Comparison of features of classic and CAD/CAM approaches in the production of foot orthoses.
\r\n\t
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"a26ccbc19aca1adeac18323671b48289",bookSignature:"Dr. Gunvant Birajdar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8387.jpg",keywords:"Finite Difference Method, Fractional PDEs, Laplace Transform method, Fourier Transform Method, Katugampola , Hilfer-Katugampola Derivatives, Hilfer Derivatives, Fractional Differential Operator, History of Fractional Calculus, Different Fractional Operators",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 8th 2018",dateEndSecondStepPublish:"November 29th 2018",dateEndThirdStepPublish:"January 28th 2019",dateEndFourthStepPublish:"April 18th 2019",dateEndFifthStepPublish:"June 17th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"191049",title:"Dr.",name:"Gunvant",middleName:null,surname:"Birajdar",slug:"gunvant-birajdar",fullName:"Gunvant Birajdar",profilePictureURL:"https://mts.intechopen.com/storage/users/191049/images/system/191049.jpeg",biography:"Dr. Birajdar earned a Ph.D. in Mathematics from Department of Mathematics, Dr. Babasaheb Ambedkar\nMarathwada University, Aurangabad (M.S.) with a PhD thesis On Numerical Techniques in Nonlinear Fractional Partial Differential Equations and Applications. He is presently performing the role of a Assistant Professor at Tata Institute of Social Sciences (TISS), Tuljapur, Maharashtra since July 2013.",institutionString:"Tata institute of Social Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Tata Institute of Social Sciences",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"33485",title:"Simulation in Plastic Surgery Training: Past, Present and Future",doi:"10.5772/28550",slug:"simulation-in-plastic-surgery-training-past-present-and-future",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/33485.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/33485",previewPdfUrl:"/chapter/pdf-preview/33485",totalDownloads:3107,totalViews:136,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,dateSubmitted:"March 1st 2011",dateReviewed:"November 3rd 2011",datePrePublished:null,datePublished:"March 23rd 2012",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/33485",risUrl:"/chapter/ris/33485",book:{slug:"current-concepts-in-plastic-surgery"},signatures:"Phoebe Arbogast and Joseph Rosen",authors:[{id:"74368",title:"Prof.",name:"Joseph",middleName:null,surname:"Rosen",fullName:"Joseph Rosen",slug:"joseph-rosen",email:"joseph.m.rosen@dartmouth.edu",position:null,institution:{name:"Dartmouth College",institutionURL:null,country:{name:"United States of America"}}},{id:"139329",title:"Ms.",name:"Phoebe",middleName:null,surname:"Arbogast",fullName:"Phoebe Arbogast",slug:"phoebe-arbogast",email:"phoebe.arbogast@dartmouth.edu",position:null,institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"984",title:"Current Concepts in Plastic Surgery",subtitle:null,fullTitle:"Current Concepts in Plastic Surgery",slug:"current-concepts-in-plastic-surgery",publishedDate:"March 23rd 2012",bookSignature:"Francisco J. Agullo",coverURL:"https://cdn.intechopen.com/books/images_new/984.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"49319",title:"Dr.",name:"Frank",middleName:null,surname:"Agullo",slug:"frank-agullo",fullName:"Frank Agullo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"33475",title:"Minimal Invasive Surgery in Head and Neck Video-Assisted Technique",slug:"minimal-invasive-surgery-in-head-and-neck-video-assisted-technique",totalDownloads:1560,totalCrossrefCites:0,signatures:"Jorge O. Guerrissi",authors:[{id:"68555",title:"Dr.",name:"Jorge",middleName:null,surname:"Guerrissi",fullName:"Jorge Guerrissi",slug:"jorge-guerrissi"}]},{id:"33476",title:"Basal Cell Carcinoma",slug:"basal-cell-carcinoma1",totalDownloads:2018,totalCrossrefCites:0,signatures:"Tomasz Dębski, Lubomir Lembas and Józef Jethon",authors:[{id:"70479",title:"Dr.",name:"Tomasz",middleName:null,surname:"Dȩbski",fullName:"Tomasz Dȩbski",slug:"tomasz-dbski"},{id:"120320",title:"Dr.",name:"Lubomir",middleName:null,surname:"Lembas",fullName:"Lubomir Lembas",slug:"lubomir-lembas"},{id:"120321",title:"Prof.",name:"Józef",middleName:null,surname:"Jethon",fullName:"Józef Jethon",slug:"jozef-jethon"}]},{id:"33477",title:"Implant Retained Auricular Prostheses",slug:"implant-retained-auricular-prostheses",totalDownloads:2562,totalCrossrefCites:2,signatures:"Metin Sencimen and Aydin Gulses",authors:[{id:"29060",title:"Dr.",name:"Aydin",middleName:null,surname:"Gulses",fullName:"Aydin Gulses",slug:"aydin-gulses"},{id:"68607",title:"Dr.",name:"Metin",middleName:null,surname:"Sencimen",fullName:"Metin Sencimen",slug:"metin-sencimen"}]},{id:"33478",title:"Contralateral Breast Augmentation in Heterologous Breast Reconstruction",slug:"contralateral-breast-augmentation-in-heterologous-breast-reconstruction",totalDownloads:2298,totalCrossrefCites:0,signatures:"Paolo Persichetti, Barbara Cagli, Stefania Tenna, Luca Piombino, Annalisa Cogliandro, Antonio Iodice and Achille Aveta",authors:[{id:"79595",title:"Prof.",name:"Paolo",middleName:null,surname:"Persichetti",fullName:"Paolo Persichetti",slug:"paolo-persichetti"},{id:"79602",title:"M.D.",name:"Barbara",middleName:null,surname:"Cagli",fullName:"Barbara Cagli",slug:"barbara-cagli"},{id:"91324",title:"Dr.",name:"Stefania",middleName:null,surname:"Tenna",fullName:"Stefania Tenna",slug:"stefania-tenna"},{id:"91325",title:"Dr.",name:"Annalisa",middleName:null,surname:"Cogliandro",fullName:"Annalisa Cogliandro",slug:"annalisa-cogliandro"},{id:"91326",title:"Dr.",name:"Achille",middleName:null,surname:"Aveta",fullName:"Achille Aveta",slug:"achille-aveta"},{id:"91327",title:"Dr.",name:"Luca",middleName:null,surname:"Piombino",fullName:"Luca Piombino",slug:"luca-piombino"},{id:"142524",title:"Dr.",name:"Antonio",middleName:null,surname:"Iodice",fullName:"Antonio Iodice",slug:"antonio-iodice"}]},{id:"33479",title:"The Role of Free Fat Graft in Breast Reconstruction After Radiotherapy",slug:"the-role-of-free-fat-graft-in-breast-reconstruction-after-radiotherapy",totalDownloads:2635,totalCrossrefCites:0,signatures:"Pietro Panettiere, Danilo Accorsi and Lucio Marchetti",authors:[{id:"69453",title:"Prof.",name:"Pietro",middleName:null,surname:"Panettiere",fullName:"Pietro Panettiere",slug:"pietro-panettiere"},{id:"76084",title:"Dr",name:"Danilo",middleName:null,surname:"Accorsi",fullName:"Danilo Accorsi",slug:"danilo-accorsi"},{id:"76086",title:"Dr",name:"Lucio",middleName:null,surname:"Marchetti",fullName:"Lucio Marchetti",slug:"lucio-marchetti"}]},{id:"33480",title:"Correction of Inverted Nipple: Comparison of Techniques with Novel Approaches",slug:"correction-of-inverted-nipple-comparison-of-techniques-with-novel-approaches",totalDownloads:11057,totalCrossrefCites:0,signatures:"Ercan Karacaoglu",authors:[{id:"73035",title:"Prof.",name:"Ercan",middleName:null,surname:"Karacaoglu",fullName:"Ercan Karacaoglu",slug:"ercan-karacaoglu"}]},{id:"33481",title:"Tuberous Breast: Clinical Evaluation and Surgical Treatment",slug:"tuberous-breast-clinical-evaluation-and-surgical-treatment",totalDownloads:13821,totalCrossrefCites:2,signatures:"Giovanni Zoccali and Maurizio Giuliani",authors:[{id:"75465",title:"Prof.",name:"Maurizio",middleName:null,surname:"Giuliani",fullName:"Maurizio Giuliani",slug:"maurizio-giuliani"},{id:"76973",title:"Dr.",name:"Giovanni",middleName:null,surname:"Zoccali",fullName:"Giovanni Zoccali",slug:"giovanni-zoccali"}]},{id:"33482",title:"Gynecomastia and Liposuction",slug:"gynecomastia-and-liposuction",totalDownloads:3788,totalCrossrefCites:0,signatures:"Francisco J. Agullo, Sadri O. Sozer and Humberto Palladino",authors:[{id:"49319",title:"Dr.",name:"Frank",middleName:null,surname:"Agullo",fullName:"Frank Agullo",slug:"frank-agullo"},{id:"49318",title:"Dr.",name:"Sadri",middleName:"Ozan",surname:"Sozer",fullName:"Sadri Sozer",slug:"sadri-sozer"},{id:"57330",title:"Dr.",name:"Humberto",middleName:null,surname:"Palladino",fullName:"Humberto Palladino",slug:"humberto-palladino"}]},{id:"33483",title:"Autologous Fat Grafting - Factors of Influence on the Therapeutic Results",slug:"autologous-fat-grafting-factors-of-influence-on-the-therapeutic-results",totalDownloads:2478,totalCrossrefCites:1,signatures:"Regina Khater and Pepa Atanassova",authors:[{id:"69812",title:"Dr.",name:"Regina",middleName:null,surname:"Khater",fullName:"Regina Khater",slug:"regina-khater"},{id:"153247",title:"Dr.",name:"Pepa",middleName:null,surname:"Atanassova",fullName:"Pepa Atanassova",slug:"pepa-atanassova"}]},{id:"33484",title:"Importance of Anatomical Landmarks on Axillary Neurovascular Territories for Surgery",slug:"importance-of-anatomical-landmarks-on-axillary-neurovascular-territories-for-surgery",totalDownloads:7336,totalCrossrefCites:0,signatures:"Nuket Gocmen Mas, Hamit Selim Karabekir, Mete Edizer and Orhan Magden",authors:[{id:"73654",title:"Dr.",name:"Nuket",middleName:null,surname:"Gocmen-Mas",fullName:"Nuket Gocmen-Mas",slug:"nuket-gocmen-mas"},{id:"78266",title:"Prof.",name:"Hamit Selim",middleName:null,surname:"Karabekir",fullName:"Hamit Selim Karabekir",slug:"hamit-selim-karabekir"},{id:"78268",title:"Dr.",name:"Mete",middleName:null,surname:"Edizer",fullName:"Mete Edizer",slug:"mete-edizer"},{id:"78270",title:"Prof.",name:"Orhan",middleName:null,surname:"Magden",fullName:"Orhan Magden",slug:"orhan-magden"}]},{id:"33485",title:"Simulation in Plastic Surgery Training: Past, Present and Future",slug:"simulation-in-plastic-surgery-training-past-present-and-future",totalDownloads:3107,totalCrossrefCites:0,signatures:"Phoebe Arbogast and Joseph Rosen",authors:[{id:"74368",title:"Prof.",name:"Joseph",middleName:null,surname:"Rosen",fullName:"Joseph Rosen",slug:"joseph-rosen"},{id:"139329",title:"Ms.",name:"Phoebe",middleName:null,surname:"Arbogast",fullName:"Phoebe Arbogast",slug:"phoebe-arbogast"}]},{id:"33486",title:"Prevention of Microsurgical Thrombosis",slug:"prevention-of-microsurgical-thrombosis",totalDownloads:3548,totalCrossrefCites:2,signatures:"S.M. Shridharani, M.K. Folstein, T.L. Chung and R.P. Silverman",authors:[{id:"86110",title:"Dr",name:"Ronald",middleName:null,surname:"Silverman",fullName:"Ronald Silverman",slug:"ronald-silverman"},{id:"153150",title:"Dr.",name:"Sachin",middleName:"M",surname:"Shridharani",fullName:"Sachin Shridharani",slug:"sachin-shridharani"},{id:"153151",title:"Dr.",name:"M.K.",middleName:null,surname:"Folstein",fullName:"M.K. Folstein",slug:"m.k.-folstein"},{id:"153152",title:"Dr.",name:"T.L.",middleName:null,surname:"Chung",fullName:"T.L. Chung",slug:"t.l.-chung"}]}]},relatedBooks:[{type:"book",id:"1305",title:"Advances in Endoscopic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"84236c28c671a83f6cd1cd8bb84d873f",slug:"advances-in-endoscopic-surgery",bookSignature:"Cornel Iancu",coverURL:"https://cdn.intechopen.com/books/images_new/1305.jpg",editedByType:"Edited by",editors:[{id:"33183",title:"Prof.",name:"Cornel",surname:"Iancu",slug:"cornel-iancu",fullName:"Cornel Iancu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"24320",title:"Endoscopic Endonasal Skull Base Surgery: Current State of the Art and Future Trends",slug:"endoscopic-endonasal-skull-base-surgery-current-state-of-the-art-and-future-trends",signatures:"Jouanneau Emmanuel, Messerer Mahmoud and Berhouma Moncef",authors:[{id:"58283",title:"Prof.",name:"Moncef",middleName:null,surname:"Berhouma",fullName:"Moncef Berhouma",slug:"moncef-berhouma"},{id:"59436",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Jouanneau",fullName:"Emmanuel Jouanneau",slug:"emmanuel-jouanneau"},{id:"59438",title:"Dr.",name:"Mahmoud",middleName:null,surname:"Messerer",fullName:"Mahmoud Messerer",slug:"mahmoud-messerer"}]},{id:"24321",title:"Endoscopic Surgery of Maxillary Sinuses in Oral Surgery and Implantology",slug:"endoscopic-surgery-of-maxillary-sinuses-in-oral-surgery-and-implantology",signatures:"Miroslav Andrić",authors:[{id:"49081",title:"Dr.",name:"Miroslav",middleName:null,surname:"Andric",fullName:"Miroslav Andric",slug:"miroslav-andric"}]},{id:"24322",title:"Objective Outcomes in Endoscopic Sinus Surgery",slug:"objective-outcomes-in-endoscopic-sinus-surgery",signatures:"David W.J. Côté and Erin D. Wright",authors:[{id:"46705",title:"Dr.",name:"David",middleName:"W.J.",surname:"Côté",fullName:"David Côté",slug:"david-cote"},{id:"47348",title:"Dr.",name:"Erin",middleName:null,surname:"Wright",fullName:"Erin Wright",slug:"erin-wright"}]},{id:"24323",title:"Endoscopy in Nasopharyngeal Adenoid Surgery",slug:"endoscopy-in-nasopharyngeal-adenoid-surgery",signatures:"W. F. Ezzat",authors:[{id:"45578",title:"Prof.",name:"Waleed",middleName:"F",surname:"Ezzat",fullName:"Waleed Ezzat",slug:"waleed-ezzat"}]},{id:"24324",title:"Endoscopically Guided Balloon Dilatation of Recurrent Choanal Stenosis",slug:"endoscopically-guided-balloon-dilatation-of-recurrent-choanal-stenosis",signatures:"B.J. Folz and C.-G. Konnerth",authors:[{id:"57706",title:"Prof.",name:"Benedikt",middleName:"Josef",surname:"Folz",fullName:"Benedikt Folz",slug:"benedikt-folz"},{id:"57709",title:"Dr.",name:"Claus-Günther",middleName:null,surname:"Konnerth",fullName:"Claus-Günther Konnerth",slug:"claus-gunther-konnerth"}]},{id:"24325",title:"Sialendoscopy: Endoscopic Approach to Benign Salivary Gland Diseases",slug:"sialendoscopy-endoscopic-approach-to-benign-salivary-gland-diseases",signatures:"Meghan Wilson, Kyle McMullen and Rohan R. Walvekar",authors:[{id:"45321",title:"Dr.",name:"Rohan",middleName:"R",surname:"Walvekar",fullName:"Rohan Walvekar",slug:"rohan-walvekar"}]},{id:"24326",title:"Virtual Endoscopy of the Nasal Cavity and the Paranasal Sinuses",slug:"virtual-endoscopy-of-the-nasal-cavity-and-the-paranasal-sinuses",signatures:"Sumeet Anand, Rickul Varshney and Saul Frenkiel",authors:[{id:"59823",title:"Dr.",name:"Sumeet",middleName:"M",surname:"Anand",fullName:"Sumeet Anand",slug:"sumeet-anand"},{id:"59829",title:"Dr.",name:"Saul",middleName:null,surname:"Frenkiel",fullName:"Saul Frenkiel",slug:"saul-frenkiel"},{id:"96296",title:"Dr.",name:"Rickul",middleName:null,surname:"Varshney",fullName:"Rickul Varshney",slug:"rickul-varshney"}]},{id:"24327",title:"Evolution of the Adenoidectomy in the Endoscopic Era",slug:"evolution-of-the-adenoidectomy-in-the-endoscopic-era",signatures:"Fabio Pagella, Alessandro Pusateri, Georgios Giourgos and Elina Matti",authors:[{id:"50927",title:"Dr",name:"Georgios",middleName:null,surname:"Giourgos",fullName:"Georgios Giourgos",slug:"georgios-giourgos"},{id:"95395",title:"Dr.",name:"Alessandro",middleName:null,surname:"Pusateri",fullName:"Alessandro Pusateri",slug:"alessandro-pusateri"},{id:"95396",title:"Dr.",name:"Elina",middleName:null,surname:"Matti",fullName:"Elina Matti",slug:"elina-matti"},{id:"95397",title:"Dr.",name:"Fabio",middleName:null,surname:"Pagella",fullName:"Fabio Pagella",slug:"fabio-pagella"}]},{id:"24328",title:"Endoscopy in Intracranial Pathology",slug:"endoscopy-in-intracranial-pathology",signatures:"Marwan Najjar and Ali Turkmani",authors:[{id:"46585",title:"Dr.",name:"Marwan",middleName:null,surname:"Najjar",fullName:"Marwan Najjar",slug:"marwan-najjar"},{id:"58958",title:"Prof.",name:"Ali",middleName:null,surname:"Turkmani",fullName:"Ali Turkmani",slug:"ali-turkmani"}]},{id:"24329",title:"Technical and Clinical Evolution of Modern Neuroendoscopy",slug:"technical-and-clinical-evolution-of-modern-neuroendoscopy",signatures:"P. Grunert and J. Oertel",authors:[{id:"47218",title:"Prof.",name:"Peter",middleName:null,surname:"Grunert",fullName:"Peter Grunert",slug:"peter-grunert"},{id:"59895",title:"Prof.",name:"Joachim",middleName:null,surname:"Oertel",fullName:"Joachim Oertel",slug:"joachim-oertel"}]},{id:"24330",title:"Minimally Invasive Endoscopic and Endoscopy-Assisted Microsurgery of Vestibular Schwannoma",slug:"minimally-invasive-endoscopic-and-endoscopy-assisted-microsurgery-of-vestibular-schwannoma",signatures:"Betka Jan, Chovanec Martin, Zverina Eduard, Profant Oliver, Lukes Petr, Skrivan Jiri, Kluh Jan and Fik Zdenek",authors:[{id:"53372",title:"Prof.",name:"Jan",middleName:null,surname:"Betka",fullName:"Jan Betka",slug:"jan-betka"},{id:"53499",title:"Dr.",name:"Martin",middleName:null,surname:"Chovanec",fullName:"Martin Chovanec",slug:"martin-chovanec"},{id:"117577",title:"Prof.",name:"Eduard",middleName:null,surname:"Zverina",fullName:"Eduard Zverina",slug:"eduard-zverina"},{id:"117578",title:"Dr.",name:"Lukes",middleName:null,surname:"Petr",fullName:"Lukes Petr",slug:"lukes-petr"},{id:"117580",title:"Dr.",name:"Jan",middleName:null,surname:"Kluh",fullName:"Jan Kluh",slug:"jan-kluh"},{id:"117583",title:"Dr.",name:"Jiri",middleName:null,surname:"Skrivan",fullName:"Jiri Skrivan",slug:"jiri-skrivan"},{id:"117584",title:"Dr.",name:"Zdenek",middleName:null,surname:"Fik",fullName:"Zdenek Fik",slug:"zdenek-fik"},{id:"117586",title:"Dr.",name:"Oliver",middleName:null,surname:"Profant",fullName:"Oliver Profant",slug:"oliver-profant"}]},{id:"24331",title:"Ocular Endoscopy",slug:"ocular-endoscopy",signatures:"Durval Moraes de Carvalho, Francisco Eduardo Lima and Durval Moraes de Carvalho Jr",authors:[{id:"48295",title:"Dr.",name:"Durval",middleName:"Moraes De",surname:"Carvalho",fullName:"Durval Carvalho",slug:"durval-carvalho"},{id:"59376",title:"Prof.",name:"Durval",middleName:null,surname:"M. Carvalho Jr.",fullName:"Durval M. Carvalho Jr.",slug:"durval-m.-carvalho-jr."},{id:"78415",title:"Prof.",name:"Francisco",middleName:null,surname:"Lima",fullName:"Francisco Lima",slug:"francisco-lima"}]},{id:"24332",title:"Laparoscopy in Diagnosis and Treatment of Small Bowel Diseases",slug:"laparoscopy-in-diagnosis-and-treatment-of-small-bowel-diseases",signatures:"Coco Claudio, Rizzo Gianluca, Verbo Alessandro, Mattana Claudio, Pafundi Donato Paolo and Manno Alberto",authors:[{id:"52420",title:"Prof.",name:"Claudio",middleName:null,surname:"Coco",fullName:"Claudio Coco",slug:"claudio-coco"},{id:"59949",title:"Dr.",name:"Gianluca",middleName:null,surname:"Rizzo",fullName:"Gianluca Rizzo",slug:"gianluca-rizzo"},{id:"59950",title:"Dr.",name:"Alessandro",middleName:null,surname:"Verbo",fullName:"Alessandro Verbo",slug:"alessandro-verbo"},{id:"59951",title:"Dr.",name:"Claudio",middleName:null,surname:"Mattana",fullName:"Claudio Mattana",slug:"claudio-mattana"},{id:"59952",title:"Dr.",name:"Donato Paolo",middleName:null,surname:"Pafundi",fullName:"Donato Paolo Pafundi",slug:"donato-paolo-pafundi"},{id:"59953",title:"Dr.",name:"Alberto",middleName:null,surname:"Manno",fullName:"Alberto Manno",slug:"alberto-manno"}]},{id:"24333",title:"Surgical Treatment of Gastroesophageal Reflux Disease",slug:"surgical-treatment-of-gastroesophageal-reflux-disease",signatures:"Filippo Tosato, Salvatore Marano, Stefano Mattacchione, Barbara Luongo, Giulia Paltrinieri, Valentina Mingarelli and Leoluca Vasapollo",authors:[{id:"55728",title:"Prof.",name:"Filippo",middleName:null,surname:"Tosato",fullName:"Filippo Tosato",slug:"filippo-tosato"},{id:"57830",title:"Dr.",name:"Salvatore",middleName:null,surname:"Marano",fullName:"Salvatore Marano",slug:"salvatore-marano"},{id:"57831",title:"Dr.",name:"Stefano",middleName:null,surname:"Mattacchione",fullName:"Stefano Mattacchione",slug:"stefano-mattacchione"},{id:"57832",title:"Dr.",name:"Leoluca",middleName:null,surname:"Vasapollo",fullName:"Leoluca Vasapollo",slug:"leoluca-vasapollo"},{id:"100133",title:"Dr.",name:"Giulia",middleName:null,surname:"Paltrinieri",fullName:"Giulia Paltrinieri",slug:"giulia-paltrinieri"},{id:"100134",title:"Dr.",name:"Barbara",middleName:null,surname:"Luongo",fullName:"Barbara Luongo",slug:"barbara-luongo"},{id:"100135",title:"Dr.",name:"Valentina",middleName:null,surname:"Mingarelli",fullName:"Valentina Mingarelli",slug:"valentina-mingarelli"}]},{id:"24334",title:"Laparoscopic One-Stage vs Endoscopic Plus Laparoscopic Management of Common Bile Duct Stones – A Prospective Randomized Study",slug:"laparoscopic-one-stage-vs-endoscopic-plus-laparoscopic-management-of-common-bile-duct-stones-a-prosp",signatures:"Giuseppe P. Ferulano, Saverio Dilillo, Michele D’Ambra, Ruggero Lionetti, Piero Di Silverio, Stefano Capasso, Domenico Pelaggi and Michele Rutigliano",authors:[{id:"50301",title:"Prof.",name:"Giuseppe Paolo",middleName:null,surname:"Ferulano",fullName:"Giuseppe Paolo Ferulano",slug:"giuseppe-paolo-ferulano"},{id:"59643",title:"Mr.",name:"Saverio",middleName:null,surname:"Dilillo",fullName:"Saverio Dilillo",slug:"saverio-dilillo"},{id:"59644",title:"Mr.",name:"Michele",middleName:null,surname:"D’Ambra",fullName:"Michele D’Ambra",slug:"michele-d'ambra"},{id:"59645",title:"Mr.",name:"Ruggero",middleName:null,surname:"Lionetti",fullName:"Ruggero Lionetti",slug:"ruggero-lionetti"},{id:"59646",title:"Mr.",name:"Piero",middleName:null,surname:"Di Silverio",fullName:"Piero Di Silverio",slug:"piero-di-silverio"},{id:"59647",title:"Mr.",name:"Stefano",middleName:null,surname:"Capasso",fullName:"Stefano Capasso",slug:"stefano-capasso"},{id:"59648",title:"Dr.",name:"Domenico",middleName:null,surname:"Pelaggi",fullName:"Domenico Pelaggi",slug:"domenico-pelaggi"},{id:"59649",title:"Mr.",name:"Michele",middleName:null,surname:"Rutigliano",fullName:"Michele Rutigliano",slug:"michele-rutigliano"}]},{id:"24335",title:"Endoscopic Ultrasound for Solid and Cystic Neoplasms of the Pancreas",slug:"endoscopic-ultrasound-for-solid-and-cystic-neoplasms-of-the-pancreas",signatures:"Karim M. Eltawil and Michele Molinari",authors:[{id:"48463",title:"Dr.",name:"Michele",middleName:null,surname:"Molinari",fullName:"Michele Molinari",slug:"michele-molinari"},{id:"48519",title:"Dr.",name:"Karim",middleName:"Mohamed",surname:"Eltawil",fullName:"Karim Eltawil",slug:"karim-eltawil"}]},{id:"24336",title:"Urology: The Home of Endoscopy",slug:"urology-the-home-of-endoscopy",signatures:"Rastislav Hejj, Marie McNulty and John G. Calleary",authors:[{id:"59108",title:"Mr.",name:"John",middleName:null,surname:"Calleary",fullName:"John Calleary",slug:"john-calleary"},{id:"60099",title:"Mr.",name:"Ratislav",middleName:null,surname:"Hejj",fullName:"Ratislav Hejj",slug:"ratislav-hejj"},{id:"67219",title:"Dr.",name:"Marie",middleName:null,surname:"McNulty",fullName:"Marie McNulty",slug:"marie-mcnulty"}]},{id:"24337",title:"Diagnostic and Therapeutic Sinonasal Endoscopy in Pediatric Patients",slug:"diagnostic-and-therapeutic-sinonasal-endoscopy-in-pediatric-patients",signatures:"Marco Berlucchi, Barbara Pedruzzi, Michele Sessa and Piero Nicolai",authors:[{id:"45234",title:"Dr.",name:"Marco",middleName:null,surname:"Berlucchi",fullName:"Marco Berlucchi",slug:"marco-berlucchi"},{id:"59175",title:"Dr.",name:"Michele",middleName:null,surname:"Sessa",fullName:"Michele Sessa",slug:"michele-sessa"},{id:"59176",title:"Prof.",name:"Piero",middleName:null,surname:"Nicolai",fullName:"Piero Nicolai",slug:"piero-nicolai"},{id:"113255",title:"Dr.",name:"Barbara",middleName:null,surname:"Pedruzzi",fullName:"Barbara Pedruzzi",slug:"barbara-pedruzzi"}]},{id:"24338",title:"Endoscopy in the Evaluation and Management of the Pediatric Airway",slug:"endoscopy-in-the-evaluation-and-management-of-the-pediatric-airway",signatures:"Kris R. Jatana and Jeffrey C. Rastatter",authors:[{id:"62186",title:"Dr.",name:"Kris",middleName:"R.",surname:"Jatana",fullName:"Kris Jatana",slug:"kris-jatana"}]},{id:"24339",title:"Laparoscopic Surgery: An Almost Scarless Approach",slug:"laparoscopic-surgery-an-almost-scarless-approach",signatures:"Peng Soon Koh and Kin Fah Chin",authors:[{id:"46822",title:"Prof.",name:"Kin Fah",middleName:null,surname:"Chin",fullName:"Kin Fah Chin",slug:"kin-fah-chin"}]},{id:"24340",title:"Endoscopic Monitoring of Postoperative Sinonasal Mucosa Wounds Healing",slug:"endoscopic-monitoring-of-postoperative-sinonasal-mucosa-wounds-healing",signatures:"Ivana Pajić-Penavić",authors:[{id:"45157",title:"Dr.",name:"Ivana",middleName:null,surname:"Pajic-Penavic",fullName:"Ivana Pajic-Penavic",slug:"ivana-pajic-penavic"}]},{id:"24341",title:"Microbial Contamination of Suction Tubes Attached to Suction Instrument and Its Preventive Methods",slug:"microbial-contamination-of-suction-tubes-attached-to-suction-instrument-and-its-preventive-methods",signatures:"Katsuhiro Yorioka and Shigeharu Oie",authors:[{id:"45624",title:"Mr",name:"Katsuhiro",middleName:null,surname:"Yorioka",fullName:"Katsuhiro Yorioka",slug:"katsuhiro-yorioka"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"71557",title:"Application of Machine Tools in Orthoses Manufacture",doi:"10.5772/intechopen.91453",slug:"application-of-machine-tools-in-orthoses-manufacture",body:'\nO&P is a medical-technical profession involved in the manufacture of orthotic devices, prostheses, and similar products. Orthoses are aids that serve to compensate for a functional deficit, while prostheses serve to replace a missing part of the body.
\nThe need for such aids is as old as the human species. Due to trauma, illness, or other circumstances, a person is exposed to the possibility of developing a disability, loss of working ability, and, generally, a reduction in the quality of life. With the application of various medical treatments, people have sought to solve this problem by using available things from their environment, or in this sense made simple props and devices, with which they have compensated the negative effects of their present deficit. Numerous events in the past have encouraged greater demand and need for a more comprehensive approach for the design and application of such aids, thereby improving their performance and quality.
\nIt is well known that consequences of traumas, deformities, old age, certain pathological processes, or impaired human biomechanics can produce a deficit of the locomotor system. In these conditions, orthoses are used as the main aids in daily life.
\nOrthoses are roughly divided into:
Craniofacial orthoses
Trunk orthoses
Upper extremity orthoses
Lower extremity orthoses
Orthopedic inserts (Figure 1)
Orthopedic shoes
CNC milling machine with three spindles.
The application of modern technologies has enabled the simplification of otherwise demanding procedures such as taking measurements and making the orthosis itself.
\nIn the standard procedure, these issues depend entirely on the level of expertise and experience of the individual or the laboratory in which the production takes place.
\nMostly it is about a manual technique of manufacturing using available tools and machines, which are used to modify the plaster mold.
\nIf we take spinal orthosis manufacturing as an example, this mold has the shape of a human torso (Figure 2). It is made by pouring gypsum into the primary plaster mold, which is formed by solidifying the plaster bandages wrapped around the body, which is a particularly unpleasant procedure for the patient [1].
\nSpinal orthosis and mold.
The mold obtained in this way weighs tens of kilograms, is difficult to manipulate, fragile, and, what is particularly important, rigid; so, it is very complicated to carry out the desired modifications of the surface. Due to the imperfections of such a procedure, inadequate products are often made.
\nA team of experts in the fields of medicine, mechanical engineering, computer science, and other related professions participates in the orthoses design and its production for the patient. The application of CAD/CAM technologies has significantly simplified this process for the past 30 years.
\nAlthough it is used in the manufacture of all types of orthoses, it is certainly most used for the purpose of making orthopedic insoles with the typical use of three-axis CNC milling machines (Figure 3).
\nOrthopedic insoles.
Orthopedic insoles are made by direct machining of the materials (usually EVA—ethylene vinyl acetate) or by making molds from materials that include expanded polyurethane, expanded polystyrene, or MDF (Figure 4). The insoles are characterized by smaller dimensions (especially thicknesses) while the same cannot be claimed for other orthoses.
\nMolds for foot orthoses production.
In the process of orthopedic insole design, the following is commonly considered:
Clinical information
Data obtained from diagnostic procedures (MRI, CT, standard radiograms, EMG, ENG, force, and pressure measurements) (Figure 5)
Biometric data, including measurement of the range of motion of an individual body part
Geometric description of the topography of a body part of interest obtained by the 3D scanning
Thermographic images
Other available information (body posture and gait analysis, stabilometry, etc.)
Design of foot orthoses using CAD software.
While in the standard procedure, these data (e.g., standard radiograms) are reviewed and decisions are made on modifications of plaster molds based on them, in the digital procedure they are imported in digital form into the appropriate CAD program as data records, where they are used as a basis for modification or navigation during design (Figure 6).
\nSpinal orthosis design—CAD.
Upon completion of the design, tool paths for the selected manufacturing process and hardware are generated, and then either an orthosis or a mold for orthosis is made (Figure 7). Regarding the application of digital solutions in the manufacture of molds for orthoses, additive technologies and machining technologies are used.
\nCompleted design for AFO and spinal orthosis.
The application of additive technologies [2] in the manufacture of orthoses is of recent date (Figure 8). This approach far surpasses other technologies in the ability to create complex shapes, but despite great technological advancements both in materials and hardware solutions, as well as initially promising results, it still requires more significant research efforts and improvements to become a full-scale manufacturing technology. It is expected that new solutions will overcome the present problems of mechanical properties of the product, the cost of production of larger volume forms, as well as the time of making orthosis.
\nAdditive manufacturing of foot orthosis.
These issues are raised particularly when it comes to implementing such a manufacturing system in smaller orthotic laboratories engaged in the manufacture of various types of orthotic devices, and where the implementation of new technological solutions is of great significance for business stability.
\nHowever, even after more than 30 years of application of digital technologies, the manufacturing procedure itself remains a significant problem—it is still expensive, not practical enough, often too complicated, and it is common to question the feasibility of investing in its implementation.
\nWith CAD/CAM technology, the biggest financial share is the price of the machine. There are a number of special solutions currently present on the market with the primary purpose of making molds for orthoses. The use of such solutions certainly simplifies the manufacturing process, but they are expensive and are usually found in larger laboratories.
\nThe performance of such machines is often related to the production of only certain types of orthoses, and they need to be modified for other applications because they do not have the proper functionality, which is neither easy nor affordable.
\nIn addition, the kinematics of such machines is often inappropriate for machining molds of more complex geometry, which requires additional human labor.
\nThe introduction of CAD/CAM systems into the production of orthoses has led to a great advancement in orthotic practice [3].
\nIts application has brought a major change over the classical (traditional) approach, in which orthoses are made manually.
\nThe use of digital technology in O&P practice is mainly based on results from a volumetric measurement. The classic volumetric measurement necessary for the design of orthopedic inserts is obtained by taking foot impressions in polyurethane foam and plaster molding. In both cases, it is implied that plaster needs to be poured into resulting impressions and one needs to wait for it to solidify. Issues related to this process include the fact that the foam box is brittle, that taking the impression requires some experience (otherwise, a distorted foot shape is obtained), and that the plaster molding is only as good as it was carefully and qualitatively shaped over the foot surface (because it is taken in the non-weight-bearing position). Finally, the molds obtained are rigid and require considerable manual work to achieve proper shape, over which the material can be thermoformed to obtain an insole shell. Sometimes, it is not possible to completely modify the mold while retaining its baseform, because it is rigid, and it is often necessary to add material to one part of the mold and to subtract it in the other part. Also, it is complicated to add and to form corrective elements (e.g., a metatarsal pad feature), because during the molding the shape changes and thus loses its initial form; so, such a “design” depends largely on the experience of the practitioner. With this process, it can take up to 6 h to obtain a mold that is suitable for thermoforming the material. An additional problem is the transportation of the obtained plaster moldings or foam boxes since they are brittle, and the transport itself requires a considerable amount of time and human labor. In contrast, digital technology enables rapid 3D scanning of the entire foot and ankle surface. The information provided is in digital form and can be easily transmitted to a remote location. In such a digital form, the data are fed into a CAD program where they can be manipulated and modified in a much faster and easier way, and without the expense of materials. Such a process, which involves acquisition and design, takes an average of up to 20–30 min depending on the experience of the designer. The use of digital technologies generally provides for the possibility that the locations where scanning, design, and production are performed are different. In practice, we often find the cases where data acquisition and design are performed on one location while orthoses manufacturing is made in a central laboratory that is technically equipped to produce orthoses on a larger scale.
\nThis approach certainly has its advantages and disadvantages. The advantages are found in the fact that the service seeker does not need to possess production equipment. However, due to the large volume of production in such laboratories, there is a potential risk of extended insole delivery time, variations in the quality of the product, and other disadvantages of economic nature.
\nModern technologies also allow the use of other information in the design of orthoses, which is especially important in the complicated cases that are often encountered in clinical practice. By using them, it is possible to obtain the surface that is a basis for the design, to conduct simulations of the influence of the insole surface configuration on the displacements of anatomic structures (using models obtained by reconstruction from existing sets of DICOM images obtained at CT and MRI diagnostic procedures; e.g., to define the surface of the skin border and surrounding environment; it is also possible to reconstruct the internal bone structures and use them for navigation during design), and to carry out FEA analysis (e.g., using the abovementioned reconstructed anatomical models and information obtained from the pedobarographic measurements). The quality of design can also be improved by the use of other information such as thermographic images, as well as those that give us additional insight into the shape or function of the part of the body of interest to which the orthosis will be applied.
\nThe application of the CAD/CAM system, unlike the classical methodology, allows both the manufacture of molds (which can be recyclable material and are lighter than plaster) and manufacture of orthoses by direct material machining. This fact is especially emphasized in the production of an orthopedic insole base. The use of CAD/CAM technology also makes it possible to machine both the top and the bottom sides of the insole, either by using special machines that allow for simultaneously machining both insole sides, or in two setups, each insole side in separate setup. This makes it possible to realize an insole in a high degree of completion and with a minimal need for additional human labor. Table 1 shows the comparison of the methods of making orthopedic inserts using classical and digital procedures. The data are based on years of experience of the authors.
\nProcedure | \nClassical | \nCAD/CAM | \n
---|---|---|
Acquisition of information about the shape of the part of the body to which the orthoses will be applied (min–max time) | \n15–60 min | \n5 s–8 min | \n
Design and manufacture of the orthoses mold (min–max time) | \n1–6 h | \n5–30 min | \n
Production of the orthopedic insoles by molding and finalization (min–max time) | \n20–40 min | \n20–40 min | \n
Ability to create the orthoses without mold | \nVery low (+) | \nVery high (+++++) | \n
Creating the orthoses basis by direct material machining (min–max time) | \n2–3 h | \n5–15 min | \n
Repeatability of the appearance and properties of the orthoses | \nLow (++) | \nVery high (+++++) | \n
Cost of manufacture (excluding the cost of machines and their depreciation)—material, time, design, supplies (average) | \n100–250 € | \n50–130 € | \n
Ability to achieve the targeted mechanical properties of the orthoses | \nLow—high (+++) | \nVery high (+++++) | \n
Comparison of features of classic and CAD/CAM approaches in the production of foot orthoses.
The data presented undoubtedly point to the advantages that modern digital technologies provide in acquiring the information needed to define orthoses and of applying modern manufacturing technologies over the classical process. Digital volumetric measurement takes shorter time, and since it is most commonly performed with non-contact scanners, it does not require the consumption of materials, and given the digital nature of the information obtained, there is a minimal possibility of damaging them through transmission. The CAD design is carried out in the environment where many editing tools are provided. Using these tools, targeted corrections are achieved, and if not satisfied, this action may be terminated and design returned to the previous state. CAD module enables measurements (e.g., angles, Euclidean and geodesic distances, ranges, curvatures, area, etc.) that could be used to predict the volume and shape of the workpiece material and other materials needed to assemble the orthoses (e.g., appearance and surface of the insert top cover material that will be applied to the insole top aspect, or the size and contour of the material that will be molded over the mold by thermoforming). This material can also be cut using a CNC machine with a tangential knife, laser head, or a machining tool. The given approach saves material and prevents possible errors. By using appropriate software tools, it is also possible to smooth the surface in such a way that its main features will be preserved, while this is not the case in the classical procedure. Here, the mold is mostly obtained by pouring plaster into the impression of a foot in foam. After a considerable amount of time for the mold to solidify, there follows a physically demanding procedure for shaping the mold to achieve an adequate form with adjustments and a smooth surface. This involves the addition and subtraction of material on the rigid mold, which inevitably loses its shape. Measurements on such a mold are more complicated and more inaccurate. As previously mentioned, applying CAD/CAM in insole design may also include machining of the insole bottom, which results in an insole ready to use with just minimal additional processing. In the classical approach, forming the insole bottom is very rarely applied because it is extremely time-consuming. One very important feature of the CAD/CAM technology in making an orthosis is the ability to make a multiple copies of the orthosis mold or the orthosis itself. Using CAD/CAM technology, repeatability is very high, and all copies of the orthosis will have exact shape. This is, again, not the case in the classical procedure. The procedure here depends on the experience of the expert who is making the orthosis, the quality of the mold previously used, and other related issues. For this reason, users of the classically made orthosis copy often suggest that there is a significant difference in the properties and appearance of the orthosis when compared with the previously made one, and additional modifications are often required. Creating an orthosis using CAD/CAM technology also makes for great savings in material, time, and energy. One of the biggest reasons for this is that during the design of the orthosis, several parameters can be considered, based on which it is possible to select the appropriate blank size (whether for direct orthosis machining or for orthosis mold), to adjust the machining parameters, and to optimize the trajectories to obtain appropriate characteristics and quality of the surface. Also, the need for human labor has been sharply reduced, so the cost of manufacturing is almost halved compared to making an orthosis with the classical procedure. A particular aspect of the application of CAD/CAM technology is the technical quality of the product and the question of achieving the desired mechanical properties. If one considers the classical process of insole making, it is mostly carried out by thermoforming the material on the mold in a vacuum press. The heated (usually polymeric) material is formed over the mold surface. In this process, it changes its nominal properties and often loses those that are needed to achieve an appropriate therapeutic effect. This is especially manifested in conditions that are very common in clinical practice, which require the use of very soft materials (e.g., diabetes, rheumatoid arthritis, etc.). Since these materials are the most often porous, the pressing process in a vacuum press pushes the air out of the cells of material, and they becomes tiffer. Direct machining of materials in the CAD/CAM process minimizes loss of their properties, especially if the parameters are well adjusted.
\nA particular issue is the achievement of certain mechanical characteristics of the orthosis by determining the thickness of the material in a particular region. This is a common requirement and is much easier to implement with CAD design than through manual forming in the classical procedure.
\nFrom mentioned above and other indicators, it can be concluded that the implementation of the CAD/CAM procedure has contributed that the process of manufacturing an orthosis became:
More massive
More practical
More specific
Faster
More predictable
More accurate
More repeatable and
The application of the appropriate CAD program enables to carry out such corrective actions that cannot be easily achieved in the classical approach.
Generally, the benefits resulting from the application of digital technologies in manufacturing orthoses include:
Portability
Reduced manufacturing complexity
More time available to work with the patient
Reduction of storage and production space
Simplicity of copying and manufacturing the same orthoses
Simplicity of upgrading the production process
Possibility of distributed production
Reduced labor costs
Higher productivity
The particular benefit of using digital technologies is the achievement of more humane working conditions, that is, excluding people from jobs that are:
Physically demanding
Boring
Repetitive
Dangerous
The introduction of the CAD/CAM technology into O&P has led to faster and higher manufacturing of quality orthoses and has accelerated and simplified the procedure itself for both the patient and the orthotic practitioner [1].
\nAlthough there are numerous descriptions of manufacturing orthoses in the literature, a review of their production using CNC machine tools is relatively scarce. We can find a large number of articles that generally describe the application of the CAD/CAM technology in orthotics and prosthetics, but there is little information with a more detailed description of the technical design of such systems.
Orthotic practice has been radically changed by the implementation of digital technologies [3].
Particular progress in orthotic practice has been achieved through the implementation of contactless scanners of human body parts and CAD/CAM technology. The application of scanners reduces the time of defining the shape of a body part. Also, it eliminates physical work involved in the process of acquisition of the human body geometry, enables storing of information in digital form without the accompanying problems of mold storage, enables transmission of data over the network, and provides high accuracy of acquired results [1, 3, 4, 5].
Although the application of the CAD/CAM technology is unlikely to completely eliminate the need for human labor, its application in the production of orthoses has made a major technological breakthrough, and progress in technical quality and efficiency of the orthosis performance, with overall simplification of the procedure, and reduction of the need for otherwise hard work [5, 6].
It is evident that larger workpiece dimensions require more space, larger machines, and therefore more financial appropriations.
\nIn addition to the three-axis, we also often encounter four-axis milling machines, turning centers and multitasking machine tools. Industrial robots are also increasingly used in O&P practice [7, 8, 9, 10, 11] (Figure 9).
\nRobot-assisted spinal orthosis molds production.
However, the mentioned solutions still do not fully cover the main requirements of the practice: availability, greater efficiency, flexibility, and applicability within healthcare institutions.
\nThe application of digital production systems is closely related to the beginning of the 3D scanning application. The use of a 3D scanner allows the reduction of time for defining the shape of a body part of interest (as well as elimination of the physical labor used to define the shape of an orthosis or its mold in the classical procedure) and load the results of scanning into a CAD program (Figure 10). The resulting surfaces serve as the basis for design that will be modified or, upon superimposition onto the surface of the template, will be modified in terms of defining the corrective elements that give the functionality to orthosis. Upon completion of the design, the tool path is generated and transferred to the CNC machine tool [3, 12].
\nResults of 3D scanning of foot foam box impressions and patient’s back.
The use of CAD/CAM systems has not yet become widespread. There are reports in the literature that digital technology is currently in use in approximately a quarter of orthotic laboratories in developed countries, with the primary reasons being price, impractical performance, inconsistency, and the size of production systems. CAD/CAM technology is still a relatively new approach to O&P practice. The use of this technology has aroused great interest, but experiences are still being gathered and the approach is still evolving. Initial expectations from such systems were quite high in terms of increasing production, reducing manufacturing time, and obtaining high-quality products with a high degree of completeness, thus significantly reducing the required manual work. However, in a significant number of commercially available systems, this was not the case and such a system needs to be significantly refined to be adjusted for application in O&P. With implementation of new technologies, there is usually an initial doubt and hesitation in its application, especially if it is fundamentally different from the usual principles and if it requires the possession of additional knowledge in the IT and technical fields. However, it is undoubted that the cost of the initial investment in such production systems is the leading reason why they have not been widely implemented in practice. Other reasons include the problem of implementing this technology in production environments with limited space, impractical performance, and excessive complexity in use. From the above, it is concluded that any technological advancement of existing systems will be well received in practice [6, 13, 14].
\nEven a very detailed analysis of the available literature does not provide specific information on the important technical characteristics of the machines used in orthoses manufacture, through which it is possible to look at the design needs and modes of operation of the machine in the processing of different types of materials, and to optimize the production process. In practice, such data are generally obtained by trial and error [15].
\nIt is also very rare to find data on the application of machines based on parallel kinematics [16].
\nThe classic three-axis CNC machine tools are characterized by rigidity and the possibility of heavy loads during operation.
\nThe kinematic characteristics of most of the available machines, which are commonly used to make orthotic molds, assume mainly three- or four-axis milling CNC machines.
\nIn general, the following characteristics are expected from machines used in the orthotic industry:
High machining speed and high feed rate speed
Adequate quality of the machined surface
High repeatability
High flexibility of use in terms of the possibility of making molds for orthoses and prosthetic allowances of different uses
Appropriate work space for making the molds of maximum expected dimensions
Adequate rigidity
Energy efficiency
Quiet operation
Compactness and the least possible dimensions
The possibility of extending the functionality with additional equipment for performing measurements
These aspects are further complemented by economic issues, which must certainly take into account the fact that the final performance of the machine must be satisfactory since it is a major requirement for its implementation in practice. It is also imperative that the machine is safe for operation and that the necessary safety and technical conditions are met.
\nThe most represented machines in orthotic practice are the three-axis CNC milling machines, which are generaly less demanding versions of standard metal cutting machines. When a specific machine for orthoses manufacture is being developed, this activity is complex and involves consideration of many aspects from the medical and technical side.
\nMethods for achieving technical realization of the machine and related software support include:
Defining the required dimensions of the machine workspace, machine’s external dimensions, its characteristics defined by the needs of the profession
Development of a method for the solution of machine kinematics (solution of direct and inverse kinematics for the selected configuration), with the development of a software simulator to validate the kinematic model under virtual conditions
Development of a software support that enables the generation of compensated tool paths
Development of a simulation program with the possibility of realistic spatial simulation of machining the blank
Development of the machine prototype, including all necessary stages: design, definition of drive and control components, simulation, preparation of project documentation, procurement of parts and all necessary materials, assembly of the machine and its start-up, implementation of necessary tests and corrections in order to ensure minimum technical requirements and meet all safety needs
After the machine realization follows the implementation of activities aimed at determining the correctness of the assumptions that the application of this solution contributed to the advancement of the orthoses manufacturing, accelerated and simplified production, reduced the need for human physical labor, and generally improved the current state of technology.
\nExcept for the use of industrial robotic arms in mold machining, machines with five degrees of freedom are rarely encountered in orthotic practice.
\nIn regard to experimental purpose, one also considers designs of machines that are based on parallel kinematics, which are expected to give some answers to problems arising through the application of conventional CNC machine designs. As the orthoses manufacture requires a high productivity to meet the requirements set by practice, the machining of materials in terms of generating complex surfaces, the production of large models (we often encounter the need to create models with a height of more than 800 mm and radii larger than 250 mm), there is a need for a technical solution that will improve and integrate these characteristics, as this is a disadvantage of classic designs.
\nThis requirement is complemented by the fact that the materials used to make the orthoses or their molds (or base materials for the orthoses) are blanks made of cork, EVA, expanded polyurethane, polystyrene, MDF, or, less frequently, wood. All they belong to relatively soft materials, what significantly reduces the requirements on rigidity and power of needed for CNC machine tools applied in metal cutting.
\nBlanks typically come as templates in the form of blocks, plates, rollers, truncated cones, and shapes for making specific orthoses or their molds, which by shape and dimensions are the closest to the part of the body to which they are applied. Predefined shapes, templates, significantly increase process efficiency by reducing machining time and volume of the removed material.
\nThe use of robotic arms for purposes of machining has its greatest value in great flexibility in terms of designing different types of molds and manipulation of five, or more, degrees of freedom and a large working volume.
\nThe designs of the machines used in orthosis production are largely defined by the type of orthoses or molds for the orthoses being made.
\nIn addition, the technical requirements are also conditioned by the geometric complexity of the orthosis surface, the materials that will be processed, and the time required to complete the product.
\nFrom all of the above, it is evident that the production of orthoses and related products has specificities that are different from the usual use of CNC machine tools in the industry.
\nAlthough these technologies are also used for the production of “off the shelf” orthoses, in most cases individual products or molds for their production, after being machined, will require significant additional human labor (despite the fact that the manufacturing process is automated) in order to be ready for application. The orthoses are individual products with strong request for short production time. Therefore, in the part of the production process that is automated, all the operations should be as simple as possible to implement. The data defined in the design phase (type of material, surface quality requirements, cutting tools) allow the possibility to predefine a set of machining parameters that could be selected in the design phase. The tool path generation should also be simplified since it must be repeated when creating each individual item, which is a time-consuming process. Consequently, applied software should have a high degree of automation and ability to generate optimized trajectories especially for three-axis CNC machine tools with one rotational axis, since they have a problem of hidden areas, which, due to limited kinematic performance of such machines, cannot be machined. Since orthotic blanks of large dimensions and various shapes are often used in the manufacture of orthoses molds, in tool trajectory generation special attention is given to rough machining, which typically removes a large amount of material. This raises the next important question, the elimination of dust and chips created during machining, and the big problem we face in practice is their quantity and properties.
\nAlthough orthotics use materials that have been tested and certified for use, and these are usually polymers such as polyurethane, polystyrene, PP, PE, EVA (ethyl vinyl acetate), UHMWPE, etc. due to the machining process itself, the separated particles (chips) are electrically charged and attach to the machine components, which create a particularly big problem if the guides and other moving components are not adequately protected.
\nA further related problem lies in the fact that materials used are often porous, and internally still contain a significant amount of volatile chemicals that are released by machining, increasing their concentration in the machine’s workspace. In addition to adversely affecting the health of employees, these substances, by depositing on moving parts of the machine, can create a film that damages the sealing elements in the pneumatic components, or dissolve dust particles and create a solid deposit that compromises the operation of the bearings.
\nTherefore, it is necessary to provide systems that allow efficient evacuation and safely dispose of the particles generated by machining, since these are lightweight materials and particles of this dust, even at very low air flow, fly away from the surface and create high concentrations in space. Given these facts, it is highly desirable that these machines have a closed cabin and a good chips and dust collection system.
\nApplication of cooling is less commonly used in such systems. However, with some materials and when requiring the use of specific tools to achieve high surface quality (often in the case of production, EVA insoles that do not have an extra layer of cover material, or when making functional orthoses made of polypropylene), increase of tool heating can lead to the insole material melting or even igniting.
\nAlthough such situations can be substantially reduced by selecting the appropriate values of the cutting parameters, compressed air is directed to the tool for cooling purposes. It cools the tool, but its application is also useful in blowing chips. This is especially important for contouring performed to define the external orthosis boundaries.
\nAn important issue we often face in the use of CNC machine tools in the manufacture of orthoses is related to the clamping of the blank. As mentioned above, these are lightweight materials that need to be clamped as quickly as possible in the machine’s workspace. In most cases, the use of clamping devices, such as those used in clamping metal blanks, is not considered, with the exception of the manufacture of rigid molds (e.g., MDF material for the purpose of making molds for deep-profile plastic foot orthoses, or making molds for head orthoses when there is a high requirement for the accuracy of the resulting surface). Most often we come across simple manual clamping devices that are easy to manipulate and adjust the clamping force. This however is not simply applicable to all types of materials, which is particularly the case with materials that are softer and more elastic, where it is not easy to exert an adequate clamping force without significant deformation. The double-sided adhesive tape is commonly used to temporarily affix the blank to the machine’s work table. Although quality material placement is achieved in this way, the process takes a considerable amount of time before and after completion of the machining, and in most cases the application of double-sided adhesive tape is a significant financial expense (Figure 11).
\nVacuum table and double-sided tapes for workpiece fixation to machine table.
For machines of larger dimensions, a vacuum table is commonly used for clamping, and its application greatly simplifies the process of setting and fixing materials in the machine’s work space (Figure 11).
\nWhen using CNC lathes or multitasking machine tools we also encounter designs of clamping devices in which a shaft is fixed to the rotary axis, with a longitudinal axis collinearly positioned to the axis of rotation.
\nThe blank is attached to this shaft. To clamp such a blank, a nut with a thrust plate is used, which sometimes contains shallow, sharp pins that stick into the material, further securing it. Typically, there are designs of the machines where this shaft is mounted horizontally or vertically. In vertical designs, those with special assemblies for holding the blank are encountered, which additionally secure the blank from above and prevent machining vibrations.
\nSince the cutting forces in machining orthoses or their molds are incomparably less than those used in metalworking, the power requirement of the spindle motor often does not exceed 3 kW, and given the type of material being machined and the quality of the machined surface, there is a need for high rotational speed. It is desirable to achieve 20,000 RPM and above.
\nThe most commonly used tools for machining of the material include the end mill, ball nose mill, and burr design mill. Typically, milling tools with high helix angles are used, which results in better particle removal and maintains a lower local temperature. The use of burr mills is found in cases where it is necessary to achieve high quality of the machined surface in the shortest possible time or when very soft materials are being machined. This entails the need for a very high spindle speed (≥30,000 RPM) (Figure 12).
\nMilled sponge back support and soft facial mask.
When making orthoses, the most often used are the milling cutters with a diameter of 6–12 mm, while in the design of molds for body orthoses we encounter milling cutters with diameters up to 30 mm. Such milling tools can be longer than 300 mm, which places special requirement on the design of the tool clamping system.
\nIn the design of such machines, it is expected that the access to the workspace and placement of blanks be extremely easy, since they can be larger in size and it is desirable to affix them to the work table in a way that excludes high clamping forces. In addition, often during machining there is a need to create a mold or product with complex geometry. In doing so, the possibility of fracture of the blank or its separation from the clamping device is increased (high centrifugal forces caused by unbalanced masses), which creates the need for rapid shutdown of the machine and easy access to the machine’s working space.
\nThe design of the machine is also expected to be as compact as possible; as such machines are most often installed in smaller sized orthotic laboratories that adapt to new tasks, causing machines and furniture to be moved frequently.
\nThere is also a requirement for the machine to be very quiet, as such workplaces are often located near or within healthcare facilities where the general presence of a noise source is highly undesirable.
\nIn addition to the manufacture of orthoses themselves, CNC machine tools with modifications are also used for other purposes.
\nIn particular, by using them with a laser module or a tangential knife head, blocks of EVAe, cork, PP, HMWPE, UHMWPE, polyurethane, and other materials are cut into predefined shapes or contoured and allows other necessary cutting actions to be performed at high speeds.
\nIn addition, in practice it is common to use mounted scanning module (camera with laser module or other vision devices) to scan surfaces (e.g., to scan foot impressions in polyurethane foam), especially in machines with large work surfaces (e.g., three-axis CNC milling machines with large X and Y strokes).
\nAlthough rarely used, tool changer applications are very useful, especially in the manufacture of orthopedic insoles, in which ball nose cutters are used for machining the main surface, while end mill cutters with smaller radii are much more desirable for contouring.
\nMaking each type of orthosis has its own peculiarities. The same product can be manufactured in a number of ways, although CNC machines can be used in all cases. Ideally, there would be a universal machining system, which is not the case at least for now.
\nIn practice, the closest example of this might be the industrial robotic arm with at least five degrees of freedom, but for the time being there are some problems connected with use of this technology, which is why this manufacturing system is not overly present in orthotics.
\nIn O&P practice, three-axis machine designs are used in most cases. Usually, these are standard industrial milling machines that are modified or upgraded by a simple operation for the needs of the specificity of such production (Figure 13).
\nModern three-axis milling machine for foot orthoses production (courtesy of PedCAD GmbH).
The leading reason for the use of such implementations lies in the fact that generally in orthotics, CNC machine tools are most commonly used to make foot orthoses, primarily orthopedic insoles.
\nThe use of three-axis CNC machine tools satisfies most of the requirements and by using them it is possible to make an orthosis or mold for it with a high degree of completeness, that is, with little need for additional modifications. Creating a pair of orthopedic insoles usually takes 6–16 min. The dimensions of these machines range from the very small ones on which it is possible to make a pair of inserts to those with a large work area commonly used in large laboratories. Three-axis CNC milling machines are also used for other purposes, such as machining of molds for craniofacial orthoses and masks.
\nAlso, it is possible to make more complex molds, whereby the blank of known dimensions is after machining of one side rotated, for example, by 90° and fixed again on the work surface(Figure 14). If the dimensions of the working volume allow it, in this way it is possible to create molds for orthoses for various purposes. However, this procedure requires careful positioning and is time-consuming. Upgrading the three-axis CNC milling machine with the fourth rotary axis gives a machine more functionality [11].
\nMolds made on three-axis milling machine and custom protective facial mask.
In practice, we come across versions that are simply modified for specific needs. For example, for the purpose of machining orthopedic insoles, an accessory with a flat work surface is used on which the blanks are affixed, while for the manufacture of molds for spinal orthoses, a machine tool accessory is used in which, instead of a table, there is a fourth rotary axis.
\nGenerally, the rotary axis is a commonly used component in such machines, with the exception of those for making orthopedic insoles. The reason is that the molds used to make the orthoses resemble the part of the body for which the orthoses are made and are created by machining a blank that rotates around a defined axis. This enables the formation of a continuous surface and complex shapes.
\nSuch machines include CNC lathes or multitasking machine tools. Typical designs are those with a rotary axis set vertically or horizontally. They are usually used for machining blanks from expanded polystyrene or polyurethane. They are characterized by a large working volume (they are used to make molds for all types of orthoses, and molds for footwear; they are not particularly suitable for the production of orthopedic insoles, although they are also used in this regard), high efficiency, and an extensive particle removal system during machining. The average production of molds for orthoses of larger dimensions on standard versions of these machines takes between 25 and 60 min (Figure 15).
\nMolds produced from expanded PU foam.
For these purposes, standard versions of machines with rotary axes are rarely used, since in most cases they are intended for metalworking; so, they have a relatively small working space and accompanying components are not intended for the dust produced during the processing of the aforementioned materials.
\nApplication of CNC machine tools with five simultaneous axes in medical field is mostly present in manufacture of mold and dentures in dentistry [17, 18].
\nSuch systems enable the production of all types of molds and orthoses, possess exceptional dexterity, and usually have a large working space. The problems associated with them concern their control, which is more complex than for the usual Cartesian machines; rigidity; speed; and several other issues. Some specific examples of their use in orthotic practice include performing specific automated actions such as applying adhesive by spraying, dyeing, cutting material using a laser module, and also forming the orthosis shape after adding a 3D printing head.
\nIn use or in the form of realized prototypes, there are special machine designs that, by their construction and other characteristics, contribute to individual functionality, making such a machine more efficient, of more appropriate dimensions, or possessing other features that make it more applicable in O&P practice.
\nAmong the many, mentioned here is a special design of an industrial prototype of an orthopedic insole making machine (IPASIOU Project, Faculty of Mechanical Engineering and Naval Architecture Zagreb, Croatia) [19], characterized by a high degree of automation, which, with the automated digitization of both feet, enables an automated process of designing orthopedic insoles, including the top and bottom sides of the insoles (enabling footwear application without the need for additional modifications), and an automated tool path generation for a seven-axis machine with four Z axes (two pairs of collinearly coupled Z axes, which are autonomous and enable simultaneous processing of four different surfaces). As a result of carrying out this procedure, a pair of individually made insoles are prepared that are ready for application in footwear without further modifications, and the whole process of making a pair of such insoles from digitizing the feet to extracting the workpiece from the workspace takes 8–12 min (Figure 16).
\nIPASIOU system.
Another interesting example of a machine with special functionality, suitable for O&P, is found in a specially made CNC machine (Ortoflex, Faculty of Mechanical Engineering SlavonskiBrod, Croatia) [20].
\nThis machine is assembly based on a parallel kinematic design where the platform moves in the X, Y, and Z directions (Figure 17). The machine also includes two rotary axes. The primary purpose of the machine is to make molds for spinal orthoses, but it can also be used to make other molds as well. Its special feature is very high speed of movable platform on which the main spindle is located, and the possibility of machining shapes of complex geometry that cannot be easily realized on machines with four axes or fewer. Both projects, IPASIOU and Ortoflex, are the result of research aimed at improving the state of the art in the production of orthoses, in which the authors of this text participated. Of course, there are numerous other specific machine designs.
\nOrtoflex five-axis milling machine based on parallel kinematics.
This review discusses the use of CNC machine tools in the production of orthoses and molds for their manufacture. In this area, the application of such systems becomes a standard.
\nA similar approach is used in the design of individual prosthetic devices, although there are significant differences in the applied materials and functionality of such aids and the methodology of their manufacture and application, which is a much broader context, so their manufacturing is not elaborated in this review.
\nThere is also a range of other related products, the production of which is very similar to the production of orthoses such as individually made wheelchairs, inserts for standard seats, individually made mattresses, pillows, etc. where the use of CNC machine tools as well as industrial robots has enabled quick and precise workmanship.
\nAlthough there are still many open questions why the use of CNC machines in the O&P industry is not high, it is expected to become a standard manufacturing technology soon. The use of digital manufacturing technologies has radically changed the orthotic practice; made it simpler, better, faster, more accurate; and has introduced many other benefits. In contrast to the classical approach, it is also possible to exchange information and experience quickly, which contributes to the improvement of the methodology of orthotic design, to further optimization of the production process and the resulting savings. Certainly, the biggest beneficiary of this approach is the patient who gets more advanced orthosis in a shorter time.
\nAlthough competing technologies such as additive manufacturing are emerging, the advantages of the application of CNC machine tools in the manufacturing of orthotics will not be easy to achieve. Moreover, with the advancement of technology, it is expected that machine tools for this purpose will become more widely available and find wider application in the O&P field.
\nIntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. We uphold a flexible Copyright Policy, guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Monograph",metaDescription:"IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.",metaKeywords:null,canonicalURL:"/page/publication-agreement-monograph",contentRaw:'[{"type":"htmlEditorComponent","content":"When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\\n\\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\\n\\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\\n\\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\\n\\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\\n\\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\\n\\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\\n\\nAUTHOR'S DUTIES
\\n\\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\\n\\nThe Author agrees to:
\\n\\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\\n\\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\\n\\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\\n\\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\\n\\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\nAUTHOR'S WARRANTY
\\n\\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\\n\\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\\n\\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\\n\\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\nTERMINATION
\\n\\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\\n\\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\\n\\nIntechOpen’s DUTIES AND RIGHTS
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\\n\\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\\n\\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\nMISCELLANEOUS
\\n\\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\\n\\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\\n\\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\\n\\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\\n\\nPolicy last updated: 2018-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\n\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\n\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\n\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\n\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\n\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\n\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\n\nAUTHOR'S DUTIES
\n\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\n\nThe Author agrees to:
\n\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\n\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\n\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\n\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\n\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\nAUTHOR'S WARRANTY
\n\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\n\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\n\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\n\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\nTERMINATION
\n\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\n\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\n\nIntechOpen’s DUTIES AND RIGHTS
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\n\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\n\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\n\nMISCELLANEOUS
\n\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\n\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\n\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\n\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\n\nPolicy last updated: 2018-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15912}],offset:12,limit:12,total:119060},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"24"},books:[{type:"book",id:"10964",title:"Wearable Technologies",subtitle:null,isOpenForSubmission:!0,hash:"0981ee7867892cc6e0a4edd65b792ac9",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10964.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!0,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:null,bookSignature:"Prof. Hussain Al-Rizzo and Assistant Prof. Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:25},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:3},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:44},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:2},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"248",title:"Autonomous Research Robotics",slug:"autonomous-research-robotics",parent:{title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"},numberOfBooks:1,numberOfAuthorsAndEditors:2,numberOfWosCitations:36,numberOfCrossrefCitations:49,numberOfDimensionsCitations:73,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"autonomous-research-robotics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3792",title:"Robotics 2010",subtitle:"Current and Future Challenges",isOpenForSubmission:!1,hash:"b266dc4d99301e4ddf0dd05915a81bda",slug:"robotics-2010-current-and-future-challenges",bookSignature:"Houssem Abdellatif",coverURL:"https://cdn.intechopen.com/books/images_new/3792.jpg",editedByType:"Edited by",editors:[{id:"2524",title:"Dr.",name:"Houssem",middleName:null,surname:"Abdellatif",slug:"houssem-abdellatif",fullName:"Houssem Abdellatif"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"9376",doi:"10.5772/7323",title:"Development of Mobile Robots Based on Peristaltic Crawling of an Earthworm",slug:"development-of-mobile-robots-based-on-peristaltic-crawling-of-an-earthworm",totalDownloads:2135,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Hayato Omori, Taro Nakamura, Tomohide Iwanaga and Takeshi Hayakawa",authors:null},{id:"9370",doi:"10.5772/7327",title:"Screw and Cable Acutators (SCS) and Their Applications to Force Feedback Teleoperation, Exoskeleton and Anthropomorphic Robotics",slug:"screw-and-cable-acutators-scs-and-their-applications-to-force-feedback",totalDownloads:2804,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Phillipe Garrec",authors:null},{id:"9371",doi:"10.5772/7328",title:"A Novel Verticalized Reeducation Device for Spinal Cord Injuries: the WalkTrainer, from Design to Clinical Trials",slug:"a-novel-verticalized-reeducation-device-for-spinal-cord-injuries",totalDownloads:2079,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Stauffer Yves, Mohamed Bouri, Reymond Clavel,\r\nYves Allemand and Roland Brodard2",authors:null}],mostDownloadedChaptersLast30Days:[{id:"9384",title:"Development of an Android System Integrated with Sensor Networks",slug:"development-of-an-android-system-integrated-with-sensor-networks",totalDownloads:2352,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Takenobu Chikaraishi, Takashi Minato and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"}]},{id:"9361",title:"From Oil to Pure Water Hydraulics, Making Cleaner and Safer Force Feedback High Payload Telemanipulators",slug:"from-oil-to-pure-water-hydraulics-making-cleaner-and-safer-force-feedback-high-payload-telemanipulat",totalDownloads:2577,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Gregory Dubus, Olivier David and Yvan Measson",authors:null},{id:"9362",title:"Operational Space Dynamics of a Space Robot and Computational Efficient Algorithm",slug:"operational-space-dynamics-of-a-space-robot-and-computational-efficient-algorithm",totalDownloads:2259,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Satoko Abiko and Gerd Hirzinger",authors:null},{id:"9370",title:"Screw and Cable Acutators (SCS) and Their Applications to Force Feedback Teleoperation, Exoskeleton and Anthropomorphic Robotics",slug:"screw-and-cable-acutators-scs-and-their-applications-to-force-feedback",totalDownloads:2804,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Phillipe Garrec",authors:null},{id:"9371",title:"A Novel Verticalized Reeducation Device for Spinal Cord Injuries: the WalkTrainer, from Design to Clinical Trials",slug:"a-novel-verticalized-reeducation-device-for-spinal-cord-injuries",totalDownloads:2078,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Stauffer Yves, Mohamed Bouri, Reymond Clavel,\r\nYves Allemand and Roland Brodard2",authors:null},{id:"9365",title:"Reinforcement learningApproach to Objectcontact Motion with Estimation of Lowdimensional Submanifold and Mode-Boundary",slug:"reinforcement-learning-approach-to-objectcontact-motion-with-estimation-of-lowdimensional-submanifol",totalDownloads:1141,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Yuichi Kobayashi and Shigeyuki Hosoe",authors:null},{id:"9378",title:"A Model-Based Synthetic Approach to the Dynamics, Guidance, and Control of AUVs",slug:"a-model-based-synthetic-approach-to-the-dynamics-guidance-and-control-of-auvs",totalDownloads:1593,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Kangsoo Kim and Tamaki Ura",authors:null},{id:"9375",title:"Design, Development, Dynamic Analysis, and Control of a Pipe Crawling Robot",slug:"design-development-dynamic-analysis-and-control-of-a-pipe-crawling-robot",totalDownloads:3930,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Amir H. Heidari, Mehran Mehrandezh, Homayoun Najjaran and Raman Paranjape",authors:null},{id:"9363",title:"Modeling and Control of Mechanical Systems in Terms of Quasi-Velocities",slug:"modeling-and-control-of-mechanical-systems-in-terms-of-quasi-velocities",totalDownloads:2444,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Farhad Aghili",authors:null},{id:"9364",title:"Practical Model-based and Robust Control of Parallel Manipulators Using Passivity and Sliding Mode Theory",slug:"practical-model-based-and-robust-control-of-parallel-manipulators-using-passivity-and-sliding-mode-t",totalDownloads:1953,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"robotics-2010-current-and-future-challenges",title:"Robotics 2010",fullTitle:"Robotics 2010 Current and Future Challenges"},signatures:"Houssem Abdellatif, Jens Kotlarski, Tobias Ortmaier and Bodo Heimann",authors:null}],onlineFirstChaptersFilter:{topicSlug:"autonomous-research-robotics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/167486/elliot-breshears",hash:"",query:{},params:{id:"167486",slug:"elliot-breshears"},fullPath:"/profiles/167486/elliot-breshears",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()