The recent outbreak of Ebola viral disease (EVD) in West Africa reminded us that an effective anti-viral treatment still does not exist, despite the significant progress that has recently been made in understanding biology and pathology of this lethal disease. Currently, there are no approved vaccine and/or prophylactic medication for the treatment of EVD in the market. However, the serious pandemic potential of EVD mobilized research teams in the academy and the pharmaceutical industry in the effort to find an Ebola cure as fast as possible. In this chapter, we are giving the condensed review of different approaches and strategies in search of a drug against Ebola. We have been focusing on the review of the targets that could be used for in silico, in vitro, and/or in vivo drug design of compounds that interact with the targets in different phases of the Ebola virus life cycle.
Part of the book: Ebola
SARS-CoV-2 belongs to the family of coronaviruses, which are characterized by spikes that sit densely on the surface of the virus. The spike protein (Spro) is responsible for the attachment of the virus to the host cell via the ACE2 receptor on the surface of the host cell. The strength of the interaction between the receptor-binding domain (RBD) of the highly glycosylated spike protein of the virus and the host cell ACE2 receptor represents the key determinant of the infectivity of the virus. The SARS-CoV-2 virus has mutated since the beginning of the outbreak, and the vast majority of mutations has been detected in the spike protein or its RBD. Since specific mutations significantly affect the ability of the virus to transmit and to evade immune response, studies of these mutations are critical. We investigate GISAID data to show how viral spike protein mutations evolved during the pandemic. We further present the interactions of the viral Spro RBD with the host ACE2 receptor. We have performed a large-scale mutagenesis study of the Spro RBD-ACE2 interface by performing point mutations in silico and identifying the ambiguous interface stabilization by the most common point mutations in the viral variants of interest (beta, gamma, delta, omicron).
Part of the book: Current Topics in SARS-CoV-2/COVID-19