Relationships between forest functions and water cycle processes indicated by the selected soil properties.
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"6426",leadTitle:null,fullTitle:"Titanium Dioxide - Material for a Sustainable Environment",title:"Titanium Dioxide",subtitle:"Material for a Sustainable Environment",reviewType:"peer-reviewed",abstract:"Titanium dioxide is currently being used in many industrial products. It provides unique photocatalytic properties for water splitting and purification, bacterial inactivation, and organics degradation. It has also been widely used as the photoanode for dye-sensitized solar cells and coatings for self-cleaning surfaces, biomedical implants, and nanomedicine. This book covers various aspects of titanium dioxide nanomaterials including their unique one-dimensional, two-dimensional, mesoporous, and hierarchical nanostructures and their synthetic methods such as sol-gel, hydrothermal, anodic oxidation, and electrophoretic deposition, as well as its key applications in environmental and energy sectors. Through these 24 chapters written by experts from the international scientific community, readers will have access to a comprehensive overview of the recent research and development findings on the titanium dioxide nanomaterials.",isbn:"978-1-78923-327-8",printIsbn:"978-1-78923-326-1",pdfIsbn:"978-1-83881-425-0",doi:"10.5772/intechopen.70290",price:159,priceEur:175,priceUsd:205,slug:"titanium-dioxide-material-for-a-sustainable-environment",numberOfPages:518,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"5626c0fe0b53330717e73094946cfd86",bookSignature:"Dongfang Yang",publishedDate:"June 27th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6426.jpg",numberOfDownloads:35966,numberOfWosCitations:132,numberOfCrossrefCitations:94,numberOfCrossrefCitationsByBook:4,numberOfDimensionsCitations:186,numberOfDimensionsCitationsByBook:9,hasAltmetrics:1,numberOfTotalCitations:412,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 3rd 2017",dateEndSecondStepPublish:"July 24th 2017",dateEndThirdStepPublish:"November 25th 2017",dateEndFourthStepPublish:"January 18th 2018",dateEndFifthStepPublish:"March 19th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"177814",title:"Dr.",name:"Dongfang",middleName:null,surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/177814/images/system/177814.jpg",biography:"Dongfang Yang received his Ph.D. in Physical Chemistry from the University of Guelph in 1995. He joined the National Research Council Canada in London Ontario in 2001 and is now a Senior Research Officer. His current research interests include laser materials processing; pulsed laser, sputtering and e-beam deposition of thin films; new materials development for energy storage devices; chemical and optical sensors development; and electrochemical studies of organic adsorption and self-assembly monolayer. He is currently serving as an editor or editorial board member for ten scientific journals and was listed among the top 2% most-cited scientists according to a Stanford study in 2020. He also holds an adjunct professorship at Western University, Ontario, Canada.",institutionString:"National Research Council Canada",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"National Research Council Canada",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"158",title:"Metals and Nonmetals",slug:"metals-and-nonmetals"}],chapters:[{id:"60532",title:"Hierarchical Nanostructures of Titanium Dioxide: Synthesis and Applications",doi:"10.5772/intechopen.74525",slug:"hierarchical-nanostructures-of-titanium-dioxide-synthesis-and-applications",totalDownloads:1542,totalCrossrefCites:9,totalDimensionsCites:17,hasAltmetrics:0,abstract:"This chapter covers different routes of preparation of hierarchical nanostructures (HNS) of titanium dioxide. Keeping the interest in developing modern and sustainable methods of materials chemistry, this chapter focuses on synthesis routes for TiO2 HNSs reported by researchers from all over the world. The chapter includes the details of chemical reactions taking place during the synthesis and the effects of various process parameters like: type of surfactants, organic/inorganic titanium salts, temperature and pressure on products. The obtained TiO2 HNSs from different synthesis routes are subsequently compared in terms of their morphology, crystallite size, surface area, particle size and phase. The merits and demerits of all synthesis techniques are also added for comprehensive information. At the end, various applications of HNSs are discussed and their performance is analyzed with respect to the morphologies obtained from different synthesis techniques.",signatures:"Ramsha Khan, Sofia Javed and Mohammad Islam",downloadPdfUrl:"/chapter/pdf-download/60532",previewPdfUrl:"/chapter/pdf-preview/60532",authors:[{id:"221696",title:"Dr.",name:"Sofia",surname:"Javed",slug:"sofia-javed",fullName:"Sofia Javed"},{id:"222651",title:"Ms.",name:"Ramsha",surname:"Khan",slug:"ramsha-khan",fullName:"Ramsha Khan"},{id:"242722",title:"Dr.",name:"Mohammad",surname:"Islam",slug:"mohammad-islam",fullName:"Mohammad Islam"}],corrections:null},{id:"58866",title:"Novel Two-Dimensional Nanomaterial: High Aspect Ratio Titania Nanoflakes",doi:"10.5772/intechopen.73116",slug:"novel-two-dimensional-nanomaterial-high-aspect-ratio-titania-nanoflakes",totalDownloads:904,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"A novel 2D nanomaterial, high aspect ratio TiO2 nanoflakes were synthesized by a one-step method. Surface morphology and physical dimensions were characterized using Scanning Electron Microscopy (SEM), Laser Diffraction technology, and Transmission Electron Microscopy (TEM). Micro-sized flakes having a thickness approximately 40 nm were successfully synthesized by spreading a mixture of titanium alkoxide and hydrocarbon on the water surface. Relatively higher specific surface area (2–6 times) and less crystal defects enhanced photocatalytic activities of nanoflakes due to more surface reaction sites. By performing dye degradation under ultraviolet (UV) illumination, titania nanoflakes exhibited the higher photocatalytic efficiency over the commercial photocatalyst, Degussa P25. To the best of our knowledge, this is the first time to continuously synthesize low-dimensional nanomaterials in an efficient and cost effective manner. In practical water purification, traditional separation processes such as sedimentation or filtration could be utilized to easily extract the titania flakes from the treated water. Other applications such as anode material for lithium ion batteries and conducting paste in dye sensitized solar cells (DSSC) were also investigated. The cycling performance of Li-ion battery and energy conversion efficiency of DSSC were significantly improved.",signatures:"Yang-Yao Lee",downloadPdfUrl:"/chapter/pdf-download/58866",previewPdfUrl:"/chapter/pdf-preview/58866",authors:[{id:"225614",title:"Dr.",name:"Yang-Yao",surname:"Lee",slug:"yang-yao-lee",fullName:"Yang-Yao Lee"}],corrections:null},{id:"59572",title:"Mesoporous TiO2 Thin Films: State of the Art",doi:"10.5772/intechopen.74244",slug:"mesoporous-tio2-thin-films-state-of-the-art",totalDownloads:1475,totalCrossrefCites:14,totalDimensionsCites:24,hasAltmetrics:0,abstract:"Mesoporous TiO2 thin films (MTTFs), thanks to their particularly high surface area, controlled porosity, high flexibility in composition, and surface design, are promising candidates in different application fields such as sensors, self-cleaning coatings, lithium-ion batteries (LIBs), photocatalysis, and new-generation solar cells. This chapter is focused on the synthetic and post-synthesis aspects that can affect the TiO2 mesoporous structure and consequently the MTTF properties. In particular, after a brief summary of TiO2 properties, all experimental conditions to prepare MTTFs are reviewed as well as the main characterization techniques employed to study their physicochemical and photocatalytic properties. An overview of the main applications of MTTFs is also proposed, mainly focused on the use of MTTFs in sensors and LIBs.",signatures:"Francesca Scarpelli, Teresa F. Mastropietro, Teresa Poerio and\nNicolas Godbert",downloadPdfUrl:"/chapter/pdf-download/59572",previewPdfUrl:"/chapter/pdf-preview/59572",authors:[{id:"228682",title:"Dr.",name:"Teresa",surname:"Poerio",slug:"teresa-poerio",fullName:"Teresa Poerio"},{id:"228684",title:"Dr.",name:"Nicolas",surname:"Godbert",slug:"nicolas-godbert",fullName:"Nicolas Godbert"},{id:"228694",title:"Dr.",name:"Francesca",surname:"Scarpelli",slug:"francesca-scarpelli",fullName:"Francesca Scarpelli"},{id:"228986",title:"Dr.",name:"Teresa Fina",surname:"Mastropietro",slug:"teresa-fina-mastropietro",fullName:"Teresa Fina Mastropietro"}],corrections:null},{id:"59520",title:"Pure and Nanocomposite Thin Films Based on TiO2 Prepared by Sol-Gel Process: Characterization and Applications",doi:"10.5772/intechopen.74335",slug:"pure-and-nanocomposite-thin-films-based-on-tio2-prepared-by-sol-gel-process-characterization-and-app",totalDownloads:1699,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Titanium dioxide (TiO2) thin films have innumerable applications, and the preparation of nanocomposites based on TiO2 favors the coupling of different structures that can lead to additional or enhanced properties. The aim of this chapter is to show the preparation and characterization of TiO2 thin films and some nanocomposites based on anatase-TiO2, prepared by sol-gel process using the dip-coating technique. TiO2 thin films were prepared by sol-gel process onto borosilicate glass, steel, magnet, and silicon substrates from alcoholic starting solutions containing titanium isopropoxide, isopropyl alcohol, and acids to the control of the velocity of gelation. The doped thin films, such as SiO2/TiO2, Ag/TiO2, and Nb/TiO2, were prepared adding the dopants in a form of salts or alkoxides in starting solution. The morphological, structural, and textural characterization of the films was made using X-ray diffraction (XRD), high resolution transmission electron microscopy with energy-dispersive spectrometer (EDS) detector, atomic force microscopy/nanoindentation, and UV-Vis spectroscopy. Photoelectrical, mechanical, biological, optical, and surface properties were evaluated.",signatures:"Nelcy Della Santina Mohallem, Marcelo Machado Viana, Magnum\nAugusto Moraes Lopes de Jesus, Gustavo Henrique de Magalhães\nGomes, Luiz Fernando de Sousa Lima and Ellen Denise Lopes Alves",downloadPdfUrl:"/chapter/pdf-download/59520",previewPdfUrl:"/chapter/pdf-preview/59520",authors:[{id:"14332",title:"Dr.",name:"Nelcy",surname:"Della Santina Mohallem",slug:"nelcy-della-santina-mohallem",fullName:"Nelcy Della Santina Mohallem"},{id:"238384",title:"Dr.",name:"Marcelo",surname:"Viana",slug:"marcelo-viana",fullName:"Marcelo Viana"}],corrections:null},{id:"59548",title:"Novel TiO2 Photocatalyst Using Nonaqueous Solvent- Controlled Sol-Gel Route",doi:"10.5772/intechopen.74568",slug:"novel-tio2-photocatalyst-using-nonaqueous-solvent-controlled-sol-gel-route",totalDownloads:1090,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Synthesis of metal oxide nanoparticles with tailored properties is of great interest because of their potential in environmental, sensor, biomedical and energy applications. Specifically, TiO2 gets special attention because of its high stability, biocompatibility, tunable band gap and surface properties. Aqueous sol-gel routes for the synthesis of TiO2 nanoparticles are well established but suffer from little control over morphology and reproducibility. Nonaqueous solvent controlled sol-gel routes are good alternative to aqueous routes for the synthesis of highly crystalline TiO2 nanoparticles with high purity and controlled doping of large size metallic ions. Present chapter describes the successful doping of large sized Zr and Na metal ions at Ti site and their influence on photo catalytic activity of TiO2. The higher photo catalytic activity (even better than commercially available Degussa P25) of metal doped TiO2 nanopowder is attributed to large surface area and reduced electron-hole recombination rate.",signatures:"Inderjeet Singh and Balaji I. Birajdar",downloadPdfUrl:"/chapter/pdf-download/59548",previewPdfUrl:"/chapter/pdf-preview/59548",authors:[{id:"234704",title:"Dr.",name:"Balaji",surname:"Birajdar",slug:"balaji-birajdar",fullName:"Balaji Birajdar"},{id:"234706",title:"Mr.",name:"Inderjeet",surname:"Singh",slug:"inderjeet-singh",fullName:"Inderjeet Singh"}],corrections:null},{id:"59321",title:"Factor Affecting Geometry of TiO2 Nanotube Arrays (TNAs) in Aqueous and Organic Electrolyte",doi:"10.5772/intechopen.74193",slug:"factor-affecting-geometry-of-tio2-nanotube-arrays-tnas-in-aqueous-and-organic-electrolyte",totalDownloads:1057,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"TiO2 nanotube arrays (TNA) have attracted scientific interest due to the combination of functional material properties with controllable nanostructure. Superior properties of TNA, including vectorial pathway of e− transport, minimized e− recombination, and high specific surface area render them as the most promising candidate for environment remediation, energy conversion and biocompatibility applications. The superior properties and efficacy of the TNA in various applications influenced by structural characteristics such as pore size, length and wall thickness. Therefore in this chapter the effect of various electrochemical parameters such as applied voltage, anodization time, electrolyte composition on the formation of controlled dimension of TNA in aqueous and organic electrolytes are reviewed.",signatures:"Khairul Arifah Saharudin, Srimala Sreekantan, Rabiatul Basria S. N.\nM. Mydin, Norfatehah Basiron and Warapong Krengvirat",downloadPdfUrl:"/chapter/pdf-download/59321",previewPdfUrl:"/chapter/pdf-preview/59321",authors:[{id:"216721",title:"Dr.",name:"Rabiatul Basria",surname:"S M N Mydin",slug:"rabiatul-basria-s-m-n-mydin",fullName:"Rabiatul Basria S M N Mydin"},{id:"237615",title:"Prof.",name:"Srimala",surname:"Sreekantan",slug:"srimala-sreekantan",fullName:"Srimala Sreekantan"},{id:"240228",title:"Dr.",name:"Khairul Arifah",surname:"Saharudin",slug:"khairul-arifah-saharudin",fullName:"Khairul Arifah Saharudin"},{id:"240231",title:"Mr.",name:"Warapong",surname:"Krengvirat",slug:"warapong-krengvirat",fullName:"Warapong Krengvirat"},{id:"240232",title:"Ms.",name:"Fatehah",surname:"Basiron",slug:"fatehah-basiron",fullName:"Fatehah Basiron"}],corrections:null},{id:"61485",title:"Recent Advances in TiO2 Nanotube-Based Materials for Photocatalytic Applications Designed by Anodic Oxidation",doi:"10.5772/intechopen.77063",slug:"recent-advances-in-tio2-nanotube-based-materials-for-photocatalytic-applications-designed-by-anodic-",totalDownloads:1391,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"This book chapter reports some spectacular and interesting 1D nanostructures of TiO2, which are grown by the anodic oxidation. Under suitable conditions, conventional one-step anodic oxidation is available to grow TiO2 nanotube arrays (TNAs) and TiO2 nanowires/nanotubes; meanwhile, two-step anodic oxidation allows fabricating some novel TNAs with spectacular morphologies such as highly ordered TNAs, bamboo-type TNAs, and lotus root-shaped TNAs. The formation mechanisms of these nanostructures during the anodic oxidation processes are elusive via studying effects of several key parameters such as oxidizing voltage, processing time, and electrolytes. In addition, the photocatalytic activity of the TNA-based nanomaterials is characterized by the degradation of pharmaceutical model, methylene blue, or the photoelectrochemical effect.",signatures:"Phuoc Huu Le and Jihperng Leu",downloadPdfUrl:"/chapter/pdf-download/61485",previewPdfUrl:"/chapter/pdf-preview/61485",authors:[{id:"187013",title:"Dr.",name:"Phuoc",surname:"Huu Le",slug:"phuoc-huu-le",fullName:"Phuoc Huu Le"},{id:"240819",title:"Prof.",name:"Jihperng",surname:"Leu",slug:"jihperng-leu",fullName:"Jihperng Leu"}],corrections:null},{id:"60518",title:"Synthetic Methods for Titanium Dioxide Nanoparticles: A Review",doi:"10.5772/intechopen.75425",slug:"synthetic-methods-for-titanium-dioxide-nanoparticles-a-review",totalDownloads:5210,totalCrossrefCites:29,totalDimensionsCites:53,hasAltmetrics:1,abstract:"Titanium dioxide (TiO2) semiconductor nanoparticles are one kind of important and promising photocatalysts in photocatalysis because of their unique optical and electronic properties. Their properties, which are determined by the preparation method, are very crucial in photocatalysis. In this chapter, an overview was carried out on the different methods that are used or have been used to prepare titanium dioxide nanoparticles. There are various methods that can be used to synthesize TiO2 and the most commonly used methods include sol-gel process, chemical vapor deposition (CVD) and hydrothermal method among others. This review will focus on selected preparation methods of titanium dioxide photocatalyst.",signatures:"Pardon Nyamukamba, Omobola Okoh, Henry Mungondori,\nRaymond Taziwa and Simcelile Zinya",downloadPdfUrl:"/chapter/pdf-download/60518",previewPdfUrl:"/chapter/pdf-preview/60518",authors:[{id:"196100",title:"Dr.",name:"Raymond",surname:"Taziwa",slug:"raymond-taziwa",fullName:"Raymond Taziwa"},{id:"219920",title:"Prof.",name:"Omobola",surname:"Okoh",slug:"omobola-okoh",fullName:"Omobola Okoh"},{id:"226567",title:"Dr.",name:"Pardon",surname:"Nyamukamba",slug:"pardon-nyamukamba",fullName:"Pardon Nyamukamba"},{id:"239758",title:"Mr.",name:"Simcelile",surname:"Zinya",slug:"simcelile-zinya",fullName:"Simcelile Zinya"}],corrections:null},{id:"58811",title:"Innovation in the Electrophoretic Deposition of TiO2 Using Different Stabilizing Agents and Zeta Potential",doi:"10.5772/intechopen.73210",slug:"innovation-in-the-electrophoretic-deposition-of-tio2-using-different-stabilizing-agents-and-zeta-pot",totalDownloads:1157,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Surface engineering is gaining increasing relevance in various industrial sectors and in research, and in this sense, zeta potential measurements, being a physicochemical parameter of interface, are key to linking the functionality of a coating with its application environment. In this work, different stabilizing agents with different chemical structure and electrical charge were used to improve the stability of the TiO2 particles. The influence of the electrophoretic deposition (EPD) parameters (potential and deposition time) and the concentration of chitosan and TiO2 in suspension were studied to find the best deposition performance on the titanium substrate. The composition and structure of the coatings were evaluated by infrared spectroscopies (FT-IR) and scanning electron microscopy (SEM). It was observed that the TiO2 particles were dispersed in the chitosan matrix through simultaneous deposition. Corrosion resistance was evaluated by electrochemical polarization curves, indicating a higher corrosion resistance of TiO2 and TiO2-chitosan coatings compared to the pure titanium substrate in a solution of sulfuric acid.",signatures:"Erick Barrios Serrano, Mercedes Teresita Oropeza-Guzmán and\nEduardo Alberto López-Maldonado",downloadPdfUrl:"/chapter/pdf-download/58811",previewPdfUrl:"/chapter/pdf-preview/58811",authors:[{id:"221925",title:"Dr.",name:"Eduardo A.",surname:"López-Maldonado",slug:"eduardo-a.-lopez-maldonado",fullName:"Eduardo A. López-Maldonado"},{id:"231059",title:"Mr.",name:"Erick",surname:"Barrios",slug:"erick-barrios",fullName:"Erick Barrios"},{id:"231060",title:"Dr.",name:"Mercedes T.",surname:"Oropeza",slug:"mercedes-t.-oropeza",fullName:"Mercedes T. Oropeza"}],corrections:null},{id:"58568",title:"Luminescence from TiO2 Nanotubes and Related Nanostructures Investigated Using Synchrotron X-Ray Absorption Near-Edge Structure and X-Ray Excited Optical Luminescence",doi:"10.5772/intechopen.72856",slug:"luminescence-from-tio2-nanotubes-and-related-nanostructures-investigated-using-synchrotron-x-ray-abs",totalDownloads:1240,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Understanding the optical property of nanostructured TiO2 is crucial for their use in a variety of applications such as solar cells, photocatalysis, and light emitting devices. Herein, we introduce the use of synchrotron radiation-based spectroscopic techniques: X-ray absorption near-edge structure (XANES) and X-ray excited optical luminescence (XEOL) in analyzing the luminescence properties of anodized TiO2 nanotubes (TiO2 NT) and related materials. A description on the spectroscopic technique is first given, including conventional XANES-XEOL combined analysis and a more recently developed 2D XANES-XEOL probing technique. We then discuss several examples of analyzing the luminescence mechanism of TiO2 NT using XANES and XEOL technique, which are the phase transformation accompanied luminescence, luminescence from TiO2 NT hierarchical structure, and metal particle–coated TiO2 NT.",signatures:"Lijia Liu and Tsun-Kong Sham",downloadPdfUrl:"/chapter/pdf-download/58568",previewPdfUrl:"/chapter/pdf-preview/58568",authors:[{id:"226906",title:"Dr.",name:"Lijia",surname:"Liu",slug:"lijia-liu",fullName:"Lijia Liu"},{id:"230331",title:"Prof.",name:"Tsun",surname:"Sham",slug:"tsun-sham",fullName:"Tsun Sham"}],corrections:null},{id:"60357",title:"Titanium Dioxide Films for Photocatalytic Degradation of Methyl Orange Dye",doi:"10.5772/intechopen.75528",slug:"titanium-dioxide-films-for-photocatalytic-degradation-of-methyl-orange-dye",totalDownloads:1046,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"The aim of this work was to characterize and evaluate the influence of the thickness on the photocatalytic efficiency of titanium dioxide thin films on the degradation of methyl orange dye under UV light irradiation. The films of 280 and 468 nm thick were deposited on borosilicate substrates at 400°C by the MOCVD technique using titanium isoproxide IV as precursor. XRD analyses showed the formation of anatase-TiO2 phase. Cross-sectional FE-SEM images show that the films presented a dense columnar structure and grown perpendicularly to the substrate surface. The photocatalytic activity of the catalysts was studied using UV-vis spectrophotometry The TiO2 film with 468 nm of thickness presented higher photocatalytic activity exhibiting 69% of dye degradation. The increase of grain size and thickness of the films promoted an improvement of photocatalytic efficiency.",signatures:"Rodrigo Teixeira Bento and Marina Fuser Pillis",downloadPdfUrl:"/chapter/pdf-download/60357",previewPdfUrl:"/chapter/pdf-preview/60357",authors:[{id:"223680",title:"Dr.",name:"Marina",surname:"Pillis",slug:"marina-pillis",fullName:"Marina Pillis"},{id:"245108",title:"BSc.",name:"Rodrigo",surname:"Bento",slug:"rodrigo-bento",fullName:"Rodrigo Bento"}],corrections:null},{id:"58722",title:"Preparation of Blue TiO2 for Visible-Light-Driven Photocatalysis",doi:"10.5772/intechopen.73059",slug:"preparation-of-blue-tio2-for-visible-light-driven-photocatalysis",totalDownloads:1839,totalCrossrefCites:3,totalDimensionsCites:6,hasAltmetrics:0,abstract:"Titanium dioxide (TiO2), which is regarded as a semiconductor photocatalyst, has drawn attention in the applications of photocatalysis, including hydrogen evolution reaction, carbon dioxide reduction, pollutant degradation, and biocatalytic or dye-sensitized solar cells due to its low toxicity, superior photocatalytic activity, and good chemical stability. However, there are still some disadvantages such as too large energy bandgap (~3.34 eV and ~3.01 eV for anatase and rutile phases, respectively) in the absorbance of all ranges of lights, which limits the photoelectrochemical performance of TiO2. Herein, we like to introduce photocatalytic blue TiO2 that is obtained by the reduction of TiO2. The blue TiO2 consists of Ti3+ state with high oxygen defect density that can absorb the visible and infrared as well as ultraviolet light due to its low energy bandgap, leading to enhance a photocatalytic activity. This chapter covers the structure and properties of blue TiO2, its possible applications in visible-light-driven photocatalysis, and mainly various synthetic methods even including phase-selective room-temperature solution process under atmospheric pressure.",signatures:"Jianmin Yu, Chau Thi Kim Nguyen and Hyoyoung Lee",downloadPdfUrl:"/chapter/pdf-download/58722",previewPdfUrl:"/chapter/pdf-preview/58722",authors:[{id:"224900",title:"Prof.",name:"Hyoyoung",surname:"Lee",slug:"hyoyoung-lee",fullName:"Hyoyoung Lee"},{id:"237804",title:"Ms.",name:"Jianmin",surname:"Yu",slug:"jianmin-yu",fullName:"Jianmin Yu"},{id:"237809",title:"Ms.",name:"Chau",surname:"Nguyen",slug:"chau-nguyen",fullName:"Chau Nguyen"}],corrections:null},{id:"57930",title:"Photocatalytic Degradation of Selected Organophosphorus Pesticides Using Titanium Dioxide and UV Light",doi:"10.5772/intechopen.72193",slug:"photocatalytic-degradation-of-selected-organophosphorus-pesticides-using-titanium-dioxide-and-uv-lig",totalDownloads:1425,totalCrossrefCites:4,totalDimensionsCites:6,hasAltmetrics:0,abstract:"The photocatalytic degradation of five selected organophosphorus pesticides (OPPs), azinphos methyl, azinphos ethyl, disulfoton, dimethoate, and fenthion, has been investigated using TiO2 (photocatalyst) and UV irradiation. The addition of H2O2 (oxidant agent) into the illuminated aquatic suspensions was also surveyed. The degradation kinetics was studied under different experimental conditions such as pesticides’ and catalyst’s concentration. Experiments were performed in a Pyrex UV laboratory-constructed photoreactor equipped with 4 × 18 W low-pressure Hg lamps emitting at 365 nm (maximum intensity 14.5 mW cm−2 at distance 15 cm). The concentration of pesticides was determined by GC-NPD means. The extent of pesticide mineralization was assessed through TOC measurements. The results demonstrated that photolysis of target organophosphates in the absence of catalyst or oxidant is a slow process resulting in incomplete mineralization. Contradictory, studied pollutants were effectively degraded in the presence of TiO2; evolution of inorganic heteroatoms (SO42−, PO43−, NO2−, NO3−, and NH4+) as final products provided evidence that pesticide deterioration occurred. The photolysis efficiencies decreased in the order: disulfoton > azinphos ethyl > azinphos methyl > fenthion > dimethoate. Furthermore, a synergistic effect was observed with the addition of H2O2 in the pesticide-TiO2 suspensions. In all cases examined, reduction process appeared to follow pseudo first-order kinetics (Langmuir-Hinshelwood model). In conclusion, both catalytic systems investigated (UV-TiO2 and UV-TiO2-H2O2) have good potential for small-scale applications.",signatures:"Andreas S. Petsas and Maria C. Vagi",downloadPdfUrl:"/chapter/pdf-download/57930",previewPdfUrl:"/chapter/pdf-preview/57930",authors:[{id:"200196",title:"Dr.",name:"Andreas",surname:"Petsas",slug:"andreas-petsas",fullName:"Andreas Petsas"},{id:"200198",title:"Dr.",name:"Maria",surname:"Vagi",slug:"maria-vagi",fullName:"Maria Vagi"}],corrections:null},{id:"60557",title:"Photocatalytic TiO2: From Airless Jet Spray Technology to Digital Inkjet Printing",doi:"10.5772/intechopen.72790",slug:"photocatalytic-tio2-from-airless-jet-spray-technology-to-digital-inkjet-printing",totalDownloads:1218,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:0,abstract:"TiO2 powders can be employed as both photocatalytic and structural materials, leading to applications in external coatings or in interior furnishing devices, including cement mortar, tiles, floorings, and glass supports. The technology of photocatalytic building materials is connected with the widespread production of photocatalytic active tiles. All the techniques proposed in the study involve the employment of nanosized TiO2: this represents a new problem to be dealt with, as inhaling nanoparticles exposes workers during industrial production and people in everyday locations to their dangerousness. Only very recently the employment of microsized TiO2 has been proposed, and the authors in this manuscript report the use of micrometric titania materials, but employing a new deposition technique, which is digital inkjet printing. It represents an improvement of the classical spray coating methods, as it requires piezoelectric heads to precisely direct the deposition of the suspension with an electrostatic field. The mixture contains aqueous/organic components containing micrometric TiO2: to form a suspension, which is printed onto the surface of porcelain grès, large slabs using a digital printer. Many advantages are immediately evident, namely rapid and precise deposition, (almost) no waste of raw materials, thereby highlighting the economy, environmental friendliness, and sustainability of the process. All the materials we obtained have been thoroughly characterized by means of several experimental physico-chemical techniques, such as Raman microspectroscopy and scanning electron microscopy coupled with elemental analysis. Two different model VOCs, ethanol and toluene, and NOx have been selected to test the photocatalytic performances of the abovementioned tiles. Moreover, the antibacterial properties of the tiles have been determined, using Escherichia coli as example. Life cycle assessments (LCAs) for the two processes were modeled for 1 m2 of tiles produced in Modena, Italy. The impact assessments revealed that jet spraying exhibited uniformly greater impacts than digital inkjet printing and that the principal impacts were in human toxicity, cancer effects, freshwater ecotoxicity, and climate change. Most of the impacts were associated with the energy required for the production processes. Further considerations revealed that jet spraying is projected to generate twice as much CO2 and 30% more NOx than digital inkjet printing.",signatures:"Claudia L. Bianchi, Carlo Pirola, Marta Stucchi, Giuseppina Cerrato,\nFederico Galli, Alessandro Di Michele, Serena Biella, Wen-Fan Chen,\nPramod Koshy, Charles Sorrell and Valentino Capucci",downloadPdfUrl:"/chapter/pdf-download/60557",previewPdfUrl:"/chapter/pdf-preview/60557",authors:[{id:"45124",title:"Prof.",name:"Claudia Letizia",surname:"Bianchi",slug:"claudia-letizia-bianchi",fullName:"Claudia Letizia Bianchi"},{id:"185334",title:"Prof.",name:"Giuseppina",surname:"Cerrato",slug:"giuseppina-cerrato",fullName:"Giuseppina Cerrato"},{id:"185335",title:"MSc.",name:"Marta",surname:"Stucchi",slug:"marta-stucchi",fullName:"Marta Stucchi"},{id:"185339",title:"Mr.",name:"Valentino",surname:"Capucci",slug:"valentino-capucci",fullName:"Valentino Capucci"},{id:"185340",title:"Dr.",name:"Alessandro",surname:"Di Michele",slug:"alessandro-di-michele",fullName:"Alessandro Di Michele"},{id:"217496",title:"Dr.",name:"Serena",surname:"Biella",slug:"serena-biella",fullName:"Serena Biella"},{id:"217497",title:"Dr.",name:"Federico",surname:"Galli",slug:"federico-galli",fullName:"Federico Galli"},{id:"240860",title:"Dr.",name:"Charles",surname:"Sorrell",slug:"charles-sorrell",fullName:"Charles Sorrell"}],corrections:null},{id:"58328",title:"Influence of the Synthesis Method on the Preparation Composites Derived from TiO2-LDH for Phenol Photodegradation",doi:"10.5772/intechopen.72279",slug:"influence-of-the-synthesis-method-on-the-preparation-composites-derived-from-tio2-ldh-for-phenol-pho",totalDownloads:1024,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Three different TiO2 catalysts are prepared using different methods. MgAl-CO32− layered double hydroxides (LDH) were obtained by the sol-gel method. In the preparation of the composites, the three photocatalysts were combined with LDH following different methodologies. The composites were characterized using X-ray diffraction (XRD), specific surface area (SA), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The influence of the synthesis method on the preparation of the composites was evaluated by analyzing their photocatalytic activity against phenol as a model organic pollutant under UV irradiation. The photocatalytic activity of the composites improves when the chemical interaction, determined by XPS, between the TiO2 and the LDH decreases. The same happens when the ratio of the anatase-rutile phases, determined by XRD, approaches optimum (80:20%). The effect of the composite concentration in the solution (0.5–2.0 g/L) was investigated, and the light-shielding phenomenon due to high composite concentration decreases the phenol photodegradation. The reduction of photocatalytic activity in reuse cycles is due to loss and partial deactivation of the material. The elimination of phenol is attributed primarily to the photocatalytic process due to the generation of ●OH radicals and to a lesser extent the adsorption process also present in the samples.",signatures:"Juan C. Contreras-Ruiz, Sonia Martínez-Gallegos, Jose L. García-\nRivas, Julio C. González-Juárez and Eduardo Ordoñez",downloadPdfUrl:"/chapter/pdf-download/58328",previewPdfUrl:"/chapter/pdf-preview/58328",authors:[{id:"224679",title:"Dr.",name:"Sonia",surname:"Martinez-Gallegos",slug:"sonia-martinez-gallegos",fullName:"Sonia Martinez-Gallegos"},{id:"227893",title:"Dr.",name:"Sonia",surname:"Martinez-Gallegos",slug:"sonia-martinez-gallegos",fullName:"Sonia Martinez-Gallegos"},{id:"227894",title:"Dr.",name:"Julio César",surname:"González-Juárez",slug:"julio-cesar-gonzalez-juarez",fullName:"Julio César González-Juárez"},{id:"227897",title:"MSc.",name:"Juan Carlos",surname:"Contreras-Ruíz",slug:"juan-carlos-contreras-ruiz",fullName:"Juan Carlos Contreras-Ruíz"},{id:"227899",title:"Dr.",name:"José Luis",surname:"García-Rivas",slug:"jose-luis-garcia-rivas",fullName:"José Luis García-Rivas"},{id:"227900",title:"Dr.",name:"Eduardo",surname:"Ordoñez",slug:"eduardo-ordonez",fullName:"Eduardo Ordoñez"}],corrections:null},{id:"60975",title:"TiO2-Low Band Gap Semiconductor Heterostructures for Water Treatment Using Sunlight-Driven Photocatalysis",doi:"10.5772/intechopen.76501",slug:"tio2-low-band-gap-semiconductor-heterostructures-for-water-treatment-using-sunlight-driven-photocata",totalDownloads:1700,totalCrossrefCites:6,totalDimensionsCites:16,hasAltmetrics:1,abstract:"Heterogeneous photocatalysis is a promising advanced oxidation process for water purification, given its potential to fully oxidize organic pollutants and to inactivate microorganisms. Due to its versatility and high performance in a broad range of conditions, titanium dioxide (TiO2)-based photocatalysis has been systematically used at laboratory scale to treat water of different quality. Even though TiO2 is an exceptional photocatalyst, its broad band gap value (3.2 eV) makes necessary the use of UV light to achieve the photoactivation. This results in the underutilization of the material in sunlight-driven photocatalysis schemes. In order to overcome this handicap, the synthesis of heterostructures using low band gap semiconductors coupled with TiO2 has brought exceptional materials for visible light-driven photocatalysis. In this chapter, the fundamentals of the synthesis and photoactivation of TiO2-low band gap semiconductor heterostructures are explored. The mechanisms leading to the increase of the photocatalytic activity of such heterostructures are described. A summary of the available data on the photocatalytic performance of TiO2-based heterostructures is presented, in terms of degradation of organic pollutants in water using visible light and sunlight. A comparison of the depuration performance of powdered and thin film heterostructures is given at the end of the chapter.",signatures:"Raquel Del Angel, Juan C. Durán-Álvarez and Rodolfo Zanella",downloadPdfUrl:"/chapter/pdf-download/60975",previewPdfUrl:"/chapter/pdf-preview/60975",authors:[{id:"169729",title:"Dr.",name:"Juan",surname:"Durán Álvarez",slug:"juan-duran-alvarez",fullName:"Juan Durán Álvarez"},{id:"228560",title:"MSc.",name:"Raquel",surname:"Del Angel",slug:"raquel-del-angel",fullName:"Raquel Del Angel"}],corrections:null},{id:"60384",title:"Silver Nanoparticle Incorporated Titanium Oxide for Bacterial Inactivation and Dye Degradation",doi:"10.5772/intechopen.75918",slug:"silver-nanoparticle-incorporated-titanium-oxide-for-bacterial-inactivation-and-dye-degradation",totalDownloads:1217,totalCrossrefCites:4,totalDimensionsCites:7,hasAltmetrics:0,abstract:"This chapter deals with preparation and characterization of silver nanoparticles incorporated in titania or TiO2-AgNP in short and its performance study as a visible light responsive photocatalyst for bacterial inactivation and dye degradation. The preparation of TiO2-AgNP performed by several methods including sol-gel, impregnation, precipitation, and photocatalytic deposition is described. Characterizations by XRD, XPS, FTIR, DRUV, and SEM/TEM machines to confirm the formation of the metallic silver nanoparticle, as well as the shape and size, and to follow the interaction between Ag atoms and other atoms in the crystal lattice of TiO2, are presented. Further, the antibacterial performance and dye degradation activity of TiO2-AgNP, both under UV and visible light, are described.",signatures:"Endang Tri Wahyuni and Roto Roto",downloadPdfUrl:"/chapter/pdf-download/60384",previewPdfUrl:"/chapter/pdf-preview/60384",authors:[{id:"225211",title:"Prof.",name:"Endang Tri",surname:"Wahyuni",slug:"endang-tri-wahyuni",fullName:"Endang Tri Wahyuni"},{id:"225215",title:"Dr.",name:"Roto",surname:"Roto",slug:"roto-roto",fullName:"Roto Roto"}],corrections:null},{id:"59085",title:"Controlling the Microstructure and Properties of Titanium Dioxide for Efficient Solar Cells",doi:"10.5772/intechopen.72494",slug:"controlling-the-microstructure-and-properties-of-titanium-dioxide-for-efficient-solar-cells",totalDownloads:1369,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"In this chapter, we review the controlling of the microstructures, the properties, and the different methods to obtain titanium dioxide and the application of these materials on solar cells. We will concentrate on the application of efficient solar cells including dye-sensitized solar cells (DSSCs). In the first section, we provide a background on energy, including its sources—photovoltaics and titanium dioxide—and the advantages of their application in solar cells. The second section outlines the different methods to obtain TiO2 nanoparticles. The shapes of titanium dioxide are explored in the third section. In the fourth section, we discuss the use and effect of the titanium dioxide in the efficient dye-sensitized solar cells, and the last section is a summary of the current state of the art and perspectives of titanium dioxide for efficient solar cells.",signatures:"Ahmed Esmail Shalan, Ahmed Mourtada Elseman and Mohamed\nMohamed Rashad",downloadPdfUrl:"/chapter/pdf-download/59085",previewPdfUrl:"/chapter/pdf-preview/59085",authors:[{id:"217605",title:"Dr.",name:"Ahmed Esmail",surname:"Shalan",slug:"ahmed-esmail-shalan",fullName:"Ahmed Esmail Shalan"},{id:"221890",title:"Dr.",name:"Ahmed Mourtada",surname:"Elseman",slug:"ahmed-mourtada-elseman",fullName:"Ahmed Mourtada Elseman"},{id:"228888",title:"Prof.",name:"Mohamed M.",surname:"Rashad",slug:"mohamed-m.-rashad",fullName:"Mohamed M. Rashad"}],corrections:null},{id:"58669",title:"One-Dimensional Titanium Dioxide and Its Application for Photovoltaic Devices",doi:"10.5772/intechopen.72976",slug:"one-dimensional-titanium-dioxide-and-its-application-for-photovoltaic-devices",totalDownloads:1224,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:"One-dimensional (1D) TiO2 nanostructures (e.g., nanotubes, nanobelts, nanowires, and nanorods) have been considered to be very attractive candidates for various applications including photocatalytic degradation of pollutants, photocatalytic CO2 reduction into energy fuels, water splitting, solar cells, supercapacitors, and lithium-ion batteries. More importantly, the dimensionality associated with zero-dimensional TiO2 nanostructures gives unique physical properties, including a high aspect ratio structure, chemical stability, excellent electronic or ionic charge transfer, and a specific interface effect. This chapter elaborates on crystal structure and properties, preparation techniques, strategies for improving photocatalytic activity of 1D-TiO2 nanostructure and its applications. Amongst all preparation techniques, the influence of experimental parameters on morphologies of 1D-TiO2 nanostructure using hydro/solvothermal method is extensively explained. Furthermore, some critical engineering strategies to enhance the properties of 1D-TiO2 nanostructures like increasing the surface area, extending the light absorption, and efficient separation of electrons/holes that advantage their potential applications are described. Moreover, a brief summary of their environmental and energy applications is provided.",signatures:"Norani Muti Mohammed, Robabeh Bashiri, Suriati Sufian, Chong Fai\nKait and Saeed Majidai",downloadPdfUrl:"/chapter/pdf-download/58669",previewPdfUrl:"/chapter/pdf-preview/58669",authors:[{id:"200162",title:"Dr.",name:"Robabeh",surname:"Bashiri",slug:"robabeh-bashiri",fullName:"Robabeh Bashiri"},{id:"200890",title:"Prof.",name:"Norani",surname:"Muti Mohamed",slug:"norani-muti-mohamed",fullName:"Norani Muti Mohamed"},{id:"218446",title:"Dr.",name:"Chong",surname:"Fai Kait",slug:"chong-fai-kait",fullName:"Chong Fai Kait"},{id:"218449",title:"Dr.",name:"Saeed",surname:"Majidai",slug:"saeed-majidai",fullName:"Saeed Majidai"},{id:"218450",title:"Dr.",name:"Suriati",surname:"Sufian",slug:"suriati-sufian",fullName:"Suriati Sufian"}],corrections:null},{id:"60396",title:"Titanium Dioxide Modifications for Energy Conversion: Learnings from Dye-Sensitized Solar Cells",doi:"10.5772/intechopen.74565",slug:"titanium-dioxide-modifications-for-energy-conversion-learnings-from-dye-sensitized-solar-cells",totalDownloads:1268,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:"During the last two and half decade modifying anatase TiO2 has appreciably enhanced our understanding and application of this semiconducting, non-toxic material. In the domain of DSCs, the main focus has been to achieve band adjustment to facilitate electron injection from anchored dyes, and high electronic mobility for photo-generated electron collection. In retrospection, there is a dire need to assimilate and summarize the findings of these studies to further catalyze the research, better understanding and comparison of the structure–property relationships in modifying TiO2 efficiently for crucial photocatalytic, electrochemical and nanostructured applications. This chapter aims at categorizing the typical approaches used to modify TiO2 in the domain of DSCs such as through TiO2 paste additives, TiO2 doping, metal oxides inclusion, dye solution co-adsorbing additives, post staining surface treatment additives and electrolyte additives. A summary of the consequences of these modifications on electron injection, charge extraction, electronic mobility, conduction band shift and surface states has been presented. This chapter is expected to hugely benefit the researchers employing TiO2 in energy, catalysis and battery applications.",signatures:"Hammad Cheema and Khurram S. Joya",downloadPdfUrl:"/chapter/pdf-download/60396",previewPdfUrl:"/chapter/pdf-preview/60396",authors:[{id:"230320",title:"Dr.",name:"Hammad",surname:"Cheema",slug:"hammad-cheema",fullName:"Hammad Cheema"}],corrections:null},{id:"58535",title:"TiO2 Applications as a Function of Controlled Surface Treatment",doi:"10.5772/intechopen.72945",slug:"tio2-applications-as-a-function-of-controlled-surface-treatment",totalDownloads:1686,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"For the end use, the structure and morphology of the coated film are very important since they determine the final properties of the resultant material. The effect of coatings largely depends on their composition and method of application, which may give porous or dense coatings. To achieve uniform coatings on dispersed TiO2 particles, various compounds were deposited one after another under specific conditions by the wet chemical deposition method starting from rutile TiO2, produced by the sulfate method in Cinkarna Celje. With the synthesis of composite particles consisting of a core TiO2 particle coated with a functional shell with dimensions in the nano scale, we prepared advanced materials, where the shell protects the particles from undesirable interactions with the environment and improves surface reactive properties of the dispersed particles to meet special requirements. The morphology of surface-treated TiO2 particles has been identified directly using electron microscopy, while the degree of functionalization by various hydroxides was determined using X-ray fluorescence spectrometer (XRF). In addition, zeta potential (ZP) measurements have been utilized to determine the electrochemical properties of resultant particles. The precipitation of hydroxides on the TiO2 surface resulted in the shift of the isoelectric point (IEP). UV-Vis spectroscopy has been used for determining light scattering efficiency. In addition to internal characterization, light fastness of durable grade intended for the application in laminates has been tested by the end user.",signatures:"Nika Veronovski",downloadPdfUrl:"/chapter/pdf-download/58535",previewPdfUrl:"/chapter/pdf-preview/58535",authors:[{id:"20509",title:"Dr.",name:"Nika",surname:"Veronovski",slug:"nika-veronovski",fullName:"Nika Veronovski"}],corrections:null},{id:"60733",title:"Nanostructured Titanium Dioxide for Functional Coatings",doi:"10.5772/intechopen.74555",slug:"nanostructured-titanium-dioxide-for-functional-coatings",totalDownloads:1512,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Synthesis routes to nanostructured titanium dioxides (spherical nanoparticles, nanotubes, mesostructure) have been studied. Their potential applications in various fields based on coating technology have been explored, i.e., dye-sensitized solar cells (using ruthenium sensitizer and some results of natural dyes), photocatalysts for self-cleaning films (TiO2 on textiles), antibacterial coating for multifunctional textiles (TiO2-SiO2 on cotton), and recent result on antifouling coating on wood. The synthesis/preparation procedures were developed to obtain green protocols based on combined techniques of hydro- or solvo-thermal (templated, seeded, deposition), sol–gel (templated, room temperature, dip coating), and solvent-casting techniques. Discussion on the properties and synthesis mechanism is presented. It will be shown that sonication has important role to shorten the preparation of nanotube titania and has been proposed as one green synthesis route. The changing of morphology of titanium dioxide has presented unexpected results to the shifting of photoactivity into visible irradiation.",signatures:"Indriana Kartini, Inna Yusnila Khairani, Chotimah, Kuwat Triyana\nand Sri Wahyuni",downloadPdfUrl:"/chapter/pdf-download/60733",previewPdfUrl:"/chapter/pdf-preview/60733",authors:[{id:"179563",title:"Dr.",name:"Indriana",surname:"Kartini",slug:"indriana-kartini",fullName:"Indriana Kartini"},{id:"182145",title:"MSc.",name:"Chotimah",surname:"Chotimah",slug:"chotimah-chotimah",fullName:"Chotimah Chotimah"},{id:"220244",title:"Dr.",name:"Kuwat",surname:"Triyana",slug:"kuwat-triyana",fullName:"Kuwat Triyana"}],corrections:null},{id:"58726",title:"Titanium Dioxide Nanotube Arrays for Biomedical Implant Materials and Nanomedicine Applications",doi:"10.5772/intechopen.73060",slug:"titanium-dioxide-nanotube-arrays-for-biomedical-implant-materials-and-nanomedicine-applications",totalDownloads:1618,totalCrossrefCites:5,totalDimensionsCites:11,hasAltmetrics:0,abstract:"Nanotechnology has become a research hotspot to explore functional nanodevices and design materials compatible with nanoscale topography. Recently, titanium dioxide nanotube arrays (TNA) have garnered considerable interest as biomedical implant materials and nanomedicine applications (such as nanotherapeutics, nanodiagnostics and nanobiosensors). In bio-implants studies, the properties of TNA nanostructures could modulate diverse cellular processes, such as cell adhesion, migration, proliferation, and differentiation. Furthermore, this unique structure of TNA provides larger surface area and energy to regulate positive cellular interactions toward the mechanosensitivity activities. As for an advanced medical application, the TNA—biomolecular interactions knowledge are critical for further characterization of nanomaterial particularly in nanotherapeutic manipulation. Knowledge of these aspects will create opportunities for better understanding which may help researchers to develop better nanomaterial products to be used in medicine and health-line services.",signatures:"Rabiatul Basria S.M.N. Mydin, Roshasnorlyza Hazan, Mustafa Fadzil\nFaridWajidi and Srimala Sreekantan",downloadPdfUrl:"/chapter/pdf-download/58726",previewPdfUrl:"/chapter/pdf-preview/58726",authors:[{id:"216721",title:"Dr.",name:"Rabiatul Basria",surname:"S M N Mydin",slug:"rabiatul-basria-s-m-n-mydin",fullName:"Rabiatul Basria S M N Mydin"},{id:"237615",title:"Prof.",name:"Srimala",surname:"Sreekantan",slug:"srimala-sreekantan",fullName:"Srimala Sreekantan"},{id:"177002",title:"Prof.",name:"Mustafa",surname:"Wajidi",slug:"mustafa-wajidi",fullName:"Mustafa Wajidi"},{id:"224909",title:"Dr.",name:"Roshasnorlyza",surname:"Hazan",slug:"roshasnorlyza-hazan",fullName:"Roshasnorlyza Hazan"}],corrections:null},{id:"59360",title:"Investigation of Optical Properties and Radiation Stability of TiO2 Powders before and after Modification by Nanopowders of Various Oxides",doi:"10.5772/intechopen.74073",slug:"investigation-of-optical-properties-and-radiation-stability-of-tio2-powders-before-and-after-modific",totalDownloads:1055,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"The titanium dioxide powders are widely used as a pigment for coatings and paints, the important characteristics of which are reflectivity and stability to irradiation. The results of investigations of the optical properties and radiation stability of titanium dioxide powders before and after high-temperature modification with nanopowders are presented in this chapter. The diffuse reflection spectra of various titanium dioxide powders in the UV, visible, and near-IR ranges, and their change during irradiation by electrons with 30 keV energy and a different fluence in vacuum in situ were investigated: (1) TiO2 powders with particle size in the range 60–240 nm; (2) Microsized TiO2 powder (240 nm) modified by Al2O3, ZrO2, SiO2, TiO2, ZnO, MgO nanoparticles with grain size from 30 up to 60 nm; (3) Microsized TiO2 powder (260 nm) modified by SiO2 with the grain size of 12–14 nm at the temperature of 150, 400, and 800°C. The reduction in reflectivity in entire spectrum with decrease in grain sizes of TiO2 nanopowders was established. Nanopowder with the grain size of 80 nm possesses the highest stability to irradiation. It was shown that the average grain size and specific surface of introduced nanoparticles effect noticeably on the radiation stability increase of titanium dioxide powders modified with nanoparticles of various oxides. The micro-sized TiO2 powder heating at temperature of 800оС is the factor which positively influences on the radiation stability.",signatures:"Mikhail M. Mikhailov, Vitaly V. Neshchimenko, Semyon A. Yuryev\nand Alexey N. Sokolovskiy",downloadPdfUrl:"/chapter/pdf-download/59360",previewPdfUrl:"/chapter/pdf-preview/59360",authors:[{id:"236018",title:"Dr.",name:"Mikhail",surname:"Mikhailov",slug:"mikhail-mikhailov",fullName:"Mikhail Mikhailov"},{id:"240427",title:"Dr.",name:"Semyon",surname:"Yuryev",slug:"semyon-yuryev",fullName:"Semyon Yuryev"},{id:"240428",title:"Dr.",name:"Vitaly",surname:"Neshchimenko",slug:"vitaly-neshchimenko",fullName:"Vitaly Neshchimenko"},{id:"240459",title:"Dr.",name:"Alexey",surname:"Sokolovskiy",slug:"alexey-sokolovskiy",fullName:"Alexey Sokolovskiy"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5376",title:"Applications of Laser Ablation",subtitle:"Thin Film Deposition, Nanomaterial Synthesis and Surface Modification",isOpenForSubmission:!1,hash:"7ea5104a7037f15e68fcc05be277fa37",slug:"applications-of-laser-ablation-thin-film-deposition-nanomaterial-synthesis-and-surface-modification",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/5376.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5168",title:"Alkali-ion Batteries",subtitle:null,isOpenForSubmission:!1,hash:"2ffb06f3e5dbad9167428c4c443e3a5e",slug:"alkali-ion-batteries",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/5168.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10481",title:"Practical Applications of Laser Ablation",subtitle:null,isOpenForSubmission:!1,hash:"e9f235e98a88813c08a9dba80525b195",slug:"practical-applications-of-laser-ablation",bookSignature:"Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/10481.jpg",editedByType:"Edited by",editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6282",title:"Noble and Precious Metals",subtitle:"Properties, Nanoscale Effects and Applications",isOpenForSubmission:!1,hash:"e4c28d6be4fd7b5f5b787d4dabbf721b",slug:"noble-and-precious-metals-properties-nanoscale-effects-and-applications",bookSignature:"Mohindar Singh Seehra and Alan D. Bristow",coverURL:"https://cdn.intechopen.com/books/images_new/6282.jpg",editedByType:"Edited by",editors:[{id:"48086",title:"Prof.",name:"Mohindar",surname:"Seehra",slug:"mohindar-seehra",fullName:"Mohindar Seehra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6529",title:"Bismuth",subtitle:"Advanced Applications and Defects Characterization",isOpenForSubmission:!1,hash:"55ed997d678e9c18382af23ab873ba85",slug:"bismuth-advanced-applications-and-defects-characterization",bookSignature:"Ying Zhou, Fan Dong and Shengming Jin",coverURL:"https://cdn.intechopen.com/books/images_new/6529.jpg",editedByType:"Edited by",editors:[{id:"176372",title:"Dr.",name:"Ying",surname:"Zhou",slug:"ying-zhou",fullName:"Ying Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7213",title:"Shape-Memory Materials",subtitle:null,isOpenForSubmission:!1,hash:"4e3e756cd4f8a8617dffdc36f8dce7c7",slug:"shape-memory-materials",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5825",title:"Superalloys for Industry Applications",subtitle:null,isOpenForSubmission:!1,hash:"4cbaaafeb4958d641b74988e33229020",slug:"superalloys-for-industry-applications",bookSignature:"Sinem Cevik",coverURL:"https://cdn.intechopen.com/books/images_new/5825.jpg",editedByType:"Edited by",editors:[{id:"117212",title:"MSc.",name:"Sinem",surname:"Cevik",slug:"sinem-cevik",fullName:"Sinem Cevik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6870",title:"Novel Metal Electrodeposition and the Recent Application",subtitle:null,isOpenForSubmission:!1,hash:"be9124dc8c5a6c7c7d367cac1ac9062a",slug:"novel-metal-electrodeposition-and-the-recent-application",bookSignature:"Masato Sone and Kazuya Masu",coverURL:"https://cdn.intechopen.com/books/images_new/6870.jpg",editedByType:"Edited by",editors:[{id:"157966",title:"Prof.",name:"Masato",surname:"Sone",slug:"masato-sone",fullName:"Masato Sone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6832",title:"Ruthenium",subtitle:"An Element Loved by Researchers",isOpenForSubmission:!1,hash:"9a3be4dd6035f78add07d239b8eae379",slug:"ruthenium-an-element-loved-by-researchers",bookSignature:"Hitoshi Ishida",coverURL:"https://cdn.intechopen.com/books/images_new/6832.jpg",editedByType:"Edited by",editors:[{id:"210140",title:"Dr.",name:"Hitoshi",surname:"Ishida",slug:"hitoshi-ishida",fullName:"Hitoshi Ishida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9912",title:"Advanced Aluminium Composites and Alloys",subtitle:null,isOpenForSubmission:!1,hash:"c7c20182f3241e13162b011fac7efdd6",slug:"advanced-aluminium-composites-and-alloys",bookSignature:"Leszek A. Dobrzański",coverURL:"https://cdn.intechopen.com/books/images_new/9912.jpg",editedByType:"Edited by",editors:[{id:"15880",title:"Prof.",name:"Leszek A.",surname:"Dobrzański",slug:"leszek-a.-dobrzanski",fullName:"Leszek A. Dobrzański"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"68990",slug:"erratum-application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodies",title:"Erratum - Application of Design for Manufacturing and Assembly: Development of a Multifeedstock Biodiesel Processor",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68990.pdf",downloadPdfUrl:"/chapter/pdf-download/68990",previewPdfUrl:"/chapter/pdf-preview/68990",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68990",risUrl:"/chapter/ris/68990",chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]}},chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]},book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12135",leadTitle:null,title:"Parenting",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"5fcfe3872ea161c9c879e0667a220ca8",bookSignature:"",publishedDate:null,coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 4th 2022",dateEndSecondStepPublish:"March 25th 2022",dateEndThirdStepPublish:"May 24th 2022",dateEndFourthStepPublish:"August 12th 2022",dateEndFifthStepPublish:"October 11th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde Dorthea Grindvik",surname:"Nielsen",slug:"hilde-dorthea-grindvik-nielsen",fullName:"Hilde Dorthea Grindvik Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"72698",title:"Forest Soil Water in Landscape Context",doi:"10.5772/intechopen.93003",slug:"forest-soil-water-in-landscape-context",body:'
In this book section, we deal with four mutually coherent sub-sections which, according to the author teams should present the topic progressively from base soil-water interactions, properties and parameters on general level (Section 2.1); landscape and forest-horizontal water relations (Section 2.2); landscape and forest-vertical water relations (Section 2.3) and holistic soil-water-forest-landscape-civilization nexus (Section 2.4).
Soil water refers to any water contained in the soil in liquid, gaseous and solid states. From a forestry point of view, water can be considered as a key factor of production and its sustainability, while also contributing to the stability of the forest ecosystem, since water is essential, not only for nutrition (both as a reaction medium and as a substrate), but also for the growth and development of stands. Soil water in the liquid state acts by its deflocculating, dissolving, hydrolytic and translocation effects. Soil water is irreplaceable in a wide range of Physico-chemical, biochemical and biological processes and de facto it conditions soil formation and the development of the pedosphere. Oxygen, upon which all anaerobic life depends, is generated from the water-splitting reaction. Entire photosynthetic physiological pathways, such as Crassulacean Acid Metabolism (CAM), are engineered around water conservation.
Water exists as a soil solution in the soil [1]. Gases (O2, CO2, NH3, N-oxides, S-oxides, etc.) and minerals are dissolved in this solution. Dissolved mineral substances originate from weathering processes, where they are released from rocks into the soil solution, and also from the above-ground part of forest stands, either by means of emission or percolation through tree crowns. Up to 50–250 kg of minerals per hectare a year penetrate the soil by so-called ‘cloud/fog water’ [2, 3]. This results in a significant enrichment of the soil surface not only in the form of plant litter but also through rainwater, including such elements as Ca, Mg, K, P and N. These elements react in the solid phase in the soil, further dissolving or precipitating. The water composition depends on the dissolution of minerals and organic compounds, on the ion exchange between the soil sorption complex and the soil solution and on the interaction of the soil solution, fine roots and soil microorganisms. Mineral (acids, bases, salts) and organic substances (colloids of dissolved compounds, saccharides, fulvic acids and amino acids, expressed as dissolved organic carbon (DOC)) are dissolved in water and then pass through the biosphere, while being regulated by climatic factors. Due to climate change and associated substantial changes in forest stand structure and functioning, the cycles and flows also change, not only at the level of soil water percolation and content but also within bulk deposition and through fall, both representing substantial sources of DOC [4].
The soil water content and its availability are the results of a water balance arising from the inputs and outputs of the water cycle within the particular ecosystem [5, 6]. The actual soil moisture enters and leaves the water balance at the beginning and the end of the investigation period respectively. Individual components of the water balance [7] are subject to external influences (generally climate and topography) and internal influences (including properties, composition of the soil body and vegetation characteristics).
The most important water source is vertical precipitation in most areas of the temperate climatic zone. Horizontal precipitation is also regarded as a significant source, for example cloud/fog water in misty forests of tropical or mountain areas, dew, interception, condensation of water vapor in soil pores (especially in soils with a high proportion of macropores), capillary lift and lateral water. The water loss from the soil is primarily due to infiltration, surface run-off and evapotranspiration. Run-off is significantly regulated by forest stands, both in a precipitation-rich period (run-off is lower compared to the non-forested soil) and in a drought (run-off is higher in comparison with the non-forested soil).
The character of surface run-off and water flow through the soil depends on many factors, notably the slope gradient, the amount and intensity of precipitation, soil permeability, the depth of freezing and vegetation coverage. An excessively dried soil surface may be characterized by poor wettability, while humus acts like a permeable filter with high hydraulic conductivity after being soaked in water. This leads to less vulnerability in forest ecosystems compared with different vegetation types [8, 9]. Humus may also be characterized by lower water loss (higher retention) compared to mineral soil. The forest floor, which is typical for forest soils [10], plays a crucial and indispensable role in terms of nutrient supply [11] but also for the water regime [12]: it absorbs several times more water than mineral horizons located below and, at the same time, it reduces soil water losses.
The forestry-pedology nexus represents perhaps the greatest existential threat to humanity at present, requiring urgent action yet currently being ignored by the international community. Historical precedent is all too clear, yet we ignore this growing crisis at our peril. Deficiency of physiological water [13, 14, 15] and the potential risk of stress associated with water unavailability to plants [16, 17], both of which differ between vegetation types [18], cannot be overemphasized [19, 20]. The internal factors impacting water availability in the soil environment include the grain-size composition of the soil (the distinction of stoniness and fine earth in a differentiated way in sand, silt and clay fractions), the organic matter form and content and the thickness of soil horizons, affecting both the multidirectional water flow and the physiological depth of root distribution. Other factors include soil chemistry (increased hygroscopicity of salinated soils) [21], the degree of rooting (water drainage alongside the roots) [22] and the distribution and representation of soil pores of specific sizes, but also anthropogenic impacts, such as pedocompaction.
One measure of increase and loss of water in the soil is the instantaneous soil moisture, represented by the total sum of water sources and losses and the water retention capacity. It is expressed in percentages by volume (
Water is bound to the soil by the range of forces [24, 25] (chemical, physico-chemical, physical and biological). The components that, together, produce water potential (see below) act simultaneously to influence water behavior and water content in the soil. There is no sharp boundary between these different forces. As a rule, the water-binding forces in the soil overlap and they are frequently related to specific soil horizons. The resultant sums of forces that hold water in the soil (matrix, osmotic, sorption, capillary, pneumatic, gravitational forces) together make up the soil water potential (
The soil water potential can also be formulated in pF curves, where pF = −log
Relationships between various forms of water and binding forces in the soil (modified according to Vavříček, Kučera [
Water flow in the soil is conditioned by means of two processes [27, 28]: infiltration (determined by field or laboratory infiltration tests), where empty pores are filled with soaked water, and unsaturated flow. This sort of flow gradually slows down until all the pores are filled with water and water flows freely through non-capillary pores. Thus, the soil is fully saturated with water, and saturated flow is realized. This is not uniform, but, rather, tongue-like in terms of the water column, which gradually increases from the soil surface to greater depths.
In sloping landscapes of humid areas, lateral water is also added to rainwater [29]. This means that as we descend a sloping landscape, more water flows on the slope lower down the incline than higher up because soil water from the higher slopes is added to infiltrating rainwater. This phenomenon may also contribute to the differentiation of the soil types over a short distance.
As can be seen from the characteristics of the water potential, water flow in the soil is influenced by moisture gradients, but also by temperature and the mineralogical composition of the soil. The downward direction of water percolation typifies humid areas, where this type of movement contributes to the eluviations of soil particles. Under arid or semi-arid climate conditions, prevailing water flow is upward, as a consequence of suction pressure, and thus water rises by capillary action through the soil profile.
The moisture regime represents the distribution and movement of water in spatial and temporal terms [30]. It incorporates water inputs into the soil, water retention in the soil and water leakage from the soil. The water regime is conditioned by climate, vegetation, the soil-forming substrate, the groundwater location, the terrain relief and the landscape history. The water regime is generally expressed in terms of the relationships among temperature, potential evapotranspiration, precipitation and actual evapotranspiration. The soil water regime can be classified into several categories: aquic, udic, perudic, ustic, aridic and xeric [30]. Based on the resulting balance, there is a water deficit (percolates into underground layers) or a water surplus (retained in the soil).
Soil hydrolimits (Figure 1) represent the strength of water binding in the soil [7, 26, 31, 32]. They denote qualitative and quantitative alterations in soil-water relations, or how strongly water is retained in the soil (in what volume) at the given soil moisture level. Soil hydrolimits are soil moisture values achieved under well-defined conditions and they describe the relation of water and soil according to the flow of water in the soil and its accessibility to plants.
The significant hydrolimits are:
Maximum retentive capacity: soil fully saturated with water achieves a hydrolimit, which corresponds to the soil porosity
Gravitational water:
Maximum capillary capacity: volume of capillary and partly semi-capillary pores. Suction forces at this level of the soil water content are in the range of pF 1.6–2.0 (
Water-holding capacity (WHC): corresponds to the pF curves in the interval of pF = 2.0–2.7 (
Point of limited availability: the initial phase of the deteriorated availability of water and its soil mobility. Water still flows continuously through the soil, but merely in the thinnest pores. The water flow is interrupted in semi-capillary and non-capillary pores and water only encapsulates the soil particles
Lentocapillary point: occurs at pF = 3.0–3.3 (
Wilting point: starts at pF = 4.18 (
Pellicular water: at pF = 2.1–4.0 (−5.0 to −0.1 MPa). Water encapsulates soil particles in a thicker layer, not moving with gravity, but merely from particles with a larger pellicle to particles with a smaller one. It is unavailable to plants; sometimes it is perceived as hygroscopic water
Hygroscopic water: is bound to the soil by means of adsorption and osmotic forces. As a rule, it only encapsulates soil particles, and
Field capacity: represents the ability of the soil to retain the maximum amount of water in the natural profile (in site conditions) against the effects of the Earth’s gravity, that is without further active water removal, for a longer period of time (24 hours). This hydrolimit, which is de facto compatible with the water-holding capacity, is widespread, especially in agronomic soil science, where it is also detected by field methods
Plant-available water capacity (PWC) reflects the increase and loss of water in the soil. It is expressed in %, but also in mm of supply [25, 33]. The determination is based on the assumption that a column of water of 1 mm in height represents a water volume of 1 l per 1 m2. For the practical application of this relation, it is essential that volumetric percentages of the ascertained soil moisture content, or the given hydrolimit, express the soil water supply in mm for a soil layer of 100 mm. In forest soils, this value is depicted in terms of the root distribution for the upper 20 cm of soil, and the observed volumetric % of the soil moisture is therefore multiplied by two to express the value of the plant-available water capacity. The plant-available water capacity formulates the height of the water column of the soil within the range of the wilting point and the water-holding capacity. Thus, PWC represents the condition of the soil moisture where soil water is bound for a relatively long time, but it is still available to plants. The highest values of the plant-available water capacity are in loamy soil. Lower values exist in clay soils, and the lowest values are found in sandy soils [24, 34]. In addition to the texture characteristics, it is necessary to take into account the degree of soil stoniness, which practically does not participate in water retention and represents an inactive soil component in terms of water retention capacity, when determining the plant-available water capacity. PWC also expresses how much torrential rainfall the soil is capable of collecting. From this standpoint, it is an important indication of the water-retaining capacity of the landscape of which the soil is a part as a geological formation, which, with great efficiency, counteracts the flood distribution caused by torrential as well as prolonged rainfall. In this respect, soil, especially forest soils, with several times higher PWC in comparison with agricultural land and much higher than urbanized areas, plays an irreplaceable role in water management in the landscape.
Another soil property, soil moisture storage, relates directly to the actual soil water status, and shares the same units and the same principles as PWC. It can be expressed as the variance between the current soil moisture and the wilting point in mm, representing the current content of physiologically available water.
Apart from the soil structure, porosity is a major factor in the spatial arrangement of the soil and is fundamentally involved in the characterization of water and soil-air regimes, and in the soil–plant (forest stand) relationship. Pores exist in the soil both between soil particles and structural elements (aggregates). If the porosity value between aggregates is marked with the symbol A and the porosity value within the aggregates with the symbol B, the optimum soil porosity may be expressed as A:B = 1:2.
Water is bound most weakly in non-capillary and semi-capillary pores. This kind of water is called gravitational water. Non-capillary porosity occupies pores with very low water retention capacity, in which water moves under the influence of gravity. This is also why the term gravitational water is used for water contained in non-capillary pores. When non-capillary pores dominate, the soil has a low available water content due to its rapid flow to depths unavailable to plant roots.
Capillary water is present only in capillary pores. It is not tied to the Earth’s gravity and can move in all directions in the soil. Capillary water is bound thanks to capillary adhesion and the surface tension of menisci. The optimal proportion of capillary pores is approximately two-thirds of total porosity [35, 36, 37]. An excess of capillary pores complicates infiltration of water, and it also inflicts an elevation in surface run-off, increasing the risk of erosion. A lack of capillary pores prefigures low plant water supply, low water retention capacity and low water absorption.
Water can rise above a continuous groundwater table by means of capillaries. This is called capillary rise [24, 25, 38]. The capillary rise is approximately the same as the soil particle size (pore diameter = 0.3–0.7 times the soil particle diameter). The capillary rise varies from 10 of centimeters to metres within a given year.
The volume relation of capillary and non-capillary pores is expressed by the minimum aeration capacity [26, 39]. This represents the volume of air-filled pores when the soil has reached maximum capillary capacity. The lower limit value of the minimum aeration capacity of forest soils can be considered to be 8% vol, while the average value (e.g. for topsoil in forest nurseries) is 10% vol. If the soil is excessively aerated, the soil is easier to heat, vapourization increases and soils are contrarily dehydrated. Therefore, a value above 20% can be considered an upper but still acceptable limit, with a risk value of 25%.
A global (large) water cycle can be defined as a water cycle in which water is transferred between the land and oceans and a local (small) water cycle is defined as a displacement merely over oceans or drainless areas of the land. The water cycle governs all of the natural forest functions. However, forest ecology represents an important aspect of the hydrological cycle at the planetary level, and so these effects impact at a global level. Whereas the global water cycle is related to the adaptation of forests to climate change, the local water cycle interlinks mutual interactions between related forest complexes within the catchment. In general, the impact of forests on global climate change is at its most significant due to cloud formation in the tropics. The formed clouds reflect solar radiation more effectively and, therefore, cool the atmosphere more than does the absorption of greenhouse gases by vegetation [40]. Environmental pollution, deforestation and transformation of the tree species composition reduce the natural ability of forests to adapt to climate change. Monitoring of soil properties focused on water and nutrient cycles in different forest ecosystems offers a tool for assessing the impacts of climate change [41].
Forest functions are the outcome of the interactions between the environmental, soil and vegetation subsystems. Natural functions are based on processes that support self-organization, recovery and development of the ecosystem. The interrelated processes of biodiversity, organic matter formation and nutrient cycles promote production, air circulation, (in-)filtration, evapotranspiration and site differentiation [42]. The water cycle controls the carbon cycle through which forests modify local cycling of all nutrients. The parts of the water and carbon cycles within soils have linked individual forest functions to the self-organized ecosystem [43]. The degree of interconnection is subject to the flow of soil water, but simultaneously also by its scope in the specific cycle.
The global effect of forest functionality consists in the transfer of evaporated water through cloudiness within the catchments from the areas with more significant vapor in the lower parts than the areas in the upper parts, where cloudiness condenses into more frequent precipitation. Precipitation in the upper parts of the catchments flows to the lower parts, where additional water complements the higher evaporation and lower precipitation [44]. As temperatures rise, this phenomenon is intensified: evaporation elevates, and drought deepens in drier areas, while precipitation in wetter areas increases. The consequent accentuation in disparities between drier and wetter areas disrupts the interconnection of forest functions among vegetation zones [45].
Even though the local water cycle defines the hydric functions of forests to catchments, their response to climate change depends on the interconnected monitoring of variability not only within the catchment but also among remote catchments. The link between the effects of global and local water cycles also exposes mutually unrelated forests to reduced water availability and consequently to reduced service provision [46].
The forest promotes both water and carbon cycles in parallel because they are related to energy flows in the ecosystem. While natural plant-to-plant feedbacks between plants and nutrient cycles underpin ecosystem functionality, forest damage disrupts these processes. If forest damage results in the disruption of the carbon cycle, at the same time the local water cycle is also disrupted, followed by negative impacts on the functioning of related ecosystems [47]. Recognition of forest function damage through the disruption of soil properties is based on the determination of critical values of physical and chemical properties involved in the processes of formation of individual ecosystem functions.
Carbon enters the ecosystem in the form of atmospheric CO2 through photosynthesis of plants, in which solar energy for the synthesis of organic compounds in cells is transformed by the decomposition of water. Plants release carbon by respiration, by being consumed by herbivores or fungi and by exchange reactions with soil biota and litter. The most significant conversions of organically bound carbon occur in the soil. Plants mediate carbon into the soil both by litter to the surface and also by root necrosis, exudation, root cap sloughing or exchange with microorganisms within the soil body (e.g. through mycorrhizal sheaths). Litter is mechanically or biochemically decomposed into residual chains at pH ˃ 4.5, or into stable polyphenol nuclei at lower pH, as a result of the tetravalency of carbon covalent bonds. Soil organisms or enzymes are capable of decomposing chains into organic acids under favorable conditions, but the prevailing unfavorable conditions allow merely incomplete decomposition. Soil carbon accumulates as a consequence of the imperfection of decomposition [48]. However, destruents mineralize organic residues back to CO2 under a range of unfavorable conditions (Figure 2).
Connectivity between cycles of water (left) and carbon (right) in forest ecosystem forming hydric functions.
Carbon compounds significantly attract soil water through adhesion to organic molecular chains. That is why carbon storage in the soil irreplaceably increases the WHC of the entire ecosystem. Subsequently, the detection of forest functions using intra-soil processes focuses on common inputs or outputs of substances and energy in the soil subsystem. This can be done by ascertaining the length of the delay of the forest stand response in the aftermath of the alteration of soil property values [49]. The evaluation of conditions of substance inputs or outputs concentrate on assessments of whether or not biochemical and physical properties can regulate the processes of water or carbon cycles. Even though the selected soil properties correlate with one another, the temporal variability of physical properties is incomparably longer than the significant seasonal variability of biochemical properties. Whereas the variability of (bio)chemical properties indicates a threat to the forest after an episode of drought or extreme daily precipitation sum (EDSP), an alteration to correlations of the forest status with poorly variable soil physical properties indicates deviations in development during environmental change [50].
The selection of intra-soil processes affecting forest functions is based on the study of the variability of properties in different parts of the soil body. The functions of circulation, infiltration, evapotranspiration and differentiation are typically regulated by means of one soil process. The indication of individual forest ecosystem functions at the soil level (Table 1) can be derived from the generalization of studies focused on the relation between the growth conditions with water balance, biodiversity and the health status of forests [49, 51, 52, 53].
Forest function | Hydric process | Indicative soil property |
---|---|---|
Production | Photochemical water disintegration | Catalase activity |
Air circulation | Vapor pressure decrease | Minimum aeration capacity |
(In-)filtration | Physical sorption | Organomineral complex content |
Evapotranspiration | Evaporation | Soil water potential |
Differentiation | Debasification | Soil water acidity |
Relationships between forest functions and water cycle processes indicated by the selected soil properties.
Table 1 shows the soil properties involved in water and carbon cycle processes that increase the efficiency of individual forest functions. The production indication is centred on the catalase activity, which depends on the intensity of aerobic metabolism. The correlation of the soil catalase activity with the content and character of organic acids reflects the variety of humus forms. It is naturally associated with differentiated forest cover. If the forest disruption does not damage the humus diversity, the catalase activity remains stable. Air circulation is dependent on the atmospheric flow reducing vapor pressure above the partial surface that the soil maintains thanks to minimum aeration capacity. Infiltration is also conditioned by organic matter and clay minerals, which may form organomineral complexes. They significantly retain water by adhesion and capillary rise in capillary pores remaining among their particles [54]. On the contrary, evapotranspiration is the sum of evaporation from the individual types of surfaces in the ecosystem. The rate of evaporation from the soil is directly proportional to the soil water potential [55]. In contrast, the capability of ecosystem differentiation is estimated by the chemical composition of the soil solution. It grows when soil run-off contains a minimum of base cations. Increased concentrations of bases in run-off water indicate soil acidification, which reduces the ecological diversity of the catchment [56].
The soil indicators relating to forest functionality are naturally subdivided into a total of eight biomes relating to differences in water availability due to variations in evapotranspiration and the water-holding capacity (Table 2) [57]. Despite the differences between forest biomes, large catchments possess similar zonality of hydric functions internally. Nonetheless, the WHC affects the variances in forest hydric functions of forests between individual habitats within the catchment as its value is directly proportional to the soil types present. The largest overlaps in the WHC values occur in the catchments of Mediterranean, temperate and tropical coniferous forests with more similar soil development at medium temperature intervals relative to boreal, mangrove or tropical broadleaved rainforests [58]. For example, the values of the WHC in Table 2 were found to be related to the macroclimatic properties of forest biomes. This can be further related to the weighted means of the soil types as found in the Harmonized World Soil Database (HWSD) [59].
Forest biome | AP | AET | PET | WHC | ||
---|---|---|---|---|---|---|
Tropical rain broadleaved | 33.46 | 21.82 ± 1.35 | 1988 ± 83 | 892 ± 200 | 1270 ± 172 | 24.96 ± 3.38 |
Tropical dry broadleaved | 5.09 | 24.16 ± 1.93 | 1263 ± 79 | 717 ± 180 | 1203 ± 174 | 26.34 ± 5.09 |
Tropical coniferous | 1.20 | 19.40 ± 2.31 | 1438 ± 83 | 716 ± 97 | 1218 ± 74 | 33.71 ± 6.97 |
Temperate mixed | 21.71 | 9.73 ± 7.39 | 1072 ± 30 | 508 ± 127 | 688 ± 112 | 31.13 ± 9.80 |
Temperate coniferous | 6.91 | 6.39 ± 7.82 | 918 ± 36 | 428 ± 88 | 700 ± 100 | 29.63 ± 8.31 |
Boreal | 25.59 | −2.54 ± 12.37 | 642 ± 19 | 256 ± 75 | 298 ± 64 | 49.11 ± 9.15 |
Mediterranean | 5.45 | 15.05 ± 5.34 | 586 ± 26 | 316 ± 121 | 962 ± 225 | 32.39 ± 9.44 |
Mangroves | 0.59 | 26.07 ± 1.70 | 1900 ± 94 | 502 ± 476 | 1303 ± 492 | 69.18 ± 3.89 |
Characteristics of water balance in forest biomes.
AP, area proportion (%);
Transitions of forest hydric functions in the catchment are the basis for the derivation of hydrographic zonality. Large forest catchments include montane, submontane and floodplain forest ecosystems [50]. These zones emerge thanks to the local water cycle from wetter mountains to drier floodplains. Undisturbed forests are capable of water supply to all the parts of the catchment continuously even though most water supplies on the mainlands are unavailable to plants. Over 62.4% of mainland water supplies are concentrated in glaciers, 36.2% in underground reservoirs and 0.42% in lakes or ground level reservoirs. Only 0.29% of water is found in the soil and 0.09% in rivers [60, 61]. Atmospheric precipitation over the dry land brings merely 0.008% of the global water balance, but over 50% of precipitation occurs in montane areas. Continuous water management in the catchment is ensured by forests by means of modifications of evapotranspiration and run-off. Forests cover 39.7% of the dry land but account for 67.6% of evapotranspiration. Simultaneously, only the structure of the forest can return the evaporated water sufficiently by cloud/fog water or seasonal pollen release, which can create a condensation nucleus to form cloudiness.
Deceleration of run-off by the forest ecosystem is irreplaceable in reducing seasonal variations in water availability between winter and the growing season and in dampening of EDSP. EDSP typically exceeds the average soil WHC either in above-average climatic episodes of precipitation or during the most intense precipitation season. Overcoming WHC prefigures a temporary increase in the flow of soil water and subsequently also river water. It is precise because the values of WHC naturally alter within soil development regardless of the tree species composition or altitude, that (sub)montane forests can dampen run-off after extraordinary rainfall with similar efficiency [62]. The actual water-holding capacity of forest soils due to the constant presence of natural moisture is approximately only 30 mm, providing 22% WHC and dampening 67–75% of EDSP [63].
Alterations in the tree species composition of forests have had the greatest impact on the forest hydric functions during transitions of the seasons of the year. Coniferous trees may be characterized by average higher interception and evapotranspiration. At the same time, coniferous forests capture more snow and significantly slow down melting, reducing the surface run-off in early spring when most of the vegetation is inactive. In deciduous broadleaved forests, this deceleration of run-off does not occur due to defoliation of trees in winter and thus increased solar radiation directly impacting on the soil surface [64].
Hydrographic forest zonality indicates differentiated forest efficiency in the modification of the local water cycle. The differentiation of the effective influence of forests is determined by the relief of the landscape as well as soil development and tree species composition.
Montane forests are located in the upper parts of catchments with the highest amount of precipitation. Their structure is adapted to the application of more frequent horizontal precipitation. Soils are permeable due to the prevailing mechanical weathering. The erosion on steep slopes and the nature of the soil-forming substrate cause rockiness and shallowness of soils. The water-holding capacity of montane soils is maintained by means of accumulation and the slower degradation of humus. Montane drainless depressions with accumulating humus are habitats of ombrogenic bogs in the presence of excessive rainfall. At transitions of the mantle rock with the outcrop of impermeable subsoil, there are water springs at the points of concentrated groundwater run-off. Montane forests not only increase the total amount of precipitation but at the same time, they are crucial for stable surface water run-off. The total amount of precipitation increases not only by collecting horizontal precipitation but also by lower evaporation due to lower temperatures than in the lower parts of the catchment. Humus accumulations reduce run-off on a slope that subsequently does not cause erosion.
Submontane forests form the zonal vegetation between montane and floodplain ecosystems. They occur mostly on slopes with harmonious water balance. Soils are generally moderately permeable due to a balanced proportion of stoniness and fine-grained weathered particles. The formation of bogs is excluded on dominant, slanting slopes and more favorable temperatures that intensify soil respiration prevent excessive accumulation of surface humus. Higher clay content and lower humus accumulation distinguish water retention properties of submontane soils from montane soils. Submontane forests inhibit atmospheric precipitation only up to an amount corresponding with potential evapotranspiration, while continuous run-off along the surface as well as from the soil body occurs when WHC is exceeded.
Floodplain forests occur in a flat relief formed by floods. On the one hand, floods lay terraces; on the other hand, they tear down banks. The activity of rivers increases the diversity of soil properties, mostly at interfaces with zonal sites. The functionality of floodplain forests is determined by river water and waterlogging. The duration of the flood, the variability in the height of the river level and the fluctuation of the groundwater level induce differentiation of floodplain ecosystems. Extraordinary floods most significantly alter the dynamics of their development. The function of floodplain forests varies due to the lack of precipitation for evapotranspiration, which they are able to replace thanks to floods or high groundwater levels. The long-term decline of the soil water level at high evaporation can result in the replacement of the floodplain forest with the forest-steppe [65]. Floodplain forests with optimal soil moisture and high evaporation transpire almost 80% of potential evapotranspiration. This amount contains up to 70% of groundwater and 30% of precipitation. However, the transpiration of trees is not merely inhibited by the lack of soil water, but also by the lack of air during a prolonged flood [66].
In Central Europe, the current health status of forest stands is closely linked to the climatic situation, particularly the availability of water for woody plants. Water in forest soils is a key part of the feedback relations, both in the soil–plant direction, currently mainly as a limiting eco-factor, and in the soil-landscape direction, in terms of the landscape water regime, water retention in the landscape and prevention of flood events.
Forest functions are threatened by dieback, fragmentation and transformation of tree species composition. The loss of forests leads to a decrease in evaporation, with cloud formation also declining. The decrease in cloud formation affects the whole catchment. Although the evaporation reduction should prevent soil moisture diminution, unlike evapotranspiration, it is not regulated by means of the vegetation cover, but merely by temperature alteration. A denuded land is easier to warm up, increasing biological activity and mineralization intensity. This occurs provided that removal of the stand component does not result in (frequent) waterlogging of a site, which would be limiting to the aerobic organisms at least until the lost functionality of the subsequent stand is restored. Soil without organic matter loses both water retention capacity and fertility. The decrease in forests is most distinctive in the lower parts of the catchment, which are more accessible, mostly non-waterlogged and more hydrologically suited for agriculture. Since the occurrence of precipitation also lowers in the spring-dependent parts of catchments as the cloud formation diminishes, the subsequent decline in river levels causes a decline in water supply to tributary-dependent parts of the catchment [67].
The greatest differences in the soil water-holding capacity are found between forested and treeless catchments. Flooding in forested catchment areas occurs in the aftermath of exceeding EDSP. Conversely, treeless catchments are affected by flash floods even after precipitation ˂30 mm. The protection of the water retention capacity of the catchment consists primarily in the prevalence of unbroken stretches of forests. Young open forest stands resemble treeless zones in terms of the water balance. Only closed stands over 20 years of age reach a water balance comparable to that of adults. Even though homogeneous forest stands provide hydric functionality similar to richly structured mixed forests, richly structured forests appear more resilient to climate change. Protecting the hydric functions of forests during climate change can be achieved in the following ways:
Promotion of the transformation of tree species composition in favor of the natural state, with a natural proportion of trees within each stand type exceeding 50%
Favoring understorey or small-scale differentiated farming to increase age and spatial diversity
Maintaining a closed canopy to protect the soil surface, where understorey can be mined at the restoration stage without affecting the species diversity of vegetation
Construction of a sufficiently dense transport network to minimize machinery driving through stands, giving priority to mining technologies that do not compact the upper soil horizons
Drought stress in forest stands has been shown to reduce both transpiration and the water content in plants [68, 69]. This occurs because of the loss of assimilation apparatus, thus reducing leaf area available for transpiration, but also because of the reduced availability of nutrients, which convert to a dehydrated state in a differentiated way [70]. At higher humidity, there is more Ca2+ and Mg2+ present in the soil solution, and at the same time, K+ is better released by mineralization processes. This is due to the size of the hydration envelope of the ions, which conditions their hydration energy for various nutrients in a differentiated way. This is necessary for the nutrient to be taken up by the plant. To hydrate diverse ions, different amounts of water molecules are needed, so potassium is absorbed at lower soil moisture than magnesium or calcium—two elements that frequently prove nutritionally deficient even though they may be at an optimal concentration in the soil.
In the contemporary cultural landscape, the natural water cycle is, to a large extent, influenced (in other words, ‘shortened’) by vertical water movement within terrestrial systems. Consequently, communication within soil hydrological systems and the rock subsoil is impaired. The reasons will be explained in the following section.
The amount of water is distributed very unevenly in space and time on Earth. That is why there are problems with its lack in many regions. Redistribution of water in the landscape can be expressed by the fundamental elementary redistribution equation of water (this is also referred to as the balance equation [71]):
where DP: deep percolation; IR: irrigation; P: precipitation; RO: surface run-off; ET: evapotranspiration; ΔS: soil water storage.
On the basis of this balance equation, two basic hydrological cycles are identified: the large and small water cycles. In the water cycle (Figure 3), the main sources are precipitation and the surface, lateral and underground inflow in the hydrogeological collector. Water that falls on the soil surface immediately infiltrates the soil or, under conditions of insufficient infiltration capability and hydraulic conductivity, it drains or accumulates in micro-depressions of the relief (detention). Infiltrated water is redistributed in the soil body and remains below the soil surface, suspended in a capillary manner. Gravitational water then flows out of the area laterally (hypodermically) and migrates to the capillary fringe (see below), through which it percolates into an aquiferous hydrogeological collector. In relation to the vegetation, the water cycle is influenced by evapotranspiration and interception.
The small water cycle in relation to geological subsoil: Communication of soil water and groundwater.
Soil, or more exactly the soil environment, is the main location of infiltration of water into the rocky underground environment. In general, this is the most important environment for the replenishment of groundwater supplies.
The subsurface water can be simply divided into soil water and groundwater. Although it is the same infiltrated surface water, these two divisions differ significantly from one another mainly in the ratio of forces acting on them. Soil water can be divided into three categories, namely adsorption, capillary and gravitational water.
The soil and rock environments can be classified into two zones in terms of saturation of the environment with water. The environment with the presence of air in pores may be termed the aerated unsaturated zone, where adsorption and pellicular water predominate, and gravitational water preponderates only for a limited period. On the contrary, the environment without the presence of air in pores (filled with water) is designated as a saturated aquiferous zone where gravitational water not bound by adsorption and capillary forces prevails. This water may be freely moving or maybe in the form of capillary water, filling small capillary pores.
The zone immediately adjacent to the aquiferous zone itself, that is, groundwater level, is the capillary fringe zone. Capillary water predominates in this zone. Adsorption water and, depending on the circumstances, gravitational water, may also be present. The capillary water completely fills capillary pores and is maintained by a capillary rise from the groundwater level in the zone. Capillary forces create a negative pore water pressure (under pressure). Thus, water cannot be collected from the environment and responds merely to groundwater level fluctuations. From hydrogeology and groundwater hydraulics, the capillary fringe zone can be included in the unsaturated (non-aquiferous) zone. Contrarily, in hydropedology, we work with the capillary fringe zone as with the saturated zone, which significantly affects the physico-chemical properties of the soil and is important in terms of the water supply of the soil environment in agriculture.
In terms of replenishing groundwater reserves by infiltration, gravitational water is the most significant. Gravitational water is used during infiltration, especially for the area of the rock environment above the groundwater level, that is the unsaturated environment. This includes the area between the groundwater level and the subsurface soil-water zone. The capillary fringe zone can also be ranked in this category.
The principle of water infiltration into the rock environment in the unsaturated zone can be expressed by gravitational and water potentials. In particular, infiltration depends on the characteristics of the particular soil or weathered particles (grain size, structure, organic matter content, geological activity, stratigraphy, etc.). Infiltration is determined experimentally for each specific soil type. For this purpose, moisture curves are used, which express the relationship between capillary pressure and moisture. The curves differ (hysteresis of the curves) when the soil is filled with water and when it dries.
Vertical flow of infiltrated water through the soil medium is such that during infiltration, pores in the upper soil layer become increasingly saturated with rainwater until saturation of the water-holding capacity is reached, whereupon the saturated zone shifts gravitationally deeper in the soil profile. This occurs because semi-capillary and non-capillary pores are systematically filled with water above the hydrolimit of the water-holding capacity and water moves with gravity in terms of saturated flow according to Darcy’s law. As rainwater supply ends, due to termination of the particular rain event, saturation is reduced, and gravitational flow of water slows down and gradually begins to be controlled by the hydraulic conductivity of the particular type of the soil. Water dissipated in the environment and movement is practically stopped. If the rainwater supply is sufficient, infiltrated water may eventually reach the groundwater level, which is progressively raised. Due to gravitational drainage into the body of groundwater, the saturation of the soil environment gradually decreases, and the unsaturated zone is created again.
The process of infiltration through the soil environment substantially affects the quality of the infiltrated water, both positively, when it can significantly reduce pollution and thus protect groundwater against chemical or microbial contamination, but also negatively, in the case of contaminated soils (by means of anthropogenic activity, such as the. Enormous doses of industrial fertilizers applied to agricultural soils). Here, the contaminated infiltrated water can lead to the deterioration of the groundwater reservoir.
At present (i.e. in this current episode of anthropogenically driven climate change), it is of utmost importance to maintain the soil environment in as favorable as possible a condition in terms of enabling infiltration of rainwater into the soil environment or, more precisely, into the groundwater collector. The principal negative factors include soil compaction, the loss of soil structure and the reduction of organic matter content in the soil. These three factors significantly reduce the water-holding capacity of the soil, that is, the ability to retain and gradually release water, either in the form of evapotranspiration or infiltration into the groundwater reservoir. Vast impermeable anthropogenic surfaces (asphalt, concrete, roofs, etc.) also inflict a significant reduction in infiltration.
Nowadays, it is highly desirable to ensure infiltration of rainwater from these areas by appropriate technical and biotechnical measures, thus preventing their rapid surface or sub-surface run-off. Groundwater recharge in the Central European region historically took place in the colder half of the year, mainly from snowmelt. In this region this represented 3–4 months a year, when the zone between soil water and groundwater level was saturated and thus the regional groundwater reserves were continually replenished.
In the last 20 years, probably due to climate change, but also relevant alterations in landscape utilization, the saturation period of this zone has been significantly shortened and, consequently, there has been limited replenishment of groundwater supplies. A key role is played by noticeably lower snow reserves in the winter months, the overall temperature elevation during the year (i.e. increased evapotranspiration), and changes in rainfall distribution (accumulation of rainfall and decreased soil absorption capacity). Groundwater recharge is thus usually carried out during longer term, higher rainfall events. In the case of torrential rain, the surface zone is rapidly saturated and hence minimum infiltration, and erosive strong surface run-off occurs. Contrarily, during long-term moderate rain, the entire transitional zone gradually saturates to the groundwater level, and thus its reserves are replenished.
Groundwater reservoirs are also replenished at tectonic faults (fractures). The entire soil body need not be saturated within the process of infiltration, but gravitational water can flow because of fissure permeability, replenishing the groundwater reserves.
The soil-forest-water-civilization nexus has never been more important than at present. The Ancient Greeks recognized four basic elements of life: fire, water, air and soil. Yet throughout history, perturbation of the hydrosphere, atmosphere and geosphere has created huge issues for humanity and the rest of the Biosphere.
Trees are an essential component of most ecosystems on our planet, and the forests of the world play key roles in the hydrological cycle, nutrient cycles and the carbon cycle. Deforestation undermines ecosystem function upon which we rely for our very survival. Forests are major contributors to rainfall, with the Amazon rainforest producing some 70% of precipitation in the Rio de Plata river basin [72]. Forests also play a crucial role in temperature regulation, not only as repositories for carbon, but in terms of evapotranspiration and the production of microbial flora and biogenic volatile organic compounds which act as condensation nuclei for cloud formation and rain events. It is estimated that deforestation may account for as much as 18% of current global warming [73]. Forests purify surface and ground water [74]. Deforestation also reduces soil structure and organic carbon content, negatively impacting the water-holding capacity [75]. Environmental degradation leads to economic collapse and social instability [76]. Healthy forests and healthy soils are inextricably linked. Deforestation has three significant impacts: soil erosion, soil salinization and eutrophication.
The incredible diversity of the biosphere in its many forms speaks to a complex foundation upon which such a magnificent edifice is built. Yet terrestrial ecosystems are almost entirely dependent upon a thin, living skin, stretching across some fifty million square kilometers, but with a mean depth of only 15 cm: the soil. Most plants need soil, and plants form the basis of most terrestrial food chains. Yet in the last 150 years, we have lost 50% of the planet’s topsoil through soil erosion. Lester W. Brown, the President of the Earth Policy Institute, has written that civilization can survive the loss of its oil reserves, but it cannot survive the loss of its soil reserves [77].
Soil erosion is not a new problem. Plato bemoaned the fact that the soil of Greece was, by his own time, eroding, observing that ‘what now remains compared with what then existed is like the skeleton of a sick man, all the fat and soft earth having wasted away, and only the bare framework of the land being left’ (in Glacken [78]). Around 60 BC, Lucretius, the philosopher and poet, recognized the seriousness of soil exhaustion in Italy. He thought that the Earth itself was dying [79]. A comprehensive review of the historical significance of soil erosion and the contribution of deforestation to this can be found in Dotterweich [80].
Accelerated erosion has been occurring in Britain since the first clearances of primeval forest 5000–6000 years ago [81]. While early human agriculturalists used hand-held tools, maintaining a rough surface, allowing infiltration, later iron tools smoothed the surface, leading to run-off and erosion. By medieval times, many European villages had been abandoned as a result of soil erosion, elevating food prices due to crop failure and leading to social instability [82]. Today, 751 million ha of the planet’s soil has been severely eroded [83]. Overgrazing by livestock and intensive agricultural practice has led to huge swathes of erosion. But deforestation has been one of the most significant contributors to the erosion crisis facing the planet. One and a half million square kilometers of dense tree cover were lost between 2000 and 2012 [84].
Shallow tree roots bind soil aggregates, increasing soil cohesion, while protecting against surface wash erosion. Deeper roots anchor the regolith to the bedrock, preventing landslides, debris flows and mudflows. Trees also reduce the load from lower soil moisture through evapotranspiration [85].
Soil production takes many years, and today losses far exceed formation. In China, the soil is being lost 54 times faster than it is being formed, leading to huge economic and social insecurity. In the case of China, soil loss accounts for the loss of 42 billion dollars per year, impacting 170 million people [86].
It is thought that the Babylonian and Sumerian kingdoms collapsed due to soil erosion, blocking irrigation systems [87]. Once the soil is gone, the risk of flooding after heavy rain increases dramatically. The trees form a crucial link in the hydrological cycle, shifting water from the soil back to the atmosphere.
Wind erosion is an equally serious threat to humanity. The Dust Bowl in the USA stands as a striking example, where a 10-year collapse in agriculture was due to soil erosion driven by agricultural mismanagement in the 1930s. On Black Sunday, 14 April 1935, the sunlight was blocked out by the dust, when three million tonnes of topsoil from the Midwest was blown into the atmosphere. The Dust Bowl forced around two and a half million people to flee from their mid-west farms and head to California.
Soil erosion contributes to another major threat to our planet, eutrophication. Eutrophication is caused by nutrients being washed into the hydrosphere from the soil. Soil itself is a nutrient bomb, and so erosion delivers huge amounts of nutrients into streams, rivers, lakes and the oceans, leading to hypoxia, cyanobacterial blooms, toxic red tides and fish death. In Europe, Asia and North America, 50% of freshwater bodies are now eutrophic, while dead zones are a regular occurrence in the oceans, devastating fish populations. In the US alone, eutrophication costs around 2 billion dollars each year [88].
Deforestation also leads to soil salinization. Currently, 25% of the world’s cropland is affected, while in Africa, this figure is 50% [89]. By 2050 it is estimated that some 50% of cropland will have productivity halved due to build-up of salt in the surface soil [90]. Nagendran [91] observes that salinization is the most striking effect of agriculture in all parts of the world. Soil salinization is very difficult to reverse.
Salinization is a particular threat to Australian agriculture, given that most of the country is desert. In the Murray Darling Basin, 63% of the forested area has been converted to cropland in the last 200 years [92]. This has led to increased downward water fluxes below the root zone by one to two orders of magnitude [93] because the trees are no longer performing their role as water shifters from soil to atmosphere. This has resulted in a rapid rise in the groundwater table at a rate of∼1 m year−1, leading to the salinization of some 5.7 million ha of farmland, devastating harvests [94].
Similar large-scale salinization events have been recorded in California, north-west India and much further back in time, in Ancient Mesopotamia [95, 96, 97].
Finally, deforestation leads to huge changes in the rainfall distribution patterns on our planet. The biotic pump theory [98] proposes that evapotranspiration creates lower pressure above forest canopies, drawing in moist air from the oceans, and supplying precipitation far inland. The reduction in evapotranspiration as a result of deforestation leads to an increase in the height of the convective boundary layer because of the stronger sensible heat flux over pastures. This is less conducive to rainfall formation. Deforestation is thought to have contributed 60% to the drought conditions that led to the collapse of the Mayan empire [99].
Much like climate destabilization, the biotic pump acts across national boundaries, requiring international collaboration. If inland nations carry out significant deforestation, the impacts are not only felt within that nation, in terms disruption to the local hydrological cycle, exacerbating flood risks, landslides, soil erosion and water purity, but also in nations that lie between the oceans and the deforested region, as the pressure gradient is no longer as strong, reducing the strength of the pump.
Critics of the biotic pump theory have argued that air movements as a result of condensation are multi-directional, representing an isotropic (uniform in all directions) process and this means that there will not be any uni-directional, net flow from ocean to continental landscapes [100]. In this orthodox approach, mass air movements alone drive the hydrological cycle across latitudinal cells set up by temperature gradients due to the uneven heating from the sun as a result of the axial tilt and curvature of the Earth.
However, it has been demonstrated experimentally that condensation can trigger anisotropic, uni-directional flow, supporting the biological pump theory [101, 102]. Sheil [103] points out that disruption of the biological pump through deforestation can lead to dramatic, non-linear transitions in local climate, from wet to dry regimes. Interestingly, reforestation can lead to a similarly dramatic transition in the opposite direction, from a dry to a wet local climate regime [103]. However, there is no guarantee that reforestation will return the region to an identical ecological state as that prior to deforestation, as species may have suffered extinction, and recolonization routes may no longer exist.
Of greater concern yet is the fact that such widescale changes resulting from deforestation and the destabilization of the soil-water relationship may lead to regime shifts. Lees et al. [104] define regime changes as abrupt changes on several trophic levels, leading to rapid ecosystem reconfiguration between alternative states. Both structures and processes are transformed and such changes, in turn, result in significant alterations in ecosystem services [105, 106]. Complex non-linear systems, such as ecosystems, become vulnerable to phase shifts, where relatively small changes in an already stressed system can result in the irreversible collapse of the system, switching, for example, from a wet forested state to a dry savanna, and creating an alternative equilibrium, with devastating consequences [107, 108, 109]. Such shifts are more likely to occur as anthropogenic perturbation increases [110].
Of additional concern is the reality that ecosystems are interconnected to other ecosystems, to such an extent that a regime change in one part of the biosphere can catalyze changes in other ecosystems. One example relates to regime changes in the Arctic, wherein sea-ice changes lead to reorganization of tropical convection that in turn triggers an anticyclonic response over the North Pacific, resulting in significant drying over California [111], potentially leading to regime change. Ecosystems are sub-systems, not isolated systems. Thus, changes run throughout the biosphere, impacting on all levels of organization, in non-linear ways. We would expect this in any self-organizing system, where feedback dictates context and change. One such conduit is the soundscape, wherein ecological simplification can lead to radical transitions at the ecosystem level facilitated by the absence of audible cues [112]. Another feedback conduit is the hydrological cycle, and forests play a central role here. Interfering with water relations can have huge impacts on regime stability and the spread of regime shifts across the biosphere [113].
Forest soil water balance plays an essential, central role in ecosystem functionality. The modification of water balance within forests can enhance self-regulation of all ecosystems in a landscape, but intensive, anthropogenic landscape transformation can negatively impact it. Human activities, such as deforestation, have had damaging impacts on evaporation, precipitation and run-off. The protection of forest water balance has been highlighted as a priority through coordinated research based on analysis of soil properties and ecosystem function restoration. Underpinning any hope of achieving this lies the urgency of attaining a sustainable relationship between human needs and natural resources.
Thus, we see that forests are essential components in both the hydrological cycle and in soil functionality, while also playing a crucial role in the carbon cycle. Forests, much like soil and water, are currently under-appreciated by the human race, yet our futures rely on their restoration and respect. Kravčík [114] have called for a new paradigm in order to rescue humanity from a crisis beyond our imagining: regime shifts and the functional collapse of the terrestrial and aquatic ecosystems. Such a paradigm no longer views water as an isolated entity, a fixed renewable resource and having little to do with the suite of environmental crises facing us, along with the coming economic and societal collapse undoubtedly awaiting us on our current trajectory. Instead, they call for a prioritization of the restoration of the water balance at all levels, but particularly at the level of the small water cycle. Intrinsic to this is healthy soils and healthy forests. The soil-forest-water-civilization nexus must urgently be understood as a synergy, connected and united within the Earth system if we are to find a constructive way ahead and a place for our own sub-species within the biosphere.
This chapter was supported with the institutional support of Mendel University in Brno financed from the institutional support of the development of the research organization provided by the Ministry of Education, Youth and Sports, Czech Republic.
Shale gas refers to a kind of self-generating and self-preserving natural gas, which gathers mainly in a free or adsorbed state in the organic-rich dark shale or high-carbon mud shale [1]. With vast reserves and the potential to offset the gradually depleted conventional resources worldwide and cut down carbon emissions at the same time, shale gas is playing an increasingly important role in ensuring global energy safety. Because shale matrix is characterized by various nanopores, where the gas flow is of high nonlinearity and complexity, an in-depth study of the mathematical model for the gas flow capacity in shale matrix is in urgent demand.
\nThe mechanisms considered in different literature are listed in Table 1. It is obvious that opinions vary greatly on the flow mechanism scheme applied. The noteworthy aspects include the following: what the relationship among the various flow mechanisms of shale gas, e.g., slippage, Fick diffusion, Knudsen diffusion, etc., is; whether there is a repeated superposition of these mechanisms for specific flow calculation; and how to deal with the relationship among the various flow mechanisms, etc. There is no clear answer to these problems in current literature.
\nLiterature | \nMechanisms considered | \n
---|---|
Klinkenberg [2] | \nSlip flow | \n
Javadpour [3], Haghshenas et al. [4], Wu et al. [5], Sun et al. [6] | \nKnudsen diffusion and slippage | \n
Veltzke and Thöming [7] | \nViscous flow and Knudsen diffusion | \n
Li et al. [8] | \nContinuum flow, slip flow, transition flow, and free molecular flow | \n
Mi et al. [9] | \nDiffusion and slippage, where the form of diffusion varies according to the Knudsen number range, including Fick diffusion, transitional diffusion, and Knudsen diffusion | \n
Song et al. [10] | \nViscous flow, Knudsen diffusion, and surface diffusion, with surface diffusion not considered for inorganic pores | \n
Different flow mechanism schemes in literature.
\nFigure 1 shows the common research methodology of the flow models used in different literature. It indicates that because the method of the continuum model with a boundary condition based on the molecular one is considered inconsistent and the limitations and drawbacks of first-order, second-order, and 1.5-order slip models are described, some studies, which are listed in Figure 1, are inclined to add related flow mechanisms linearly. Furthermore, the mathematical models of viscous flow and various types of diffusion do not fully agree with common flow cognition as these theories and models were experimentally verified or developed for a limited range of conditions [27]. For this reason, coupling coefficients are introduced to rectify this kind of limitation, so as to enhance the correspondence between the flow model and Knudsen number (Kn). Finally, because the secondhand average method, e.g., assuming the pore space of shale to be composed of a certain number of isodiametric pores regardless of the pore size distribution, is widely used in the research of shale gas flow, more explicit means, like taking the existence of various pore sizes in shale into account, should be adopted for transforming the flow model in nanopores to that in macroscopic-scale shale matrix.
\nA brief summary of the common methodology used in different research [
Based on the literature survey for shale gas flow in shale matrix, we know that the flow mechanism scheme with its corresponding coupling method is very crucial and has not yet been solved. In addition, although the integration method using specific functions has been proposed to facilitate the consideration of various pore sizes in shale matrix, real shale experiments are rarely involved to realize this point with definitely determined parameters.
\nFirstly, in this chapter, the concept of wall-associated diffusion is presented to clarify the relationship between slippage effect and several types of diffusion. Secondly, a physically sound flow mechanism scheme, which considers both division of mechanical mechanisms in nanopores and partition of flow space, has been proposed by virtue of the proposition of wall-associated diffusion. Thirdly, the coupling coefficients corresponding to the flow mechanisms considered are deduced to comply with the basic flow regime cognition, so as to establish a new coupled flow model in nanopores. Fourthly, the pore size distribution experiments for real shale samples from a gas field are utilized to realize the upscaling transformation of the flow model in nanopores into that in the macroscopic-scale shale matrix, with definitely determined fitting parameters for the establishment of a unified model for the gas flow prediction in shale matrix. Finally, a case study is presented to show how the lab-scale results are translated into field-scale ones.
\nThere are many types of flow mechanisms in shale matrix, including slippage effect, Fick diffusion, transition diffusion, Knudsen diffusion, surface diffusion, etc. It can be seen from the literature survey in Section 1 that different flow mechanism schemes have formed aiming at establishing a calculation model to properly characterize the nanoscale shale gas flow. There may be views that the more flow mechanisms are taken into account, the more precise the established models are. However, this is not the opinion in this chapter.
\nAs is known, Klinkenberg [33] first discovered in 1941 the phenomenon that, when measuring the gas permeability of rock, not only the measurement result is higher than the liquid measurement value but also it has strong pressure dependence and attributed it to the slippage behavior of gas in the rock pores. Specifically, gas slippage refers to the phenomenon that the near-wall gas molecules move relative to the wall surface when flowing through the medium channels [34]. In essence, the gas slip flow results from the interaction of gas molecules and pore walls, so the gas molecules in the vicinity of walls are in motion and contribute an additional flux, which is macroscopically characterized by the non-zero gas velocities on channel walls, thus resulting in slip flow [35, 36]. The jump model assumes that the adsorbed gas molecules jump from one adsorption site to the adjacent adsorption site on the pore surface, which is considered to be suitable for the research on the surface diffusion of the adsorbed gas in shale nanopores [37]. Meanwhile, when the molecular mean free path is obviously larger than the pore diameter, the gas-wall collision dominates, and the collision between gas molecules is secondary, which is characterized by Knudsen diffusion [9, 38, 39].
\nIn brief, both Knudsen diffusion and surface diffusion lead to non-zero moving speeds of the gas molecules around walls. Furthermore, from the viewpoint of microscopic motion mechanisms, they are both related to gas–solid interactions, which is consistent with slippage phenomenon in essence. Therefore, a new concept named “wall-associated diffusion” [40] is proposed, which characterizes the overall role of surface diffusion and Knudsen diffusion, as shown in Figure 2.
\nRelationship between wall-associated diffusion and slippage effect [
The proposition of wall-associated diffusion has practical significance and multiple research significance as follows [40].
\nTo begin with, in terms of mechanical mechanisms, since wall-associated diffusion describes the diffusion mechanisms of shale gas related to gas-wall interactions, it bridges the relationship between slippage effect and several types of diffusion, which prevents reduplicated superposition of shale gas flow mechanisms in nanoscale pores. This is where the practical significance lies. Besides, wall-associated diffusion can be regarded as a detailed form of slippage effect, dividing slippage effect into two distinct parts, i.e., surface diffusion and Knudsen diffusion. The two parts differ obviously in their mechanical mechanisms and motion patterns. Accordingly, the research significance of wall-associated diffusion involves not only the function of morphological descriptions but also the possibility of slip phenomenon research by different mechanical mechanisms. Lastly, another research significance is that wall-associated diffusion breaks through the limitation that the concept of slippage does not apply for high Knudsen number, with, however, the fact that wall effects still contribute to gas flow for high Knudsen number. Therefore, in extremely small nanopores, for example, where slip flow regime is not applicable, the wall-associated diffusion derived from physical morphology can well be used to explore the so-called slip phenomenon in other flow regimes apart from slip flow regime.
\nBy virtue of the concept of wall-associated diffusion, the flow mechanism scheme used in this work is to be discussed next.
\nThere is no doubt that all the mechanisms, such as continuum flow, slip flow, Knudsen diffusion, bulk diffusion, etc., have been studied in previous literature for the exploration of shale gas flow. However, it is a determinative flow mechanism scheme that is vital. According to the literature survey, apart from combining the Navier-Stokes solution with slip boundary condition whose deficiency has been mentioned in Section 1, there is also a trend in literature to assume a combination of certain flow mechanisms and check the consistency of the model results with experimental data. This method is favorable from an engineering point of view but meanwhile leads to the status that coincidence often exists and no commonly accepted consensus has formed currently. In this work, we discuss the issue physically. Firstly, due to the multiple advantages of wall-associated diffusion over the concept of slippage effect, slippage effect is replaced with wall-associated diffusion in the following discussion. On the one hand, the flow space in nanopores can be divided into two parts: the bulk phase region and the Knudsen layer [41]. On the other hand, the microscopic mechanical mechanisms can be divided into the gas–gas and gas-wall interactions. If a new comprehensive flow scheme, including viscous flow and bulk diffusion which belong to bulk phase flow and surface diffusion and Knudsen diffusion which are associated with gas-wall interactions causing non-zero flow velocities near pore walls, is proposed, the considerations of the division of flow space and mechanical mechanisms can be both realized.
\nIt should be noted that with the help of the methodology applied here, some flow mechanisms that are easily omitted are now included, such as bulk diffusion, an important diffusion process which is controlled by a mechanical mechanism obviously different from Knudsen diffusion. Furthermore, because the individual flow expressions, e.g., those for viscous flow and diffusion, were experimentally verified or developed for a limited range of conditions [27], the proposed physical flow mechanism scheme avoids unnecessary attempts to fit the mathematical models to experimental data so as to determine which flow mechanisms should be considered, laying a solid foundation for the research on the coupled flow model in nanopores discussed below.
\nTo conclude, taking both division of mechanical mechanisms in nanopores and partition of flow space into account, viscous flow and bulk diffusion, which belong to bulk phase flow and result from gas–gas interactions, and surface diffusion and Knudsen diffusion, which are associated with gas-solid interactions and result in non-zero flow velocities near pore walls, are included in the proposed flow mechanism scheme.
\nBased on the flow scheme proposed in Section 2, the flow mechanisms considered include viscous flow, bulk diffusion, surface diffusion, and Knudsen diffusion. Considering the influence of adsorption layers, in which the system is assumed to reach dynamic adsorption equilibrium state instantaneously, the mass flow of the four mechanisms can be expressed, respectively, as:
\nwhere
\n
\n
\n
\n
\n
\n
\n
\n
\n
d
\n
\n
\n
\n
\n
\n
\n
\n
The expression of Fick diffusion (2) is referred to as bulk diffusion and represented by
The case study in literature [42] shows that although the equations of viscous flow and diffusion already contain variables varying with temperature, pressure, and other factors, they make sense within only a certain range of flow regimes and deviate from the actual situation within other range that is not taken into account. Introducing coupling coefficients to different flow mechanisms can help modify the correspondence between the mathematical models (i.e., those of viscous flow and diffusion) and Knudsen number and establish generalized models without segment processing as Kn varies.
\nIn contrast to the coupling coefficients reported in published literatures [29, 31, 43, 44], the derivation of new coupling coefficients corresponding to the proposed flow mechanism scheme is performed, and the coupling coefficient of one certain flow mechanism will not be optionally set as 100%. The coupling coefficients of viscous flow, bulk diffusion, Knudsen diffusion, and surface diffusion are represented by
Let
When Kn equals to 0, only viscous flow is assumed to exist [45], i.e.,
It is transition flow when 10−1 < Kn < 10, and several diffusion processes play roles at the same time ([31, 46]; thus,
As Kn approaches to 0 or is sufficiently large,
\n
In the whole range of flow regimes,
Based on the above narrations, it physically defines that
Hence, the mass flow in nanopores can be expressed as:
\nwhere
The variation curves of the four coupling coefficients and
Variation curves of the coupling coefficients (dimensionless) of viscous flow, bulk diffusion, Knudsen diffusion, and surface diffusion with Kn (dimensionless) [
Variations of viscous flow and diffusion with Kn (dimensionless) after introducing coupling coefficients for the gas flow in pores of (a) 5 nm, (b) 10 nm, (c) 20 nm, and (d) 40 nm at 353 K. f1*ND, f2*Nb, f3*NK, and f4*Ns denote the results of viscous flow, bulk diffusion, Knudsen diffusion, and surface diffusion, respectively [
The benefits of introducing the above coupling coefficients to viscous flow and diffusion are significant:
It is clear that because
\nEq. (5) bridges the gaps between different flow regimes, i.e., the jumps of flow rates at the critical points between different regimes have vanished. Furthermore, the mathematical models are further constrained by virtue of the molecular collision theory to better reflect the basic flow regime knowledge.
Taking the viewpoints of Refs. [30, 32] as examples for comparison with this work, it should be noted that slip flow refers to the enhanced flow, including the part of original viscous flow and the other part called slippage effect which is represented by the non-zero velocities of the near-wall molecules due to gas-wall interactions. Therefore, it is more suitable to regard the ratio of gas–gas collision frequency to total collision frequency as the total coupling coefficient of viscous flow and bulk diffusion rather than that of the slip flow [30, 32].
The same examples [30, 32] are used for comparison. It is continuum flow when Kn approximates to 0. However, the coupling coefficient of slip flow is 1 when Kn = 0 in papers [30, 32], implying slip flow dominates in continuum flow regime, which contradicts the flow regime knowledge. This issue has been solved in this chapter.
In this section, the experimental results of full-scale pore size distributions of real shale samples from a gas field are combined with the coupled flow model in nanopores to realize the upscaling transformation of the flow model into that in macroscopic-scale shale matrix by integration.
\nIn the unitary model which is widely used for the flow estimation on a macroscopic scale [12, 18, 19, 20, 21, 22], indirect averaging methods are applied, e.g., the pore space of shale is assumed to be composed of a certain number of isodiametric pores, regardless of the pore size distributions. Some research [15, 47] used specific functions to characterize the probability density function of shale pore size distributions, with, however, assumed parameters for the purpose of conducting parameter sensitivity analysis. Here, the fitting parameters needed for the macroscopic form of the derived coupled flow model in nanopores are obtained by performing the experiments of pore size distributions of real shale samples from a gas field.
\nMichel et al. [15] and Xiong et al. [47] described the probability density function of shale pore size distributions as logarithmic normal distribution. Enlightened by their studies, the following expression is used to fit the experimental data of full-scale shale pore size distributions:
\nwhere
\n
Three kinds of experiments, i.e., the high-pressure mercury intrusion experiment, the liquid nitrogen adsorption experiment, and the low-temperature carbon dioxide adsorption experiment, were performed, and the full-scale pore size distribution data of the three shale samples from the Well “Ning 203”, Longmaxi formation of Changning-Weiyuan district, Sichuan Basin of China, were obtained by stitching the three results together according to the effective range of each experiment, where the total volume of pores greater than 100 nm is attributed to the pore whose radius is closest to 100 nm in the experiments allowing for the difficulty of curve fitting caused by the severe fluctuations of the pore size data [42]. The values of
Samples | \n\n | \n\n | \n
---|---|---|
Ning 203-219 | \n0.9428 | \n1.0890 | \n
Ning 203-240 | \n1.3530 | \n1.2100 | \n
Ning 203-250 | \n0.1207 | \n0.4189 | \n
Average | \n0.8055 | \n0.9060 | \n
Fitting results of η and σ.
The number of single pipes in shale with the radius range of
where
\n
\n
\n
The macroscopic-scale mathematical model of shale gas flow can be obtained by substituting Eqs. (5) and (6) into Eq. (8) as:
\nLiterature survey shows that there are several main upscaling methods of flow models from microscopic to macroscopic scale, i.e.:
\nMethod (1): the commonly used unitary model [12, 18, 19, 20, 21, 22] as already mentioned.
\nMethod (2): the sum method of calculating the permeability of every straight capillary tube [27].
\nMethod (3): the statistical sum method of the individual permeability from each shape type [49, 50].
\nMethod (4): the 3D fractal model with variable pore sizes [51].
\nMethod (5): the homogenization method to upscale gas flow through two distinct constituents, a mineral matrix and organic matter [52, 53].
\nMethod (6): the pore network model including pore size distribution, anisotropy, and low connectivity of the pore structure, etc. in shale [54, 55].
\nThe comparison among them is summarized in Table 3.
\nMethod | \nDescription/equation | \nAdvantages | \nShortcomings | \n
---|---|---|---|
Unitary pipe model [12] | \n\n\n | \nSimple in formula and easy for calculation | \nNegligence of pore structure, e.g., different pore shapes, pore connectivity, etc. | \n
Integral pipe model (this chapter) | \n\n\n | \nMake the consideration of various pore sizes happen; easy for calculation | \nNegligence of pore structure, e.g., different pore shapes, pore connectivity, etc. | \n
Total addition model [27] | \n\n\n ( | \nConsider the flow rate in every single pipe | \nImpractical to implement; negligence of pore structure, e.g., different pore shapes, pore connectivity, etc. | \n
Model of statistical sum of permeability from each shape type [49, 50] | \n\n\n ( | \nPore shapes, i.e., rectangular slits and cylindrical tubes, are taken into account | \nThe quantification of the percentages of different pore types using image analysis tools is hard to implement; negligence of various pore sizes | \n
3D fractal model [51] | \nPlease refer to Eqs. (24)–(27) in literature [51] for the specific expressions where the formulas are complex | \nMulti-scale pore size distribution and tortuous flow line in 3D space of shale matrix are characterized | \nMany parameters to be determined; negligence of different pore shapes | \n
Homogenization model [52, 53] | \nThe homogenization method is used to upscale gas flow through two distinct constituents, a mineral matrix and organic matter. A gas flow in a two-constituent composite porous medium is considered, in which a microscopic unit cell is periodically repeated | \nThe constituents, i.e., mineral matrix and organic matter, in shale are taken into account | \nMultiple assumptions; redundant processing for model establishment and solution | \n
Pore network model [54, 55] | \nGenerate pore network models by extracting pore structure information from real images or generate porous media by simulating the sedimentation and diagenesis processes and then incorporate relevant flow mechanisms into the gas flow models | \nPore size distribution, anisotropy and low connectivity of the pore structure, etc. can be taken into account | \nSubstantial work for model establishment; representativeness and verisimilitude of pore network models to the real pore structures remain a challenge | \n
Comparison of upscaling methods from microscopic to macroscopic scale.
After reviewing the upscaling methods in Table 3, it is obvious that the method used in this work is not a bad compromise when compared to method (1) which is too simple and coarse, methods (2) and (3) where it is impractical and daunting to count the size/shape of every single pore with huge computational efforts, method (5) where complex processing for the model establishment and solution is needed, and methods (4) and (6) where redundant parameters/information about pore structure need to be assumed or obtained from multiple ways. Therefore, on the one hand, only the pore size distribution experiment is needed for the determination of the upscaling parameters in this chapter to make the consideration of various pore sizes happen. On the other hand, the derived model in this chapter is practical to operate, and the results can thus be readily obtained. However, it does not necessarily mean that there is no drawback for the upscaling method used. For example, although SEM images of the shale samples show that the pores in the organic matter are mostly circular [56], various types of pore shapes, e.g., cylindrical, triangular, rectangular shaped, etc., can be detected in shale samples [50, 57]. Singh et al. [50] concluded that the geometry of pores significantly influences apparent permeability of shale and diffusive flux. The study of effective liquid permeability in a shale system by Afsharpoor and Javadpour [58] confirmed that the assumption of simplified circular pore causes apparent permeability to be significantly overestimated and the discrepancy between the realistic multi-geometry pore model and the simplified circular pore model becomes more pronounced when pore sizes reduce and liquid slip on the inner pore wall is taken into account. Xu et al. [59] developed a model for gas transport in tapered noncircular nanopores of shale rocks and found the following: (1) pore proximity induces faster gas transport, and omitting pore proximity leads to the enlargement of the adsorbed gas-dominated region; (2) increasing taper ratio (ratio of inlet size to outlet size) and aspect ratio weakens real gas effect and lowers free gas transport; (3) moreover, it lowers the total transport capacity of the nanopore, and the tapered circular nanopore owns the greatest transport capacity, followed by tapered square, elliptical, and rectangular nanopores. To conclude, there is still much room for improvement of the upscaling method in this work in multiple aspects in future research.
\nWith the properties of multi-scale pore structures and various reservoir modes, the shale gas reservoir is complex in reservoir space and occurrence modes, which in turn leads to different flow mechanisms in multi-scale spaces. Therefore, adopting single-scale equations and flow simulation methods will not accurately reveal the flow mechanism in complex shale gas reservoirs [60]. Jiao et al. [61] established an effective conversion relation between physical simulation parameters and field parameters based on similarity criterion to better simulate gas reservoir development. The ideas in literature [61] are narrated as follows.
\nFirst, considering the flow mechanism of shale gas in the reservoir, the selected characteristic physical parameters are permeability
Number | \nSimilarity criterion | \nSimilar attributes | \nPhysical significance | \nValue of physical simulation | \nActual value of reservoir | \n
---|---|---|---|---|---|
1 | \nπ1 = | \nPorosity similarity | \nDetermine porosity | \n0.02–0.2 | \n0.02–0.2 | \n
2 | \nπ2 = | \nCompression similarity | \nDetermine model gas | \n0.9–1.2 | \n0.9–1.2 | \n
3 | \nπ3 = | \nTemperature similarity | \nDetermine model temperature | \n1–1.1 | \n1.1–1.3 | \n
4 | \nπ4 = | \nGeometric similarity | \nDetermine model size | \n0.3–1 | \n0.3–1 | \n
5 | \nπ5 = | \nDynamic similarity | \nDetermine original pressure of model | \n0.002–0.01 | \n0.002–0.005 | \n
6 | \nπ6 = | \nDynamic similarity | \nDetermine conversion relation for bottom hole pressure | \n0–1.0 | \n0.1–1.0 | \n
7 | \nπ7\n\n | \nMovement similarity | \nDetermine production rate | \n0–0.5 | \n0.1–0.3 | \n
Similarity criterion numerals of the gas reservoir physical simulation.
Second, based on the similarity criterion, the conversion relation between physical simulation parameters and field parameters can be established, which is expressed as:
\nwhere
Finally, choose the core sample “Ning 211-1” for an example to conduct dynamic physical experiment under different conditions, which is used to verify the rationality of the similarity criterion. The related parameters, values of physical simulation (
\n | \n293.15 | \n||||||
\n | \n5.6% | \n||||||
\n | \n0.0127 | \n||||||
\n | \n40 | \n||||||
\n | \n0.0557 | \n||||||
\n | \n20 | \n||||||
\n | \n298.15 | \n||||||
\n | \n353.15 | \n||||||
\n | \n3.0745 | \n4.0995 | \n5.0800 | \n6.5750 | \n7.6500 | \n10.2300 | \n12.5900 | \n
\n | \n1.1560 | \n1.1785 | \n1.2030 | \n1.2461 | \n1.2817 | \n1.3830 | \n1.4944 | \n
\n | \n0.9481 | \n0.9316 | \n0.9163 | \n0.8942 | \n0.8795 | \n0.8493 | \n0.8294 | \n
\n | \n0.9747 | \n0.9670 | \n0.9602 | \n0.9507 | \n0.9445 | \n0.9326 | \n0.9254 | \n
\n | \n0.0344 | \n0.0466 | \n0.0570 | \n0.0746 | \n0.0877 | \n0.1205 | \n0.1450 | \n
\n | \n785.5063 | \n1055.4281 | \n1278.7645 | \n1649.5661 | \n1919.8761 | \n2579.8383 | \n3055.2185 | \n
\n | \n748.2798 | \n1021.0548 | \n1255.2453 | \n1601.7201 | \n1902.6402 | \n2529.7590 | \n3038.9881 | \n
Parameters for application.
\nFigure 5 displays the curves of actual values of reservoir and predicted field results based on similarity conversion, the latter of which are calculated from the physical experiment. The results calculated by similarity criterion are basically consistent with the on-site tested data. It is expected that applying the similarity translation from physical simulation of gas reservoirs is capable of predicting the development performance effectively, showing the rationality of the translation method.
\nComparison of actual values of reservoir and predicted field results based on similarity conversion.
Based on our study in this chapter, the following conclusions have been reached:
A new concept “wall-associated diffusion” was introduced to the study of gas flow in shale nanopores, which has practical significance and multiple research significance. By virtue of this concept, viscous flow, bulk diffusion, surface diffusion, and Knudsen diffusion were considered in the proposed flow mechanism scheme for nanoscale shale gas flow, with both division of mechanical mechanisms in nanopores and partition of flow space taken into account. Viscous flow and bulk diffusion belong to the bulk phase flow, which result from gas-gas interactions. In addition, surface diffusion and Knudsen diffusion are of boundary layer flow, which are associated with gas-wall interactions.
An easy-to-operate coupling method of the flow mechanism scheme containing four coupling coefficients and thus a coupled shale gas flow model in nanopores, which applies within the scope of full flow regimes and avoids segment processing, was proposed.
Based on the experimental data of pore size distributions of real shale samples from a gas field, a new coupled upscaling flow model in macroscopic-scale shale matrix with the experimentally determined fitting parameters was established. The model uses smooth functions to fit the full-scale pore size distribution results to facilitate the upscaling transformation of the model in nanopores into that in the macroscopic matrix.
A case study was presented to show how the lab-scale results are translated into field-scale ones, revealing the rationality of the translation method used.
In summary, sounder in theoretical bases and better in application effects, the proposed model is expected to be of practical significance for evaluating the gas flow capacity in shale matrix and guiding gas reservoir development in gas fields.
\nThis work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (grant number 2017ZX05037 − 001); the Demonstration Project of the National Science and Technology Major Project of the Ministry of Science and Technology of China (grant number 2016ZX05062 − 002 − 001); and the Science and Technology Major Project of PetroChina (grant number 2016E−0611).
\nUnsubscribe unsuccessful, no matching records found in our database.
",metaTitle:"Unsubscribe Unsuccessful",metaDescription:"Unsubscribe unsuccessful, no matching records found in our database.",metaKeywords:null,canonicalURL:"/page/unsubscribe-unsuccessful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5944},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17700}],offset:12,limit:12,total:133952},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",src:"R-SLS"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",subtitle:null,isOpenForSubmission:!0,hash:"3d72ae651ee2a04b2368bf798a3183ca",slug:null,bookSignature:"Prof. Elisa Pieragostini",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",editedByType:null,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11641",title:"Updates on Fermentation",subtitle:null,isOpenForSubmission:!0,hash:"a40ca422d610cac17d09b0df36469351",slug:null,bookSignature:"Dr. Raúl Ferrer-Gallego",coverURL:"https://cdn.intechopen.com/books/images_new/11641.jpg",editedByType:null,editors:[{id:"353129",title:"Dr.",name:"Raúl",surname:"Ferrer-Gallego",slug:"raul-ferrer-gallego",fullName:"Raúl Ferrer-Gallego"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11524",title:"Fuzzy Control Systems",subtitle:null,isOpenForSubmission:!0,hash:"84908e027f884ec3fcbaea42eb69b698",slug:null,bookSignature:"Dr. Hayri Baytan Ozmen",coverURL:"https://cdn.intechopen.com/books/images_new/11524.jpg",editedByType:null,editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11703",title:"Fluorescence Imaging - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"728ff3bfc75ad2c9a39c338b52ae1893",slug:null,bookSignature:"Dr. Raffaello Papadakis",coverURL:"https://cdn.intechopen.com/books/images_new/11703.jpg",editedByType:null,editors:[{id:"251885",title:"Dr.",name:"Raffaello",surname:"Papadakis",slug:"raffaello-papadakis",fullName:"Raffaello Papadakis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11729",title:"Circumcision - Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"d4761c03b5694edec9f7fc48092549ce",slug:null,bookSignature:"Dr. Ahmad Zaghal and Dr. Ali El Safadi",coverURL:"https://cdn.intechopen.com/books/images_new/11729.jpg",editedByType:null,editors:[{id:"240621",title:"Dr.",name:"Ahmad",surname:"Zaghal",slug:"ahmad-zaghal",fullName:"Ahmad Zaghal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11833",title:"Ozone Research - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"1e789b57319be85ed0a32e569967d822",slug:null,bookSignature:"Associate Prof. Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/11833.jpg",editedByType:null,editors:[{id:"190012",title:"Associate Prof.",name:"Taner",surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:16},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:120},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:424},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4422},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"276",title:"Social Philosophy",slug:"social-philosophy",parent:{id:"23",title:"Social Sciences",slug:"social-sciences"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:70,numberOfWosCitations:61,numberOfCrossrefCitations:23,numberOfDimensionsCitations:73,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"276",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editedByType:"Edited by",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9043",title:"Parenting",subtitle:"Studies by an Ecocultural and Transactional Perspective",isOpenForSubmission:!1,hash:"6d21066c7438e459e4c6fb13217a5c8c",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",bookSignature:"Loredana Benedetto and Massimo Ingrassia",coverURL:"https://cdn.intechopen.com/books/images_new/9043.jpg",editedByType:"Edited by",editors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5924",title:"Epistemology and Transformation of Knowledge in Global Age",subtitle:null,isOpenForSubmission:!1,hash:"382d6a083d347e3753d199fa79c15fde",slug:"epistemology-and-transformation-of-knowledge-in-global-age",bookSignature:"Zlatan Delić",coverURL:"https://cdn.intechopen.com/books/images_new/5924.jpg",editedByType:"Edited by",editors:[{id:"31746",title:"Dr.",name:"Zlatan",middleName:null,surname:"Delic",slug:"zlatan-delic",fullName:"Zlatan Delic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3440",title:"Parenting in South American and African Contexts",subtitle:null,isOpenForSubmission:!1,hash:"b5f349487df1a7fb9f6ea4fd0be63d54",slug:"parenting-in-south-american-and-african-contexts",bookSignature:"Maria Lucia Seidl-de-Moura",coverURL:"https://cdn.intechopen.com/books/images_new/3440.jpg",editedByType:"Edited by",editors:[{id:"108479",title:"Dr.",name:"Maria Lucia",middleName:null,surname:"Seidl-De-Moura",slug:"maria-lucia-seidl-de-moura",fullName:"Maria Lucia Seidl-De-Moura"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1017",title:"Metaphysics",subtitle:null,isOpenForSubmission:!1,hash:"b19f3c83b6a16d4f9261c7036172796f",slug:"metaphysics",bookSignature:"Mark Pestana",coverURL:"https://cdn.intechopen.com/books/images_new/1017.jpg",editedByType:"Edited by",editors:[{id:"122472",title:"Dr.",name:"Mark",middleName:null,surname:"Pestana",slug:"mark-pestana",fullName:"Mark Pestana"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"45760",doi:"10.5772/56967",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:9583,totalCrossrefCites:10,totalDimensionsCites:25,abstract:null,book:{id:"3440",slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"72249",doi:"10.5772/intechopen.92579",title:"Digital Parenting: Raising and Protecting Children in Media World",slug:"digital-parenting-raising-and-protecting-children-in-media-world",totalDownloads:1577,totalCrossrefCites:4,totalDimensionsCites:10,abstract:"Digital media have quickly changed ways in which parents and children communicate, enjoy themselves, acquire information, and solve problems daily (both in ordinary and exceptional circumstances such as COVID-19 home confinement). Very young children are regular users of smartphones and tablet, so their early digital engagement poses new challenges to parent-child relationships and parental role. First, the chapter introduces the “digital parenting” construct, moving through the literature from “traditional” parenting styles to more recent studies on “parental mediation,” that is, the different behaviors parents adopt to regulate children’s engagement with the Internet and digital media. Second, the chapter reviews empirical researches on different parental mediation practices (active or restrictive behaviors) and how they are adjusted according to the child’s characteristics (age, digital competences, etc.) or parent’s media competence and beliefs. Finally, from a bidirectional perspective of parent-child relationships, the chapter discusses the role of youths’ social involvement, communication, self-disclosure, and digital skills on parent’s beliefs and practices. Implications for parent education and prevention of risks for early and excessive exposure to digital technologies are discussed.",book:{id:"9043",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",title:"Parenting",fullTitle:"Parenting - Studies by an Ecocultural and Transactional Perspective"},signatures:"Loredana Benedetto and Massimo Ingrassia",authors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"},{id:"193901",title:"Prof.",name:"Massimo",middleName:null,surname:"Ingrassia",slug:"massimo-ingrassia",fullName:"Massimo Ingrassia"}]},{id:"45773",doi:"10.5772/57003",title:"Cultural Variations in Parenting Styles in the Majority World Evidences from Nigeria and Cameroon",slug:"cultural-variations-in-parenting-styles-in-the-majority-world-evidences-from-nigeria-and-cameroon",totalDownloads:5078,totalCrossrefCites:0,totalDimensionsCites:9,abstract:null,book:{id:"3440",slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Esther F. Akinsola",authors:[{id:"160225",title:"Dr.",name:"Esther",middleName:"Foluke",surname:"Akinsola",slug:"esther-akinsola",fullName:"Esther Akinsola"}]},{id:"45934",doi:"10.5772/57083",title:"Brazilian Mothers’ Cultural Models: Socialization for Autonomy and Relatedness",slug:"brazilian-mothers-cultural-models-socialization-for-autonomy-and-relatedness",totalDownloads:1687,totalCrossrefCites:2,totalDimensionsCites:8,abstract:null,book:{id:"3440",slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Maria Lucia Seidl-de-Moura, Rafael Vera Cruz de Carvalho and\nMauro Luís Vieira",authors:[{id:"108479",title:"Dr.",name:"Maria Lucia",middleName:null,surname:"Seidl-De-Moura",slug:"maria-lucia-seidl-de-moura",fullName:"Maria Lucia Seidl-De-Moura"}]},{id:"45939",doi:"10.5772/57242",title:"Child-Rearing Practices of Brazilian Mothers and Fathers: Predictors and Impact on Child Development",slug:"child-rearing-practices-of-brazilian-mothers-and-fathers-predictors-and-impact-on-child-development",totalDownloads:2977,totalCrossrefCites:1,totalDimensionsCites:4,abstract:null,book:{id:"3440",slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Cesar Augusto Piccinini, Patricia Alvarenga and Angela Helena\nMarin",authors:[{id:"161058",title:"Dr.",name:"Cesar",middleName:null,surname:"Piccinini",slug:"cesar-piccinini",fullName:"Cesar Piccinini"}]}],mostDownloadedChaptersLast30Days:[{id:"72249",title:"Digital Parenting: Raising and Protecting Children in Media World",slug:"digital-parenting-raising-and-protecting-children-in-media-world",totalDownloads:1577,totalCrossrefCites:4,totalDimensionsCites:10,abstract:"Digital media have quickly changed ways in which parents and children communicate, enjoy themselves, acquire information, and solve problems daily (both in ordinary and exceptional circumstances such as COVID-19 home confinement). Very young children are regular users of smartphones and tablet, so their early digital engagement poses new challenges to parent-child relationships and parental role. First, the chapter introduces the “digital parenting” construct, moving through the literature from “traditional” parenting styles to more recent studies on “parental mediation,” that is, the different behaviors parents adopt to regulate children’s engagement with the Internet and digital media. Second, the chapter reviews empirical researches on different parental mediation practices (active or restrictive behaviors) and how they are adjusted according to the child’s characteristics (age, digital competences, etc.) or parent’s media competence and beliefs. Finally, from a bidirectional perspective of parent-child relationships, the chapter discusses the role of youths’ social involvement, communication, self-disclosure, and digital skills on parent’s beliefs and practices. Implications for parent education and prevention of risks for early and excessive exposure to digital technologies are discussed.",book:{id:"9043",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",title:"Parenting",fullTitle:"Parenting - Studies by an Ecocultural and Transactional Perspective"},signatures:"Loredana Benedetto and Massimo Ingrassia",authors:[{id:"193200",title:"Prof.",name:"Loredana",middleName:null,surname:"Benedetto",slug:"loredana-benedetto",fullName:"Loredana Benedetto"},{id:"193901",title:"Prof.",name:"Massimo",middleName:null,surname:"Ingrassia",slug:"massimo-ingrassia",fullName:"Massimo Ingrassia"}]},{id:"72823",title:"Helicopter Parenting and Adolescent Development: From the Perspective of Mental Health",slug:"helicopter-parenting-and-adolescent-development-from-the-perspective-of-mental-health",totalDownloads:951,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Helicopter parenting is a unique form of parenting style that is generally described as highly intensive and highly involved with the children. A particular parenting style influences all phases of development and life style of adolescent. Helicopter parents overly protect their children from the difficulties by setting some set of instructions without consideration of the uniqueness of their children. Recent literature has got huge attention on this parenting style and debating the pros and cons on the development of child. Higher life satisfaction and better psychological wellbeing have been found in the children of highly intrusive parents. When there are positive effects of helicopter parenting, there are negative outcome and impacts that have also been studied. The difficulties in emotional regulation, academic productivity, and social skills among children raised by helicopter parenting have been reported in the literature. Low self-efficacy, lack of trust on peers, and alienation from peers have also been associated with helicopter parenting. The chapter highlights the associated aspects of childhood and adolescence, raised by helicopter parenting. As parents have their own concern about raising their children in certain manner, it is important to understand the underlying mechanism of parenting style. Therefore, this chapter also describes the theoretical framework. The associated mental health issues and supportive psychological intervention to be also discussed.",book:{id:"9043",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",title:"Parenting",fullTitle:"Parenting - Studies by an Ecocultural and Transactional Perspective"},signatures:"Deepika Srivastav and M.N. Lal Mathur",authors:[{id:"320545",title:"Ph.D.",name:"Deepika",middleName:null,surname:"Srivastav",slug:"deepika-srivastav",fullName:"Deepika Srivastav"},{id:"322605",title:"Dr.",name:"M.N.Lal",middleName:null,surname:"Mathur",slug:"m.n.lal-mathur",fullName:"M.N.Lal Mathur"}]},{id:"45760",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:9583,totalCrossrefCites:10,totalDimensionsCites:25,abstract:null,book:{id:"3440",slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"72914",title:"Parent-Adolescent Relationship and the Impact of Substance Dependency within the Trajectory of Adolescent Substance Use Disorder",slug:"parent-adolescent-relationship-and-the-impact-of-substance-dependency-within-the-trajectory-of-adole",totalDownloads:645,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Adolescents strive for freedom and autonomy; thus, communication with their parents needs to be enhanced. Building solid healthy relationships at this stage of their lives is of utmost importance to help them cope with the changes and challenges they are experiencing. The purpose of this chapter is to explore the parent-adolescent relationship in the substance dependency field. The focus is on the relationship between parents and their adolescents who have a substance use disorder. Parenting adolescents poses its own set of challenges, making it difficult to build and maintain healthy parent-adolescent relationships. We argue that although adolescent substance use disorder has been extensively researched, the relationship between parents and adolescents with substance use disorder has surprisingly not received the same attention. It is this gap that this chapter seeks to address. With this in mind, the ecological systems theory was employed here to shed light on the importance and significance of developing healthy parent-adolescent relationships. The findings show that the parent-adolescent relationship primarily informs the daily living of both the parents and the adolescents. The parent-adolescent relationship is therefore very important as it represents whole-family functioning.",book:{id:"9043",slug:"parenting-studies-by-an-ecocultural-and-transactional-perspective",title:"Parenting",fullTitle:"Parenting - Studies by an Ecocultural and Transactional Perspective"},signatures:"Faith Mathibela and Rebecca Mmamoagi Skhosana",authors:[{id:"317920",title:"Mrs.",name:"Faith",middleName:null,surname:"Mathibela",slug:"faith-mathibela",fullName:"Faith Mathibela"}]},{id:"56390",title:"Introductory Chapter: Sociology of Knowledge and Epistemological Paradox of Globalization",slug:"introductory-chapter-sociology-of-knowledge-and-epistemological-paradox-of-globalization",totalDownloads:1823,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"5924",slug:"epistemology-and-transformation-of-knowledge-in-global-age",title:"Epistemology and Transformation of Knowledge in Global Age",fullTitle:"Epistemology and Transformation of Knowledge in Global Age"},signatures:"Zlatan Delić",authors:[{id:"31746",title:"Dr.",name:"Zlatan",middleName:null,surname:"Delic",slug:"zlatan-delic",fullName:"Zlatan Delic"}]}],onlineFirstChaptersFilter:{topicId:"276",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"June 17th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:13,paginationItems:[{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11451",title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",hash:"8c918a1973786c7059752b28601f1329",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 4th 2022",isOpenForSubmission:!0,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11453",title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 16th 2022",isOpenForSubmission:!0,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11983",title:"Biomedical Signal and Image Processing - Advanced Imaging Technology and Application",coverURL:"https://cdn.intechopen.com/books/images_new/11983.jpg",hash:"81ebecb28b5cad564075e6f5b2dc7355",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 29th 2022",isOpenForSubmission:!0,editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11984",title:"Current Advances in Nanomedicine",coverURL:"https://cdn.intechopen.com/books/images_new/11984.jpg",hash:"3d98881cc9e323438670710d3aaaf71d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 6th 2022",isOpenForSubmission:!0,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11452",title:"Cryopreservation - Applications and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",hash:"a6c3fd4384ff7deeab32fc82722c60e0",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 12th 2022",isOpenForSubmission:!0,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Metabolism",value:17,count:12,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:14,group:"subseries"},{caption:"Chemical Biology",value:15,count:14,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Computational Neuroscience",value:23,count:1},{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:228,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Univeristy of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:null},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:null},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"355660",title:"Dr.",name:"Anitha",middleName:null,surname:"Mani",slug:"anitha-mani",fullName:"Anitha Mani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"355612",title:"Dr.",name:"Janani",middleName:null,surname:"Karthikeyan",slug:"janani-karthikeyan",fullName:"Janani Karthikeyan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334400",title:"Dr.",name:"Suvetha",middleName:null,surname:"Siva",slug:"suvetha-siva",fullName:"Suvetha Siva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334239",title:"Prof.",name:"Leung",middleName:null,surname:"Wai Keung",slug:"leung-wai-keung",fullName:"Leung Wai Keung",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Hong Kong",country:{name:"China"}}}]}},subseries:{item:{id:"25",type:"subseries",title:"Evolutionary Computation",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,submissionDeadline:"May 4th 2022",editors:[{id:"24687",title:"Dr.",name:"Toonika",middleName:null,surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhRjQAK/Profile_Picture_1636637493542",biography:"Toonika Rinken is an associate professor in environmental chemistry and is leading a biosensor development lab at the Institute of Chemistry in the University of Tartu, Estonia. She received her PhD degree in chemistry in 2000 in the same university for the modeling and calibration studies of biosensors and has passed professional self-improvement in Uppsala (Sweden) and Gröningen (the Netherlands). Dr. Rinken's research activities are focused on the studies and development of biosensing systems for automatic monitoring along with testing and application of biosensor based analytical systems.",institutionString:"University of Tartu",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"University of Tartu",institutionURL:null,country:{name:"Estonia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11665",title:"Recent Advances in Wildlife Management",subtitle:null,isOpenForSubmission:!0,hash:"73da0df494a1a56ab9c4faf2ee811899",slug:null,bookSignature:"Dr. Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",editedByType:null,submissionDeadline:"May 25th 2022",editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.jpg",biography:"Dr. Farzana Khan Perveen (FLS; Gold Medalist) obtained her BSc (Hons) and MSc in Entomology from the University of Karachi, Pakistan, and MAS (Monbusho Scholarship) in Agronomy from Nagoya University, Japan, and a Ph.D. in Toxicology from the University of Karachi. She is the founder of the Department of Zoology and former controller of examinations at Shaheed Benazir Bhutto University, Hazara University, and Kohat University of Science and Technology. She is the author of 150 high-impact research papers, 135 abstracts, 40 authored books, 9 chapters, and 9 edited books. She is also a student supervisor. Her fields of interest are entomology, toxicology, forensic entomology.",institutionString:"Classes et Events in Sciences (C.E.S.)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"7",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"12223",title:"Sustainable Management of Natural Resources",subtitle:null,isOpenForSubmission:!0,hash:"1881a08bbd8f5dc1102c5cb7c635bc35",slug:null,bookSignature:"Dr. Mohd Nazip Suratman and Dr. Engku Azlin Rahayu Engku Ariff",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",editedByType:null,submissionDeadline:"July 19th 2022",editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",middleName:null,surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman",profilePictureURL:"https://mts.intechopen.com/storage/users/144417/images/system/144417.jpg",biography:"Mohd Nazip Suratman is a Professor of Forestry at the Faculty of Applied Sciences, and a Principal Fellow at the Institute for Biodiversity and Sustainable Development, Universiti Teknologi MARA (UiTM), Malaysia, He earned a B. Sc in Forestry from Universiti Putra Malaysia (UPM) and an M. S from the University of Nebraska-Lincoln (UNL), USA. He was then honored with a prestigious fellowship from the Canadian Commonwealth to pursue a Ph.D. degree at the University of British Columbia (UBC), Canada, where he worked on the application of remote sensing for forest resources management. He has been involved in numerous collaborative international research projects that led to publications in reputable journals. Altogether, he has published a total of 14 books and more than 200 research publications. His research interests cover several aspects of forestry, mainly forest modeling, forest ecology, and biodiversity. He received the UiTM’s Best Researcher and Top Talent Awards in 2015 and 2021, respectively. He served as the Deputy Vice-Chancellor (Research and Innovation) from 2018 to 2021.",institutionString:"Universiti Teknologi MARA",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Universiti Teknologi MARA",institutionURL:null,country:{name:"Malaysia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/180031",hash:"",query:{},params:{id:"180031"},fullPath:"/profiles/180031",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()