Synthesis of TiO2 NPs by using plant extracts.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"1958",leadTitle:null,fullTitle:"Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health",title:"Phytochemicals as Nutraceuticals",subtitle:"Global Approaches to Their Role in Nutrition and Health",reviewType:"peer-reviewed",abstract:"Phytochemicals are biologically active compounds present in plants used for food and medicine. A great deal of interest has been generated recently in the isolation, characterization and biological activity of these phytochemicals. This book is in response to the need for more current and global scope of phytochemicals. It contains chapters written by internationally recognized authors. The topics covered in the book range from their occurrence, chemical and physical characteristics, analytical procedures, biological activity, safety and industrial applications. The book has been planned to meet the needs of the researchers, health professionals, government regulatory agencies and industries. This book will serve as a standard reference book in this important and fast growing area of phytochemicals, human nutrition and health.",isbn:null,printIsbn:"978-953-51-0203-8",pdfIsbn:"978-953-51-5258-3",doi:"10.5772/2375",price:119,priceEur:129,priceUsd:155,slug:"phytochemicals-as-nutraceuticals-global-approaches-to-their-role-in-nutrition-and-health",numberOfPages:290,isOpenForSubmission:!1,isInWos:1,hash:"7a4d422838dabdc758119a7dfc6e7a54",bookSignature:"Venketeshwer Rao",publishedDate:"March 23rd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1958.jpg",numberOfDownloads:60599,numberOfWosCitations:60,numberOfCrossrefCitations:30,numberOfDimensionsCitations:113,hasAltmetrics:0,numberOfTotalCitations:203,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 3rd 2011",dateEndSecondStepPublish:"March 3rd 2011",dateEndThirdStepPublish:"July 8th 2011",dateEndFourthStepPublish:"August 7th 2011",dateEndFifthStepPublish:"December 5th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",middleName:null,surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao",profilePictureURL:"https://mts.intechopen.com/storage/users/82663/images/system/82663.jpg",biography:"Dr. Venketeshwer Rao, Professor Emeritus, Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, has established a major focus in the area of diet and health. His research focuses on the role of phytochemicals in the prevention and management of human diseases including cancer, cardiovascular disease, and osteoporosis. The main area of his research is oxidative stress and antioxidant phytochemicals with particular emphasis on the role of lycopene. He is credited for bringing international awareness to the role of lycopene in human health. In addition to carotenoids, his research interests also include plant polyphenols and the role of prebiotics and probiotics in human health. He has published extensively including research papers, reviews, and books. He has a distinguished academic career spanning over 52 years. He is popularly sought by the international media to express his opinions on the subjects of nutrition and health.",institutionString:"University of Toronto",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"University of Toronto",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"349",title:"Agrobiology",slug:"agrobiology"}],chapters:[{id:"32893",title:"Biological Oxidations and Antioxidant Activity of Natural Products",doi:"10.5772/26956",slug:"biological-oxidations-and-antioxidant-activity-of-natural-products",totalDownloads:5490,totalCrossrefCites:4,totalDimensionsCites:22,signatures:"Xirley Pereira Nunes, Fabrício Souza Silva, Jackson Roberto Guedes da S. Almeida, Julianeli Tolentino de Lima, Luciano Augusto de Araújo Ribeiro, Lucindo José Quintans Júnior and José Maria Barbosa Filho",downloadPdfUrl:"/chapter/pdf-download/32893",previewPdfUrl:"/chapter/pdf-preview/32893",authors:[{id:"68388",title:"Dr.",name:"Xirley",surname:"Nunes",slug:"xirley-nunes",fullName:"Xirley Nunes"},{id:"70159",title:"Dr.",name:"Lucindo",surname:"Quintans-Júnior",slug:"lucindo-quintans-junior",fullName:"Lucindo Quintans-Júnior"},{id:"72113",title:"Prof.",name:"Jackson",surname:"Almeida",slug:"jackson-almeida",fullName:"Jackson Almeida"},{id:"72114",title:"Dr.",name:"Julianeli",surname:"Lima",slug:"julianeli-lima",fullName:"Julianeli Lima"},{id:"73341",title:"Prof.",name:"José Maria",surname:"Barbosa-Filho",slug:"jose-maria-barbosa-filho",fullName:"José Maria Barbosa-Filho"},{id:"76185",title:"Dr.",name:"Luciano",surname:"Ribeiro",slug:"luciano-ribeiro",fullName:"Luciano Ribeiro"},{id:"76187",title:"MSc.",name:"Fabrício",surname:"Silva",slug:"fabricio-silva",fullName:"Fabrício Silva"}],corrections:null},{id:"32894",title:"Antimicrobial and Antioxidant Activities of Some Plant Extracts",doi:"10.5772/27308",slug:"antimicrobial-and-antioxidant-activities-of-some-plant-extracts",totalDownloads:6573,totalCrossrefCites:5,totalDimensionsCites:13,signatures:"Elita Scio, Renata F. Mendes, Erick V.S. Motta, Paula M.Q. Bellozi, Danielle M.O. Aragão, Josiane Mello, Rodrigo L. Fabri, Jussara R. Moreira, Isabel V.L. de Assis and Maria Lúcia M. Bouzada",downloadPdfUrl:"/chapter/pdf-download/32894",previewPdfUrl:"/chapter/pdf-preview/32894",authors:[{id:"69660",title:"Dr.",name:"Elita",surname:"Scio",slug:"elita-scio",fullName:"Elita Scio"},{id:"76248",title:"MSc.",name:"Rodrigo",surname:"Fabri",slug:"rodrigo-fabri",fullName:"Rodrigo Fabri"},{id:"76251",title:"MSc.",name:"Danielle",surname:"Aragão",slug:"danielle-aragao",fullName:"Danielle Aragão"},{id:"76253",title:"Ms.",name:"Renata",surname:"Mendes",slug:"renata-mendes",fullName:"Renata Mendes"},{id:"76256",title:"Mr.",name:"Erick",surname:"Motta",slug:"erick-motta",fullName:"Erick Motta"},{id:"76259",title:"Ms.",name:"Isabel",surname:"Assis",slug:"isabel-assis",fullName:"Isabel Assis"},{id:"76261",title:"Ms.",name:"Jussara",surname:"Moreira",slug:"jussara-moreira",fullName:"Jussara Moreira"},{id:"76262",title:"MSc.",name:"Maria Lucia",surname:"Bouzada",slug:"maria-lucia-bouzada",fullName:"Maria Lucia Bouzada"},{id:"76264",title:"Ms.",name:"Paula",surname:"Bellozi",slug:"paula-bellozi",fullName:"Paula Bellozi"},{id:"76266",title:"MSc.",name:"Josiane",surname:"Mello",slug:"josiane-mello",fullName:"Josiane Mello"}],corrections:null},{id:"32895",title:"Antiadhesive Effect of Plant Compounds in Bacteria",doi:"10.5772/27997",slug:"antiadhesive-antibacterial-effect-of-plant-compounds",totalDownloads:3758,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Orlando A. Abreu and Guillermo Barreto",downloadPdfUrl:"/chapter/pdf-download/32895",previewPdfUrl:"/chapter/pdf-preview/32895",authors:[{id:"72338",title:"MSc.",name:"Orlando",surname:"Abreu",slug:"orlando-abreu",fullName:"Orlando Abreu"},{id:"115096",title:"Dr.",name:"Guillermo",surname:"Barreto",slug:"guillermo-barreto",fullName:"Guillermo Barreto"}],corrections:null},{id:"32896",title:"Improved Fertility Potential and Antimicrobial Activities of Sesame Leaves Phytochemicals",doi:"10.5772/26073",slug:"improved-fertility-potential-and-antimicrobial-activities-of-sesame-leaves-phytochemicals-",totalDownloads:2694,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Lukeman Adelaja Joseph Shittu and Remilekun Keji Mary Shittu",downloadPdfUrl:"/chapter/pdf-download/32896",previewPdfUrl:"/chapter/pdf-preview/32896",authors:[{id:"65451",title:"Prof.",name:"Lukeman",surname:"Shittu",slug:"lukeman-shittu",fullName:"Lukeman Shittu"},{id:"75567",title:"Mrs.",name:"Remilekun Keji",surname:"Shittu",slug:"remilekun-keji-shittu",fullName:"Remilekun Keji Shittu"}],corrections:null},{id:"32897",title:"Phytochemical and Antibacterial Studies of the Hexane Extract of Alchornea cordifolia Leaf",doi:"10.5772/26948",slug:"phytochemical-and-antibacterial-studies-of-hexane-extract-of-alchornea-cordifolia-leaf",totalDownloads:4612,totalCrossrefCites:0,totalDimensionsCites:4,signatures:"G.O. Adeshina, O.F. Kunle, J.A. Onaolapo, J.O. Ehinmidu and L.E. Odama",downloadPdfUrl:"/chapter/pdf-download/32897",previewPdfUrl:"/chapter/pdf-preview/32897",authors:[{id:"68374",title:"Dr.",name:"Gbonjubola",surname:"Adeshina",slug:"gbonjubola-adeshina",fullName:"Gbonjubola Adeshina"}],corrections:null},{id:"32898",title:"Antioxidant and Anti-Proliferative Capacity of a Dichloromethane Extract of Dicerocaryum senecioides Leaves",doi:"10.5772/26407",slug:"antioxidant-and-anti-proliferative-capacity-of-a-dichloromethane-extract-of-dicerocaryum-senecioides",totalDownloads:2310,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Leseilane J. Mampuru, Pirwana K. Chokoe, Maphuti C. Madiga, Annette Theron, Ronald Anderson and Matlou P. Mokgotho",downloadPdfUrl:"/chapter/pdf-download/32898",previewPdfUrl:"/chapter/pdf-preview/32898",authors:[{id:"66512",title:"Prof.",name:"Leseilane",surname:"Mampuru",slug:"leseilane-mampuru",fullName:"Leseilane Mampuru"},{id:"71445",title:"Ms.",name:"Pirwana",surname:"Chokoe",slug:"pirwana-chokoe",fullName:"Pirwana Chokoe"},{id:"71446",title:"Prof.",name:"Matlou",surname:"Mokgotho",slug:"matlou-mokgotho",fullName:"Matlou Mokgotho"},{id:"71467",title:"Prof.",name:"Ronald",surname:"Anderson",slug:"ronald-anderson",fullName:"Ronald Anderson"},{id:"71547",title:"MSc",name:"Maphuti",surname:"Madiga",slug:"maphuti-madiga",fullName:"Maphuti Madiga"},{id:"72056",title:"Prof.",name:"Annette",surname:"Theron",slug:"annette-theron",fullName:"Annette Theron"}],corrections:null},{id:"32899",title:"Antioxidant Activity of European Mistletoe (Viscum album)",doi:"10.5772/26845",slug:"antioxidant-activity-of-mistletoe",totalDownloads:3438,totalCrossrefCites:3,totalDimensionsCites:9,signatures:"Simona Ioana Vicas, Dumitrita Rugina and Carmen Socaciu",downloadPdfUrl:"/chapter/pdf-download/32899",previewPdfUrl:"/chapter/pdf-preview/32899",authors:[{id:"68017",title:"Dr.",name:"Simona",surname:"Vicas",slug:"simona-vicas",fullName:"Simona Vicas"},{id:"83458",title:"Dr.",name:"Dumitrita",surname:"Rugina",slug:"dumitrita-rugina",fullName:"Dumitrita Rugina"},{id:"83459",title:"Prof.",name:"Carmen",surname:"Socaciu",slug:"carmen-socaciu",fullName:"Carmen Socaciu"}],corrections:null},{id:"32900",title:"Antioxidant and Anti-Inflammatory Activities of Sasa quelpaertensis Leaf Extracts",doi:"10.5772/26874",slug:"antioxidant-and-anti-inflammatory-activities-of-sasa-quelpaertensis-extracts",totalDownloads:2956,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Se-Jae Kim, Joon-Ho Hwang, Hye-Sun Shin, Mi-Gyeong Jang, Hee-Chul Ko and Seong-Il Kang",downloadPdfUrl:"/chapter/pdf-download/32900",previewPdfUrl:"/chapter/pdf-preview/32900",authors:[{id:"68089",title:"Prof.",name:"Se-Jae",surname:"Kim",slug:"se-jae-kim",fullName:"Se-Jae Kim"},{id:"116801",title:"Ms.",name:"Joon-Ho",surname:"Hwang",slug:"joon-ho-hwang",fullName:"Joon-Ho Hwang"},{id:"116803",title:"Mrs.",name:"Hye-Sun",surname:"Shin",slug:"hye-sun-shin",fullName:"Hye-Sun Shin"},{id:"116804",title:"Mrs.",name:"Mi-Gyeong",surname:"Jang",slug:"mi-gyeong-jang",fullName:"Mi-Gyeong Jang"},{id:"116806",title:"Dr.",name:"Hee-Chul",surname:"Ko",slug:"hee-chul-ko",fullName:"Hee-Chul Ko"},{id:"116809",title:"Mr.",name:"Seong-Il",surname:"Kang",slug:"seong-il-kang",fullName:"Seong-Il Kang"}],corrections:null},{id:"32901",title:"Plant Polyphenols as Antioxidants Influencing the Human Health",doi:"10.5772/27843",slug:"plant-polyphenols-as-antioxidants-influencing-the-human-health",totalDownloads:6305,totalCrossrefCites:7,totalDimensionsCites:22,signatures:"Sanda Vladimir-Knežević, Biljana Blažeković, Maja Bival Štefan and Marija Babac",downloadPdfUrl:"/chapter/pdf-download/32901",previewPdfUrl:"/chapter/pdf-preview/32901",authors:[{id:"71793",title:"Dr.",name:"Biljana",surname:"Blazekovic",slug:"biljana-blazekovic",fullName:"Biljana Blazekovic"},{id:"76049",title:"Prof.",name:"Sanda",surname:"Vladimir-Knežević",slug:"sanda-vladimir-knezevic",fullName:"Sanda Vladimir-Knežević"},{id:"76050",title:"MSc.",name:"Maja",surname:"Bival Štefan",slug:"maja-bival-stefan",fullName:"Maja Bival Štefan"},{id:"76054",title:"MSc.",name:"Marija",surname:"Babac",slug:"marija-babac",fullName:"Marija Babac"}],corrections:null},{id:"32902",title:"Plant Polyphenols: Extraction, Structural Characterization, Hemisynthesis and Antioxidant Properties",doi:"10.5772/26832",slug:"polyphenols-as-potent-antioxidants-with-a-major-role-in-food-organoleptic-properties-and-human-healt",totalDownloads:5043,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Nour-Eddine Es-Safi",downloadPdfUrl:"/chapter/pdf-download/32902",previewPdfUrl:"/chapter/pdf-preview/32902",authors:[{id:"67967",title:"Dr.",name:"Nour-Eddine",surname:"Es-Safi",slug:"nour-eddine-es-safi",fullName:"Nour-Eddine Es-Safi"}],corrections:null},{id:"32903",title:"Potato Peel as a Source of Important Phytochemical Antioxidant Nutraceuticals and Their Role in Human Health - A Review",doi:"10.5772/30459",slug:"potato-peel-as-a-source-of-important-phytochemical-antioxidant-nutraceuticals-and-their-role-in-huma",totalDownloads:7974,totalCrossrefCites:9,totalDimensionsCites:17,signatures:"A. Al-Weshahy and V.A. Rao",downloadPdfUrl:"/chapter/pdf-download/32903",previewPdfUrl:"/chapter/pdf-preview/32903",authors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"},{id:"150485",title:"Dr.",name:"Amir",surname:"Al-Weshahy",slug:"amir-al-weshahy",fullName:"Amir Al-Weshahy"}],corrections:null},{id:"32904",title:"Polyamines of Plant Origin - An Important Dietary Consideration for Human Health",doi:"10.5772/26902",slug:"polyamines-of-plant-origin-an-important-dietary-consideration-for-human-health",totalDownloads:3670,totalCrossrefCites:0,totalDimensionsCites:12,signatures:"Denise C. Hunter and David J. Burritt",downloadPdfUrl:"/chapter/pdf-download/32904",previewPdfUrl:"/chapter/pdf-preview/32904",authors:[{id:"68219",title:"Dr.",name:"Denise",surname:"Hunter",slug:"denise-hunter",fullName:"Denise Hunter"},{id:"74908",title:"Dr.",name:"David",surname:"Burritt",slug:"david-burritt",fullName:"David Burritt"}],corrections:null},{id:"32905",title:"The Dichapetalins - Unique Cytotoxic Constituents of the Dichapetalaceae",doi:"10.5772/27224",slug:"the-dichapetalins-unique-cytotoxic-constituents-of-the-dichapetalaceae",totalDownloads:2113,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Dorcas Osei-Safo, Mary A. Chama, Ivan Addae-Mensah and Reiner Waibel",downloadPdfUrl:"/chapter/pdf-download/32905",previewPdfUrl:"/chapter/pdf-preview/32905",authors:[{id:"69303",title:"Dr.",name:"Dorcas",surname:"Osei-Safo",slug:"dorcas-osei-safo",fullName:"Dorcas Osei-Safo"}],corrections:null},{id:"32906",title:"Screening of some Traditionally Used Plants for Their Hepatoprotective Effect",doi:"10.5772/29819",slug:"review-screening-of-some-traditionally-used-plants-for-their-hepatoprotective-effect",totalDownloads:3664,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Saleh I. Alqasoumi and Maged S. Abdel-Kader",downloadPdfUrl:"/chapter/pdf-download/32906",previewPdfUrl:"/chapter/pdf-preview/32906",authors:[{id:"79456",title:"Prof.",name:"Maged",surname:"Abdel-Kader",slug:"maged-abdel-kader",fullName:"Maged Abdel-Kader"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4528",title:"Phytochemicals",subtitle:"Isolation, Characterisation and Role in Human Health",isOpenForSubmission:!1,hash:"2d32f26b4936bc0cdca01c74bce1a6ec",slug:"phytochemicals-isolation-characterisation-and-role-in-human-health",bookSignature:"A. Venket Rao and Leticia G. Rao",coverURL:"https://cdn.intechopen.com/books/images_new/4528.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5193",title:"Probiotics and Prebiotics in Human Nutrition and Health",subtitle:null,isOpenForSubmission:!1,hash:"facfb45c80773cd5151d8f53b902be39",slug:"probiotics-and-prebiotics-in-human-nutrition-and-health",bookSignature:"Venketeshwer Rao and Leticia G. Rao",coverURL:"https://cdn.intechopen.com/books/images_new/5193.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8077",title:"Phytochemicals in Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8db73d87975ed16ea4758f1aecb5bf27",slug:"phytochemicals-in-human-health",bookSignature:"Venketeshwer Rao, Dennis Mans and Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/8077.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7206",title:"Corn",subtitle:"Production and Human Health in Changing Climate",isOpenForSubmission:!1,hash:"0140cb7a425a230a388fcece870e62b2",slug:"corn-production-and-human-health-in-changing-climate",bookSignature:"Amanullah and Shah Fahad",coverURL:"https://cdn.intechopen.com/books/images_new/7206.jpg",editedByType:"Edited by",editors:[{id:"178825",title:"Dr.",name:"Dr.",surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8954",title:"Biostimulants in Plant Science",subtitle:null,isOpenForSubmission:!1,hash:"ac0eb3328820cca42cb7d6cdbfca4ec2",slug:"biostimulants-in-plant-science",bookSignature:"Seyed Mahyar Mirmajlessi and Ramalingam Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/8954.jpg",editedByType:"Edited by",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,isOpenForSubmission:!1,hash:"02f39c8365ba155d1c520184c2f26976",slug:"nitrogen-fixation",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",editedByType:"Edited by",editors:[{id:"39553",title:"Prof.",name:"Everlon",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66301",slug:"corrigendum-to-denim-fabrics-woven-with-dual-core-spun-yarns",title:"Corrigendum to: Denim Fabrics Woven with Dual Core-Spun Yarns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66301.pdf",downloadPdfUrl:"/chapter/pdf-download/66301",previewPdfUrl:"/chapter/pdf-preview/66301",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66301",risUrl:"/chapter/ris/66301",chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]}},chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]},book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9288",leadTitle:null,title:"Design and Manufacturing",subtitle:null,reviewType:"peer-reviewed",abstract:"In product development, decisions taken in design and manufacturing are considered the most influential factors for succeeding commercialisation. Product development is a complex integrated process of several steps starting from design where the market needs are identified and turned into competitive product specifications and different design concepts. In other words, design is about identifying a problem, developing solution proposals, and validating the most feasible solution with real users. Manufacturing technologies, on the other hand, help designers to make those virtual models into physical parts by transforming different types of raw materials. This book on design and manufacturing, written by a number of experts from all over the world, presents a design perspective and different manufacturing applications from various industrial sectors.",isbn:"978-1-78985-866-2",printIsbn:"978-1-78985-865-5",pdfIsbn:"978-1-83962-889-4",doi:"10.5772/intechopen.83290",price:119,priceEur:129,priceUsd:155,slug:"design-and-manufacturing",numberOfPages:266,isOpenForSubmission:!1,hash:"29172b8e746a303c2c48f39292fd4c10",bookSignature:"Evren Yasa, Mohsen Mhadhbi and Eleonora Santecchia",publishedDate:"July 29th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9288.jpg",keywords:null,numberOfDownloads:3056,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:7,numberOfTotalCitations:7,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 14th 2019",dateEndSecondStepPublish:"August 28th 2019",dateEndThirdStepPublish:"October 27th 2019",dateEndFourthStepPublish:"January 15th 2020",dateEndFifthStepPublish:"March 15th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"219594",title:"Ph.D.",name:"Evren",middleName:null,surname:"Yasa",slug:"evren-yasa",fullName:"Evren Yasa",profilePictureURL:"https://mts.intechopen.com/storage/users/219594/images/9465_n.jpg",biography:"Dr. Evren Yasa graduated with her degree in Mechanical Engineering from the Istanbul Technical University and completed\nher master degree at the University of British Columbia on\nvolumetric error modeling and compensation. She received her\nPh.D. degree with her thesis on “Combined Process of Selective\nLaser Melting and Selective Laser Erosion/Laser Re-melting” at\nthe Catholic University of Leuven, and won the “Emerald Outstanding Doctoral Study-Highly commended” award with her doctoral dissertation.\nAfter her Ph.D. study, she worked as a senior engineer at TEI, a GE-joint venture\ncompany specializing in manufacturing aero-engine parts, where she led Additive\nManufacturing projects. Later, she joined Eskisehir Osmangazi University as an\nassistant professor. Moreover, she has been working as an independent expert in\nlaser-based manufacturing on behalf of European Commission in FP7 and Horizon2020 projects.",institutionString:"Eskisehir Osmangazi University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Eskişehir Osmangazi University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"228366",title:"Dr.",name:"Mohsen",middleName:null,surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi",profilePictureURL:"https://mts.intechopen.com/storage/users/228366/images/system/228366.jpeg",biography:"Dr. Mohsen Mhadhbi obtained his Ph.D. degree from the Faculty\nof Sciences of Sfax, Tunisia. He is currently Assistant Professor\nof Chemistry in the National Institute of Research and Physical-chemical Analysis, Tunisia. His research interests include\ninorganic chemistry, material engineering, intermetallics, and\npowder technology. He has published works in national and\ninternational impacted journals and books. He is a teacher in\ninorganic chemistry. He has supervised several researchers in materials science. He\nis a member of various scientific journals and associations and has been serving as\nan editorial board member of repute.",institutionString:"National Institute of Research and Physical-Chemical Analysis",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Tunis El Manar University",institutionURL:null,country:{name:"Tunisia"}}},coeditorTwo:{id:"270298",title:"Dr.",name:"Eleonora",middleName:null,surname:"Santecchia",slug:"eleonora-santecchia",fullName:"Eleonora Santecchia",profilePictureURL:"https://mts.intechopen.com/storage/users/270298/images/system/270298.jpeg",biography:"Dr. Eleonora Santecchia (PhD) is Assistant Professor in Metallurgy at the Marche Polytechnic University (UNIVPM) located in Ancona, Italy. Her current research activities are mainly\nfocused on metal additive manufacturing and, in particular, on\nthe laser powder bed fusion (LPBF) and direct energy deposition\n(DED) techniques. She received her Master Degree (cum laude)\nin Thermomechanical Engineering at the Marche Polytechnic\nUniversity (Ancona, Italy) in 2010, and obtained her Ph.D. in Materials, Waters\nand Soils Engineering on March 2014 (Marche Polytechnic University, Ancona,\nItaly). She accomplished a two years postdoctorate fellowship at Qatar University\nin Doha (Qatar) working on the Project NPRP 5-423-2-167 “Advanced ultra-hard\nnanostructured coatings for innovative applications in mechanical and chemical\nindustries”. From 2016 to 2019 she worked as an INSTM Postdoctoral Researcher at\nthe Marche Polytechnic University (Ancona), within the European Project DREAM\nH2020 “Driving up Reliability and Efficiency of Additive Manufacturing”. She is\nexperienced in microstructural characterization by scanning electron microscopy,\nenergy dispersive spectroscopy, and X-ray diffraction techniques. Furthermore, Dr.\nSantecchia is an enthusiastic additive manufacturing researcher, with a particular\npassion for laser-based 3D printing techniques.",institutionString:"Marche Polytechnic University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1356",title:"Manufacturing Engineering",slug:"technology-industrial-engineering-manufacturing-engineering"}],chapters:[{id:"70110",title:"Design for Manufacturing of Electro-Mechanical Assemblies in the Aerospace Industry",slug:"design-for-manufacturing-of-electro-mechanical-assemblies-in-the-aerospace-industry",totalDownloads:234,totalCrossrefCites:0,authors:[null]},{id:"68474",title:"Industrial Applications of Intelligent Adaptive Sampling Methods for Multi-Objective Optimization",slug:"industrial-applications-of-intelligent-adaptive-sampling-methods-for-multi-objective-optimization",totalDownloads:288,totalCrossrefCites:0,authors:[null]},{id:"68343",title:"Design for Sustainability with Biodegradable Composites",slug:"design-for-sustainability-with-biodegradable-composites",totalDownloads:349,totalCrossrefCites:0,authors:[null]},{id:"70001",title:"Integrating Sustainability in the Strategic Stage of an Innovation Process: A Design Brief Perspective",slug:"integrating-sustainability-in-the-strategic-stage-of-an-innovation-process-a-design-brief-perspectiv",totalDownloads:192,totalCrossrefCites:0,authors:[{id:"154290",title:"M.Sc.",name:"Kristel",surname:"Dewulf",slug:"kristel-dewulf",fullName:"Kristel Dewulf"}]},{id:"70473",title:"Prologue: The New Era of Sintering",slug:"prologue-the-new-era-of-sintering",totalDownloads:169,totalCrossrefCites:0,authors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"},{id:"270298",title:"Dr.",name:"Eleonora",surname:"Santecchia",slug:"eleonora-santecchia",fullName:"Eleonora Santecchia"}]},{id:"69701",title:"Utilization of Additive Manufacturing to Produce Tools",slug:"utilization-of-additive-manufacturing-to-produce-tools",totalDownloads:241,totalCrossrefCites:0,authors:[{id:"219596",title:"Dr.",name:"Kıvılcım",surname:"Ersoy",slug:"kivilcim-ersoy",fullName:"Kıvılcım Ersoy"}]},{id:"67294",title:"Fabrication of Fine-Grained Functional Ceramics by Two-Step Sintering or Spark Plasma Sintering (SPS)",slug:"fabrication-of-fine-grained-functional-ceramics-by-two-step-sintering-or-spark-plasma-sintering-sps-",totalDownloads:242,totalCrossrefCites:0,authors:[{id:"216560",title:"Dr.",name:"Walace",surname:"Matizamhuka",slug:"walace-matizamhuka",fullName:"Walace Matizamhuka"}]},{id:"69886",title:"Rapid Physical Models: A New Phase in Industrial Design",slug:"rapid-physical-models-a-new-phase-in-industrial-design",totalDownloads:211,totalCrossrefCites:0,authors:[null]},{id:"67448",title:"Effects of Dispersed Sulfides in Bronze During Sintering",slug:"effects-of-dispersed-sulfides-in-bronze-during-sintering",totalDownloads:257,totalCrossrefCites:0,authors:[null]},{id:"70809",title:"Comprehensive Review on Full Bone Regeneration through 3D Printing Approaches",slug:"comprehensive-review-on-full-bone-regeneration-through-3d-printing-approaches",totalDownloads:230,totalCrossrefCites:0,authors:[null]},{id:"72320",title:"3D Printed Bioscaffolds for Developing Tissue-Engineered Constructs",slug:"3d-printed-bioscaffolds-for-developing-tissue-engineered-constructs",totalDownloads:206,totalCrossrefCites:0,authors:[{id:"39279",title:"Prof.",name:"Md Enamul",surname:"Hoque",slug:"md-enamul-hoque",fullName:"Md Enamul Hoque"}]},{id:"69997",title:"Application the Geometric Modeling Methods and Systems in Design Engineering and Manufacturing on Example of Agriculture Engineering",slug:"application-the-geometric-modeling-methods-and-systems-in-design-engineering-and-manufacturing-on-ex",totalDownloads:197,totalCrossrefCites:0,authors:[{id:"268891",title:"Ph.D.",name:"Tojiddin",surname:"Juraev",slug:"tojiddin-juraev",fullName:"Tojiddin Juraev"}]},{id:"71402",title:"Manufacturing a Ceramic Water Filter Press for Use in Nigeria",slug:"manufacturing-a-ceramic-water-filter-press-for-use-in-nigeria",totalDownloads:240,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"287827",firstName:"Gordan",lastName:"Tot",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/287827/images/8493_n.png",email:"gordan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5266",title:"Sustainable Drying Technologies",subtitle:null,isOpenForSubmission:!1,hash:"b181534649ba314c0b6b66563924b0b5",slug:"sustainable-drying-technologies",bookSignature:"Jorge del Real Olvera",coverURL:"https://cdn.intechopen.com/books/images_new/5266.jpg",editedByType:"Edited by",editors:[{id:"166103",title:"Dr.",name:"Jorge",surname:"Del Real Olvera",slug:"jorge-del-real-olvera",fullName:"Jorge Del Real Olvera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6245",title:"Pulp and Paper Processing",subtitle:null,isOpenForSubmission:!1,hash:"02d43c16cfb998c3a76fb4aab8d88403",slug:"pulp-and-paper-processing",bookSignature:"Salim Newaz Kazi",coverURL:"https://cdn.intechopen.com/books/images_new/6245.jpg",editedByType:"Edited by",editors:[{id:"93483",title:"Dr.",name:"Salim Newaz",surname:"Kazi",slug:"salim-newaz-kazi",fullName:"Salim Newaz Kazi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9278",title:"Mass Production Processes",subtitle:null,isOpenForSubmission:!1,hash:"789ba305188dfbafa096787e75c14ffc",slug:"mass-production-processes",bookSignature:"Anil Akdogan and Ali Serdar Vanli",coverURL:"https://cdn.intechopen.com/books/images_new/9278.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,isOpenForSubmission:!1,hash:"165b06fe031e98420855654b0a5e25c4",slug:"applications-of-design-for-manufacturing-and-assembly",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6736",title:"Abrasive Technology",subtitle:"Characteristics and Applications",isOpenForSubmission:!1,hash:"928e702841e3f565da642039ea0c31ce",slug:"abrasive-technology-characteristics-and-applications",bookSignature:"Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/6736.jpg",editedByType:"Edited by",editors:[{id:"110857",title:"Associate Prof.",name:"Anna",surname:"Rudawska",slug:"anna-rudawska",fullName:"Anna Rudawska"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"59587",title:"Algal Fuel Cell",doi:"10.5772/intechopen.74285",slug:"algal-fuel-cell",body:'\n
Almost 80% of world energy consumption is from the combustion of fossil fuels. The depletion of these fossil fuels necessitates the importance of renewable energy synchronization. Fossil fuels on combustion pollute the environment by emitting huge amount of CO2 to the atmosphere resulting in global climate change. The risks of over-dependence on fossil fuels can be avoided by using renewable and carbon-neutral energy sources in a large amount. The concern and awareness of the harmful impact of mineral-based fuels on the environment have pushed the research towards the production of eco-friendly energy from renewable sources. Renewable energy, which can be harvested from the sun either by photovoltaic energy or in the form of biomass energy as solar energy is considered as the mother of all energy, will play a predominant role in future. Globally, carbon neutral energy has been receiving the attention of extensive researches during last decades.
\nDuring the eighteenth century, the novel idea of generating electric energy from biological route emerged. The potential of using microorganisms that convert organic or inorganic compounds into electrical power was studied [1]. This process occurs through metabolic activity of microorganisms at ambient pressure and temperature [2]. Microbial fuel cells are the devices capable of producing bioelectricity from different sources of substrates [3, 4]. The substrate is regarded as one of the essential biochemical factors affecting power generation in microbial fuel cells. The consideration of microbial fuel cells as a marginal scientific issue has been catching up with other bioconversion concepts in recent years.
\nNew designs have evolved and the operation has moved towards AFC for generating bioelectricity through the photosynthesis reaction by microalgae. Microalgae are considered as eco-friendly organisms having high photosynthetic efficiency and rapid reproduction and are also a good source of fuel with their neutral lipid content. Algae use energy from sunlight in the photosynthetic reaction in which they consume carbon dioxide to produce oxygen. The first creations of algae were cyanobacteria, the small sized blue green algae responsible for the early transformation of the earth’s atmosphere. Algae play a significant role in the production of oxygen. In the current situation, there is need to reduce carbon dioxide and in this way algae convert carbon dioxide to oxygen where lights stimulate the CO2 fixation by Calvin cycle. The photosynthesis reaction is considered as one of the complex biological redox reactions happening naturally and carried out by algae and plants in which they are able to use energy from the sun to produce carbohydrates and oxygen through multiple redox reactions. They also produce additional compounds during the process which may be utilized for energy or employed in the synthesis of other molecules [5, 6].
\nAFC is a promising technology which can capture CO2 inexpensively with the help of algae. Generally, microalgae grow in a bioreactor or open pond where they can use the sunlight, CO2 and nutrient. Therefore, new designs were employed for enabling the microalgae in a microbial fuel cell to generate electricity with different electrode materials.
\nAFCs are electro biochemical devices which have anode and cathode compartments enclosed with a photosynthetic microorganism. Here photosynthesis is carried out and they act as electron donors producing organic metabolites. The main objective of configuring AFC is to increases the power density and achieving high performance in order to create a cost effective system. Major configurations of AFC are a single chamber, two chambers, three chambers, coupled and sediment types.
\nIn single chamber AFC, bacteria and microalgae are grown together in one chamber which is membrane less wherein micro-algae forms a biofilm on the anode and some are usually configured with an air cathode [7, 8]. Carbon dioxide generated by autotrophic and heterotrophic organisms are consumed simultaneously by algae in the same chamber. In single chamber AFC, bacterial co-cultures are grown synergistically with algal co-cultures [9]. Single chambers are easy to manage in lab when compared to other configurations. Single chamber AFC are easy to operate, cost effective in scaling up and can be used commercially.
\nDual or two chambered AFC consists of two separate chambers in which microalgae and bacteria are separated by a membrane [10, 11]. In two chambered configuration, cathodic compartment contains microalgae that are illuminated for photosynthesis reaction. The anodic compartment is also illuminated making the algae to cover the bacterial compartment in most of the studies. Highly relative internal resistance and crossover of the membrane are some issues are associated with this system.
\nThree chambered MFCs are an additional chamber containing salt water that gives stress to the production of power. The third chamber is in between the cathode and anode chambers. Partial desalination is observed in the middle chamber where cations move towards cathode and anion towards anode [7].
\nIn sediment AFC, an anode is buried in sediment and a cathode is on the top of sediment immersed in the water having microalgae. The differences in existing electro-potentials generate energy [12, 13]. During this process the released electrons are captured by the anode and current is generated in an electrical circuit. In this configuration, cathode compartment was changed to biogenic one.
\nMicroalgae are one of the best bioactive metabolites for a microbial fuel cell which can mitigate CO2. The mechanism of donating an electron and accepting it is still uncertain. The understanding of the mechanism is important for improving the performances of AFCs. Some studies predicted that dumping of cells in a certain environment causes the reduction of power against oxidative stress. Researchers have explained these mechanisms by using specific inhibitors of electron transport chain in microalgae [14, 15]. Another prediction has reported that microorganisms use electrical signal for communicating and this is explained in many complex communities containing autotrophic and heterotrophic, eukaryotic and prokaryotic organisms where electrogenic microorganisms exist [16]. Many researchers have reviewed and recommended microbial fuel cells using microalgae for the right selection of the type of algal strain to maximize power production [17, 18]. The study to determine the method of screening the right strain is few in number. A recent study has made an effort for cost-effective photosynthetic microbial fuel cell design with highly reproducible electrochemical characteristics that can be used to screen algae and cyanobacteria for photosynthetic electrogenic activity. Paulschulzia pseudovolvox (Chlorophyceae) is identified as good electrogenic qualities among several cyanobacteria [19].
\nThe anolyte used in AFC is rich in carbon source such as glucose formate and acetate being similar to other prepared sources like LB medium, Scenedesmus algae in powder form, fruit industry liquid waste and wastewater [9, 11, 20, 21, 22, 23, 24]. The factors affecting the generation of power depends on the types of anolytes used and their internal resistance. The efficiency and power production of AFC depend on the resistance of membrane on anolyte, high ion generation in the anodic chamber and oxygen crossover through the membrane. Some of the problems faced by AFC are membrane fouling, high COD and low pH of anolyte. To overcome these problems, membrane pretreatment and continuous monitoring of the internal conditions of the anodic chamber is necessary.
\nThe commonly used catholyte in AFC is microalgae. Microalgae in cathode help in reducing the CO2 emitted from bacterial metabolism, respiration providing economic and environmental sustainability. Blue green algae, Chlorella vulgaris, Desmodesmus sp., etc. are some of the microalgae used in the cathode compartment of AFC. Chlorella vulgaris is one of the common microalgae which have been studied extensively as a catholyte by many researchers. It is influenced by several factors such as electron consumption by methanogenesis, aerobic respiration by the cathodic biofilm and oxygen crossover which is hindered during COD removal [25]. Moreover, algal biofilms can limit the diffusion of oxygen affecting the performance of AFC [26]. Researchers have reported 92% of COD removal and 90–80% removal of inorganic components with 2.2 mW−3 of power density [27]. The yielded biomass from AFC can be used as animal feed or for energy and bio-product generation [28].
\nElectrode materials play a vital role in AFC because of its overall cost effectiveness and the performance in power generation. Properties such as good electrical conductivity and low resistance, strong biocompatibility, chemical stability and anti-corrosion, large surface area and appropriate mechanical strength and toughness are to be considered in the selection of an electrode material. Commonly used anode materials are graphite plates and rods, carbon fiber brushes, carbon cloth, carbon paper, carbon felt, carbon nanotubes and granulated graphite [17]. Carbon electrode is used extensively due to its low cost when compared to other electrodes. Biofilm helps in trapping the electron with the help of electrode and algal substrate. Therefore, cathode graphite felt coated with platinum, 10% Teflon coated on carbon paper, etc. are preferred to increase biofilm formation on the cathode.
\nThe membrane is the heart of this system which is highly expensive. This results in the increase of the overall cost of AFC. Membranes act as a separator for the anode and cathode compartments. The substrate that is used in this system tends to produce electrons and protons which are passed through the membrane for the separation of specific ions. Though the membranes are used as a barrier, it has some issues. The motion of ions from the anode to cathode chamber slowly increases the protons in the anode chamber and the negatively charged ions in the cathode chamber. This results in low and high pH in anode and cathode.
\nThe overall performance of AFC can improve by a membrane separator having micellar porous structure separating the specific ions from anode chamber to cathode chamber. Proton exchange membrane and electron exchange membrane are the most preferred membranes due to their superior conductivity properties. But these are unsuitable for high power scale application due to their need for hydration and high cost. Some of the studies have explored the use of alternative membranes of low cost which are: cation exchange membranes such as sulfonated polyether ether ketone, sulfonated polystyrene-ethylene-butylene-polystyrene, CMI-7000 and Hyflon ion, anion exchange membranes such as AMI-7000, salt bridges and porous materials such as J-Cloth, glass fiber filters, nylon, nonwoven cloth, earthenware pot, ceramic, terracotta, compostable bags and latex glove. The use of these inexpensive membranes occasionally causes difficulties like high internal resistance.
\nThe healthy growth of algae in AFC is essential for efficient power production which is influenced by growth media, nutrient supplement and CO2. The optimal growth of microalgae is achieved when the cathodic chamber is bubbled with CO2 or by diverting CO2 produced in the anodic chamber which concludes that the microalgae is able to fix CO2 by consuming the inorganic carbon in cathodic chamber and CO2 produced in the anionic chamber which permeates through the membrane [23, 29]. The micro-algae also prefer to use CO2 in the presence of light and organic carbon the result of which is the production of daytime electricity depending on the organic loading rate and light irradiation. In some cases, a higher concentration of CO2 causes adverse effect on algae during the early stages of growth. The dissolved CO2 eventually decreases the pH of the electrolyte and this pH of the algal inoculums must be high initially to overcome. Apart from this, CO2 concentration also affects the lipid content of microalgae. The cells produce polyunsaturated fatty acids under high CO2 concentrations. A 6% lipid content increase was observed accompanied by a 10–15% increase in CO2 supply [30].
\nAlgae and higher plants contain two major photosynthetic systems in thylakoid membrane. They are classified as photosystem I and photosystem II containing chlorophylls and carotenoid pigments respectively for light energy absorption [31, 32]. The chlorophyll pigment adsorbs wavelength between 650 and 750 nm in the red region while carotenoids pigment absorbs wavelength between 450 and 500 nm in the blue region. This mechanism of transferring excitation energy by both chlorophyll and carotenoids results in higher efficiency of photosynthesis over a wide range of wavelengths [32]. However, the absorption of wavelength by the pigments depends entirely on the type and history of microalgae [33].
\nDuring photosynthesis, light energy absorbed by chlorophyll induces the transfer of electrons and hydrogen ions from water to an acceptor called NADP+ where they are temporarily stored. The light reactions use solar power to reduce NADP+ to NADPH by adding a pair of electrons along with a proton from which electrical power may be generated [34].
\nPhotosynthesis rate can be increased by proper light source and light intensities leading to higher cell growth and generation of electrons. As a result, higher bioelectricities might be observed with an optimized light source installed in photo microbial fuel cells. However, only a few studies focusing on the influence of specific light supply or intensities upon power generation and cell growth of photosynthetic microorganisms have been carried out. Xing et al. [35] found that the exposure of AFC to incandescent light increased power densities by 8–10% for glucose fed reactors and 34% for acetate fed reactors when compared to the reactors operated under dark condition. But, Fu et al. [36] obtained a higher power density and open-circuit voltage when AFC was operated under dark condition by using Spirulina platensis as biocatalyst. Yeh et al. [37] had investigated the effect of the type and light intensity of artificial light sources on the cell growth of microalgae Chlorella vulgaris. They found that fluorescent light source was effective in indoor cultivation of these microalgae with an overall productivity of 0.029 g dry cell weight L−1d−1 and it was obtained by using light source having a light intensity of 9 W m−2. Similarly, S. platensis and H. pluvialis cultivated under red LED light condition showed better growth profile [35, 38, 39]. On the other hand, Nannochloropsis sp. showed a maximum specific growth rate of 0.64, 0.51, 0.54 and 0.58 d−1 when exposed to blue, red, green and white light respectively [40].
\nThe most important component of AFC is a membrane which acts as a physical separator and ion selective in passing protons. Moreover, it also hinders the passage of other materials and prevents the crossover of oxygen from the cathode to the anode. Microbes grow on the surface of the membrane causing membrane fouling when AFC is operated for a long term. Membrane fouling occurs when organic foulants such as extracellular polymeric substances aggregate on the surface of the membrane. The negatively charged sulfonate groups in the membrane are prone to this type of fouling especially at low pH [41]. This bond eventually contributes to the formation of a strong biofouling layer on the membrane.
\nOxygen reduction reaction occurs on the exposed area of catalyst and its framework present in three-phase boundaries. Over potential of this is efficiently reduced by commonly used expensive catalyst. The latest development in low cost catalyst like carbon based cathode delivers equivalent performance due to abundant pores and larger specific area. However, the main drawbacks of this porous structure are their low resistance to biological fouling. Therefore, ionic membranes and separators are used in AFC to reduce this effect on proton exchange layers.
\nBiofouling is caused by the bacteria attached to the surface of catalyst layer that releases extra-cellular polymeric substances. Biofouling on catalyst layer is similar to biofilm on membranes and separators. It is a thick layer developed on carbon based cathode that increases the diffusion resistance responsible for the declined performance during the long term. Further, it also decreases the activity of dopants on the surface of catalyst layer by the combined effect of biofilms with salt deposition. This was evident from the research of Zhang et al. [42] in which improved power density of cathode increase up to 29% was observed after removing the fouling by weak hydrochloric acid. But there are not clear and sufficient demonstrations regarding the individual effect of biofouling located on the surface of the catalyst layer and inside the layer.
\nEconomic success of AFC is directly related to power generation, algal biomass production in combination with other application in a fully biotic cell. Even though there is enormous progress in the research in this area, there are still difficulties in practical applications. The overall power output of the system decreases with the increase in the dimension of AFC. This is mainly due to poor mixing and deprived configuration of electrodes. Laboratory scale reactors having a capacity less than 50 mL relatively generate high power densities greater than 500 Wm−3 whereas configurations having larger than 2 L normally produce a power density less than 30 Wm−3. The energy data of AFC are generally expressed in normalized energy recovery expressed in kilowatt hours per cubic meter based on the volume of reactor. Simple anode substrate produces more electricity than complex substrate due to easy degradation pathways. For instance, acetate produce much higher power densities than glucose (<0.03), sucrose (−< 0.01) and wastewaters (<0.01) which are complex. Similarly, average normalized energy recovery with acetate, glucose and wastewater are 0.25, 0.18 and 0.04 kWh m−3 respectively [43].
\nA good separation between the electrodes is necessary to prevent interaction between oxygen diffusion, anolyte, catholyte and other materials. This is facilitated by a solid electrolyte or an oxygen gradient. The commonly used solid electrolytes include cation exchange membrane, anion exchange membrane, proton exchange membrane and other materials like textiles, woven fabrics, eggshell, papers, glass wool, etc. [44]. These materials greatly affect energy recovery, performance and capital cost of AFC. Some of the researches show that ion exchange membranes have a lower normalized energy recovery 0.14 ± 0.40 kWh m−3 when compared to the membrane-less system which has 0.23 ± 0.46 kWh m−3 (p < 0.05) [43].
\nStacking AFC in parallel or series configuration helps to achieve preferred voltage and current output [45]. This shows some encouraging results for the technical feasibility of operating multiple AFCs. It is proven that a stack consisting of 40 identical 20 mL units can achieve an open-circuit voltage of 13.03 V [46]. Similarly, by shuffling the parallel and serial electric connections in a stack an external power management system can extract a power of ~200 mW which can drive a 60-W DC motor [47].
\nThe information on energy recovery helps to establish an overall energy balance. The improvement of energy recovery through optimizing configuration, operation, microbiology and materials will make AFCs more attractive. On the other hand, adopting proper strategies to reduce the energy requirement of operation may compensate for low energy recovery. Incorporating other energy producing processes such as biogas production, algal biomass harvesting, biohydrogen etc., will increase the energy independency. Further, modifying the process for desalination, nutrient recovery and production of valuable chemicals will also maximize the benefits of AFC.
\nAFC has attractive properties that ensure further development and applications of this technology. It can be easily combined with green roofs to create electricity where photosynthetic and electrochemical reactions are carried out by a continuously growing population of microorganisms in living solar cells. This makes the system capable of self-repair, giving long lifetime and low maintenance. Moreover, using these reproducing organisms living in solar cells does not require any special catalysts that in solar cells are costly and toxic. Therefore, it can be used in natural surroundings with no risk of pollution. AFC also has organic material as intermediate energy carriers between the photosynthetic and the electrochemical portions of the cell which help them in generating electricity at night [48]. Closed loop AFC systems can preserve nutrients for the organisms which enable long-term, low-maintenance power production. Integrated AFC will add value to other applications such as food, agriculture, biomass for bio-energy production etc. [49, 50]. Similarly, it can be coupled with wastewater and surface water treatment to supply extra organic matter for energy production and in turns providing treated water [51].
\nAlgae fuel cells are not without limitations. They need high cost infrastructure and energy for harvesting and growth. Another problem associated with microbial fuel cells is the pH membrane gradient which reduces cell voltage and power output. This problem is caused by acid production at the anode, alkaline production at the cathode and the nonspecific proton exchange through the membrane. The high cost of membrane commonly used in laboratories as a proton-permeable membrane would also limit the applications [52]. In addition, the slow rate of oxygen reduction at cathode electrodes is also a major limiting factor for power generation.
\nNeed for improved engineering on downstream algae biofuel processing from AFC for sustainable energy production is another challenge. It includes effective strategies for nutrient circulation and light exposure in designing photo-bioreactors that are reasonably cheap for large-scale deployment in low-cost systems. The secondary challenge related to this is the extraction of crude algae oil which is mostly addressed from the engineering side. The extraction technologies which are successfully demonstrated are relatively expensive. On the other hand, challenges associated with the management of algae bio-oil conversion to usable liquid fuels need improved catalysts similar to petroleum crude.
\nAFC is a developing technology with a huge potential to capture solar energy and convert it to electricity. Similarly, the regenerated biomass during the process can be converted into secondary biofuels like solid biomass, bioethanol, biogas, etc. which is an added advantage. This technology also remediates wastewater, removes heavy metals, dye decolorizes, etc. Even though various studies have focused on increasing the performance parameters, physical and catalytic parameter variations, improvement of power generation, cost effective electrode materials, selection of bioactive organisms and finding out an alternative membrane to give cost effective solution need to be addressed. In near future, algae will become a sustainable technology and development in this research area. The possibility of using bioengineering, molecular biology, biotechnology and electrical engineering together to improve the efficiency of AFC is not a farfetched idea. Some studies like life cycle analysis based on commercial-scale, increasing power density, optimization technological methods on AFC configuration need special attention and investigation.
\nThe incidence of microbial attack in different sectors such as food, textiles, medicine, water disinfection, and food packaging leads to a constant trend in the search for new antimicrobial substances. The increased resistance of some bacteria to some antibiotics and the toxicity to the human body of some organic antimicrobial substances has increased the interest in the development of inorganic antimicrobial substances. Among these compounds, metal and metal oxide compounds have attracted significant attention due to their broad-spectrum antibacterial activities. On the other hand, nanoscale materials are well known thanks to their increased properties due to their high surface area-to-volume ratio. Antimicrobial NPs have shown excellent and different activities from their bulk properties [1, 2].
During last decades, metal oxide nanoparticles, such as zinc oxide (ZnO), manganese oxide (MgO), titanium dioxide (TiO2), and iron oxide (Fe2O3), have been extensively applicable thanks to their unique physiochemical properties in biological applications. Among metal oxide antimicrobial agents, TiO2 is a valuable semiconducting transition metal oxide material and shows special features, such as easy control, reduced cost, non-toxicity, and good resistance to chemical erosion, that allow its application in optics, solar cells, chemical sensors, electronics, antibacterial and antifungal agents [3]. In general, TiO2 nanoparticles (TiO2 NPs) present large surface area, excellent surface morphology, and non-toxicity in nature. Several authors have reported that TiO2 NPs have been one of the most studied NPs thanks to their photocatalytic antimicrobial activity, exerting excellent bio-related activity against bacterial contamination [4, 5, 6, 7].
Antimicrobial activity of nanoparticles is highly influenced by several intrinsic factors such as their morphology, size, chemistry, source, and nanostructure [8, 9, 10, 11]. Specifically, antimicrobial activity of TiO2 NPs is greatly dependent on photocatalytic performance of TiO2, which depends strongly on its morphological, structural, and textural properties [12]. Several TiO2 NPs have been developed through different methods of synthesis. Specifically, in this chapter, eco-friendly synthesis based on biological sources, such as natural plant extracts and metabolites from microorganisms, which have resulted in TiO2 NPs with different size, shape, morphology, and crystalline structures will be presented. Titanium dioxide produces amorphous and crystalline forms and primarily can occur in three crystalline polymorphous: anatase, rutile, and brookite. Studies on synthesis have stated that the crystalline structure and morphology of TiO2 NPs is influenced by process parameters such as hydrothermal temperatures, starting concentration of acids, etc. [13]. The crystal structures and the shape of TiO2 NPs are both the most important properties that affect their physicochemical properties, and therefore their antimicrobial properties [14]. Regarding the crystal structures, anatase presents the highest photocatalytic and antimicrobial activity. Some works have shown that anatase structure can produce OH˙ radicals in a photocatalytic reaction, and as it will be clearly explained below, bacteria wall and membranes can be deadly affected [15, 16].
The potential health impact and toxicity to the environment of NPs is currently an important matter to be addressed. Several works have confirmed that metal oxide NPs conventionally synthesized using chemical methods, such as sol–gel synthesis and chemical vapor deposition, have shown different levels of toxicity to test organisms [17, 18, 19, 20]. In recent years, researchers have emphasized on the development of nanoparticles promoted through environmental sustainability and processes characterized by an ecological view, mild reaction conditions, and non-toxic precursors. Due to this growing sensitivity toward green chemistry and biological processes, ecological processes are currently being investigated for the synthesis of non-toxic nanoparticles.
These biological methods are considered safe, cost-effective, biocompatible, non-toxic, sustainable, and environmentally friendly processes [20]. Furthermore, it has been described that chemically synthesized NPs have exhibited less stability and added agglomeration, resulting in biologically synthesized NPs that are more dispersible, stable in size, and the processes consuming less energy [21].
These biosynthetic methods, also called “green synthesis,” use various biological resources available in nature, including live plant [22], plant products, plant extracts, algae, fungi, yeasts [23], bacteria [24], and virus for the synthesis of NPs. Among these methods, the processes that use plant-based materials are considered the most suitable for large-scale green synthesis of NPs with respect to their ease and safety [25]. On the other hand, the reduction rate of metal ions in the presence of the plant extract is much faster compared to microorganisms, and provides stable particles [26]. Plants contain biomolecules that have been highly studied by researchers like phenols, nitrogen compounds, terpenoids, and other metabolites. It is well known that the hydroxyl and carboxylic groups present in these biocompounds act as stabilizers and reducing agents due to their high antioxidant activity [12]. Thus, plant extracts have been studied as one of the best green alternatives for metal oxide nanoparticles synthesis [27]. In recent years, TiO2 nanoparticles have been obtained by using different plant extracts, but not all of them have been studied for their antimicrobial activity. Table 1 presents a compilation of synthesized TiO2 nanoparticles from green synthesis by using plant extracts that were tested against different microorganisms.
Source | Titanium precursor | Size (nm) | Shape/crystal structure | Target microorganism (method) |
---|---|---|---|---|
Azadirachta indica leaves extract [28] | TiO2 | 25–87 (SEM) | Spherical/anatase-rutile | S. typhi, E. coli, and K. pneumoniae (broth micro dilution method) |
Psidium guajava leaves extract [29] | TiO(OH)2 | 32.58 (FESEM) | Spherical shape and clusters/anatase-rutile | S. aureus and E. coli (agar diffusion) |
Vitex negundo Linn leaves extract [30] | Ti{OCH(CH3)2}4 | 26–15 (TEM) | Spherical and rod shaped/tetragonal phase anatase | S. aureus and E. coli (agar diffusion) |
Morinda citrifolia leaves extract [31] | TiCl4 | 15–19 (SEM) | Quasi-spherical shape/rutile | S. aureus, B. subtilis, E. coli, P. aeruginosa, C. albicans, A. niger (agar diffusion) |
Trigonella foenum-graecum leaf extract [21] | TiOSO4 | 20–90 (HR-SEM) | Spherical/anatase | E. faecalis, S. aureus, S. faecalis, B. subtilis., Y. enterocolitica, P. vulgaris, E. coli, P. aeruginosa, K. pneumoniae, and C. albicans (agar diffusion) |
Orange peel extract [32] | TiCl4 | 20–50 (SEM) | Irregular and angular structure with high porous net/anatase | S. aureus, E. coli, and P. aeruginosa (agar diffusion) |
Glycyrrhiza glabra root extracts [33] | TiO2 | 60–140 (FESEM) | Spherical shape/anatase | S. aureus and K. pneumoniae (agar diffusion) |
Synthesis of TiO2 NPs by using plant extracts.
Different factors need to be evaluated in this research field in order to obtain TiO2 NPs with better properties and to maintain their biocompatibility. It has been shown that nanoparticles obtained from green synthesis can have a better morphology and size translated into better antimicrobial activity. Mobeen and Sundaram have obtained TiO2 NPs from titanium tetrachloride precursor through a chemical and a green synthesis method. Sulfuric acid and ammonium hydroxide were used in the chemical-based method and, in the green synthesis, those chemical reagents were replaced by an orange peel extract [32]. The nanoparticles obtained by using the natural extract presented a well-defined and smaller crystalline nature (approx. 17.30 nm) compared to the nanoparticles synthesized through the chemical method (21.61 nm). Both methods resulted in anatase crystalline structures, and, when evaluating the antimicrobial activity, the more eco-friendly NPs revealed higher bactericidal activity against Gram-positive and Gram-negative bacteria compared to the chemically synthesized nanoparticles.
Bavanilatha et al. have also detailed TiO2 NPs green synthesis with Glycyrrhiza glabra root extract. Antibacterial activity against Staphylococcus aureus and Klebsiella pneumonia were investigated and in vivo toxicity tests using the zebrafish embryonic model (Danio rerio) were also carried out [33]. Results have demonstrated their biocompatibility because healthy embryos of adult fish to different variations of NP and no distinctive malformations were observed at every embryonic stage with respect to embryonic controls.
Subhapriya and Gomathipriya have biosynthesized TiO2 NPs by using a Trigonella foenum-graecum leaf extract, obtaining spherical NPs and their size varied between 20 and 90 nm, and their antimicrobial activity was evaluated through the standard method of disc diffusion [21]. The NPs showed significant antimicrobial activity against Yersinia enterocolitica (10.6 mm), Escherichia coli (10.8 mm), Staphylococcus aureus (11.2 mm), Enterococcus faecalis (11.4 mm), and Streptococcus faecalis (11.6 mm). Results confirmed developed TiO2 NPs as an effective antimicrobial drug that can lead to the progression of new antimicrobial drugs.
Spherical TiO2 NPs were synthesized from plants, in particular by applying a Morinda citrifolia leaf extract, and through advanced hydrothermal method [31]. Developed TiO2 NPs showed a size between 15 and 19 nm in an excellent quasispherical shape. In addition, their antimicrobial activity was tested against human pathogens, such as Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger. TiO2 NPs exhibited interesting antimicrobial activity, principally against Gram-positive bacteria.
In addition to plants, other organisms can produce inorganic compounds at an intra or extracellular level. The synthesis of TiO2 NPs through microorganisms, including bacteria, fungi, and yeasts, also meets the requirements and the exponentially growing technological demand toward eco-friendly strategies, by avoiding the use of toxic chemicals in the synthesis and protocols [34]. The metabolites generated by microorganism present bioreducing, capping, and stabilizing properties that improve the NPs synthesis performance. Jayaseelan et al. have stated glycyl-L-proline, one of the most abundant metabolite from Aeromonas hydrophilia bacteria, as the main compound that acted as a capping and stabilizing agent during TiO2 NPs green synthesis [35]. Moreover, the interest in fungi in green synthesis of metal oxide nanoparticles has increased over last years. Fungi enzymes and/or metabolites also present intrinsically the potential to obtain elemental or ionic state metals from their corresponding salts [34, 36]. Different works based on the green synthesis of TiO2 NPs from bacteria and fungus are presented in Table 2. Some of them have been synthesized with antimicrobial and antifungal purposes, and their target microorganisms are also declared.
Microorganism | Titanium precursor | Size (nm) | Shape/crystal structure | Target microorganisms (method) |
---|---|---|---|---|
Aeromonas hydrophilia [46] | TiO(OH)2 | 28–54 (SEM) ~ 40.5 (XRD) | Spherical/uneven | S. aureus, S. pyogenes (agar diffusion) |
Aspergillus flavus [34] | TiO2 | 62–74 (TEM) | Spherical/anatase and rutile | E. coli, P. aeruginosa, K. pneumoniae, B. subtilis (agar diffusion and MIC) |
Bacillus mycoides [37] | Titanyl hydroxide | 40–60 (TEM) | Spherical/anatase | E. coli (toxicity) |
Bacillus subtilis [38] | K2TiF6 | 11–32 (TEM) | Spherical | Aquatic biofilm |
Fusarium oxysporum [36] | K2TiF6 | 6–13 (TEM) | Spherical/brookite | — |
Lactobacillus sp. [51] | TiO(OH)2 | ~ 24.6 (TEM) | Spherical/anatase-rutile | — |
Planomicrobium sp. [39] | TiO2 | 100–500 (SEM) | Irregular/pure crystalline | B. subtilis, K. planticola, Aspergillus niger (agar diffusion) |
Propionibacterium jensenii [52] | TiO(OH)2, 300°C | 15–80 (FESEM) | Spherical | — |
Saccharomyces cerevisiae [51] | TiO(OH)2 | ~ 12.6 (TEM) | Spherical/anatase-rutile | — |
Examples of TiO2 NPs synthesis through microorganisms, both bacteria and fungus strains.
Two important factors that affect NPs synthesis are the type of microorganisms and their source. Some microorganisms widely used in the food industry are Lactobacillus, a bacterium used in dairy products and as a probiotic supplement, and Saccharomyces cerevisiae, a yeast commonly used in bakery. Jha et al. have investigated the effectiveness of both microorganisms to synthesize TiO2 NPs. A comparison between synthesis through Lactobacillus from yogurt and probiotic tablets resulted in different NP sizes: a particle size of 15–70 nm for yogurt, and 10–25 nm for tablets. This difference was due to the purity of the bacteria [40]. In general, TiO2 NP synthesis through microorganisms has not provided stable sizes, being not industrially scalable compared to the synthesis of nanoparticles from plants.
Harmful bacteria, such as Staphylococcus aureus, Burkholderia cepacia, Pseudomonas aeruginosa, Clostridium difficile, Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, Mycobacterium tuberculosis, and Neisseria gonorrhoeae, are responsible for bacterial infections that can cause serious diseases in humans year after year [40]. The principal solution is the use of antibiotics, antimicrobial and antifungal agents. Nevertheless, in recent years there has been an increase in the resistance of several bacterial strains to these substances, and therefore there is currently a great interest in the search for new antimicrobial substances. The antimicrobial nanoparticles have been studied due to their high activity, specifically the metal oxide nanoparticles [41, 42, 43]. In this sense, titanium dioxide nanoparticles are one of the antimicrobial NPs whose study has gained interest during last years.
TiO2 is a thermally stable and biocompatible chemical compound with high photocatalytic activity and has presented good results against bacterial contamination [44]. Table 3 presents some research including the antimicrobial capacity of TiO2 NPs.
Microorganism | NPs | Results |
---|---|---|
Methicillin-resistant Staphylococcus aureus [45] | Fe3O4-TiO2 core/shell magnetic NPs | The survival ratio [%] of bacteria decreased from 82.40 to 7.13%. |
Staphylococcus saprophyticus [45] | Fe3O4-TiO2 core/shell magnetic NPs | The survival ratio [%] of bacteria decreased from 79.15 to 0.51%. |
Streptococcus pyogenes[57] | Fe3O4-TiO2 core/shell magnetic NPs | The survival ratio [%] of bacteria decreased from 82.87 to 4.45%. |
Escherichia coli [46] | TiO2 nanotubes ~ 20 nm | 97.53% of reduction |
Staphylococcus aureus [46] | TiO2 nanotubes ~ 20 nm | 99.94% of reduction |
Bacillus subtilis [47] | TiO2 NPs co-doped with silver (19–39 nm) | 1% Ag-N-TiO2 had the highest antibacterial activity with antibacterial diameter reduction of 22.8 mm |
Mycobacterium smegmatis [48] | Cu-doped TiO2NPs ~20 nm | The percentage of inhibition was around 47% |
Pseudomonas aeruginosa [49] | TiO2 NPs 10–25 nm | Although it was not completely euthanized, their survival was significantly inhibited. |
Shewanella oneidensis MR-1 [48] | Cu-doped TiO2 NPs ~20 nm | The percentage of inhibition was around 11% |
TiO2 nanoparticles against different microorganisms and their antimicrobial activities.
The principal factors differentiating the antimicrobial activity between TiO2 NPs were their morphology, crystal nature, and size. According to López de Dicastillo et al. [11], hollow TiO2 nanotubes presented interesting antimicrobial reduction thanks to the enhancement of specific surface area. This fact can be explained by the nature of titanium dioxide, and one of the main mechanisms of its action is through the generation of reactive oxygen species (ROS) on its surface during the process of photocatalysis when it exposed to light at an appropriate wavelength. It is important to highlight that some research works have evidenced antimicrobial activity of TiO2 NPs increased when they were irradiated with UV-A light due to the photocatalytic nature of this oxide. The time of irradiation varied between 20 min [45] and 3 hours [50].
Titanium dioxide nanoparticles (TiO2 NPs) are one of the most studied materials in the area of antimicrobial applications due to its particular abilities, such as bactericidal photocatalytic activity, safety, and self-cleaning properties. The mechanism referred to the antimicrobial action of TiO2 is commonly associated to reactive oxygen species (ROS) with high oxidative potentials produced under band-gap irradiation photo-induces charge in the presence of O2 [51]. ROS affect bacterial cells by different mechanisms leading to their death. Antimicrobial substances with broad spectrum activity against microorganisms (Gram-negative and Gram-positive bacteria and fungi) are of particular importance to overcome the MDR (multidrug resistance) generated by traditional antibiotic site-specific.
The main photocatalytic characteristic of TiO2 is a wide band gap of 3.2 eV, which can trigger the generation of high-energy electron–hole pair under UV-A light with wavelength of 385 nm or lower [52]. As mentioned above for bulk powder, TiO2 NPs have the same mechanism based on the ROS generation with the advantage of being at nanoscale. This nanoscale nature implies an important increase of surface area-to-volume ratio that provides maximum contact with environment water and oxygen [53] and a minimal size, which can easily penetrate the cell wall and cell membrane, enabling the increase of the intracellular oxidative damage.
Bacteria have enzymatic antioxidant defense systems like catalases and superoxide dismutase, in addition to natural antioxidants like ascorbic acid, carotene, and tocopherol, which inhibit lipid peroxidation or O-singlet and the effects of ROS radicals such as OH2˙− and OH˙. When those systems are exceeded, a set of redox reactions can lead to the death cell by the alteration of different essential structures (cell wall, cell membrane, DNA, etc.) and metabolism routes [54]. In the following sections, several ways that cellular structures were affected in the presence of TiO2 NPs will be described. In order to understand the genome responses of bacteria to TiO2-photocatalysis, some biological approaches related to expression of genes encoding to defense and repair mechanism of microorganism will explained below. Different mechanisms and processes of antimicrobial activity of TiO2 NPs are represented as a global scheme in Figure 1.
Scheme of main antimicrobial activity-based processes.
ROS are responsible for the damage by oxidation of many organic structures of microorganisms. One of them is the cell wall, which is the first defense barrier against any injury from the environment, thus being the first affected by oxidative damage. Depending on the type of microorganism, the cell wall will have different composition; that is, in fungi and yeast, cell walls are mainly composed of chitin and polysaccharides [55], Gram-positive bacteria contain many layers of peptidoglycan and teichoic acid, and Gram-negative bacteria present a thin layer of peptidoglycan surrounded by a secondary lipid membrane reinforced with transmembrane lipopolysaccharides and lipoproteins [56]. Thus, the effect of TiO2 NPs will be slightly different depending type of microorganism.
It has been studied that the composition of the cell wall in Pichia pastoris (yeast) changed in the presence of TiO2, increasing the chitin content in response to the ROS effects [57]. The cell wall of Escherichia coli (Gram-negative) composed of lipo-polysaccharide, phosphatidyl-ethanolamine, and peptidoglycan has been reported to be sensitive to the peroxidation caused by TiO2 [58]. The damage can be quantified by assessing the production of malondialdehyde (MDA), which is a biomarker of lipid peroxidation, or through ATR-FTIR of the supernatant of cell culture, which evidenced the way that porins and proteins on the outer membrane were affected, probably as a result of greater exposure to the surface of TiO2 [59]. In fungi, the release of OH˙ captured hydrogen atoms from sugar subunits of polysaccharides, which composed the cell wall, leading to the cleavage of polysaccharide chain and the exposition of cell membrane [60].
In terms of genetic issues, there is evidence that the bacteria change the level expression of certain genes encoding for proteins involved in lipopolysaccharide and peptidoglycan metabolism, pilus biosynthesis, and protein insertion related to the cell wall which values were lower-expressed after exposition to TiO2 NPs [61].
The second usual cellular target of most of antibiotics is the cell membrane mainly composed by phospholipids, which grant the cell a non-rigid cover, permeability, and protection. Most of the studies with TiO2 NPs have been focused to the loss of membrane integrity caused by oxidation of phospholipids due to ROS such hydroxyl radicals and hydrogen peroxide [62, 63], which led to an increase in the membrane fluidity, leakage of cellular content, and eventually cell lysis.
Gram-positive bacteria present only one membrane protected by many layers of peptidoglycan, whereas Gram-negative bacteria are composed by two membranes, inner and outer, and a thin layer of peptidoglycan between them. The outer membrane is exposed, thus, more liable to mechanical breakage due to the lack of peptidoglycan protective cover, like in Gram-positive bacteria [64]. Some studies have demonstrated a better antimicrobial performance of TiO2 NPs against Gram-positive bacteria [65] while others reported that Gram-negative bacteria were more resistant [66, 67]. It can be concluded that the bacterial inactivation effectiveness depends mainly on the resistant capacity of cell wall structures and the damage level of ROS generation [68].
In contrast with the lower expression of genes related to the cell wall seen before, the level expression of genes encoding for enzymes involved in metabolism of lipid essential for the cell membrane structure, are over-expressed [61]. It would be concluded that cells compensate the initial cell wall damage by reinforcing the second defense barrier, the cell membrane, in a way to provide support against the oxidation produced by ROS.
In fungi, the biocidal effect is not quite different. In the presence of TiO2 NPs and UV light, hydroxyl radicals, hydrogen peroxide, and superoxide anions initially promote oxidation of the membrane, leading to an unbalance in the cell permeability, even decomposition of cell walls [69]. This oxidation can inhibit cell respiration by affecting intracellular membranes in mitochondria. Studies have demonstrated biocidal effects on Penicillium expansum [70], but there is still research on other strains.
Beyond the relatively well-studied initial lipoperoxidation attack of TiO2 NPs on the outer/inner cell membrane of the microorganism, specific mechanisms are still aimed of being solved.
As the oxidative damage generates lipoperoxidation of cell membranes due to their lipid nature, the respiratory chain, which takes place in the double-membrane mitochondria, is also affected. This organelle is a natural source of ROS in aerobic metabolism because superoxide anions are produced in the electron transfer respiratory chain process. Mitochondria can control this fact by converting them into H2O2 by superoxide dismutase (SOD), and finally into water by glutathione peroxidase and catalase [71]. The presence of TiO2 NPs increases the production of ROS at levels that this enzymatic defense mechanism cannot attenuate the damage, even a dysregulation in electron transfer through the mitochondrial respiratory chain implies an increase in ROS generation [72].
The genetic approaches have indicated that changes in level expression in genes related to the energy production in mitochondria prioritize the most efficient pathway to uptake oxygen, which is through ubiquinol coenzyme [61]. This coenzyme presented a higher capacity to exchange electrons, while the coenzyme-independent oxygen uptake pathways were expressed at lower level.
Damage at molecular level in DNA affects all regulatory microorganism metabolism, replication, transcription, and cell division. DNA is particularly sensitive to oxidative damage because oxygen radicals, specially OH˙ produced by Fenton reaction [73], may attack the sugar-phosphate or the nucleobases and cause saccharide fragmentation aimed to the strand break [74].
DNA strand modifications are more lethal than base modifications (punctual mutation). Mitochondrial DNA is more vulnerable to oxidative damage than nuclear DNA because it is closer to a major cellular ROS source [75].
Besides the enzymatic detoxification system (SOD, glutathione and catalase), DNA injuries are covered by a set of structures related to post-translational modification, protein turnover, chaperones (related to folding), DNA replication and repair, which are significantly over-expressed in the presence of TiO2 NPs [61].
Iron is an essential ion for cell growth and survival, but it can turn potentially toxic if some malfunction in homeostatic regulation occurs (i.e., Fenton reaction that produces ROS). Bacteria are able to regulate iron concentration in order to maintain it in a physiological range [76]. This regulation involves directly siderophores to active transport of iron in cell [77], whose coding genes related to siderophore synthesis and iron transport protein are significantly lower-expressed in the presence of TiO2 NPs, decreasing the ability to assimilate and transport it, leading to cell death [61]. The loss of homeostasis regulation was confirmed by ICP-MS analysis, which revealed that the presence of TiO2 NPs significantly reduced the cellular iron level in Pseudomonas brassicacearum, directly proportional to the cell viability [78].
Regarding the functions related to Pi group (PO43−) uptake, major differences were found in the expression of set of genes contained in Pho regulon, which were significantly lower when compared to the control [61]. The Pho regulon is a regulatory network in bacteria, yeast, plants, and animals, related to assimilation of inorganic phosphate, merely available in nature, and essential to nutritional cross-talk, secondary metabolite production, and pathogenesis [79].
This suggested that the microorganisms were highly deficient in phosphorus uptake and metabolism in the presence of TiO2 NPs. It should be also noted that the Pho regulon has been reported to regulate biofilm synthesis capacity and pathogenicity [80].
TiO2 NPs can directly oxidize components of cell signaling pathways and even change the gene expression by interfering with transcription factors [81]. There is evidence to confirm the interference of TiO2 NPs in biosynthesis pathways of signaling molecules that bind lipopolysaccharide, stabilize and protect the cell wall against oxidative damage [82]. Moreover, a significant decrease in the synthesis of quorum-sensing signal molecule related to functions like pathogenesis and biofilm development was observed. This was corroborated through Scanning Electron Microscopy (SEM) images of bacteria (P. aeruginosa) growth in the presence of TiO2 NPs without UV irradiation. Cells appeared mainly non-aggregated and dispersed in the substratum, compared with controls without NPs where cells were mainly aggregated by lateral contact. This suggested that TiO2 NPs not only affected microorganisms by oxidative damage, but also bacteria aggregation and biofilm formation, which directly influenced in pathogenicity [83].
In plants and algae, ROS can act as signaling intermediates in the process of transcription factor controlling stress response by H2O2, which is activated by a GSH peroxidase, and not by peroxides directly. But there is still lack of research in this area [84].
The control of morphology and crystal structure of TiO2 NPs is the most important factor to enhance their antimicrobial activity. The appropriate design based on desirable surface properties given by shaped nanoparticles can improve effectiveness that is also dependent on the type of bacteria. The route of synthesis of TiO2 NPs is also a key factor. Recent works have revealed more eco-friendly synthesis methods, principally based on plant-based compounds and microorganisms, such as bacteria and fungus. Antimicrobial activity of different TiO2 NPs against Gram-positive and Gram-negative bacteria including antibiotic-resistant strains has been confirmed in different works.
Specific studies on antimicrobial mechanisms have evidenced that microorganism exposed to photocatalytic TiO2 NPs exhibited cell inactivation at regulatory network and signaling levels, an important decrease in the activity of respiratory chain, and inhibition in the ability to assimilate and transport iron and phosphorous. These processes with the extensive cell wall and membrane alterations were the main factors that explain the biocidal activity of TiO2 NPs.
The authors acknowledge the financial support of CONICYT through the Project Fondecyt Regular 1170624 and “Programa de Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia” Project FB0807, and CORFO Project 17CONTEC-8367.
The authors declare no conflict of interest.
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"25"},books:[{type:"book",id:"8737",title:"Rabies Virus",subtitle:null,isOpenForSubmission:!0,hash:"49cce3f548da548c718c865feb343509",slug:null,bookSignature:"Dr. Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:null,editors:[{id:"61139",title:"Dr.",name:"Sergey",surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science",subtitle:null,isOpenForSubmission:!0,hash:"b6091426454b1c484f4d38efc722d6dd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10496",title:"Feed Additives in Animal Nutrition",subtitle:null,isOpenForSubmission:!0,hash:"8ffe43a82ac48b309abc3632bbf3efd0",slug:null,bookSignature:"Prof. László Babinszky",coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",editedByType:null,editors:[{id:"53998",title:"Prof.",name:"László",surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"23",title:"Social Sciences",slug:"social-sciences",parent:{title:"Social Sciences and Humanities",slug:"social-sciences-and-humanities"},numberOfBooks:83,numberOfAuthorsAndEditors:1292,numberOfWosCitations:289,numberOfCrossrefCitations:397,numberOfDimensionsCitations:757,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"social-sciences",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9251",title:"Pleistocene Archaeology",subtitle:"Migration, Technology, and Adaptation",isOpenForSubmission:!1,hash:"65e1040ad23f0385a56f2d0472b4aee5",slug:"pleistocene-archaeology-migration-technology-and-adaptation",bookSignature:"Rintaro Ono and Alfred Pawlik",coverURL:"https://cdn.intechopen.com/books/images_new/9251.jpg",editedByType:"Edited by",editors:[{id:"177123",title:"Ph.D.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8090",title:"Who Wants to Retire and Who Can Afford to Retire?",subtitle:null,isOpenForSubmission:!1,hash:"90fe30d224594414bb156e42afa47f5e",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",bookSignature:"Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/8090.jpg",editedByType:"Edited by",editors:[{id:"77112",title:"Dr.",name:"Ingrid",middleName:null,surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10032",title:"Fire Safety and Management Awareness",subtitle:null,isOpenForSubmission:!1,hash:"ba924ac3ec282316ae8ba97882cc4592",slug:"fire-safety-and-management-awareness",bookSignature:"Fahmina Zafar and Anujit Ghosal",coverURL:"https://cdn.intechopen.com/books/images_new/10032.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7806",title:"Public Sector Crisis Management",subtitle:null,isOpenForSubmission:!1,hash:"84a998820880e0f006a5e9eac40d83e7",slug:"public-sector-crisis-management",bookSignature:"Alexander Rozanov, Alexander Barannikov, Olga Belyaeva and Mikhail Smirnov",coverURL:"https://cdn.intechopen.com/books/images_new/7806.jpg",editedByType:"Edited by",editors:[{id:"233092",title:"Dr.",name:"Alexander",middleName:null,surname:"Rozanov",slug:"alexander-rozanov",fullName:"Alexander Rozanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9256",title:"Risk Management and Assessment",subtitle:null,isOpenForSubmission:!1,hash:"b5547d1d68d2db6f22eedb8f306b0276",slug:"risk-management-and-assessment",bookSignature:"Jorge Rocha, Sandra Oliveira and César Capinha",coverURL:"https://cdn.intechopen.com/books/images_new/9256.jpg",editedByType:"Edited by",editors:[{id:"145918",title:"Ph.D.",name:"Jorge",middleName:null,surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7810",title:"Quality of Life",subtitle:"Biopsychosocial Perspectives",isOpenForSubmission:!1,hash:"0392d2712c58885b729bd943f9aac37f",slug:"quality-of-life-biopsychosocial-perspectives",bookSignature:"Floriana Irtelli, Federico Durbano and Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/7810.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",middleName:null,surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6927",title:"Intellectual Property Rights",subtitle:"Patent",isOpenForSubmission:!1,hash:"9fd5884b3bce2ec6f77a8356ea384a37",slug:"intellectual-property-rights-patent",bookSignature:"Sakthivel Lakshmana Prabu, Suriyaprakash Tnk, Eduardo Jacob-Lopes and Leila Queiroz Zepka",coverURL:"https://cdn.intechopen.com/books/images_new/6927.jpg",editedByType:"Edited by",editors:[{id:"91590",title:"Dr.",name:"Sakthivel",middleName:null,surname:"Lakshmana Prabu",slug:"sakthivel-lakshmana-prabu",fullName:"Sakthivel Lakshmana Prabu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6944",title:"Heritage",subtitle:null,isOpenForSubmission:!1,hash:"80ee36ba67b1fe4ff971074f7ddc4d00",slug:"heritage",bookSignature:"Daniela Turcanu-Carutiu",coverURL:"https://cdn.intechopen.com/books/images_new/6944.jpg",editedByType:"Edited by",editors:[{id:"176482",title:"Prof.",name:"Daniela",middleName:null,surname:"Turcanu-Carutiu",slug:"daniela-turcanu-carutiu",fullName:"Daniela Turcanu-Carutiu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7823",title:"Off and Online Journalism and Corruption",subtitle:"International Comparative Analysis",isOpenForSubmission:!1,hash:"a9255404676105c3160a4b0bd63e4b36",slug:"off-and-online-journalism-and-corruption-international-comparative-analysis",bookSignature:"Basyouni Ibrahim Hamada and Saodah Wok",coverURL:"https://cdn.intechopen.com/books/images_new/7823.jpg",editedByType:"Edited by",editors:[{id:"245157",title:"Prof.",name:"Basyouni",middleName:null,surname:"Hamada",slug:"basyouni-hamada",fullName:"Basyouni Hamada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7822",title:"Second Language Acquisition",subtitle:"Pedagogies, Practices and Perspectives",isOpenForSubmission:!1,hash:"fc5086868a638baf9f0f09eac83cb346",slug:"second-language-acquisition-pedagogies-practices-and-perspectives",bookSignature:"Christine Savvidou",coverURL:"https://cdn.intechopen.com/books/images_new/7822.jpg",editedByType:"Edited by",editors:[{id:"1264",title:"Dr.",name:"Christine",middleName:null,surname:"Savvidou",slug:"christine-savvidou",fullName:"Christine Savvidou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",middleName:null,surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:83,mostCitedChapters:[{id:"42656",doi:"10.5772/55538",title:"Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction",slug:"conceptual-frameworks-of-vulnerability-assessments-for-natural-disasters-reduction",totalDownloads:8798,totalCrossrefCites:15,totalDimensionsCites:54,book:{slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",title:"Approaches to Disaster Management",fullTitle:"Approaches to Disaster Management - Examining the Implications of Hazards, Emergencies and Disasters"},signatures:"Roxana L. Ciurean, Dagmar Schröter and Thomas Glade",authors:[{id:"163703",title:"Prof.",name:"Thomas",middleName:null,surname:"Glade",slug:"thomas-glade",fullName:"Thomas Glade"},{id:"164141",title:"Ph.D. Student",name:"Roxana",middleName:"Liliana",surname:"Ciurean",slug:"roxana-ciurean",fullName:"Roxana Ciurean"},{id:"164142",title:"Dr.",name:"Dagmar",middleName:null,surname:"Schroeter",slug:"dagmar-schroeter",fullName:"Dagmar Schroeter"}]},{id:"45760",doi:"10.5772/56967",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:7847,totalCrossrefCites:5,totalDimensionsCites:16,book:{slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"59705",doi:"10.5772/intechopen.74943",title:"Augmented Reality Trends in Education between 2016 and 2017 Years",slug:"augmented-reality-trends-in-education-between-2016-and-2017-years",totalDownloads:1531,totalCrossrefCites:13,totalDimensionsCites:15,book:{slug:"state-of-the-art-virtual-reality-and-augmented-reality-knowhow",title:"State of the Art Virtual Reality and Augmented Reality Knowhow",fullTitle:"State of the Art Virtual Reality and Augmented Reality Knowhow"},signatures:"Rabia M. Yilmaz",authors:[{id:"225838",title:"Dr.",name:"Rabia",middleName:null,surname:"Yilmaz",slug:"rabia-yilmaz",fullName:"Rabia Yilmaz"}]}],mostDownloadedChaptersLast30Days:[{id:"58890",title:"Philosophy and Paradigm of Scientific Research",slug:"philosophy-and-paradigm-of-scientific-research",totalDownloads:7810,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"management-culture-and-corporate-social-responsibility",title:"Management Culture and Corporate Social Responsibility",fullTitle:"Management Culture and Corporate Social Responsibility"},signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",authors:[{id:"179629",title:"Prof.",name:"Jolita",middleName:null,surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}]},{id:"34156",title:"History and Sociology: What is Historical Sociology?",slug:"history-and-sociology-what-is-historical-sociology-",totalDownloads:14526,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"sociological-landscape-theories-realities-and-trends",title:"Sociological Landscape",fullTitle:"Sociological Landscape - Theories, Realities and Trends"},signatures:"Jiri Subrt",authors:[{id:"119641",title:"Dr",name:null,middleName:null,surname:"Subrt",slug:"subrt",fullName:"Subrt"}]},{id:"58060",title:"Pedagogy of the Twenty-First Century: Innovative Teaching Methods",slug:"pedagogy-of-the-twenty-first-century-innovative-teaching-methods",totalDownloads:6585,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"new-pedagogical-challenges-in-the-21st-century-contributions-of-research-in-education",title:"New Pedagogical Challenges in the 21st Century",fullTitle:"New Pedagogical Challenges in the 21st Century - Contributions of Research in Education"},signatures:"Aigerim Mynbayeva, Zukhra Sadvakassova and Bakhytkul\nAkshalova",authors:[{id:"201997",title:"Dr.",name:"Aigerim",middleName:null,surname:"Mynbayeva",slug:"aigerim-mynbayeva",fullName:"Aigerim Mynbayeva"},{id:"209208",title:"Dr.",name:"Zukhra",middleName:null,surname:"Sadvakassova",slug:"zukhra-sadvakassova",fullName:"Zukhra Sadvakassova"},{id:"209210",title:"Dr.",name:"Bakhytkul",middleName:null,surname:"Akshalova",slug:"bakhytkul-akshalova",fullName:"Bakhytkul Akshalova"}]},{id:"74219",title:"Introductory Chapter: Pleistocene Archaeology - Migration, Technology, and Adaptation",slug:"introductory-chapter-pleistocene-archaeology-migration-technology-and-adaptation",totalDownloads:143,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"pleistocene-archaeology-migration-technology-and-adaptation",title:"Pleistocene Archaeology",fullTitle:"Pleistocene Archaeology - Migration, Technology, and Adaptation"},signatures:"Rintaro Ono and Alfred Pawlik",authors:[{id:"177123",title:"Ph.D.",name:"Rintaro",middleName:null,surname:"Ono",slug:"rintaro-ono",fullName:"Rintaro Ono"},{id:"300616",title:"Dr.",name:"Alfred",middleName:null,surname:"Pawlik",slug:"alfred-pawlik",fullName:"Alfred Pawlik"}]},{id:"52475",title:"Teenage Pregnancies: A Worldwide Social and Medical Problem",slug:"teenage-pregnancies-a-worldwide-social-and-medical-problem",totalDownloads:5625,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"an-analysis-of-contemporary-social-welfare-issues",title:"An Analysis of Contemporary Social Welfare Issues",fullTitle:"An Analysis of Contemporary Social Welfare Issues"},signatures:"Sylvia Kirchengast",authors:[{id:"188289",title:"Prof.",name:"Sylvia",middleName:null,surname:"Kirchengast",slug:"sylvia-kirchengast",fullName:"Sylvia Kirchengast"}]},{id:"58894",title:"Research Ethics",slug:"research-ethics",totalDownloads:1673,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"management-culture-and-corporate-social-responsibility",title:"Management Culture and Corporate Social Responsibility",fullTitle:"Management Culture and Corporate Social Responsibility"},signatures:"Pranas Žukauskas, Jolita Vveinhardt and Regina Andriukaitienė",authors:[{id:"179629",title:"Prof.",name:"Jolita",middleName:null,surname:"Vveinhardt",slug:"jolita-vveinhardt",fullName:"Jolita Vveinhardt"}]},{id:"42656",title:"Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction",slug:"conceptual-frameworks-of-vulnerability-assessments-for-natural-disasters-reduction",totalDownloads:8798,totalCrossrefCites:15,totalDimensionsCites:54,book:{slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",title:"Approaches to Disaster Management",fullTitle:"Approaches to Disaster Management - Examining the Implications of Hazards, Emergencies and Disasters"},signatures:"Roxana L. Ciurean, Dagmar Schröter and Thomas Glade",authors:[{id:"163703",title:"Prof.",name:"Thomas",middleName:null,surname:"Glade",slug:"thomas-glade",fullName:"Thomas Glade"},{id:"164141",title:"Ph.D. Student",name:"Roxana",middleName:"Liliana",surname:"Ciurean",slug:"roxana-ciurean",fullName:"Roxana Ciurean"},{id:"164142",title:"Dr.",name:"Dagmar",middleName:null,surname:"Schroeter",slug:"dagmar-schroeter",fullName:"Dagmar Schroeter"}]},{id:"63639",title:"Cooperative Learning: The Foundation for Active Learning",slug:"cooperative-learning-the-foundation-for-active-learning",totalDownloads:1952,totalCrossrefCites:6,totalDimensionsCites:5,book:{slug:"active-learning-beyond-the-future",title:"Active Learning",fullTitle:"Active Learning - Beyond the Future"},signatures:"David W. Johnson and Roger T. Johnson",authors:[{id:"259976",title:"Dr.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"},{id:"263004",title:"Dr.",name:"Roger",middleName:null,surname:"Johnson",slug:"roger-johnson",fullName:"Roger Johnson"}]},{id:"45760",title:"Parenting and Culture – Evidence from Some African Communities",slug:"parenting-and-culture-evidence-from-some-african-communities",totalDownloads:7847,totalCrossrefCites:5,totalDimensionsCites:16,book:{slug:"parenting-in-south-american-and-african-contexts",title:"Parenting in South American and African Contexts",fullTitle:"Parenting in South American and African Contexts"},signatures:"Patricia Mawusi Amos",authors:[{id:"162496",title:"Mrs.",name:"Patricia",middleName:"Mawusi",surname:"Amos",slug:"patricia-amos",fullName:"Patricia Amos"}]},{id:"59744",title:"Advantages of Bilingualism and Multilingualism: Multidimensional Research Findings",slug:"advantages-of-bilingualism-and-multilingualism-multidimensional-research-findings",totalDownloads:2348,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"multilingualism-and-bilingualism",title:"Multilingualism and Bilingualism",fullTitle:"Multilingualism and Bilingualism"},signatures:"Evelyn Fogwe Chibaka",authors:[{id:"220564",title:"Dr.",name:"Evelyn Fogwe",middleName:null,surname:"Chibaka",slug:"evelyn-fogwe-chibaka",fullName:"Evelyn Fogwe Chibaka"}]}],onlineFirstChaptersFilter:{topicSlug:"social-sciences",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"74808",title:"Development Strategies towards a Reputable International Program: Special Focus at International Program for Islamic Economics and Finance, Universitas Muhammadiyah Yogyakarta",slug:"development-strategies-towards-a-reputable-international-program-special-focus-at-international-prog",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.94322",book:{title:"Education at the Intersection of Globalization and Technology"},signatures:"Dimas Bagus Wiranatakusuma"},{id:"74503",title:"Alignment between the Strategic Plans of Island Regions and the Agenda 2030 for Sustainable Development",slug:"alignment-between-the-strategic-plans-of-island-regions-and-the-agenda-2030-for-sustainable-developm",totalDownloads:10,totalDimensionsCites:0,doi:"10.5772/intechopen.95344",book:{title:"Peripheral Territories, Tourism, and Regional Development"},signatures:"Deolésio Mendes, Ana José and Joaquim Mourato"},{id:"74651",title:"Can Turn-Taking Highlight the Nature of Non-Verbal Behavior: A Case Study",slug:"can-turn-taking-highlight-the-nature-of-non-verbal-behavior-a-case-study",totalDownloads:22,totalDimensionsCites:0,doi:"10.5772/intechopen.95516",book:{title:"Types of Nonverbal Communication"},signatures:"Izidor Mlakar, Matej Rojc, Darinka Verdonik and Simona Majhenič"}],onlineFirstChaptersTotal:53},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/175315/juan-pablo-amezquita-sanchez",hash:"",query:{},params:{id:"175315",slug:"juan-pablo-amezquita-sanchez"},fullPath:"/profiles/175315/juan-pablo-amezquita-sanchez",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()