Microencapsulation by interfacial polymerisation.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"2437",leadTitle:null,fullTitle:"Electrochemistry",title:"Electrochemistry",subtitle:null,reviewType:"peer-reviewed",abstract:"Electrochemistry has been undergoing significant transformations in the last few decades. It is now the province of academics interested only in measuring thermodynamic properties of solutions and of industrialists using electrolysis or manufacturing batteries, with a huge gap between them. It has become clear that these, apparently distinct subjects, alongside others, have a common ground and that they have grown towards each other, particularly as a result of research into the rates of electrochemical processes. Such evolution is due to a number of factors, and offers the possibility of carrying out reproducible, dynamic experiments under an ever-increasing variety of conditions with reliable and sensitive instrumentation. This has enabled many studies of a fundamental and applied nature, to be carried out.",isbn:null,printIsbn:"978-953-51-1018-7",pdfIsbn:"978-953-51-5030-5",doi:"10.5772/2787",price:119,priceEur:129,priceUsd:155,slug:"electrochemistry",numberOfPages:210,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"4d77896d92a0b2f69168537e0b57c8ab",bookSignature:"Mohammed A. A. Khalid",publishedDate:"February 20th 2013",coverURL:"https://cdn.intechopen.com/books/images_new/2437.jpg",numberOfDownloads:35542,numberOfWosCitations:28,numberOfCrossrefCitations:10,numberOfCrossrefCitationsByBook:4,numberOfDimensionsCitations:35,numberOfDimensionsCitationsByBook:4,hasAltmetrics:1,numberOfTotalCitations:73,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 6th 2011",dateEndSecondStepPublish:"January 10th 2012",dateEndThirdStepPublish:"April 15th 2012",dateEndFourthStepPublish:"July 14th 2012",dateEndFifthStepPublish:"August 13th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"40312",title:"Dr.",name:"Mohammed",middleName:"Awad",surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/40312/images/system/40312.jpg",biography:"Dr. Mohammed A. A. Khalid is on the adjunct faculty in the Department of Chemistry at the College of Applied Medicine and Sciences, University Taif, and he is also an Assistant Professor in the Department of Chemistry, Faculty of Science, University of Khartoum. Dr. Khalid received his B.S. in Chemistry (2000), and his Ph.D. in Physical Chemistry (2007) from Department of Chemistry, Faculty of Science, University of Khartoum. He served as a postdoctoral researcher (2009-2010) at School of Chemistry, Faculty of Science, University of Sydney. Dr. Khalid has done research on P-type ATPase Enzyme Kinetics and Mechanisms; Kinetics and Mechanisms of Redox Reactions; Autocatalytic Reactions; Computational enzyme kinetics; Allosteric acceleration of P-type ATPases by ATP; Dual mechanisms of P-type ATPases by ATP; Exploring of allosteric sites of ATPases; and interaction of ATP with ATPases located in the cell membranes; and has published many papers in these research areas.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Khartoum",institutionURL:null,country:{name:"Sudan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"505",title:"Electrochemistry",slug:"chemistry-physical-chemistry-electrochemistry"}],chapters:[{id:"42963",title:"Chromatographic, Polarographic and Ion-Selective Electrodes Methods for Chemical Analysis of Groundwater Samples in Hydrogeological Studies",doi:"10.5772/50223",slug:"chromatographic-polarographic-and-ion-selective-electrodes-methods-for-chemical-analysis-of-groundwa",totalDownloads:5446,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Ricardo Salgado and Manuela Simões",downloadPdfUrl:"/chapter/pdf-download/42963",previewPdfUrl:"/chapter/pdf-preview/42963",authors:[{id:"140170",title:"Prof.",name:"Manuela",surname:"Simões",slug:"manuela-simoes",fullName:"Manuela Simões"},{id:"144651",title:"Prof.",name:"Ricardo",surname:"Salgado",slug:"ricardo-salgado",fullName:"Ricardo Salgado"}],corrections:null},{id:"42962",title:"Electron Beam Ablation Phenomenon – Theoretical Model and Applications",doi:"10.5772/47824",slug:"electron-beam-ablation-phenomenon-theoretical-model-and-applications",totalDownloads:2832,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"V.E. Ptitsin",downloadPdfUrl:"/chapter/pdf-download/42962",previewPdfUrl:"/chapter/pdf-preview/42962",authors:[{id:"141477",title:"Prof.",name:"Valery",surname:"Ptitsin",slug:"valery-ptitsin",fullName:"Valery Ptitsin"}],corrections:null},{id:"42959",title:"Oxidation Chemistry of Metal(II) Salen-Type Complexes",doi:"10.5772/48372",slug:"oxidation-chemistry-of-metal-ii-salen-type-complexes",totalDownloads:6866,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Yuichi Shimazaki",downloadPdfUrl:"/chapter/pdf-download/42959",previewPdfUrl:"/chapter/pdf-preview/42959",authors:[{id:"143053",title:"Prof.",name:"Yuichi",surname:"Shimazaki",slug:"yuichi-shimazaki",fullName:"Yuichi Shimazaki"}],corrections:null},{id:"42957",title:"Membrane Electrochemistry: Electrochemical Processes in Bilayer Lipid Membrane",doi:"10.5772/55507",slug:"membrane-electrochemistry-electrochemical-processes-in-bilayer-lipid-membrane",totalDownloads:4062,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Mohammed Awad Ali Khalid",downloadPdfUrl:"/chapter/pdf-download/42957",previewPdfUrl:"/chapter/pdf-preview/42957",authors:[{id:"40312",title:"Dr.",name:"Mohammed",surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid"}],corrections:null},{id:"42961",title:"Potentiometric Determination of Ion-Pair Formation Constants of Crown Ether-Complex Ions with Some Pairing Anions in Water Using Commercial Ion-Selective Electrodes",doi:"10.5772/48206",slug:"potentiometric-determination-of-ion-pair-formation-constants-of-crown-ether-complex-ions-with-some-p",totalDownloads:3636,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:1,abstract:null,signatures:"Yoshihiro Kudo",downloadPdfUrl:"/chapter/pdf-download/42961",previewPdfUrl:"/chapter/pdf-preview/42961",authors:[{id:"140490",title:"Dr.",name:"Yoshihiro",surname:"Kudo",slug:"yoshihiro-kudo",fullName:"Yoshihiro Kudo"}],corrections:null},{id:"42976",title:"Shape Classification for Micro and Nanostructures by Image Analysis",doi:"10.5772/50226",slug:"shape-classification-for-micro-and-nanostructures-by-image-analysis",totalDownloads:3311,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"F. Robert-Inacio, G. Delafosse and L. Patrone",downloadPdfUrl:"/chapter/pdf-download/42976",previewPdfUrl:"/chapter/pdf-preview/42976",authors:[{id:"149807",title:"PhD.",name:"Frederique",surname:"Robert-Inacio",slug:"frederique-robert-inacio",fullName:"Frederique Robert-Inacio"}],corrections:null},{id:"42956",title:"Electroanalytical Sensor Technology",doi:"10.5772/51480",slug:"electroanalytical-sensor-technology",totalDownloads:5340,totalCrossrefCites:6,totalDimensionsCites:19,hasAltmetrics:0,abstract:null,signatures:"Aoife C. Power and Aoife Morrin",downloadPdfUrl:"/chapter/pdf-download/42956",previewPdfUrl:"/chapter/pdf-preview/42956",authors:[{id:"147925",title:"Dr.",name:"Aoife",surname:"Morrin",slug:"aoife-morrin",fullName:"Aoife Morrin"},{id:"149685",title:"Dr.",name:"Aoife",surname:"Power",slug:"aoife-power",fullName:"Aoife Power"}],corrections:null},{id:"42960",title:"Microfluidic Devices Fabrication for Bioelectrokinetic System Applications",doi:"10.5772/54390",slug:"microfluidic-devices-fabrication-for-bioelectrokinetic-system-applications",totalDownloads:4051,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Nurul Amziah Md Yunus",downloadPdfUrl:"/chapter/pdf-download/42960",previewPdfUrl:"/chapter/pdf-preview/42960",authors:[{id:"141236",title:"Dr.",name:"Nurul Amziah",surname:"Md Yunus",slug:"nurul-amziah-md-yunus",fullName:"Nurul Amziah Md Yunus"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2549",title:"Ion Exchange Technologies",subtitle:null,isOpenForSubmission:!1,hash:"d5d70a346ca433c501e5968f54286740",slug:"ion-exchange-technologies",bookSignature:"Ayben Kilislioğlu",coverURL:"https://cdn.intechopen.com/books/images_new/2549.jpg",editedByType:"Edited by",editors:[{id:"139903",title:"Prof.",name:"Ayben",surname:"Kilislioglu",slug:"ayben-kilislioglu",fullName:"Ayben Kilislioglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"21",title:"Ferroelectrics",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"ferroelectrics",bookSignature:"Indrani Coondoo",coverURL:"https://cdn.intechopen.com/books/images_new/21.jpg",editedByType:"Edited by",editors:[{id:"289832",title:"Dr.",name:"Indrani",surname:"Coondoo",slug:"indrani-coondoo",fullName:"Indrani Coondoo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2282",title:"Atomic Force Microscopy",subtitle:"Imaging, Measuring and Manipulating Surfaces at the Atomic Scale",isOpenForSubmission:!1,hash:"17fb7c8076806f6aca457071b7e7ce10",slug:"atomic-force-microscopy-imaging-measuring-and-manipulating-surfaces-at-the-atomic-scale",bookSignature:"Victor Bellitto",coverURL:"https://cdn.intechopen.com/books/images_new/2282.jpg",editedByType:"Edited by",editors:[{id:"111789",title:"Dr.",name:"Victor",surname:"Bellitto",slug:"victor-bellitto",fullName:"Victor Bellitto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5381",title:"Ionic Liquids",subtitle:"Progress and Developments in",isOpenForSubmission:!1,hash:"e87c37c4d014c11121453605e6d0f37a",slug:"progress-and-developments-in-ionic-liquids",bookSignature:"Scott Handy",coverURL:"https://cdn.intechopen.com/books/images_new/5381.jpg",editedByType:"Edited by",editors:[{id:"42658",title:"Prof.",name:"Scott",surname:"Handy",slug:"scott-handy",fullName:"Scott Handy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"607",title:"Electropolymerization",subtitle:null,isOpenForSubmission:!1,hash:"0457c6cc64766bdd64f8195b8e22afb1",slug:"electropolymerization",bookSignature:"Ewa Schab-Balcerzak",coverURL:"https://cdn.intechopen.com/books/images_new/607.jpg",editedByType:"Edited by",editors:[{id:"73293",title:"Dr.",name:"Ewa",surname:"Schab-Balcerzak",slug:"ewa-schab-balcerzak",fullName:"Ewa Schab-Balcerzak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1431",title:"Recent Trend in Electrochemical Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"9ec6b0bf8c309891f70a9c181399984e",slug:"recent-trend-in-electrochemical-science-and-technology",bookSignature:"Ujjal Kumar Sur",coverURL:"https://cdn.intechopen.com/books/images_new/1431.jpg",editedByType:"Edited by",editors:[{id:"27764",title:"Dr.",name:"Ujjal Kumar",surname:"Sur",slug:"ujjal-kumar-sur",fullName:"Ujjal Kumar Sur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"159",title:"Superconductivity",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"bb0587d06c5516fc4e3c89818b9b17e6",slug:"superconductivity-theory-and-applications",bookSignature:"Adir Moyses Luiz",coverURL:"https://cdn.intechopen.com/books/images_new/159.jpg",editedByType:"Edited by",editors:[{id:"10012",title:"Dr.",name:"Adir",surname:"Luiz",slug:"adir-luiz",fullName:"Adir Luiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4599",title:"Ion Exchange",subtitle:"Studies and Applications",isOpenForSubmission:!1,hash:"2e45cfed818bc38f70a214561b0a1e21",slug:"ion-exchange-studies-and-applications",bookSignature:"Ayben Kilislioglu",coverURL:"https://cdn.intechopen.com/books/images_new/4599.jpg",editedByType:"Edited by",editors:[{id:"139903",title:"Prof.",name:"Ayben",surname:"Kilislioglu",slug:"ayben-kilislioglu",fullName:"Ayben Kilislioglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1430",title:"Electrochemical Cells",subtitle:"New Advances in Fundamental Researches and Applications",isOpenForSubmission:!1,hash:"8d6940c11056ad45b64997133a536a0f",slug:"electrochemical-cells-new-advances-in-fundamental-researches-and-applications",bookSignature:"Yan Shao",coverURL:"https://cdn.intechopen.com/books/images_new/1430.jpg",editedByType:"Edited by",editors:[{id:"39811",title:"Dr.",name:"Yan",surname:"Shao",slug:"yan-shao",fullName:"Yan Shao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1455",title:"Electroplating",subtitle:null,isOpenForSubmission:!1,hash:"18ec8cf0e50c5e8170a9d0b20af09b7f",slug:"electroplating",bookSignature:"Darwin Sebayang and Sulaiman Bin Haji Hasan",coverURL:"https://cdn.intechopen.com/books/images_new/1455.jpg",editedByType:"Edited by",editors:[{id:"92970",title:"Prof.",name:"Darwin",surname:"Sebayang",slug:"darwin-sebayang",fullName:"Darwin Sebayang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64730",slug:"erratum-spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",title:"Erratum - Spectrum Decision Framework to Support Cognitive Radio Based IoT in 5G",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64730.pdf",downloadPdfUrl:"/chapter/pdf-download/64730",previewPdfUrl:"/chapter/pdf-preview/64730",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64730",risUrl:"/chapter/ris/64730",chapter:{id:"63606",slug:"spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",signatures:"Ahmad Naeem Akhtar, Fahim Arif and Adil Masood Siddique",dateSubmitted:"February 8th 2018",dateReviewed:"August 18th 2018",datePrePublished:null,datePublished:null,book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"244896",title:"Dr.",name:"Ahmad Naeem",middleName:null,surname:"Akhtar",fullName:"Ahmad Naeem Akhtar",slug:"ahmad-naeem-akhtar",email:"ahmadnaeem.akhtar@mcs.edu.pk",position:null,institution:null}]}},chapter:{id:"63606",slug:"spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",signatures:"Ahmad Naeem Akhtar, Fahim Arif and Adil Masood Siddique",dateSubmitted:"February 8th 2018",dateReviewed:"August 18th 2018",datePrePublished:null,datePublished:null,book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"244896",title:"Dr.",name:"Ahmad Naeem",middleName:null,surname:"Akhtar",fullName:"Ahmad Naeem Akhtar",slug:"ahmad-naeem-akhtar",email:"ahmadnaeem.akhtar@mcs.edu.pk",position:null,institution:null}]},book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11624",leadTitle:null,title:"Agricultural Waste - New Insights",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tIncreasing demand for agricultural production for human, animal, and industrial requirements is responsible for the enhancement of agricultural and agro-industrial activities. Each step of such activities produces various types of agricultural waste that include crop residue, on-farm livestock and fisheries waste, forest waste, agro-industrial waste, etc. Currently, handling and managing agricultural waste is a challenging task worldwide, especially in the context of environmental pollution control and sustainable agriculture. Thus, efficient management in terms of reuse, recycling, and reduction of agricultural waste is principally needed not only for the green economy but also for farmers' profitability. This would also contribute to minimizing environmental pollution, greenhouse gas emissions, and climate change to meet the 2030 UN-SDGs. Therefore, this book aims to address agricultural waste production and management in the multidimensional aspects of crop residue, biodegradables, biomass, composting and vermiculture, agricultural waste economics, air pollution, environmental safety, waste management, and handling, on-farm waste reuse, and agricultural waste value addition. Authors are encouraged to submit original research, reviews, modeling and simulation, case studies, and recent progress and scenarios in the above-mentioned subject areas.
\r\n\t
The functionalisation of different surfaces is of curiosity since the chronicle emergence of various technologies in the antiquity. Different surface coatings and painting materials and techniques were developed to alter the aesthetic appearance, functional potential, and protection against the environment like resistance against oxidants [1, 2].
Initially, durability was prime criteria for selecting any fabric by the customer in the ancient era, and then aesthetic values and comfort index were primary attributes to decide the fabric choice. Now, customer’s approach about clothing and textiles is shifting to search some additional functionality apart from traditional attributes in textiles. The functionality may come from protective clothing, cosmetotextiles, and temperature regulating textiles, industrial textiles, sports textiles, and automotive textiles. All the above textile materials must keep at least any one specific functionality to register as functional textiles.
The functional textiles market is growing with an excellent growth rate of 33.58% between 2015 to 2020. The global functional textile market was reached 4.72 billion US$ by 2020. India is a prime manufacturer in apparel and textile manufacturing and fourth-largest exporter in the international sector.
The functional textile sector has encountered a compound annual growth rate (CAGR) of 30% from 2015 to 2020 due to strong automotive, fitness, fashion, healthcare, military, and sports textiles.
The physical finishing process includes three methods: impregnation, padding, and coating, and its main drawback are that the bonding force is weak between the finishing agent and textiles. However, its strength is more durable, and functionality can be maintained for a long time. The chemical finishing method involves grafting a functional monomer onto a polymer substrate, to obtain a new functional textile. The advantage is that its functionality can be maintained for a long time. Biological, ecological finishing is a finishing method which has emerged in recent years, and it adopts biological enzymes with biological activity in the finishing of textiles.
Smart textiles do not necessarily imply a less sustainable option to ordinary textiles if they offer better user value, user attachment and longevity. This chapter discusses the difference between ordinary sustainable methods based on saving energy and resources and methods that tackle excessive consumption, such as user involved design to enhance product durability. It discusses the theoretical model of user involved design through a practical example of developing a smart, lightweight tracking tent and concludes with a set of general guidelines for developing sustainable smart- textile products.
The functional textiles can be defined as textiles consist of additional functions of adjusting and regulating various attributes like temperature, humidity, colour and controlled release of some additives from fibres. The most popular fibres used to manufacture various types of functional textiles are polyester and viscose. Other fibres are also used to manufacture functional textiles as the need for some specific functions. The significant demand for functional textiles arises from active and high-performance wear sectors.
Some leading manufacturer of functional textiles at the international horizon are Dyntex GmbH, Eclat Textile Corporation Ltd., Harvest SPF Textile Company Ltd., Kelheim Fibres GmbH, Sofileta, Trevira GmbH, Toung Loong Textile MFG.
Various authors and researchers have tried to classify the functional textiles on their own time, but it is not easy to propose an ideal classification [3].
Functional textiles have become instrumental for the advancement of the conventional technical textiles segment, representing a sector where traditional clothing crosses the usual frontiers and connects with the spheres of biotechnology, cosmetic science, computing potentials, flexible electronics, medicine, and nanotechnology among some more, to achieve the multidimensional and complex demands of the customers. By definition, Functional textiles are user-governed specified and customised or engineered products manufactured to fulfil the customer’s performance needs under extreme conditions.
Gupta [3] classified the functional textiles logically in six categories. Now including three more, present classifications consist of nine different functional classes, as shown in Figure 1. It is essential to clarify that some more classes will introduce functional textiles classification as per the demand and availability of various functional textiles shortly. There is a slight difference between functional and technical textiles. All functional textiles may belong to technical textiles, but all technical textiles may not be functional. For example, protective functional textiles may belong to protective surgical masks for doctors, healthcare workers, and sports armour.
Various stimuli and their corresponding functionalities for textiles.
The aerothermal concept has been adopted in functional textiles to control the heat containing airflow through fabrics. These functional textiles are manufactured and marketed by Adidas, and Peak Performance of the IC group. The Schoeller Technologies AG developed far infrared-based functional textiles’ Energear’ to collect the energy employed by the human body. Remarkable developments and innovations polymer and fibre science, coating and finishing technologies are the major driving forces for the growth of functional textiles. The initial demand for functional textiles was originated from various sports wear used in cycling, ski sports, swimming. The latest development in functional textiles turned the customer highly demanding for functional textiles. The higher cost of functional textiles stamped it textiles of premium class. Thus, the challenge of cost reduction in functional textiles manufacturing chain is the need for the present era to make it available for the common man and accelerate functional textiles’ global market. Geographically, the functional textiles market is divided into five regions the Asia Pacific, Middle East and Africa, European Union, Latin America, United States of America. European Union secured the first position in manufacturing Functional Textiles mainly in Germany, France, Italy, and the United Kingdom. The USA also has a healthy manufacturing and market for functional textiles.
The Asia Pacific and Middle East Africa have the immense opportunity to grow the functional textile market. Japan, Malaysia, South Korea, Turkey, and Taiwan are predicted to be a promising market for functional textiles. The maximum number of functional textiles is manufactured by the application of various finishing agents on textiles. Thus, the international market for finishing agents is expected to grow to 4.52 billion US$ by 2025. The protective textile segment, including health care and protection, is an up-and-coming field of functional textile is anticipated to manoeuvre the market rise in the next years. Enhancing buying potential and expendable income in emerging countries like Brazil, China, India, Russia, Taiwan, and Indonesia is another driving force of the growth of the functional textile market. However, the strict regulatory norms to restrict harmful and toxic chemicals will remain the requisite provocation for functional textile manufactures.
Functional textile finishing agents are dominated by various repellant and release agents in recent years and expected to grow with CAGR of 4.8% till 2028. The application of flame retardant chemicals was 22% of global textile finishing chemicals in the year 2020.
The major functional finishing agent manufacturers are Archroma, BASF SE, Covestro, CHT Group, Evonik Industries, Huntsman Corporation, Sumitomo Chemicals, Dow Chemical Company, HT Fine Chemical, FCL, KAPP-CHEMIE, NICCA CHEMICAL CO., Ltd., OMNOVA Solutions, Tanatex Chemicals B.V., Wacker Chemie AG, Zydex Industries, Sarex and others.
A technique in which an active substance is stored in tiny space covered or coated with a thin polymeric material to protect the core material along with controlled release, is called microencapsulation.
Particles obtained by this process are called microparticles, microcapsules and microspheres according to their morphologies and internal structure. For particles with a size range below one μm, the terms ‘nanoparticles’, ‘nanocapsules’ and ‘nanospheres’ are used, respectively. Furthermore, particles larger than 1000 μm are designed as microcapsules. The nomenclature used to define different parts of the encapsulated product includes terms for the shell, ie, ‘wall’, ‘coating’, ‘membrane material’; and for the core material, ie, ‘active agent’, ‘payload’, ‘internal phase’, respectively. Different kinds of compounds such as dye, protein, fragrance, monomers, the catalyst can be encapsulated with various shell wall materials like natural polymer (gelatine, cellulose, chitosan, etc.), artificial polymers (cellulosic derivatives, etc.) and synthetic polymers (polyamide, polyester, etc.), with a loading content between 5% and 90% of the microparticles in weight (Figure 2).
Functionality by microencapsulation.
Micro and Nanoencapsulation is a technique in which a thin wall surrounds a tiny amount of active ingredient or droplets. The capsule wall’s active material is called core material while the coating material is known as shell or membrane. Microcapsules have a diameter of few microns whereas nanocapsules have diameters of some hundreds of nanometres. Micro and nanoencapsulation is an up-and-coming technology to functionalise the textiles by potential core material for desires functionality. Micro and nanoencapsulation have permitted biocides, insecticides, essential oils, moisturisers, energisers, moisturisers, therapeutic oils, and vitamin E to be uploaded into fabrics. Some other applications are agrotextiles, cosmetics, industrial textiles, food additives, essences, herbicides, nutraceuticals, and sealants. The microencapsulation by interfacial polymerisation is given in Table 1.
Sheath polymer | Core active material | Function | Reference |
---|---|---|---|
Poly (urea urethane) PUU | Sensitive dye | To get colour as a function of time | [4] |
Poly (urea urethane) PUU | Cooling agent | To get cool feel during wearing | Salaün et al. [5] |
Poly (urea urethane) PUU | Fragrances | To get controlled fragrance release | Teixeira et al. [6] |
Poly urethane/ polyurea | Antimicrobial | To get bacterial protection | |
Polyurea | Flame retardant | To get improved flame protection | [7], and Vroman et al. [8] |
Polyurethane/chotopsan | Thermochromic | Colour change as a function of temperature | Fan et al. [9] |
Cellulose derivative/PU | Phase change materials | To control environmental temperature flactuation | Salaün et al. [10] |
Polyurethane | Cosmetic Ingradient | To get skin care functionality | Azizi and Chevalier [11] |
Microencapsulation by interfacial polymerisation.
The traditional binder application binds some functional compound on textile surfaces and creates a three-dimensional network and starts hindering the release of functional ingredient from the surface. The absence of strong chemical linkage between the capsule sheath and substrate surface exhibits inferior wash fastness and low air and moisture transmission. During pad-dry-cure, some of the capsules get burst due to the presence of applied pressure on substrate. Microcapsules are covalently connected onto textile surfaces by opting multifunctional crosslinking (coupling) reagents to enhance the fastness against wash and wear.
Microcapsules with ethylcellulose sheath are grafted on cotton fabric surface using 1,2,3,4-butane tetracarboxylic acid as crosslinking agents that react with a hydroxyl group cellulose to configure ester bonds [12].
Dimethyloldihydroxyethylene urea was opted as a coupling agent between chitosan and cellulose to form a covalent bond to enhance washing fastness [13].
Citric acid was another choice to crosslink chitosan microcapsules on cellulosic surfaces [9, 14].
Grafting strategies from the particle surface modification can be performed by introducing reactive chemical groups like α-Bromo-acrylic acid, adipic acid, 2,4,6-trichlorotriazine and dichloroquinoxaline, to react with the microcapsule sheath materials to offer further grafting possibilities onto natural, manmade fibres. Polyamide capsules and silica microspheres with 2,4,6-triochlorotriazine were functionalised to be deposited on cotton fibre surface [15].
Microcapsules were dispersed in water and glycidyl methacrylate monomer, and potassium persulfate was added to initiate an outer shell of poly(glycidyl methacrylate). The microcapsules were then applied by exhaustion in alkali medium to jersey cotton knitwear with a liquor ratio of 1:10 at 75 °C for 30 min. After rinsing, the sample was dried at 120 °C. The functional groups of the poly(glycidyl methacrylate) on the outer surface of the microcapsules are directly reacted with the functional groups of the fibres, which also conveyed durability of the PCM microcapsule-incorporated fabric even when subjected to physical processes involving frictional forces, or chemical processes such as domestic and industrial washing, or dry cleaning [16]. Gouveia used a sonication method to produce and simultaneously bind the microspheres onto textile materials [17].
Polyamide microcapsules are directly synthesised on cellulosic surfaces with 80% high encapsulation [18].
Some studies were planned to modify the textile surfaces through layer by layer deposition to get nanocomposite textile fibre and protective clothing. Various functional molecules like enzymes, dyes and charged nanoparticles are deposited on textile surfaces in a controlled manner. Various finishing processes are based on Ag, TiO2, Zn nanoparticles to functionalised various textile surfaces [19]. Layer by layer deposition technique is a distinctive technique invented to develop ultrathin composite films on the surface of solid materials. A series of layer-by-layer deposition of polyanions and polycations on oppositely charged surfaces occurs in this method [20].
This process involves the charging of substrate sufficiently, followed by dipping in a conversely charged polyelectrolyte. The process begins by charging a substrate appropriately, followed by immersion in an oppositely charged polyelectrolyte solution and rinsing. Strong electrostatic bonds between charged surface and polyelectrolyte become the main instrumental in getting it to bind. The process begins with rinsing followed by monolayer coating of polyelectrolyte which gets bind by electrostatic bonds and process may repeat to be deposited 20 ultrathin layers [21, 22, 23].
Unlike pad-dry-cure, radiation, and thermal deposition methods, different finishing techniques are used to deposit various nanoparticles on textile substrates. The chemical coating on textile surfaces has some limitations due to higher thickness, which suppresses textiles’ breathability. The LbL technology offers moderate chemical deposited surfaces to keep transmission, thickness and stability up to the desired extent. Various textile surfaces are modified by LbL technique.
Cotton, Kevlar, Nylon, Nomex, Silk and Wool fabrics were opted to functionalised for different applications by platinum atomic layer deposition. The platinum layer by layer deposition on textile surfaces was targeted to fabricate resistive heating devices with high stability and long life. The platinum deposition was found uniform layer by layer except for nylon fabric surface. [(1,2,5,6-η)-1,5-Hexadiene]-dimethyl-platinum(II) (HDMP; Tanaka Kikinzoku Kogyo K.K., Japan) and O2 gas were used as a Pt precursor and counter-reactant, respectively. The substrate temperature was maintained at 145 °C during the ALD process. Field emission scanning electron microscope integrated with energy dispersive spectroscopy (EDS) was used for quantitative and elemental deposition conformation on textile surfaces. The atomic-scale crystalline and chemical structures of treated fabric specimen were analysed opting transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS), respectively [24].
Lee et al. [25] developed a pressure sensor atomic layer deposition on the cotton surface by depositing [(1,2,5,6-η)-1,5-hexadiene]-dimethyl-platinum(II) (HDMP) and O2 as the Pt precursor and counter reactant. The research group developed a useful atomic layer deposition technique. The deposition process may repeatedly apply up to 10,000 times. This technique helps produce various E-textiles by combining and connecting the number of sensors in a textile item that may be proved as propitious applicants for a range of smart and wearable electronics.
Stawski et al. [26, 27, 28] deposited oppositely charged polyelectrolytes; poly(acrylic acid) and poly(allylamine hydrochloride) layer-by-layer on a polypropylene knitted fabric, which had areal density 80 g/m2, diameter per filament 14.9, 18 courses per centimetre, 14 wales per centimetre, 56 dtex multifilament yarn.
The polypropylene (PP) fabric was activated as per the protocol opted by Połowiński [29] and [30, 31, 32] by heat-treating the fabric samples in an aqueous solution (20 g/L) of ammonium persulfate for 30 minute at 80 °C, and saturated with nitrogen), rinsing thoroughly with distilled water, and grafting with concentrated acrylic acid (52 g/L) for 60 minutes at 80 °C, saturated with nitrogen. After completing the grafting process, the PP fabric samples were dipped in an aqueous polyelectrolyte solution (10–2 mol/L). This process may repeat many times as per the need of desired end applications. Before initiating a new layer, deposition fabric specimens were rinsed with distilled water. In this way number of polyelectrolyte layers was coated on PP fabric surface [28, 29]. The PP samples functionalised by LbL technique were found to significantly reduced the static charge half-disappearing time, from 46 to 5.7 minutes. The degradation temperature shifted from 330 to 420 °C. The capillary rise has increased from 50 to 400 mm in the case of surface-modified knitted fabric samples. SEM and wide-angle X-ray diffraction was used to confirm the layer by layer deposition on PP fibre surface. It was found that the layer-by-layer deposition of polyelectrolyte considerably modifies dyeability, electrostatic shielding potential, and hydrophilicity of PP fabric samples.
Highly durable hydrophobic polyester fabric surfaces were created by LbL nanoparticle coating on the fabric surface. Electrophoretic deposition (EPD) technique was used to modify the fabric surface with deposition of silica nanoparticles. The deposition of silica nanoparticles remains challenging on non-conductive surfaces like polyester due to undue cracks and poor adhesion. Thus electrostatic self-assembly layer-by-layer technique was opted to overcome these issues as shown in Figure 3. The polyester fabric modified by LbL silica NPs deposition offers a very high contact angle in static condition along with low contact angle hysteresis. The superhydrophobicity was remained intact ever after 500 h skin fiction [33]. This method provides fast and customisable deposition of superhydrophobic surface coatings. The coating thickness can be controlled by the electric field intensity and deposition time. Furthermore, the modified surface’s morphology can be altered by changing the suspension stability during EPD [34]. Three significant routes achieve sustainable surface functionalisation; by alternating a charged substrate’s immersion in aqueous solutions containing interacting charged particles, chemical vapour deposition, and spraying the interactive solutions on charges surfaces.
Concept of layer by layer (LbL) Technology for Functional Textiles.
Fabric Comfort, good low-stress mechanical properties, pleasant aesthetic appeal, elasticity and recovery, favourable formability, desired crease-resistance are some attributes can be achieved by fabric engineering. These attributes are required for various applications like formal wear, party wear, ladies wear and sportswear.
The PBT (polybutylene terephthalate), yarns have good elastic potential with high recovery after heat treatment, have been adopted to manufacture highly elastic cotton-like fabric. The effect of PBT elastic yarn, weave and fabric structure was observed on physical, elastic, UPF, comfort) properties of the fabric. PBT yarns have found it appropriate to introduce elasticity in selected areas of the fabrics. The fabric had quick-drying, easier folding and storage and perfect fit to all dimensions [35].
3D printing is another way to introduce various functionalities in a different range of textiles. 3D printing has opted in case of defence, protective, sports, flexible electronics and safety clothing.
3D printing is used to customise the product for specific applications. Various types of additives can be loaded on fabric surfaces as a part of printing inks or pastes. A variety of hard and soft flexible materials can be printed directly on the textile surfaces. A combination of additives can also incorporate some functionality on a common textile substrate by 3D printing. The effect of family of twill weave and different weft densities on adhesion potential of printed objects on polyester/cotton fabric surfaces was studied. A range of 3D objects was printed with polylactic acid (PLA) filament on textile surfaces. T - Peel adhesion test was conducted by Instron dynamometer. It was found that the 1/3 broken twill fabric has the maximum impact on the adhesion perspective [36].
The worldwide health consciousness has enhanced natural dyes’ use to avoid the threat of allergy, mutagenicity, and carcinogenicity. Cotton fabric was dyed with an extract of fourty different plants with zero mordant. Some plants were able to record great wash and lightfastness like pomegranate peel and turmeric for yellow, madder and quince for yellow, indigo for blue, myrobalan for green, white onion peel and catechu for brown colour. White onion peel or turmeric dyed cotton fabrics have registered significant improvement in ultraviolet protection functionality [37].
Enzyme driven textile functionalisation has attracted the attention of textile manufacturers worldwide. Nonpolluting, non-toxic, and biodegradable nature of enzymes make it appropriate for the green processing of textiles. The enzyme production can be enhanced commercially anytime as per the need in industry. Enzymatic bleaching, scouring, bio-washing, and bio-polishing cotton fabric have become quite popular in the textile industry. Recently cotton fabrics are modified through transesterification by Proteinase subtilisin enzymes. Woollen fabrics are made shrink-proof by transesterification by the use of proteinase subtilisin enzymes. The Laccase enzyme is used to functionalised the wool in multiple order with antibacterial, antioxidant and water repellant for grafting alkyl galettes. The hydrophilicity and antistatic charge potential are introduced in polyester fabrics by treating it with cutinases and esterases enzymes. The nylon and acrylic fabrics are functionalised by treatment with amidase and nitrilase. The functionalisation of textile surfaces is made by ‘enzyme immobilisation’ on textile surfaces to introduce some special functions to textile surface. The immobilised enzymes work better than free enzymes on the textile surface to impart long term functionalities on textile substrates. As compared to free enzymes, immobilised enzymes are permanently attached to the textile, thereby adding unique functionalities to its surface.
The micro and nanoencapsulation of phase change materials can alter the core material from solid to liquid and liquid to stable by changing the entropy within a specific temperature span. This technique is used to suppress the effect of temperature variation on the targeted subject. The encapsulation of phase change materials is used to keep the temperature of clothing at a constant level. Microencapsulated phase change materials enhance the comfort delivery of blankets, duvets, mattresses, snowsuits, and vests [38].
Fragrance finishes are applied straight on textiles, but aroma stability lasts maximum up to a couple of wash cycles. The micro and nanoencapsulation of fragrances are used to prolong the fabric’s aroma functionality for a much more extended period. This technique is mainly adopted to encapsulate various essential oil flavours like lavender, rosemary, pine and others on for aromatherapy to treat headaches, insomnia, and prevent bad odour.
Encapsulation of flame retardant materials does not allow sacrificing the softness and other low-stress mechanical properties seeded by direct application of flame retardant chemicals. Scientific selection of core and sheath materials for flame retardancy can offer synergistic effect; organophosphorus compound as core and nitrogenous compound as a sheath. Some intumescent flame retardant coatings can also be generated by micro and nanoencapsulation technique. This flame retardancy technique is widely used in the military sector to treat the tentage, upholstery and firefighting dresses.
The deodorant fibres are manufactured by modifying the polymer molecular chain during polymerisation, by adding deodorant additives during fibre extrusion and by applying deodorant finish on fibre surface after spinning. The addition of deodorant additive as dope additive is simplest method to impart deodorancy in fibres as shown in Figure 4.
Concept of inherent deodorant textile fibre.
The polyester staple fibres were modified by photocatalyst and blended with cotton and bamboo fibre to produce several fabrics. The photocatalyst fibre contents were varied from 0 to 100% at a step of 20% increment in different samples. The deodorant potential of produced fabric samples was tested and examined. The conclusion is explained that as the photocatalyst fibre content reached 80% or 100%, the fabrics get better deodorant potential, but the photocatalyst content remains 40% to 60% in fabric samples, it shows low deodorant effect. It is established that at least 80% photocatalyst is essential to produce acceptable deodorant fabric [39, 40].
The colours and dyes responsive against temperature are called as polychromic or thermochromatic dyes. The dyes and colours changes by a change in ultraviolet light are called as photochromatic dyes. The thermochromic or photochromic dyes are encapsulated inside the shell material used for product labelling, forensic purposes, and fashion applications. Many dyes and chemicals are available, which change colour by changing temperature and UV light exposure.
Microbes cause severe damage to various textile items. Some chemicals used to decay the microbial effects of fabrics are called as antimicrobials. These antimicrobials can be uploaded with textiles by microencapsulation technique in which antimicrobials remains in the core of the capsules. High-value textiles are treated by this method to prolong the life of these textiles.
Refreshing and relaxing attributes are incorporated in textiles by uploading the
Various plants and fruit-based aromas are also used by encapsulating and loading on fabrics for a functional point of view.
A class of textiles responsible for imparting skincare, ageing combating, and wellness feeling is known as cosmetotextiles. Cosmetotextiles is one of the significant members of the functional textile family. The demand for cosmetotextiles increases every year due to the increase in self-wellbeing and purchasing power globally [41].
Cosmetotextiles are resultant of combining cosmetics and the textiles through different techniques, in which microencapsulation is the prime. Cosmetotextiles is a consumer textile product with a long lasting cosmetic ingredient released as a function of time.
Skincare is the most potent aspect of modern globally. The glowing skin is the desire of every person of the universe. The potential of skincare in textiles can be incorporated very easily by finishing the route. The functional textiles are capable of caring for human skin in various ways, and some are described here.
This fabric finish is based on water-soluble phospholipid developed by Daiwa Chemical Inc., Japan. The finishing bath mainly consists of 2-methacryloyloxyethyl phosphorylcholine (MPC) with phosphatidylcholine polar groups to retain moisture on human skin for a long time [42]. A gentle softener is also used in Skinsoft 415 New to give a soft feeling to the wearer.
The skinsoft 415 finish has the potential to enhance the antibrowning and antistatic potential of textile surfaces [43].
Ohara Paragium Chemicals Kyoto, Japan, have floated a wide range of skincare and anti-ageing functional finishes to treat different fabrics. Some selected skincare finishes for textiles are;
Parafine Skincare −1000: This finish was developed by Ohara Paragium Chem. Japan and that primly consists of silk-based amino acids. The amino acids are rich in moisture retaining properties that promote skin well-being by enhancing skin moisture.
Parafine Skincare-3000: This finish offers cellulite reducing functionality by the presence of capsaicin, along with moisture-retaining and skincare effect by the presence of raspberry and squalane, respectively.
Parafine Skincare-5000: The Parafine SC-5000 finish primly based on extracts of rice germ oil (ferulic acid and g -oryzanol) and vitamin E. The mixture of ferulic acid, g –oryzanol and vitamin E offers anti-oxidation attributes to impart skin anti-ageing. This finish accelerates the anti-oxidation, blood circulation, and bio-membrane stabilisation in human skin.
EVOTM Care Vital: This skincare finish recipe mostly contains
The purpose of insect repellant functionality on textiles is to protect the wearer and cloth both from insects. The insect repellant materials are used to finish the traditional textile surfaces either by natural materials like (essential oils) such as citronella, eucalyptus, lemon, and neem or synthetic materials such as picaridin (1-piperidine carboxylic acid 2-[2-hydroxyethyl]-1-methlypropylester) or permethrin and (
Textiles loaded with microcapsules containing citronella as the active ingredient has found better insect repellency (more than 90% for three weeks) than fabric sprayed with citronella oil and ethanol solution directly on fabric surfaces [48]. Lemongrass oil extract was uploaded on polyester fabric in microcapsule form and found 92% insect repellency. The mosquito-repellency was 80% when the polyester fabric was treated through pad-dry-cure route microcapsules containing methanolic lemongrass leaves extract as an active ingredient in capsule core.
A cosmetotextile is a textile containing a substance or preparation targeted to be released permanently on different epidermis parts. It claims one or several unique properties such as cleansing, fragrance, skin appearance change, protection and upkeep, or foul body odour correction.
Some multinational companies like Oracle (France) and Dim launch fabrics with moisturising agent containing microcapsules grafted on textile surfaces. Global companies; Cognis in 2001 and Invista in 2003 floated their products as cosmetotextiles solution. Some other companies like Lytess (France), supplier for L’Oréal since 2009 with Mixa (2010), Mennen Garnier (2011), Biotherm, and then Nivea (2014) are continuously involved in this business. These companies are exclusively dedicated to the development and commercialisation of cosmetotextiles and have become a European market leader as a textile brand in this area. The Cosmetotextiles market was estimated at 500 million Euros in 2013, in which the slimming garments contribute about 10% share. France is the first producer and consumer of cosmetotextiles, with 64% of the market in 2012. The development and manufacturing of new products will open new market opportunities, cosmetotextile manufacturers. Cosmetotextiles can be broadly divided into two major classes: (1) dermocosmetics (skin care) and (2) aromatherapy (release of essential oil and fragrances). Furthermore, a broad classification of cosmetotextiles is presented by Singh [49]. Grafting, padding, coating, spraying or screen printing are the major ways of applying microcapsules containing fragrance or cosmetic agents onto a textile [50].
Aromatherapy is considered an alternative route of medicine that uses volatile materials like essential oils by various peoples. Essential oil or fragrance is released from the microcapsule when any external stimuli actuate the fabric’s microcapsule to promote the healing. The functional textiles for aromatherapy are found appropriate to affect the feelings, emotions and mood. Textile substrate works as a medium to deliver aroma conveniently at the desired moment. Various curtains, furnishings, handkerchiefs, and masks are treated with aroma finishes to incorporate functionalities. The microcapsules containing essential oils or fragrance are leaded on such textiles. Perfumed microcapsules are fixed on textile surfaces wither by the use of a binder or chemical grafting. Variety of essential oils like peppermint to get the exact thinking mood, lavender to get feeling of getting relax, similarly other oils for different purposes.
Photochromic materials are uncoloured initially and do not absorbs light. These materials are activated only by high energy protons of ultraviolet rays present in the close surrounding of it. Organic substances like fulgides, spiropyrans, and spirooxanies are primly used as sensor in textiles.
For a textile application, organic compounds such as spiropyrans, spirooxanies and fulgides are mainly used to act as sensors [51]. The last category has found application in garments, toys and logos on T-shirts. Microencapsulation is used to improve the compounds\' fatigue resistance as a result of deterioration after numerous repetitive cycles of irradiation and is affected by environmental factors [52, 53].
Photochromism is used in textiles to provide new functional smart fabrics such as garments capable of blocking UV radiation and sensing environmental changes, and also for aesthetics or functional effects such as camouflage, security printing, brand protection [51] and anticounterfeiting. Microencapsulated photochromic compounds can be applied by screen printing or grating onto a textile surface.
Di Credico et al. worked on a microencapsulation process to entrap a photochromic UV-sensitive dye dissolved in sunflower oil as a core material. After optimising the microcapsule shell’s UV screening properties by tuning the core material’s chemical composition, they demonstrated the use of such UV screening microcapsules in functional coatings for the nondestructive in situ visual detections of mechanical damage by colour change.
According to the desired functionality in textiles through microencapsulation route, microcapsules are planned and engineered. Nature of active ingredient core material, nature of sheath polymer, particle size, compatibility between core and sheath material are some prime parameters that drive microencapsulation. Microcapsules with porous, semiporous or impermeable shells are used for different applications.
Most of the active substances available are volatile, chemically fragile, or chemically, physically or thermally unstable, and cannot be applied directly on the textile substrate without being covered inside a shell. The micro or nano encapsulation not only provide the safety to the active substance from environmental stimuli; acidity, alkalinity, heat, moisture, oxidation) To restrict interaction with other chemicals remains present in the system to enhance the functionality delivery period.
The capsule shell is used to block the evaporation of active ingredients.
The capsules can also prevent the dissipation of volatile compounds. Additionally, the microcapsules save human resources at manufacturing and users side from exposure to harmful substances. Microcapsules allow safe handling of active ingredients before processing and permit a soluble substance to be transformed in a temporarily insoluble form. This technique permits an unpleasant fragrance from active compounds to be masked before end application during manufacture.
The microencapsulation of active substances is one of the best routes to enhance the efficiency and minimise environmental damage by controlled release.
This technology prolongs an active ingredient’s delivery until an external stimulus like heat, moisture; pressure is actuated at a specific rate, time or situation. The microcapsules are desired to escape the core ingredient to the wearer under a range of controlled situations, which mainly depend on the choice of shell materials, the microencapsulation process opted and final applications.
The compatibility of core and shell material assists in microencapsulation. A binder’s efficiency in connecting microcapsules to the textile surface depends on compatibility between various interphases of each component’s microcapsules and finishing and chemical nature.
The micro and nano encapsulation involve three necessary steps: enclosure of active ingredient as core material, the formation of microparticles and hardening. Again, these processes are further divided into three main groups depending on microparticles formation mechanisms. These three mechanisms are mechanical, chemical and physicochemical. The selection of one mechanism depends on various factors in which processing cost and selection of organic solvent is a significant point of considerations (Table 2).
Basic Ingredient | Functionality | Reference |
---|---|---|
Pro-vitamin C soluble in sebum | Cosmeto-clothing: Pro-vitamin C converts into vitamin C in the presence of sebum and is applied on blouses, and men and women’s shirts | [54] |
Aloe Vera, and Chitosan with other PCMs Leg wear and intimate clothing for both men, women and Yoga Lines: Delivering cosmetic and well-being benefits like freshness, moisturising and massage for leg wear and intimate apparel. Stretch and recovery function through the use of Lycra | [49] | |
Distilled oils of plants, fruits and leaves | Textile has the functionality to provide gentle care to tired feet and legs with the special effects of invigorating aromas | [55] |
Ultra-thin cloth with extracts of Padina Pavonica | The cosmetically inspired fluid lingerie “Hydrabra” provides moisturising and firming effects | [56] |
Seersucker Woven Fabrics with Therapeutic Properties | Seersucker woven fabrics provide anti-cellulite functional knitted. The fabrics were measured in the range of their structural, mechanical, comfort-related and functional properties. These fabrics offer sufficient air transmission and good thermal resistance with gentle micro-messaging functionality | [57] |
Chitosan microencapsulation with essential oils and bio-surfactants on cotton fabric | Smaller size microcapsules are obtained in presence of bio-surfactants. The antibacterial activity of fabric increases with the increase the add-on of chitosan and essential oil concentrations. The presence of essential oil decreases the stiffness but has no effect on wrinkle recovery | [58] |
Deodorising Textiles | Photocatalyst modified polyester staple fibre, cotton, bamboo fibre, and photocatalyst modified polyester blended woven fabrics were offered good deodorancy at 80% or 100% photocatalyst fibre content. | [39, 40] |
Wearable and textile electronics | Wearable and textile electronics was developed by thermal atomic layer deposition (ALD) at 300 °C with highly reactive counter reactants, including plasma radicals and O3. High functional cotton fabrics are developed. | [25] |
Temperature responsive functional textiles | A series of stimuli sensitive polymers were applied on various fabric surfaces to make them thermal responsive | [59] |
Radar absorbers, microwave | Polypyrrole coated fabrics and fibres becomes able to absorb various waves sensitive in radar range | [60] |
Camouflage electrochromic functional textiles | Polymers have a higher ion exchange capacity, higher hydrophilic/intensely coloured in the charged state are used to coat the textile surfaces. Coated textile colour is dramatically altered by application of small quantities. | [61] |
Flexible wearable pressure sensitive textiles | Piezoresistive properties are incorporated to detect the loacal pressure on the fabric. These functional textiles become useful for injury prevention, rehabilitation, sports and medical applications | [62, 63] |
Details of some selected functional ingredients, functions in functional textiles.
Some multifunctional ingredients impart a range of functionalities on textiles after uniformly coating on it. Zinc oxide can introduce collective functionalities like antimicrobial activity, electrical conductivity, flame retardancy, hydrophobicity, moisture management, photocatalytic self-cleaning, and UV protection. In the development of wearable electronics, the enhancement of the piezo-photocatalytic activity of ZnO NRs by controlling the structure grown on conducting textile substrates will be crucial [64]. Silver nanoparticles and titanium dioxide nanoparticles functionalised Cotton-cellulose-spandex fabrics with various weaving configurations like plain, twill and satin with ester crosslinking agent, silicone micro-emulsion. The treated fabric samples offered sufficient antibacterial, soft-handle, water/oil repellence, UV-protection and self-cleaning functionalities. The functionalised fabric samples retained these properties even after ten washing cycles [65]. Effective analytical techniques like scanning electron microscope with EDX confirmed the effective interaction between cellulosic surface and finishing nanoparticles.
The role of weave structure was also found crucial to enhance functionalities of treated fabric follows the descending sequence Satin (4) > Twill (2/2) > Plain (1/1) nevertheless of the used functional ingredients. The treated fabric samples showed bi-functional potentials like easy care-water and oil repellent, comfortable care-soft touch, or easy-care/antibacterial finish. The fabric finished with citric acid/NaH2PO2/TiO2-Nanoparticles to get easy care/antibacterial/anti-UV/Self-cleaning effect was stable regardless of fabric weaves.
The in-line characterisation of flame retardant and polyvinyl acetate based stiffed polyester and cotton fabrics were scanned by a hyperspectral camera (1320–1900 nm) based on chemometric approaches using the partial least squares (PLS) algorithm. The finish was applied to enhance the areal fabric density from 10–50 g.m−2. For both the fabrics, the root mean square prediction error (RMSEP) was estimated at 1.5–2gm − 2. These results were found a very close correlation with gravimetry results also. The near-infrared imaging technique was also opted to detect the finishing agents’ traces after washing the treated fabric surface. It was proved that a very thin layer of areal density between 0.4 and 5.5 g m − 2 was found intact even after many wash cycles [66].
Functionality is a broad term used to assess the specific needs of clothing customers. The assessment of functional textiles primly depends on the satisfaction of the customer. Customer demands water-proof breathable fabrics, flame-retardant deodorant textiles, antimicrobial-perfumed textiles, soft-skin glowing textiles and others. Creativity, reliability, and aesthetics are three significant points of consideration during functional textile assessment planning. Some features must be considered as a part of the assessment is:
Low-Stress mechanical properties
Breathability
Thermal Transmission
Air transmission
Presence of active ingredients on the fabric surface
Colour Index
Scavenging potential of foul odours and toxic gases
The alacrity desire for comfortable fabrics has become steering of the increasing demand for functional textiles. A dramatic shift in apparel goods has registered from durability to functional aspect and increasing purchase power and customer awareness fueled it up. The rapid change in fashion trends and market demand has compelled the fabric manufacturer to follow the functional textiles design right from fibre manufacturing stage rather than relying upon experienced cloth manufacturing with conventional fibre design. The concept of high-quality apparel fabrics to achieve desired level appearance, handle and wearing comfort was finalised by Hand Evaluation Standardisation Committee (HESC).
Consumers’Consumers’ purchasing decisions are usually based on feel fabrics for their tactile properties because, during daily wearing, low-stress mechanical action like bending, shear, compression, tensile, and hysteresis occurs on clothing. These common low-stress mechanical attributes significantly impact the feel, movement, sensory and tactile comfort. Other fabric and yarn properties like yarn counts; twist, coefficient of mass variation, neps, hairiness, thin and thick places, and strength and elongation also influence the clothing functionality.
Tactile properties of fabrics affect the functional aspect of apparel products and influence consumers’ decision-making when purchasing textile clothing [67].
In the textile industry, tactile comfort is known as “handle” or in a broader sense “skin sensational wear comfort” or “sensorial comfort”. Sensorial or tactile functionality, mostly identified by “hand or handle”, is an inference of quantity of stress is generated in the fabric during use [68]. Tactile functional attributes are complex theories which incorporate dimensional alterations by small forces like bending, compression, shear, surface properties, and tensile. The feel of warmth and cool also influence the functionality of the fabrics.
Kawabata Evaluation system for fabrics (KES-FB) and Fabric Assurance by Simple Testing (FAST) systems are used to test the low-stress functional properties from a comfort point of view.
The breathability of functional textiles is an essential parameter to be tested to assure the efficacy. The breathability of textiles is mostly referring to the moisture vapour transmission rate through the fabric. A series of instruments are available in the textile world, but moisture management tester of SDL Atlas is considered the prime instrument followed by some other concepts in which inverted cup method [69].
The sweating guarded hot plate’s moisture vapour transmission resistance can be measured as per ISO 11092 testing standard [70]. This apparatus comprises the water supply unit and measuring unit in which the measuring unit is fixed with a metal block which consists of an appropriate heating element. The measuring unit is a permeable square metallic plate with area of 0.04 m2 and 3 mm. The specimen holder remains at the centre of heating plate which is surrounded by a guarded heating device. As shown in Figure 5, the guarded heating systems block any lateral heat escape from the samples’ edges. The resist heater is fixed at the bottom of the heating plate to avert the descending heat loss from the specimen and guard section.
Sweating guarded hot plate concept.
This positioning of various components operates heat or moisture transmission only upward along the specimen thickness direction. Distilled water is used to feed the surface of the porous plate through an appropriate dosing system. Water impermeable but water vapour permeable cellophane ultrathin membrane is fitted over the plate. The 300 X 300 mm2 sample is mounted over the membrane. The heating of square porous plate at the constant heating rate is started that mimics the human body skin temperature, 35 °C, which is measured by a sandwiched sensor directly which is fixed underneath the plate surface. The entire system is closed in a chamber to control the micro-environment conditions very carefully. In order to simulate the actual condition, the air flow is kept at 1 m/s. The air temperature and relative humidity are maintained at 35 °C and 40% respectively.
The water vapour transmission rates are measured as per ASTM E96, procedure B, and standard test methods by upright cup method. 100 ml distilled water is filled in a shallow cup and a specimen of size 74 mm is mounted on the cup by covering the gasket and fixing it in appropriate position. The cup and other accessories are housed inside an environmental chamber as shown in Figure 6. The temperature of circulating temperature is set to 23 °C with controlled relative humidity at 50%. The air flow is maintained with a velocity of 2.8 m/s. The cup assembly is weighed with accuracy of 0.001 g with the assistance of periodically top loading balance for 24 h. Finally the water vapour transmission rate is estimated by estimating the weight change g, in a time period of 24 h through a test area in m2.
Upright cup method.
Assessment of antimicrobial functional textiles can be completed by testing the following attributes as summarised in Table 3:
Test | Test Description and Expected Inferences |
---|---|
AATCC 100–2004 Antibacterial Finishes | The microorganism growth is completed in liquid culture, followed by dilution in a sterile nutritive solution. Inoculation is essential for sample and glassware. Bacteria quantity is examined at “time zero” by elution in a neutralising broth, followed by dilution and plating. A standard sample run is essential to confirm the neutralisation/elution method effectiveness. Suppression of microorganisms reference to initial concentrations and the control sample is estimated. Percent reduction of bacteria R = 100 (B – A)/B where: R is % reduction A is the number of bacteria recovered from the inoculated treated test sample, B is the number of bacteria recovered from the jar immediately after inoculation (at “0” contact time) |
AATTC Test Method 147–2004 Parallel Streak Method | Control and treated both samples are placed in close contact with the inoculated agar surface with test bacteria. A logical zone of heckled growth below and along the sample sides represents antibacterial potential of the fabric sample. A usual bacterial strain must use for test. The mean width of a zone of inhibition along a streak on either side of the sample is calculated by: W = (T - D)/2 where: W is width of zone of inhibition (mm), T is total diameter (mm) of sample and D is diameter of the test specimen in mm. |
AATTC: 30–2004 Antifungal Activity of Textiles | This test method includes four methods for antifungal assessment on textiles.
|
AATCC TM30 Test IV | A dry, 1 × 3 inches strip of nutrient saturated treated and untreated fabric, sprayed with a mixed-spore suspension of mildew is suspended and incubated with sterile water in the standard moist conditions. The percent fungal growth is recorded after the incubation period. This test allows more clear differentiation between treated and untreated samples. |
SN 195920 | Determination of antimicrobial activity on textile fabrics: Agar diffusion plate test |
SN 195921 | Determination of antimycotic activity on textile fabrics: Agar diffusion plate test |
SN 195924 | Determination of the antibacterial activity on textile fabrics: Germ Count Method |
JIS L 1902 | Testing for antibacterial activity and efficacy on textile surfaces |
ISO 20743 | Testing for antibacterial activity and efficacy on textile surfaces |
BS EN ISO 20645 | Determination of antibacterial activity: Agar diffusion Plate test |
BS EN ISO 11721-1 | Determination of resistance of cellulose-containing textiles to micro-organisms- Soil Burial Test – Assessment of rot-retardant finishing |
ASTM D 4300 | Antimicrobial Testing for ability of adhesive Films to support or resist the growth of Fungi |
ASTM E2149 | Determining the Antimicrobial Activity of Immobilised Antimicrobial Agents under Dynamic Contact Conditions |
ASTM E2180 | Determining the activity of Incorporated Antimicrobial Agents in Polymeric or Hydrophobic Materials |
The antimicrobial finish application on textile surfaces should not alter the colour, which becomes the cause of significant quality deterioration. It is preferred to add an antimicrobial agent in dye bath if the dye and antimicrobial agent’s chemistry allows for this.
The antimicrobial agent must have zero chemical effects on the functional textiles. The tensile strength, elongation, bending rigidity, fullness and surface smoothness must be maintained for a long time.
The efficacy of bacteriostatic/fungistatic or bactericidal/fungicidal treatments must be appropriately checked. Variety of chemicals is available to destroy the microbes, but their logical selection is required to prolong the fabric’s functionality in a controlled manner. Apart from that, the antimicrobial agent should be effective at a relatively small quantity to control the add-on and cost of the material under permissible limits.
The antimicrobial finishes should not release an annoying odour to the finished product, especially in apparel class. Many antimicrobial agents are prone to transmit unpleasant odour, while some are entirely free from foul odour feature.
The fastness or stability of antimicrobial finish is calculated in terms of resistance to abrasion, heat, light, laundering, oxidising agents, and ultraviolet rays. The deficient number of antimicrobial agents possesses all the above features. The antimicrobial molecule must be stable as a compound in a manufacturing environment. It should be steady not only for the finished functional textiles’ purposeful life but also for the long storage period.
The antimicrobial treatment of functional fabrics should not deteriorate the functional fabric’s low-stress mechanical behaviour, particularly in the apparel sector’s manufacture. The fabric should not attain a rough hand after antimicrobial treatment.
The antimicrobial functional textiles must be free from toxicity or of a short order of toxicity. The antimicrobial potential is an essential feature for kids clothing where any type of toxicity is not permissible.
Various enzymes have been immobilised on various textiles surfaces, cotton, polyester wool, and flax, to achieve additional functionalities. Enzymes are biological catalytic materials used to keep up biochemical reactions by expediting the catalytic potential. Enzymes are proteins, which remains available in cells of living entities that are proficient in reducing the stimulation energy needed by chemical reactions in organic medium and living creatures [75]. The demand for enzyme application has been triggered in all industrial segments, but the textile industry demands high performance, extremely stable enzyme at the uttermost pH and temperatures [76]. A physically attached enzyme on a water-insoluble surface, auxiliary material or carrier is called an immobilised enzyme [77]. These enzymes remain stable with the attached surface due to a proper linkage [78]. Various latest approaches appear regularly to immobilise various enzymes on surfaces to achieve improved efficiency, stability and applications. Many materials opted as carrier, substrate or support to immobilise the enzymes are inorganic, organic and organic synthetic carriers. Most inorganic carriers are aluminium oxide, activated carbon, bentonite, hydroxyapatite, kaolinite, nickel, titania, zirconia, silica gel, and glass. Inorganic carriers are less reactive with high stability and sound diffusion, and flowing potential. These carriers are very cost-effective also.
The organic carriers are mainly carbohydrates and proteins. The carbohydrate-based carriers are alginate, chitin chitosan, cellulose, dextran, and starch; however, the protein-based carriers are albumin, collagen, and keratin. These organic carriers offer little diffusion and flow potential. These organic carriers are effected easily by microbial contamination and pH.
Organic synthetic carriers are polyamide (PA), polypropylene (PP), polyvinyl, polyacrylate, polystyrene, copolymers of ethylene, polypeptides and polyaldehydes primly [79]. The organic synthetic carriers are appropriate for a wide range of enzymatic applications because they are not sensitive to microbial contamination [80].
The characteristics of immobilised enzymes are defined by the interaction between enzyme and substrate characteristics. Important characteristics to consider are the following.
The immobilised enzymatic system should be insoluble and rigid with the substrate surface to avoid biological contamination and enzymes’ loss.
The abundance, existence and activation of functionality are essential features of the matrix. These attributes are responsible for deciding the potential of the immobilised enzyme activity, stability under application situations. Generally, the immobilisation activity is performed via the nucleophilic reaction between the enzyme and substrate functional groups because the enzyme does not react with other organic reagents.
In general, the bigger the matrix surface area per mass unit, the greater the probability for the enzyme and substrate to get into contact. In terms of permeability, or porosity, the higher the porosity, the better the penetration of molecules between the enzyme and the substrate. Matrix pores bigger than 30 nm appear to support enzyme immobilisation by facilitating enzyme accessibility to the matrix’s internal area [80].
This property takes importance depending on the reactor or the industrial vessel where the chemical reactions take place. When using immobilised enzymes in a stirring tank, the matrix is desired to be strong enough to prevent abrasion. Particle sizes lower than 50–100 μm may result in filters and sieve plugging.
The support material must be resistant and not affected by microbial attacks. It should be stable and inert to microbial contamination for an extended period.
One of the benefits and thus a desirable feature of immobilised enzymes is their ability to be reused. This property makes them less expensive and compensative for any extra cost than soluble enzymes, which is especially important when using an expensive matrix or support materials in some specific applications. Proper orientation of immobilised enzymes and support from crosslinking agents improves reusability.
The hydrophobicity and/or hydrophilicity of the carrier, supporting material, or matrix is vital because such characteristics affect the strength and affinity of enzyme-carrier interactions noncovalent interactions [78]. This characteristic can also affect surface assimilation, dissemination, and obtainability of the product and substrate.
These properties are significant for operating times. In general, the size and shape are dependent on the applications. Commercially, the matrix size can be available in the range of 150–700 μm particle size. A spherical shape matrix with a particle size range of 150–300 μm is preferred for stirred tank batch productions.
Different enzymes are tried to immobilise textile surfaces to achieve various functionalities, as summarised in Table.
Cellulase enzymes recorded global identity in textile processing due to their potential to functionalised the cellulosic fibres in a regulated fashion, manufacturing improved quality fabrics without significant compromise in structural damage [81]. Cellulases, a group of enzymes, can cause cellulose hydrolysis via β-(1–4) linkages degradation of the biopolymer, consequently releasing reduced sugars [82, 83, 84]. The cellulase enzyme’s multicomponent tendency finds its most application in removing fluffy and protruding fibres from cotton fabrics (biopolishing) and for a stonewashed look in fabrics by efficient abrading of indigo-dyed denim [85]. A soluble–insoluble reversible polymer, Eudragit L-100, was successfully opted for cellulase immobilisation on cotton fabric surfaces and found an alternative to be used in bio-polishing and/or bio scouring of cotton fabrics [86].
Based on their mode of action, polygalacturonases degrade the complicated pectins found in plant tissues into simpler molecules like galacturonic acids [87, 88]. Pectinase has found its way in textile processing in the 21st century; otherwise, it was a known enzyme for the food industry [89]. Many non-cellulosic impurities are found in the primary wall of cellulosic fibres and less in the secondary wall, restricting the penetration of dyes and other functional finishes in the fibre interior [87]. The bioscouring of cotton is applied to degrade the cuticle and primary wall constituents from the cotton fibre surface to improve the hydrophilicity [90].
Pectinase immobilised on the cotton fabric surface for bioscouring in a reverse micellar system with pectinase dose of 10% (2.8 IU/g of the fabric) on the weight of the fabric at60 °C for 120 min, pH 7 to produce a hydrophilic fabric [91].
Amylases are the enzymes, which split the starch molecules and starch related compounds in either exo or endo positions by hydrolysing α- 1,4- and/or α-1,6-glucosidic linkages in either endo- or exo-locations [92]. The removal of starch from warp threads of the fabric in which unsized weft yarn also remains present is safely possible by the amylase enzyme’s selective action [93]. The immobilised amylases enzyme has opted in the detachment of starch and detergents from cotton fabrics. All detergents’ performance enhances in the presence of immobilised amylase on cotton fabric surfaces [94].
Proteases enzymes are used to carry out the protein degradation through hydrolysis of the peptide bonds in the polypeptide molecular chains [56, 95]. The traditional chlorination process in woollen fabric to achieve shrink-proofness causes ecological issues due to chlorine release is successfully replaced by immobilisation of proteases enzyme. The proteases action on woollen fabric enhances the dyeability, whiteness index and hand behaviour [96]. Some researchers have reported excessive damage in strength and weight loss in woollen fabrics [97]. Immobilisation of proteases enzyme on the textile surface typically enhances the molecular size, constraining proteolytic attack to the cuticle.
The modified protease is immobilised on the cuticle layer region to hydrolyse just the cuticle layer, producing higher tensile strength and a lower felting of the wool fibres. Silva et al. [98] used a commercial protease (Esperase) covalently linked to Eudragit S-100 as summarised in Table 4. This novel approach is a promising alternative for wool shrink-resist finishing, replacing the conventional chlorine treatments. Under optimised conditions (Eudragit, 2.5% w/v, carbodiimide, 0.2% w/v, coupling time 1 h and blocking agent concentration, 0.05%), the conjugate activity yield was about 45%, and its operational stability at 60 °C was increased by 1.7 times. Recently different enteric polymers are coupled with Esperase using carbodiimide coupling. More recently, Smith et al. [96] demonstrated that different enteric polymers could also be successfully coupled with Esperase using carbodiimide coupling on woollen fabric.
Enzyme | Support System | Immobilisation | Benefits | Ref. |
---|---|---|---|---|
Amylase | Alkylamine glass beads coated with zirconia | Adsorption followed by GLUTAL | Immobilised enzymes with better washing fastness till 100 launderings without any considerable loss of activity | Dhingra et al. [94] |
Cellulase | Polyvinyl alcohol coated chitosan beads, | Epichlorohydrin- Adsorption | Acid cellulase became a neutral cellulase | Dinçer and Telefoncu [82, 83] |
Chemically modified pumices particles | ZrOCl2 - Adsorption | Gives stonewashed finish on indigo-dyed denim fabrics by efficient abrading | Pazarlioglu et al. [81] | |
Catalase | Alumina pellets | Covalent-GLUTAL | Higher stabilities and surfactant inactivation | Costa et al. [99] |
Alumina pellets | Covalent-GLUTAL | 93% protein bound and 87% activity retained | Paar et al. [100] | |
α- and γ-Alumina balls, Novalox saddles and Raschigrings | Covalent-GLUTAL | Higher porosity and shape of the carriers are two main parameters to influence the enzyme immobilisation stability. | Fruhwirth et al. [101] | |
Cotton fabric or Nylon 6 | Adsorption and covalent-GLUTAL | Low cost and flexible construction | Opwis et al. [102] | |
Poly(ethylene terephthalate) or polyamide 6.6 | Covalent -Photo chemical | After 20 application cycles, the immobilised enzyme showed an integral activity around 3.5 higher than free catalase | Opwis et al. [103, 104] | |
Poly(ethylene terephthalate) | Chemical and Covalent- Photochemical | Enzyme modification before the immobilisation; photochemical technique may be able to compete with conventional immobilisation procedures | Opwis et al. [105] | |
Peroxidase | Polyethylene | Covalent-GLUTAL | Reusabilty was studied for 15 cycles and the half-life was found to be 60 h | Shaffiqu et al. [106] |
Laccase | poly amide 6,6 | Cross linking- GLUTAL and spacer | Potential for application in the continuous decolorisation of textile effluents, where it can be applied into a membrane reactor | Silva et al. [98] |
Glucose oxidase | Cotton | Covalent binding | Recycling of desizing liquors into bleaching liquors | Opwis et al. [107] |
polypropylene | plasma activated, -OH Bond | To produce enzymatically active films, activity prolong upto 30 days of storage | [108] |
Enzyme immobilisation on textile surfaces, (GLUTAL: Gluteraldehyde).
Glucose oxidase is a dimeric glycosylated flavoprotein enzyme that can accelerate the oxidation of glucose to gluconolactone, which in turn, spontaneously yields gluconic acid as H2O2 as a side- product [109]. Therefore, glucose oxidase has been considered a possible method for producing H2O2 for green-bleaching, targeted at enhancing the fibre performance before colouration by tear down the pigments initially present in the natural fibres that possess greyness. Enzymatically produced H2O2 also gives a comparative bleaching effect with chemical bleaching. The immobilised.
Catalases enzymes are known to cleave H2O2 into water and oxygen. H2O2 is a powerful bleaching agent and oxidises reactive dyes if H2O2 does not remove properly from cotton fabric [110]. Catalases enzyme cannot withstand commercial bleaching conditions like temperature 60 °C and pH 9 and above [111]. Alkalothermophilic and thermophilic microorganisms generated catalases enzyme is used as a successful alternative to commercial chemical bleaching. The immobilisation of catalase enzyme on fabric surface counters this issue and offers enzyme for re-application, saving energy and water both. Catalase immobilisation has been practiced by various researchers [109, 112, 113], with different carriers like organic and inorganic materials such as porous glass, cellulose, alumina, silica gel and hydrogels. Some biopolymers like gelatin and chitosan; additionally, some synthetic polymers like polyacrylamide, were also used for bleaching treatments as summarised in Table 4 [101]. In a remarkable work Kiehl et al. [114].
Opted catalase enzyme to immobilised on polyester, polyamide (Nylon 6, Nylon 66), cotton textile surfaces opting different strategies as mentioned in Figure 7. The catalase enzyme was loaded with 20–70 mg enzyme/g textile carrier to achieve reactivity upto 20% and excellent stability against enzyme desorption. The strategies like grafting, application of bifunctional coupling agents, monomeric and polymeric crosslinking agents were planned to achieve covalent fixation of the enzyme on textile carriers as shown in Figure 7.
Immobilisation of catalase enzyme on various textiles materials by different methods (Kiehl et al. [
Peroxidases are oxidoreductases used to consume H2O2 to initiate the oxidation of a wide variety of organic and inorganic chemicals. Several studies covering general properties, biochemical and molecular characterisation, and industrial and environmental applications have been discussed and reviewed elsewhere [115, 116, 117, 118].
The majority of the matrices currently used for the immobilisation of enzymes such silica, controlled pore glass, polyvinyl alcohol, polyacrylamide and chitosan beads were not suitable because of dye adsorption onto the matrices, probably inactivating the enzyme [106].
Laccases enzymes are copper-containing oxidoreductases, which belong to the group of small blue oxidases. They are widely distributed in higher plants, fungi and bacteria [119, 120]. These enzymes are used to functionalised the various aromatic compounds (particularly phenols) and inorganic compounds, with concomitant reduction of oxygen to water. Laccases enzymes have found in various textile as well as other industries. The application laccase enzyme is expanding fast, decolourising textile effluents and bleaching textile substrates.
Most of the laccase enzymes are produced by white-rot fungi, which are efficient in decolourising dyeing effluents [121]. Research has shown that the subsequent coating of the alumina-immobilised laccase with polyelectrolyte layers considerably increased laccase stability.
In the initial stages of laccase action, decolorisation was primly due to the adsorption of the dyes molecules onto the support system, but the support enzymatic decolorisation was apparent after the saturation of support. Acid stable laccase enzyme works well in decolouration of low pH wool dyeing effluents with water recycling opportunity. Silva et al. [98] revealed the potential application of woven nylon 66 fabrics as a carrier for laccase immobilisation to be used in a membrane reactor.
Functional textiles are one of the most critical fields in the textile industry and textile materials science. They include breathable, heat and cold-resistant materials, ultra-strong fabrics (e.g., reinforcement for composites), new flame-retardant fabrics (e.g. intumescent materials), and optimisation of textile fabrics for acoustic properties. Functional textiles became more critical materials for various applications, and interest in them grew year by year.
Human skin offers the crucial first defence mechanism for the body to safeguard against external threats. Clothing fabrics and the human skin surface form a cushioning network that creates a thermal and sensorial state of comfort to keep a human being in the state of wellness.
The microencapsulation is the most versatile technique to impart various functionalities in textiles. Microencapsulation suppresses the compatibility between active ingredients and fibre surface by enhancing the functional durability, efficacy and sustainability. This technique’s vast use can be witnessed in functional finish fabrics, medical and healthcare textiles, aromatherapy, cosmetic textiles, and many more functional textiles.
The moderate stability of these bio-catalysts primly restricts the immobilisation of enzymes on textile surfaces. The immobilisation of various enzymes on textile surfaces gives a sustainable solution of surface functionalisation for easy processing. Enzyme immobilisation twinning with other surface modifying techniques gives a synergistic effect in textile functionalisation. Various researchers are trying to enhance the temperature and pH range of enzymes for more effective immobilisation. The immobilisation allows the recovery of enzymes with increases stability to reduce the operation cost of different processes. Recent developments in the synthesis and fabrication of supporting materials with customised pore size and surface functionality have licenced more precise control of enzyme immobilisation. Perfectly oriented and highly rigid enzyme molecules are needed for better immobilisation and integration with different surfaces.
This work is supported financially by Technical Education Quality Improvement Program-III (TEQIP-III), Ministry of Education, Govt. of India.
In global terms, yield losses due to arthropods, diseases, and weeds are estimated to an approximately 35% of the total agricultural products. Yield losses in developing regions with limited pest management options may exceed up to 50% [1]. There are many adverse interactions between insects and plants, like insects, pests, and pathogens, leading to total or complete crop failure [2]. Crop protection has played a crucial role in ensuring food security, preserving crop productivity, and rising yields. More recently, the use of integrated pest management for pest control has become more prevalent in developed countries, but the continued use of pesticides to manage pest epidemics remains prominent [1, 3]. Increased use of synthetic pesticides is observed in the developed and transitional countries [4]. Many farmers in developing countries lack access to synthetic pesticides [5]. Biological controls and botanical pesticides (in this case, plant products) are frequently unavailable or expensive. They are used in alternative ways, like inter-crop pest control rather than pesticide sprays to eliminate crops [6, 7].
Botanicals were used in agricultural pest control in China two thousand years ago and Greece and India before they became widely accepted [1]. Traditional botanical pest control for crop protection or storage remains widely distributed today among traditional and subsistence farmers [1, 4]. In some areas of Zimbabwe and Uganda, up to 100% of farmers use botanical products [5, 8]. Globally, there have been reports that more than 2500 plant species from 235 families have biological pest control activities [9, 10]. Notably, in many farmer surveys, using various botanical substances to control insect pests is underlined, with 10 botanicals used by farmers worldwide [5, 11].
Given the limited availability of synthetic pesticides and the prohibitive cost for farmers and transitional growers, botanicals are often a viable alternative to synthetic pesticides in the developing and subsistence agriculture sector [1]. Botanical preparations are vigorously promoted in the advisory materials of many government agricultural departments. As a result, plant-wise national extension partners, led by the CABI, sometimes use homemade pesticide products in their guidelines and extension materials (www.plantwise.org).
Different insecticidal activities such as toxicity, feeding deterrence, and repellency against other insect pests are possessed by plant secondary metabolites such as terpenoids, alkaloids, and phenols. The protection of plant species against insect herbicides has been used for many years in botanical insecticides, such as extracts and essential oils. Natural enemies are sometimes killed or injured by synthetic insecticides [1, 5, 12]. Additionally, plant extracts tend to have multiple actions and low toxicity, making them safer for non-target species. However, another significant advantage of botanical is that they tend to depend rather than on one active ingredient on closely related “suites” of active substances. It could either prevent or delay the spread of pest population resistance. Biopesticides have been utilized as a long way to keep pests under control until synthetic pesticides have replaced plant extracts. There is currently only about 1 per cent of the global use of pesticides for botanical insecticides, but that number increases due to greater attention on this class of products [13, 14, 15]. Plant extracts from common weed species are frequently produced in developing countries that are accessible and obtain labour as the only cost. However, Botanical pest management is a less expensive alternative to insecticides [16, 17].
The suitability of botanical recommendation and use can be questioned to control pests. Over the past decades, the evidence for the use of botanicals generally has been deemed consistent, but it must be re-evaluated to assess their effectiveness. Some botanicals used to control pesticides may be without active ingredients, a waste of time for little growers. Moreover, results may be unpredictable because of varying levels of active ingredients, concentrations in the used plant material, and differences in the preparing methods [7]. Despite this, their toxicity to non-targets has not been proven. While there is rising scientific evidence that some plant pesticides are less toxic to non-target species than synthetic pesticides, there is also evidence that some non-target species or ecosystems may be threatened by other botanicals, livestock, or the general environment [14]. Despite their significant prevalence, however, it is impossible to ignore the use of botanicals for pest control. There have been extensive research trials in the use of traditional pesticides and control methods conducted over the last several decades. However, a comprehensive scientific understanding of the use of conventional botanicals for insecticides, including those used by subsistence and transition farmers, is lacking.
Three distinct botanicals were investigated in this chapter to see either they worked against insects or pests, including their scientific proof for their efficacy and reliability was discovered. The findings indicate the potential and limitations as alternatives to pesticides of selected botanical insecticides. The safety and well-being of humans are briefly mentioned, as well as considerations of cost and practicality.
A substance employed to destroy pests that cause damage or obstacle to desired crops, shrubs, trees, timber, and plant growth is called insecticide. Pesticides that usually remain in nature and/end up take a long time in the body or tissue pose significant problems for humans and the environment for a wide range of environmental health and safety. Many pesticides are non-specific, so they can kill or be responsible for the death of either beneficial or destructive organisms [5].
One of the naturally occurring chemicals found in plants is referred to as botanical pesticides. Nature-oriented pesticides can be used as an alternative to synthetic formulations, but they are usually claimed to be more toxic to humans. Some of the most lethal carcinogenic substances, like deadly toxins, develop quickly and thrive in nature [18].
Mode of action is defined as a specific functional or physiological change in a living organism resulting from its exposure to a substance. The affected biological steps, enzymes, or proteins of the living organism are usually included in the mode of action. Most others classify pesticides as controlled, physical, or chemical characteristics; the mode of action primarily refers to how the pesticide interrupts an organism’s biological processes [1, 18].
Scientists must understand the mode of action to increase the quality and long-term viability of a product used in pest management plans. To better understand how pesticides function, it is critical to understand how the targeted system of the pest is working. Understanding how humans and other systems operate also helps us to control pests effectively. It also needs to learn the modes of action of the pesticides, which will help to prevent resistance to the specific pesticide(s) [18].
Sulfur-containing compounds produced by the enzymatic degradation of allicin are thought to be responsible for garlic’s pesticide activity. There have been laboratory trials that have demonstrated that garlic extracts have insecticidal and acaricidal properties. They can also be used as control agents for Coleoptera, Lepidoptera, and Hemiptera insect species [19, 20, 21, 22]. Garlic aqueous extracts were found to control Hemiptera pests, Lepidoptera pests, and mites to varying degrees in field application trials [23, 24, 25, 26]. Other research suggests that homemade pesticides based on garlic could control fruit flies on watermelons and mites on tomatoes [27, 28].
Insects are affected by azadirachtin in two ways. At the physiological stage, azadirachtin prevents the prothoracic gland from producing and releasing molting hormones (ecdysteroids), resulting in immature insects, which causes incomplete ecdysis. A related mechanism of action is responsible for adult female insect sterility. Furthermore, azadirachtin is a powerful antifeedant for a variety of insects. It is thought that Schmutterer [29] was the first to discover the problem of swarming locusts in the desert. Still, neem trees had covered the area before then, so it was only found later that they destroyed all the local vegetation except for imported neem. Because of its exceptionally antifeedant activity in the desert locust, azadirachtin was first isolated and remained the most potent antifouling agent discovered to date. In the United States, neem has quickly become the new model for producing botanical pesticides [1].
The limonoids in neem are thought to be responsible for their insecticidal properties. Although azadirachtin is thought to be the most active compound, other limonoids may enhance its activity and activeness and inhibit resistance buildup [30]. Commercial neem extracts are commonly used to monitor a wide variety of insects and mites. Commercial neem-based products’ insecticidal and acaricidal properties have been extensively demonstrated [18, 30].
Blatt dean, Hemiptera, Lepidoptera, and Thysanoptera pests have been successfully controlled with aqueous extracts produced at home using neem plant content (unformulated oil, seed cake, leaves, and seeds) [23, 31, 32, 33, 34, 35, 36]. In various trials against Lepidoptera pests, aqueous neem extracts were found to be effective. Patil and Nandihalli [37] were the only researchers to demonstrate the effectiveness of aqueous neem extracts in field applications; extracts or an oil emulsion is used to combat mite pests. Both preparations decreased mite population but did not affect yield. It has been confirmed that neem oil is effective against fruit flies targeting watermelon, but no statistics have been given.
Coleopteran pests were controlled successfully and constantly in storage trials through ground neem plant material [27, 37, 38, 39, 40]. The effectiveness of the ground neem is supported by participatory farm studies carried out by Paul et al. [41] and other earlier studies [5, 7, 9].
Biologically active components are difficult to pin down in neem products, as they are found in complex mixtures. Studies show that neem has insecticidal, repulsive, anti-ovipositional, growth-regulating, and toxic properties in various forms of insects. Neem serves as a natural insect repellent, preventing insects from starting to eat. It acts as a feeding deterrent, making insects avoid eating if there is a presence of deterrent factors, as part of the first “taste” ingesting food at some points (might be due to secondary hormonal or physiological effects of the deterrent substance). Neem has been proven to be strong in halting the growth of most insects through the means of disrupting chitin synthesis. Due to species’ susceptibility, the effects of neem can vary widely [41].
Secondary metabolites produced by plants are superior to synthetic or synthetic pesticides as viable alternatives to a primary pest control strategy [42]. Furthermore, insecticide resistance to synthetic pesticides resulted in significant food losses due to chemical failure in pests. As a result, annual economic losses in the billions of dollars occur worldwide [1, 5]. Furthermore, essential oils are also considered safer than synthetic pesticides by the FDA due to non-target neurotoxic, carcinogenic, teratogenic, and mutagenic effects, as well as insect multi- and cross-resistance [43]. Their popularity in organic farmers and the environmentally aware consumer has considerably increased as insecticides in essential oils derived from aromatic plants. They have repellent, antifeedant, inhibitors to oviposition and growth, ovicides, and growth-reducing effects in several insects [42, 43, 44]. Essential oils possess an exciting impact of larvicide on larvae, insecticide activity, abusive ants, cockroaches, bedbugs, moths, fluid headlice, and toxic to termites (Lepidoptera: Lymantriidae, gipsy moth).
The chemistry of volatile elements in essential oils can be categorized into four major groups: benzene derivatives, hydrocarbons, terpene, and other miscellaneous compounds. Monoterpenoids constitute 90% of the essential oil, and they are the most representative molecules that allow for a wide variety of different structures. There are 10 hydrocarbons, or their related compounds, that is, cyclic alcohols (e.g., isopulegol, menthol, terpineol), acyclic alcohols (e.g., geraniol, linalool, citronellol), bicyclic alcohols (e.g., verbenol, borneol), ketones (menthone, carvone, thujone), phenols (e.g., carvacrol, thymol), acids (e.g., chrysanthemum acid), oxides (cineole), and aldehydes (citronellal, citral). Terpenes are the major group, while aromatic and aliphatic constituents are the other minor groups. Terpenes are mostly monoterpenes (C10) as well as sesquiterpenes (C15), but hemiterpenes (C5), diterpenes (C20), triterpenes (C30), and tetraterpenes are also available (C40). Phenylpropane-derived aromatic compounds are less prevalent than terpenes, for example, aldehyde: cinnamaldehyde; methylenedioxy compounds: apiole, myristicin, safrole; phenols: chavicol, eugenol; alcohol: cinnamic alcohol; methoxy derivatives: anethole, elemicin, estragole, methyl eugenols [48].
The oil composition varies widely, mainly depending on the way that was used to isolate it. Essential oils have a different chemical composition, depending on the type of molecules extracted and the number of molecules found within the mix. Usually, steam distillation under high pressure is used to separate essential oils using the clevenger device. Furthermore, the oil may be chemically altered during distillation due to saponification, isomerization, and other reactions due to distillation. Essential oils are extracted
Most monoterpene has a cytotoxic effect on plant and animal cells, disrupting respiration and permeability, depleting Golgi and mitochondria, and decreasing respiration and production. Similarly, many serve as chemicals to animals and insects as well, and they are volatile. Also, most monoterpenoids act as some short-signal molecules, thus making them suitable as synonyms and alarm pheromones. Care must be taken with the number of essential oils used to destroy insects and their modes of action because of possible health hazards to humans and other vertebrates. There is still a lack of understanding about the monophenoid target sites and mode of action, and only a few studies have investigated this [1, 18, 44, 48].
Although insects are not known well for the physiological effects of essential oils, treating them with essential oils or their constituents causes symptoms that provide us information about the mode of action as a neurotoxin. Linalool, a monoterpenoid, has influenced ion transport and acetylcholine esterase release in insects [18].
Octopamine is a neurotransmitter, neurohormone, and circulating neurohormone—neuromodulator with many biological functions in insects [1]. Based on pharmacological parameters, octopamine works by interacting with at least two receptor groups, dubbed octopamine-1 and octopamine-2. As the octopamine system is disrupted, the nervous system of insects is wholly destroyed. As a result, the insect octopaminergic mechanism is a bio-rational priority for pest control (Figure 1).
Essential oils’ toxic activity can be mediated by neurotransmitters at target sites in insects.
Since vertebrates do not have octopamine receptors, essential oils have a solid mammalian selectivity as insecticides. The octopaminergic mechanism of insects is influenced by various important oil compounds [48].
In the cloned cells of
It is not clear if repellents function the same way in various arthropods likewise other published material disscussed. Ticks, for example, can detect repellents present on their tarsi of prolegs (Haller’s Organ), whereas insects can detect repellents through their antennae. Furthermore, sensitivity to the same repellent varies only in degree among different classes, orders, and families; no fundamental differences in response type are observed [18, 48]. However, in mosquitoes, the degree of differential sensitivity remained constant over several generations, suggesting that resistance is based on heritable traits. Temperature and moisture are sensitive to mosquito antennae hairs. The repellent molecules attach to the olfactory receptors of female mosquitos, preventing them from smelling. Cockroach repellent receptors are poorly understood. Death and aversion to death (repellence) have been linked to oleic acid and linoleic acid in cockroaches. A proposal has been made for the term necromone to characterize the compound responsible for this form of behavior [18, 48].
The essential oils with bioactivity as insecticides or repellents are well known for example, rosemary, thyme, clove, lemongrass, mint, oregano oils, and cinnamon. The bioactivity of certain plants, including thyme, oregano, basil, rosemary, and mint, varies widely because the composition differences in chemical compositions are reliable [48].
Understanding essential oils’ mode of action is critical for insect control because it can lead to better formulations, distribution methods, and resistance management. Many essential oils and their isolated chemicals from plants have fumigant properties.
There are no natural fumigants that have been proven to work against pests that attack crops, dry foods, and other agricultural products. Phosphine, methyl bromide, and DDVP are the most used fumigants (2,2-dichlorovinyl dimethyl phosphate). Phosphine is responsible for an enormous percentage of Indian suicides, as a precursor for ozone depletion is a concern. In contrast, Dichlorvos is an organophosphate widely used as an insecticide to control household pests, in public health, and protecting stored products from insects (used as the precursor for ozone-depleting treatments) poses a theoretical risk of cancer [48]. All attempts should be made to develop an alternative that can take toxic fumigation while being user-friendly and cost-effective. Many aromatic plants produce highly toxic or unpleasant chemicals but serve as some valuable deterrents for various insects. These three attributes (high molecular weight, high boiling point, and low vapor pressure of essential oils) allow large-forgery fumigation to be performed by the high fumigation standards of safety and efficiency, making them better suited for large-scale fumigation than most other substances [18]. Despite essential oils having the potential for low-scale applications and single or multiple component contaminants in food, there is a lack of scientific data on food-grade applications and fusible essential oils [48].
The synergistic rationale for combining products assumes that the combined product’s phase carries much weightage than the count of its known and unknown chemical components that result in a complex effect of multiple modes of action. Among the essential oils and their components and other ingredients used in formulating a product, both positive and negative types of synergism may occur. This is important to keep in mind because essential oils will work together to create a synergy that may negatively affect the base product. The salinity and pH of the base product can affect the actions of the essential oils.
Low pH and a saline environment (5% NaCl) have been shown in several studies to increase the activity of the entire product. Synergistic activity has been demonstrated for essential oil combinations such as thyme, anise, and saffron [1, 18, 48, 49]. Mixed monoterpene mixtures had a synergistic impact on mortality [5, 52]. For use against foliar-feeding pests, a monoterpene blend was produced containing 0.9% active ingredient.
Monoterpenoids bind to the octopaminergic receptor, which is only found in insects. A proprietary blend of essential oils called Hexa Hydrox (EcoPCO EcoSMART Technologies, Franklin, Tennessee) with different plant essential oils was developed to significantly increase the potency of these oils in pest control. This proprietary technology, which combines oils with a normal molecular structure to target octopaminergic sites, demonstrates rapid insecticidal action (a six-membered carbon ring with an oxygenated functional group attached). The US Food and Drug Administration has listed them as GRAS (Generally Recognized as Safe) and has licensed them for use in food and beverages [18, 48].
The toxicity of pesticides and the exposure of applicators or users influence the risks associated with their use. Pesticides are tested during the registration process in some cases. The assessments should include the acute toxicity for formulating products to determine the effective preventive measures by the recommendations issued by the FAO, UN, and the WHO. To assess the risk of health-associated to short-term exposure, the acute toxicity and metabolites or degradations of the active substances are assessed. Reproductive and developmental toxicity, carcinogenicity, and mutagenicity should be evaluated in determining risks related to long-term exposure, sub-chronic, and chronic effects.
Furthermore, farmworker and pesticide applicator exposure and residue in crop production should be assessed to determine whether the risks associated with pesticides used are tolerable [5]. There have been no or only partial safety tests of homemade botanical insecticides except for neem products. Homemade botanical insecticides vary from industrial pesticides. The former contains an active ingredient cocktail with unknown concentrations and a long list of variable concentrations of compounds with novel properties. Furthermore, although plant material concentrations may be poor, processing exposure has not been assessed and may be very high. As a result, even though safety tests are available, it is difficult to extrapolate the risks found in laboratory trials to real-world scenarios. Many countries’ plant protection laws prohibit homemade preparations, even though this is often the case in agriculture. As a result, some countries, at least for non-commercial farming, use such preparations [48].
In similarity with risks associated with human health, adverse pesticide uses depend on their toxicity and exposure to non-target organisms—such as pests, pollinators, birds, fish, and mammals. These risks should be evaluated to determine if they are accepted as a part of the registration process [5, 53]. For the registration of pesticides, environmental fatality data usually are also required. The risk of bioaccumulation with homemade botanical insecticides is generally less because they contain natural materials known to degrade faster than many synthetic compounds [48].
Despite the possibility that certain homemade botanical insecticides have lower toxicity to non-target organisms than broad-spectrum insecticides, these findings illustrate the importance of the further study. The application of botanical products should consider their possible negative effects on non-target organisms if it is appropriate and handled with care. Similarly, botanical products, including pesticides, should not be used alone to combat pests. Botanical products can be used in an integrated pest management system (IPM). It may be used with other non-pesticidal tools such as plant diversification, habitat protection, and other non-pesticidal tools.
The use of botanical insecticides should not be ignored in low-income countries. In addition to synthetic pesticides, botanical insecticides may be less active. They are still an option, especially in combination with the IPM approach, in areas where farmers either have no access to commercial pesticides or have limited affordability of these synthetic pesticides. As a result, food waste in some of the most depleted areas of the world has been reduced. It is important to remember and convey the risks associated with using natural insecticides (i.e., alterable effectiveness and possible health and environmental consequences).
Botanicals: natural insecticides derived from plant sources are used as the best alternate for conventional pesticides to protect our crops, avoiding adverse effects of synthetic insecticides. Botanical insecticides have a wide range of chemicals and their modes of action; they have a variety of the impact on insects. Thus, botanical insecticides are preferred over synthetic insecticides, and organic crop producers in developed countries accept these botanical insecticides. As a result, we advocated for the use of botanical insecticides, which has been encouraged, and research is underway to identify new botanical insecticide sources.
The author is grateful to Research Scientist Dr. Chamila Darshanee (Sri Lanka) for reviewing this chapter early. The authors would like to thank the Science and Technology Development (STDF), Egypt entitled: “Eco-friendly Pesticides against Pests of Medical, Veterinary, and Agricultural Importance” ID: 41608.
The authors declare no conflict of interest.
Authors take sole responsibility of no submission to any other source, journal, or publisher of the chapter submitted to IntechOpen.
Content alerts
",metaTitle:"Content alerts",metaDescription:"Content alerts",metaKeywords:null,canonicalURL:"/page/content-alerts",contentRaw:'[{"type":"htmlEditorComponent","content":"Content alerts
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content alerts
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"S-F-0"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",subtitle:null,isOpenForSubmission:!0,hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",slug:null,bookSignature:"Dr. Marco Antonio Aceves Fernandez",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",editedByType:null,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12326",title:"Drug Formulation Design",subtitle:null,isOpenForSubmission:!0,hash:"be61949c97a884e4342d41ec7414e678",slug:null,bookSignature:"Dr. Rahul Shukla",coverURL:"https://cdn.intechopen.com/books/images_new/12326.jpg",editedByType:null,editors:[{id:"319705",title:"Dr.",name:"Rahul",surname:"Shukla",slug:"rahul-shukla",fullName:"Rahul Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11856",title:"Testosterone - Functions, Uses, Deficiencies, and Substitution",subtitle:null,isOpenForSubmission:!0,hash:"8549d2b1fcd1242f85a6a70447b1db10",slug:null,bookSignature:"Associate Prof. Hirokazu Doi",coverURL:"https://cdn.intechopen.com/books/images_new/11856.jpg",editedByType:null,editors:[{id:"473383",title:"Associate Prof.",name:"Hirokazu",surname:"Doi",slug:"hirokazu-doi",fullName:"Hirokazu Doi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12063",title:"Critical Infrastructure - Modern Approach and New Developments",subtitle:null,isOpenForSubmission:!0,hash:"a88b0006f3a58c0a60f89e06efb31102",slug:null,bookSignature:"Dr. Antonio Di Pietro and Prof. Jose Marti",coverURL:"https://cdn.intechopen.com/books/images_new/12063.jpg",editedByType:null,editors:[{id:"284589",title:"Dr.",name:"Antonio",surname:"Di Pietro",slug:"antonio-di-pietro",fullName:"Antonio Di Pietro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12387",title:"Natural Killer Cells - Lessons and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"5576cda9d50adf4e4256e47427560510",slug:null,bookSignature:"Associate Prof. Leisheng Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/12387.jpg",editedByType:null,editors:[{id:"439674",title:"Associate Prof.",name:"Leisheng",surname:"Zhang",slug:"leisheng-zhang",fullName:"Leisheng Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12072",title:"Finite Element Method and Its Extensions",subtitle:null,isOpenForSubmission:!0,hash:"3b9656ca1f591fcc44f127e12a6ef28f",slug:null,bookSignature:"Prof. Mahboub Baccouch",coverURL:"https://cdn.intechopen.com/books/images_new/12072.jpg",editedByType:null,editors:[{id:"186635",title:"Prof.",name:"Mahboub",surname:"Baccouch",slug:"mahboub-baccouch",fullName:"Mahboub Baccouch"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12143",title:"Herbs and Spices - New Advances",subtitle:null,isOpenForSubmission:!0,hash:"dbbc40b4b09244389b52ca80dcc10768",slug:null,bookSignature:"Dr. Eva Ivanišová",coverURL:"https://cdn.intechopen.com/books/images_new/12143.jpg",editedByType:null,editors:[{id:"352448",title:"Dr.",name:"Eva",surname:"Ivanišová",slug:"eva-ivanisova",fullName:"Eva Ivanišová"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11994",title:"MXenes - Fabrications and Applications",subtitle:null,isOpenForSubmission:!0,hash:"184e1a0c9b5e62ebb3c7ebc53103db9f",slug:null,bookSignature:"Prof. Dhanasekaran Vikraman",coverURL:"https://cdn.intechopen.com/books/images_new/11994.jpg",editedByType:null,editors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12007",title:"Updates in Volcanology - Linking Active Volcanism and the Geological Record",subtitle:null,isOpenForSubmission:!0,hash:"a55d00d84b7616824cc783586c092525",slug:null,bookSignature:"Dr. Károly Németh",coverURL:"https://cdn.intechopen.com/books/images_new/12007.jpg",editedByType:null,editors:[{id:"51162",title:"Dr.",name:"Károly",surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12202",title:"Sexual Violence - Issues in Prevention, Treatment, and Policy",subtitle:null,isOpenForSubmission:!0,hash:"d3d39a00095ec14f7f869ed5b5211527",slug:null,bookSignature:"Dr. Kathleen Monahan",coverURL:"https://cdn.intechopen.com/books/images_new/12202.jpg",editedByType:null,editors:[{id:"463306",title:"Dr.",name:"Kathleen",surname:"Monahan",slug:"kathleen-monahan",fullName:"Kathleen Monahan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:429},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4423},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1079",title:"Genitourinary Oncology",slug:"genitourinary-oncology",parent:{id:"190",title:"Oncology",slug:"medicine-oncology"},numberOfBooks:12,numberOfSeries:0,numberOfAuthorsAndEditors:439,numberOfWosCitations:130,numberOfCrossrefCitations:80,numberOfDimensionsCitations:206,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1079",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7126",title:"Prostatectomy",subtitle:null,isOpenForSubmission:!1,hash:"ffd82b0f0d267e6d98b8c68afebbd7b2",slug:"prostatectomy",bookSignature:"Tsvetin Genadiev",coverURL:"https://cdn.intechopen.com/books/images_new/7126.jpg",editedByType:"Edited by",editors:[{id:"29780",title:"Associate Prof.",name:"Tsvetin",middleName:"Trifonov",surname:"Genadiev",slug:"tsvetin-genadiev",fullName:"Tsvetin Genadiev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5256",title:"Human Papillomavirus",subtitle:"Research in a Global Perspective",isOpenForSubmission:!1,hash:"8d66d3c0bc41a12be8217ca0cee52b60",slug:"human-papillomavirus-research-in-a-global-perspective",bookSignature:"Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/5256.jpg",editedByType:"Edited by",editors:[{id:"120109",title:"Dr.",name:"Rajamanickam",middleName:null,surname:"Rajkumar",slug:"rajamanickam-rajkumar",fullName:"Rajamanickam Rajkumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3395",title:"Human Papillomavirus and Related Diseases",subtitle:"From Bench to Bedside - A Diagnostic and Preventive Perspective",isOpenForSubmission:!1,hash:"c6c3820fb6deb675bd38fa1954ec4f56",slug:"human-papillomavirus-and-related-diseases-from-bench-to-bedside-a-diagnostic-and-preventive-perspective",bookSignature:"Davy Vanden Broeck",coverURL:"https://cdn.intechopen.com/books/images_new/3395.jpg",editedByType:"Edited by",editors:[{id:"93213",title:"Dr.",name:"Davy",middleName:null,surname:"Vanden Broeck",slug:"davy-vanden-broeck",fullName:"Davy Vanden Broeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3441",title:"Renal Tumor",subtitle:null,isOpenForSubmission:!1,hash:"8113c9de84f8da9eec92bea7f394e8ef",slug:"renal-tumor",bookSignature:"Jindong Chen",coverURL:"https://cdn.intechopen.com/books/images_new/3441.jpg",editedByType:"Edited by",editors:[{id:"158564",title:"Prof.",name:"Jindong",middleName:null,surname:"Chen",slug:"jindong-chen",fullName:"Jindong Chen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3274",title:"Advances in Prostate Cancer",subtitle:null,isOpenForSubmission:!1,hash:"fb7257d982e3228ceb9320f595ae1c58",slug:"advances-in-prostate-cancer",bookSignature:"Gerhard Hamilton",coverURL:"https://cdn.intechopen.com/books/images_new/3274.jpg",editedByType:"Edited by",editors:[{id:"67794",title:"Prof.",name:"Gerhard",middleName:null,surname:"Hamilton",slug:"gerhard-hamilton",fullName:"Gerhard Hamilton"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"960",title:"Cancer of the Uterine Endometrium",subtitle:"Advances and Controversies",isOpenForSubmission:!1,hash:"e31a8846983568317bbe451b6e32b4c6",slug:"cancer-of-the-uterine-endometrium-advances-and-controversies",bookSignature:"J. Salvador Saldivar",coverURL:"https://cdn.intechopen.com/books/images_new/960.jpg",editedByType:"Edited by",editors:[{id:"71352",title:"Dr.",name:"J.S.",middleName:"Salvador",surname:"Saldivar",slug:"j.s.-saldivar",fullName:"J.S. Saldivar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"789",title:"Emerging Research and Treatments in Renal Cell Carcinoma",subtitle:null,isOpenForSubmission:!1,hash:"616688465519d2b5bcb1d867a3806714",slug:"emerging-research-and-treatments-in-renal-cell-carcinoma",bookSignature:"Robert J. Amato",coverURL:"https://cdn.intechopen.com/books/images_new/789.jpg",editedByType:"Edited by",editors:[{id:"73752",title:"Dr.",name:"Robert",middleName:"J",surname:"Amato",slug:"robert-amato",fullName:"Robert Amato"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"559",title:"Bladder Cancer",subtitle:"From Basic Science to Robotic Surgery",isOpenForSubmission:!1,hash:"117cbfaa858282ed2cdb9a81ce411def",slug:"bladder-cancer-from-basic-science-to-robotic-surgery",bookSignature:"Abdullah Erdem Canda",coverURL:"https://cdn.intechopen.com/books/images_new/559.jpg",editedByType:"Edited by",editors:[{id:"69657",title:"Prof.",name:"Abdullah Erdem",middleName:null,surname:"Canda",slug:"abdullah-erdem-canda",fullName:"Abdullah Erdem Canda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1312",title:"Advances in Cancer Management",subtitle:null,isOpenForSubmission:!1,hash:"dc1cad15f23e313cd067e7e7b4511005",slug:"advances-in-cancer-management",bookSignature:"Ravinder Mohan",coverURL:"https://cdn.intechopen.com/books/images_new/1312.jpg",editedByType:"Edited by",editors:[{id:"58197",title:"Prof.",name:"Ravinder",middleName:null,surname:"Mohan",slug:"ravinder-mohan",fullName:"Ravinder Mohan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"792",title:"Renal Cell Carcinoma",subtitle:null,isOpenForSubmission:!1,hash:"8edc0abe98983dc0d07eeb89cdfb3288",slug:"renal-cell-carcinoma",bookSignature:"Hendrik Van Poppel",coverURL:"https://cdn.intechopen.com/books/images_new/792.jpg",editedByType:"Edited by",editors:[{id:"74532",title:"Dr.",name:"Hendrik",middleName:null,surname:"Van Poppel",slug:"hendrik-van-poppel",fullName:"Hendrik Van Poppel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1845",title:"Prostate Cancer",subtitle:"Diagnostic and Therapeutic Advances",isOpenForSubmission:!1,hash:"3be3f6b756cec080cfcacd2251b62a5c",slug:"prostate-cancer-diagnostic-and-therapeutic-advances",bookSignature:"Philippe E. Spiess",coverURL:"https://cdn.intechopen.com/books/images_new/1845.jpg",editedByType:"Edited by",editors:[{id:"64476",title:"Dr.",name:"Philippe E.",middleName:null,surname:"Spiess",slug:"philippe-e.-spiess",fullName:"Philippe E. Spiess"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1985",title:"Prostate Cancer",subtitle:"Original Scientific Reports and Case Studies",isOpenForSubmission:!1,hash:"51d83bcaa97cb41331a0e6cc466f237f",slug:"prostate-cancer-original-scientific-reports-and-case-studies",bookSignature:"Philippe E. Spiess",coverURL:"https://cdn.intechopen.com/books/images_new/1985.jpg",editedByType:"Edited by",editors:[{id:"64476",title:"Dr.",name:"Philippe E.",middleName:null,surname:"Spiess",slug:"philippe-e.-spiess",fullName:"Philippe E. Spiess"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:12,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"27324",doi:"10.5772/28281",title:"Hemocyanins in the Immunotherapy of Superficial Bladder Cancer",slug:"hemocyanins-in-the-immunotherapy-of-superficial-bladder-cancer",totalDownloads:2135,totalCrossrefCites:7,totalDimensionsCites:13,abstract:null,book:{id:"559",slug:"bladder-cancer-from-basic-science-to-robotic-surgery",title:"Bladder Cancer",fullTitle:"Bladder Cancer - From Basic Science to Robotic Surgery"},signatures:"Sergio Arancibia, Fabián Salazar and María Inés Becker",authors:[{id:"73351",title:"PhD.",name:"Maria",middleName:"Ines",surname:"Becker",slug:"maria-becker",fullName:"Maria Becker"},{id:"73365",title:"Dr",name:"Sergio",middleName:null,surname:"Arancibia",slug:"sergio-arancibia",fullName:"Sergio Arancibia"},{id:"73366",title:"MSc",name:"Fabian",middleName:"Alberto",surname:"Salazar",slug:"fabian-salazar",fullName:"Fabian Salazar"}]},{id:"26808",doi:"10.5772/22156",title:"Science and Affordability of Cancer Drugs and Radiotherapy in the World - Win-Win Scenarios",slug:"science-and-affordability-of-cancer-drugs-and-radiotherapy-in-the-world",totalDownloads:2652,totalCrossrefCites:4,totalDimensionsCites:10,abstract:null,book:{id:"1312",slug:"advances-in-cancer-management",title:"Advances in Cancer Management",fullTitle:"Advances in Cancer Management"},signatures:"Ahmed Elzawawy",authors:[{id:"46527",title:"Prof.",name:"Ahmed",middleName:null,surname:"Elzawawy",slug:"ahmed-elzawawy",fullName:"Ahmed Elzawawy"}]},{id:"62783",doi:"10.5772/intechopen.79726",title:"Biomarkers for Diagnosis and Prognosis of Prostate Cancer",slug:"biomarkers-for-diagnosis-and-prognosis-of-prostate-cancer",totalDownloads:2165,totalCrossrefCites:6,totalDimensionsCites:10,abstract:"Since its discovery, elevated prostate-specific antigen (PSA) has been the measurement to indicate possibility of prostate cancer, as well as biochemical recurrence following treatment. Although PSA has led to decrease in prostate cancer–related mortalities, PSA is a nonspecific prostate cancer biomarker reflective of other prostate-related conditions such as benign prostatic hyperplasia (BPH), resulting in a high false-positive rate. This has led to overtreatment of men with clinically insignificant disease. While most prostate cancer patients have slowly progressive disease and should be treated conservatively, roughly 10% of patients will progress to have metastatic disease, of which the majority of prostate cancer deaths can be attributed. Stratifying these patients based on prognosis so that they may benefit from aggressive treatment is critical to their survival. Biomarkers for prostate cancer diagnosis and subsequent prognostic screening have significantly advanced this field. Here, we review some of the current blood, tissue, and urine biomarker tools used to measure an array of molecules including DNA, RNA, protein, or even epigenetic modifications. Utilizing the technologies described here, as well as looking to the future, correct early identification of prostate cancer with powerful prognostic value is much closer than ever before.",book:{id:"7126",slug:"prostatectomy",title:"Prostatectomy",fullTitle:"Prostatectomy"},signatures:"Meghan A. Rice and Tanya Stoyanova",authors:null},{id:"51256",doi:"10.5772/63965",title:"Pathogenesis of Human Papillomavirus – Immunological Responses to HPV Infection",slug:"pathogenesis-of-human-papillomavirus-immunological-responses-to-hpv-infection",totalDownloads:2175,totalCrossrefCites:3,totalDimensionsCites:8,abstract:"Papillomavirus is an oncogenic virus which infects mucosal and cutaneous epithelia where it induces benign hyperproliferative lesions. Few studies have been conducted on the causative factors associated with the development of cancer. Infections by high-risk human papillomaviruses (HPVs) have been implicated as causative agents in a variety of cancers such as anogenital, and head and neck cancers. HPVs appear to have evolved mechanisms resulting in escape from host immune surveillance and delay of resolution of infection. The HPV E5 oncoprotein is one of the possible effectors that allows the virus to escape from host immune system through the downregulation of surface classical major histocompatibility complex class I (MHC I) and not the nonclassical MHC I. Lack of classical MHC I in infected cells expressing E5 would allow evasion of cytotoxic T lymphocytes (CTLs) killing and thus establishment and persistence of viral infection.",book:{id:"5256",slug:"human-papillomavirus-research-in-a-global-perspective",title:"Human Papillomavirus",fullTitle:"Human Papillomavirus - Research in a Global Perspective"},signatures:"G. Hossein Ashrafi and Nadia Aziz Salman",authors:[{id:"180711",title:"Dr.",name:"Hossein",middleName:null,surname:"Ashrafi",slug:"hossein-ashrafi",fullName:"Hossein Ashrafi"},{id:"185528",title:"Dr.",name:"Nadia",middleName:null,surname:"Aziz Salman",slug:"nadia-aziz-salman",fullName:"Nadia Aziz Salman"}]},{id:"50425",doi:"10.5772/62833",title:"The Involvement of Epigenetic Mechanisms in HPV‐Induced Cervical Cancer",slug:"the-involvement-of-epigenetic-mechanisms-in-hpv-induced-cervical-cancer",totalDownloads:1667,totalCrossrefCites:2,totalDimensionsCites:7,abstract:"High‐risk human papillomavirus (HPV) genotypes infection associates with cervical dysplasia and carcinogenesis. hr‐HPV transforming potential is based on E6 and E7 viral oncoproteins actions on cellular proteins. A persistent infection with hr‐HPV leads to progression from precursor lesions to invasive cervical cancer inducing changes in host genome and epigenome. Pathogenesis and development of cancer associated with both genetic and epigenetic defects alter transcriptional program. An important role for malignant transformation in HPV‐induced cervical cancer is played by epigenetic changes that occur in both viral and host genome. Furthermore, there are observations demonstrating that oncogenic viruses, once they integrated into host genome, become susceptible to epigenetic alterations made by host machinery. Epigenetic regulation of viral gene expression is an important factor in HPV‐associated disease. Gene expression control is complex and involves epigenetic changes: DNA methylation, histone modification, and non‐coding RNAs activity. Persistent infection with hr‐HPV can cause viral DNA integration into host genome attracting defense mechanisms such as methylation machinery. In this chapter, we aim to review HPV infection role in chromatin modification/remodeling and the impact of HPV infection on non‐coding RNAs in cervix oncogenesis. The reversible nature of epigenetic alterations provides new opportunities in the development of therapeutic agents targeting epigenetic modification in oncogenesis.",book:{id:"5256",slug:"human-papillomavirus-research-in-a-global-perspective",title:"Human Papillomavirus",fullTitle:"Human Papillomavirus - Research in a Global Perspective"},signatures:"Adriana Plesa, Iulia V. Iancu, Anca Botezatu, Irina Huica, Mihai\nStoian and Gabriela Anton",authors:[{id:"80114",title:"Dr.",name:"Gabriela",middleName:null,surname:"Anton",slug:"gabriela-anton",fullName:"Gabriela Anton"},{id:"88744",title:"Dr.",name:"Anca",middleName:null,surname:"Botezatu",slug:"anca-botezatu",fullName:"Anca Botezatu"},{id:"167968",title:"Dr.",name:"Adriana",middleName:null,surname:"Plesa",slug:"adriana-plesa",fullName:"Adriana Plesa"},{id:"185918",title:"Dr.",name:"Iulia V.",middleName:null,surname:"Iancu",slug:"iulia-v.-iancu",fullName:"Iulia V. Iancu"},{id:"185919",title:"Dr.",name:"Irina",middleName:null,surname:"Huica",slug:"irina-huica",fullName:"Irina Huica"},{id:"185920",title:"Dr.",name:"Mihai",middleName:null,surname:"Stoian",slug:"mihai-stoian",fullName:"Mihai Stoian"}]}],mostDownloadedChaptersLast30Days:[{id:"44311",title:"Molecular Tools for Detection Human Papillomavirus",slug:"molecular-tools-for-detection-human-papillomavirus",totalDownloads:2473,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3395",slug:"human-papillomavirus-and-related-diseases-from-bench-to-bedside-a-diagnostic-and-preventive-perspective",title:"Human Papillomavirus and Related Diseases",fullTitle:"Human Papillomavirus and Related Diseases From Bench to Bedside A Diagnostic and Preventive Perspective"},signatures:"Angela Adamski da Silva Reis, Daniela de Melo e Silva, Cláudio\nCarlos da Silva and Aparecido Divino da Cruz",authors:[{id:"68829",title:"Dr.",name:"Angela",middleName:"Adamski Da Silva",surname:"Reis",slug:"angela-reis",fullName:"Angela Reis"},{id:"121027",title:"Dr.",name:"Aparecido Divino",middleName:null,surname:"Da Cruz",slug:"aparecido-divino-da-cruz",fullName:"Aparecido Divino Da Cruz"},{id:"161255",title:"Prof.",name:"Daniela De Melo",middleName:null,surname:"Silva",slug:"daniela-de-melo-silva",fullName:"Daniela De Melo Silva"},{id:"166363",title:"Prof.",name:"Cláudio Carlos",middleName:null,surname:"Da Silva",slug:"claudio-carlos-da-silva",fullName:"Cláudio Carlos Da Silva"}]},{id:"62729",title:"Preventing Erectile Dysfunction after Radical Prostatectomy: Nerve-Sparing Techniques, Penile Rehabilitation, and Novel Regenerative Therapies",slug:"preventing-erectile-dysfunction-after-radical-prostatectomy-nerve-sparing-techniques-penile-rehabili",totalDownloads:2053,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Erectile dysfunction is a known and much-dreaded functional consequence of radical prostatectomy. Dr. Patrick Walsh pioneered the nerve-sparing radical retropubic prostatectomy in the early 1980s, which has mitigated the morbidity of this surgery. Post-operative potency rates range widely from 20 to 80%, however, and depend on myriad factors including age, preoperative potency, and degree of nerve-sparing during surgery. Over the past four decades several developments have continued to offer hope to patients and clinicians alike, including refined understanding of cavernosal nerve neuroanatomy, beneficial modifications in surgical technique, as well as the advent of robotic surgery. Furthermore, multiple pre- and post-operative penile rehabilitation techniques using mechanotherapy and pharmaceuticals have also improved functional recovery. This paper examines erectile dysfunction as a consequence of radical prostatectomy, including the physiology of erections, the pathophysiology of post-operative erectile dysfunction, novel surgical techniques to enhance neurovascular bundle preservation, and penile rehabilitation strategies involving hyperbaric oxygen, neuroprotective pharmaceuticals, dehydrated human amnion-chorion membrane allografts, and mesenchymal stem cell therapy.",book:{id:"7126",slug:"prostatectomy",title:"Prostatectomy",fullTitle:"Prostatectomy"},signatures:"Michael Whalen",authors:null},{id:"62783",title:"Biomarkers for Diagnosis and Prognosis of Prostate Cancer",slug:"biomarkers-for-diagnosis-and-prognosis-of-prostate-cancer",totalDownloads:2165,totalCrossrefCites:6,totalDimensionsCites:10,abstract:"Since its discovery, elevated prostate-specific antigen (PSA) has been the measurement to indicate possibility of prostate cancer, as well as biochemical recurrence following treatment. Although PSA has led to decrease in prostate cancer–related mortalities, PSA is a nonspecific prostate cancer biomarker reflective of other prostate-related conditions such as benign prostatic hyperplasia (BPH), resulting in a high false-positive rate. This has led to overtreatment of men with clinically insignificant disease. While most prostate cancer patients have slowly progressive disease and should be treated conservatively, roughly 10% of patients will progress to have metastatic disease, of which the majority of prostate cancer deaths can be attributed. Stratifying these patients based on prognosis so that they may benefit from aggressive treatment is critical to their survival. Biomarkers for prostate cancer diagnosis and subsequent prognostic screening have significantly advanced this field. Here, we review some of the current blood, tissue, and urine biomarker tools used to measure an array of molecules including DNA, RNA, protein, or even epigenetic modifications. Utilizing the technologies described here, as well as looking to the future, correct early identification of prostate cancer with powerful prognostic value is much closer than ever before.",book:{id:"7126",slug:"prostatectomy",title:"Prostatectomy",fullTitle:"Prostatectomy"},signatures:"Meghan A. Rice and Tanya Stoyanova",authors:null},{id:"41843",title:"The Role of E-Cadherin-Catenin Complex in Prostate Cancer Progression",slug:"the-role-of-e-cadherin-catenin-complex-in-prostate-cancer-progression",totalDownloads:2483,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"3274",slug:"advances-in-prostate-cancer",title:"Advances in Prostate Cancer",fullTitle:"Advances in Prostate Cancer"},signatures:"Anuradha K. Murali and James S. Norris",authors:[{id:"158306",title:"Prof.",name:"James",middleName:null,surname:"Norris",slug:"james-norris",fullName:"James Norris"}]},{id:"42652",title:"Surgical and Oncological Results of Treatment of Metastases of Renal Cell Carcinoma to the Contralateral Adrenal Gland",slug:"surgical-and-oncological-results-of-treatment-of-metastases-of-renal-cell-carcinoma-to-the-contralat",totalDownloads:1813,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"3441",slug:"renal-tumor",title:"Renal Tumor",fullTitle:"Renal Tumor"},signatures:"Archil Chkhotua, Laurent Managadze and Ambrosi Pertia",authors:[{id:"66478",title:"Prof.",name:"Archil",middleName:null,surname:"Chkhotua",slug:"archil-chkhotua",fullName:"Archil Chkhotua"}]}],onlineFirstChaptersFilter:{topicId:"1079",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:51,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},subseriesFiltersForOFChapters:[{caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:2,group:"subseries"},{caption:"Bioinformatics and Medical Informatics",value:7,count:17,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:100,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:149,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:197,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:216,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:196,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"74615",title:"Diet-Epigenome Interactions: Epi-Drugs Modulating the Epigenetic Machinery During Cancer Prevention",doi:"10.5772/intechopen.95374",signatures:"Fadime Eryılmaz Pehlivan",slug:"diet-epigenome-interactions-epi-drugs-modulating-the-epigenetic-machinery-during-cancer-prevention",totalDownloads:376,totalCrossrefCites:0,totalDimensionsCites:1,authors:[{name:"Fadime",surname:"Eryılmaz Pehlivan"}],book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:314,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/170390",hash:"",query:{},params:{id:"170390"},fullPath:"/profiles/170390",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()