The main objective of this chapter is to introduce high‐energy nanosecond laser pulse treatment for enhancing the surface bioactivity of titanium for bone and tissue implant fabrication. Improvement to the implant performance could immensely benefit the human patient. Bioactivity enhancement of materials is currently an essential challenge in implant engineering. Laser micro/nano surface texturing of materials offers a simple, accurate, and precise method to increase the biocompatibility of materials in one single step. In this chapter, the effects of laser power, scanning parameters, and frequency on surface structure and topographic properties are studied. Through bioactivity assessment of treated titanium substrates, it was found that an increase in power and frequency increases the bioactivity of titanium, while a decrease in scanning speed of laser could lead to an increase in the cell adhesion ability of titanium.
Part of the book: High Energy and Short Pulse Lasers