. B) Three different 2D polymeric [Co(azide)2]m layers involved in the complexes obtained by Wang et al. [
Synergistic solvent effects can also drastically influence the structure of supramolecular coordination polymers illustrated in 3D pillar-layered coordination polymers prepared by Wang et al. [62]. These complexes comprise CoII metal centers and
Moreover, the protic or aprotic nature of the solvent can have a significant impact on the crystal structures of coordination compounds. A characteristic example is that of Mn(OAc)2 and its complexation with the ligand 3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (
In all above examples, the coordination of solvent molecules to the metal centers was found to affect the structure of the supramolecular coordination systems. Secondary interactions, which were already mentioned, mainly account to the H-bonding of a coordinating solvents and non-coordinating cosolvent. There are several cases however where secondary interactions alone can lead to stabilized 3D supramolecular coordination structures. The supramolecular charge transfer complexes (CTCs) of viologens with various electron donors have been reported long ago [64]. Such CTCs involving [FeII(CN)6]4− (HCF) as a strong electron donor have been given some attention; however, their supramolecular structure has been scarcely investigated so far. An example pertaining to this category of supramolecular CTCs was recently reported by Papadakis et al. [65].
\nAs depicted in Figure 18, the nonsymmetric dicationic viologen molecules tend to aggregate around the anionic HCF donor. However, the stability of a crystalline structure of such a CTC is achieved only if water is introduced in the reaction mixture. Water is found to readily form H-bonds with CN groups of HCF, and this results in the formation of a zigzag 2D polymer of the type: (…HOH…HCF…)
(A) The zigzag (…HOH…HCF…)
Except of publications that are indicative of scientific activity for furthering the knowledge base, patents are indicative of technology development for commercial or market potential. On this basis a patent search has been conducted so as to map the transition between science, technology, and market. For this purpose, we used the same parameters for our patent data extraction through Patsnap, a patent search engine and analytic portal. Using this patent search engine, an extended patent search in available patent libraries such as the European Patent Office, USPTO, and FPO was conducted. From this analysis it is evident that the sector supramolecular chemistry has started to grow significantly in recent years. The patent search followed a four-level approach starting by available patents using the following keywords: supramolecular complexes, solvatochromism, rotaxane/catenane, and solvatochromic rotaxane/catenane (Table 1). This refinement drives us to the specific market and indicates us the freedom to operate since by this procedure we conclude on the presence of very few patents that are mainly filled in the United States and China. The corresponding landscape is shown inFigure 19.
\nPatent search results: rotaxane/catenane (left) and solvatochromic rotaxane/catenane (right).
Keyword | \nSimple | \nTotal | \n
---|---|---|
Supramolecular complexes | \n4682 | \n16,727 | \n
Solvatochromism | \n296 | \n806 | \n
Rotaxane/catenane | \n165 | \n587 | \n
Solvatochromic Rotaxanes/catenanes | \n4 | \n7 | \n
Summary of the patent search results.
In this chapter, we reviewed some important examples of how solvents can influence supramolecular processes and structures. The impact of solvents on supramolecular binding is the starting point through which it is made clear that altering solvent polarity can drastically influence supramolecular binding processes. Solvents can also affect the relative supramolecular conformations of complex systems allowing the development of medium responsive molecular machines and switches. Moreover, solvents can give rise to supramolecular solvatochromic phenomena leading to optical changes and this observation has significantly assisted in the development of solvent (environment) sensing supramolecular systems. Last but not least, various metal ion-involving supramolecular architectures can be drastically influenced by specific solvents or solvent/cosolvent mixtures. This key effect enables the design of new supramolecular architectures encompassing modulation possibilities based on either the coordination of solvents to metal centers or the secondary interactions between them. In any case, the role of solvents in supramolecular chemistry is obviously enormous. Thus, it is highly important that solvent effects are taken seriously into account when designing new supramolecular systems.
\nMicroemulsions are macroscopically homogeneous, thermodynamically stable systems constituted by two immiscible solvents in the presence of a surfactant [1]. Water in oil microemulsions consist of nanodroplest of water dispersed in a nonpolar solvent stabilized by a surfactant monolayer. Sodium bis(2-ethylhexyl) sulfosuccinate (AOT) is the most widely used surfactant for preparing microemulsions. The simplest microstructure AOT-based systems are that of spherical water droplets of colloidal dimensions and possess a small degree of polydispersity [2]. The size can be accurately controlled by the water content or, that is, the molar ratio of water to AOT (W = [H2O]/[AOT]).
\nTransparent water-in-oil dispersions were reported for the first time in 1943 [3]. Hoar and Schulman found that oil can be dissolved in bulk water or water in bulk oil in presence of a soap to produce a homogeneous solution. The oil-surfactant-water water systems reported were transparent, electrically non-conducting dispersions, in which the oil was the continuous phase. Dilution of these systems with excess water inverted them to oil-in-water systems. The key factor was the oil/surfactant or water/surfactant ratio (W). Later, Schulman et al. [4], by electron microscopy technique established that such dispersions consist of uniform spherical droplets of either oil or water dispersed in the appropriate continuous phase and were defined as microemulsions.
\nThe first use of AOT as appropriate surfactant in the preparation of ternary systems was published in 1970 [5]. The authors studied the phase equilibria diagram of the following systems: p-xylene/AOT/water, caprylic acid/AOT/water, and n/decanol/AOT/water. However, isooctane is actually the most widely oil used in the preparation of AOT-based microemulsions, due to the fact that this solvent show a large region of isotropic transparent solutions, thermodynamically stable. The complete phase equilibria diagram was reported in 1980 [6, 7]. Figure 1 shows the structure of the isooctane/AOT/water microemulsion.
\nSchematic illustration of a isooctane/AOT/water microemulsion.
Among the many applications of these systems, the use of the water pool as a nanoreactor for the preparation of nanoparticle stands out. The nanoparticles size is mainly controlled by the microemulsion size. For instance, ZnS nanoparticles were synthetized and characterized in n-heptane/AOT/water microemulsions [8, 9] and the nanoparticle size can be controlled by the W parameter. Indium-tin oxide (In2O3/SnO2) nanoparticles were prepared in isooctane/AOT/water system [10]. The molecular structure of AOT favors the interface curved on the water core. The result is that the monodispersed ultrafine indium-tin oxide particles show better physicochemical properties prepared in microemulsion than in bulk precipitation method. In the same system barium chromate nanostructures (linear chains, rectangular superlattices and long filaments) as a function of reactant molar ratio were prepared [11]. Another example is the synthesis of crystalline nanoparticles of three different molecule-based magnetic materials, cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate, by coprecipitation reactions involving mixtures of water-in-oil microemulsions [12].
\nHowever, if the objective of the research is the study of microemulsions as chemical nanoreactors, it is necessary to study the details of the processes that take place inside them. Our research group has focused, for more than 20 years, on the study of reaction mechanisms in a wide variety of colloidal systems. From a kinetic point of view, microemulsions are more versatile than other colloids because they provide both organic and aqueous environments. Then, it’s possible to simultaneously dissolve both hydrophobic and hydrophilic reagents, each compound being distributed among oil, water, and surfactant film in accordance with its physicochemical nature. In the case of water in oil microemulsions, the properties of the confined water are very different from those of the bulk water due to intermolecular interactions at the micellar interface and to the geometric size constraints of the environment [13]. This characteristic makes possible the use of microemulsions as biomimetic models for compartmentalization [14]. Most of these initial kinetic studies have not been able to explain the observed kinetic behavior quantitatively.
\nNitrosation reaction of secondary amines by N-methyl-N-nitroso-p-toluenesulfonamide (MNTS).
In 1993, in our laboratory, García-Río et al. [15] reported the use of the pseudophase formalism as modified for microemulsions. The reaction studied (see Figure 2) was the nitrosation of secondary amines by N-methyl-N-nitroso-p-toluenesulfonamide (MNTS) in isooctane/AOT/water microemulsions. The amines studied were piperazine, N-methylbenzylamine, piperidine, dimethylamine, morpholine, pyrrolidine, and diisopropylamine. In that work, the validity of the model for reactions taking place at interface between the water droplet and the isooctane was confirmed. The pseudo-phase model continued to be applied successfully in many reactions carried out in this type of microemulsions. For instance, for nitroso group transfer from 2-ethoxyethyl and 2-bromoethyl nitrite to the secondary amines piperazine, N-methylbenzylamine, and morpholine in isooctane/AOT/water microemulsions [16]. The diverse kinetic behavior was explained quantitatively based on the model considering the distribution of the amine among the aqueous and isooctane phases and their mutual interface; the reaction itself always takes place at the interface. Among all these reactions, we are especially interested in the MNTS reaction with piperazine (PIP), N-methylbenzylamine (NMBA), and morpholine (MOR) (see Figure 3). The reason is that these three species represent three different solubilities in water in oil microemulsions. Piperazine is practically insoluble in isooctane, N-methylbenzylamine is poorly soluble in water, and morpholine has considerable solubility in both water and isooctane.
\nStructure of the amines.
In the kinetic studies carried out in microemulsions, the relative reactivities of the amines are discussed in comparison with those observed in bulk water. The comparison requires knowledge of the molar reaction volume at the interface. An estimation of this volume was made and yields a value of 0.37 M−1 for the molar volume of AOT in isooctane/AOT/water microemulsions. The nitroso transfer reactions are 58 times slower at the interface of the microemulsion, which can be attributed to the lower polarity of the interfacial region [17].
\nIn this chapter our objective is to show how the reactivity of AOT-based microemulsions can change due to changes in the continuous medium or the introduction of an anionic cosurfactant at the interface. In colloidal systems, with applications in cosmetics and cleaning products, it is usual to use two surfactants with very different properties. In the case of micellar aggregation, mixtures of surfactants often work better than a single surfactant. For example, in detergents, anionic surfactants are included to maximize solubilization, and non-ionic surfactants to increase water hardness tolerance. Mixed microemulsions are formed generally by cationic surfactants and long-chain alcohols. Structural and physiochemical characterization of these systems have been published. For example, the position of the alcohol between the interfacial and the bulk oil phase was determined by different experimental techniques [18, 19, 20, 21]. Kinetic studies in microemulsions with two surfactants were also carried out in our laboratory. For instance, García-Rio and Hervella reported the nitrosation of piperazine (PIP) and N-methylbenzylamine (NMBA) by N-methyl-N-nitroso-p-toluenesulfonamide (MNTS) in microemulsions of isooctane/tetradecyltrimethylammonium bromide (TTABr)/alcohol/water, varying nature of the alcohols: 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol and 1-decanol [22]. The main conclusion of this article is that the effect of the alcohols is the increase in volume of the interface with the consequent dilution of the reactants. The values of the rate constants obtained in TTABr/alcohol microemulsions were always lower than those obtained in AOT microemulsions. The incorporation of the alcohol into the interface of the microemulsion displaces the water molecules and increases its hydrophobic character.
\nIn this chapter, we present the comparative review of the nitrosation of secondary amines by MNTS nitrosation in two clearly differentiated systems:
Microemulsions with AOT and SDS as surfactants [23]. The presence of SDS as a cosurfactant causes a sharp decrease in the electrical percolating temperature, that is, the surfactant film becomes less rigid favoring the transport of matter. The amines (piperazine, N-methylbenzylamine and morpholine) were chosen based on their degrees of solubility in the different components of the microemulsions.
AOT-based microemulsions with ortho-, meta- or para-xylene as continuous medium [24]. The use of an aromatic molecule as the continuous medium of a microemulsion modifies the reactivity. In addition, this type of microemulsions has the characteristic of being non-percolative. The amines were chosen based on their different degrees of solubility in the different components of the microemulsion and on the fact that numerous kinetic studies had already been carried out in “normal” microemulsions.
The first step, to characterize these systems is to analyze the effect of the co-surfactant or the oil on the microstructure of the aggregates. Microemulsions are dynamic structures and electrical conductivity measurements can be a useful method for characterizing aggregate interactions [25]. Microemulsions have a low electrical conductivity (0.01–0.1 μS cm−1), but higher than that of pure isooctane (<1 × 10−3 μS cm−1) because they are systems that contain charges. Increasing the temperature, the electrical conductivity of these systems increases gradually, at a temperature from which there is a marked increase in the variation of the electrical conductivity with temperature (>100 μS cm−1). This singularity is known as electrical percolation, and the temperature at which this occurs is known as the threshold of percolation or the temperature of percolation. The values of the threshold of percolation, in a certain microemulsion, can be modified by small quantities of additives. The electrical percolation phenomenon is explained assuming a mechanism involving the formation of channels through which mass is exchanged between disperse water droplets in the continuous phases. An effective collision between two water nanodroplets is necessary to allow the droplets to fuse together. Then, mass transfer between the water droplets must take place to allow charge to be conducted and the droplets to separate by fission.
\nAOT-based microemulsions, thermodynamically stable over a wide range of water proportions, are the most extensively examined. The size of these aggregates can be controlled via the parameter W (W = [H2O]/[AOT]) as the droplet radius is directly related to W, radius = 1.5 W [26]. In the case of ternary isooctane/water/AOT microemulsions, the temperature of percolation decreases by the presence of formamides and urea [27]. However, the presence of amines increases the threshold of percolation [28]. An important effect is observed when adding SDS to water/AOT/isooctane. An increase in the molar ratio ρ = [SDS]/AOT], in isooctante/AOT/SDS/water/microemulsion corresponds with a strong decrease in the percolation threshold for these quaternary microemulsions (see Figure 4). The difference between the percolation threshold of a standard AOT-based microemulsion and the quaternary system is more than 40°C. A similar effect was found for the rate constant of matter exchange between droplets. In the case of heptane/AOT/SDS/water system, the value of the rate constant is 1.3 × 107 M−1 s−1 for ρ = 0 (ternary microemulsion) and 2.2 × 107 M−1 s−1 for ρ = 0.1 (quaternary microemulsion) [29]. The explanation was that SDS tends to locate at the water-hydrocarbon interface, thus causing a disruption of the surfactant head groups at the interface, which, in turn, promotes a more rapid exchange of pool components on pool encounters.
\nChanges in percolation temperatures of water/AOT/SDS/isooctane microemulsions for different ρ values (ρ = [SDS]/AOT]). The solid line is a guide for the eye. W = 22, [AOT] = 0.5 M.
Maximum water solubilization capacity of the quaternary system was studied by adding an appropriate volume of water to samples containing known amounts of AOT, SDS and isooctane under continuous stirring until permanent turbidity was observed. An increase in W increases the overlap volume between two droplets as they approach each other to form a cluster, thereby increasing the interaction potential and facilitating percolation. While droplet attraction plays a prominent role in percolation, the nature of the interface is also relevant to the process because mass transfer is impossible unless the interface is ruptured in some way. In the case of isooctane/AOT/water microemulsions the presence in the aqueous phase of a moderate concentration of organic additives decreased the solubilization capacity and led to phase separation at a W value between 47 and 42 for thiourea compounds [30]. If the additive is an electrolyte (NaClO4, NH4Cl, NaBr and Na2SO4) the water solubilization capacity (Wbreakage) decreases to W = 36–30. In our quaternary system, Figure 5, shows how Wbreakage decreases by increasing the amount of SDS as cosurfactant. SDS modifies the natural negative curvature of the AOT by increasing the rigidity of its film and hindering its distortion, thereby decreasing interactions among droplets.
\nInfluence of ρ (ρ = [SDS]/AOT]) in the water solubilization capacity (Wbreakage) of isooctane/AOT/SDS/water microemulsions. The solid line is a guide for the eye. W = 22, [AOT] = 0.5 M.
In this chapter, we also examined the xylene/AOT/water system, using o-, m-, and p-xylene. Percolation temperature of water in oil microemulsions is known to depend on the properties of the bulk solvent [31]. By using n-decane, n-octane, and n-heptane as continuous media, it was found that the percolation temperature to increase with decreasing length of the alkyl chain in the hydrocarbon. The strong attractive interaction between water nanodroplets was assumed to be the major factor limiting microemulsion stability. An increase in molar mass of the hydrocarbon oil was found to decrease the density of the continuous phase and facilitate access of the interacting droplets for mass transfer. Microemulsions with xylenes as continuum medium are non-percolative and Figure 6 shows the variation of conductivity with temperature for o-xylene/AOT/water and isooctane/AOT/SDS/water microemulsions.
\nConductivity vs. temperature plot for an isooctane/AOT/water microemulsion (
The goal of this chapter is to conduct a comparative kinetic study on percolative and nonpercolative microemulsions. The difference in composition between the systems should result in differences in structure and physical properties as the ease with which the oil can penetrate the surfactant layer will vary markedly with the steric hindrance it encounters.
\nThe kinetics, at 25°C, of the transfer of the nitroso group from MNTS to secondary amines (PIP, NMBA and MOR) was studied using a wide variety of quaternary microemulsions as reaction media. MNTS reacts with secondary amines by transnitrosation to give carcinogenic
The influence of the composition of the quaternary system on the rate of transnitrosation of PIP, NMBA and MOR by MNTS was studied in a series of experiments in which the nanodroplet size varied from series to series over the range W = 7.4–25.8. The total surfactant concentration was varied between 0.443 and 0.544. The mole ratio ρ (ρ = [SDS]/[AOT) was varied from series to series between 0 and 0.15.
\nThe reaction kinetics was followed by monitoring the decrease in absorbance, at the appropriate wavelength, due to MNTS consumption. The concentration of MNTS was always much lower than the concentration of amine. The absorbance-time data of all kinetic experiments were fitted by first-order integrated equations, and the values of the pseudo-first-order rate constants,
The influence of the structure of the quaternary system on the rate of transnitrosation of PIP by MNTS was studied in a series of experiments in which total concentration of pierazine was 0.05 M. Figure 7 shows that the value of pseudo-first-order rate constants (ko) increases by increasing total surfactant concentration. However, ko decreases by increasing the nanodroplet size (W).
\nLeft: influence of the concentration of surfactant upon ko, at 25°C, for the nitrosation of piperazine by MNTS. Right: influence of the amount of water (W, W = [H2O]/([AOT] + [SDS])) upon ko, at 25°C, for the nitrosation of piperazine by MNTS.
Kinetic studies of reactions AOT-based microemulsions can be analyzed in terms of reactivity only if local reagent concentrations and intrinsic rate constants in the various microphases of these organized media can be obtained from the overall apparent rate data. To apply the pseudophase formalism, we must consider the microemulsion formed by three strongly differentiated pseudophases: a continuous medium formed fundamentally by organic solvent (oil) an aqueous pseudophase (water) and an interface formed fundamentally by the surfactants (interface). Because of the very low water solubility of MNTS it will partition between the continuous medium and surfactant film, where the reaction is taking place. However, PIP is distributed between water and the surfactant film. Figure 8 shows schematically the distribution of PIP and MNTS between the three phases of the microemulsion.
\nPseudophase model for the nitrosation of Piperazine in isooctane/AOT/SDS/water microemulsions.
The partition coefficients that define the distribution of the reagents among the three pseudophases are defined in terms of their mole per mole concentrations in the pseudophases:
The subscripts interface, water and oil indicate quantities in the surfactant film, water and isooctane respectively, square brackets, as usual, indicate concentrations referred to the total volume of microemulsion, and Z is defined, in analogy with W, as the ratio [isooctane]/([AOT] + [SDS]). Based on these definitions, the model of Figure 8 implies that the overall pseudo-first-order rate constant is given by Eq. (3):
where \n
The rate constant at the interface,
The results obtained by fitting Eq. (5) to the experimental data, at each mole ratio ρ, provides the kinetic parameters
The influence of the presence of SDS on the rate of transnitrosation of NMBA by MNTS was studied in a series of experiments in which the total concentration of NMBA was always 0.1 M. The reactions in isooctane/AOT/SDS/water microemulsions were studied by means of series of reactions analogous to those described for piperazine. In this case, no clear trend was observed in the variation of the pseudo-first-order rate constants with W or surfactant concentration.
\nPseudophase model for the nitrosation of N-methylbenzylamine in isooctane/AOT/SDS/water microemulsions.
NMBA is poorly soluble in water. Figure 9 shows schematically the distribution of the substrates between the continuous medium and the interface of the microemulsion. The pseudophase model for this reaction considers simultaneous reactions in the isooctane and the surfactant film. However, the reaction rate in isooctane (koil) is several orders of magnitude less than those observed in this system [40, 41, 42]. The equilibrium constant K2 is the partition constant of the amine between the continuous medium and the interface:
Calculations analogous to those described for piperazine lead to the following expression for the rate constant:
In this case, K4 was fixed as 11. Then, the fit of Eq. (7) to the experimental data provides the kinetic parameters
In experiments on the reaction between morpholine and MNTS, the behavior is similar to that of piprazine: by increasing W the rate constant decreases and by increasing surfactant concentration the rate constant also increases. Morpholine is distributed in all three pseudophases in the microemulsion, a more complex situation than any of those considered above. However, the effective reaction region is still constituted by the interface of surfactants, because reaction in isooctane (koil) is much slower than the observed rates. Taking these considerations into account, the pseudophase model applied is that shown in Figure 10.
\nPseudophase model for the nitrosation of morpholine in isooctane/AOT/SDS/water microemulsions.
Calculations analogous to those described for piperazine and N-methylbencilamines lead to the following expression:
The meaning of the constants K1, K2 and K4 was discussed previously. It is considered a known K4 value equal to 11. The fit of Eq. (8) to the experimental data allows to obtain the other kinetic parameters. The fit, as in the previous cases, is carried out separately for each value of ρ. The distribution constants obtained were K1 = 45–48 and K2 = 600. The consistency between the experimental and predicted values (see Figure 11) confirms the accuracy of the micellar pseudophase model.
\nPlot of experimental vs. calculated rate constants, at 25°C, for the transnitrosation reaction between MNTS and amines in isooctane/AOT/SDS/water microemulsions: piperazine (
In order to compare the reactivity at the interface of the microemulsion it is necessary to know the molar volume. Furthermore, comparison of reactivity of the amines at the interface with the corresponding reactivity in bulk water needs that
The molar volume of AOT was experimentally determined (given by its density) as 0.37 M−1. For the quaternary system the molar volume can be written as:
Table 1 shows the k2i values obtained from the fit of the experimental results to Eqs. (5), (7) and (8) and considering the Eq. (9). The nitroso transfer reactions are 20–50 times slower in isooctane/AOT/SDS/water microemulsions than in bulk water due to the lower polarity of this microregion. The transition state for the transnitrosation reactions of MNTS requires a certain degree of charge separation, and reduction of the polarity will cause a decrease in reaction rate [33]. However, there is no significative difference of the bimolecular rate constants (k2i) between isooctane/AOT/water (ρ = 0) and isooctane/AOT/SDS/water microemulsions (ρ = 0.01–0.15). It is important to remember that in quaternary microemulsions, with ρ > 0.3, the kinetics is followed in percolated systems. For piperazine the rate constant is the same (5.4 × 10−3 M−1 s−1) in AOT and AOT/SDS microemulsions. For morpholine and NMBA the average value of bimolecular rate constant increases slightly (see Table 2). For instance, in the case of morpholine the presence of SDS as cosurfactant increases the k2i value from 2.4 × 10−4 M−1 s−1 to 3.0 × 10−4 M−1 s−1 (average value). This behavior is the result of two opposite effects: (1) a larger amount of SDS provides a lower molar volume of the surfactant film (see Table 1), and (2) by increasing ρ, the polarity at the interface increases. The presence of SDS as cosurfactant increases the small amount of water trapped between surfactant chains. If microemulsions of AOT are compared with those of AOT/SDS, the polarity is likely to increase slightly. For piperazine both effects are compensated and there is no difference in reactivity. The small increase in polarity due the presence of SDS is more important for the amines with solubility in oil: morpholine and NMBA.
\nKinetic parameter for the transnitrosation between MNTS and PIP, NMBA, and MOR according to Eqs. (5), (7), and (8).
Relative \n
Relative \n
The kinetic study of the nitroso group transfer from MNTS to the secondary amines piperazine (PIP) and N-methylbenzylamine (NMBA) in water/AOT/xylene was carried out. For PIP we used only o-xylene/AOT/water microemuslions. For NMBA we used o-xylene, m-xylene and p-xylene as continuous medium. Previously it was shown that these systems are non-percolative. In microemulsions where isooctane provides the continuous medium, W can be as large as 80 at a surfactant concentration of 0.5 M (see Figure 5). In contrast, W can barely reach 20 at identical surfactant concentrations in water/AOT/xylene microemulsions at 25°C. Raising the temperature slightly increases the solubility of water in the microemulsion. The kinetic study was conducted at 50°C, above the percolation temperature for isooctane/AOT/water and isooctane/AOT/SDS/water microemulsions.
\nThe influence of the nature of the continuous medium on various properties of a wide range of water-in-oil (w/o) microemulsions was studied in our laboratory [43]. 1H NMR spectroscopy allowed to determine the properties of water in the nanodroplet and the way they are affected by the bulk solvent. Changes in interfacial polarity were examined from the 13C NMR signals of the surfactant molecule AOT. The variation of the carbon chemical shift as a function of the water content (W) was used as a measure of polarity changes at the interface. The reactions of solvolysis of anisoyl chloride were studied in oil/AOT/water microemulsions. The AOT-based microemulsions involved various continuous media, including trichloromethane, tetrachloromethane, alkanes (n-heptane, isooctane, and n-dodecane), cycloalkanes (cyclopentane, cyclohexane, and cycloheptane), and aromatic hydrocarbons (toluene as well as o-xylene, m-xylene and p-xylene). It was found that the solvolysis rate constants of anisoyl chloride depend on the penetration of the oil into the interface.
\nThe kinetic study of PIP reactivity was conducted using o-xylene as the continuous medium in the microemulsions, W values over the range 7.4–15.7 and variable AOT concentrations from 0.1 to 0.7 M. PIP and MNTS concentrations were kept constant at 5 × 10−2 M and 2 × 10−3 M, respectively. The value of pseudo-first-order rate constants (ko) increase by increasing total surfactant concentration and decreases by increasing the water content (W).
\nA figure very similar to that used for PIP in the AOT/SDS quaternary system (Figure 8) describes the distribution of PIP and MNTS between the three phases of the microemulsion: water, AOT and oil (xylene). Therefore, the pseudo-first-order rate constant will be given by Eq. (5) by substituting [AOT] + [SDS] for [AOT]. Kinetic (ki) and equilibrium constants (K1 and K4) were obtained from fitting experimental data to Eq. (5). The bimolecular rate constant (k2i) is estimated from ki according to Eq. (9) and assuming a value of 0.37 M−1 for \n
Plot of experimental vs. calculated rate constants, at 50°C, for the following reactions: PIP + MNTS in o-xylene/AOT/water microemulsions (
To compare results, we carried out a kinetic study in isooctane/AOT/water microemulsions at 50°C. Kinetic parameters were determined by following the same procedure as used previously. As can be seen from Table 2, the partition equilibrium constant of PIP, K1, between water and the AOT interface was greater in the o-xylene microemulsions. However, the reaction rate constant at the interphase, k2i, was smaller in the interface of the water/AOT/o-xylene microemulsions.
\nThe NMBA reactivity was studied with o-xylene, m-xylene and p-xylene as the continuous medium of the water in oil microemulsion. Nanodroplet size, through the W parameter, varied between 7 and 18 and surfactant concentrations over the range 0.2–0.7 M. NMBA and MNTS concentrations were kept constant at 0.103 M and 2 × 10−3 M, respectively. Pseudo-first order rate constants increased markedly with increasing surfactant concentration at a constant value of W and more slightly with increase in water content at a constant AOT concentration. NMBA and MNTS are virtually insoluble in water and both are distributed between the interface and the oil. The reaction between MNTS and NMBA in xylenes was found to be very slow and, hence, was discarded. Thus, Figure 9, is valid for these systems. From the mechanistic proposal shown in Figure 9 and considering that the surfactant is only AOT, Eq. (7) can be obtained. Kinetics parameters were obtained from fitting experimental data to Eq. (7). The consistency between the experimental and predicted values (see Figure 12) confirms the accuracy of the model for xylene/AOT/water microemulsions. Table 2 compares kinetic and thermodynamic parameters for the microemulsions reviewed in this chapter.
\nTable 2 shows that the changes in the equilibrium constants (K1, K2 and K4) depend on their distribution between the three pseudophases. The lower values of K4 in microemulsions with xylenes, at 50°C, may be related with the increased rigidity of the surfactant film due to the penetration of the oil. Similar effect was observed for the distribution constant of the NMBA (K2). The equilibrium partition constant between water and PIP, K1, exhibits a different behavior; thus, an increase in temperature facilitates the migration of PIP to the pseudo-reaction phase in water/AOT/isooctane microemulsions. This result also seems to confirm the presence of an amount of water at the interphase that increases as the temperature is raised. However, no effect was observed on K1, K2 and K4 for isooctane/AOT/SDS/water microemulsions.
\nThe relative bimolecular rate constant for PIP in o-xylene microemulsions is lower (0.66) than in isooctane microemulsions. This may be a result of a less polar interface by effect of the penetration of the continuous medium. The reaction between MNTS and NMBA was found to be more markedly inhibited in the xylene microemulsions. For NMBA the reaction was 2.1–2.5 times faster in the isooctane microemulsions than in the o-xylene, m-xylene and p-xylene microemulsions. The polarity of the interphase is a function of the amount of oil and water present. Structural evidence suggests that penetration of the continuous medium into the AOT film is easier for the aromatic medium than for isooctane. NMR and kinetic experiments confirm this prediction [43]. Highly polarizable solvents such as benzene, toluene, and tetrachloromethane penetrate the amphiphilic layer presumably up to the water core boundary. The resonance signals for the water H atoms in toluene, m-xylene, and p-xylene microemulsions are suggested an increasing penetration into the oil. The resonance signals for the water H atoms suggest that penetration is slightly deeper with o-xylene than with the other aromatic solvents. The oil penetration increased in the sequence o-xylene > m-xylene > p-xylene [43]. The relative biomolecular rate constants for the reaction between MNTS and NMBA in o-xylene, m-xylene and p-xylene are 0.40, 0.43 and 0.47 respectively.
\nIn this chapter we have reviewed the reactions nitrosation of secondary amines by MNTS in AOT-based microemulsions. The reactivity of traditional microemulsions (isooctane/AOT/water) was compared with systems where the interface has been modified by the addition of a cosurfactant or by the substitution of isooctane for xylenes. The presence of SDS as a co-surfactant has important effects on the stability of the microemulsion. An increase in its relative concentration results in a significant decrease in its percolation temperature. The water solubilization capacity also decreases by the presence of SDS. Despite these important effects in the stability of the system, no significant differences are observed in the reactivity. The pseudophase model has been used to quantitatively evaluate the kinetic parameters, but the results are practically the same in isooctane/AOT/SDS/water microemulsions than in isooctane/AOT/water traditional systems.
\nThe substitution of isooctane by xylene gives rise to nonpercolated microemulsions. Xylene/AOT/water microemulsions showed a remarkable effect in the reactivity. The ratio between the bimolecular rate constants allowed to compare the inhibitory effect of isooctane/AOT/water and xylene/AOT/water microemulsions. Thus, the reactions of MNTS with NMBA and PIP were found to be more strongly inhibited in the xylene microemulsions than in the isooctane microemulsions. The increased inhibitory effect of the xylene microemulsions is a result of the decreased polarity at the reaction site: the interphase between the continuous medium and the water.
\nFinally, we highlight the validity of the kinetic model for percolated and nonpercolated microemulsions. The pseudophase model is independent of structural connotations and internal dynamics of the system and assumes the water, surfactant, and continuous medium to be separate continuous phases.
\nFinancial support from Ministerio de Economia y Competitividad of Spain (project CTQ2014-55208-P), Xunta de Galicia (GR 2007/085; IN607C 2016/03 and Centro Singular de Investigación de Galicia Accreditation 2016-2019, ED431G/09), and the European Union (European Regional Development Fund-ERDF) is gratefully acknowledged.
\nAll publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8"},books:[{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11557",title:"Chemometrics - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"222ff7b2f5bcb28e4e2a2612ba115b67",slug:null,bookSignature:"Associate Prof. Vu Dang Hoang",coverURL:"https://cdn.intechopen.com/books/images_new/11557.jpg",editedByType:null,editors:[{id:"199907",title:"Associate Prof.",name:"Vu Dang",surname:"Hoang",slug:"vu-dang-hoang",fullName:"Vu Dang Hoang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11558",title:"Industrial Applications of Ionic Liquids",subtitle:null,isOpenForSubmission:!0,hash:"b0b5157bf9b4aa15409335e4e08f1506",slug:null,bookSignature:"Dr. Fabrice Mutelet",coverURL:"https://cdn.intechopen.com/books/images_new/11558.jpg",editedByType:null,editors:[{id:"186677",title:"Dr.",name:"Fabrice",surname:"Mutelet",slug:"fabrice-mutelet",fullName:"Fabrice Mutelet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11901",title:"Cyclodextrins - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"31f22441bda291f7968afd488ec33073",slug:null,bookSignature:"Dr. Rashid Ali",coverURL:"https://cdn.intechopen.com/books/images_new/11901.jpg",editedByType:null,editors:[{id:"334623",title:"Dr.",name:"Rashid",surname:"Ali",slug:"rashid-ali",fullName:"Rashid Ali"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11564",title:"Infrared Spectroscopy - Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"a72c83e454be85c1663d16ee18525862",slug:null,bookSignature:"Dr. Marwa S. El-Azazy, Dr. Khalid Al-Saad and Dr. Ahmed El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/11564.jpg",editedByType:null,editors:[{id:"198210",title:"Dr.",name:"Marwa",surname:"El-Azazy",slug:"marwa-el-azazy",fullName:"Marwa El-Azazy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11910",title:"Frontiers in Voltammetry",subtitle:null,isOpenForSubmission:!0,hash:"fc53a7599a61ed04a0672a7bca81e9c2",slug:null,bookSignature:"Dr. Rajendrachari Shashanka, Dr. Kiran Kenchappa Somashekharappa, Dr. Sharath Peramenahalli Chikkegouda and Dr. Shamanth Vasanth",coverURL:"https://cdn.intechopen.com/books/images_new/11910.jpg",editedByType:null,editors:[{id:"246025",title:"Dr.",name:"Shashanka",surname:"Rajendrachari",slug:"shashanka-rajendrachari",fullName:"Shashanka Rajendrachari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11903",title:"Covalent Organic Frameworks",subtitle:null,isOpenForSubmission:!0,hash:"8125f3f415f5d2fa9583abde0143602d",slug:null,bookSignature:"Prof. Yanan Gao and Dr. Fei Lu",coverURL:"https://cdn.intechopen.com/books/images_new/11903.jpg",editedByType:null,editors:[{id:"171387",title:"Prof.",name:"Yanan",surname:"Gao",slug:"yanan-gao",fullName:"Yanan Gao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11902",title:"Lignin - Chemistry, Structure, and Application",subtitle:null,isOpenForSubmission:!0,hash:"4c3ccf3ce961d9c60aeb9774034eeb87",slug:null,bookSignature:"Associate Prof. Arpit Sand and Dr. Jaya Tuteja",coverURL:"https://cdn.intechopen.com/books/images_new/11902.jpg",editedByType:null,editors:[{id:"287032",title:"Associate Prof.",name:"Arpit",surname:"Sand",slug:"arpit-sand",fullName:"Arpit Sand"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11559",title:"Photocatalysts - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fc9a28dbceaeccb8991b24aec1decd32",slug:null,bookSignature:"Prof. Nasser S Awwad and Dr. Ahmed Alomary",coverURL:"https://cdn.intechopen.com/books/images_new/11559.jpg",editedByType:null,editors:[{id:"145209",title:"Prof.",name:"Nasser",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11562",title:"Chemistry with Pyridine Derivatives",subtitle:null,isOpenForSubmission:!0,hash:"3fc5963720fa7ae08c9e31bdec4f7cc2",slug:null,bookSignature:"Dr. Satyanarayan Pal",coverURL:"https://cdn.intechopen.com/books/images_new/11562.jpg",editedByType:null,editors:[{id:"230561",title:"Dr.",name:"Satyanarayan",surname:"Pal",slug:"satyanarayan-pal",fullName:"Satyanarayan Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11907",title:"Slurry Technology - New Advances",subtitle:null,isOpenForSubmission:!0,hash:"a3de73ad02868797334aa3024ec3f018",slug:null,bookSignature:"Dr. Trevor Jones",coverURL:"https://cdn.intechopen.com/books/images_new/11907.jpg",editedByType:null,editors:[{id:"248406",title:"Dr.",name:"Trevor",surname:"Jones",slug:"trevor-jones",fullName:"Trevor Jones"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11908",title:"Self-Assembly of Materials and Supramolecular Structures",subtitle:null,isOpenForSubmission:!0,hash:"e9cc643ae0a219e91e445a1e61b33a22",slug:null,bookSignature:"Prof. Hemali Rathnayake and Dr. Gayani Pathiraja",coverURL:"https://cdn.intechopen.com/books/images_new/11908.jpg",editedByType:null,editors:[{id:"323782",title:"Prof.",name:"Hemali",surname:"Rathnayake",slug:"hemali-rathnayake",fullName:"Hemali Rathnayake"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"795",title:"Algorithm Analysis",slug:"industrial-engineering-and-management-algorithm-analysis",parent:{id:"119",title:"Industrial Engineering and Management",slug:"industrial-engineering-and-management"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:1,numberOfWosCitations:72,numberOfCrossrefCitations:46,numberOfDimensionsCitations:99,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"795",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3596",title:"Multiprocessor Scheduling",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:null,slug:"multiprocessor_scheduling_theory_and_applications",bookSignature:"Eugene Levner",coverURL:"https://cdn.intechopen.com/books/images_new/3596.jpg",editedByType:"Edited by",editors:[{id:"25544",title:"Prof.",name:"Eugene",middleName:null,surname:"Levner",slug:"eugene-levner",fullName:"Eugene Levner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"610",doi:"10.5772/5212",title:"Cyclic Scheduling in Robotic Cells: An Extension of Basic Models in Machine Scheduling Theory",slug:"cyclic_scheduling_in_robotic_cells__an_extension_of_basic_models_in_machine_scheduling_theory",totalDownloads:6205,totalCrossrefCites:9,totalDimensionsCites:18,abstract:null,book:{id:"3596",slug:"multiprocessor_scheduling_theory_and_applications",title:"Multiprocessor Scheduling",fullTitle:"Multiprocessor Scheduling, Theory and Applications"},signatures:"Eugene Levner, Vladimir Kats and David Alcaide Lopez De Pablo",authors:null},{id:"625",doi:"10.5772/5227",title:"Hybrid Job Shop and Parallel Machine Scheduling Problems: Minimization of Total Tardiness Criterion",slug:"hybrid_job_shop_and_parallel_machine_scheduling_problems__minimization_of_total_tardiness_criterion",totalDownloads:6422,totalCrossrefCites:9,totalDimensionsCites:17,abstract:null,book:{id:"3596",slug:"multiprocessor_scheduling_theory_and_applications",title:"Multiprocessor Scheduling",fullTitle:"Multiprocessor Scheduling, Theory and Applications"},signatures:"Frederic Dugardin, Hicham Chehade, Lionel Amodeo, Farouk Yalaoui and Christian Prins",authors:null},{id:"611",doi:"10.5772/5213",title:"Combinatorial Models for Multi-Agent Scheduling Problems",slug:"combinatorial_models_for_multi-agent_scheduling_problems",totalDownloads:3057,totalCrossrefCites:5,totalDimensionsCites:16,abstract:null,book:{id:"3596",slug:"multiprocessor_scheduling_theory_and_applications",title:"Multiprocessor Scheduling",fullTitle:"Multiprocessor Scheduling, Theory and Applications"},signatures:"Alessandro Agnetis, Dario Pacciarelli and Andrea Pacifici",authors:null},{id:"614",doi:"10.5772/5216",title:"Minimizing the Weighted Number of Late Jobs with Batch Setup Times and Delivery Costs on a Single Machine",slug:"minimizing_the_weighted_number_of_late_jobs_with_batch_setup_times_and_delivery_costs_on_a_single_ma",totalDownloads:3521,totalCrossrefCites:4,totalDimensionsCites:11,abstract:null,book:{id:"3596",slug:"multiprocessor_scheduling_theory_and_applications",title:"Multiprocessor Scheduling",fullTitle:"Multiprocessor Scheduling, Theory and Applications"},signatures:"George Steiner and Rui Zhang",authors:null},{id:"627",doi:"10.5772/5229",title:"A Heuristic Rule-Based Approach for Dynamic Scheduling of Flexible Manufacturing Systems",slug:"a_heuristic_rule-based_approach_for_dynamic_scheduling_of_flexible_manufacturing_systems",totalDownloads:3623,totalCrossrefCites:5,totalDimensionsCites:9,abstract:null,book:{id:"3596",slug:"multiprocessor_scheduling_theory_and_applications",title:"Multiprocessor Scheduling",fullTitle:"Multiprocessor Scheduling, Theory and Applications"},signatures:"Gonca Tuncel",authors:null}],mostDownloadedChaptersLast30Days:[{id:"610",title:"Cyclic Scheduling in Robotic Cells: An Extension of Basic Models in Machine Scheduling Theory",slug:"cyclic_scheduling_in_robotic_cells__an_extension_of_basic_models_in_machine_scheduling_theory",totalDownloads:6205,totalCrossrefCites:9,totalDimensionsCites:18,abstract:null,book:{id:"3596",slug:"multiprocessor_scheduling_theory_and_applications",title:"Multiprocessor Scheduling",fullTitle:"Multiprocessor Scheduling, Theory and Applications"},signatures:"Eugene Levner, Vladimir Kats and David Alcaide Lopez De Pablo",authors:null},{id:"614",title:"Minimizing the Weighted Number of Late Jobs with Batch Setup Times and Delivery Costs on a Single Machine",slug:"minimizing_the_weighted_number_of_late_jobs_with_batch_setup_times_and_delivery_costs_on_a_single_ma",totalDownloads:3522,totalCrossrefCites:4,totalDimensionsCites:11,abstract:null,book:{id:"3596",slug:"multiprocessor_scheduling_theory_and_applications",title:"Multiprocessor Scheduling",fullTitle:"Multiprocessor Scheduling, Theory and Applications"},signatures:"George Steiner and Rui Zhang",authors:null},{id:"613",title:"Scheduling with Communication Delays",slug:"scheduling_with_communication_delays",totalDownloads:2754,totalCrossrefCites:3,totalDimensionsCites:4,abstract:null,book:{id:"3596",slug:"multiprocessor_scheduling_theory_and_applications",title:"Multiprocessor Scheduling",fullTitle:"Multiprocessor Scheduling, Theory and Applications"},signatures:"R. Giroudeau and J.C. Koenig",authors:null},{id:"623",title:"Scheduling with Setup Considerations: An MIP Approach",slug:"scheduling_with_setup_considerations__an_mip_approach",totalDownloads:3184,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3596",slug:"multiprocessor_scheduling_theory_and_applications",title:"Multiprocessor Scheduling",fullTitle:"Multiprocessor Scheduling, Theory and Applications"},signatures:"Mohamed. K. Omar, Siew C. Teo and Yasothei Suppiah",authors:null},{id:"625",title:"Hybrid Job Shop and Parallel Machine Scheduling Problems: Minimization of Total Tardiness Criterion",slug:"hybrid_job_shop_and_parallel_machine_scheduling_problems__minimization_of_total_tardiness_criterion",totalDownloads:6423,totalCrossrefCites:9,totalDimensionsCites:17,abstract:null,book:{id:"3596",slug:"multiprocessor_scheduling_theory_and_applications",title:"Multiprocessor Scheduling",fullTitle:"Multiprocessor Scheduling, Theory and Applications"},signatures:"Frederic Dugardin, Hicham Chehade, Lionel Amodeo, Farouk Yalaoui and Christian Prins",authors:null}],onlineFirstChaptersFilter:{topicId:"795",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"4",type:"subseries",title:"Fungal Infectious Diseases",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11400,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"302145",title:"Dr.",name:"Felix",middleName:null,surname:"Bongomin",slug:"felix-bongomin",fullName:"Felix Bongomin",profilePictureURL:"https://mts.intechopen.com/storage/users/302145/images/system/302145.jpg",institutionString:null,institution:{name:"Gulu University",institutionURL:null,country:{name:"Uganda"}}},{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi",profilePictureURL:"https://mts.intechopen.com/storage/users/45803/images/system/45803.jpg",institutionString:"Islamic Azad University, Tehran",institution:{name:"Islamic Azad University, Tehran",institutionURL:null,country:{name:"Iran"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:175,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/184192",hash:"",query:{},params:{id:"184192"},fullPath:"/profiles/184192",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()