Minor anomalies seen in various systems.
\r\n\tIn the book the theory and practice of microwave heating are discussed. The intended scope covers the results of recent research related to the generation, transmission and reception of microwave energy, its application in the field of organic and inorganic chemistry, physics of plasma processes, industrial microwave drying and sintering, as well as in medicine for therapeutic effects on internal organs and tissues of the human body and microbiology. Both theoretical and experimental studies are anticipated.
\r\n\r\n\tThe book aims to be of interest not only for specialists in the field of theory and practice of microwave heating but also for readers of non-specialists in the field of microwave technology and those who want to study in general terms the problem of interaction of the electromagnetic field with objects of living and nonliving nature.
",isbn:"978-1-83968-227-8",printIsbn:"978-1-83968-226-1",pdfIsbn:"978-1-83968-228-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"8f6a41e4f5ce0e9c48628516d7c92050",bookSignature:"Prof. Gennadiy Churyumov",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10089.jpg",keywords:"Electromagnetic Wave, Microwave Energy Application, Electromagnetic Energy Generation, Intelligent Microwave Heating, Microwave Organic Chemistry, Microwave Reactor, Microwave Discharge, Microwave Plasma, Microwave Drying System, Tissue Microwave Heating, Measurement Automation, Industrial Microwave Process",numberOfDownloads:224,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 3rd 2020",dateEndSecondStepPublish:"July 24th 2020",dateEndThirdStepPublish:"September 22nd 2020",dateEndFourthStepPublish:"December 11th 2020",dateEndFifthStepPublish:"February 9th 2021",remainingDaysToSecondStep:"7 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Prof. Gennadiy I. Churyumov is a professor at two universities: Kharkiv National University of Radio Electronics, and Harbin Institute of Technology and a senior IEEE member.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"216155",title:"Prof.",name:"Gennadiy",middleName:null,surname:"Churyumov",slug:"gennadiy-churyumov",fullName:"Gennadiy Churyumov",profilePictureURL:"https://mts.intechopen.com/storage/users/216155/images/system/216155.jfif",biography:"Gennadiy I. Churyumov (M’96–SM’00) received the Dipl.-Ing. degree in Electronics Engineering and his Ph.D. degree from the Kharkiv Institute of Radio Electronics, Kharkiv, Ukraine, in 1974 and 1981, respectively, as well as the D.Sc. degree from the Institute of Radio Physics and Electronics, National Academy of Sciences of Ukraine, Kharkiv, Ukraine, in 1997. \n\nHe is a professor at two universities: Kharkiv National University of Radio Electronics, and Harbin Institute of Technology. \n\nHe is currently the Head of a Microwave & Optoelectronics Lab at the Department of Electronics Engineering at the Kharkiv National University of Radio Electronics. \n\nHis general research interests lie in the area of 2-D and 3-D computer modeling of electron-wave processes in vacuum tubes (magnetrons and TWTs), simulation techniques of electromagnetic problems and nonlinear phenomena, as well as high-power microwaves, including electromagnetic compatibility and survivability. \n\nHis current activity concentrates on the practical aspects of the application of microwave technologies.",institutionString:"Kharkiv National University of Radio Electronics (NURE)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"24",title:"Technology",slug:"technology"}],chapters:[{id:"74623",title:"Influence of the Microwaves on the Sol-Gel Syntheses and on the Properties of the Resulting Oxide Nanostructures",slug:"influence-of-the-microwaves-on-the-sol-gel-syntheses-and-on-the-properties-of-the-resulting-oxide-na",totalDownloads:94,totalCrossrefCites:0,authors:[null]},{id:"75284",title:"Microwave-Assisted Extraction of Bioactive Compounds (Review)",slug:"microwave-assisted-extraction-of-bioactive-compounds-review",totalDownloads:12,totalCrossrefCites:0,authors:[null]},{id:"75087",title:"Experimental Investigation on the Effect of Microwave Heating on Rock Cracking and Their Mechanical Properties",slug:"experimental-investigation-on-the-effect-of-microwave-heating-on-rock-cracking-and-their-mechanical-",totalDownloads:28,totalCrossrefCites:0,authors:[null]},{id:"74338",title:"Microwave Synthesized Functional Dyes",slug:"microwave-synthesized-functional-dyes",totalDownloads:21,totalCrossrefCites:0,authors:[null]},{id:"74744",title:"Doping of Semiconductors at Nanoscale with Microwave Heating (Overview)",slug:"doping-of-semiconductors-at-nanoscale-with-microwave-heating-overview",totalDownloads:45,totalCrossrefCites:0,authors:[null]},{id:"74664",title:"Microwave-Assisted Solid Extraction from Natural Matrices",slug:"microwave-assisted-solid-extraction-from-natural-matrices",totalDownloads:25,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6826",title:"The Use of Technology in Sport",subtitle:"Emerging Challenges",isOpenForSubmission:!1,hash:"f17a3f9401ebfd1c9957c1b8f21c245b",slug:"the-use-of-technology-in-sport-emerging-challenges",bookSignature:"Daniel Almeida Marinho and Henrique Pereira Neiva",coverURL:"https://cdn.intechopen.com/books/images_new/6826.jpg",editedByType:"Edited by",editors:[{id:"177359",title:"Dr.",name:"Daniel Almeida",surname:"Marinho",slug:"daniel-almeida-marinho",fullName:"Daniel Almeida Marinho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8494",title:"Gyroscopes",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"cc0e172784cf5e7851b9722f3ecfbd8d",slug:"gyroscopes-principles-and-applications",bookSignature:"Xuye Zhuang and Lianqun Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/8494.jpg",editedByType:"Edited by",editors:[{id:"69742",title:"Dr.",name:"Xuye",surname:"Zhuang",slug:"xuye-zhuang",fullName:"Xuye Zhuang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8878",title:"Advances in Microfluidic Technologies for Energy and Environmental Applications",subtitle:null,isOpenForSubmission:!1,hash:"7026c645fea790b8d1ad5b555ded994d",slug:"advances-in-microfluidic-technologies-for-energy-and-environmental-applications",bookSignature:"Yong Ren",coverURL:"https://cdn.intechopen.com/books/images_new/8878.jpg",editedByType:"Edited by",editors:[{id:"177059",title:"Dr.",name:"Yong",surname:"Ren",slug:"yong-ren",fullName:"Yong Ren"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7714",title:"Emerging Micro",subtitle:"and Nanotechnologies",isOpenForSubmission:!1,hash:"5c6ea07211f78aafb0b53a184224d655",slug:"emerging-micro-and-nanotechnologies",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/7714.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10151",title:"Technology, Science and Culture",subtitle:"A Global Vision, Volume II",isOpenForSubmission:!1,hash:"1a9e7327c929421c873317ccfad2b799",slug:"technology-science-and-culture-a-global-vision-volume-ii",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10151.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9336",title:"Technology, Science and Culture",subtitle:"A Global Vision",isOpenForSubmission:!1,hash:"e1895103eeec238cda200b75d6e143c8",slug:"technology-science-and-culture-a-global-vision",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/9336.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6516",title:"Metrology",subtitle:null,isOpenForSubmission:!1,hash:"09e6966a3d9fadcc90b1b723e30d81ca",slug:"metrology",bookSignature:"Anil",coverURL:"https://cdn.intechopen.com/books/images_new/6516.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"58402",title:"The Neonate with Minor Dysmorphisms",doi:"10.5772/intechopen.71902",slug:"the-neonate-with-minor-dysmorphisms",body:'Dysmorphology is the branch of clinical genetics that attempts to interpret the human growth patterns and structural defects.
Often, the neonatologist has the opportunity to be the first to identify a congenital anomaly in the neonates. Thus, the presence of a neonatal dysmorphic syndrome (be it major or minor) must be shared with the parents, something that may certainly cause feelings of anxiety.
Addressing the diagnosis of a dysmorphic newborn is similar to the diagnosis of systemic diseases – it relies on analyzing the family history and on performing a meticulous examination of signs and expressions, in an effort to identify a syndrome [1].
The steps to be taken after identifying a neonatal dysmorphism are to confirm the diagnosis through cytogenetic testing via molecular techniques (in order to confirm/exclude a genetic etiology), followed by family counseling by the neonatologist-geneticist team.
After many years spent ‘looking after little patients’, we hereby discuss a number of anomalies and abnormal physical characteristics, isolated or associated, together with the genetic syndromes in which they can be included.
Since the neonatologists are the first to evaluate the neonates, they must be familiar with various major and minor dysmorphisms. The diagnosis of a syndrome depends on good clinical skills, knowledge of phenotypic features of various syndromes and the experience of the examiner.
Dysmorphism [1] is a morphological anomaly of a structure, a deviation from the norm, and can be classified as major or minor. Major abnormalities may be surgical, medical or cosmetic, and they may be markers for other malformations too. Minor anomalies do not have significant surgical or cosmetic importance, though many genetic syndromes can be recognized based on basis of minor anomalies.
Anomalies may occur through three mechanisms [2], each having different implications for the diagnosis:
The malformative mechanism causes structural defects, resulting from an inherently abnormal development process, a primary error in morphogenesis. Malformations include congenital heart, lips, and palate abnormalities. These types of malformations are most commonly associated with a genetic disease or a genetic predisposition.
The malformation sequence results from a single primary malformation, as is the case with lumbar neural tube defects.
Malformative syndrome results from several different biological errors during morphogenesis.
The deforming mechanism is an anomaly resulting from the action of prenatal mechanical forces on normal fetal structures. The femur, the fingers (that become overlapped) and the head (that grows into an unusual shape) can be affected. Deformations are rarely genetic, and the recurrence risk is usually low.
The disruptive mechanism causes structural defects resulting from the destruction or interruption of normal intrinsic tissue, such as limbs reduction in amniotic band sequence or certain types of intestinal atresia due to vascular insufficiency [3]. The anomalies are rarely caused by a genetic condition and unlikely to occur in a future pregnancy.
Other terms used to describe the congenital anomalies are:
Dysplasia, which is an abnormal cellular organization within a tissue, causing structural abnormalities (for example changes in bone structure and cartilage in skeletal dysplasia).
Association, which is a group of abnormalities that occurs more frequently than expected, but which do not have a predictable pattern or a unique etiology.
The incidence of congenital abnormalities is approximately 10% of total admissions in neonatal intensive care units (NICUs). Many of them have underlying genetic syndromes. Worldwide, around 7.9 million children (6% of births worldwide) are born with congenital anomalies [4] annually.
Minor anomalies, the subject of this chapter, appear to be isolated more frequently. About 15% of neonates are diagnosed with one minor anomaly (Table 1). About 71% of them are found in head, neck and hands. Among neonates diagnosed with an isolated minor anomaly, 3% have a major associated abnormality.
Affected segment | Minor anomaly diagnosed |
---|---|
Head and throat |
|
Eyes |
|
Ear |
|
Skin |
|
Hand |
|
Leg |
|
Others |
|
Minor anomalies seen in various systems.
0.8% of neonates have two minor anomalies associated, and 11% of them have a major associated abnormality.
The presence of three or more minor abnormalities is rare (about 0.5%), and in most cases (90%), neonates also associate a major malformation.
Asymmetric crying facies (ACF) is a minor abnormality, characterized by lowering the corner of the mouth on the unaffected side when crying or sketching a grimace. This is caused by the congenital absence of the anguli oris depressant muscle. The ACF neonates show both nasolabial folds with normal, symmetrical depth and do have the normal ability to lift their forehead and close both eyes. This anomaly must be distinguished from facial nerve paralysis, which is less common [5]. In 20–70% of cases, ACF is associated with other congenital abnormalities, the most common being head/neck, cardiovascular, musculoskeletal, genitourinary and gastrointestinal.
Once this anomaly has been identified, genetic testing is recommended (FISH test or chromosomal microarray comparative genomic hybridization) because ACF is especially associated with 22q11 deletion syndrome (also known as velocardiofacial or DiGeorge syndrome). In this syndrome, the facial dysmorphism coexist with structural heart anomalies, long fingers/limbs, thymus aplasia/hypoplasia and kidney abnormalities. The postnatal follow-up protocol recommends close monitoring of growth and development, evaluation of thyroid and parathyroid function, immunological, hearing and ophthalmic evaluation, echocardiography, renal ultrasonography and the treatment of possibly associated anomalies [6].
Aplasia cutis congenita (ACC) is the congenital absence of the skin, and may occur on any part of the body. It affects the scalp in 70–80% of the cases (Figure 1), either as solitary lesions or associated with skull and dura mater defects [2, 7]. Aplasia cutis congenita is a rare anomaly in neonates. Over 500 cases have been reported since the first description, by Cordon in 1767. Due to the unreported cases, their real incidence is unknown. An estimate of the incidence is about 3 out of 10,000 births [8].
Aplasia cutis congenita.
The pathophysiological mechanism of aplasia cutis congenita is unclear; some theories suggest the involvement of factors such as obstetrical trauma, intrauterine infections with varicella zoster or herpes virus, as well as teratogenic agents, such as cocaine and methimazole [7, 9].
When this anomaly is confirmed, a series of additional investigations are required to determine if there are also other associated malformations that describe a genetic syndrome.
Adams-Oliver’s syndrome includes (alongside ACC and limb defects) cutis marmorata telangiectatica congenita, central nervous system abnormalities and cardiovascular abnormalities. To diagnose this genetic syndrome, cerebral and spine (MRI) imaging, limb radiographs, echocardiography and genetic tests with genes ARHGAP31, DOCK6, RBPJ, EOGT [7, 10] sequencing are required. Adams-Oliver Syndrome can be transmitted either autosomal dominant or autosomal recessive. ACC has also been associated with trisomy 13 [11].
ACC may evolve with complications (local infection, meningitis, bleeding and superior sagittal sinus thrombosis). The mortality rate lies between 20 and 50% and depends on the size of the lesion and its association with other malformations.
Small sized ACC, located laterally to the median line, is usually a unique congenital anomaly and does not require further evaluation. In sizeable defects, located on the median line, with a membranous appearance that raises the suspicion of a simultaneously damage of the skull and dura mater, cerebral and spinal MRI are recommended. A subjacent neural tube defect must be confirmed or excluded. Treatment for ACC is usually conservative [7].
The outcome is usually very good, small defects evolving toward healing within a few weeks through progressive epithelization and atrophic, hairless scarring [8]. In rare cases, hemorrhage and local infections may appear. Large defects of the scalp can be surgically repaired using autologous or biological grafts.
If aplasia cutis congenita is associated with other anomalies, the outcome depends on their severity.
Deep and small defects of the scalp and skull close spontaneously during the first year of life. Larger-sized defects require surgical correction.
Scalp defects that interest the skull and dura mater can be complicated by sagittal sinus thrombosis and are associated with a mortality rate greater than 50%.
Micrognathia is a rather frequent clinical craniofacial abnormality, caused by congenital mandibular hypoplasia (Figure 2). It is usually associated with a deficient gonial angle, ascending ramus, and mandibular corpus.
Mild micrognathia associated with retrognathia.
It can appear as a minor and isolated abnormality, or may be severe, as part of a genetic syndrome, frequently causing postnatal complications.
Congenital mandibular hypoplasia occurs either through intrauterine deformation or malformative mechanisms, as a result of a primary intrinsic growth disorder [12, 13].
The mandible is formed from the neural crest, beginning with the onset of the 4th week of gestation, the cells migrating to the upcoming region of the head and neck and with the initiation of the formation of the gill arches. From the first branching arch, two prominences develop, the mandibular and the maxillary one. The mandibular protrusion will form the mandible, and the jaw will form the jaw bone, the zygomatic bone and the squamous part of the temporal bone.
It is likely that congenital mandibular hypoplasia results from poor or insufficient development of the neural crest, or by means of altered migration process to the first branch of the gill, during the 4th week of gestation.
The diagnosis of micrognathia in neonates requires a careful clinical evaluation, to identify other associated craniofacial abnormalities, such as cleft palate or the coexistence of other congenital anomalies. The maxillary, the zygomatic bone, the temporal bone, the cranial vault and the cervical spine represent the other anatomical regions that can be affected.
In the clear majority of cases that include, among the first clinical signs – micrognathia, the diagnosis of genetic syndromes can be suspected on clinical examination. Subsequently, the case requires confirmation by genetic testing, as in deletion syndrome 22q11 cases.
Approximately 60 syndromes associated with micrognathia have been described, such as [12]:
Aneuploidic syndromic
Trisomy 9
Trisomy 13
Trisomy 18
Non Aneuploidic syndromic
Fryns syndrome
Goldenhar syndrome (hemifacial microsomia)
Hydrolethalus syndrome
Lethal multiple pterygium syndrome
Nager syndrome
Pena Shokeir syndrome
Pierre Robin sequence
Seckel syndrome
Smith Lemli Opitz syndrome
Stickler syndrome
TAR syndrome
Treacher Collins syndrome (mandibulofacial dysostosis)
Micrognathia can result in a malocclusion (poor bite), where the teeth and jaws do not line up properly, or in more severe cases, in difficulties in breathing or swallowing. Underdeveloped mandibles can also cause severe psychological and functional impact in the growing of the child, and may be associated with life-threatening complications such as obstructive sleep apnea [12].
Although there is a wide variety of ocular morphology (in terms of gender, ethnicity and age), a careful analysis of some dysmorphological entities and objective measurements during the clinical examination can help diagnose some features outside of the normal standards, which may help identifying a syndrome.
Brushfield spots are white, yellow-colored spots on the anterior surface of the iris or small white-gray areas around the pupil.
Brushfield spots are observed in 20% of normal neonates, regardless of the color of their eyes. 85% of people with blue eyes show these spots (Figure 3).
Brushfield spot.
They are also very common (80%) in the iris of children with trisomy 21. In children with Down syndrome and brown eyes, these spots are visible in 15–17% of cases only, being masked by normal pigmented cells. In cases with black eyes, they cannot be identified.
Brushfield spots should be differentiated from normal stromal condensation called “Kunkmann Wolffian bodies”, which are light-colored, located peripherally in the iris and are not considered to be ocular dysmorphisms.
Epicanthal fold represents the oblique or vertical skin fold [14], which starts from the upper eyelid to the lower eyelid, covering the inner corner of the eye and it is most frequently bilateral (Figure 4). This feature is also named plica palpebronasalis or the historically Mongolian fold.
Inner epicanthal fold.
These skin folds appear through the excessive development of the skin across the nasal bridge. This excess skin presents a certain tension determined by the ectopic orbicularis oculi muscle fibers and connective tissue [15], leading to residual horizontal skin over the nasal bridge.
One of the main facial features that is often closely associated with the epicanthic fold is the elevation of the nasal bridge [16].
Factors influencing this facial trait are: geographical ancestry, age and certain pathological conditions such as blepharophimosis, palpebral ptosis.
The epicanthic fold may be an isolated congenital anomaly, or it may be a manifestation of other syndromes [17, 18]. Approximately 60% of people with Down syndrome have this fold, named “the Mongoloid fold” by John Langdon Down. In Zellweger’s syndrome, epicanthic folds are present and prominent [19]. Other pathological conditions that highlight this epicanthic fold are the fetal alcohol syndrome, phenylketonuria, Turner syndrome and Smith-Lemli-Opitz syndrome.
Four types of epicanthic folds [20] have been identified:
Epicanthus tarsalis: the fold is most prominent along the upper eyelid - the normal anatomical variant of the Asian eyelid
Epicanthus inversus: the fold is most prominent along lower eyelid - associated with blepharophimosis syndrome
Epicanthus palpebralis: involves both upper and lower eyelids
Epicanthus superciliaris: the fold originates from the brow and follows down to the lacrimal sac
The evolution of epicanthic folds is favorable: a mild degree of epicanthus disappears most frequently with further development of the nose and massive facial bone [20, 21].
Surgical correction is only occasionally required. One of the surgical indications is in the case of epicanthus inversus, which does not resolve on its own with further growth and development of the face [15].
Telecanthus is the increased distance between the medial canthi of both eyes, with normal interpupillary distance. This condition is different to hypertelorism, which refers to an increased distance between the orbits [22].
Telecanthus may appear secondary to obstetrical traumas such as naso-orbito-ethmoidal fractures, and it may be an ethnic marker. It could also represent the expression of sinus or orbital tumors, or it may be associated with syndromes such as:
Sinus polyps – Kartagener syndrome
Down syndrome
Turner syndrome
Klinefelter syndrome
Fetal alcohol syndrome
Cri du chat syndrome
Dubowitz syndrome
Noonan syndrome
SHORT syndrome
Hypertelorism is a clinical sign in a wide range of affections and syndromes such as:
Edwards syndrome
1q21.1 duplication syndrome
Basal cell nevus syndrome
DiGeorge syndrome
Loeys-Dietz syndrome
Apert syndrome
Neurofibromatosis
Leopard syndrome
Crouzon syndrome
Wolf-Hirschhorn syndrome
Andersen-Tawil syndrome
Waardenburg syndrome
Cri du chat syndrome
Since hypertelorism is a facial dysmorphism associated with a large and diverse number of congenital disorders and syndromes, the mechanism of hypertelorism is heterogeneous.
A number of theories have attempted to pinpoint this anomaly, such as: the early ossification of the lower wings of the sphenoid, the increasing width of the ethmoid sinuses, the formation and abnormal development of the skull, which can be seen in syndromes such as Apert and Crouzon [22].
In the normal eye, the eyelids are generally positioned so that the lateral canthus is about 1 mm higher than the medial canthus. The palpebral slant is the direction of the slant of a line that goes from the outer corner of the eye to the inner corner.
The upper or lower slant of the palpebral fissure can be a genetic or ethnic feature (Asian population), but there are a number of conditions and syndromes manifested through this anomaly, isolated or in association with others, such as the Treacher Collins syndrome, Franceschetti (oculo-mandibulo-facial) syndrome, Down syndrome, fetal alcohol syndrome or other genetic disorders.
The identification of an abnormal slant of the palpebral fissure requires a thorough medical examination with an analysis of family history, a physical exam to detect other associated disorders/abnormalities and paraclinical investigations (karyotype), enzyme assays and metabolic studies [23].
The incidence of ear malformations is approximately 1 in 3800 newborns [24] and accounts for 50% of all ENT (Ear, Nose, and Throat) malformations. The most common malformations are unilateral and localized in the outer and middle ear.
Auricular malformations in newborns may be genetic (associated with syndromes or not, with family history, spontaneous mutations) or intrauterine (acquired by deformation mechanisms).
External ear malformations may involve the orientation, position, size, and external configuration of the pinna. The absence of the external ear can be identified (anotia).
Auricular and preauricular ear tags and pits (Figures 5 and 6) are frequent findings on routine neonatal physical examinations, occurring at a frequency of 1 in 12,500 births [25]. The incidence of spontaneous formation of external ear pits in the non-syndromic population ranges between 0.3 and 1.3%, it equally affects both sexes and it has no race predilection. The incidence of unilateral preauricular sinus is 1.3% and that of bilateral preauricular sinus is 0.3%. The rate of genetic transmission of bilateral preauricular sinus was higher in children with a parent with this condition, compared to the cases of unilateral preauricular sinus.
Preauricular tag.
Preauricular tag.
The ear begins to develop in the 6th week of gestation, from the first and second branchial arches. A series of 6 mesenchymal proliferations is formed, known as hillocks of His, which subsequently fuse to form the definitive auricle. The first three hillocks are derived from the first branchial arch and form the tragus, crus of the helix and helix, and the other three hillocks are derived from the second arch and form the antihelix, scapha, and the lobule.
Auricular fistulas may be caused by faulty or incomplete fusion of the hillocks or by localized folding of the ectoderm. Genetic tests suggest that preauricular fistula appears due to an abnormality in chromosome 8q11.1-q13.3 [25].
Preauricular tags may be caused by supernumerary development of the first 3 hillocks of the first branchial arch.
Auricular fistulas are small, pigmented, benign congenital formations [26], located in the tegument and auricular and periauricular soft tissues, anywhere along a line drawn from the tragus to the angle of the mouth. They were first described by Van Heusinger in 1864.
Auricular fistulas are small pits/openings, located anywhere at the anterior margin of the auricle, from crus of the helix to helix, and are lined by squamous epithelium.
These auricular abnormalities can be found in isolation or as part of a genetic syndrome. All newborns will need a hearing assessment later because outer ear abnormalities can be associated with additional abnormalities such as shape abnormalities (helical ear pits), asymmetry, posterior angulation, small size, absent tragus, and narrow external auditory meatus [26], middle or inner ear malformations, and with progressive hearing loss.
These patients should be examined for any other malformations in an attempt to include the anomaly in a genetic syndrome such as [2, 26, 27, 28, 29]:
Craniofacial microsomia: association of auricular nodules with other external ear abnormalities, progressive hearing loss, palatoschisis, maxillary and/ or mandibular hypoplasia and renal abnormalities. These children require audiological assessment and renal ultrasonography, and from the point of view of genetic diagnosis, karyotype testing.
Branchio-oto renal syndrome (BOR): the association of auricular fistulae with other outer ear abnormalities, renal abnormalities and Brachial cleft fistulae. These children require auditory and renal echography, and from the point of view of genetic diagnosis, EYA1, SIX5, SIX1 sequencing is required.
Beckwith-Wiedemann syndrome: auricular fistulae associated with ear lobe asymmetry
Oculo-auriculo-vertebral dysplasia (Goldhar Syndrome): associates auricular nodules, upper eyelid coloboma, outer ear deformities and vertebral abnormalities
Chromosome arm 11q duplication syndrome: Preauricular tags or pits
Chromosome arm 4p deletion syndrome: Preauricular dimples or skin tags
Chromosome arm 5p deletion syndrome: Preauricular tags
De novo appearance of these auricular abnormalities associated with those on the face and neck may be related to the use of propylthiouracil in early pregnancy to treat maternal hyperthyroidism [30].
When auricular fistulae and nodules are isolated, no further evaluation is required for these children [2].
Most cases with typical location of auricular and preauricular fistulas are asymptomatic and do not require surgery. They can retain epithelial and sebum debris, and can evolve to subcutaneous cysts or infection. This may in turn lead to cellulitis or abscess, and may require aspiration of the collection if the antibiotic therapy is not responding. In cases of recurrent cyst infection, surgical excision of the cyst and the fistula tract is indicated. A preauricular fistulae may vary in length, may have a sinuous tract or may be extensively branched. If there are auricular fistulas and subcutaneous cysts, they adhere to the auricular perichondritis. Thus, complete elimination of the fistula or cyst should also include a portion of the auricular perichondritis at the base of the lesion [26]. Auricular and preauricular nodules can be excised for esthetic reasons.
Microtia is a congenital anomaly characterized by the underdevelopment of the outer ear, while anotia is the complete absence of the ear. Because microtia and anotia have the same origin, they can be described as microtia-anotia [31].
Microtia can be unilateral or bilateral and its frequency is of approximately 1–3 to every 10,000 births [32]. In the case of unilateral microtia, the right ear is most frequently affected [31].
Etiologically, the administration of the teratogenic agent called isotretinoin (Accutane®) during pregnancy may lead to these congenital auricular abnormalities (anotia/microtia).
The pathogenesis of microtia is heterogeneous, and there have been indications of unique genetic mutations or its presence as a family trait [33].
Microtia has a broad spectrum of phenotypic aspects, from the uncomplicated hereditary one, (which is transmitted as a dominant feature, and it is most often harmless), to severe, complicated forms of hearing loss. From a clinical point of view, four grades of microtia have been described:
Grade I: A less than complete development of the external ear with identifiable structures and a small but present external ear canal
Grade II: A partially developed ear (usually the top portion is underdeveloped) with a stenotic external ear canal producing a conductive hearing loss
Grade III: the most common form of microtia: Absence of the external ear with a small peanut-like vestige structure and an absence of the external ear canal and ear drum.
Grade IV: Absence of the total ear or anotia.
Isolated microtia is relatively common, but it can be found in newborns in association with other facial dysmorphisms, such as hemifacial microsomia, Goldenhar syndrome or Treacher Collins syndrome [34], jaw deformities, vertebral anomalies [35], heart defects, limb abnormalities, renal abnormalities and holoprosencephaly [32, 36].
Auricular atresia is the underdevelopment of the middle ear and auditory canal, and it occurs relatively frequently in conjunction with microtia, since newborns with microtia have no external opening to the ear canal, although the cochlea and the other internal ear structures are usually present. The degree of microtia usually correlates to the grade of underdevelopment of the middle ear [37, 38].
The assessment of newborns and infants with microtia-anotia should include a thorough clinical examination for the detection of associated structural defects, pediatric audiological test, multi-disciplinary consultation with the genetic specialist, pediatric otolaryngologist, and pediatric plastic surgeon.
A minor anomaly does not require surgical correction. When the auricle is very deformed or absent (grades III and IV), reconstruction is often required for esthetic reasons. Most reconstructive interventions are recommended after the age of 6–10 years old, when the ear pavilion has 80% of the size of an adult ear.
The management of a microtia case associated with an auditory meatus defect is performed by long term periodic audiological monitoring, especially if there is an atresia of the auditory meatus, with the possible placement of an amplification device, especially in the case of the bilateral forms [39].
The surgical procedure for restoring the pinna is complex and is performed in several stages, with esthetic results that vary greatly, as the outer ear structure is difficult to duplicate [40]. A plastic surgical alternative is the use of a synthetic prosthetic pinna or a pinna obtained via the three-dimensional printing technology, but the research is still underway [41].
Macrotia refers to an oversized or enlarged but well-developed auricle without any other malformations of the ear (Figure 7). The most exaggerated portion of the ear is the scaphoid fossa. The condition is usually bilateral and symmetric.
Bilateral macrotia with abnormal shape of the auricle.
Generally, it has an autosomal dominant pattern of transmission and an unknown pathogenesis [42].
Macrotia is commonly associated with the following syndromes:
Marfan Syndrome: large auricle with dropped, floppy cartilage
Fragile X-syndrome: macrotia with floppy cartilage, associated with mild or profound X-linked retardation [43].
Cerebro-oculo-facial-skeletal syndrome (COFS): macrotia associated with neurogenic arthrogryposis, microcephaly, micro-ophthalmia.
Variant of De Lange type 2 syndrome [44]: characterized by macrotia associated with severe microcephaly, mild mental retardation, muscular hypotonia and dysmorphic faces (flat profile, mild ptosis, short nose with a large tip and anteverted nares, narrow mouth, retrognathism).
Otoplasty can improve the shape, position and proportion of the ear. It is a reconstructive surgery procedure that attempts to harmonize the ratio between ear and face.
It is a congenital vascular abnormality which consists of an agglomeration of neo-formation capillary vessels, manifested in the form of variable reddish-purple patches (Figures 8 and 9). These patches are mainly located on the face, neck and lips, but they can appear on any area of the body. They are diagnosed by clinical inspection.
Capilary hemangioma – Posterior neck.
Capilary hemangioma – Forearm.
Capillary hemangiomas occur only in the layers of the skin, and they do not develop in depth. They generally appear within a few weeks after birth, but they may appear in infants too and most frequently disappear spontaneously in 1–2 years. A special form of this anomaly is the ‘birthmark’, the clinical form that appears on the nape or covers a portion of the face and has a violet color [45, 46].
Capillary hemangiomas are prone to irritation and ulceration. Each lesion must be evaluated individually, and the practitioner may opt to treat it selecting an alternative therapeutic route.
The treatment can be surgical and dermatological-medical and may consist of the surgical excision of hemangiomas, laser pulses, cryosurgery and systemic administration of glucocorticoids. Oral propranolol may be administered in order to reduce the size of hemangiomas may be a therapeutic option [47].
Mongolian Spots, also known as Mongolian Blue Spots or congenital dermal melanocytosis, represent a congenital condition characterized by the presence of smooth spots, irregular-shaped with wavy borders, dark blue to brown, with a normal skin texture [48]. They may be present from birth or may appear within the first few weeks of life during the neonatal period.
Mongoloid Spots represent an agglomeration of dermal melanocytes and is not a clinical sign associated with a disease or syndrome.
Depending on the location of melanocytes on the surface of the skin, the coloration of the Mongoloid Spots change. If they are superficially located, the color of the spots is brown, and the deeper they are, the color tends more and more to have a blue shade [48, 49].
Mongoloid Spots are most commonly diagnosed at birth due to specific coloration and localization, and no additional investigation methods are required. They are found with a frequency of 90% in the black population and the Native Americans, in about 80% of Asian infants, 70% of Hispanic individuals and in a reduced proportion of 5–10% of Caucasian children [48, 49]. Incidence is lower in preterm infants compared to full-term infants, and in terms of gender distribution, the incidence is higher in boys.
Most spots are located on the buttocks, lumbosacral (Figure 10), deltoid and dorsal region, on the limbs and in rare cases on the face or on the occipital region. There may be single or multiple spots, ranging in size from 1 to 2 cm to tens of cm [50].
Mongoloid spot – Lumbosacral region.
No treatment is recommended, as Mongoloid spots generally disappear spontaneously at the age of 1–4 years, most frequently in the first year of life. If they do not disappear until puberty, they remain permanent, a situation that occurs in approximately 5% of cases [51].
Cutis marmorata telangiectatica congenita is a rare congenital vascular disorder that manifests itself by affecting the blood vessels of the skin by alternating a vascular network with a vasodilation and vasoconstriction process which gives the skin a marbled appearance. It is accentuated by cold temperatures, but it does not disappear when exposed to warmer temperatures [52].
It should not be confused with Cutis Marmorata, which is a normal, adaptive, physiological response of the newborn to exposure to low temperatures. This disorder is due to a neurological and vascular immature system, it varies between the constriction and dilation of blood vessels, and it occurs most frequently in the hands and feet.
Very few cases of cutis marmorata telangiectatica congenita have been reported worldwide - less than 100 cases [53], but in reality it is more common than that. Mild forms are not that rare, but they are not reported [54].
The pathophysiological mechanisms are still unclear, with most cases occurring sporadically, although rare cases were reported in some families. Studies indicate the primary involvement of capillaries, venules and veins, and possibly arterioles and lymphatic vessels.
The hypothetical mechanisms that have been proposed are environmental factors, peripheral neural dysfunctions, failure of the development of mesodermic vessels in an early embryonic stage and autosomal dominant inheritance with incomplete penetrance [52, 55].
Diagnosis: skin manifestations may be associated with the asymmetry of extremities, macrocephaly, glaucoma, cutaneous atrophy, chronic skin ulcerations, neurological anomalies, vascular anomalies (nevus flammeus, Sturge–Weber syndrome, Klippel-Trénauna syndrome, Adams Oliver syndrome), psychomotor and /or mental retardation [56].
Management: in general, there is no treatment for this condition, but the associated anomalies can be treated. In the case of limb asymmetry, without motor dysfunction, there is the possibility of inserting an “elevation” device for the shorter leg during early childhood. Laser therapy has not been successful in the treatment of this vascular skin disorder, possibly due to many dilated capillaries and veins in the deep layers of the skin.
Prognosis: the prognosis is favorable in most cases, when patients experience an isolated cutaneous abnormality. In most cases, the marbled appearance regresses spontaneously during the first year of life due to the normal maturation process, with the thickening of the epidermis and dermis. In fewer cases, lesions can continue for up to 10 years or throughout the patient’s life.
Pigmentary nevi, also known as melanocytic nevi, are benign neoplasms present from birth - congenital melanocytic nevi may develop throughout life.
Pigmentary nevi appear with a high frequency as uniform, beige, brown or skin-color formations, sometimes protruding, circular or oval, with regular, smooth, well-defined margins, of 6 mm in diameter [57, 58].
Histopathologically, they are cellular (melanocyte) benign clusters that change very little in life, have a slow growth, and never invade the surrounding tissues. The number of nevi is influenced both genetically - the family history is very important - and from the sun exposure of the infant [59].
Congenital pigmentary nevi over 20 cm in diameter have an increased risk of malignancy.
Pigmentary nevi are commonly diagnosed clinically or using the dermatoscope.
The management of pigmentary nevi depends on the type of nevus and the degree of uncertainty of the diagnosis. Benign ones require nothing else than monitoring after the neonatal period [60, 61], while those with special characteristics - asymmetry, uneven, irregular margins, color variations, diameter > 6 mm - very rare cases, require biopsy with histopathology, immunohistochemistry and electron microscopy [57, 62].
Camptodactyly is the irreversible flexion of one or both interphalangeal joints at the level of one or more fingers, being most frequently a congenital condition.
It can be diagnosed antenatally [63, 64, 65] “in utero” or postnatally, being a clinically obvious deformity, which subsequently requires imaging investigations. An abnormal insertion of lumbrical and flexor digitorum tendons of the hand is often noted.
Camptodactyly may occur sporadically, de novo or by autosomal dominant inheritance.
It may be an isolated clinical manifestation or clinical expression in syndromes such as Trisomy 18 and 13, Freeman Sheldon Syndrome, Pena Shokeir Syndrome, CACP Syndrome (Camptodactyly, Arthropathy, Coxa vara, Pericarditis), arthrogryposis [63, 65, 66, 67].
Clinodactyly is a congenital malformation consisting of the lateral deflection of the fingers by affecting the first interphalangeal joint, which interests any finger, especially the pollex and the auricular fingers (the fifth finger), (Figure 11).
Clinodactily of the fifth finger.
Clinodactyly is a descriptive term, which refers to a radial angulation at a common interphalangeal joint in radio-ulnar or palmar planes, and can often be a normal anatomical variant.
The incidence varies, ranging between 1 and 18%, as it is most frequently under-reported.
Clinodactyly may be a very common isolated clinical manifestation in the context of a family history [68] - with autosomal recessive inheritance, but it may also occur in several syndromes, in association with other locomotor abnormalities or in other organs and systems.
Clinodactyly is seen in over 60% of children with Down syndrome [63], Klinefelter syndrome, trisomy 18, Turner syndrome, Cornelia de Lange Syndrome, Feingold Syndrome, Roberts Syndrome, Russell-Silver Syndrome or Fanconi Syndrome. It may also be a clinical manifestation associated with other abnormalities such as macrodystrophia lipomatosa and brachydactyly type A3.
Considering the presence of this sign in multiple chromosomal anomalies, some authors consider it a “soft sign”, if detected in an antenatal ultrasound scan.
If the clinodactyly is isolated, it has an excellent prognosis.
Usually, the treatment is not necessary. If necessary - because of emotional stress due to esthetic reasons or the impairment of the fine hand movements - the treatment is surgical [69]. For surgery, preoperative radiographs of the pollex are performed, establishing the size of the graft and the degree of angulation necessary to restore the normal function of the distal phalange.
It is one of the most common congenital abnormalities of upper limbs, seen in all ethnicities, and it refers to the presence of additional fingers, being usually bilateral [70]. Most often, polydactyly affects the upper and lower limbs synchronously. Supernumerary fingers do not usually have adequate muscle connections [71, 72].
The classification of this condition is based on the location of the additional fingers, the polydactyly being:
Postaxial (duplicated finger V),
Mesoaxial/central (duplication of fingers II, III, IV),
Preaxial (duplicated thumb),
Mixed.
Polydactyly may appear isolated, de novo, sometimes autosomal dominant inherited or may be associated with syndromes [73, 74] such as Bardet-Biedl Syndrome, Carpenter Syndrome, Elis-Van Creveld Syndrome, Fanconi Syndrome, Greig Syndrome, Holt-Oram Syndrome, Meckel-Gruber Syndrome, Pallister-Hall Syndrome, Smith-Lemil-Opitz Syndrome, Trisomy 13, Trisomy 18, Short Rib Polydactyly Syndrome Type I (Saldino-Noonan Type) (Majewski type), Trisomy 21, Townes-Brocks Syndrome.
Usually, polydactyly is diagnosed antenatally, but if it is postnatally discovered, it requires paraclinical investigations in order to be included in one of the genetic syndromes, except for cases of family history. The investigations are performed using imaging techniques (MRI, CT scan, ultrasound examination), followed by genetic consultation in case of association with other malformations. The most commonly associated malformations are syndactyly, hypoplasia or aplasia of long bones, hydrocephalus, microcephaly, spina bifida, ventricular septal defect, atrial septal defect, esophageal atresia, duodenal atresia, anal imperfection, abdominal wall defects, renal agenesis, polycystic kidney disease, hydronephrosis, diaphragmatic hernia, anophthalmia, cheilopalatoschisis.
In the case of isolated polydactyly, no treatment is required. If this anomaly affects the mobility and gross/fine movements of the fingers/hands, the treatment is always surgical.
Syndactyly is one of the most common congenital limb malformations involving the fusion of two or more fingers due to the failure of separation process during the development of limbs in the first trimester. In the lower limbs, the most common location is between the second and the third finger [75].
It is a heterogeneous clinical phenotype, as it may be: unilateral or bilateral, symmetrical or asymmetrical, partial or complete, cutaneous or bony, involving only the phalanges and/ or metatarsal bone, or may extend to tarsal bones or even the calf bones.
Partial syndactyly of the second and third toe may appear as a clinically isolated phenotype (the most common is zygodactyly) [75] or may be associated with syndromes such as:
Pfeiffer syndrome [76, 77, 78, 79] - type V acrocephalopolysyndactyly has as its etiology a dominant autosomal genetic defect in which mutations occur in the FGFR1 gene (fibroblast growth factor receptor 1) and in the FGFR2 gene (fibroblast growth factor receptor 2). In this syndrome, the partial syndactyly of the second and third toe is accompanied by other malformations such as craniosynostosis, facial hypoplasia, hypertelorism, brachydactyly.
Carpenter syndrome - type II acrocephalopolysyndactyly is an autosomal recessive genetic disorder in which mutations occur in RAB23, a hydrolysis involved in transmembrane regulation [80]. Carpenter syndrome associates, besides partial syndactyly and polydactyly, with auricular, cardiac and genital abnormalities.
Smith-Lemli-Opitz syndrome is an autosomal recessive genetic disorder of cholesterol biosynthesis [81]. This syndrome associates with syndactyly and microcephaly, micrognathia, genital malformations, auricular malformations, autism spectrum disorders.
Partial syndactyly of the second and third toe does not affect the motor function, and therefore does not require correction.
Insufficient development of nails [82] may occur in isolation or in many genetic malformations such as:
Simpson-Golabi-Behmel Syndrome (Bulldog Syndrome). The most common etiology of this syndrome is the mutations in the GPC3 gene to chromosome X [83]. Nail hypoplasia is accompanied by other clinical manifestations such as macrosomia, hypertelorism, polydactyly, macrostomia, macroglossia.
Fetal Alcohol Syndrome [84]. Prenatal exposure to alcohol causes numerous fetal malformations, including nail dysplasia accompanied by: microcephaly, facial hirsutism, short palpebral fissures.
Fryns Syndrome. This syndrome is a genetic disorder inherited in an autosomal recessive manner, in which dysplastic nails occur along with other minor and major malformations such as diaphragmatic hernia, hirsutism, distal phalangeal hypoplasia, Dandy-Walker malformation, agenesis of corpus callosum.
The small bones and soft tissues of the feet can be affected by systemic disorders, and frequently, the findings are quite unique and virtually help diagnose some genetic or metabolic disorders [85]. Sometimes the changes in the structural bones of the feet, metacarpals and metatarsals, or the phalangeal units are so astonishing that they ensure the diagnosis of peculiar and rare syndromes.
There are many disorders – some genetic, some neoplastic, some inflammatory – which sometimes produce extraordinary changes in the patient’s feet. In some cases, phalanx abnormalities occur as a result of the sucking of the finger by the fetus, causing elongation and hypertrophy (Figures 12 and 13).
Phalanx anomalies.
Phalanx anomalies.
A small listing includes synovial chondromatosis, fibrous dysplasia, tumoral calcinosis, Maffucci syndrome, Ollier’s disease, hereditary multiple osteocartilaginous exostosis, type 1 neurofibromatosis, pigmented villonodular synovitis, hyperparathyroidism, or gout.
Voltammetry is an electrochemical technique for current-voltage curves, from which electrode reactions at electrode-solution interfaces can be interpreted. Since current-voltage curves, called voltammograms, include sensitive properties of solution compositions and electrode materials, their analysis provides not only chemical structures and reaction mechanisms on a scientific basis but also electrochemical manufacture on an industrial basis. The voltammograms vary largely with measurement time except for steady-state measurements, and so it is important to pay attention to time variables. Voltage is a controlling variable in conventional voltammetry, and the current is a measured one detected as a function of applied voltage at a given time.
\nThe equipment for voltammetry is composed of electrodes, solution, and electric instruments for voltage control. Electrodes and electric instruments are keys of voltammetry. Three kinds of electrodes are desired to be prepared: a working electrode, a counter one, and a reference one. The three will be addressed below.
\nLet us consider a simple experiment in which two electrodes are inserted into a salt-included aqueous solution. When a constant current is applied to the two electrodes, reaction 2H+ + 2e− → H2 may occur at one electrode, and reaction 2OH− → H2O2 + 2e− occurs at the other. The current is the time variation of the electric charge, and hence it is a kind of reaction rate at the electrode. Since the applied current is a sum of the two reaction rates, one being in the positive direction and the other being in the negative, it cannot be attributed to either reaction rate. A technique of attributing the reactions is to use an electrode with such large area that an uninteresting reaction rate may not become a rate-determining step. This electrode is called a counter electrode. The current density at the counter electrode does not specifically represent any reaction rate. In contrast, the current density at the electrode with a small area stands for the interesting reaction rate. This electrode is called a working electrode. It is the potential difference, i.e., voltage, at the working electrode and in the solution that brings about the electrode reaction. However, the potential in the solution cannot be controlled with the working electrode or the counter one. The control can be made by mounting another electrode, called a reference electrode, which keeps the voltage between an electrode and a solution to be constant. However, the constant value cannot be measured because of the difference in phases. A conventionally employed reference electrode is silver-silver chloride (Ag-AgCl) in high concentrated KCl aqueous solution.
\nAn electric instrument of operating the three electrodes is a potentiostat. It has three electric terminals: one being a voltage follower for the reference electrode without current, the second being a current feeder at the counter electrode, and the third being at the working electrode through which the current is converted to a voltage for monitoring. A controlled voltage is applied between the working electrode and the reference one. These functionalities can readily be attained with combinations of operational amplifiers. A drawback of usage of operational amplifiers is a delay of responses, which restricts current responses to the order of milliseconds or 10 kHz frequency.
\nVoltammetry includes various types—linear sweep, cyclic, square wave, stripping, alternating current (AC), pulse, steady-state microelectrode, and hydrodynamic voltammetry—depending on a mode of the potential control. The most frequently used technique is cyclic voltammetry (CV) on a time scale of seconds. In contrast, currently used voltammetry at time as short as milliseconds is AC voltammetry. We describe here the theory and tips for practical use of mainly the two types of voltammetry.
\nThe theory of voltammetry is to obtain expressions for voltammograms on a given time scale or for those at a given voltage. First of all, it is necessary to specify rate-determining steps of voltammograms. There are three types of rate-determining steps under the conventional conditions: diffusion of redox species in solution near an electrode, adsorption on an electrode, and charging processes at the double layer (DL). Electric field-driven mass transport, called electric migration, belongs to rare experimental conditions, and hence it is excluded in this review. When a redox species in solution is consumed or generated at an electrode, it is supplied to or departed from the electrode by diffusion unless solution is stirred. When it is accumulated on the electrode, the change in the accumulated charge by the redox reaction provides the current. Whenever electrode voltage is varied with the time, the charging or discharging of the DL capacitor causes current. Therefore, the three steps are frequently involved in electrochemical measurements.
\nA mass transport problem on voltammetry is briefly described here. The redox species is assumed to be transported by one-directional (x) diffusion owing to heterogeneous electrode reactions. Then, the flux is given by f = −D(∂c/∂x), where c and D are the concentration and the diffusion coefficient of the redox species, respectively. Redox species in solution causes some kinds of chemical reaction through chemical reaction rates, h(c, t). Then the reaction rate is the sum of the diffusional flux and the chemical reaction rate, ∂c/∂t = −∂f/∂x − h(c, t). Here the equation for h = 0 is called an equation of continuum. Eliminating f with the above equation on the assumption of a constant value of D yields ∂c/∂t = D(∂2c/∂x2) − h(c, t). This is an equation for diffusion-chemical kinetics. The expression at h = 0 is the diffusion equation. A boundary condition with electrochemical significance is the control of c at the electrode surface with a given electrode potential. If the redox reaction occurs in equilibrium with the one-electron transfer at the electrode, the Nernst equation for the concentrations of the oxidized species, co, and the reduced one, cr, holds.
\nwhere Eo is the formal potential. If there is no adsorption, the zero-flux condition in the absence of accumulation is valid:
\nThe other conditions are concentrations in the bulk (x → ∝) and the initial conditions.
\nIf the mass transport is controlled only by x-directional diffusion, cr and co are given by the diffusion equations, ∂c/∂t = D(∂2c/∂t2) for c = cr or co. An electrochemically significant quantity is not concentration in any x and t, but a relation between the surface concentrations and the current (the flux at x = 0). On the assumption of Do = Dr = D, of the initial and boundary conditions, (cr)t = 0 = c*, (co)t = 0 = 0, and (cr)x = ∞ = c*, (co)x = ∞ = 0, a solution of the initial-boundary problem is given by [1].
\nwhere j is the current density. The common value of the diffusion coefficients yields co + cr = c* for any x and t. Inserting this relation and Eq. (3) into the Nernst equation, (co)x = 0 = c*/[1 + exp[−F(E − Eo)/RT]], we obtain the integral equation for j as a function of t or E.
\nWhen the voltage is linearly swept with the time at a given voltage scan rate, v, from the initial potential Ein, Eq. (3) through the combination with the Nernst equation becomes
\nThe above Abel’s integral equation can be solved by Laplace transformation. When the time variation is altered to the voltage variation through E = Ein + vt, the current density is expressed as
\nwhere ζ = (E − Eo)F/RT and ζi = (Ein − Eo)F/RT. Evaluation of the integral has to resort to numerical computation. Current at any voltage should be proportional to v1/2, as can be seen in Eq. (5). The voltammogram for v > 0 rises up from Eo, takes a peak, and then deceases gradually with the voltage. The decrease in the current is obviously ascribed to relaxation by diffusion. The peak current density is expressed by
\nat Ep = Eo + 0.029 V at 25°C, where 0.446 comes from the numerical calculation of the integral of Eq. (5).
\nPractical voltage-scan voltammetry is not simply linear sweep but cyclic voltammetry (CV), at which applied voltage is reversed at a given voltage in the opposite direction. The theoretical evaluation of the voltammogram should be at first represented in the integral form with the time variation and then express the time as the voltage. One of the features of the diffusion-controlled cyclic voltammograms is the difference between the anodic peak potential and the cathodic one, ΔEp (in Figure 1), of which value is 59 mV at 25°C.
\nVoltammograms calculated from Eq. (5) for v = (a) 180, (b) 80 and (c) 20 mV s−1.
AC voltammetry can be performed when the time variation of voltage is given by E = Edc + V0eiωt, where ω is the frequency of applied AC voltage, i is the imaginary unit, V0 is its voltage amplitude, and Edc is the DC voltage. A conventional value of V0 is 10 mV. When this voltage form is inserted into Eq. (3) together with the Nernst equation, the AC component of the current density is represented by [2].
\nA voltammogram (j vs. Edc) at a given frequency takes a bell shape, which is expressed by sech2{(Edc − Eo)/RT}. The functional form of sech2 is shown in Figure 2. The peak current appears at Edc = Eo.
\nVoltammogram calculated from Eq. (10).
The AC-impedance technique often deals with the real impedance, Z1, = 1/2Y1 and the imaginary one, Z2 = −1/2Y1, where Y1 is the real admittance given by
\nHere Y2 is the imaginary admittance, equal to Y1. Since Z1 = −Z2, the Nyquist plot, i.e., −Z2 vs. Z1, is a line with the slope of unity. The term 1 + i in Eq. (7) has come from (Dω)1/2, originating from (Diω)1/2. Therefore, it can be attributed to diffusion. In other words, diffusion produces the capacitive component as a delay.
\nWhen the redox species with reaction R = O + e− is adsorbed on the electrode and has no influence from the redox species in the solution, the sum of the surface concentrations of R and O is a constant, Γ*. Then the surface concentration of the oxidized species, Γo, is given by the Nernst equation:
\nThe time derivative of the redox charge corresponds to the current density, j = d(FΓo)/dt. Application of the condition of voltage sweep, E = Ein + vt, to Eq. (9) yields.
\nThe voltammogram takes a bell shape (Figure 2), of which peak is at E = Eo, similar to the AC voltammogram. The current at any voltage is proportional to v. Since the negative-going scan of the voltage provides negative current values, the cyclic voltammogram should be symmetric with respect to the I = 0 axis. The peak current is expressed as jp = F2Γ*v/4RT. The width of the wave at jp/2 is 90 mV at 25°C.
\nSince a phase has its own free energy, contact of two phases provides a step-like gap of the free energy, of which gradient brings about infinite magnitude of force. In order to relax the infinity, local free energy varies from one phase to the other as smoothly as possible at the interface. The large variation of the energy is compensated with spontaneously generated space variations of voltage, i.e., the electric field, which works as an electric capacitor. The capacitance at solution-electrode interface causes orientation of dipoles and nonuniform distribution of ionic concentration, of which layer is called an electric double layer (DL).
\nWhen the time variation of the voltage is applied to the DL capacitance, Cd, the definitions of the capacitance (q = CdV) and the current lead
\nwhere Cd generally depends on the time. This dependence is significant for understanding experimentally observed capacitive currents.
\nThe DL capacitance has exhibited the frequency dispersion expressed by Cd = (Cd) 1Hz f −λ, called the constant phase element [3, 4, 5] or power law [6, 7], where λ is close to 0.1. Inserting this expression and V = V0eiωt into Eq. (11) yields
\nThis is a simple sum of the real part of the current and the imaginary one, indicating that the equivalent circuit should be a parallel combination of a capacitive component and a resistive one, both depending on frequency. Since the ratio, −Z2/Z1, for Eq. (12) is 1/λ, the Nyquist plots have slopes less than 10 rather than infinity.
\nIf the capacitive charge is independent of the time, the capacitive current should be I = d(CV)/dt = C(E − Eo)/v. Therefore, it takes a horizontal positive (v > 0) and a negative line (v < 0), as shown in Figure 3 (dashed lines). When the time dependence of C, i.e., Cd = (Cd)0t−λ, is applied to Eq. (11), for the forward and the backward scans, respectively, we have
\nCapacitive voltammograms by CV at v= 0.5 V s−1 for (dashed lines) the ideal capacitance and for Eq. (13) (solid curves) at λ = 0.2.
The variation of CV computed from Eq. (13) (Figure 3, solid curves) is similar to our conventionally observed capacitive waves.
\nVoltammograms can identify an objective species by comparing a peak potential with a table of redox potentials and furthermore determine its concentration from the peak current. Their results are, however, sometimes inconsistent with data by methods other than electrochemical techniques if one falls in some pitfalls of analytical methods of electrochemistry. For example, a peak potential is influenced by a reference electrode and solution resistance relevant to methods. Peak currents are varied complicatedly with mass transport modes as well as associated chemical reactions. Since the theory on voltammetry covers only some restricted experimental conditions, it can rarely interpret the experimental data successfully. This review is devoted to some voltammetric tips which can lead experimenters to reasonable interpretation.
\nIt is rare to observe a reversible voltammogram in which both oxidation and reduction waves appear in a symmetric form with respect to the potential axis at a similar peak potential, as in Figure 1. Frequently observed voltammograms are irreversible, i.e., either a cathodic or an anodic wave appears; a value of a cathodic peak current is quite different from the anodic one in magnitude; a cathodic peak potential is far from the anodic one. These complications are ascribed to chemical reactions and/or phase transformation after the charge-transfer reaction. A typical example is deposition of metal ions on an electrode. The complications can be interpreted by altering scan rates and reverse potentials.
\nA wave at a backward scan is mostly attributed to electrode reactions generated by experimenters rather than to species latently present in the solution. That is, it is artificial. It is caused either by the reaction of the wave at the forward scan or the reaction of the rising-up current just before the reverse potential. A source of the backward wave can be found by changing the reverse potentials.
\nSome voltammograms have more than two peaks at one-directional scan. The appearance of the two can be interpreted as a two-step sequential charge-transfer reaction. However, multiple waves appear also by combinations of chemical reactions and adsorption. The peak current and the charge for this case are quite different from the predicted ones, as will be described in Section 3.2. Change in scan rates may be helpful for interpreting the multiple waves.
\nIt is possible to predict theoretically a controlling step of voltammograms from their shape (a bell type corresponding to an adsorption wave or a draw-out type corresponding to a diffusion wave). However, the shape strongly depends on chemical complications, adsorption, and surface treatment of the electrodes. When redox species in solution is partially adsorbed on an electrode, the electrode process is far from a prediction because of very high concentration in the adsorbed state. A draw-out-shaped wave can be observed even for the adsorbed control. It is important to estimate which state the reacting species takes on the electrode. Potentials representing of voltammetric features do not express a controlling step in reality although the theory does. One should pay attention to the current. The peak current controlled by diffusion with one-electron transfer is given by Ip = 0.27 cAv1/2 μA (c, bulk concentration mM; A, electrode area mm2; v, potential sweep rate mV s−1). The microelectrode behavior sometimes comes in view at v < 10 mV s−1, A < 0.1 mm2, so the measured current is larger than the estimated value. On the other hand, the peak current controlled by adsorption is given by Ip = 1.6 Av nA when one redox molecule is adsorbed at 1 nm2 on the electrode. The voltammogram by adsorption often differs from the ideal bell shape due to adsorbed molecular interaction and DL capacity. Division of the area of the peak by the scan rate yields the amount of adsorbed electricity. Comparison of this with the anticipated amount of adsorption may be helpful for understanding the electrode process.
\nThe peak potential difference ΔEp between the oxidation wave and the reduction wave (Figure 1) has been used for a prediction of the reaction mechanism. For example, ΔEp = 60 mM suggests the diffusion-controlled current accompanied by one-electron exchange, whereas ΔEp = 30 mM infers a simultaneous reaction with two electrons. Then what would happen for 120 mV which is sometimes found? A half-electron reaction might not be accepted. Potential shift over 60 mV occurs by chemical complications. In contrast, the voltammogram by adsorbed species shows theoretically a bell shape with the width, E1/2 = 90 mV, at the half height of the peak (Figure 2). This value is based on the assumption of the absence of interaction among adsorbed species. However, adsorption necessarily yields such high concentrations as strong interaction.
\nIt is necessary to pay attention to the validity of analyzing ΔEp and E1/2. The peak potential is the first derivative of a voltammogram. Since ΔEp is a difference between the two peaks, it is actually the second-order derivative of the curves in the view of accuracy. In other words, the accuracy of ΔEp is lower than that of peak current. Furthermore, peak potentials as well as E1/2 readily vary with scan rates owing to chemical reactions and solution resistance. One should use the peak current for data analysis instead of the potentials.
\nVoltammograms of a number of redox species have been reported to be diffusion controlled from a relationship between Ip and v1/2. The redox species exhibiting diffusion-controlled current is, however, limited to ferrocenyl derivatives under conventional conditions. Voltammograms even for [Fe(CN)6]3−/4− and [Ru(NH3)6]3+ are deviated from the diffusion control for a long-time measurement. Why have many researchers assigned voltammograms to be the diffusion-controlled step? The proportionality of Ip to v1/2 in Eq. (6) has been confused with the linearity, Ip = av1/2 + b (b ≠ 0). The plot for the adsorption control (Ip = kv) also shows approximately a linear relation for Ip vs. v1/2 plot in a narrow domain of v, as shown in Figure 4B. The opposite is true (Figure 4A). Therefore, it is the intercept that determines a controlling step of either the diffusion or adsorption. Some may say that the intercept can be ascribed to a capacitive current. If so, the peak current should be represented by Ip = av1/2 + bv, which exhibits neither linear relation with v1/2 nor v.
\nPlots of Ip of (A) K3Fe(CN)6 and (B) polyaniline-coated electrode against v1/2 and v. Both plots show approximately linear relations.
There is a simple method of determining a controlling step either by diffusion or adsorption. Current responding to diffusion-controlled potential at a disk electrode in diameter less than 0.1 mm would become under the steady state after a few seconds [8]. Adsorption-limited current should become zero soon after the potential application. Many redox species, however, show gradual decrease in the current because reaction products generate an adsorbed layer which blocks further electrode reactions.
\nIt is well known that currents vary not only with applied voltage but also with the time. It is not popular, however, to discuss quantitatively time dependence of CV voltammograms. Enhancing v generally increases the current and causes the peak potential to shift in the direction of the scan. A reason for the former can be interpreted as generation of large current at a shorter time (see Eqs. (6) and (10)), whereas the latter is ascribed to a delay of reaction responses as well as a voltage loss of the reaction by solution resistance. Then the voltage effective to the reaction is lower than the intended voltage, and so the observed current may be smaller than the predicted one. Although Ip is related strongly with Ep, the relationship has rarely been examined quantitatively.
\nA technique of analyzing the potential shift is to plot Ip against Ep, [9] as shown in Figure 5. If the plots on the oxidation side (Ip > 0) and the reduction side (Ip < 0) fall each on a straight line, the slope may represent conductivity. If values of both slopes are equal, the slope possibly stands for the conductivity of the solution or membrane regardless of the electrode reaction. The potential extrapolated to the zero current on each straight line should be close to the formal potential. Since this plot is simple technically, the analytical result is more reliable than at least discussion of time dependence of Ep.
\nPlots of Ip vs. Ep by CV of the first (circles) and the second (triangles) peak of tetracyanoquinodimethane (TCNQ), and ferrocene (squares) in 0.2 M (CH3)4NPF6 included acetonitrile solution when scan rates were varied, where triangles were displayed by 0.4 V shift.
Most researchers have quoted the Randles-Sevcik equation, jp = 0.446 (nF)3/2c*(Dv/RT)1/2, for the diffusion-controlled peak current without hesitation, where n is the electron transfer number of the reaction. According to Faraday’s law, the electrolytic quantity is proportional to nc*. Why is the peak current proportional to n3/2 instead of n? Let us consider voltammetry of metal nanoparticles (about 25 nm in diameter) composed of 106 metal atoms dispersed in solution. Faraday’s law predicts that the current is 106 times as high as the current by the one metal atom. However, Randles-Sevcik equation predicts the current further (106)1/2 = 1000 times as large, just by the effect of the potential scan. The order 3/2 is specific to CV. The order of n for AC current and pulse voltammetry is 2 [10]. On the other hand, the diffusion-controlled steady-state currents at a microelectrode and a rotating disk electrode are proportional to n. Comparing the differences in the order by methods, we can predict that the time variation of the voltage increases the power of n.
\nLet a potential width from a current-rising potential to Ep be denoted by ΔE. When an n-electron transfer reaction occurs through the Nernst equation at which F in Eq. (1) is replaced by nF, the concentration-potential curve takes the slope n times larger than that at n = 1 (see co/cr ≅ nF(E − Eo)/RT near E = Eo in Eq. (1)). Then we have (ΔE)n = (ΔE)n = 1/n. The period of elapsing for (ΔE)n becomes shorter by 1/n, as if v might be larger by n times. Then v in Eq. (6) should be replaced by (nv)1/2. Combining this result with the flux j/nF, the current becomes n3/2 times larger than that at n = 1. Therefore, the factor n3/2 results from the Nernst equation. This can be understood quantitatively by replacing F in Eq. (3) by nF. There are quite a few reactions for n ≥ 2 both for Nernst equation and in the bulk as stable species. The term n3/2 is valid only for a concomitant charge-transfer reaction, i.e., simultaneous occurrence n-electron transfer rather than a step-by-step transfer. Apparent two-electron transfer reactions in the bulk, for example, Cu, Fe, Zn, and Pb, cause other reactions immediately after the one-electron transfer.
\nAn electrochemical response is observed as a sum of the half reactions at the two electrodes. In order to extract the reaction at the working electrode, a conventional technique is to increase the area of the counter electrode so that the reaction at the counter electrode can be ignored. If the counter electrode area is increased by 20 times the area of the working electrode, the observed current represents the reaction of the working electrode with an error of 5%. Let us consider the experiment in which nanoparticles of metal are coated on a working electrode for obtaining capacitive currents or catalyst currents. Then, the actual area of the working electrode can be regarded as the area of the metal particles measured by the molecular level. Then, the area will be several thousand times the geometric area so that the observed current may represent the reaction at the counter electrode. This kind of research has frequently been found in work on supercapacitors. On the other hand, if the electrode reaction is diffusion controlled, the current is determined by the projected area of the diffusion layer. Then the current is not affected by the huge surface area of nanoparticles.
\nIt is important to examine whether or not a reaction is controlled by at a counter electrode. A simple method is to coat nanoparticles also on the counter electrode. Then the current in the solution may become so high that the potential of the working electrode cannot be controlled. It is better to use a two-electrode system. Products at the counter electrode are possible sources of contaminants through redox cycling.
\nThe Ag-AgCl electrode is most frequently used as a reference electrode in aqueous solution because of the stable voltage at interfaces of Ag-AgCl and AgCl-KCl through fast charge-transfer steps, regardless of the magnitude of current density. The “fast step” means the absence of delay of the reaction or being in a quasi-equilibrium. The stability without delay is supported with high concentration of KCl.
\nWhen an Ag-AgCl electrode is inserted to a voltammetric solution, KCl necessarily diffuses into the solution, associated with oxygen from the reference electrode. Thus, the reference electrode is a source of contamination by salt, dichlorosilver and oxygen. It is interesting to examine how much amount a solution is contaminated by a reference electrode [9]. Time variation of ionic conductivity in the pure water was monitored immediately after a commercially available Ag-AgCl electrode was inserted into the solution. Figure 6 shows rapid increase in the conductivity as if a solid of KCl was added to the solution. Oxygen included in the concentrated KCl may contaminate a test solution. Even the Ag-AgxO electrode, which was formed by oxidizing silver wire, increased also the conductivity, probably because the surface is in the form of silver hydroxide. As a result, no reference electrode can be used for studying salt-free electrode reactions. If neutral redox species such as ferrocene is included in a solution, the potential reference can be taken from redox potential of ferrocene.
\nTime-variation of conductivity of water into which (circles) Ag|AgCl, (triangles) Ag|AgxO, and (squares) AgCl-coated Ag wire were inserted. Conductivity measurement was under N2 environment.
When a constant voltage is applied to the ideal capacitance C, the responding current decays in the form of exp(−t/RC), where R is a resistance in series connected with C. It has been believed that a double-layer capacitance in electrochemical system behaves as an ideal capacitor, where R is regarded as solution resistance. However, any exponential variation cannot reproduce transient currents obtained at the platinum wire electrode in KCl aqueous solution, as shown in Figure 7. The current decays more slowly than by exp(−t/RC), because it is approximately proportional to 1/t. The property of non-ideal capacitance is the result of the constant phase element of the DL capacitance, as described in Section 2.3. The dependence of 1/t can be obtained approximately by the time derivative of q = V0C0t−λ for the voltage step V0.
\nChronoamperometric curves when 0.2 V vs. Ag|AgCl was applied to a Pt wire in 0.5 M KCl aqueous solution. Solid curves are fitted ones by exp(-t/RC) for three values of RC.
The slow decay is related with a loss of the performance of pulse voltammetry, in which diffusion-controlled currents can readily be excluded from capacitive currents. The advantage of pulse voltammetry is based on the assumption of the exponential decay of the capacitive current. Since the diffusion current with 1/t1/2 dependence is close to the 1/t dependence, it cannot readily be separated from the capacitive current in reality. A key of using pulse voltammetry is to take a pulse time to be so long as a textbook recommends.
\nHigh-performance potentiostats are equipped with a circuit for compensation of resistance by a positive feedback. Unfortunately, the circuit is merely useful because voltammograms depend on intensity of compensation resistances of the DL capacitance. It should work well if the DL capacitance is ideal.
\nAC techniques have an advantage of examining time dependence at a given potential, whereas CV has a feature of finding current-voltage curves at a given time. The former shows the dynamic range from 1 Hz to 10 kHz, while the latter does conventionally from 0.01 to 1 Hz. This wide dynamic range of the AC technique is powerful for examining dynamics of electrode reactions. Analytical results by the former are often inconsistent with those by the latter, because of the difference in the time domain. The other scientific advantage of the AC technique is to get two types of independent data set, frequency variations of real components and imaginary ones by the use of a lock-in amplification. The independence allows us to operate mathematically the two data, leading to the data analysis at a level one step higher than CV. An industrial advantage is the rapid measurement, which can be applied to quality control for a number of samples. The analysis of AC impedance necessarily needs equivalent circuits of which components do not have any direction relation with electrochemical variables.
\nData of the electrochemical AC impedance are represented by Nyquist (Cole-Cole) plots, that is, plots of the imaginary component (Z2) of the impedance against the real one (Z1), as shown in Figure 8. The simplest equivalent circuit for electrochemical systems is the DL capacitance Cd in series with the solution resistance RS. The Nyquist plot for this series circuit is theoretically parallel to the vertical axis (Figure 8A-a), but experiments show a slope of 5 or more (Figure 8A-b). This behavior, called constant phase element (CPE) and the power law, has been verified for combinations of various materials and solvents [6, 7, 11, 12]. The equivalent circuit for Eq. (12) is a parallel combination of capacitance and resistance (Figure 8B). Even without an electrode reaction, current always includes a real component.
\n(A) Nyquist plots for a RC-series circuit with ideal capacitor (a) and DL capacitor (b). (B) Equivalent circuit with the power-law of Cd. (C) Randles circuit.
The equivalent circuit with the Randles type is a parallel combination of the ideal DL capacitor Cd with the ideal resistance Rct representing the Butler-Volmer-type charge-transfer resistance. Practically, the Warburg impedance (the inverse of Eq. (8)) due to diffusion of redox species is incorporated in a series into Rct (Figure 8C). Rct cannot be separated from the DL resistance because of the frequency dispersion. Since even the existence of Rct is in question (Section 3.12), it is difficult to determine and interpret Rct. The usage of a software that can analyze any Nyquist plots will provide values of R and C. Even if analyzed values are in high accuracy, researches should give them electrochemical significance.
\nResidual current varies with treatments of electrodes such as polishing of electrode surfaces and voltage applications to an extremely high domain. It can often be suppressed to yield reproducible data when the electrode is replaced by simple platinum wire or carbon rod having the same geometric area. Simple wire electrodes are quite useful especially for measurements of DL capacitance and adsorption. One of the reasons for setting off large residual current is that the insulator of confining the active area is not in close contact with the electrode, so that the solution penetrated into the gap will give rise to capacitive current and floating electrode reactions. Since the coefficient of thermal expansion of the electrode is different from that of the insulator, the residual current tends to get large with the elapse from the fabrication of the electrode. This prediction is based on experience, and there are few quantitative studies on residual currents.
\nUnexpected gap has been a technical problem at dropping mercury electrodes. If solution penetrates the inner wall of the glass capillary containing mercury, observed currents become irreproducible. Water repellency of the capillary tip has been known to improve the irreproducibility in order to reduce the penetration. A similar technique has been used for voltammetry at oil-water interfaces and ionic liquid-water interfaces at present.
\nVoltammograms are said to vary with electrode reaction rates, and the rate constants have been determined from time dependence of voltammograms. The fast reaction of which rate is not rate determining has historically been called “reversible.” In contrast, such a slow reaction that a peak potential varies linearly with log v is called “irreversible.” A reaction between them is called “quasi-reversible.” The distinction among the three has been well known since the theoretical report on the quasi-reversible reaction by Matsuda [1]. This theory is devoted to solving the diffusion equations with boundary conditions of the Butler-Volmer (BV) equation under the potential sweep. As the standard rate constant ks in the BV equation becomes small, the peak shifts in the direction of the potential sweep from the diffusion-controlled peak. Steady-state current-potential curves in a microelectrode [13] and a rotating disk electrode also shift the potential in a similar way. According to the calculated CV voltammograms in Figure 9, we can present some characteristics: (i) if the oxidation wave shifts to the positive potential, the negative potential shift should also be found in the reduction wave. (ii) Both the amounts of the shift should have a linear relationship to log v. (iii) The shift should be found in iterative measurements. (iv) The peak current should be proportional to v1/2.
\nCV voltammograms (solid curves) at a normally sized electrode and steady-state voltammograms (dashed curves) at a microelectrodes in 12 μm in diameter, calculated theoretically for v = 0.5 V s−1, D = 0.73 × 10−5 cm2 s−1, ks = (a) 0.1, (b) 0.01, (c) 0.001, (d) 0.0001 cm s−1. The potential shift of CV is equivalent to the wave-shift at a microelectrode through the relation, v = 0.4RTD/αFa2 (a: radius).
The authors attempted to find a redox species with the above four behaviors. Some redox species can satisfy one of the four requirements, but do not meet the others. Most reaction rate constants have been determined from the potential shift in a narrow time domain. They are probably caused by follow-up chemical reactions, adsorption, or DL capacitance. For example, CV peak potentials of TCNQ and benzoquinone were shifted at high scan rates, whereas their steady-state voltammograms were independent of diameters of microdisk electrodes even on the nanometer scale [14]. The shift at high scan rates should be due to the frequency dispersion of the DL capacitance, especially the parallel resistance in the DL (Figure 8B). Values of the heterogeneous rate constants and transfer coefficients reported so far have depended not only on the electrochemical techniques but also research groups. Furthermore, they have not been applied or extended to next developing work. These facts inspire us to examine the assumptions and validity of the BV formula.
\nLet us revisit the assumptions of the BV equation when an overvoltage, i.e., the difference of the applied potential from the standard electrode potential, causes the electrode reaction. The rate of the oxidation in the BV equation is assumed to have the activation energy of α times the overvoltage, while that of the reduction does that of (1 − α) times. This assumption seems reasonable for the balance of both the oxidation and the reduction. However, the following two points should be considered. (i) Once a charge or an electron is transferred within the redox species, the molecular structure changes more slowly than the charge transfer itself occurs. The structure change causes solvation as well as motion of external ions to keep electric neutrality. These processes should be slower than the structure change. If the overvoltage can control the reaction rate, it should act on to the slowest step, which is not the genuine charge-transfer process. (ii) Since a reaction rate belongs to the probability theory, the reaction rate (dc/dt) at t is determined with the state at t rather than a state in the future. In other words, the rate of the reduction should have no relation with the oxidation state which belongs to the future state. The BV theory assumes that the α times activation energy for the oxidation is related closely with 1-α times one for the reduction. This assumption is equivalent to predicting a state at t + Δt from state at t + 2Δt, like riding on a time machine. This question should be solved from a viewpoint of statistical physics.
\nDevelopment of scanning microscopes such as STM and AFM has allowed us to obtain the molecularly and atomically regulated surface images, which have been used for interpreting electrochemical data. Then the electrochemical data are expected to be discussed on a molecular scale. However, there is an essential problem of applying photographs of regularly arranged atoms on an electrode to electrochemical data, because the former and the latter include, respectively, microscopically local information and macroscopically averaged one. A STM image showing molecular patterns is information of only a part of electrode, at next parts of which no atomic images are often observed but noisy images are found. Electrochemical data should be composed of information both at a part of the electrode showing the molecular patters and at other parts showing noisy, vague images. Noisy photographs are always discarded for interpreting electrochemical data although the surfaces with noisy images also contribute electrochemical data.
\nAn ideal experiment would be made by taking STM images over all the electrodes that provide electrochemical data and by obtaining an averaged image. However, it is not only impossible to take huge amounts of images, but the averaged image might be also noisy. It may be helpful to describe only a possibility of reflecting the STM-imaged atomic structure on the electrochemical data.
\nVoltammograms by adsorbed redox species, called surface waves, are frequently different from a bell shape (Figure 2). Really observed features are the following: (i) the voltammogram does not suddenly decay after the peak, exhibiting a tail-like diffusional wave; (ii) the peak current and the amount of the electricity are proportional to the power less than the unity of v; (iii) the oxidation peak potential is different from the reduction one; (iv) the background current cannot be determined unequivocally; and (v) voltammograms depend on the starting potential. Why are experimental surface waves different from a symmetric, bell shape in Figure 2?
\nA loss of the symmetry with respect to the vertical line passing through a peak can be ascribed to the difference in interactions at the oxidized potential domain and at the reduced one. Since redox species takes extremely high concentration in the adsorbed layer, interaction is highly influenced on voltammetric form. When the left-right asymmetry is ascribed to thermodynamic interaction, it has been interpreted not only with Frumkin’s interaction [15] but also Bragg-Williams-like model for the nearest neighboring interactive redox species [16]. On the other hand, most surface waves are asymmetric with respect to the voltage axis even at extremely slow scan rates. This asymmetry cannot be explained in terms of thermodynamics of intermolecular interaction, but should resort to kinetics or a delay of electrode reactions. There seems to be no delay in the electrode reaction of the monomolecular adsorption layer, different from diffusion species. The delay resembles the phenomenon of constant phase element (CPE) or frequency power law of DL capacitance, in that the redox interaction may occur two-dimensionally so that the most stable state can be attained. This behavior belongs to a cooperative phenomenon [17]. A technique of overcoming these complications is to discuss the amount of charge by evaluating the area of the voltammogram. It also includes ambiguity of eliminating background current and assuming the independence of the redox charge from the DL charge.
\nThe simplest theories for voltammetry are limited to the rate-determining steps of diffusion of redox species and reactions of adsorbed species without interaction. Variation of scan rates as well as a reverse potential is helpful for predicting redox species and reaction mechanisms. Furthermore, the following viewpoints are useful for interpreting mechanisms:
comparison of values of experimental peak currents with theoretical ones, instead of discussing ΔEp and E1/2;
examining the proportionality of Ip vs. v or vs. v1/2, i.e., zero or non-zero values of the intercept of the linearity;
a reference electrode and a counter electrode being a source of contamination in solution;
attention to very slow relaxation of DL capacitive currents;
inclusion of ambiguity in the equivalent circuit with the Randles type.
License
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
\n\n',metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"Formats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Formats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:6},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:1},{group:"topic",caption:"Computer and Information Science",value:9,count:5},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:3},{group:"topic",caption:"Engineering",value:11,count:4},{group:"topic",caption:"Environmental Sciences",value:12,count:4},{group:"topic",caption:"Immunology and Microbiology",value:13,count:2},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"119",title:"Industrial Engineering and Management",slug:"industrial-engineering-and-management",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:48,numberOfAuthorsAndEditors:1096,numberOfWosCitations:1145,numberOfCrossrefCitations:783,numberOfDimensionsCitations:1680,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"industrial-engineering-and-management",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9423",title:"AI and Learning Systems",subtitle:"Industrial Applications and Future Directions",isOpenForSubmission:!1,hash:"10ac8fb0bdbf61044395963028653d21",slug:"ai-and-learning-systems-industrial-applications-and-future-directions",bookSignature:"Konstantinos Kyprianidis and Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:"Edited by",editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editedByType:"Edited by",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9174",title:"Product Design",subtitle:null,isOpenForSubmission:!1,hash:"3510bacbbf4d365e97510bf962652de1",slug:"product-design",bookSignature:"Cătălin Alexandru, Codruta Jaliu and Mihai Comşit",coverURL:"https://cdn.intechopen.com/books/images_new/9174.jpg",editedByType:"Edited by",editors:[{id:"2767",title:"Prof.",name:"Catalin",middleName:null,surname:"Alexandru",slug:"catalin-alexandru",fullName:"Catalin Alexandru"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8623",title:"Maintenance Management",subtitle:null,isOpenForSubmission:!1,hash:"91cc93ad76fdd6709b8c50c6ba7e4e0c",slug:"maintenance-management",bookSignature:"Fausto Pedro García Márquez and Mayorkinos Papaelias",coverURL:"https://cdn.intechopen.com/books/images_new/8623.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7441",title:"Micromachining",subtitle:null,isOpenForSubmission:!1,hash:"2084b93f70df82e634ec776962e871fd",slug:"micromachining",bookSignature:"Zdravko Stanimirović and Ivanka Stanimirović",coverURL:"https://cdn.intechopen.com/books/images_new/7441.jpg",editedByType:"Edited by",editors:[{id:"3421",title:"Dr.",name:"Zdravko",middleName:null,surname:"Stanimirović",slug:"zdravko-stanimirovic",fullName:"Zdravko Stanimirović"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7454",title:"Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7008bbdc804192f8969a34deda417b05",slug:"industrial-engineering",bookSignature:"Ainul Akmar Mokhtar and Masdi Muhammad",coverURL:"https://cdn.intechopen.com/books/images_new/7454.jpg",editedByType:"Edited by",editors:[{id:"219461",title:"Associate Prof.",name:"Ainul Akmar",middleName:null,surname:"Mokhtar",slug:"ainul-akmar-mokhtar",fullName:"Ainul Akmar Mokhtar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7436",title:"New Trends in Industrial Automation",subtitle:null,isOpenForSubmission:!1,hash:"a6abb5722b5e27eb4b886a74f5aa4333",slug:"new-trends-in-industrial-automation",bookSignature:"Pengzhong Li",coverURL:"https://cdn.intechopen.com/books/images_new/7436.jpg",editedByType:"Edited by",editors:[{id:"19636",title:"Prof.",name:"Pengzhong",middleName:null,surname:"Li",slug:"pengzhong-li",fullName:"Pengzhong Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6838",title:"Power Plants in the Industry",subtitle:null,isOpenForSubmission:!1,hash:"5e647d27dab23e014dd8881ac3d5931c",slug:"power-plants-in-the-industry",bookSignature:"Tolga Taner",coverURL:"https://cdn.intechopen.com/books/images_new/6838.jpg",editedByType:"Edited by",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6332",title:"Thermal Power Plants",subtitle:"New Trends and Recent Developments",isOpenForSubmission:!1,hash:"616ffd286d75ca988abf59b408880a98",slug:"thermal-power-plants-new-trends-and-recent-developments",bookSignature:"Pawe? Madejski",coverURL:"https://cdn.intechopen.com/books/images_new/6332.jpg",editedByType:"Edited by",editors:[{id:"179645",title:"Dr.",name:"Paweł",middleName:null,surname:"Madejski",slug:"pawel-madejski",fullName:"Paweł Madejski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5830",title:"Extrusion of Metals, Polymers, and Food Products",subtitle:null,isOpenForSubmission:!1,hash:"a69184f72a3f46dd5e4db6313f248509",slug:"extrusion-of-metals-polymers-and-food-products",bookSignature:"Sayyad Zahid Qamar",coverURL:"https://cdn.intechopen.com/books/images_new/5830.jpg",editedByType:"Edited by",editors:[{id:"21687",title:"Dr.",name:"Sayyad Zahid",middleName:null,surname:"Qamar",slug:"sayyad-zahid-qamar",fullName:"Sayyad Zahid Qamar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5967",title:"Brewing Technology",subtitle:null,isOpenForSubmission:!1,hash:"033658c083403dadc895cf64dee8017a",slug:"brewing-technology",bookSignature:"Makoto Kanauchi",coverURL:"https://cdn.intechopen.com/books/images_new/5967.jpg",editedByType:"Edited by",editors:[{id:"85984",title:"Ph.D.",name:"Makoto",middleName:null,surname:"Kanauchi",slug:"makoto-kanauchi",fullName:"Makoto Kanauchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:48,mostCitedChapters:[{id:"15530",doi:"10.5772/14592",title:"Integrating Lean, Agile, Resilience and Green Paradigms in Supply Chain Management (LARG_SCM)",slug:"integrating-lean-agile-resilience-and-green-paradigms-in-supply-chain-management-larg-scm-",totalDownloads:5062,totalCrossrefCites:20,totalDimensionsCites:40,book:{slug:"supply-chain-management",title:"Supply Chain Management",fullTitle:"Supply Chain Management"},signatures:"Helena Carvalho and V. Cruz-Machado",authors:[{id:"18263",title:"Prof.",name:"Helena",middleName:null,surname:"Carvalho",slug:"helena-carvalho",fullName:"Helena Carvalho"},{id:"22440",title:"Prof.",name:"Virgílio",middleName:null,surname:"Cruz Machado",slug:"virgilio-cruz-machado",fullName:"Virgílio Cruz Machado"}]},{id:"17872",doi:"10.5772/19997",title:"Building Blocks of the Internet of Things: State of the Art and Beyond",slug:"building-blocks-of-the-internet-of-things-state-of-the-art-and-beyond",totalDownloads:4854,totalCrossrefCites:26,totalDimensionsCites:37,book:{slug:"deploying-rfid-challenges-solutions-and-open-issues",title:"Deploying RFID",fullTitle:"Deploying RFID - Challenges, Solutions, and Open Issues"},signatures:"Alexandru Serbanati, Carlo Maria Medaglia and Ugo Biader Ceipidor",authors:[{id:"37101",title:"Prof.",name:"Carlo Maria",middleName:null,surname:"Medaglia",slug:"carlo-maria-medaglia",fullName:"Carlo Maria Medaglia"},{id:"38529",title:"Prof.",name:"Ugo",middleName:null,surname:"Biader Ceipidor",slug:"ugo-biader-ceipidor",fullName:"Ugo Biader Ceipidor"},{id:"38530",title:"Mr.",name:"Alexandru",middleName:null,surname:"Serbanati",slug:"alexandru-serbanati",fullName:"Alexandru Serbanati"}]},{id:"34441",doi:"10.5772/35205",title:"Condition Monitoring of Railway Track Using In-Service Vehicle",slug:"condition-monitoring-of-railway-track-using-in-service-vehicle",totalDownloads:4634,totalCrossrefCites:17,totalDimensionsCites:33,book:{slug:"reliability-and-safety-in-railway",title:"Reliability and Safety in Railway",fullTitle:"Reliability and Safety in Railway"},signatures:"Hitoshi Tsunashima, Yasukuni Naganuma, Akira Matsumoto, Takeshi Mizuma and Hirotaka Mori",authors:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima"},{id:"113419",title:"Prof.",name:"Akira",middleName:null,surname:"Matsumoto",slug:"akira-matsumoto",fullName:"Akira Matsumoto"},{id:"113420",title:"Dr.",name:"Takeshi",middleName:null,surname:"Mizuma",slug:"takeshi-mizuma",fullName:"Takeshi Mizuma"},{id:"113422",title:"Mr.",name:"Hirotaka",middleName:null,surname:"Mori",slug:"hirotaka-mori",fullName:"Hirotaka Mori"},{id:"113423",title:"MSc.",name:"Yasukuni",middleName:null,surname:"Naganuma",slug:"yasukuni-naganuma",fullName:"Yasukuni Naganuma"}]}],mostDownloadedChaptersLast30Days:[{id:"51805",title:"Current Issues and Problems in the Joining of Ceramic to Metal",slug:"current-issues-and-problems-in-the-joining-of-ceramic-to-metal",totalDownloads:4086,totalCrossrefCites:6,totalDimensionsCites:14,book:{slug:"joining-technologies",title:"Joining Technologies",fullTitle:"Joining Technologies"},signatures:"Uday M.B., Ahmad-Fauzi M.N., Alias Mohd Noor and Srithar Rajoo",authors:[{id:"182041",title:null,name:"Uday",middleName:"M.",surname:"Basheer Al-Naib",slug:"uday-basheer-al-naib",fullName:"Uday Basheer Al-Naib"},{id:"182065",title:"Prof.",name:"Alias",middleName:null,surname:"Mohd Noor",slug:"alias-mohd-noor",fullName:"Alias Mohd Noor"},{id:"182066",title:"Dr.",name:"Srithar",middleName:null,surname:"Rajoo",slug:"srithar-rajoo",fullName:"Srithar Rajoo"},{id:"190437",title:"Prof.",name:"Ahmad-Fauzi",middleName:null,surname:"M. N.",slug:"ahmad-fauzi-m.-n.",fullName:"Ahmad-Fauzi M. N."}]},{id:"43383",title:"Improving Operations Performance with World Class Manufacturing Technique: A Case in Automotive Industry",slug:"improving-operations-performance-with-world-class-manufacturing-technique-a-case-in-automotive-indus",totalDownloads:25259,totalCrossrefCites:7,totalDimensionsCites:16,book:{slug:"operations-management",title:"Operations Management",fullTitle:"Operations Management"},signatures:"Fabio De Felice, Antonella Petrillo and Stanislao Monfreda",authors:[{id:"161682",title:"Prof.",name:"Fabio",middleName:null,surname:"De Felice",slug:"fabio-de-felice",fullName:"Fabio De Felice"},{id:"167280",title:"Dr.",name:"Stanislao",middleName:null,surname:"Monfreda",slug:"stanislao-monfreda",fullName:"Stanislao Monfreda"},{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}]},{id:"55749",title:"Exploitation of Brewing Industry Wastes to Produce Functional Ingredients",slug:"exploitation-of-brewing-industry-wastes-to-produce-functional-ingredients",totalDownloads:3099,totalCrossrefCites:7,totalDimensionsCites:16,book:{slug:"brewing-technology",title:"Brewing Technology",fullTitle:"Brewing Technology"},signatures:"Anca Corina Fărcaş, Sonia Ancuța Socaci, Elena Mudura, Francisc\nVasile Dulf, Dan C. Vodnar, Maria Tofană and Liana Claudia Salanță",authors:[{id:"191241",title:"Ph.D.",name:"Sonia A.",middleName:null,surname:"Socaci",slug:"sonia-a.-socaci",fullName:"Sonia A. Socaci"},{id:"191607",title:"Ph.D.",name:"Anca C.",middleName:null,surname:"Fărcaş",slug:"anca-c.-farcas",fullName:"Anca C. Fărcaş"},{id:"192098",title:"Prof.",name:"Maria",middleName:null,surname:"Tofana",slug:"maria-tofana",fullName:"Maria Tofana"},{id:"192177",title:"Dr.",name:"Dan Cristian",middleName:null,surname:"Vodnar",slug:"dan-cristian-vodnar",fullName:"Dan Cristian Vodnar"},{id:"194168",title:"Dr.",name:"Francisc Vasile",middleName:null,surname:"Dulf",slug:"francisc-vasile-dulf",fullName:"Francisc Vasile Dulf"},{id:"203096",title:"Dr.",name:"Elena",middleName:null,surname:"Mudura",slug:"elena-mudura",fullName:"Elena Mudura"},{id:"203097",title:"Dr.",name:"Liana Claudia",middleName:null,surname:"Salanta",slug:"liana-claudia-salanta",fullName:"Liana Claudia Salanta"}]},{id:"53519",title:"Understanding the Stakeholders as a Success Factor for Effective Occupational Health Care",slug:"understanding-the-stakeholders-as-a-success-factor-for-effective-occupational-health-care",totalDownloads:1781,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"occupational-health",title:"Occupational Health",fullTitle:"Occupational Health"},signatures:"Ari-Matti Auvinen",authors:[{id:"193252",title:"M.A.",name:"Ari-Matti",middleName:null,surname:"Auvinen",slug:"ari-matti-auvinen",fullName:"Ari-Matti Auvinen"}]},{id:"43001",title:"Production Scheduling Approaches for Operations Management",slug:"production-scheduling-approaches-for-operations-management",totalDownloads:5934,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"operations-management",title:"Operations Management",fullTitle:"Operations Management"},signatures:"Marcello Fera, Fabio Fruggiero, Alfredo Lambiase, Giada Martino and Maria Elena Nenni",authors:[{id:"163046",title:"Dr.",name:"Fabio",middleName:null,surname:"Fruggiero",slug:"fabio-fruggiero",fullName:"Fabio Fruggiero"}]},{id:"43436",title:"The Important Role of Packaging in Operations Management",slug:"the-important-role-of-packaging-in-operations-management",totalDownloads:6781,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"operations-management",title:"Operations Management",fullTitle:"Operations Management"},signatures:"Alberto Regattieri and Giulia Santarelli",authors:[{id:"72034",title:"Prof.",name:"Alberto",middleName:null,surname:"Regattieri",slug:"alberto-regattieri",fullName:"Alberto Regattieri"}]},{id:"65164",title:"Maintenance Management of Aging Oil and Gas Facilities",slug:"maintenance-management-of-aging-oil-and-gas-facilities",totalDownloads:1343,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"maintenance-management",title:"Maintenance Management",fullTitle:"Maintenance Management"},signatures:"Riaz Khan, Ammeran B. Mad, Khairil Osman and Mohd Asyraf Abd Aziz",authors:[{id:"215673",title:"Dr.",name:"Riaz",middleName:null,surname:"Khan",slug:"riaz-khan",fullName:"Riaz Khan"},{id:"277895",title:"Dr.",name:"Ammeran B.",middleName:null,surname:"Mad",slug:"ammeran-b.-mad",fullName:"Ammeran B. Mad"},{id:"277897",title:"Dr.",name:"Khairil",middleName:null,surname:"Osman",slug:"khairil-osman",fullName:"Khairil Osman"},{id:"277898",title:"Dr.",name:"Mohd Asyraf",middleName:null,surname:"Abdul Aziz",slug:"mohd-asyraf-abdul-aziz",fullName:"Mohd Asyraf Abdul Aziz"}]},{id:"43375",title:"Product Sound Design: Intentional and Consequential Sounds",slug:"product-sound-design-intentional-and-consequential-sounds",totalDownloads:2866,totalCrossrefCites:15,totalDimensionsCites:25,book:{slug:"advances-in-industrial-design-engineering",title:"Advances in Industrial Design Engineering",fullTitle:"Advances in Industrial Design Engineering"},signatures:"Lau Langeveld, René van Egmond, Reinier Jansen and Elif Özcan",authors:[{id:"39586",title:"MSc.",name:"Lau",middleName:null,surname:"Langeveld",slug:"lau-langeveld",fullName:"Lau Langeveld"},{id:"156849",title:"MSc.",name:"Reinier",middleName:null,surname:"Jansen",slug:"reinier-jansen",fullName:"Reinier Jansen"},{id:"156854",title:"Dr.",name:"Rene",middleName:null,surname:"Van Egmond",slug:"rene-van-egmond",fullName:"Rene Van Egmond"},{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}]},{id:"54655",title:"Key Technical Performance Indicators for Power Plants",slug:"key-technical-performance-indicators-for-power-plants",totalDownloads:2424,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"recent-improvements-of-power-plants-management-and-technology",title:"Recent Improvements of Power Plants Management and Technology",fullTitle:"Recent Improvements of Power Plants Management and Technology"},signatures:"Simona Vasilica Oprea and Adela Bâra",authors:[{id:"139804",title:"Prof.",name:"Adela",middleName:null,surname:"Bara",slug:"adela-bara",fullName:"Adela Bara"},{id:"188586",title:"Dr.",name:"Simona Vasilica",middleName:null,surname:"Oprea",slug:"simona-vasilica-oprea",fullName:"Simona Vasilica Oprea"}]},{id:"55197",title:"Changes in Nutritional Properties and Bioactive Compounds in Cereals During Extrusion Cooking",slug:"changes-in-nutritional-properties-and-bioactive-compounds-in-cereals-during-extrusion-cooking",totalDownloads:1052,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"extrusion-of-metals-polymers-and-food-products",title:"Extrusion of Metals, Polymers, and Food Products",fullTitle:"Extrusion of Metals, Polymers and Food Products"},signatures:"Cuauhtémoc Reyes Moreno, Perla C. Reyes Fernández, Edith O.\nCuevas Rodríguez, Jorge Milán Carrillo and Saraid Mora Rochín",authors:[{id:"198302",title:"Dr.",name:"Saraid",middleName:null,surname:"Mora-Rochín",slug:"saraid-mora-rochin",fullName:"Saraid Mora-Rochín"},{id:"199537",title:"Dr.",name:"Perla C.",middleName:null,surname:"Reyes Fernández",slug:"perla-c.-reyes-fernandez",fullName:"Perla C. Reyes Fernández"},{id:"199538",title:"Dr.",name:"Edith O.",middleName:null,surname:"Cuevas Rodríguez",slug:"edith-o.-cuevas-rodriguez",fullName:"Edith O. Cuevas Rodríguez"},{id:"199539",title:"Dr.",name:"Cuauhtémoc",middleName:null,surname:"Reyes Moreno",slug:"cuauhtemoc-reyes-moreno",fullName:"Cuauhtémoc Reyes Moreno"},{id:"199540",title:"Dr.",name:"Jorge",middleName:null,surname:"Milán Carrillo",slug:"jorge-milan-carrillo",fullName:"Jorge Milán Carrillo"}]}],onlineFirstChaptersFilter:{topicSlug:"industrial-engineering-and-management",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/176080/kemal-goekhan-ulusoy",hash:"",query:{},params:{id:"176080",slug:"kemal-goekhan-ulusoy"},fullPath:"/profiles/176080/kemal-goekhan-ulusoy",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()