",isbn:"978-1-83881-111-2",printIsbn:"978-1-83880-992-8",pdfIsbn:"978-1-83881-112-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"acb2875b3bfc189c9881a9b44b6a5184",bookSignature:"Dr. Abdo Abou Jaoudé",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11865.jpg",keywords:"Linear Operators, Normal Operators, Spectral Theorem, Applications, Differential Operators, Integral Operators, Functional Calculus, Complex Variables, Complex Analysis, Theory, Recent Advances, Latest Trends",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 13th 2022",dateEndSecondStepPublish:"June 21st 2022",dateEndThirdStepPublish:"August 20th 2022",dateEndFourthStepPublish:"November 8th 2022",dateEndFifthStepPublish:"January 7th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Abdo Abou Jaoudé is a pioneering Associate Professor of Mathematics and Statistics at Notre Dame University-Louaizé. He holds two PhDs in Mathematics and Prognostics from the Lebanese University and Aix-Marseille University. His research interests are in the field of mathematics.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé",profilePictureURL:"https://mts.intechopen.com/storage/users/248271/images/system/248271.jpg",biography:"Abdo Abou Jaoudé has been teaching for many years and has a passion for researching and teaching mathematics. He is currently an Associate Professor of Mathematics and Statistics at Notre Dame University-Louaizé (NDU), Lebanon. He holds a BSc and an MSc in Computer Science from NDU, and three PhDs in Applied Mathematics, Computer Science, and Applied Statistics and Probability, all from Bircham International University through a distance learning program. He also holds two PhDs in Mathematics and Prognostics from the Lebanese University, Lebanon, and Aix-Marseille University, France. Dr. Abou Jaoudé's broad research interests are in the field of applied mathematics. He has published twenty-three international journal articles and six contributions to conference proceedings, in addition to seven books on prognostics, pure and applied mathematics, and computer science.",institutionString:"Notre Dame University - Louaize",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Notre Dame University – Louaize",institutionURL:null,country:{name:"Lebanon"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10062",title:"Forecasting in Mathematics",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"9a3ad05fef0502040d2a238ad22487c0",slug:"forecasting-in-mathematics-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoude",coverURL:"https://cdn.intechopen.com/books/images_new/10062.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11066",title:"The Monte Carlo Methods",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"d1488c96b5b4d4909e963b9a91b1632f",slug:"the-monte-carlo-methods-recent-advances-new-perspectives-and-applications",bookSignature:"Abdo Abou Jaoudé",coverURL:"https://cdn.intechopen.com/books/images_new/11066.jpg",editedByType:"Edited by",editors:[{id:"248271",title:"Dr.",name:"Abdo",surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"30896",title:"Adhesive Properties",doi:"10.5772/37011",slug:"adhesive-properties",body:'\n\t\t
\n\t\t\t
1. Introduction
\n\t\t\t
Adhesive joints function in multiple branches of technical engineering in which the phenomenon of adhesion appears: creating adhesive joints, sealing, applying protective or decorative coating (paint or varnish), printing, decorating and many others. Among adhesive bonding techniques these are adhesive joints which are used most often in various machine structure joints.
\n\t\t\t
Surface phenomena, such as adhesion, cohesion and wettability, play an exceptionally important role in creating adhesive joints, as they influence the possibility of creating such a joint and its quality. Adhesive properties are fundamental in processes in which the phenomenon of adhesion appears. These properties are referred to as the whole of physical-chemical properties heavily influencing adhesion. Adhesive properties are a crucial indicator determining, for instance, whether the surface layer is properly prepared for permanent or temporary adhesive joints to be formed. The surface layer is the external layer of the material, limited by the real surface of the object, including this surface and the outer part of the material together with its real surface. It demonstrates different physical and chemical properties or qualities when compared with the core of the material.
\n\t\t\t
When analysing the issue of constituting adhesive properties, exceptional importance is ascribed to the first two groups of technological operations aimed at preparing and obtaining specific properties of the surface and the surface layer of the material, as well as a special improvement (modification) of the aforementioned. They allow, for instance, obtaining proper energy and geometric properties of the surface layer of joined materials, which positively influence adhesion.
\n\t\t\t
These operations are considered crucial in terms of constituting these properties in reference to forming and the quality of hybrid adhesive joints, as they are composed of materials of different physical, mechanical and chemical properties.
\n\t\t\t
Surface preparation, conducted according to the requirements, is one of the methods of constituting adhesive properties of a surface. Depending on the characteristics and required properties of adhesive joints it is possible to increase or decrease adhesion, i.e. to improve or lower adhesive properties.
\n\t\t\t
The selection of a surface preparation method (including appropriate technological operations allowing to achieve desired structure and energy properties) depends on many factors, among which the most important ones is the type of materials creating the adhesive joint.
\n\t\t
\n\t\t
\n\t\t\t
2. Surface layer
\n\t\t\t
In geometry, the surface is a two-dimensional geometric figure that limits the space filled with matter, i.e. surface in a theoretical sense. In mechanics, the surface is defined as the edge of a material body, which may be analysed in a molecular scale, micro- and macrosize, at the same time distinguishing different surfaces: material, nominal, real, observed, under machining, machined (Burakowski & Wierzchoń, 1995; Sikora,1997). The real surface may be defined as the surface separating the object from the surrounding environment. However, from the point of view of adhesion, the most important concept of surface is presented in the physical-chemical sense, as it involves the phases. In physical chemistry, surface is a boundary of two touching phases, i.e. interfacial surface or an interface, where an abrupt change of properties occurs together with the phase transition. Interfacial surfaces are surfaces between bodies of different states of aggregation (Hebda & Wachal, 1980). Surface in physical-chemical sense is analysed in three dimensions, despite the difficulties in determining the thickness/depth of the interface due to its small dimensions.
\n\t\t\t
The physical space is not a homogenous area between two phases. Atomically clean surface is extremely active physically and chemically, therefore, each contact with another body results in the adsorption of the substances. Newly adsorbed substances may initiate formation a new phase. Another aspect is that under a physically clean surface there may be various deformations and defects resulting from surface formation. Consequently, different properties may be observed in the physically clean surface compared to the core of the object. As a result, different layers constituting the surface layer may occur: below the surface, surface and above the surface.
\n\t\t\t
\n\t\t\t\t
2.1. The surface layer structure
\n\t\t\t\t
At present a number of definitions of the surface layer exist (Sikora, 1996,1997; Rożniatowski, Kurzydłowski, & Wierzchnoń,1994). One of the alternatives states that the surface layer is the external layer of the material, limited by the real surface of the object, including this surface and the outer part of the material under its real surface, which demonstrates different physical and, occasionally, chemical properties when compared with the core of the material. The articles (Kuczmaszewski, 2006; Sikora, 1996,1997) contain the description and the model of the surface layer of the material resulting from the adhesive failure. The surface layer has zonal structure. The proportions and the thickness of different zones vary, in addition the zones may interpenetrate, changing into one another or occupying the same space.
\n\t\t\t\t
The structure and properties of the surface layer depend on the type and course of multiple phenomena and processes, including physical-chemical phenomena, such as adhesion.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.2. The non-saturated surface force field
\n\t\t\t\t
The surface of any body consists of atoms, particles or ions, which are in different conditions than the ones inside the body. In the volume phase the particles are subject to equal forces of interaction. In the interface, however, the particles come into contact with their own phase as well as another one, which leads to the occurrence of asymmetric forces of interaction (Fig. 1, Burakowski & Wierzchnoń, 1995). The particles on the surface are more forcefully drawn into the volume phase, and as a result the surface has higher energy than the inside of the body. Such a surface is active and is able to adsorb other atoms or particles in its vicinity (Burakowski & Wierzchnoń, 1995; Dutkiewicz 1998).
\n\t\t\t\t
Figure 1.
A model of forces interacting with particles inside the solid and on its surface
\n\t\t\t\t
What is equally important is the degree to which the surface particles are surrounded by other particles, i.e. whether the surface is flat or porous (Fig. 2, Dutkiewicz, 1998). The degree of non-saturation of forces is higher for a porous surface than for a flat one, therefore, the former is more active physically and chemically.
\n\t\t\t\t
Figure 2.
The influence of porosity on the force field of various surfaces
\n\t\t\t\t
It is the surface free energy, characteristic of solids, which is the measure of the interactions between the particles on the surface and inside the body.
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
3. Adhesion
\n\t\t\t
\n\t\t\t\t
3.1. Adhesion and adhesive properties definitions
\n\t\t\t\t
The literature on the analysed subject is to some extent inconsistent in terms of contradicting terminology defining adhesion. Etymologically, ‘adhesion’ is derived from Latin adhaesio and stands for clinging or linkage. The adhesion is defined as a surface phenomenon, consisting in binding bodies in close contact as a result of force field interactions (Harding & Berg, 1997; Kuczmaszewski, 2006; Mittal, 1978, 1980; Żenkiewicz, 2000). The force field, induced by the charges of atoms constituting the surface layer (particles, ions), decreases exponentially with the distance to the surface (van der Waals interaction forces are negligible for the gap over 1-2 nm). Therefore for the adhesion to take place, the close contact of surfaces is required.
\n\t\t\t\t
Knowledge of the adhesive propriety plays important role in processes in which appears the occurrence of the adhesion. To such processes we can number the bonding, the painting, the decoration, the printing, the lacquer finish, etc. The adhesive properties characterise the surface of the materials taking into account their applicability in the adhesive processes. Good adhesive properties have a positive influence on the strength of the adhesive joint obtained, low properties significantly lower this strength or even prevent the bonding. Knowing the properties allows as well to constitute them properly by means of required surface preparation treatment of the analysed materials (Rudawska, 2010).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
3.2. Geometric structure and SEM technique
\n\t\t\t\t
Ggeometric structure and adhesive properties are extremely important in the technology of creating adhesive joints. The geometrical structure of the material surface has an influence on the adhesive joints strength obtained, and that is the reason why it should be carefully analysed before bonding. Surface roughness is important in view of the part the mechanical adhesion plays in general adhesion; consequently, it is beneficial to know the structure of the material surface layer that will be used in the adhesion process.
\n\t\t\t\t
A scanning electron microscope (SEM) is a type of electron microscope that images a sample by scanning it with a high-energy beam of electrons in a raster scan pattern. The electrons interact with the atoms that make up the sample producing signals that contain information about the sample\'s surface topography, composition, and other properties such as electrical conductivity. Due to the very narrow electron beam, SEM micrographs have a large depth of field yielding a characteristic three-dimensional appearance useful for understanding the surface structure of a sample (http://en.wikipedia.org/wiki/Scanning_electron_ microscope). Scanning electron microscopy (SEM) is generally considered micro-analytical techniques which are able to image or analyze materials we can not generally observe with the resolution offered by visible techniques. By image we mean photograph an object much smaller than we can see, even with the aid of an optical microscope (http://epmalab.uoregon.edu/epmatext.htm). SEM technique is very useful to analysis geometric structure of material for which is described adhesive properties (for example wettability or surface free energy).
\n\t\t\t\t
Below there are some of example of materials for which it was determined the geometric structure (Rudawska, 2009 b, 2010).
\n\t\t\t\t
The tests were conducted on aramide-epoxy composite samples. The composite consisted of two layers (2 x 0.3 mm) of aramide material marked KV-EP 285 199-46-003. The materials were arranged at 90 degree angle and subjected to the polymerisation process.
\n\t\t\t\t
The geometric structure of the analysed composite was defined by means of SEM images. The results are shown in Fig. 3.
\n\t\t\t\t
SEM images of the surface of analysed composite, show distinct differences in the surface structure, that are the result of specific character of the surface of the measures composites. The pleat and the direction of the materials arranged at 90 degrees angle can be easily noticed.
\n\t\t\t\t
The next tests were conducted on CP1 and CP3 titanium sheets samples. The samples of titanium sheets are made from:
\n\t\t\t\t
CP1 (Grade 1- ASTM B265) and thickness 0.4 mm,
CP3 (Grade 3 - ASTM B265) and thickness 0.8 mm.
\n\t\t\t\t
The results of SEM images of titanium sheets geometric structure are shown in Fig. 4 and Fig. 5.
\n\t\t\t\t
Figure 3.
Example of a surface topography SEM of the aramid/epoxy composite, magnification x250, a) spatial view, b) surface view (Rudawska, 2010)
\n\t\t\t\t
Figure 4.
Example of a surface topography SEM of CP3 titanium sheets surface, magnification x500, a) spatial view, b) surface view (Rudawska, 2009 b)
\n\t\t\t\t
SEM images of the titanium sheets surface show differences in the surface structure of analysed titanium sheets.
\n\t\t\t\t
The following samples are concern the SEM images of aluminium sheets surface. The samples used were aluminium clad (plated) sheets type 2024-T3 (sheet thickness: 0.64 mm) The results of SEM images of aluminium sheets geometric structure are shown in Fig. 6 (own research).
\n\t\t\t\t
Figure 5.
Example of a surface topography SEM of aluminium 2024-T3 sheets surface, magnification x750, a) spatial view, b) surface view
\n\t\t\t\t
The analysis of geometric structure of the analysed sheets considered in relation to adhesion technology is extremely important since these factors influence the obtained the adhesive joints strength.
Wetting is a procedure that determines the diffusion of a liquid (adhesive) over a solid surface (substrate), creating an intimate contact between them. The air displacement caused by this physical attraction minimises the interfacial flaws. Good wettability of a surface is a prerequisite for a good adhesive bonding. Wettability is a crucial issue in the case of forming adhesive joints, because it directly affects the phenomenon of adhesion, increasing or decreasing adhesion forces.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.2. Contact angle
\n\t\t\t\t
The contact angle Θ provides the measure of wettability. This is the angle formed between the wetted solid surface and the tangent to the wetting liquid surface (to the meniscus of the wetting liquid), at the contact point of the liquid and the solid surface (Comyn, 1992; Hebda & Wachal 1980; Lee, 1993; McCarthy, 1998; Żenkiewicz, 2000).
\n\t\t\t\t
When wetting the surface of a solid, the contact angle value will be lower than 900 (Fig. 8). The case when the contact angle Θ = 00, indicates that the liquid spreads over the surface evenly and, furthermore, represents complete wetting of a solid surface by a liquid. If the contact angle Θ = 1800, then the result is absolute non-wetting (McCarthy, 1998).
\n\t\t\t\t
The literature offers various tips on surface wetting, which account for the differences in size and interdependencies (as for the contact angle). In order for the liquid to wet the surface of the solid favourably, its surface tension should be lower than the surface tension of the liquid.
\n\t\t\t\t
The contact angle can provide the measure of wettability of solids by liquids, it can determine critical surface tension, moreover, it can be used for determining surface free energy, as well as for the analysis of surface layer changes occurring when the surface is modified (Żenkiewicz, 2000).
\n\t\t\t\t
Figure 7.
Wetting of a solid surface by the liquid in the case of: a) favourable wettability Θ < 900 and insufficient wettability Θ > 900
\n\t\t\t\t
There are a number of factors significantly influencing the value of contact angle and the correctness of the angle measuring process, which include: the longitudinal modulus of elasticity (surface rigidity), surface porosity, chemical and physical homogeneity of the surface (and the surface layer), surface contaminants, the type of a measuring liquid, drop volume or humidity.
The hysteresis is assumed to consist of two basic components: thermodynamic and dynamic. The sources of the former can be found in porosity and heterogeneity of the surface and the surface layer of the analysed material. This component of the hysteresis is independent of the surface age of the drop, provided the volume of the drop remains unchanged throughout. The other component, the dynamic hysteresis, results from the wetting liquid – test material chemical interaction, as well as from penetration of the gaps in the material by the measuring liquid. The dynamic hysteresis depends on the surface age of the drop (Żenkiewicz, 2000).
At present, this is the direct measurement of the contact angle which is a commonly applied method, and the measurement is conducted by means of specialised instruments called goniometers or contact angle analysers (Żenkiewicz, 2000).
One of the factors influencing the contact angle is the drop volume. The impact of this factor is by no means certain, since there are no prevailing conclusions, due to the fact that the contact angle measurement methods and calculating models applied in tests were different. In his work (Żenkiewicz, 2000) M. Żenkiewicz included a lot of information both on the measuring drop volumes as well as contact angle measuring methods. M. Zielecka (Zielecka, 2004) observed the influence of the size of the drop on the contact angle measurement, and arrived at a drop volume range of 2-6 mm, within which the size of the drop bears no influence on the measurement of the contact angle. X. Tang, J. Dong, X. Li (Tang, Dong & Li, 2008). conducted contact angle measurements for distilled water drops in the volume range of 3-6 µl. In their tests, K. B. Borisenko and others (Borisenko, Evangelou, Zhao & Abel, 2008). used the diiodomethane drop volume of 5 µl. Although, in the tests conducted by M. Żenkiewicz (Żenkiewicz, 2005), Q. Bénard, M. Fois and M. Grisel (Bernard, Fois, & Grisel, 2005). the measuring liquids applied were different (distilled water, glycerol, formamide, diiodomethane, α-bromonaphthalene), the volume of the drop was identical – 3 µl. In the case of many works (Hołysz, 2000; Serro, Colaço & Saramago, 2008; Żenkiewicz, 2000) the measuring drop volume ranges from 2-5 µl (2 µl, 4 µl), e.g. J. Shang and others (Shang, Flury, Harsh & Zollars, 2008). apply a 2 µl drop for static contact angle measurements and larger 5 µl in the case of dynamic contact angle measurements. According to the data collected from the literature (Żenkiewicz, 2000), the size of the drop should range between 28mm3 and 0.5 mm3.
\n\t\t\t\t
\n\t\t\t\t\tThe surface age of the drop, i.e. the time between the application of a drop and the measurement, is one another contact angle affecting factor. M. Żenkiewicz (Żenkiewicz, 2000) notes that the time between the application and the measurement should be as short as possible, and moreover, identical for all the drops of the test series. Following this procedure should ensure a small influence of the drop-surface interaction and reduction of the drop volume as a result of evaporation.
\n\t\t\t\t
X. Tang, J. Dong and X. Li (Tang, Dong & Li, 2008) deal with the phenomena of wetting and contact angle and additionally present test results of the influence of the surface age of the drop on the contact angle volume for different (wet and dry) surface states.
\n\t\t\t\t
Another factor taken into consideration is temperature. M. Żenkiewicz (Żenkiewicz, 2000) mentions in his paper that within the range of 80 °C, any changes in temperature only to a small degree trigger changes in the surface free energy, and natural temperature fluctuations, possible during laboratory tests, have a negligible impact on the samples contact angle measurements results. N. Zouvelou, X. Mantzouris, P. Nikolopoulos (Zouvelou, Mantzouris & Nikolopoulos, 2007) compared their tests observations with the literature data and drew a linear dependence of the surface free energy and the contact angle of certain materials on the temperature (nevertheless for high temperatures of approx. 800 °C– 1173 K, 1500 °C- 1773 K).
\n\t\t\t\t
\n\t\t\t\t\tThe longitudinal modulus of elasticity (surface rigidity) is yet another factor which should be considered when measuring the contact angle. M. Żenkiewicz, J. Gołębiowski and S. Lutomirski (Żenkiewicz, Gołębiewski & Lutomirski, 1999). stress that the surface of the test material where measuring drops are placed should be appropriately rigid. Therefore, the longitudinal modulus of elasticity of the material should be higher than 10 kPa, as it would prevent any drop deformations, resulting from the weight of the measuring drop.
\n\t\t\t\t
One of the components of the thermodynamic hysteresis, surface porosity, is the next factor in question. R.D. Hazlett (Hazlett, 1992) describes and presents opinions of other researchers on the influence of surface porosity on the hysteresis of the contact angle, to conclude that the influence of porosity is beyond a shadow of a doubt. It can be, however, assumed that if Ra < 0,5 μm, then the impact of porosity on the contact angle is insignificant.
\n\t\t\t\t
A.P. Serro, R. Colaço and B. Saramago (Serro, Colaço & Saramago, 2008) present test results for two samples made of UHMWPE (ultra-high-molecular-weight polyethylene) of different porosity, characterised by the Ra parameter of 3.9 and 1.0 nm, and the distance between the micropores of 23 and 6 nm respectively. They note that the wettability for given cases is irrespective of surface porosity, and that the contact angles measured for water and hexadecane are identical. However, J. Xian (Xian, 2008) points out that the wettability and the contact angle for a porous surface, e.g. analysed steel and polymers, is different for a smooth surface, adding that the change of the contact angle on a porous surface depends on the contact angle of a smooth surface of the analysed materials.
\n\t\t\t\t
\n\t\t\t\t\tThe physical and chemical homogeneity of the surface (and the surface layer) – i.e. physio-chemical homogeneity, which is the second source of the thermodynamic hysteresis, is another aspect taken into consideration when measuring the contact angle. Moreover, a considerable influence on the contact angle value may be observed on the part of the following: additive migration, diverse supermolecular structure, along with surface inhomogeneity – the result of different functional groups of different size and character formed on that surface.
\n\t\t\t\t
What cannot be disregarded when measuring the contact angle is the analysis of the type of the measuring liquid. The measuring liquid penetration of the gaps in the surface layer of the material as well as of the intermolecular spaces is one of the causes of the dynamic hysteresis. The molar volume of the liquid plays an important role in the process as well – the rate of water penetration processes becomes slower and limited when the volume rises. Owing to its low molar volume water easily penetrates the structure of certain materials, therefore the importance of proper measuring liquid selection.
\n\t\t\t\t
Other factors significantly disturbing the measurement of the contact angle are the surface\n\t\t\t\t\tcontaminants and air humidity at the time of a test. Furthermore, the\n\t\t\t\t\tsample should be firmly fixed in order to prevent any measuring drop deformations as a result of vibrations.
\n\t\t\t\t
Publications include plenty of information on the aspects of drop dispersion, along with the model of phenomena occurring when the contact angle measurement is taken for different liquid contact models, not to mention the characteristics of static and dynamic contact angle measurements. Some articles highlight the practical importance of wetting and wettability of different liquids in various processes, such as impregnation.
\n\t\t\t\t
The factors mentioned in the preceding paragraphs hinder the measurement of the contact angle and the analysis of tests results, in addition they lead to different metastable states of the drop itself. These phenomena result in the contact angle hysteresis.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.4. The contact angle hysteresis
\n\t\t\t\t
Among many issues connected with the contact angle (the type of angle, measurements and values used in calculations) special importance is attributed to the contact angle hysteresis, which is the result of phenomena associated with metastable states of the measuring drop placed on the analysed surface of a solid (Bayer, Megaridis, Hang, Gamota & Biswas, 2007; Vedantam & Panchagnula, 2008; Zielecka, 2004; Żenkiewicz, 2000).
\n\t\t\t\t
The first significant research on the contact angle hysteresis began in the middle of the 1970s and was conducted for example by R.J. Good (Good,1979). E. Chibowski and F. González-Caballero (Chibowski & González-Caballero, 1993). presented theoretical information on the contact angle hysteresis, factors causing it and the description of the observed contact angle hysteresis connected with chemical interactions. C.W. Extrand (Extrand, 1998). characterised some of the contact angle hysteresis theoretical models and presented the study of the contact angle hysteresis thermodynamic model based on the research on polymers.
\n\t\t\t\t
The Young equation constitutes the basis for theories related to the phenomenon of wettability. This equation comprises a measurable geometric parameter – the contact angle with three thermodynamic indices, which allow explaining the properties of interactions in the interface. The Young equation (also called Young-Laplace equation) was formed in 1805 and since then its principles and description have been used in multiple publications (Diaz, Fuentes, Cerro & Savage 2010; Faibish, Yoshida & Cohen, 2002; Żenkiewicz, 2006,2000).
\n\t\t\t\t
The Young equation describes an ideal system, which meets specific requirements of the contact angle measurement, geometric properties and qualities of the analysed surfaces (e.g. porosity, rigidity, physical and chemical homogeneity or the lack of surface contaminants). These requirements have been described in subsection 4.3.
\n\t\t\t\t
If the surface meets the Young equation principles, the drop placed on it remains in equilibrium, which is accompanied by the lowest energy state. In such a situation, the contact angle is referred to as an equilibrium contact angle and its value does not depend on the changes of the drop volume. If the surface fails to meet the principles of Young equation, the measuring drop placed on it is in a metastable state, and then the contact angle of this drop may be higher or lower than the equilibrium angle. Initially, the gradual increase of the drop volume causes the increase of the contact angle until it reaches the limit, called the advancing contact angle ΘA (Chibowski & González-Caballero, 1993; Żenkiewicz, 2000).
\n\t\t\t\t
After this volume has been exceeded, an abrupt change of the drop position occurs - an abrupt change of the drop contour (decrease in height, increase in the contact area) and decrease in the volume of the contact angle. If the volume of the drop is gradually decreased, the value of the contact angle will initially decrease until it reaches the value called the receding angle ΘR. After this value has been exceeded, the contour of the drop abruptly recedes (the height increases, the contact area decreases) and the value of the contact angle increases. A new metastable state of the drop location is, characterised by the contact angle is higher than the receding angle. Therefore, the contact angle hysteresis is defined as the difference between the advancing angle ΘA and the receding angle ΘR on the tree-phase contact line (Chibowski & González-Caballero, 1993; Faibish, Yoshida & Cohen, 2002; Vedantam & Panchagnula, 2008; Volpe & Siboni 1998; Żenkiewicz, 2000).
\n\t\t\t\t
The contact angles ΘA and ΘR, along with their corresponding drop volumes: maximum (for ΘA) and minimum (for ΘR) with a constant diameter (D) of the circle created by the drop lying on the tested material, are shown in the Fig. 9 (Żenkiewicz, 2000).
\n\t\t\t\t
Figure 8.
The contact angles with a constant diameter D (D=const): ΘA – the advancing angle, ΘR – the receding angle, 1 – the maximum volume drop, 2 – the minimum volume drop
\n\t\t\t\t
The hysteresis is assumed to consist of two basic components. First is the so called thermodynamic hysteresis, which results from porosity and heterogeneity of the surface and the surface layer of the tested material. This component is independent of the surface age of the drop (provided that the drop volume remains unchanged while measured). The other component is the dynamic hysteresis. It results from, among other things, chemical interactions of the measuring liquid with the tested material, and the measuring liquid penetration of the gaps in the material. The dynamic hysteresis depends on the surface age of the drop (Żenkiewicz, 2000).
\n\t\t\t\t
The research on the hysteresis is extremely important from the practical point of view of, for instance, the surface free energy calculations. It is mostly connected with the question of which contact angle should be adopted in the simplified equation (3) in order to obtain the correct result. The contact angle used in calculations is the angle θA called the advancing angle.
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
5. Surface free energy
\n\t\t\t
Surface free energy (SFE) is one of the thermodynamic quantities describing the state of atom equilibrium in the surface layer of materials (Hołysz, 2000; Żenkiewicz, 2000,2005). This quantity is characteristic for each substance. It reflects the specific state of unbalance in intermolecular interaction which is present at the phase boundary of two mediums.
\n\t\t\t
Surface free energy is of equal number to the work necessary for creating a new surface unit while separating two phases in equilibrium, in a reversible isothermal process. It is measured in [mJ/m2] (Żenkiewicz, 2000).
It was derived from the condition of equilibrium of forces which represent surface tensions at the contact point of three phases – solid, liquid and gas.
where ΘV is the equilibrium contact angle, and σLV, σSV, and σSL are the surface free energies of liquid–vapour, solid–vapour and solid–liquid interfaces, respectively.
where: γ denotes surface free energy and the other symbols have the same meaning as in the equation (1).
\n\t\t\t\t
It is impossible to determine surface free energy directly from the equation (2) because of the two unknowns: γSV and γSL. For calculation purposes, the following form of the equation (2) is commonly used to determine the surface free energy of solids (Chibowski & González-Caballero, 1993; Żenkiewicz, Gołębiewski & Lutomirski, 1999):
where: γS –surface free energy of solids in a vacuum,
\n\t\t\t\t
γSL – surface tension on the solid – liquid phase boundary,
\n\t\t\t\t
γL –surface free energy of the measured liquid,
\n\t\t\t\t
ΘV – contact angle measured on the examined true surface.
\n\t\t\t\t
The main drawback of the equation (1) is that it refers to an ideal system because it has been based on theoretical considerations, to a large extent not confirmed empirically. Still, this is the contact angle measurement which is the most often used method to determine energy properties of solids.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
5.2. Surface free energy determination methods
\n\t\t\t\t
The various SFE determination methods are based on specific relations, and involve the measurement of contact angles of various liquids. A number of factors have a substantial influence on the correctness of the contact angle measurement (subchapter 3.3). Some issues related to contact angle measurements and wettability have been highlighted shown in the literature.
5.2.1. The Owens-Wendt (Kaelble-Owens-Wendt) method (OW)
\n\t\t\t\t\t
The Owens-Wendt method (sometimes referred to as Kaelble-Owens-Wendt method) is a frequently applied method for determining the surface free energy of, e.g. polymers (Jańczuk & Białopiotrowicz, 1987; Rudawska & Kuczmaszewski, 2006; Rudawska, 2008). This method consists in determining dispersive and polar components of SFE based on Berthelot principle (Żenkiewicz, 2000), which assumes that interaction between molecules of two bodies in their surface layers equals the geometric mean of the cohesion work between the molecules of each body.
\n\t\t\t\t\t
This method assumes that the surface free energy (γS) is a sum of two components: polar (γSp) and dispersive (γSd), and that there is a relation between the three quantities:
The dispersive element is the sum of components derived from such intermolecular interactions as: polar, hydrogen, induction and acid-base, with the exception of dispersive interactions. Dispersive interactions constitute the dispersive component of the surface free energy.
\n\t\t\t\t\t
The work of adhesion between the solid and the liquid can be described by means of the Dupré equation:
This equation allows determining the surface free energy of a solid and its SFE components.
\n\t\t\t\t\t
In order to determine the polar and the dispersive components of the surface free energy, the measurements of the contact angle of the analysed samples need to be conducted with two measuring liquids. The surface free energy of the measuring liquids used in test is known, including its polar and dispersive components. One of the liquids is non-polar and the other is bipolar. Most frequently, the tests include distilled water as the polar liquid and diiodomethane as the non-polar one.
where: γSd – the dispersive component of the test material surface free energy, γSp – the polar component of the test material surface free energy, γd – the surface free energy of diiodomethane, γdd – the dispersive component of the surface free energy of diiodomethane, γdp – the polar component of the surface free energy of diiodomethane, γw – the surface free energy of water, γwd – the dispersive component of the surface free energy of water, γwp – the polar component of the surface free energy of diiodomethane, Θd – the contact angle of diiodomethane, Θw – the contact angle of water.
\n\t\t\t\t\t
There is one of example of materials for which it was determined the surface free energy after various surface treatment (Rudawska, 2008, 2009).
\n\t\t\t\t\t
The surface free energy of the material presented below was calculated with the Owens-Wendt method. This is a structural material applied in e.g. aircraft industry. The tests were to determine the influence of a surface preparation method on the SFE of the sample material.
\n\t\t\t\t\t
The tests were conducted on glass-epoxy composite samples consisting of two layers (2x0.30 mm) of glass fibre 3200-7781. The fabric layers were arranged at a right angle and cured conforming to the technology standards.
\n\t\t\t\t\t
The composite samples were tested for four surface preparation variants:
\n\t\t\t\t\t
variant I – no surface preparation;
variant II – degreasing with Loctite 7036 (a detailed description of this method can be found in e.g. (Rudawska & Kuczmaszewski, 2005));
variant III – mechanical surface preparation with P320 abrasive tool;
variant IV – mechanical surface preparation with P320 abrasive tool, followed by degreasing with Loctite 7036.
\n\t\t\t\t\t
The surface free energy values as well as the components of the SFE for four tested glass-epoxy composite surface preparation variants are presented in Fig. 10-13 (Rudawska, 2008, 2009).
\n\t\t\t\t\t
Figure 9.
Surface free energy and the components of SFE - the surface of glass/epoxy composite without surface treatment (variant I): 1 – polar component of SFE, 2 – dispersive component of SFE, 3 – surface free energy (SFE)
\n\t\t\t\t\t
Figure 10.
Surface free energy and the components of SFE - the surface of glass/epoxy composite after degreasing (variant II): 1 – polar component of SFE, 2 – dispersive component of SFE, 3 – surface free energy (SFE)
\n\t\t\t\t\t
Figure 11.
Surface free energy and the components of SFE - the surface of glass/epoxy composite after the P320 grinding tool processing (variant III): 1 – polar component of SFE, 2 – dispersive component of SFE, 3 – surface free energy (SFE)
\n\t\t\t\t\t
Figure 12.
Surface free energy and the components of SFE - the surface of glass/epoxy composite after the P320 grinding tool processing and degreasing (variant IV): 1 – polar component of SFE, 2 – dispersive component of SFE, 3 – surface free energy (SFE)
\n\t\t\t\t\t
The results demonstrate that the highest values of the surface free energy were obtained in the case of degreasing, while the lowest were observed for variant I, with no surface preparation. Consequently, it appears that mechanical surface preparation and mechanical surface preparation followed by degreasing both increase the surface free energy. Additionally, no statistically relevant difference in the γS values of the two variants in question was observed.
\n\t\t\t\t\t
Taking into consideration the polar component of the SFE, its highest value was noted in the case of surface preparation variant II, in which the surface free energy value was the highest as well. Additionally, the polar component constituted 24% of the total SFE. In the case of variant I, with the lowest γS value in the tests, the polar component constitutes 17% of the SFE. For the other two variants, III and IV, the polar component represented scant 7% and 8% respectively.
\n\t\t\t\t\t
The analysis of the SFE values leads to the observation that degreasing the surface of the glass-epoxy composite has beneficial effect on the surface free energy value. It results in the increase of the SFE as compared to the surfaces with no prior surface preparation.
\n\t\t\t\t\t
To conclude, it must be mentioned that, firstly, forming an adhesive joint should be preceded by certain surface preparation methods, and secondly, that this is degreasing which produces the best results in terms of adhesive properties of the analysed glass-epoxy composite.
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.2.2. The van Oss-Chaudhury-Good method (OCG)
\n\t\t\t\t\t
In the case of the van Oss-Chaudhury-Good method the surface free energy is a sum of two components (Adão, Saramago & Fernandes, 1999; Żenkiewicz, 2000). While the first component γiLW is connected with long-range interactions (dispersive, polar and inductive, referred to as Lifshitz-van der Waals electrodynamic interactions), the second component γiAB describes the acid-base interactions (Hołysz 2000; Jansen, 1991):
Good R.J. and van Oss C.J. (Good & van Oss, 1992) separate the acid component (electron-acceptor: γL+,γS+) and the base component (electron-donor: γL-,γS-) of the surface free energy.
\n\t\t\t\t\t
Moreover, the γiAB component can be described by means of equation for bipolar compounds (showing properties of both Lewis acids and bases), (Elftonson, Ström, Holmberg & Olsson, 1996):
where: γi+ – Lewis acid surface free energy component, γi- – Lewis base surface free energy component, index i – subsequent measuring solids or liquids.
\n\t\t\t\t\t
Determining the SFE of test materials will consist in measuring their surfaces contact angle with three different measuring liquids and calculating the γS of the system of three equations:
Measuring the contact angle requires the application of two polar and one non-polar liquids; nevertheless, solving the equation (3) requires additional information – particular values for the applied measuring liquids. Polar liquids applied in tests are water, glycerol, formamide or ethylene glycol, and non-polar liquids (not showing properties of either Lewis acids or bases) diiodomethane or α-bromonaphthalene.
Determining the SFE with the van Oss-Chaudhury-Good method is uncomplicated, nevertheless, the test results should be carefully analysed. This method is burdened with a few problems, including e.g. the fact that the test results depend heavily on the applied measuring liquids configuration. This issue has been described by e.g. C. Della Volpe and S. Siboni (Volpe & Siboni, 1998). who in addition present the Drago theory, concerning, among other issues, the properties of Lewis acids and bases.
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
5.2.3. The comparison OW and OCG methods
\n\t\t\t\t\t
Due to the fact that the methods of calculating the surface free energy presented in the previous chapters are most frequently applied, a comparison of selected structural materials SFE values calculated with the Owens-Wendt and the van Oss-Chaudhury-Good methods should be conducted (Kuczmaszewski & Rudawska, 2002).
\n\t\t\t\t\t
The structural material under analysis was electrolytic zinc coated and hot dip zinc coated sheets, which find application in such industries as automotive, construction or machine-building. The zinc coated sheets were 0.7 mm thick, the hot dip zinc coating equalled 18 μm and electrolytic zinc coating equalled 7.5 μm (following the PN-89/H-92125 and PN–EN 10152 standards).
\n\t\t\t\t\t
The sample material surface was degreased with degreasing agents: Loctite 7061 and acetone. Degreasing was conducted in ambient temperature between 18 and 20 0°C with relative humidity oscillating between 38% and 40%.
\n\t\t\t\t\t
The method applied for measuring the contact angle was the direct measurement of the angle between the measuring drop and the tested surface.
\n\t\t\t\t\t
For calculating the surface free energy with the Owens-Wendt method relationships (9) and (10) were applied. The values of both the surface free energy and its components for the applied measuring liquids are presented in Table 1 (Jańczuk& Białopiotrowicz, 1987).
\n\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t\tNo. Measuring liquid Surface free energy and its components [mJ/m2] \n\t\t\t\t\t\t\t\t\t\t \n\t\t\t\t\t\t\t\t\t\t \n\t\t\t\t\t\t\t\t\t\t γL\n\t\t\t\t\t\t\t\t\t\t γL\n\t\t\t\t\t\t\t\t\t\tp\n\t\t\t\t\t\t\t\t\t\t γL\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\t\t\t\t \n\t\t\t\t\t\t\t\t\t\t\t 1 Distilled water 72.8 21.8 51.0 \n\t\t\t\t\t\t\t\t\t\t\t 2 Diiodomethane 50.8 2.3 48.5 \n\t\t\t\t\t\t\t\t\t\t\t \n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t \n\t\t\t\t\t\t\t\t\t\t 1 Distilled water 72.8 21.8 51.0 \n\t\t\t\t\t\t\t\t\t\t 2 Diiodomethane 50.8 2.3 48.5 \n\t\t\t\t\t\t\t\t\t\t \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t
The values of the surface free energy and its components for the applied measuring liquids
\n\t\t\t\t\t
The values of the surface free energy and its components were calculated with the van Oss-Chaudhury-Good method using the data presented in Table 2 as well as relationships (3) and (4).\n\t\t\t\t\t
\n\t\t\t\t\t
The surface free energy values of the electrolytic zinc coated and hot dip zinc coated sheets calculated with the Owens-Wendt method are presented in Table 3 (Kuczmaszewski & Rudawska, 2002).
\n\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
No.
\n\t\t\t\t\t\t\t\t
The type of zinc coated sheets
\n\t\t\t\t\t\t\t\t
The type of the degreasing agent
\n\t\t\t\t\t\t\t\t
Surface free energy and its components [mJ/m2]
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
γS
\n\t\t\t\t\t\t\t\t
γSp
\n\t\t\t\t\t\t\t\t
γSd
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
1
\n\t\t\t\t\t\t\t\t
Electrolytic zinc coated sheets
\n\t\t\t\t\t\t\t\t
Loctite 7061
\n\t\t\t\t\t\t\t\t
42.0
\n\t\t\t\t\t\t\t\t
17.8
\n\t\t\t\t\t\t\t\t
24.2
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Acetone
\n\t\t\t\t\t\t\t\t
35.4
\n\t\t\t\t\t\t\t\t
10.7
\n\t\t\t\t\t\t\t\t
24.7
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
2
\n\t\t\t\t\t\t\t\t
Hot dip zinc coated sheets
\n\t\t\t\t\t\t\t\t
Loctite 7061
\n\t\t\t\t\t\t\t\t
44.7
\n\t\t\t\t\t\t\t\t
9.7
\n\t\t\t\t\t\t\t\t
35.0
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Acetone
\n\t\t\t\t\t\t\t\t
43.8
\n\t\t\t\t\t\t\t\t
11.6
\n\t\t\t\t\t\t\t\t
32.2
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t
Table 3.
The zinc coated sheets surface free energy calculated with the Owens-Wendt method
\n\t\t\t\t\t
The results demonstrate that the dispersive component of the surface free energy for hot dip zinc coated sheets is higher (even three times) than its polar component. In the case of electrolytic zinc coated sheets degreased with Loctite7061, this difference is less significant.
\n\t\t\t\t\t
The values of the surface free energy of the electrolytic zinc coated and hot dip zinc coated sheets calculated with the van Oss-Chaudhury-Good method are presented in Table 4 (Kuczmaszewski & Rudawska, 2002). The results were obtained from the tested sheet surface layer contact angle measurement taken with distilled water, glycerol and diiodomethane as measuring liquids.
\n\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
No.
\n\t\t\t\t\t\t\t\t
The type of zinc coated sheets
\n\t\t\t\t\t\t\t\t
The type of the degreasing agent
\n\t\t\t\t\t\t\t\t
Surface free energy and its components [mJ/m2]
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
γS
\n\t\t\t\t\t\t\t\t
γSLW
\n\t\t\t\t\t\t\t\t
γSAB
\n\t\t\t\t\t\t\t\t
γS+
\n\t\t\t\t\t\t\t\t
γS-
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
1
\n\t\t\t\t\t\t\t\t
Electrolytic zinc coated sheets
\n\t\t\t\t\t\t\t\t
Loctite 7061
\n\t\t\t\t\t\t\t\t
43.7
\n\t\t\t\t\t\t\t\t
32.5
\n\t\t\t\t\t\t\t\t
11.2
\n\t\t\t\t\t\t\t\t
13.8
\n\t\t\t\t\t\t\t\t
2.3
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Acetone
\n\t\t\t\t\t\t\t\t
38.6
\n\t\t\t\t\t\t\t\t
30.5
\n\t\t\t\t\t\t\t\t
8.1
\n\t\t\t\t\t\t\t\t
4.3
\n\t\t\t\t\t\t\t\t
3.9
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
2
\n\t\t\t\t\t\t\t\t
Hot dip zinc coated sheets
\n\t\t\t\t\t\t\t\t
Loctite 7061
\n\t\t\t\t\t\t\t\t
45.0
\n\t\t\t\t\t\t\t\t
41.5
\n\t\t\t\t\t\t\t\t
3.5
\n\t\t\t\t\t\t\t\t
0.3
\n\t\t\t\t\t\t\t\t
11.6
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t
Acetone
\n\t\t\t\t\t\t\t\t
41.4
\n\t\t\t\t\t\t\t\t
39.2
\n\t\t\t\t\t\t\t\t
2.2
\n\t\t\t\t\t\t\t\t
0.1
\n\t\t\t\t\t\t\t\t
15.8
\n\t\t\t\t\t\t\t
\n\t\t\t\t\t\t
Table 4.
The zinc coated sheets surface free energy calculated with the van Oss-Chaudhury-Good method
\n\t\t\t\t\t
It can be observed that the component of the surface free energy connected with long range interactions γs\n\t\t\t\t\t\tLW (polar, dispersive and inductive) is higher than the component describing acid-base interactions γs\n\t\t\t\t\t\tAB. The γS\n\t\t\t\t\t\tAB component is scant in hot dip zinc coated sheets. Drawn from the analysis of the acid-base interactions component γs\n\t\t\t\t\t\tAB, certain regularity may be observed. Lewis acid (γs\n\t\t\t\t\t\t+) surface free energy component is higher than Lewis base (γs\n\t\t\t\t\t\t-) surface free energy component for electrolytic zinc coated sheets, whereas for hot dip zinc coated sheets the γs\n\t\t\t\t\t\t+ value was negligible when compared with the γs\n\t\t\t\t\t\t- component. Owing to the insignificant γs\n\t\t\t\t\t\tAB value it may be presumed that these surfaces will show properties of monopolar or non-polar substances.
\n\t\t\t\t\t
A comparison of the surface free energy calculated with both the Owens-Wendt method and the van Oss-Chaudhury-Good method for hot dip zinc coated and electrolytic zinc coated sheets degreased with Loctite 7061 is presented in Fig.14 (Kuczmaszewski & Rudawska, 2002).
\n\t\t\t\t\t
Figure 13.
The surface free energy values calculated with the Owens-Wendt method (series 1) and the van Oss-Chaudhury-Good method (series 2) for: 1- electrolytic zinc coated sheets, 2- hot dip zinc coated sheets after degreasing with Loctite 7061
\n\t\t\t\t\t
A comparison of the surface free energy calculated with the Owens-Wendt method and the van Oss-Good method for hot dip zinc coated and electrolytic zinc coated sheets degreased with acetone is presented in Fig. 15 (Kuczmaszewski & Rudawska, 2002).
\n\t\t\t\t\t
Figure 14.
The surface free energy values calculated with the Owens-Wendt method (series 1) and the van Oss-Chaudhury-Good method (series 2) for: 1- electrolytic zinc coated sheets, 2- hot dip zinc coated sheets after degreasing with acetone
\n\t\t\t\t\t
The research results were subsequently analysed statistically using statistical models used for statistical verification (Krysicki et al., 1999). The statistical model – Student’s t-test consisted in comparing means when the test variances were equal (Fisher - Snedecor distribution), with a predetermined level of significance α = 0.05. The statistical analysis provided basis for formulating the following conclusions.
\n\t\t\t\t\t
The analysis proved that there are no statistically significant differences in the values of the SFE calculated with either the Owens-Wendt or the van Oss-Good method when the sheets are degreased with Loctite 7061. This holds true for both electrolytic zinc coated sheets and hot dip zinc coated sheets.
\n\t\t\t\t\t
When degreasing with acetone operation was applied on the sheet surface, statistically significant differences in the SFE calculated for the hot dip zinc coated sheets were observed. The γs value calculated with the van Oss-Chaudhury-Good method was higher. However, this difference is not too significant (lower than 10%). Still, there were no statistically significant differences in the SFE calculated with the van Oss-Good method for electrolytic zinc coated sheets.
\n\t\t\t\t\t
When analysing the SFE values calculated with the Owens-Wendt method, it may be assumed that the surface layer of the electrolytic zinc coating would most likely demonstrate higher affinity with the polar substance than the hot dip zinc coating would.
\n\t\t\t\t
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
6. Conclusion
\n\t\t\t
Adhesion and concurrent phenomena, e.g. wettability, are present in numerous fields of engineering and life in general. Determining the factors influencing the quality of adhesion and finding technology that can increase or decrease it is of utmost importance when it comes to constituting adhesive joints. What cannot be disregarded is the structure of the surface layer of analysed materials or methods of determining adhesive properties, which assess materials suitability for adhesive processes. The existence of many methods for measuring the surface free energy stems from the fact that certain methods are suitable in particular circumstances. Existing methods describe the thermodynamic state of the surface layer differently yet all, through subsequent analyses of the surface free energy and its components, expand our knowledge of the phenomenon of adhesion.
\n\t\t\t
SEM technique is very useful to analysis geometric structure of material for which is described adhesive properties. SEM micrographs have a large depth of field yielding a characteristic three-dimensional appearance useful for understanding the surface structure of a sample. The information of geometric structure is extremely important for the progress of adhesive processes like gluing, sealing, painting, coating.
\n\t\t\t
In the subchapter devoted to a comparative analysis of the surface free energy measuring methods, the selection of the OW and the OCG methods was dictated by the fact that, on the one hand, these are the most frequently applied methods for measuring the surface free energy, on the other hand, due to relatively uncomplicated measurement of the contact angle with standard measuring liquids. The statistical analysis of the results evidences that, in most of the analysed cases, there are no statistically relevant differences between the values of surface free energy measured with either the Owens-Wendt or van Oss-Chaudhury-Good method.
\n\t\t\t
Based on the statistical analysis it may be concluded that the choice of the surface free energy measurement method in the case of the analysed zinc coated sheets is basically of no relevance. Nevertheless, in ordinary working conditions it is the Owens-Wendt method which should be selected as a more efficient and less complicated tool for measuring the surface free energy of materials. The van Oss-Chaudhury-Good method, however, could be applied when a more detailed evaluation of the thermodynamic state of a surface (or a surface layer) is required.
\n\t\t\t
Recent developments in the field of materials engineering contribute to creating structural materials or coatings, which are increasingly modern and specific – designated for particular applications. This creates the demand for continuous research into determining and describing their adhesive properties when adhesively bonding or joining such materials.
\n\t\t
\n\t
Acknowledgments
\n\t\t\t
The some scientific study was funded from education finance for 2006-2009 as research project no. 3T10C02730, PolandThe some scientific study was funded from education finance for 2010-2013 as research project no. N N507 592538 The Ministry of Science and Higher Education, Poland
\n\t\t
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/30896.pdf",chapterXML:"https://mts.intechopen.com/source/xml/30896.xml",downloadPdfUrl:"/chapter/pdf-download/30896",previewPdfUrl:"/chapter/pdf-preview/30896",totalDownloads:5518,totalViews:311,totalCrossrefCites:3,totalDimensionsCites:11,totalAltmetricsMentions:0,introChapter:null,impactScore:4,impactScorePercentile:90,impactScoreQuartile:4,hasAltmetrics:0,dateSubmitted:"May 29th 2011",dateReviewed:"September 29th 2011",datePrePublished:null,datePublished:"March 9th 2012",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/30896",risUrl:"/chapter/ris/30896",book:{id:"1505",slug:"scanning-electron-microscopy"},signatures:"Anna Rudawska",authors:[{id:"110857",title:"Associate Prof.",name:"Anna",middleName:null,surname:"Rudawska",fullName:"Anna Rudawska",slug:"anna-rudawska",email:"a.rudawska@pollub.pl",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/110857/images/system/110857.jpg",institution:{name:"Lublin University of Technology",institutionURL:null,country:{name:"Poland"}}}],sections:[{id:"sec_1",title:"1. Introduction ",level:"1"},{id:"sec_2",title:"2. Surface layer",level:"1"},{id:"sec_2_2",title:"2.1. The surface layer structure",level:"2"},{id:"sec_3_2",title:"2.2. The non-saturated surface force field ",level:"2"},{id:"sec_5",title:"3. Adhesion",level:"1"},{id:"sec_5_2",title:"3.1. Adhesion and adhesive properties definitions",level:"2"},{id:"sec_6_2",title:"3.2. Geometric structure and SEM technique",level:"2"},{id:"sec_8",title:"4. Wetting phenomenon and contact angle",level:"1"},{id:"sec_8_2",title:"4.1. Wettability",level:"2"},{id:"sec_9_2",title:"4.2. Contact angle",level:"2"},{id:"sec_10_2",title:"4.3. Factors influencing the contact angle ",level:"2"},{id:"sec_11_2",title:"4.4. The contact angle hysteresis",level:"2"},{id:"sec_13",title:"5. Surface free energy",level:"1"},{id:"sec_13_2",title:"5.1. Young equation",level:"2"},{id:"sec_14_2",title:"5.2. Surface free energy determination methods ",level:"2"},{id:"sec_14_3",title:"5.2.1. The Owens-Wendt (Kaelble-Owens-Wendt) method (OW)",level:"3"},{id:"sec_15_3",title:"5.2.2. The van Oss-Chaudhury-Good method (OCG)",level:"3"},{id:"sec_16_3",title:"Table 1.",level:"3"},{id:"sec_19",title:"6. Conclusion",level:"1"},{id:"sec_20",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAdão\n\t\t\t\t\t\t\tM. H. V. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSaramago\n\t\t\t\t\t\t\tB. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFernandes\n\t\t\t\t\t\t\tA. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999\n\t\t\t\t\tEstimation of the Surface Properties of Styrene-Acrylonitrile Random Copolymers From Contact Angle Measurements. Journal of Colloid Interface Science, 217\n\t\t\t\t\t1\n\t\t\t\t\t319\n\t\t\t\t\t328 , 0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B2",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAhadian\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMohseni\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMorawian\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tRanking proposed models for attaining surface free energy of powders using contact angle measurements. International Journal of Adhesion and Adhesives\n\t\t\t\t\t29\n\t\t\t\t\t4\n\t\t\t\t\t458\n\t\t\t\t\t469 , 0143-7496\n\t\t\t\t\n\t\t\t'},{id:"B3",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAjaev\n\t\t\t\t\t\t\tV. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGambaryan-Roisman\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tStephan\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tStatic and dynamic contact angles of evaporating liquids on heated surfaces. Journal of Colloid Interface Science,\n\t\t\t\t\t342\n\t\t\t\t\t2\n\t\t\t\t\t550\n\t\t\t\t\t558 , 0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B4",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBayer\n\t\t\t\t\t\t\tI. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMegaridis\n\t\t\t\t\t\t\tC. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGamota\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBiswas\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tAnalysis and surface energy estimation of various model polymeric surfaces using contact angle hysteresis. Journal of Adhesion Science and Technology, 21\n\t\t\t\t\t15\n\t\t\t\t\t1439\n\t\t\t\t\t1467\n\t\t\t\t\t0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B5",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBirdi\n\t\t\t\t\t\t\tK. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVu\n\t\t\t\t\t\t\tD. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1993\n\t\t\t\t\tWettability and Evaporating Rates of Fluids from Solid Surfaces. Journal of Adhesion Science and Technology, 7\n\t\t\t\t\t6\n\t\t\t\t\t485\n\t\t\t\t\t493\n\t\t\t\t\t0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B6",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBernard\n\t\t\t\t\t\t\tQ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFois\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrisel\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tInfluence of Fibre Reinforcement and Peel Ply Surface Treatment Towards Adhesion of Composite Surface. International Journal of Adhesion and Adhesives, 25\n\t\t\t\t\t5\n\t\t\t\t\t404\n\t\t\t\t\t409\n\t\t\t\t\t0143-7496\n\t\t\t\t\n\t\t\t'},{id:"B7",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBorisenko\n\t\t\t\t\t\t\tK. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEvangelou\n\t\t\t\t\t\t\tE. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhao\n\t\t\t\t\t\t\tQ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAbel\n\t\t\t\t\t\t\tE. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tContact Angle of Diiodomethane on Silicon-Doped Diamond-Like Carbon Coatings in Electrolyte Solutions.\n\t\t\t\t\tJournal of Colloid Interface Science, 326\n\t\t\t\t\t2\n\t\t\t\t\t329\n\t\t\t\t\t332 . 0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B8",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBrown\n\t\t\t\t\t\t\tS. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1994\n\t\t\t\t\tAdherence Failure and Measurement: Some Troubling Question.\n\t\t\t\t\tJournal of Adhesion Science and Technology, 8\n\t\t\t\t\t6\n\t\t\t\t\t687\n\t\t\t\t\t711\n\t\t\t\t\t0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B9",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBurakowski\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWierzchnoń\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1995\n\t\t\t\t\tInżynieria powierzchni metali. WNT, 8-32041-812-7\n\t\t\t\t\n\t\t\t'},{id:"B10",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tComyn\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1992\n\t\t\t\t\tContact Angels and Adhesive Bonding. International Journal of Adhesion and Adhesives, 12\n\t\t\t\t\t3\n\t\t\t\t\t145\n\t\t\t\t\t149\n\t\t\t\t\t0143-7496\n\t\t\t\t\n\t\t\t'},{id:"B11",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChibowski\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGonzález-Caballero\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1993\n\t\t\t\t\tInterpretation of Contact Angle Hysteresis. Journal of Adhesion Science and Technology, 7\n\t\t\t\t\t11\n\t\t\t\t\t1195\n\t\t\t\t\t1209\n\t\t\t\t\t0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B12",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDiaz\n\t\t\t\t\t\t\tM. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFuentes\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCerro\n\t\t\t\t\t\t\tR. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSavage\n\t\t\t\t\t\t\tM. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tHysteresis During Contact Angles Measurement. Journal of Colloid Interface Science, 343\n\t\t\t\t\t2\n\t\t\t\t\t574\n\t\t\t\t\t583\n\t\t\t\t\t0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B13",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDutkiewicz\n\t\t\t\t\t\t\tE. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998\n\t\t\t\t\tFizykochemia powierzchni. WNT, 8-32042-266-3\n\t\t\t\t\n\t\t\t'},{id:"B14",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tElftonson\n\t\t\t\t\t\t\tJ. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tStröm\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHolmberg\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOlsson\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1996\n\t\t\t\t\tAshesion of Streptococcus Sanguis to porous and non-porous substrates with well-defined surface energies. Journal of Adhesion Science and Technology\n\t\t\t\t\t10\n\t\t\t\t\t8\n\t\t\t\t\t761\n\t\t\t\t\t770\n\t\t\t\t\t0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B15",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tExtrand\n\t\t\t\t\t\t\tC. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998\n\t\t\t\t\tA Thermodynamic Model for Contact Angle Hysteresis. Journal of Colloid Interface Science, 207\n\t\t\t\t\t1\n\t\t\t\t\t11\n\t\t\t\t\t19 , 0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B16",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFaibish\n\t\t\t\t\t\t\tR. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYoshida\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCohen\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002\n\t\t\t\t\tContact Angle Study on Polymer-Grafted Silicon Wafers. Journal of Colloid Interface Science, 256\n\t\t\t\t\t341\n\t\t\t\t\t350\n\t\t\t\t\t0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B17",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGood\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1979\n\t\t\t\t\tin: Surface and Colloid Science, R.J. Good, R.R. Stromberg (Eds.)\n\t\t\t\t\tPlenyum Press, New York.\n\t\t\t\t\t11\n\t\t\t\t\n\t\t\t'},{id:"B18",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGood\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tvan Oss\n\t\t\t\t\t\t\tC. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1992\n\t\t\t\t\t in: Modern Approaches to Wettability, M.E. Schrader and G. Loeb (Eds),\n\t\t\t\t\tPlenum Press, New York.\n\t\t\t\t\t1\n\t\t\t\t\t27 , \n\t\t\t'},{id:"B19",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGonzález-Martín\n\t\t\t\t\t\t\tM. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLabajos-Broncano\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJańczuk\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBruque\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999\n\t\t\t\t\tWettability and Surface Free Energy of Zirconia Ceramics and Their Constituents. Journal of Materials Science, 34\n\t\t\t\t\t5923\n\t\t\t\t\t5926 , 0022-2461\n\t\t\t\t\n\t\t\t'},{id:"B20",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGreiveldinger\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShanahan\n\t\t\t\t\t\t\tE. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999\n\t\t\t\t\tA Critique of the Mathematical Coherence of Acid/Base Interfacial Free Energy Theory. Journal of Colloid Interface Science, 215\n\t\t\t\t\t170\n\t\t\t\t\t178\n\t\t\t\t\n\t\t\t'},{id:"B21",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHarding\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBerg\n\t\t\t\t\t\t\tJ. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997\n\t\t\t\t\tThe role of adhesion in the mechanical properties of filled polymer composites. Journal of Adhesion Science and Technology, 12\n\t\t\t\t\t4\n\t\t\t\t\t471\n\t\t\t\t\t493\n\t\t\t\t\t0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B22",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHazlett\n\t\t\t\t\t\t\tR. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1992\n\t\t\t\t\tOn Surface Roughness Effects in Wetting Phenomena. Journal of Adhesion Science and Technology, 6\n\t\t\t\t\t6\n\t\t\t\t\t625\n\t\t\t\t\t633 , 0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B23",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHay\n\t\t\t\t\t\t\tK. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDragila\n\t\t\t\t\t\t\tM. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLiburdy\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tTheoretical Model for the Wetting of a Rough Surface. Journal of Colloid Interface Science, 325\n\t\t\t\t\t2\n\t\t\t\t\t472\n\t\t\t\t\t477 , 0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B24",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHebda\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWachal\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1980\n\t\t\t\t\tTrybologia. WNT, \n\t\t\t\t\t\t8-32040-043-0 Poland\n\t\t\t'},{id:"B25",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHołysz\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000\n\t\t\t\t\tInvestigation of the effect of substrata on the surface free energy components of silica gel determined by layer wicking method. \n\t\t\t\t\tJournal of Material Science\n\t\t\t\t\t35, 6081\n\t\t\t\t\t6091 , 0022-2461\n\t\t\t\t\n\t\t\t'},{id:"B26",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJansen\n\t\t\t\t\t\t\tW. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1991\n\t\t\t\t\tOverview Lecture. The Lewis Acid-Base Concepts: Recent Results and Prospects for the Future.\n\t\t\t\t\tJournal of Adhesion Science and Technology, 5\n\t\t\t\t\t1\n\t\t\t\t\t1\n\t\t\t\t\t21 , 0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B27",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJańczuk\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBiałopiotrowicz\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1987\n\t\t\t\t\tSwobodna Energia Powierzchniowa Niektórych Polimerów. Polimery, 269\n\t\t\t\t\t271 , 0032-2725\n\t\t\t\t\n\t\t\t'},{id:"B28",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJańczuk\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBiałopiotrowicz\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZdziennicka\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999\n\t\t\t\t\tSome Remarks on the Components of the Liquid Surface Free Energy. Journal of Colloid Interface Science, 211\n\t\t\t\t\t96\n\t\t\t\t\t103 , 0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B29",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKrysicki\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBartos\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDyczka\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKrólikowska\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWasilewski\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999\n\t\t\t\t\tRachunek prawdopodobieństwa i statystyka matematyczna w zadaniach.\n\t\t\t\t\tWNT, Poland, 8-32042-442-9\n\t\t\t\t\n\t\t\t'},{id:"B30",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKuczmaszewski\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRudawska\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002\n\t\t\t\t\tPorównanie wybranych metod określania swobodnej energii powierzchniowej na przykładzie blach ocynkowanych. Farby i Lakiery, 6\n\t\t\t\t\t22\n\t\t\t\t\t26 , 1230-3321\n\t\t\t\t\n\t\t\t'},{id:"B31",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKuczmaszewski\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tFundamentals of metal-metal adhesive joint design. Lublin University of Technology, Polish Academy of Sciences, Lublin Branch, 8-38929-311-0\n\t\t\t\t\n\t\t\t'},{id:"B32",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLee\n\t\t\t\t\t\t\tL. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1993\n\t\t\t\t\tRoles of molecular interactions in adhesion, adsorption, contact angle and wettability. Journal of Adhesion Science and Technology, 7\n\t\t\t\t\t6\n\t\t\t\t\t538\n\t\t\t\t\t634 , ISSN\n\t\t\t'},{id:"B33",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLugscheider\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBobzin\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001\n\t\t\t\t\tThe Influence on Surface Free Energy of PVD-Coatings. Surface and Coatings Technology, 142-144 , 755\n\t\t\t\t\t760 , 0257-8972\n\t\t\t\t\n\t\t\t'},{id:"B34",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMangipudi\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTirrell\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPocius\n\t\t\t\t\t\t\tA. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1994\n\t\t\t\t\tDirect Measurement of Molecular Level Adhesion Between Poly(ethylene terephthalate) and Polyethylene Films: Determination of Surface and Interfacial Energies. Journal of Adhesion Science and Technology, 8\n\t\t\t\t\t11\n\t\t\t\t\t1251\n\t\t\t\t\t1270 , 0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B35",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMc Carthy\n\t\t\t\t\t\t\tS. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998\n\t\t\t\t\tDynamic Contact Angle Analysis and Its Application to Paste PVC Product. Polimery\n\t\t\t\t\t43\n\t\t\t\t\t314\n\t\t\t\t\t319 , 0032-2725\n\t\t\t\t\n\t\t\t'},{id:"B36",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMichalski\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHardy\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSaramago\n\t\t\t\t\t\t\tJ. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998\n\t\t\t\t\tOn the surface free energy of PVC/EVA polymer blends: comparison of different calculation methods. Journal of Colloid Interface Science, 208\n\t\t\t\t\t319\n\t\t\t\t\t328 , 0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B37",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMittal\n\t\t\t\t\t\t\tK. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1978\n\t\t\t\t\t(Ed.) in Adhesion Measurement of Thin Films, Thick Films, and Bulk Coatings, ASTM STP640, American Society for Testing and Materials., Philadelphia, PA.\n\t\t\t\t\t5\n\t\t\t\t\t17 , \n\t\t\t'},{id:"B38",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMittal\n\t\t\t\t\t\t\tK. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1980\n\t\t\t\t\tInterfacial Chemistry and Adhesion: Recent Developments and Prospects. Pure and Applied Chemistry, 52\n\t\t\t\t\t1295\n\t\t\t\t\t1305 , 0033-4545\n\t\t\t\t\n\t\t\t'},{id:"B39",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNorton\n\t\t\t\t\t\t\tM. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1992\n\t\t\t\t\tThe influence of contact angle, wettability, and reactivity on the development of indirect-bonded metallizations for aluminum nitride. Journal of Adhesion Science and Technology,\n\t\t\t\t\t6\n\t\t\t\t\t6\n\t\t\t\t\t635\n\t\t\t\t\t651 , 0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B40",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tParsons\n\t\t\t\t\t\t\tG. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBuckton\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChacham\n\t\t\t\t\t\t\tS. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1993\n\t\t\t\t\tComparison of measured wetting behaviour of material with identical surface energies, presented as particles and plater.\n\t\t\t\t\tJournal of Adhesion Science and Technology, 7\n\t\t\t\t\t2\n\t\t\t\t\t95\n\t\t\t\t\t104 , 0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B41",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tQin\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChang\n\t\t\t\t\t\t\tW. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1996\n\t\t\t\t\tThe Role of Interfacial Free Energy in Wettability, Solubility, and Solvent Crazing of Some Polymeric Solids. Journal of Adhesion Science and Technology, 10\n\t\t\t\t\t10\n\t\t\t\t\t963\n\t\t\t\t\t987 , 0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B42",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRożniatowski\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKurzydłowski\n\t\t\t\t\t\t\tK. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWierzchnoń\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1994\n\t\t\t\t\tGeometryczny opis cech mikrostrukturalnych warstwy powierzchniowej. Inżynieria Materiałowa, 5\n\t\t\t\t\t141\n\t\t\t\t\t149 , 0208-6247\n\t\t\t\t\n\t\t\t'},{id:"B43",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRudawska\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJacniacka\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tAnalysis of Determining Surface Free Energy Uncertainty with the Owens-Wendt method. International Journal of Adhesion and Adhesives, 29\n\t\t\t\t\t451\n\t\t\t\t\t457 , 0143-7496\n\t\t\t\t\n\t\t\t'},{id:"B44",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRudawska\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKuczmaszewski\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tKlejenie blach ocynkowanych. Wyd. Uczelniane PL, 8-38924-643-0\n\t\t\t\t\n\t\t\t'},{id:"B45",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRudawska\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKuczmaszewski\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tSurface Free Energy of Zinc Coating After Finishing Treatment. Material Science-Poland, 24\n\t\t\t\t\t4\n\t\t\t\t\t975\n\t\t\t\t\t981 , 0208-3134X\n\t\t\t'},{id:"B46",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRudawska\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tSwobodna Energia Powierzchniowa i Struktura Geometryczna Powierzchni Wybranych Kompozytów Epoksydowych.\n\t\t\t\t\tPolimery, 53, 6\n\t\t\t\t\t452\n\t\t\t\t\t456 , 0032-2725\n\t\t\t\t\n\t\t\t'},{id:"B47",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRudawska\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tWłaściwości adhezyjne kompozytów szklano-epoksydowych po różnych sposobach przygotowania powierzchni,\n\t\t\t\t\tIn: Polimery i kompozyty konstrukcyjne, G. Wróbel, (Ed.), Cieszyn, Poland\n\t\t\t\t\t97\n\t\t\t\t\t105 , 978-8-36091-740-4\n\t\t\t\t\n\t\t\t'},{id:"B48",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRudawska\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tWytrzymałość połączeń klejowych blach tytanowych po różnych sposobach przygotowania powierzchni. Inżyniera Materiałowa,\n\t\t\t\t\t5\n\t\t\t\t\t341\n\t\t\t\t\t345 , 0208-6247\n\t\t\t\t\n\t\t\t'},{id:"B49",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRudawska\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tGeometric structure and surface layer adhesive properties of aramid-epoxy composite.\n\t\t\t\t\tConferencing mat. Polymer Processing Society PPS-26. Regional Meeting Istanbul, Turkey\n\t\t\t\t\t159\n\t\t\t\t\n\t\t\t'},{id:"B50",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSekulic\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCurnier\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tExperimetation on Adhesion of Epoxy. International Journal of Adhesion and Adhesives, 30\n\t\t\t\t\t89\n\t\t\t\t\t104 , 0143-7496\n\t\t\t\t\n\t\t\t'},{id:"B51",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSerro\n\t\t\t\t\t\t\tA. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tColaço\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSaramago\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tAdhesion Forces in Liquid Media: Effect of Surface Topography and Wettability. Journal of Colloid Interface Science, 325\n\t\t\t\t\t573\n\t\t\t\t\t579 , 0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B52",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFlury\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHarsh\n\t\t\t\t\t\t\tJ. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZollars\n\t\t\t\t\t\t\tR. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tComparison of Different Methods to Measure Contact Angles of Soil Colloids. Journal of Colloid Interface Science, 328\n\t\t\t\t\t299\n\t\t\t\t\t307 , 0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B53",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShen\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSheng\n\t\t\t\t\t\t\tY. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tParker\n\t\t\t\t\t\t\tI. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999\n\t\t\t\t\tComparison of the Surface Energetics Data of Eucalypt Fibers and Some Polymers Obtained by Contact Angle and Inverse Gas Chromatography Methods. Journal of Adhesion Science and Technology, 13\n\t\t\t\t\t8\n\t\t\t\t\t887\n\t\t\t\t\t901 , 0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B54",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSikora\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1996\n\t\t\t\t\tWarstwa wierzchnia tworzyw wielkocząsteczkowych. Polimery,\n\t\t\t\t\t96\n\t\t\t\t\t113 , 0032-2725\n\t\t\t\t\n\t\t\t'},{id:"B55",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSikora\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997\n\t\t\t\t\tKonstytuowanie warstwy wierzchniej tworzyw wielkocząsteczkowych. Inżynieria Materiałowa, 4\n\t\t\t\t\t160\n\t\t\t\t\t164\n\t\t\t\t\n\t\t\t'},{id:"B56",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSommers\n\t\t\t\t\t\t\tA. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJacobi\n\t\t\t\t\t\t\tA. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tWetting Phenomena on Micro-Grooved Aluminium Surfaces and Modeling of the Critical Droplet Size. Journal of Colloid Interface Science, 328\n\t\t\t\t\t402\n\t\t\t\t\t411\n\t\t\t\t\t0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B57",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTang\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDong\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tA Comparison of Spreading Behaviors Silwet L-77 on Dry and Wet Lotus Leaves. \n\t\t\t\t\tJournal of Colloid Interface Science, 325\n\t\t\t\t\t223\n\t\t\t\t\t227 , 0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B58",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tThompson\n\t\t\t\t\t\t\tP. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBrinckerhoff\n\t\t\t\t\t\t\tW. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRobbins\n\t\t\t\t\t\t\tM. O. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1993\n\t\t\t\t\tMicroscopic Studies of Static and Dynamic Contact Angles. Journal of Adhesion Science and Technology, 7\n\t\t\t\t\t6\n\t\t\t\t\t535\n\t\t\t\t\t554 , 0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B59",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVedantam\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPanchagnula\n\t\t\t\t\t\t\tM. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tConstitutive modeling of contact angle hysteresis. Journal of Colloid Interface Science, 321\n\t\t\t\t\t393\n\t\t\t\t\t400 , 0021-9797\n\t\t\t\t\n\t\t\t'},{id:"B60",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVolpe\n\t\t\t\t\t\t\tC. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSiboni\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998\n\t\t\t\t\tAnalysis of dynamic contact angle on discoidal samples measured by the Wilhelmy method. Journal of Adhesion Science and Technology. 12\n\t\t\t\t\t197\n\t\t\t\t\t224 , 0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B61",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXian\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tWettability of rough polymer, metal and oxide surfaces as well as of composite surface.\n\t\t\t\t\tJournal of Adhesion Science and Technology, 22\n\t\t\t\t\t15\n\t\t\t\t\t1893\n\t\t\t\t\t1905 , 0169-4243\n\t\t\t\t\n\t\t\t'},{id:"B62",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZielecka\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004\n\t\t\t\t\tMethods of Contact Angle Measurement as a Tool for Characterization of Wettability of Polymers. Polimery\n\t\t\t\t\t49\n\t\t\t\t\t327\n\t\t\t\t\t332 , 0032-2725\n\t\t\t\t\n\t\t\t'},{id:"B63",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZouvelou\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMantzouris\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNikolopoulos\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tInterfacial energies in oxide/liquid metal systems with limited solubility. International Journal of Adhesion and Adhesives\n\t\t\t\t\t27, 380\n\t\t\t\t\t386 , 0143-7496\n\t\t\t\t\n\t\t\t'},{id:"B64",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tŻenkiewicz\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGołębiewski\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLutomirski\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999\n\t\t\t\t\tDoświadczalna Weryfikacja Niektórych Elementów Metody van Ossa-Gooda. Polimery, 44\n\t\t\t\t\t3\n\t\t\t\t\t212\n\t\t\t\t\t217 , 0032-2725\n\t\t\t\t\n\t\t\t'},{id:"B65",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tŻenkiewicz\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000\n\t\t\t\t\tAdhezja i modyfikowanie warstwy wierzchniej tworzyw wielkocząsteczkowych,\n\t\t\t\t\tWNT, Poland, 8-32042-547-6\n\t\t\t\t\n\t\t\t'},{id:"B66",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tŻenkiewicz\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tWettability and Surface Free Energy of a Radiation-Modified Polyethylene Film. Polimery,\n\t\t\t\t\t50\n\t\t\t\t\t5\n\t\t\t\t\t365\n\t\t\t\t\t370 , 0032-2725\n\t\t\t\t\n\t\t\t'},{id:"B67",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tŻenkiewicz\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tNew Method of Analysis of the Surface Free Energy of Polymeric Materials Calculated with Owens-Wendt and Neumann Method. Polimery, 51\n\t\t\t\t\thttp://en.wikipedia.org/wiki/Scanning_electron_microscope\n\t\t\t\t\n\t\t\t'},{id:"B68",body:'\n\t\t\t\t\n\t\t\t\t\thttp://epmalab.uoregon.edu/epmatext.htm\n\t\t\t\t\n\t\t\t'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Rudawska Anna",address:null,affiliation:'
Lublin University of Technology, Poland
'}],corrections:null},book:{id:"1505",type:"book",title:"Scanning Electron Microscopy",subtitle:null,fullTitle:"Scanning Electron Microscopy",slug:"scanning-electron-microscopy",publishedDate:"March 9th 2012",bookSignature:"Viacheslav Kazmiruk",coverURL:"https://cdn.intechopen.com/books/images_new/1505.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-51-0092-8",pdfIsbn:"978-953-51-4329-1",reviewType:"peer-reviewed",numberOfWosCitations:296,isAvailableForWebshopOrdering:!0,editors:[{id:"100815",title:"Dr.",name:"Viacheslav",middleName:null,surname:"Kazmiruk",slug:"viacheslav-kazmiruk",fullName:"Viacheslav Kazmiruk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1226"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"30890",type:"chapter",title:"Gaseous Scanning Electron Microscope (GSEM): Applications and Improvement",slug:"variable-pressure-and-environmental-sem-vp-sem-applications-and-improvement-",totalDownloads:3194,totalCrossrefCites:1,signatures:"Lahcen Khouchaf",reviewType:"peer-reviewed",authors:[{id:"102248",title:"Dr",name:null,middleName:null,surname:"Khouchaf",fullName:"Khouchaf",slug:"khouchaf"}]},{id:"30891",type:"chapter",title:"Interactions, Imaging and Spectra in SEM",slug:"interactions-imaging-spectra-in-sem",totalDownloads:4168,totalCrossrefCites:2,signatures:"Rahul Mehta",reviewType:"peer-reviewed",authors:[{id:"105072",title:"Prof.",name:"Rahul",middleName:null,surname:"Mehta",fullName:"Rahul Mehta",slug:"rahul-mehta"}]},{id:"30892",type:"chapter",title:"In Situ Experiments in the Scanning Electron Microscope Chamber",slug:"in-situ-experiments-in-the-scanning-electron-microscope-chamber",totalDownloads:8708,totalCrossrefCites:10,signatures:"Renaud Podor, Johann Ravaux and Henri-Pierre Brau",reviewType:"peer-reviewed",authors:[{id:"108327",title:"Dr.",name:"Renaud",middleName:null,surname:"Podor",fullName:"Renaud Podor",slug:"renaud-podor"},{id:"135682",title:"Mr.",name:"Johann",middleName:null,surname:"Ravaux",fullName:"Johann Ravaux",slug:"johann-ravaux"},{id:"135696",title:"Mr.",name:"Henri-Pierre",middleName:null,surname:"Brau",fullName:"Henri-Pierre Brau",slug:"henri-pierre-brau"}]},{id:"30893",type:"chapter",title:"Some Applications of Electron Back Scattering Diffraction (EBSD) in Materials Research",slug:"some-applications-of-electron-back-scattering-diffraction-ebsd-in-materials-research",totalDownloads:6634,totalCrossrefCites:5,signatures:"Zhongwei Chen, Yanqing Yang and Huisheng Jiao",reviewType:"peer-reviewed",authors:[{id:"103685",title:"Prof.",name:"Yanqing",middleName:null,surname:"Yang",fullName:"Yanqing Yang",slug:"yanqing-yang"}]},{id:"30894",type:"chapter",title:"Dopant Driven Electron Beam Lithography",slug:"dopant-driven-electron-beam-lithography",totalDownloads:2787,totalCrossrefCites:0,signatures:"Timothy E. Kidd",reviewType:"peer-reviewed",authors:[{id:"101947",title:"Prof.",name:"Timothy",middleName:null,surname:"Kidd",fullName:"Timothy Kidd",slug:"timothy-kidd"}]},{id:"30895",type:"chapter",title:"Palmtop EPMA",slug:"palmtop-epma",totalDownloads:3221,totalCrossrefCites:0,signatures:"Jun Kawai, Yasukazu Nakaye and Susumu Imashuku",reviewType:"peer-reviewed",authors:[{id:"117815",title:"Prof.",name:"Jun",middleName:null,surname:"Kawai",fullName:"Jun Kawai",slug:"jun-kawai"}]},{id:"30896",type:"chapter",title:"Adhesive Properties",slug:"adhesive-properties",totalDownloads:5518,totalCrossrefCites:3,signatures:"Anna Rudawska",reviewType:"peer-reviewed",authors:[{id:"110857",title:"Associate Prof.",name:"Anna",middleName:null,surname:"Rudawska",fullName:"Anna Rudawska",slug:"anna-rudawska"}]},{id:"30916",type:"chapter",title:"Contribution of Scanning Electron Microscope to the Study of Morphology, Biology, Reproduction, and Phylogeny of the Family Syllidae (Polychaeta)",slug:"contribution-of-scanning-electron-microscope-to-the-study-of-morphology-biology-reproduction-and-phy",totalDownloads:3192,totalCrossrefCites:2,signatures:"Guillermo San Martín and María Teresa Aguado",reviewType:"peer-reviewed",authors:[{id:"101204",title:"Prof.",name:"Guillermo",middleName:null,surname:"San Martín",fullName:"Guillermo San Martín",slug:"guillermo-san-martin"}]},{id:"30917",type:"chapter",title:"Diversity of Lips and Associated Structures in Fishes by SEM",slug:"diversity-of-lips-and-associated-structures-in-fishes-by-sem",totalDownloads:5016,totalCrossrefCites:3,signatures:"Pinky Tripathi and Ajay Kumar Mittal",reviewType:"peer-reviewed",authors:[{id:"101825",title:"Dr.",name:"Pinky",middleName:null,surname:"Tripathi",fullName:"Pinky Tripathi",slug:"pinky-tripathi"},{id:"115916",title:"Prof.",name:"Ajay Kumar",middleName:null,surname:"Mittal",fullName:"Ajay Kumar Mittal",slug:"ajay-kumar-mittal"}]},{id:"30918",type:"chapter",title:"Effects of Er:YAG Laser Irradiation on Dental Hard Tissues and All-Ceramic Materials: SEM Evaluation",slug:"effects-of-laser-irradiation-on-dental-hard-tissues-and-dental-materials-sem-evaluation-",totalDownloads:4782,totalCrossrefCites:0,signatures:"Bülent Gökçe",reviewType:"peer-reviewed",authors:[{id:"99319",title:"Prof.",name:"Bülent",middleName:null,surname:"Gökçe",fullName:"Bülent Gökçe",slug:"bulent-gokce"}]},{id:"30919",type:"chapter",title:"The Application of Scanning Electron Microscope (SEM) to Study the Microstructure Changes in the Field of Agricultural Products Drying",slug:"the-application-of-scanning-electron-microscope-sem-to-study-the-microstructure-changes-in-the-field",totalDownloads:7934,totalCrossrefCites:9,signatures:"Hong-Wei Xiao and Zhen-Jiang Gao",reviewType:"peer-reviewed",authors:[{id:"28871",title:"Dr.",name:"Zhenjiang",middleName:null,surname:"Gao",fullName:"Zhenjiang Gao",slug:"zhenjiang-gao"},{id:"103506",title:"Dr.",name:"Hong-Wei",middleName:null,surname:"Xiao",fullName:"Hong-Wei Xiao",slug:"hong-wei-xiao"}]},{id:"30920",type:"chapter",title:"Scanning Electron Microscopy Imaging of Bacteria Based on Nucleic Acid Sequences",slug:"scanning-electron-microscope-imaging-of-bacteria-based-on-nucleic-acid-sequences",totalDownloads:5706,totalCrossrefCites:2,signatures:"Takehiko Kenzaka and Katsuji Tani",reviewType:"peer-reviewed",authors:[{id:"109193",title:"Dr.",name:"Takehiko",middleName:null,surname:"Kenzaka",fullName:"Takehiko Kenzaka",slug:"takehiko-kenzaka"},{id:"109194",title:"Dr.",name:"Katsuji",middleName:null,surname:"Tani",fullName:"Katsuji Tani",slug:"katsuji-tani"}]},{id:"30921",type:"chapter",title:"Ionizing Radiation Effect on Morphology of PLLA: PCL Blends and on Their Composite with Coconut Fiber",slug:"ionizing-radiation-effect-on-the-morphology-of-plla-pcl-blends-and-on-their-composite-with-coconut-f",totalDownloads:4041,totalCrossrefCites:0,signatures:"Yasko Kodama and Claudia Giovedi",reviewType:"peer-reviewed",authors:[{id:"108474",title:"Dr.",name:"Yasko",middleName:null,surname:"Kodama",fullName:"Yasko Kodama",slug:"yasko-kodama"},{id:"110225",title:"Dr.",name:"Cláudia",middleName:null,surname:"Giovedi",fullName:"Cláudia Giovedi",slug:"claudia-giovedi"}]},{id:"30922",type:"chapter",title:"Study of Helminth Parasites of Amphibians by Scanning Electron Microscopy",slug:"study-of-helminth-parasites-of-amphibians-by-scanning-electron-microscopy",totalDownloads:5707,totalCrossrefCites:0,signatures:"Cynthya Elizabeth González, Monika Inés Hamann and Cristina Salgad",reviewType:"peer-reviewed",authors:[{id:"104099",title:"Dr.",name:"Cynthya",middleName:"Elizabeth",surname:"González",fullName:"Cynthya González",slug:"cynthya-gonzalez"},{id:"108603",title:"Dr.",name:"Monika Inés",middleName:null,surname:"Hamann",fullName:"Monika Inés Hamann",slug:"monika-ines-hamann"},{id:"108606",title:"Prof.",name:"Cristina",middleName:null,surname:"Salgado",fullName:"Cristina Salgado",slug:"cristina-salgado"}]},{id:"30923",type:"chapter",title:"Pathogenic Attributes of Non-Candida albicans Candida Species Revealed by SEM",slug:"pathogenic-attributes-of-non-candida-albicans-candida-species-revealed-by-sem",totalDownloads:4701,totalCrossrefCites:0,signatures:"Márcia Cristina Furlaneto, Célia Guadalupe Tardeli de Jesus Andrade, Luciana Furlaneto-Maia, Emanuele Júlio Galvão de França and Alane Tatiana Pereira Moralez",reviewType:"peer-reviewed",authors:[{id:"101952",title:"Prof.",name:"Marcia Cristina",middleName:null,surname:"Furlaneto",fullName:"Marcia Cristina Furlaneto",slug:"marcia-cristina-furlaneto"},{id:"109069",title:"Dr.",name:"Célia Guadalupe Tardeli De Jesus",middleName:null,surname:"Andrade",fullName:"Célia Guadalupe Tardeli De Jesus Andrade",slug:"celia-guadalupe-tardeli-de-jesus-andrade"},{id:"109070",title:"Dr.",name:"Luciana",middleName:null,surname:"Furlaneto-Maia",fullName:"Luciana Furlaneto-Maia",slug:"luciana-furlaneto-maia"},{id:"109071",title:"MSc.",name:"Emanuele Julio Galvão",middleName:null,surname:"França",fullName:"Emanuele Julio Galvão França",slug:"emanuele-julio-galvao-franca"},{id:"128748",title:"MSc.",name:"Alane Tatiana",middleName:null,surname:"Moralez",fullName:"Alane Tatiana Moralez",slug:"alane-tatiana-moralez"}]},{id:"30934",type:"chapter",title:"Multimodal Microscopy for Ore Characterization",slug:"multimodal-microscopy-for-ore-characterization",totalDownloads:6177,totalCrossrefCites:2,signatures:"Otávio da Fonseca Martins Gomes and Sidnei Paciornik",reviewType:"peer-reviewed",authors:[{id:"99055",title:"Dr.",name:"Otavio",middleName:"Da Fonseca Martins",surname:"Gomes",fullName:"Otavio Gomes",slug:"otavio-gomes"},{id:"109691",title:"Prof.",name:"Sidnei",middleName:null,surname:"Paciornik",fullName:"Sidnei Paciornik",slug:"sidnei-paciornik"}]},{id:"30935",type:"chapter",title:"SEM Analysis of Precipitation Process in Alloys",slug:"sem-analysis-of-precipitation-process-in-alloys",totalDownloads:4051,totalCrossrefCites:0,signatures:"Maribel L. Saucedo-Muñoz, Victor M. Lopez-Hirata and Hector J. Dorantes-Rosale",reviewType:"peer-reviewed",authors:[{id:"76298",title:"Dr.",name:"Víctor Manuel",middleName:null,surname:"López-Hirata",fullName:"Víctor Manuel López-Hirata",slug:"victor-manuel-lopez-hirata"},{id:"103382",title:"Prof.",name:"Maribel",middleName:null,surname:"Saucedo-Muñoz",fullName:"Maribel Saucedo-Muñoz",slug:"maribel-saucedo-munoz"},{id:"107864",title:"Dr.",name:"Hector",middleName:null,surname:"Dorantes-Rosales",fullName:"Hector Dorantes-Rosales",slug:"hector-dorantes-rosales"}]},{id:"30936",type:"chapter",title:"Cutting Mechanism of Sulfurized Free-Machining Steel",slug:"cutting-mechanism-of-sulfurized-free-machining-steel",totalDownloads:4489,totalCrossrefCites:0,signatures:"Junsuke Fujiwara",reviewType:"peer-reviewed",authors:[{id:"105232",title:"Dr.",name:"Junsuke",middleName:null,surname:"Fujiwara",fullName:"Junsuke Fujiwara",slug:"junsuke-fujiwara"}]},{id:"30937",type:"chapter",title:"Catalyst Characterization with FESEM/EDX by the Example of Silver-Catalyzed Epoxidation of 1,3-Butadiene",slug:"catalyst-characterization-with-fesem-edx-by-the-example-of-the-epoxidation-of-1-3-butadiene-",totalDownloads:5809,totalCrossrefCites:1,signatures:"Thomas N. Otto, Wilhelm Habicht, Eckhard Dinjus and Michael Zimmerman",reviewType:"peer-reviewed",authors:[{id:"114899",title:"Dr.",name:"Thomas",middleName:null,surname:"Otto",fullName:"Thomas Otto",slug:"thomas-otto"}]},{id:"30938",type:"chapter",title:"Fractal Analysis of Micro Self-Sharpening Phenomenon in Grinding with Cubic Boron Nitride (cBN) Wheels",slug:"fractal-analysis-of-self-sharpening-phenomenon-in-grinding-with-cubic-boron-nitride-cbn-wheel-",totalDownloads:4150,totalCrossrefCites:0,signatures:"Yoshio Ichida",reviewType:"peer-reviewed",authors:[{id:"105836",title:"Prof.",name:"Yoshio",middleName:null,surname:"Ichida",fullName:"Yoshio Ichida",slug:"yoshio-ichida"}]},{id:"30939",type:"chapter",title:"Evolution of Phases in a Recycled Al-Si Cast Alloy During Solution Treatment",slug:"evolution-of-phases-in-a-recycled-al-si-cast-alloy-during-solution-treatment",totalDownloads:7019,totalCrossrefCites:21,signatures:"Eva Tillová, Mária Chalupová and Lenka Hurtalová",reviewType:"peer-reviewed",authors:[{id:"23964",title:"Prof.",name:"Mária",middleName:null,surname:"Chalupová",fullName:"Mária Chalupová",slug:"maria-chalupova"},{id:"100623",title:"Prof.",name:"Eva",middleName:null,surname:"Tillova",fullName:"Eva Tillova",slug:"eva-tillova"},{id:"135822",title:"Dr.",name:"Lenka",middleName:null,surname:"Hurtalová",fullName:"Lenka Hurtalová",slug:"lenka-hurtalova"}]},{id:"30940",type:"chapter",title:"Strength and Microstructure of Cement Stabilized Clay",slug:"strength-and-microstructure-of-cement-stabilized-clay",totalDownloads:4656,totalCrossrefCites:16,signatures:"Suksun Horpibulsuk",reviewType:"peer-reviewed",authors:[{id:"103519",title:"Prof.",name:"Suksun",middleName:"-",surname:"Horpibulsuk",fullName:"Suksun Horpibulsuk",slug:"suksun-horpibulsuk"}]},{id:"30948",type:"chapter",title:"FE-SEM Characterization of Some Nanomaterial",slug:"fe-sem-characterization-of-some-nanomaterials-",totalDownloads:8235,totalCrossrefCites:3,signatures:"A. Alyamani and O. M. Lemine",reviewType:"peer-reviewed",authors:[{id:"99805",title:"Dr.",name:"O.Mohamed",middleName:null,surname:"Lemine",fullName:"O.Mohamed Lemine",slug:"o.mohamed-lemine"},{id:"120388",title:"Dr.",name:"Ahmaed",middleName:null,surname:"Alyamani",fullName:"Ahmaed Alyamani",slug:"ahmaed-alyamani"}]},{id:"30949",type:"chapter",title:"A Study of the Porosity of Activated Carbons Using the Scanning Electron Microscope",slug:"a-study-of-the-porosity-of-activated-carbons-using-the-scanning-elctrom-microscope",totalDownloads:7820,totalCrossrefCites:4,signatures:"Osei-Wusu Achaw",reviewType:"peer-reviewed",authors:[{id:"107889",title:"Dr.",name:"Osei-Wusu",middleName:null,surname:"Achaw",fullName:"Osei-Wusu Achaw",slug:"osei-wusu-achaw"}]},{id:"30950",type:"chapter",title:"Study of Structure and Failure Mechanisms in ACA Interconnections Using SEM",slug:"study-of-structure-and-failure-mechanisms-in-aca-interconnections-using-sem",totalDownloads:3946,totalCrossrefCites:3,signatures:"Laura Frisk",reviewType:"peer-reviewed",authors:[{id:"110630",title:"Dr.",name:"Laura",middleName:null,surname:"Frisk",fullName:"Laura Frisk",slug:"laura-frisk"}]},{id:"30951",type:"chapter",title:"Exploring the Superconductors with Scanning Electron Microscopy (SEM)",slug:"exploring-the-superconductors-with-scanning-electron-microscopy-sem-",totalDownloads:5769,totalCrossrefCites:0,signatures:"Shiva Kumar Singh, Devina Sharma, M. Husain, H. Kishan, Ranjan Kumar and V.P.S. Awana",reviewType:"peer-reviewed",authors:[{id:"105419",title:"Mr.",name:"Shiva",middleName:null,surname:"Kumar Singh",fullName:"Shiva Kumar Singh",slug:"shiva-kumar-singh"},{id:"109865",title:"Prof.",name:"Mushahid",middleName:null,surname:"Husain",fullName:"Mushahid Husain",slug:"mushahid-husain"},{id:"109866",title:"Dr.",name:"V. P. S.",middleName:null,surname:"Awana",fullName:"V. P. S. Awana",slug:"v.-p.-s.-awana"},{id:"137474",title:"MSc.",name:"Devina",middleName:null,surname:"Sharma",fullName:"Devina Sharma",slug:"devina-sharma"},{id:"137475",title:"Dr.",name:"H.",middleName:null,surname:"Kishan",fullName:"H. Kishan",slug:"h.-kishan"},{id:"143941",title:"Dr.",name:"Ranjan",middleName:null,surname:"Kumar",fullName:"Ranjan Kumar",slug:"ranjan-kumar"}]},{id:"30952",type:"chapter",title:"Morphological and Photovoltaic Studies of TiO2 NTs for High Efficiency Solar Cells",slug:"morphological-and-photovoltaic-studies-of-tio2-nanotubes-for-high-efficiency-solar-cells",totalDownloads:4027,totalCrossrefCites:5,signatures:"Mukul Dubey and Hongshan He",reviewType:"peer-reviewed",authors:[{id:"107873",title:"Prof.",name:"Hongshan",middleName:null,surname:"He",fullName:"Hongshan He",slug:"hongshan-he"},{id:"107874",title:"Mr.",name:"Mukul",middleName:null,surname:"Dubey",fullName:"Mukul Dubey",slug:"mukul-dubey"}]},{id:"30953",type:"chapter",title:"Synthesis and Characterisation of Silica/Polyamide-Imide Composite Film for Enamel Wire",slug:"synthesis-and-characterization-of-spherical-silica-polyamide-imide-composite-film-for-enamel-wire",totalDownloads:6191,totalCrossrefCites:0,signatures:"Xiaokun Ma and Sun-Jae Kim",reviewType:"peer-reviewed",authors:[{id:"105601",title:"Prof.",name:"Sun-Jae",middleName:null,surname:"Kim",fullName:"Sun-Jae Kim",slug:"sun-jae-kim"},{id:"107938",title:"Dr.",name:"Xiaokun",middleName:null,surname:"Ma",fullName:"Xiaokun Ma",slug:"xiaokun-ma"}]},{id:"30954",type:"chapter",title:"Scanning Electron Microscope for Characterising of Micro- and Nanostructured Titanium Surfaces",slug:"scanning-electron-microscope-for-characterising-of-micro-and-nanostructured-titanium-surfaces-",totalDownloads:3458,totalCrossrefCites:0,signatures:"Areeya Aeimbhu",reviewType:"peer-reviewed",authors:[{id:"99729",title:"Dr.",name:"Areeya",middleName:null,surname:"Aeimbhu",fullName:"Areeya Aeimbhu",slug:"areeya-aeimbhu"}]},{id:"30955",type:"chapter",title:"Application of Scanning Electron Microscopy for the Morphological Study of Biofilm in Medical Devices",slug:"application-of-scanning-electron-microscopy-for-the-morphological-study-of-biofilm-in-medical-device",totalDownloads:5318,totalCrossrefCites:2,signatures:"R. M. Abd El-Baky",reviewType:"peer-reviewed",authors:[{id:"103658",title:"Dr.",name:"Rehab Mahmoud",middleName:null,surname:"Abd El-Baky",fullName:"Rehab Mahmoud Abd El-Baky",slug:"rehab-mahmoud-abd-el-baky"}]},{id:"30956",type:"chapter",title:"Interrelated Analysis of Performance and Fouling Behaviors in Forward Osmosis by Ex-Situ Membrane Characterizations",slug:"interrelated-analysis-of-performance-and-fouling-behaviors-in-forward-osmosis-by-ex-situ-membrane-ch",totalDownloads:3296,totalCrossrefCites:1,signatures:"Coskun Aydiner, Semra Topcu, Caner Tortop, Ferihan Kuvvet, Didem Ekinci, Nadir Dizge and Bulent Keskinler",reviewType:"peer-reviewed",authors:[{id:"109299",title:"Associate Prof.",name:"Coskun",middleName:null,surname:"Aydiner",fullName:"Coskun Aydiner",slug:"coskun-aydiner"}]},{id:"30957",type:"chapter",title:"Biodegradation of Pre-Aged Modified Polyethylene Films",slug:"biodegradation-of-pre-aged-modified-polyethylene-films",totalDownloads:4905,totalCrossrefCites:3,signatures:"Bożena Nowak, Jolanta Pająk and Jagna Karcz",reviewType:"peer-reviewed",authors:[{id:"103087",title:"Dr.",name:"Bożena",middleName:"Danuta",surname:"Nowak",fullName:"Bożena Nowak",slug:"bozena-nowak"},{id:"108409",title:"Dr.",name:"Jolanta",middleName:null,surname:"Pająk",fullName:"Jolanta Pająk",slug:"jolanta-pajak"},{id:"108412",title:"Dr.",name:"Jagna",middleName:null,surname:"Karcz",fullName:"Jagna Karcz",slug:"jagna-karcz"}]},{id:"30958",type:"chapter",title:"Surface Analysis Studies on Polymer Electrolyte Membranes Using Scanning Electron Microscope and Atomic Force Microscope",slug:"surface-analysis-studies-on-polymer-electrolyte-membranes-using-scanning-electron-microscope-and-ato",totalDownloads:7551,totalCrossrefCites:15,signatures:"M. Ulaganathan, R. Nithya and S. Rajendran",reviewType:"peer-reviewed",authors:[{id:"102326",title:"Dr.",name:"M",middleName:null,surname:"Ulaganathan",fullName:"M Ulaganathan",slug:"m-ulaganathan"},{id:"102329",title:"Prof.",name:"S",middleName:null,surname:"Rajendran",fullName:"S Rajendran",slug:"s-rajendran"}]},{id:"30959",type:"chapter",title:"Characterization of Ceramic Materials Synthesized by Mechanosynthesis for Energy Applications",slug:"characterization-of-ceramic-materials-synthesized-by-mechanosynthesis-for-energy-applications",totalDownloads:4407,totalCrossrefCites:0,signatures:"Claudia A. Cortés-Escobedo, Félix Sánchez-De Jesús, Gabriel Torres-Villaseñor, Juan Muñoz-Saldaña and Ana M. Bolarín-Miró",reviewType:"peer-reviewed",authors:[{id:"39070",title:"Dr.",name:"Ana Maria",middleName:null,surname:"Bolarin-Miro",fullName:"Ana Maria Bolarin-Miro",slug:"ana-maria-bolarin-miro"},{id:"106669",title:"Dr.",name:"Claudia Alicia",middleName:null,surname:"Cortés-Escobedo",fullName:"Claudia Alicia Cortés-Escobedo",slug:"claudia-alicia-cortes-escobedo"},{id:"107412",title:"Dr.",name:"Juan",middleName:null,surname:"Munoz-Saldana",fullName:"Juan Munoz-Saldana",slug:"juan-munoz-saldana"},{id:"107419",title:"Dr.",name:"Felix",middleName:null,surname:"Sanchez-De Jesus",fullName:"Felix Sanchez-De Jesus",slug:"felix-sanchez-de-jesus"},{id:"124602",title:"Prof.",name:"Gabriel",middleName:null,surname:"Torres-Villasenor",fullName:"Gabriel Torres-Villasenor",slug:"gabriel-torres-villasenor"}]},{id:"30960",type:"chapter",title:"Scanning Electron Microscopy (SEM) and Environmental SEM: Suitable Tools for Study of Adhesion Stage and Biofilm Formation",slug:"scanning-electron-microscopy-sem-and-environnmental-sem-suitable-tools-for-study-of-adhesion-stage-a",totalDownloads:7724,totalCrossrefCites:12,signatures:"Soumya El Abed, Saad Koraichi Ibnsouda, Hassan Latrache and Fatima Hamadi",reviewType:"peer-reviewed",authors:[{id:"102518",title:"Dr.",name:"Soumya",middleName:null,surname:"El Abed",fullName:"Soumya El Abed",slug:"soumya-el-abed"},{id:"135701",title:"Prof.",name:"Saad",middleName:null,surname:"Koraichi Ibnsouda",fullName:"Saad Koraichi Ibnsouda",slug:"saad-koraichi-ibnsouda"},{id:"135703",title:"Prof.",name:"Latrache",middleName:null,surname:"Hassan",fullName:"Latrache Hassan",slug:"latrache-hassan"},{id:"135704",title:"Prof.",name:"Hamadi",middleName:null,surname:"Fatima",fullName:"Hamadi Fatima",slug:"hamadi-fatima"}]},{id:"30961",type:"chapter",title:"Scanning Electron Microscopy Study of Fiber Reinforced Polymeric Nanocomposites",slug:"scanning-electron-microscopy-study-of-fiber-reinforced-polymeric-nanocomposites",totalDownloads:6406,totalCrossrefCites:0,signatures:"Mohammad Kamal Hossain",reviewType:"peer-reviewed",authors:[{id:"104713",title:"Dr.",name:"Mohammad",middleName:null,surname:"Hossain",fullName:"Mohammad Hossain",slug:"mohammad-hossain"}]},{id:"30962",type:"chapter",title:"Preparation and Characterization of Dielectric Thin Films by RF Magnetron-Sputtering with (Ba0.3Sr0.7)(Zn1/3Nb2/3)O3 Ceramic Target",slug:"preparation-and-characterization-of-dielectric-thin-films-by-rf-magnetron-sputtering-with-ba0-3sr0-7",totalDownloads:3601,totalCrossrefCites:0,signatures:"Feng Shi",reviewType:"peer-reviewed",authors:[{id:"24821",title:"Dr.",name:"Feng",middleName:null,surname:"Shi",fullName:"Feng Shi",slug:"feng-shi"}]},{id:"30963",type:"chapter",title:"Microstructural and Mineralogical Characterization of Clay Stabilized Using Calcium-Based Stabilizers",slug:"microstructural-and-mineralogical-characterization-of-clay-stabilized-using-calcium-based-stabilizer",totalDownloads:6805,totalCrossrefCites:29,signatures:"Pranshoo Solanki and Musharraf Zaman",reviewType:"peer-reviewed",authors:[{id:"20942",title:"Prof.",name:"Pranshoo",middleName:null,surname:"Solanki",fullName:"Pranshoo Solanki",slug:"pranshoo-solanki"},{id:"20945",title:"Prof.",name:"Musharraf",middleName:null,surname:"Zaman",fullName:"Musharraf Zaman",slug:"musharraf-zaman"}]},{id:"30964",type:"chapter",title:"The Use of ESEM in Geobiology",slug:"the-use-of-esem-in-geobiology",totalDownloads:3299,totalCrossrefCites:1,signatures:"Magnus Ivarsson and Sara Holmström",reviewType:"peer-reviewed",authors:[{id:"109413",title:"Dr.",name:"Magnus",middleName:null,surname:"Ivarsson",fullName:"Magnus Ivarsson",slug:"magnus-ivarsson"},{id:"135734",title:"Dr.",name:"Sara",middleName:null,surname:"Holmström",fullName:"Sara Holmström",slug:"sara-holmstrom"}]},{id:"30965",type:"chapter",title:"How Log Interpreter Uses SEM Data for Clay Volume Calculation",slug:"how-log-interpreter-uses-sem-data-to-estimate-a-reservoir-clay-volume-",totalDownloads:8188,totalCrossrefCites:0,signatures:"Mohammadhossein Mohammadlou and Mai Britt Mørk",reviewType:"peer-reviewed",authors:[{id:"103154",title:"PhD.",name:"Mohammadhossein",middleName:null,surname:"Mohammadlou",fullName:"Mohammadhossein Mohammadlou",slug:"mohammadhossein-mohammadlou"}]}]},relatedBooks:[{type:"book",id:"2397",title:"Advanced Aspects of Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"bcc83fcd6b4bbfdaa677b37d94bdbdb6",slug:"advanced-aspects-of-spectroscopy",bookSignature:"Muhammad Akhyar Farrukh",coverURL:"https://cdn.intechopen.com/books/images_new/2397.jpg",editedByType:"Edited by",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"38537",title:"Electronic (Absorption) Spectra of 3d Transition Metal Complexes",slug:"electronic-absorption-spectra-of-3d-transition-metal-complexes",signatures:"S. Lakshmi Reddy, Tamio Endo and G. Siva Reddy",authors:[{id:"149356",title:"Dr.",name:"Lakshmi",middleName:null,surname:"Reddy",fullName:"Lakshmi Reddy",slug:"lakshmi-reddy"},{id:"149357",title:"Prof.",name:"Tamio",middleName:null,surname:"Endo",fullName:"Tamio Endo",slug:"tamio-endo"},{id:"149358",title:"Prof.",name:"Siva Reddy.",middleName:null,surname:"G",fullName:"Siva Reddy. G",slug:"siva-reddy.-g"}]},{id:"38543",title:"Application of FTIR Spectroscopy in Environmental Studies",slug:"application-of-ftir-spectroscopy-in-environmental-studies",signatures:"Claudia Maria Simonescu",authors:[{id:"142381",title:"Dr.",name:"Claudia Maria",middleName:null,surname:"Simonescu",fullName:"Claudia Maria Simonescu",slug:"claudia-maria-simonescu"}]},{id:"38545",title:"The Use of the Spectrometric Technique FTIR-ATR to Examine the Polymers Surface",slug:"the-use-of-the-spectrometric-technique-ftir-atr-to-examine-the-polymers-surface",signatures:"Wieslawa Urbaniak-Domagala",authors:[{id:"139559",title:"Dr.",name:"Wieslawa",middleName:null,surname:"Urbaniak-Domagala",fullName:"Wieslawa Urbaniak-Domagala",slug:"wieslawa-urbaniak-domagala"}]},{id:"38544",title:"Use of Magnetic Induction Spectroscopy in the Characterization of the Impedance of the Material with Biological Characteristics",slug:"use-of-magnetic-induction-spectroscopy-in-the-characterization-of-the-impedance-of-the-material-with",signatures:"Jesús Rodarte Dávila, Jenaro C. Paz Gutierrez and Ricardo Perez Blanco",authors:[{id:"149472",title:"Prof.",name:"Jesus",middleName:null,surname:"Rodarte",fullName:"Jesus Rodarte",slug:"jesus-rodarte"}]},{id:"38540",title:"Laser-Induced Breakdown Spectroscopy",slug:"laser-induced-breakdown-spectroscopy",signatures:"Taesam Kim and Chhiu-Tsu Lin",authors:[{id:"141569",title:"Prof.",name:"Chhiu-Tsu",middleName:null,surname:"Lin",fullName:"Chhiu-Tsu Lin",slug:"chhiu-tsu-lin"},{id:"141570",title:"Dr.",name:"Taesam",middleName:null,surname:"Kim",fullName:"Taesam Kim",slug:"taesam-kim"}]},{id:"38640",title:"X-Ray Photoelectron Spectroscopy for Characterization of Engineered Elastomer Surfaces",slug:"x-ray-photoelectron-spectroscopy-for-characterization-of-engineered-elastomer-surfaces",signatures:"Lidia Martínez, Elisa Román and Roman Nevshupa",authors:[{id:"138979",title:"Dr.",name:"Roman",middleName:null,surname:"Nevshupa",fullName:"Roman Nevshupa",slug:"roman-nevshupa"},{id:"139387",title:"Dr.",name:"Lidia",middleName:null,surname:"Martínez",fullName:"Lidia Martínez",slug:"lidia-martinez"},{id:"139389",title:"Dr.",name:"Elisa",middleName:null,surname:"Román",fullName:"Elisa Román",slug:"elisa-roman"}]},{id:"38542",title:"Non-Destructive Surface Analysis by Low Energy Electron Loss Spectroscopy",slug:"non-destructive-surface-analysis-by-low-energy-electron-loss-spectroscopy",signatures:"Vitaliy Tinkov",authors:[{id:"138822",title:"Dr.",name:"Vitaliy",middleName:null,surname:"Tinkov",fullName:"Vitaliy Tinkov",slug:"vitaliy-tinkov"}]},{id:"38553",title:"From Micro– to Macro–Raman Spectroscopy: Solar Silicon for a Case Study",slug:"from-micro-to-macro-raman-spectroscopy-solar-silicon-for-a-case-study",signatures:"George Sarau, Arne Bochmann, Renata Lewandowska and Silke Christiansen",authors:[{id:"26361",title:"Dr.",name:"Silke",middleName:null,surname:"Christiansen",fullName:"Silke Christiansen",slug:"silke-christiansen"},{id:"139826",title:"Dr.",name:"George",middleName:null,surname:"Sarau",fullName:"George Sarau",slug:"george-sarau"},{id:"155741",title:"BSc.",name:"Arne",middleName:null,surname:"Bochmann",fullName:"Arne Bochmann",slug:"arne-bochmann"}]},{id:"38539",title:"Stress Measurements in Si and SiGe by Liquid-Immersion Raman Spectroscopy",slug:"stress-measurements-in-si-and-sige-by-liquid-immersion-raman-spectroscopy",signatures:"Daisuke Kosemura, Motohiro Tomita, Koji Usuda and Atsushi Ogura",authors:[{id:"142271",title:"Dr.",name:"Daisuke",middleName:null,surname:"Kosemura",fullName:"Daisuke Kosemura",slug:"daisuke-kosemura"}]},{id:"38536",title:"HR-MAS NMR Spectroscopy in Material Science",slug:"hr-mas-nmr-spectroscopy-in-material-science",signatures:"Todd M. Alam and Janelle E. Jenkins",authors:[{id:"142534",title:"Dr.",name:"Todd",middleName:null,surname:"Alam",fullName:"Todd Alam",slug:"todd-alam"},{id:"142549",title:"Dr.",name:"Janelle",middleName:null,surname:"Jenkins",fullName:"Janelle Jenkins",slug:"janelle-jenkins"}]},{id:"38546",title:"Spectroscopic Analyses of Nano-Dispersion Strengthened Transient Liquid Phase Bonds",slug:"spectroscopic-analyses-of-nano-dispersion-strengthened-transient-liquid-phase-bonds",signatures:"Kavian Cooke",authors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",fullName:"Kavian Cooke",slug:"kavian-cooke"}]},{id:"38554",title:"Photo-Catalytic Degradation of Volatile Organic Compounds (VOCs) over Titanium Dioxide Thin Film",slug:"photo-catalytic-degradation-of-volatile-organic-compounds-vocs-over-titanium-dioxide-thin-film",signatures:"Wenjun Liang, Jian Li and Hong He",authors:[{id:"138899",title:"Dr.",name:"Wenjun",middleName:null,surname:"Liang",fullName:"Wenjun Liang",slug:"wenjun-liang"}]},{id:"38538",title:"Superparamagnetic Behaviour and Induced Ferrimagnetism of LaFeO3 Nanoparticles Prepared by a Hot-Soap Technique",slug:"superparamagnetic-behaviour-and-induced-ferrimagnetism-of-lafeo3-nanoparticles-prepared-by-a-hot-soa",signatures:"Tatsuo Fujii, Ikko Matsusue and Jun Takada",authors:[{id:"141807",title:"Prof.",name:"Tatsuo",middleName:null,surname:"Fujii",fullName:"Tatsuo Fujii",slug:"tatsuo-fujii"},{id:"141980",title:"Prof.",name:"Jun",middleName:null,surname:"Takada",fullName:"Jun Takada",slug:"jun-takada"},{id:"158532",title:"Mr.",name:"Ikko",middleName:null,surname:"Matsusue",fullName:"Ikko Matsusue",slug:"ikko-matsusue"}]},{id:"38547",title:"Phenotiazinium Dyes as Photosensitizers (PS) in Photodynamic Therapy (PDT): Spectroscopic Properties and Photochemical Mechanisms",slug:"phenotiazinium-dyes-as-photosensitizers-ps-in-photodynamic-therapy-pdt-spectroscopic-properties-and-",signatures:"Leonardo M. Moreira, Juliana P. Lyon, Ana Paula Romani, Divinomar Severino, Maira Regina Rodrigues and Hueder P. M. de Oliveira",authors:[{id:"33297",title:"Dr.",name:"Leonardo",middleName:null,surname:"Moreira",fullName:"Leonardo Moreira",slug:"leonardo-moreira"},{id:"36384",title:"Prof.",name:"Juliana",middleName:null,surname:"Lyon",fullName:"Juliana Lyon",slug:"juliana-lyon"},{id:"138796",title:"Dr.",name:"Hueder Paulo Moisés",middleName:null,surname:"De Oliveira",fullName:"Hueder Paulo Moisés De Oliveira",slug:"hueder-paulo-moises-de-oliveira"},{id:"142062",title:"Dr.",name:"Máira",middleName:"Regina",surname:"Rodrigues",fullName:"Máira Rodrigues",slug:"maira-rodrigues"},{id:"155251",title:"Dr.",name:"Ana Paula",middleName:null,surname:"Romani",fullName:"Ana Paula Romani",slug:"ana-paula-romani"},{id:"155253",title:"Dr.",name:"Divinomar",middleName:null,surname:"Severino",fullName:"Divinomar Severino",slug:"divinomar-severino"}]},{id:"38534",title:"Novel Fischer’s Base Analogous of Leuco-TAM and TAM+ Dyes – Synthesis and Spectroscopic Characterization",slug:"novel-fischer-s-base-analogous-of-leuco-tam-and-tam-dyes-synthesis-and-spectroscopic-characterizatio",signatures:"Sam-Rok Keum, So-Young Ma and Se-Jung Roh",authors:[{id:"139183",title:"Prof.",name:"Sam-Rok",middleName:null,surname:"Keum",fullName:"Sam-Rok Keum",slug:"sam-rok-keum"},{id:"140700",title:"Ms.",name:"So-Young",middleName:null,surname:"Ma",fullName:"So-Young Ma",slug:"so-young-ma"},{id:"140702",title:"Dr.",name:"Se-Jung",middleName:null,surname:"Roh",fullName:"Se-Jung Roh",slug:"se-jung-roh"}]},{id:"38533",title:"Atomic and Molecular Low-n Rydberg States in Near Critical Point Fluids",slug:"atomic-and-molecular-low-n-rydberg-states-in-near-critical-point-fluids",signatures:"Luxi Li, Xianbo Shi, Cherice M. Evans and Gary L. Findley",authors:[{id:"138816",title:"Dr.",name:"Cherice",middleName:null,surname:"Evans",fullName:"Cherice Evans",slug:"cherice-evans"},{id:"140492",title:"Dr.",name:"Luxi",middleName:null,surname:"Li",fullName:"Luxi Li",slug:"luxi-li"},{id:"140919",title:"Dr.",name:"Xianbo",middleName:null,surname:"Shi",fullName:"Xianbo Shi",slug:"xianbo-shi"},{id:"140920",title:"Dr.",name:"Gary L.",middleName:null,surname:"Findley",fullName:"Gary L. Findley",slug:"gary-l.-findley"}]},{id:"38541",title:"Mathematical Methods to Analyze Spectroscopic Data - New Applications",slug:"mathematical-methods-to-analyze-spectroscopic-data-new-applications",signatures:"E.S. Estracanholli, G. Nicolodelli, S. Pratavieira, C. Kurachi and V.S. Bagnato",authors:[{id:"63429",title:"MSc.",name:"Sebastiao",middleName:null,surname:"Pratavieira",fullName:"Sebastiao Pratavieira",slug:"sebastiao-pratavieira"},{id:"72296",title:"Prof.",name:"Cristina",middleName:null,surname:"Kurachi",fullName:"Cristina Kurachi",slug:"cristina-kurachi"},{id:"72297",title:"Prof.",name:"Vanderlei Salvador",middleName:null,surname:"Bagnato",fullName:"Vanderlei Salvador Bagnato",slug:"vanderlei-salvador-bagnato"},{id:"142218",title:"MSc.",name:"Everton Sergio",middleName:null,surname:"Estracanholli",fullName:"Everton Sergio Estracanholli",slug:"everton-sergio-estracanholli"},{id:"142956",title:"Dr.",name:"Gustavo",middleName:null,surname:"Nicolodelli",fullName:"Gustavo Nicolodelli",slug:"gustavo-nicolodelli"}]},{id:"38535",title:"Injection and Optical Spectroscopy of Localized States in II-VI Semiconductor Films",slug:"injection-and-optical-spectroscopy-of-localized-states-in-ii-vi-semiconductor-films",signatures:"Denys Kurbatov, Anatoliy Opanasyuk and Halyna Khlyap",authors:[{id:"47878",title:"Dr.",name:"Halyna",middleName:null,surname:"Khlyap",fullName:"Halyna Khlyap",slug:"halyna-khlyap"},{id:"141656",title:"Dr.",name:"Denys",middleName:null,surname:"Kurbatov",fullName:"Denys Kurbatov",slug:"denys-kurbatov"},{id:"144156",title:"Dr.",name:"Anatoliy",middleName:null,surname:"Opanasyuk",fullName:"Anatoliy Opanasyuk",slug:"anatoliy-opanasyuk"}]}]}],publishedBooks:[{type:"book",id:"1476",title:"Femtosecond-Scale Optics",subtitle:null,isOpenForSubmission:!1,hash:"54bc6a95c772396b46d9dc2ad127be5a",slug:"femtosecond-scale-optics",bookSignature:"Anatoli V. Andreev",coverURL:"https://cdn.intechopen.com/books/images_new/1476.jpg",editedByType:"Edited by",editors:[{id:"62570",title:"Prof.",name:"Anatoly",surname:"Andreev",slug:"anatoly-andreev",fullName:"Anatoly Andreev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3365",title:"Adaptive Optics Progress",subtitle:null,isOpenForSubmission:!1,hash:"ddbbb55d13ae352a500c70d649c3a020",slug:"adaptive-optics-progress",bookSignature:"Robert K. Tyson",coverURL:"https://cdn.intechopen.com/books/images_new/3365.jpg",editedByType:"Edited by",editors:[{id:"95503",title:"Dr.",name:"Robert",surname:"Tyson",slug:"robert-tyson",fullName:"Robert Tyson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9272",title:"Optical Fiber Applications",subtitle:null,isOpenForSubmission:!1,hash:"dd156cc0568d8a4204d9f13609d8ff9e",slug:"optical-fiber-applications",bookSignature:"Guillermo Huerta-Cuellar and Roghayeh Imani",coverURL:"https://cdn.intechopen.com/books/images_new/9272.jpg",editedByType:"Edited by",editors:[{id:"237167",title:"Dr.",name:"Guillermo",surname:"Huerta-Cuellar",slug:"guillermo-huerta-cuellar",fullName:"Guillermo Huerta-Cuellar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1532",title:"Semiconductor Laser Diode",subtitle:"Technology and Applications",isOpenForSubmission:!1,hash:"67c029e3a582411c5f9ab3a7dc28884f",slug:"semiconductor-laser-diode-technology-and-applications",bookSignature:"Dnyaneshwar Shaligram Patil",coverURL:"https://cdn.intechopen.com/books/images_new/1532.jpg",editedByType:"Edited by",editors:[{id:"106345",title:"Prof.",name:"Dnyaneshwar",surname:"Patil",slug:"dnyaneshwar-patil",fullName:"Dnyaneshwar Patil"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3486",title:"Advances in Photonic Crystals",subtitle:null,isOpenForSubmission:!1,hash:"fa2245d09cc8fd5a8d7ae78b94afd698",slug:"advances-in-photonic-crystals",bookSignature:"Vittorio M.N. Passaro",coverURL:"https://cdn.intechopen.com/books/images_new/3486.jpg",editedByType:"Edited by",editors:[{id:"83905",title:"Prof.",name:"Vittorio",surname:"Passaro",slug:"vittorio-passaro",fullName:"Vittorio Passaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"4614",title:"Surface Energy",subtitle:null,isOpenForSubmission:!1,hash:"0e17cd77d2616f544522495c30285475",slug:"surface-energy",bookSignature:"Mahmood Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/4614.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"76012",title:"Sensor Surface Design with NanoMaterials: A New Platform in the Diagnosis of COVID-19",doi:"10.5772/intechopen.97056",slug:"sensor-surface-design-with-nanomaterials-a-new-platform-in-the-diagnosis-of-covid-19",body:'
1. Introduction
SARS-CoV-2 is a virus in the coronavirus family, discovered in December 2019 in Wuhan, China, and the cause of COVID-19 [1]. Coronaviruses (CoV) are RNA viruses and can cause anything from the common cold to more serious diseases with neurological, gastrointestinal, and pulmonary involvement [2]. They are zoonotic viruses; that is, they can be transmitted between animals and people due to their ability to recombine their viral proteins between coronaviruses of different hosts [3].
COVID-19 was defined as Pandemic on March 11, 2020 (1), and by February 1, 2021, there are already 103,221,369 individuals infected worldwide, and the number of global deaths already exceeds 2,232,563 [4]. Before SARS-CoV-2, two other CoVs causing a pandemic disease were identified: the first was SARS-CoV in 2002, originating in Foshan (China), which caused Severe Acute Respiratory Syndrome (SARS); the second was MERS-CoV, which originated in the Arabian Peninsula in 2012, causing the Middle East Respiratory Syndrome (MERS) [5].
A significant bottleneck in COVID-19 is mass diagnosis. The real-time reverse-transcription polymerase chain reaction (RT-PCR) is the “gold standard” method for demonstrating the presence of SARS-CoV-2. This diagnosis is reliable; however, most countries have suffered from a lack of supplies and equipment and its high cost. IgM and IgG antibodies can be detected in the serum of patients with COVID-19, where their monitoring can indicate recent or late infection and the duration of the post-infection protective immune response.
The development of easy-to-use alternative platforms is encouraged with specific attention paid to sensitivity and simplicity to specifically detect targets at a very low concentration, in about minutes, enabling portable on-site screening upon further optimizations of the detection limit. However, the accuracy of these techniques depends on several factors; variations in these factors might significantly lower the sensitivity of detection.
Nanomaterials can be applied in several types of sensors due to their physical and chemical properties, making them possible to detect by colorimetric, fluorescence, magnetism, surface plasmon resonance, and electrochemical [6, 7, 8, 9, 10]. In electrochemical sensing, the conductive nanomaterials are interesting for application due to their well-known ability to improve the catalytic activity, the electron transfer speed, and the conductivity of the sensors. Furthermore, the superficial area and amplify the analytical signal can be increased by deposition of nanomaterials over electronic surfaces, enhancing the sensitivity regarding target analytes’ detection. Therefore, the group has been working with several nanomaterials to develop sensors.
Therefore, in this book chapter, we describe case reports and proof-of-concept for a simple, label-free electrochemical sensor for the fast and direct detection of SARS-CoV-2 through the detection of the specific probe. Early and widespread testing has proven to reduce mortality rates and improve contact tracing. However, the value of testing is directly linked to the availability and accuracy of diagnostic tests as concerns grow. Additionally, we have demonstrated in this work the possibility of a biorecognition element between the target concentration and the viral load exploring different electrode materials and redox markers allows for improved sensor properties with higher effectiveness than the commercially available assay or traditional diagnostic methods.
2. Diagnosis of COVID-19: the old and the gold
Coronaviruses infect human cells mainly by binding proteins from viral spikes (spike proteins) to molecules of the angiotensin-converting enzyme 2 (ACE2), [11] widely expressed in human organs and tissues, such as nasal, bronchial epithelial cells, and pneumocytes. After entering the cell, viral replication occurs and the host cell’s subsequent death, whether epithelial, endothelial, or immune cells [12].
Due to the increase in viral replication, the epithelial-endothelial barrier’s integrity is compromised, accentuating the inflammatory response, causing edema and inflammatory infiltrates. Furthermore, it compromises coagulation pathways, increasing fibrin degradation products and alterations in leukocytes and red blood cells. Together with the inflammatory infiltrate, the resulting edema contributes to the ground-glass opacities seen in imaging studies and too low oxygenation [13].
Symptoms and clinical evolution depend on the triad: virus strain, host immunity, and pre-existing conditions, known as comorbidities, such as hypertension, obesity, diabetes, cardiovascular disease, chronic lung disease, chronic kidney disease, and malignancies [14]. Symptoms range from the most common in flu-like conditions, such as fever, cough, and shortness of breath, nausea, diarrhea, loss of smell and taste, and more severe symptoms such as pneumonia leukopenia, kidney failure, myocarditis, meningitis, and thromboembolic events [15].
The immune response against COVID-19 has been extensively investigated and is directly related to clinical evolution. The presence of lymphopenia and increased production of chemokines and proinflammatory cytokines have been demonstrated in patients with COVID-19, especially in the most severe cases, which can worsen tissue damage [16]. Serum levels of chemokines (IL-8) and proinflammatory cytokines (TNF-α, IL-1, IL-6, IFN-γ, IP-10, and MCP-1) are found in greater quantities patients with COVID- 19 severe when compared with individuals with mild disease. This fact indicates that the cytokine storm is associated with the severity of the disease and adverse outcomes, suggesting a possible role of hyperinflammatory responses in the pathogenesis of COVID-19 [16, 17].
Studies on the humoral immune response demonstrate that antibodies, such as IgA, IgM, and IgG against SARS-CoV-2, appear on the first day after the onset of symptoms [18, 19]. IgM levels appear on days 0 to 7, increasing on days 8 to 14 and reaching a plateau, while IgA levels increased from days 0 to 14, whereas IgG levels were detected on days 0 to 7, increased on days 8 to 14, continued to increase until the 15th to the 21st and reached a plateau on the 21st [18]. This kinetics of antibody levels indicates a rapid and almost simultaneous response of these three isotypes during the first weeks of infection by SARS-CoV-2, IgA and IgG remain with higher titers for a longer time when compared to IgM [20, 21].
The amount of antibodies in samples from patients with COVID-19 is dependent on the number of viral RNA present: the lower the viral load, the lower the level of antibodies present, and the severity of clinical evolution [19, 20, 21]. Initial data indicate a lower concentration of anti-SARS-CoV-2 antibodies in asymptomatic patients, but more quickly, while in mild symptomatic ones, there is a slower but more continuous production. Serious patients have high levels of antibodies, mainly IgA and IgG. However, there are still gaps about whether specific humoral and cellular immune memory persist and for how long [20]. Despite these limitations in understanding the long-term humoral immune response, the determination of IgA, IgM, and IgG antibodies are widely used in laboratory tests for the detection of COVID-19. Early diagnosis also allows the infected patient to have faster access to medical care and increases their chances of a better prognosis. It will enable the initiation of treatment when the viral load is in low concentrations.
Antibody determination is also important to monitor patients who have been vaccinated since immunization stimulates the immune system’s production without having to be infected [22]. Results about vaccines against COVID-19 showed that vaccinated patients increased the production of specific antibodies and their affinity to levels similar to those observed in patients who recovered from COVID-19 [23, 24, 25]. Data show that a standardized quantification/determination of antibody levels may be sufficient to monitor vaccinated patients and estimate the quality and duration of this protection [24].
To date, quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR), qRT-qPCR assay is the gold standard for the early detection of virus (major steps presented in Figure 1), but the CRISPR–Cas12-based lateral flow, Immunochromatographic, ELISA, loop-mediated isothermal amplification (LAMP) and other techniques has been developed and applied to screening or to confirm positive COVID-19 patients allowing prompt clinical and quarantine decisions this infection (Table 1).
Figure 1.
Major steps of qRT-PCR as a diagnostic tool at COVID-19 (1) A patient suspected of COVID-19 undergoes collection of cells infected with SARS-CoV-2 through a nasopharyngeal swab. (2–3) Viral RNA is extracted and purified. The enzyme reverse transcriptase converts RNA into cDNA.
Comparison of methodologies applied to the diagnosis of (SARS)-CoV-2.
Variable sensitivity according to kit and sample collection day.
LOD: limit of detection, RPA: Recombinase Polymerase Amplification, Database: Pubmed (P), Scopus (S), and Web of Science (WS).
To minimize the cost and logistical problems of sample collection and diagnostics, rapid diagnostic systems based on classical methodological approaches, such as immunochromatography, were quickly implemented in the detection of SARS-CoV-2 antigens or antibodies produced against it. However, the accuracy of these techniques depends on several factors. The bioavailability of the researched molecule, as viral genetic material, viral antigens, and various subclasses of antibodies, the stability of these biomolecules to the procedures of sample collection and transport to the diagnostic platforms, the possibility of storage for later evaluation are significant bottlenecks that have impaired mass testing, especially in developing countries and variations in these factors might significantly lower the sensitivity of detection. The degree of reliability is uncertain in many of them, and implementing a faster and accurate diagnosis system is essential to monitor the disease and define policies to control viral spread.
Biosensors are one of the most popular types of point-of-care devices in various diagnostics areas, which offer several advantages such as the low cost, the capability of miniaturization, and high sensitivity and selectivity. The transposition of the molecular and immunological diagnosis to miniaturization platforms like point-of-care systems implies a drastic reduction in the amount of sample needed, increases specificity, reliable measurements in real-time, and portability. The development of easy-to-use alternative platforms is encouraged with specific attention paid to sensitivity and simplicity to detect targets at a very low concentration in about minutes, enabling portable on-site screening upon further optimizing the detection limit.
An overview of some methodologies applied to the diagnosis of (SARS)-CoV-2 is presented in Table 1. The ELISA-based test was used to validate the antibody–antigen interaction, or RT-PCR was used to validate the primer, particularly the complexity of the assays during inventory shortages, while cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry was used to characterize the electrode functionalization.
Multi sensors, lateral flow tests, mobile biosensors, and wearable biosensors are critical parts for precision medicine in COVID-19. Russell, S.M. et al., defined these biosensors’ ideal characteristics using some prototypes from recent literature as examples [40]. Multi sensors, lateral flow tests, mobile biosensors, and wearable biosensors are crucial parts for precision medicine in COVID-19. We propose the ideal characteristics of these biosensors using some prototypes from recent literature as examples. Multi sensors, lateral flow tests, mobile biosensors, and wearable biosensors are crucial parts for precision medicine in COVID-19.
In his work, Fukumoto, T. et al. 2020 has developed a fast, easy to use, and inexpensive diagnostic method that is needed to help control the current outbreak of the new coronavirus based on microfluidic microdevices. A new detection kit - the 2019 Novel Coronavirus Detection Kit (nCoV-DK) - cuts detection time in half, eliminating RNA extraction and purification steps. The nCoV-DK test effectively detects SARS-CoV-2 in all types of samples, including saliva, while reducing the time required for detection and risk of human error [41].
Laghrib, F. et al., showed the leading current trends and strategies in diagnosing n-SARS-CoV-2 based on emerging and traditional assessment technologies for continuous innovation. Addressing recent biosensors trends to build a fast, reliable, more sensitive, accessible, friendly system with easily adaptable n-SARS-CoV-2 detection and monitoring technology [42]. Overall, we address and identify evidence from research that supports biosensors’ use based on the premise that screening people for n-SARS-CoV-2 is the best way to stem its spread. The detection and notification of infectious pathogens in a fast, sensitive, and specific way is essential for managing the patient and surveillance of outbreaks. With their ability to diagnose in real-time with the high specificity of a low concentration sample, biosensors are much more reliable than the rapid test for coronavirus detection. The use of nano biosensors has been considered the most promising approach for detecting new n-SARSCoV-2 coronavirus disease. Meanwhile, the current work has also tried to improve biosensors’ detection sensitivity, simplicity, and performance.
Hui, X. et al. 2020, showed in his work, G quadruplex-based Biosensor: A potential tool for SARS-CoV-2 detection to discover additional advantageous attributes of G-quadruplex as potential to be used in new biosensors, such as ligand binding enhanced and unique folding properties [43]. The newly developed G-quadruplex biosensors include electrochemical and optical biosensors that have shown better performance with potential applications with a wide detection range and a broad spectrum of pathogens SARS-CoV-2, the causative agent of COVID-19 disease. G-quadruplex is a non-canonical nucleic acid structure formed by the folding of guanine-rich DNA or RNA.
3. Platform with nanomaterials in the diagnosis of COVID-19: a brave new world
Biosensors are analytical devices that incorporate a biological recognition element capable of detecting the presence, activity, or concentration of the sample under analysis connected to a transducer. This biological element can be a microorganism, an antibody, oligonucleotides, lectins, biomolecule enzymes that can interact with the target substrate. About the transducer, it can be an electrode, fiber optic, or oscillating quartz [42, 44]. Thus, biosensors are one of the most popular types of point-of-care devices in various areas of diagnostics, which offer several advantages such as low cost, the capability of miniaturization, and high sensitivity and selectivity.
Immunosensors are analytical devices of the biosensor class, which detect and transmit information regarding biochemical changes involving integrating a biological element with an electronic interface [45, 46]. This integration can convert a biological signal into an electrical response that is proportional to the concentration of the analyte. Thus, these biosensors can recognize a specific antibody or antigen by forming an antigen–antibody immunocomplex. The recognition event is detected and converted, through a transducer, to a measurable signal (such as electrical current, for example). The primary transducers used in immunosensors are electrochemical, optical, and piezoelectric. Therefore, the incorporation of specific nanomaterial can be intensified by improving the biosensor’s sensitivity and versatility.
Genosensors can also be used, a specific type of biosensor based on nucleic acid chemistry phenomena, such as the hybridization process [47]. Nucleic acids have been widely used in the development of biosensors for drug detection, identification of pathogenic microorganisms and other biological substances, and the diagnosis of diseases. The sensory technique through hybridization involves the immobilization of an oligonucleotide probe on the surface of a transducer and subsequent sensor exposure to a sample containing the complementary sequence (target oligonucleotide) with consequent hybridization. Complementary DNA (cDNA) is a DNA synthesized from a messenger RNA molecule in a reaction catalyzed by the enzyme reverse transcriptase. Thus, the incorporation of nanomaterials on the biosensor’s surface ensures the enhancement of the electrochemical response.
Our group has been demonstrating through publications and patents expertise in the development of nanomaterials with specific properties, such as increased sensitivity of some devices, biocompatibility, and low genotoxicity, essential properties in developing nanotechnological platforms [48, 49, 50, 51, 52, 53]. Toxicity is an important parameter in nanomaterials, but depending on synthesis methodologies it is possible to decrease toxicity. For example, Silva et al. demonstrated some toxicities of nanomaterials, some influenced by the crystalline phase, composition or type of material [54, 55, 56, 57, 58, 59, 60, 61]. In relation to quantum dots, synthesis methodologies were developed, making it possible to increase cellular viability and specificity aiming at several applicability as biological probes [52, 53, 62, 63, 64, 65, 66, 67, 68].
The development of artificial intelligence software enables more accurate detection and quantification and low-cost analytical platforms [69, 70]. These nanotechnological platform [71] s can be used in large-scale production, with low cost and low consumption of samples and reagents [6, 72].
High-quality, low-cost nanotechnological platforms based on the detection of anti-SARS-CoV-2 antibodies may be the key to defining groups already exposed to the disease, even if asymptomatic, that have a potentially protective immune response, a crucial factor for delimitation priority immunization groups. Besides, we can determine the loss of protective immune response after an episode of COVID-19, which leads to a possible chance of reinfection. Some advantages are the amount of sample of interest, in the order of μL, simultaneous analysis of several analytes in the same device and miniaturization, being portable, light, and easy to use the equipment. Also, nanotechnological platforms can be used to assess and monitor the success of immunization strategies, which should soon begin to be administered on a large scale, and the extent and duration of their protection will need to be determined.
Several diagnostic methods have been reported, aiming at biomedical applications, especially in the diagnosis of covid-19, to detect the coronavirus in clinical, research, and public health laboratories. Based on biosensors for SARS-CoV-2, diagnostic methods presented have analytical performance and response times ranging from a few minutes to several hours, which make them promise for practical use in health care points, showing as a strong ally for control of endemics and pandemics.
An overview of current efforts to improve point-of-care diagnostic systems based on biosensors using different nanomaterials at COVID-19 is presented in Table 2.
Comparison of electrochemical biosensors for the detection of (SARS)-CoV-2.
LOD: Limit of Detection; RDS: Relative Squared Difference.
Database: Pubmed (P), Scopus (S) and Web of Science (WS).
Currently, diverse electrochemical biosensors have been lately developed for the detection of the SARS-CoV-2 using modified electrodes with metallic nanoparticle or nano-islands or nanostars, carbon nanofiber (CNF), using inorganic quantum dots, zinc oxide nanowires (ZnO NWs) or nanorods, bimetallic nanoparticles, Graphene Oxide (GO) nanosheet and other modifications show in Table 2. These nanomaterials showed excellent applications in biosensors because of their ease of functionalization, large surface area, stability, on the stable immobilization of probe molecules, the blocking reagent to minimize nonspecific binding, high electronic conductivity (accelerate the electron transfer), high carrier/charge mobility, and strong adsorption capability that increase the sensitivity of electrochemical platform due to their excellent unmatched properties followed by enhancement in the electrochemical response toward the selective detection of SARS-CoV-2.
Vadlamani, B S. et al., the synthesis of a TiO2 functionalized with cobalt but susceptible electrochemical sensor based on nanotubes (Co-TNTs) for rapid detection of SARS-CoV-2 using peak detection (binding domain receptor (RBD)) present on the virus surface [83]. A simple, low-cost, one-step electrochemical anodization route was used to synthesize TNTs, followed by an incipient wetting method for cobalt functionalization of the TNT platform, which was connected to a potentiostat for data collection. This sensor specifically detected the S-RBD protein from SARS-CoV-2, even at very low concentrations (range 14 to 1400 nM (nanomolar)). Besides, our sensor showed a linear response in the detection of viral protein in the concentration range. Thus, our Co-TNT sensor is highly effective in detecting the SARS-CoV-2 S-RBD protein in approximately 30s.
Cuy and Zhou, 2019, showed in their review work that timely detection and diagnosis are urgently needed to guide epidemiological measures, infection control, antiviral treatment, and vaccine research [86]. In this review, biomarkers/indicators for diagnosis of coronavirus 2019 disease or detection of severe acute respiratory syndrome coronavirus 2 in the environment are summarized and discussed. However, antibody detection methods can be combined with real-time quantitative polymerase reverse transcriptase chain reaction to improve diagnostic sensitivity and specificity and boost vaccine research significantly. The deep throat saliva and induced sputum are desired for the RT-qPCR test or other early detection technologies. The ultra-sensitive and specific laboratory diagnostic method and portable devices are essential to control the rapidly evolving COVID-19 pandemic associated with SARS-CoV-2. Currently, computed tomography, RT-qPCR, and LFICS based on the colloid Au NPs (colloidal gold method) have been developed.
Based on the table results, we can verify that the biosensors that showed the best sensitivities are using carbon-based materials due to their conductive properties, metallic oxides (ZnO and TiO2) with supercapacitor properties, and nanocomposites (containing the capacitive and metallic systems).
In nanomaterials, the effects of size, morphology, and chemical structures have a strong influence on the optical, electrical, and magnetic properties. Thus, the tuning of these parameters allows maintaining the same material and intensifying the biosensors’ responses. Another critical parameter is the synergism between nanomaterials, several biosensors using more than one type of nanomaterials to further improve sensitivity. Thus, unfortunately, this systematic study of the literature in biosensors does not exist, being difficult to compare the sensitivity properties using different materials and nanocomposites.
4. Conclusion
Therefore, this chapter showed use of systems in diagnosis COVID-19 and how the nanomaterials may enable an improvement in sensitivity when being incorporated in the surface design of sensors, thus generating nanotechnological platforms. The functional improvement of biosensors using nanomaterials has undoubted benefits, both from the point of view of biological samples, ease of technical execution, better distribution and application logistics and better cost–benefit, being able to direct a whole new generation of rapid diagnoses easily transposable to combat other human diseases. These nanotechnological platforms could be the revolution for the mass diagnosis of COVID-19, without implying an increase in investments since it is a low-cost diagnostic proposal. In this way, they can be immediately translated into clinical practice and used in all parts of the health chain used to combat COVID-19, given its simplicity of use, biosafety, and low cost. The use of nanotechnology to modify diagnostic platforms has a special impact as they generate patents, strengthen technology, and arouse worldwide interest for their technological robustness, which may impact the attraction of resources to countries through the export of these or other forms of sharing that be advantageous.
Acknowledgments
This work was supported by grants of CNPq, CAPES, FAPEAL, and FAPEMIG.
Conflict of interest
The authors declare no conflict of interest.
\n',keywords:"COVID-19, SARS-CoV-2, nanotechnological platforms, nanomaterials, biosensors, diagnosis, sensor surface design",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/76012.pdf",chapterXML:"https://mts.intechopen.com/source/xml/76012.xml",downloadPdfUrl:"/chapter/pdf-download/76012",previewPdfUrl:"/chapter/pdf-preview/76012",totalDownloads:260,totalViews:0,totalCrossrefCites:0,dateSubmitted:"February 24th 2021",dateReviewed:"March 5th 2021",datePrePublished:"March 29th 2021",datePublished:"February 23rd 2022",dateFinished:"March 29th 2021",readingETA:"0",abstract:"Mass testing for COVID-19 is essential to defining patient management strategies, choosing the best clinical management, and dimensioning strategies for controlling viral dissemination and immunization strategies. Thus, it is of utmost importance to search for devices that allow a quick and reliable diagnosis of low cost that can be transposed from the bench to the bedside, such as biosensors. These devices can help choose the correct clinical management to minimize factors that lead to infected patients developing more severe diseases. The use of nanomaterials to modify biosensors’ surfaces to increase these devices’ sensitivity and their biofunctionality enables high-quality nanotechnological platforms. In addition to the diagnostic benefits, nanotechnological platforms that facilitate the monitoring of anti-SARS-CoV-2 antibodies may be the key to determining loss of protective immune response after an episode of COVID-19, which leads to a possible chance of reinfection, as well as how they can be used to assess and monitor the success of immunization strategies, which are beginning to be administered on a large scale and that the extent and duration of their protection will need to be determined. Therefore, in this chapter, we will cover nanomaterials’ use and their functionalities in the surface design of sensors, thus generating nanotechnological platforms in the various facets of the diagnosis of COVID-19.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/76012",risUrl:"/chapter/ris/76012",signatures:"Eliete A. Alvin, Anna V.B. e Borges, Rhéltheer de P. Martins, Marcela R. Lemes, Rafaela M. Barbosa, Carlo J.F. de Oliveira, Diógenes Meneses, Bruno G. Lucca, Noelio O. Dantas, Virmondes R. Junior, Renata P.A. Balvedi, Fabiane C. de Abreu, Marcos V. da Silva and Anielle C.A. Silva",book:{id:"10633",type:"book",title:"Biotechnology to Combat COVID-19",subtitle:null,fullTitle:"Biotechnology to Combat COVID-19",slug:"biotechnology-to-combat-covid-19",publishedDate:"February 23rd 2022",bookSignature:"Megha Agrawal and Shyamasri Biswas",coverURL:"https://cdn.intechopen.com/books/images_new/10633.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-627-6",printIsbn:"978-1-83968-626-9",pdfIsbn:"978-1-83968-628-3",isAvailableForWebshopOrdering:!0,editors:[{id:"193723",title:"Dr.",name:"Megha",middleName:null,surname:"Agrawal",slug:"megha-agrawal",fullName:"Megha Agrawal"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"74921",title:"MSc.",name:"Marcos",middleName:null,surname:"Silva",fullName:"Marcos Silva",slug:"marcos-silva",email:"marcosuftm@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Universidade Federal do Triângulo Mineiro",institutionURL:null,country:{name:"Brazil"}}},{id:"340051",title:"Prof.",name:"Anielle C.A.",middleName:"Almeida",surname:"Silva",fullName:"Anielle C.A. Silva",slug:"anielle-c.a.-silva",email:"acalmeida@fis.ufal.br",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"346701",title:"Prof.",name:"Noelio",middleName:"Oliveira",surname:"Dantas",fullName:"Noelio Dantas",slug:"noelio-dantas",email:"noelio@fis.ufal.br",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Federal University of Alagoas",institutionURL:null,country:{name:"Brazil"}}},{id:"346965",title:"Prof.",name:"Diógenes",middleName:null,surname:"Meneses",fullName:"Diógenes Meneses",slug:"diogenes-meneses",email:"diogenes.santos@penedo.ufal.br",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"346981",title:"MSc.",name:"Eliete A.",middleName:null,surname:"Alvin",fullName:"Eliete A. Alvin",slug:"eliete-a.-alvin",email:"eng.fis.alvin@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Federal University of Alagoas",institutionURL:null,country:{name:"Brazil"}}},{id:"346985",title:"MSc.",name:"Marcela",middleName:null,surname:"Lemes",fullName:"Marcela Lemes",slug:"marcela-lemes",email:"marcela.lemes.r@hotmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"346987",title:"Prof.",name:"Carlo",middleName:null,surname:"Oliveira",fullName:"Carlo Oliveira",slug:"carlo-oliveira",email:"oliveiracjf@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"346988",title:"Prof.",name:"Virmondes",middleName:null,surname:"Rodrigues",fullName:"Virmondes Rodrigues",slug:"virmondes-rodrigues",email:"virmondes.rodrigues@uftm.edu.br",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Universidade Federal do Triângulo Mineiro",institutionURL:null,country:{name:"Brazil"}}},{id:"346992",title:"Prof.",name:"Fabiane",middleName:null,surname:"Abreu",fullName:"Fabiane Abreu",slug:"fabiane-abreu",email:"caxico.fabiane@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"350141",title:"Ms.",name:"Anna",middleName:"Victória Bernardes E",surname:"Borges",fullName:"Anna Borges",slug:"anna-borges",email:"annab.borges@outlook.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"350142",title:"Ms.",name:"Rafaela M.",middleName:null,surname:"Barbosa",fullName:"Rafaela M. Barbosa",slug:"rafaela-m.-barbosa",email:"rafaelamirandabarbosa98@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"350143",title:"Ms.",name:"Rhéltheer De P.",middleName:null,surname:"Martins",fullName:"Rhéltheer De P. Martins",slug:"rheltheer-de-p.-martins",email:"rheltheer.martins@uftm.edu.br",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Universidade Federal do Triângulo Mineiro",institutionURL:null,country:{name:"Brazil"}}},{id:"350144",title:"Prof.",name:"Bruno G.",middleName:null,surname:"Lucca",fullName:"Bruno G. Lucca",slug:"bruno-g.-lucca",email:"bruno.lucca@ufms.br",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Federal University of Mato Grosso do Sul",institutionURL:null,country:{name:"Brazil"}}},{id:"350146",title:"Prof.",name:"Renata",middleName:null,surname:"Balvedi",fullName:"Renata Balvedi",slug:"renata-balvedi",email:"renata.balvedi@uftm.edu.br",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Universidade Federal do Triângulo Mineiro",institutionURL:null,country:{name:"Brazil"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Diagnosis of COVID-19: the old and the gold",level:"1"},{id:"sec_3",title:"3. Platform with nanomaterials in the diagnosis of COVID-19: a brave new world",level:"1"},{id:"sec_4",title:"4. Conclusion",level:"1"},{id:"sec_5",title:"Acknowledgments",level:"1"},{id:"sec_8",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'Organization, W.H. Novel Coronavirus (2019-nCoV) Situation Report – 1 2020.'},{id:"B2",body:'Benvenuto, D.; Giovanetti, M.; Ciccozzi, A.; Spoto, S.; Angeletti, S.; Ciccozzi, M. The 2019-new coronavirus epidemic: Evidence for virus evolution. J. Med. Virol. 2020, 92, 455-459, doi:10.1002/jmv.25688.'},{id:"B3",body:'Ji, W.; Wang, W.; Zhao, X.; Zai, J.; Li, X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J. Med. Virol. 2020, 92, 433-440, doi:10.1002/jmv.25682.'},{id:"B4",body:'Hopkings, J. COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) 2020.'},{id:"B5",body:'Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181-192.'},{id:"B6",body:'de França, C.C.L.; Meneses, D.; Silva, A.C.A.; Dantas, N.O.; de Abreu, F.C.; Petroni, J.M.; Lucca, B.G. Development of novel paper-based electrochemical device modified with CdSe/CdS magic-sized quantum dots and application for the sensing of dopamine. Electrochim. Acta2021, 367, doi:10.1016/j.electacta.2020.137486.'},{id:"B7",body:'da Silva, M.P.G.; Candido, A.C.L.; de Araújo-Júnior, J.X.; Silva, A.C.A.; Dantas, N.O.; de Aquino, T.M.; de Abreu, F.C. Evaluation of the interaction of a guanylhydrazone derivative with cobalt ferrite nanoparticles and PAMAM electrochemical and UV/visible spectroscopic techniques. J. Solid State Electrochem. 2020, 25, 743-752, doi:10.1007/s10008-020-04848-z.'},{id:"B8",body:'de Lima França, C.C.; da Silva Terto, E.G.; Dias-Vermelho, M. V.; Silva, A.C.A.; Dantas, N.O.; de Abreu, F.C. The electrochemical behavior of core-shell CdSe/CdS magic-sized quantum dots linked to cyclodextrin for studies of the encapsulation of bioactive compounds. J. Solid State Electrochem. 2016, 20, 2533-2540, doi:10.1007/s10008-016-3221-8.'},{id:"B9",body:'Martins, B.R.; Barbosa, Y.O.; Andrade, C.M.R.; Pereira, L.Q .; Simão, G.F.; de Oliveira, C.J.; Correia, D.; Oliveira, R.T.S.; da Silva, M. V.; Silva, A.C.A.; et al. Development of an Electrochemical Immunosensor for Specific Detection of Visceral Leishmaniasis Using Gold-Modified Screen-Printed Carbon Electrodes. Biosensors 2020, 10, 81, doi:10.3390/bios10080081.'},{id:"B10",body:'Petroni, J.M.; Lucca, B.G.; da Silva Júnior, L.C.; Barbosa Alves, D.C.; Souza Ferreira, V. Paper-based Electrochemical Devices Coupled to External Graphene-Cu Nanoparticles Modified Solid Electrode through Meniscus Configuration and their Use in Biological Analysis. Electroanalysis 2017, 29, 2628-2637, doi:10.1002/elan.201700398.'},{id:"B11",body:'Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell2020, 181, 271-280.e8, doi:10.1016/j.cell.2020.02.052.'},{id:"B12",body:'Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020, 26, 681-687, doi:10.1038/s41591-020-0868-6.'},{id:"B13",body:'Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420-422, doi:10.1016/S2213-2600(20)30076-X.'},{id:"B14",body:'Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q .; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91-95, doi:10.1016/j.ijid.2020.03.017.'},{id:"B15",body:'Esakandari, H.; Nabi-Afjadi, M.; Fakkari-Afjadi, J.; Farahmandian, N.; Miresmaeili, S.M.; Bahreini, E. A comprehensive review of COVID-19 characteristics. Biol. Proced. Online 2020, 22, 19.'},{id:"B16",body:'Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis.2020, 71, 762-768, doi:10.1093/cid/ciaa248.'},{id:"B17",body:'Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet2020, 395, 497-506, doi:10.1016/S0140-6736(20)30183-5.'},{id:"B18",body:'Guo, L.; Ren, L.; Yang, S.; Xiao, M.; Chang, D.; Yang, F.; Dela Cruz, C.S.; Wang, Y.; Wu, C.; Xiao, Y.; et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin. Infect. Dis. 2020, 71, 778-785, doi:10.1093/cid/ciaa310.'},{id:"B19",body:'Wang, Y.; Zhang, L.; Sang, L.; Ye, F.; Ruan, S.; Zhong, B.; Song, T.; Alshukairi, A.N.; Chen, R.; Zhang, Z.; et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J. Clin. Invest. 2020, 130, 5235-5244, doi:10.1172/JCI138759.'},{id:"B20",body:'Carsetti, R.; Zaffina, S.; Mortari, E.P.; Terreri, S.; Corrente, F.; Capponi, C.; Palomba, P.; Mirabella, M.; Cascioli, S.; Palange, P.; et al. Different Innate and Adaptive Immune Responses to SARS-CoV-2 Infection of Asymptomatic, Mild, and Severe Cases. Front. Immunol.2020, 11, 3365, doi:10.3389/fimmu.2020.610300.'},{id:"B21",body:'Figueiredo-Campos, P.; Blankenhaus, B.; Mota, C.; Gomes, A.; Serrano, M.; Ariotti, S.; Costa, C.; Nunes-Cabaço, H.; Mendes, A.M.; Gaspar, P.; et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. Eur. J. Immunol.2020, 50, 2025-2040, doi:10.1002/eji.202048970.'},{id:"B22",body:'CDC Vaccines: The Basics 2012.'},{id:"B23",body:'Anderson, E.J.; Rouphael, N.G.; Widge, A.T.; Jackson, L.A.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Denison, M.R.; Stevens, L.J.; Pruijssers, A.J.; et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N. Engl. J. Med. 2020, 383, 2427-2438, doi:10.1056/NEJMoa2028436.'},{id:"B24",body:'Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467-478, doi:10.1016/S0140-6736(20)31604-4.'},{id:"B25",body:'Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis.2021, 21, 39-51, doi:10.1016/S1473-3099(20)30831-8.'},{id:"B26",body:'Wong, H.Y.F.; Lam, H.Y.S.; Fong, A.H.T.; Leung, S.T.; Chin, T.W.Y.; Lo, C.S.Y.; Lui, M.M.S.; Lee, J.C.Y.; Chiu, K.W.H.; Chung, T.W.H.; et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 2020, 296, E72–E78, doi:10.1148/radiol.2020201160.'},{id:"B27",body:'Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020, 14, 3822-3835, doi:10.1021/acsnano.0c02624.'},{id:"B28",body:'Leblanc, J.J.; Gubbay, J.B.; Li, Y.; Needle, R.; Arneson, S.R.; Marcino, D.; Charest, H.; Desnoyers, G.; Dust, K.; Fattouh, R.; et al. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’ s public news and information. 2020.'},{id:"B29",body:'Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Luisa Schmidt, M.; et al. Detection of 2019-nCoV by RT-PCR. Euro Surveill 2020, 25, 1-8.'},{id:"B30",body:'Lv, Y.; Wu, R.; Feng, K.; Li, J.; Mao, Q .; Yuan, H.; Shen, H.; Chai, X.; Li, L.S. Highly sensitive and accurate detection of C-reactive protein by CdSe/ZnS quantum dot-based fluorescence-linked immunosorbent assay. J. Nanobiotechnology 2017, 15, 35, doi:10.1186/s12951-017-0267-4.'},{id:"B31",body:'Rai, P.; Kumar, B.K.; Deekshit, V.K.; Karunasagar, I.; Karunasagar, I. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl. Microbiol. Biotechnol. 2021, 105, 441-455, doi:10.1007/s00253-020-11061-5.'},{id:"B32",body:'Zhang, Y.; Odiwuor, N.; Xiong, J.; Sun, L.; Nyaruaba, R.O.; Wei, H.; Tanner, N.A. Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP. medRxiv2020, 2, doi:10.1101/2020.02.26.20028373.'},{id:"B33",body:'Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870-874, doi:10.1038/s41587-020-0513-4.'},{id:"B34",body:'Lau, Y.L.; Ismail, I. binti; Mustapa, N.I. binti; Lai, M.Y.; Soh, T.S.T.; Hassan, A.H.; Peariasamy, K.M.; Lee, Y.L.; Kahar, M.K.B.A.; Chong, J.; et al. Development of a reverse transcription recombinase polymerase amplification assay for rapid and direct visual detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). PLoS One2021, 16, 2-9, doi:10.1371/journal.pone.0245164.'},{id:"B35",body:'Lassaunière, R.; Frische, A.; Harboe, Z.B.; Nielsen, A.C.Y.; Fomsgaard, A.; Krogfelt, K.A.; Jørgensen, C.S. Evaluation of nine commercial SARS-CoV-2 immunoassays. medRxiv2020, 1-15, doi:10.1101/2020.04.09.20056325.'},{id:"B36",body:'Mertens, P.; De Vos, N.; Martiny, D.; Jassoy, C.; Mirazimi, A.; Cuypers, L.; Van den Wijngaert, S.; Monteil, V.; Melin, P.; Stoffels, K.; et al. Development and Potential Usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a Pandemic Context. Front. Med.2020, 7, doi:10.3389/fmed.2020.00225.'},{id:"B37",body:'Cai, X.F.; Chen, J.; Hu, J. li; Long, Q .X.; Deng, H.J.; Liu, P.; Fan, K.; Liao, P.; Liu, B.Z.; Wu, G.C.; et al. A peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of coronavirus disease 2019. J. Infect. Dis. 2020, 222, 189-195, doi:10.1093/infdis/jiaa243.'},{id:"B38",body:'Giri, B.; Pandey, S.; Shrestha, R.; Pokharel, K.; Ligler, F.S.; Neupane, B.B. Review of analytical performance of COVID-19 detection methods. Anal. Bioanal. Chem. 2021, 413, 35-48, doi:10.1007/s00216-020-02889-x.'},{id:"B39",body:'Infantino, M.; Grossi, V.; Lari, B.; Bambi, R.; Perri, A.; Manneschi, M.; Terenzi, G.; Liotti, I.; Ciotta, G.; Taddei, C.; et al. Diagnostic accuracy of an automated chemiluminescent immunoassay for anti-SARS-CoV-2 IgM and IgG antibodies: an Italian experience. J. Med. Virol. 2020, 92, 1671-1675, doi:10.1002/jmv.25932.'},{id:"B40",body:'Russell, S.M.; Alba-Patiño, A.; Barón, E.; Borges, M.; Gonzalez-Freire, M.; De La Rica, R. Biosensors for Managing the COVID-19 Cytokine Storm: Challenges Ahead. ACS Sensors 2020, 5, 1506-1513, doi:10.1021/acssensors.0c00979.'},{id:"B41",body:'Fukumoto, T.; Iwasaki, S.; Fujisawa, S.; Hayasaka, K.; Sato, K.; Oguri, S.; Taki, K.; Nakakubo, S.; Kamada, K.; Yamashita, Y.; et al. Efficacy of a novel SARS-CoV-2 detection kit without RNA extraction and purification. Int. J. Infect. Dis. 2020, 98, 16-17, doi:10.1016/j.ijid.2020.06.074.'},{id:"B42",body:'Laghrib, F.; Saqrane, S.; El Bouabi, Y.; Farahi, A.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A. Current progress on COVID-19 related to biosensing technologies: New opportunity for detection and monitoring of viruses. Microchem. J. 2021, 160, 105606.'},{id:"B43",body:'Xi, H.; Juhas, M.; Zhang, Y. G-quadruplex based biosensor: A potential tool for SARS-CoV-2 detection. Biosens. Bioelectron. 2020, 167, 112494, doi:10.1016/j.bios.2020.112494.'},{id:"B44",body:'Turner, A.P.F. Biosensors: Fundamentals and applications - Historic book now open access. Biosens. Bioelectron. 2015, 65, A1.'},{id:"B45",body:'Ermolaeva, T.; Farafonova, O.; Karaseva, N. Possibilities and Prospects of Immunosensors for a Highly Sensitive Pesticide Detection in Vegetables and Fruits: a Review. Food Anal. Methods 2019, 12, 2785-2801.'},{id:"B46",body:'Ramírez, N.B.; Salgado, A.M.; Valdman, B. The evolution and developments of immunosensors for health and environmental monitoring: Problems and perspectives. Brazilian J. Chem. Eng. 2009, 26, 227-249, doi:10.1590/s0104-66322009000200001.'},{id:"B47",body:'Goumi, Y. El Electrochemical Genosensors: Definition and Fields of Application. Int. J. Biosens. Bioelectron. 2017, 3, doi:10.15406/ijbsbe.2017.03.00080.'},{id:"B48",body:'Silva, A.C.A.; Silva, M.J.B.; Da Luz, F.A.C.; Silva, D.P.; De Deus, S.L.V.; Dantas, N.O. Controlling the cytotoxicity of CdSe magic-sized quantum dots as a function of surface defect density. Nano Lett. 2014, 14, 5452-5457, doi:10.1021/nl5028028.'},{id:"B49",body:'Silva, A.C.A.; Da Silva, S.W.; Morais, P.C.; Dantas, N.O. Shell thickness modulation in ultrasmall CdSe/CdSxSe 1-x/CdS core/shell quantum dots via 1-thioglycerol. ACS Nano 2014, 8, 1913-1922, doi:10.1021/nn406478f.'},{id:"B50",body:'Morais, P. V.; Gomes, V.F.; Silva, A.C.A.; Dantas, N.O.; Schöning, M.J.; Siqueira, J.R. Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices. J. Mater. Sci. 2017, 52, 12314-12325, doi:10.1007/s10853-017-1369-y.'},{id:"B51",body:'Almeida Silva, A.C.; Gratens, X.; Chitta, V.A.; Franco, S.D.; Souza Da Silva, R.; Condeles, J.F.; Dantas, N.O. Effects of ultrasonic agitation on the structural and magnetic properties of CoFe2O4nanocrystals. Eur. J. Inorg. Chem.2014, doi:10.1002/ejic.201402563.'},{id:"B52",body:'Silva, A.C.A.; Freschi, A.P.P.; Rodrigues, C.M.; Matias, B.F.; Maia, L.P.; Goulart, L.R.; Dantas, N.O. Biological analysis and imaging applications of CdSe/CdSxSe1−x/CdS core–shell magic-sized quantum dot. Nanomedicine Nanotechnology, Biol. Med. 2016, 12, 1421-1430, doi:10.1016/j.nano.2016.01.001.'},{id:"B53",body:'Silva, A.C.A.; Azevedo, F.V.P.V.; Zóia, M.A.P.; Rodrigues, J.P.; Dantas, N.O.; Melo, V.R.Á.; Goulart, L.R. Magic Sized Quantum Dots as a Theranostic Tool for Breast Cancer. In Recent Studies & Advances in Breast Cancer; Open Access eBooks: Wilmington, 2017; pp. 1-10 ISBN 978-81-935757-2-7.'},{id:"B54",body:'Souza, G.L. de; Moura, C.C.G.; Silva, A.C.A.; Marinho, J.Z.; Silva, T.R.; Dantas, N.O.; Bonvicini, J.F.S.; Turrioni, A.P. Effects of zinc oxide and calcium–doped zinc oxide nanocrystals on cytotoxicity and reactive oxygen species production in different cell culture models. Restor. Dent. Endod. 2020, 45, 54, doi:10.5395/rde.2020.45.e54.'},{id:"B55",body:'Duarte, C.A.; Goulart, L.R.; Filice, L. de S.C.; Lima, I.L. de; Campos-Fernández, E.; Dantas, N.O.; Silva, A.C.A.; Soares, M.B.P.; Santos, R.R. dos; Cardoso, C.M.A.; et al. Characterization of Crystalline Phase of TiO2 Nanocrystals, Cytotoxicity and Cell Internalization Analysis on Human Adipose Tissue-Derived Mesenchymal Stem Cells. Materials (Basel). 2020, 13, 4071, doi:10.3390/ma13184071.'},{id:"B56",body:'Carvalho Naves, M.P.; de Morais, C.R.; Silva, A.C.A.; Dantas, N.O.; Spanó, M.A.; de Rezende, A.A.A. Assessment of mutagenic, recombinogenic and carcinogenic potential of titanium dioxide nanocristals in somatic cells of Drosophila melanogaster. Food Chem. Toxicol. 2018, 112, 273-228, doi:10.1016/j.fct.2017.12.040.'},{id:"B57",body:'Reis, É. de M.; de Rezende, A.A.A.; Santos, D.V.; de Oliveria, P.F.; Nicolella, H.D.; Tavares, D.C.; Silva, A.C.A.; Dantas, N.O.; Spanó, M.A. Assessment of the genotoxic potential of two zinc oxide sources (amorphous and nanoparticles) using the in vitro micronucleus test and the in vivo wing somatic mutation and recombination test. Food Chem. Toxicol.2015, 84, 55-63, doi:10.1016/j.fct.2015.07.008.'},{id:"B58",body:'Reis, É. de M.; Rezende, A.A.A. de; Oliveira, P.F. de; Nicolella, H.D.; Tavares, D.C.; Silva, A.C.A.; Dantas, N.O.; Spanó, M.A. Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spot test. Food Chem. Toxicol.2016, 96, 309-319, doi:10.1016/j.fct.2016.08.023.'},{id:"B59",body:'Silva, A.; Zóia, M.A.P.; Correia, L.I.V.; Azevedo, F.V.P.V.; Paula, A.T. de; Maia, L.P.; Carvalho, L.S. de; Carvalho, L.N.; Costa, M.P.C.; Giaretta, L.C.; et al. Biocompatibility of Doped Semiconductors Nanocrystals and Nanocomposites. In Cytotoxicity; InTech, 2018.'},{id:"B60",body:'Silva, A.C.A.; Dantas, N.O.; Silva, M.J.B.; Spanó, A.M.; Goulart, ; Luiz Ricardo Functional Nanocrystals : Towards Biocompatibility, Nontoxicity and. In Advances in Biochemistry & Applications in Medicine; 2017; pp. 1-27.'},{id:"B61",body:'Souza, G.L.; Silva, T.R.; Vieira, M.S.; Dantas, N.O.; Silva, A.C.A.; Moura, C.C.G. Development and study of cytotoxicity of calcium oxide nanocrystals - ScienceDirect. Dent. Mater. 2018, 34, e83.'},{id:"B62",body:'Silva, A.C.A.; Correia, L.I.V.; Silva, M.J.B.; Zóia, M.A.P.; Azevedo, F.V.P.V.; Rodrigues, Jéssica Peixoto Goulart, L.R.; Ávila, Veridiana de Melo Dantas, N.O. Biocompatible Magic Sized Quantum Dots: Luminescent Markers and Probes. In; Correia, L.I.V., Ed.; IntechOpen: Rijeka, 2018; p. Ch. 6 ISBN 978-1-78923-295-0.'},{id:"B63",body:'Silva, A.C.A.; Deus, S.L.V. De; Silva, M.J.B.; Dantas, N.O. Highly stable luminescence of CdSe magic-sized quantum dots in HeLa cells. Sensors Actuators, B Chem. 2014, 191, 108-114, doi:10.1016/j.snb.2013.09.063.'},{id:"B64",body:'Pilla, V.; De Lima, S.R.; Andrade, A.A.; Silva, A.C.A.; Dantas, N.O. Fluorescence quantum efficiency of CdSe/CdS magic-sized quantum dots functionalized with carboxyl or hydroxyl groups. Chem. Phys. Lett. 2013, 580, 130-134, doi:10.1016/j.cplett.2013.07.007.'},{id:"B65",body:'Almeida Silva, A.; Freitas Neto, E.; da Silva, S.W.; Morais, P.; Dantas, N. Modified Phonon Confinement Model and Its Application to CdSe/CdS Core–Shell Magic-Sized Quantum Dots Synthesized in Aqueous Solution by a New Route. J. Phys. Chem. C 117, 1904-1914, doi:10.1021/jp308500r.'},{id:"B66",body:'Almeida Silva, A.; Silva, M.J.; da Luz, F.A.; Silva, D.; de Deus, S.; Dantas, N. Controlling the Cytotoxicity of CdSe Magic-Sized Quantum Dots as a Function of Surface Defect Density. Nano Lett. 14, 5452-5457, doi:10.1021/nl5028028.'},{id:"B67",body:'Silva, A.C. a; da Silva, S.W.; Morais, P.C.; Dantas, N.O. Shell Thickness Modulation in Ultrasmall CdSe/CdSxSe1-x/CdS Core/Shell Quantum Dots via 1-Thioglycerol. ACS Nano 2014, 8, 1913-1922, doi:10.1021/nn406478f.'},{id:"B68",body:'Dias, E.H.V.; Pereira, D.F.C.; de Sousa, B.B.; Matias, M.S.; de Queiroz, M.R.; Santiago, F.M.; Silva, A.C.A.; Dantas, N.O.; Santos-Filho, N.A.; de Oliveira, F. In vitro tracking of phospholipase A 2 from snake venom conjugated with magic-sized quantum dots. Int. J. Biol. Macromol. 2019, 122, 461-468, doi:10.1016/j.ijbiomac.2018.10.185.'},{id:"B69",body:'Sandino, J.; Pegg, G.; Gonzalez, F.; Smith, G. Aerial Mapping of Forests Affected by Pathogens Using UAVs, Hyperspectral Sensors, and Artificial Intelligence. Sensors 2018, 18, 944, doi:10.3390/s18040944.'},{id:"B70",body:'Naudé, W. Artificial Intelligence Against Covid-19: An Early Review. IZA Discuss. Pap. No. 131102020, 1-17.'},{id:"B71",body:'Silva, A.C.A.; Dantas, N.O.; Silva, M.J.B.; Spanó, M.A.; Goulart, L.R. Functional Nanocrystals : Towards Biocompatibility, Nontoxicity and Biospecificity. In Advances in Biochemistry & Applications in Medicine; Rojeet Shrestha, Ed.; Open Access eBooks: Wilmington, 2017; pp. 1-27 ISBN 978-81-935757-1-0.'},{id:"B72",body:'de Lima França, C.C.; da Silva Terto, E.G.; Dias-Vermelho, M. V.; Silva, A.C.A.; Dantas, N.O.; de Abreu, F.C. The electrochemical behavior of core-shell CdSe/CdS magic-sized quantum dots linked to cyclodextrin for studies of the encapsulation of bioactive compounds. J. Solid State Electrochem. 2016, 20, 2533-2540, doi:10.1007/s10008-016-3221-8.'},{id:"B73",body:'Mahshid, S.S.; Flynn, S.E.; Mahshid, S. The potential application of electrochemical biosensors in the COVID-19 pandemic: A perspective on the rapid diagnostics of SARS-CoV-2. Biosens. Bioelectron. 2021, 176, 112905, doi:10.1016/j.bios.2020.112905.'},{id:"B74",body:'Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 5135-5142, doi:10.1021/acsnano.0c02823.'},{id:"B75",body:'Rashed, M.Z.; Kopechek, J.A.; Priddy, M.C.; Hamorsky, K.T.; Palmer, K.E.; Mittal, N.; Valdez, J.; Flynn, J.; Williams, S.J. Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance-based detector. Biosens. Bioelectron. 2021, 171, 112709, doi:10.1016/j.bios.2020.112709.'},{id:"B76",body:'Mojsoska, B.; Larsen, S.; Olsen, D.A.; Madsen, J.S.; Brandslund, I.; Alatraktchi, F.A. Rapid SARS-CoV-2 detection using electrochemical immunosensor. Sensors (Switzerland) 2021, 21, 1-11, doi:10.3390/s21020390.'},{id:"B77",body:'Yakoh, A.; Pimpitak, U.; Rengpipat, S.; Hirankarn, N.; Chailapakul, O.; Chaiyo, S. Paper-based electrochemical biosensor for diagnosing COVID-19: Detection of SARS-CoV-2 antibodies and antigen. Biosens. Bioelectron. 2021, 176, 112912, doi:10.1016/j.bios.2020.112912.'},{id:"B78",body:'Zhao, H.; Liu, F.; Xie, W.; Zhou, T.C.; OuYang, J.; Jin, L.; Li, H.; Zhao, C.Y.; Zhang, L.; Wei, J.; et al. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sensors Actuators, B Chem.2021, 327, doi:10.1016/j.snb.2020.128899.'},{id:"B79",body:'Eissa, S.; Zourob, M. Development of a Low-Cost Cotton-Tipped Electrochemical Immunosensor for the Detection of SARS-CoV-2. Anal. Chem. 2021, doi:10.1021/acs.analchem.0c04719.'},{id:"B80",body:'Fabiani, L.; Saroglia, M.; Galatà, G.; De Santis, R.; Fillo, S.; Luca, V.; Faggioni, G.; D’Amore, N.; Regalbuto, E.; Salvatori, P.; et al. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens. Bioelectron.2021, 171, 112686, doi:10.1016/j.bios.2020.112686.'},{id:"B81",body:'Hashemi, S.A.; Golab Behbahan, N.G.; Bahrani, S.; Mousavi, S.M.; Gholami, A.; Ramakrishna, S.; Firoozsani, M.; Moghadami, M.; Lankarani, K.B.; Omidifar, N. Ultra-sensitive viral glycoprotein detection NanoSystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosens. Bioelectron. 2021, 171, 112731, doi:10.1016/j.bios.2020.112731.'},{id:"B82",body:'Li, X.; Qin, Z.; Fu, H.; Li, T.; Peng, R.; Li, Z.; Rini, J.M.; Liu, X. Enhancing the performance of paper-based electrochemical impedance spectroscopy nanobiosensors: An experimental approach. Biosens. Bioelectron. 2021, 177, 112672, doi:10.1016/j.bios.2020.112672.'},{id:"B83",body:'Vadlamani, B.S.; Uppal, T.; Verma, S.C.; Misra, M. Functionalized TiO2 Nanotube-Based Electrochemical Biosensor for Rapid Detection of SARS-CoV-2. Sensors 2020, 20, 5871, doi:10.3390/s20205871.'},{id:"B84",body:'Alafeef, M.; Dighe, K.; Moitra, P.; Pan, D. Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano 2020, 14, 17028-17045, doi:10.1021/acsnano.0c06392.'},{id:"B85",body:'Torrente-Rodríguez, R.M.; Lukas, H.; Tu, J.; Min, J.; Yang, Y.; Xu, C.; Rossiter, H.B.; Gao, W. SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. Matter 2020, 3, 1981-1998, doi:10.1016/j.matt.2020.09.027.'},{id:"B86",body:'Cui, F.; Zhou, H.S. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosens. Bioelectron. 2020, 165, 112349, doi:10.1016/j.bios.2020.112349.'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Eliete A. Alvin",address:null,affiliation:'
Laboratory of New Nanostructured and Functional Materials, Physics Institute, Federal University of Alagoas, Brazil
Programa de Pós-Graduação da Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Alagoas, Brazil
LEMAN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Brazil
'},{corresp:null,contributorFullName:"Anna V.B. e Borges",address:null,affiliation:'
Department of Microbiology, Immunology and Parasitology, Institute of Bilogical and Natural Sciences, Federal University of Triângulo Mineiro, Brazil
'},{corresp:null,contributorFullName:"Rhéltheer de P. Martins",address:null,affiliation:'
Federal University of Triângulo Mineiro, Brazil
'},{corresp:null,contributorFullName:"Marcela R. Lemes",address:null,affiliation:'
Department of Microbiology, Immunology and Parasitology, Institute of Bilogical and Natural Sciences, Federal University of Triângulo Mineiro, Brazil
'},{corresp:null,contributorFullName:"Rafaela M. Barbosa",address:null,affiliation:'
Department of Microbiology, Immunology and Parasitology, Institute of Bilogical and Natural Sciences, Federal University of Triângulo Mineiro, Brazil
'},{corresp:null,contributorFullName:"Carlo J.F. de Oliveira",address:null,affiliation:'
Department of Microbiology, Immunology and Parasitology, Institute of Bilogical and Natural Sciences, Federal University of Triângulo Mineiro, Brazil
Laboratory of New Nanostructured and Functional Materials, Physics Institute, Federal University of Alagoas, Brazil
Programa de Pós-Graduação da Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Alagoas, Brazil
'}],corrections:null},book:{id:"10633",type:"book",title:"Biotechnology to Combat COVID-19",subtitle:null,fullTitle:"Biotechnology to Combat COVID-19",slug:"biotechnology-to-combat-covid-19",publishedDate:"February 23rd 2022",bookSignature:"Megha Agrawal and Shyamasri Biswas",coverURL:"https://cdn.intechopen.com/books/images_new/10633.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-83968-627-6",printIsbn:"978-1-83968-626-9",pdfIsbn:"978-1-83968-628-3",isAvailableForWebshopOrdering:!0,editors:[{id:"193723",title:"Dr.",name:"Megha",middleName:null,surname:"Agrawal",slug:"megha-agrawal",fullName:"Megha Agrawal"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"164410",title:"Dr.",name:"Laura",middleName:null,surname:"Manelyte",email:"Laura.Manelyte@vkl.uni-regensburg.de",fullName:"Laura Manelyte",slug:"laura-manelyte",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"University of Regensburg",institutionURL:null,country:{name:"Germany"}}},booksEdited:[],chaptersAuthored:[{id:"43453",title:"Chromatin Remodelers and Their Way of Action",slug:"chromatin-remodelers-and-their-way-of-action",abstract:null,signatures:"Laura Manelyte and Gernot Längst",authors:[{id:"164322",title:"Prof.",name:"Gernot",surname:"Längst",fullName:"Gernot Längst",slug:"gernot-langst",email:"glngst@mac.com"},{id:"164410",title:"Dr.",name:"Laura",surname:"Manelyte",fullName:"Laura Manelyte",slug:"laura-manelyte",email:"Laura.Manelyte@vkl.uni-regensburg.de"}],book:{id:"3536",title:"Chromatin Remodelling",slug:"chromatin-remodelling",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"105594",title:"Prof.",name:"Danuta",surname:"Radzioch",slug:"danuta-radzioch",fullName:"Danuta Radzioch",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"McGill University",institutionURL:null,country:{name:"Canada"}}},{id:"164083",title:"Ph.D.",name:"Elena R.",surname:"Garcia-Trevijano",slug:"elena-r.-garcia-trevijano",fullName:"Elena R. Garcia-Trevijano",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Valencia",institutionURL:null,country:{name:"Spain"}}},{id:"164183",title:"Dr.",name:"Nadezhda",surname:"Vorobyeva",slug:"nadezhda-vorobyeva",fullName:"Nadezhda Vorobyeva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Institute of Gene Biology",institutionURL:null,country:{name:"Russia"}}},{id:"164322",title:"Prof.",name:"Gernot",surname:"Längst",slug:"gernot-langst",fullName:"Gernot Längst",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Regensburg",institutionURL:null,country:{name:"Germany"}}},{id:"164464",title:"Mr.",name:"Laurence",surname:"Wilson",slug:"laurence-wilson",fullName:"Laurence Wilson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Australian National University",institutionURL:null,country:{name:"Australia"}}},{id:"164603",title:"Dr.",name:"Mario",surname:"Garcia-Dominguez",slug:"mario-garcia-dominguez",fullName:"Mario Garcia-Dominguez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Andalusian Molecular Biology and Regenerative Medicine Centre",institutionURL:null,country:{name:"Spain"}}},{id:"164788",title:"Dr.",name:"Aude",surname:"Fahrer",slug:"aude-fahrer",fullName:"Aude Fahrer",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Australian National University",institutionURL:null,country:{name:"Australia"}}},{id:"164927",title:"Ph.D.",name:"Daniela",surname:"Zahorakova",slug:"daniela-zahorakova",fullName:"Daniela Zahorakova",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Charles University",institutionURL:null,country:{name:"Czech Republic"}}},{id:"167572",title:"Prof.",name:"Luis",surname:"Torres",slug:"luis-torres",fullName:"Luis Torres",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Valencia",institutionURL:null,country:{name:"Spain"}}},{id:"167573",title:"Dr.",name:"Rosa",surname:"Zaragoza",slug:"rosa-zaragoza",fullName:"Rosa Zaragoza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Valencia",institutionURL:null,country:{name:"Spain"}}}]},generic:{page:{slug:"open-access-funding",title:"Open Access Funding",intro:"
IntechOpen’s Academic Editors and Authors have received funding for their work through many well-known funders, including: the European Commission, Bill and Melinda Gates Foundation, Wellcome Trust, Chinese Academy of Sciences, Natural Science Foundation of China (NSFC), CGIAR Consortium of International Agricultural Research Centers, National Institute of Health (NIH), National Science Foundation (NSF), National Aeronautics and Space Administration (NASA), National Institute of Standards and Technology (NIST), German Research Foundation (DFG), Research Councils United Kingdom (RCUK), Oswaldo Cruz Foundation, Austrian Science Fund (FWF), Foundation for Science and Technology (FCT), Australian Research Council (ARC).
Open Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\\n\\n
In order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\\n\\n
\\n\\t
Does your institution already have a budget for covering Open Access publication costs?
\\n\\t
Does your grant list Open Access publication fees as legitimate direct/indirect costs?
\\n
\\n\\n
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\\n\\n
Please note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\\n\\n
Please be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
Open Access publication costs can often be designated directly in the grants or in specific budgets allocated for that purpose. Many of the most important funding organisations encourage, and even request, that the projects they fund are made available at no cost to the wider public. IntechOpen strives to maintain excellent relationships with these funders and ensures compliance with mandates.
\n\n
In order to help Authors identify appropriate funding agencies and institutions, we have created a list, based on extensive research on various OA resources (including ROARMAP and SHERPA/JULIET) of organizations that have funds available. Before consulting our list we encourage you to petition your own institution or organization for Open Access funds or check the specifications of your grant with your funder to ascertain if publication costs are included. Where you are in receipt of a grant you should clarify:
\n\n
\n\t
Does your institution already have a budget for covering Open Access publication costs?
\n\t
Does your grant list Open Access publication fees as legitimate direct/indirect costs?
\n
\n\n
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. Please consult the Open Access policies or grant Terms and Conditions of any institution with which you are linked to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
Please note that this list is not a definitive one and is updated regularly. To suggest possible modifications or the inclusion of your institution/funder, please contact us at funders@intechopen.com
\n\n
Please be aware that you must be a member, or grantee, of the institutions/funders listed in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13404},{group:"region",caption:"Middle and South America",value:2,count:11681},{group:"region",caption:"Africa",value:3,count:4213},{group:"region",caption:"Asia",value:4,count:22421},{group:"region",caption:"Australia and Oceania",value:5,count:2020},{group:"region",caption:"Europe",value:6,count:33697}],offset:12,limit:12,total:135704},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium difficile",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11818",title:"Uveitis",subtitle:null,isOpenForSubmission:!0,hash:"f8c178e6f45ba7b500281005b5d5b67a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11818.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11837",title:"Ecology and Geography of the Mediterranean",subtitle:null,isOpenForSubmission:!0,hash:"bbb25987a982d61da4f47fb13614ba3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:29},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:12},{group:"topic",caption:"Computer and Information Science",value:9,count:7},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:11},{group:"topic",caption:"Engineering",value:11,count:18},{group:"topic",caption:"Environmental Sciences",value:12,count:4},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:79},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:6},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:21}],offset:12,limit:12,total:227},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4802},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8452",title:"Organizational Conflict",subtitle:"New Insights",isOpenForSubmission:!1,hash:"96bdaaba38a7850a7e7379aa5a505748",slug:"organizational-conflict-new-insights",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/8452.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10778",title:"Model-Based Control Engineering",subtitle:"Recent Design and Implementations for Varied Applications",isOpenForSubmission:!1,hash:"e39a567d9b6d2a45d0a1d927362c9005",slug:"model-based-control-engineering-recent-design-and-implementations-for-varied-applications",bookSignature:"Umar Zakir Abdul Hamid and Ahmad `Athif Mohd Faudzi",coverURL:"https://cdn.intechopen.com/books/images_new/10778.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10780",title:"Current Trends in Orthodontics",subtitle:null,isOpenForSubmission:!1,hash:"badce0e23eb5176fd653b049d5295c0a",slug:"current-trends-in-orthodontics",bookSignature:"Farid Bourzgui",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10793",title:"Molecular Mechanisms in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3ed2817275edb3de6f5683602314706e",slug:"molecular-mechanisms-in-cancer",bookSignature:"Metin Budak and Rajamanickam Rajkumar",coverURL:"https://cdn.intechopen.com/books/images_new/10793.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11308",title:"Selected Topics on Infant Feeding",subtitle:null,isOpenForSubmission:!1,hash:"213c3e403327a2919eca1dc5e82a0ec3",slug:"selected-topics-on-infant-feeding",bookSignature:"Isam Jaber AL-Zwaini and Haider Hadi AL-Musawi",coverURL:"https://cdn.intechopen.com/books/images_new/11308.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"30993",title:"Prof.",name:"Isam Jaber",middleName:null,surname:"Al-Zwaini",slug:"isam-jaber-al-zwaini",fullName:"Isam Jaber Al-Zwaini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11331",title:"Secondary Metabolites",subtitle:"Trends and Reviews",isOpenForSubmission:!1,hash:"7d6274f42d5441e537c5fa744bc84523",slug:"secondary-metabolites-trends-and-reviews",bookSignature:"Ramasamy Vijayakumar and Suresh Selvapuram Sudalaimuthu Raja",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",middleName:null,surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10820",title:"Data Clustering",subtitle:null,isOpenForSubmission:!1,hash:"086d299ffd05aacd2311c3ca4ebf0d3a",slug:"data-clustering",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10827",title:"Oral Health Care",subtitle:"An Important Issue of the Modern Society",isOpenForSubmission:!1,hash:"9a0ceb9ced4598aea3f3723f6dc4ea04",slug:"oral-health-care-an-important-issue-of-the-modern-society",bookSignature:"Lavinia Cosmina Ardelean and Laura Cristina Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11139",title:"Geochemistry and Mineral Resources",subtitle:null,isOpenForSubmission:!1,hash:"928cebbdce21d9b3f081267b24f12dfb",slug:"geochemistry-and-mineral-resources",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg",editedByType:"Edited by",publishedDate:"August 17th 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"14",title:"Materials Science",slug:"materials-science",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:320,numberOfSeries:0,numberOfAuthorsAndEditors:8300,numberOfWosCitations:17589,numberOfCrossrefCitations:9120,numberOfDimensionsCitations:21479,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"14",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10945",title:"Collagen Biomaterials",subtitle:null,isOpenForSubmission:!1,hash:"721724968654675a93937e3b5645a266",slug:"collagen-biomaterials",bookSignature:"Nirmal Mazumder and Sanjiban Chakrabarty",coverURL:"https://cdn.intechopen.com/books/images_new/10945.jpg",editedByType:"Edited by",editors:[{id:"256296",title:"Dr.",name:"Nirmal",middleName:null,surname:"Mazumder",slug:"nirmal-mazumder",fullName:"Nirmal Mazumder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10847",title:"Aluminium Alloys",subtitle:"Design and Development of Innovative Alloys, Manufacturing Processes and Applications",isOpenForSubmission:!1,hash:"f4ecc3e8fea00488cb2213b7d34b42aa",slug:"aluminium-alloys-design-and-development-of-innovative-alloys-manufacturing-processes-and-applications",bookSignature:"Giulio Timelli",coverURL:"https://cdn.intechopen.com/books/images_new/10847.jpg",editedByType:"Edited by",editors:[{id:"44147",title:"Prof.",name:"Giulio",middleName:null,surname:"Timelli",slug:"giulio-timelli",fullName:"Giulio Timelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11210",title:"Chalcogenides",subtitle:"Preparation and Applications",isOpenForSubmission:!1,hash:"f5bf032bc55f99e48f4b0e5375ca7442",slug:"chalcogenides-preparation-and-applications",bookSignature:"Dhanasekaran Vikraman",coverURL:"https://cdn.intechopen.com/books/images_new/11210.jpg",editedByType:"Edited by",editors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",middleName:null,surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11208",title:"Current Trends in Magnesium (Mg) Research",subtitle:null,isOpenForSubmission:!1,hash:"21372a0c65f42d075d4519c2f891e203",slug:"current-trends-in-magnesium-mg-research",bookSignature:"Sailaja S. Sunkari",coverURL:"https://cdn.intechopen.com/books/images_new/11208.jpg",editedByType:"Edited by",editors:[{id:"325832",title:"Dr.",name:"Sailaja S.",middleName:"S.",surname:"Sunkari",slug:"sailaja-s.-sunkari",fullName:"Sailaja S. Sunkari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10942",title:"Fiber-Reinforced Plastics",subtitle:null,isOpenForSubmission:!1,hash:"50dc791b1036b236a6676986cb295c6f",slug:"fiber-reinforced-plastics",bookSignature:"Martin Alberto Masuelli",coverURL:"https://cdn.intechopen.com/books/images_new/10942.jpg",editedByType:"Edited by",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Alberto Masuelli",slug:"martin-alberto-masuelli",fullName:"Martin Alberto Masuelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10489",title:"Biocomposites",subtitle:null,isOpenForSubmission:!1,hash:"c794533fcae9dcea38672f814ae182db",slug:"biocomposites",bookSignature:"Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10489.jpg",editedByType:"Edited by",editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9926",title:"Magnesium Alloys Structure and Properties",subtitle:null,isOpenForSubmission:!1,hash:"a6d1a99f4befe885857743f77e81524c",slug:"magnesium-alloys-structure-and-properties",bookSignature:"Tomasz Tański and Paweł Jarka",coverURL:"https://cdn.intechopen.com/books/images_new/9926.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",middleName:null,surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10700",title:"Titanium Dioxide",subtitle:"Advances and Applications",isOpenForSubmission:!1,hash:"d9448d83caa34d90fd58464268c869a0",slug:"titanium-dioxide-advances-and-applications",bookSignature:"Hafiz Muhammad Ali",coverURL:"https://cdn.intechopen.com/books/images_new/10700.jpg",editedByType:"Edited by",editors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",middleName:null,surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6832",title:"Ruthenium",subtitle:"An Element Loved by Researchers",isOpenForSubmission:!1,hash:"9a3be4dd6035f78add07d239b8eae379",slug:"ruthenium-an-element-loved-by-researchers",bookSignature:"Hitoshi Ishida",coverURL:"https://cdn.intechopen.com/books/images_new/6832.jpg",editedByType:"Edited by",editors:[{id:"210140",title:"Dr.",name:"Hitoshi",middleName:null,surname:"Ishida",slug:"hitoshi-ishida",fullName:"Hitoshi Ishida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:320,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"60680",doi:"10.5772/intechopen.76082",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:16254,totalCrossrefCites:188,totalDimensionsCites:408,abstract:"The environment and its compartments have been severely polluted by heavy metals. This has compromised the ability of the environment to foster life and render its intrinsic values. Heavy metals are known to be naturally occurring compounds, but anthropogenic activities introduce them in large quantities in different environmental compartments. This leads to the environment’s ability to foster life being reduced as human, animal, and plant health become threatened. This occurs due to bioaccumulation in the food chains as a result of the nondegradable state of the heavy metals. Remediation of heavy metals requires special attention to protect soil quality, air quality, water quality, human health, animal health, and all spheres as a collection. Developed physical and chemical heavy metal remediation technologies are demanding costs which are not feasible, time-consuming, and release additional waste to the environment. This chapter summarises the problems related to heavy metal pollution and various remediation technologies. A case study in South Africa mines were also used.",book:{id:"6534",slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]},{id:"37067",doi:"10.5772/35482",title:"Fourier Transform Infrared Spectroscopy for Natural Fibres",slug:"fourier-transform-infrared-spectroscopy-for-natural-fibres",totalDownloads:9291,totalCrossrefCites:167,totalDimensionsCites:400,abstract:null,book:{id:"2270",slug:"fourier-transform-materials-analysis",title:"Fourier Transform",fullTitle:"Fourier Transform - Materials Analysis"},signatures:"Mizi Fan, Dasong Dai and Biao Huang",authors:[{id:"104647",title:"Prof.",name:"Mizi",middleName:null,surname:"Fan",slug:"mizi-fan",fullName:"Mizi Fan"}]},{id:"42566",doi:"10.5772/53706",title:"Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials",slug:"challenges-and-opportunities-for-spark-plasma-sintering-a-key-technology-for-a-new-generation-of-mat",totalDownloads:9168,totalCrossrefCites:99,totalDimensionsCites:213,abstract:null,book:{id:"3478",slug:"sintering-applications",title:"Sintering Applications",fullTitle:"Sintering Applications"},signatures:"M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H. U. Kessel, J. Hennicke, R. Kirchner and T. Kessel",authors:[{id:"102383",title:"Dr.",name:"Marta",middleName:null,surname:"Suárez",slug:"marta-suarez",fullName:"Marta Suárez"},{id:"103822",title:"Dr.",name:"J.L",middleName:null,surname:"Menendez",slug:"j.l-menendez",fullName:"J.L Menendez"},{id:"103833",title:"Prof.",name:"Ramón",middleName:null,surname:"Torrecillas",slug:"ramon-torrecillas",fullName:"Ramón Torrecillas"},{id:"162633",title:"Dr.",name:"Adolfo",middleName:null,surname:"Fernández",slug:"adolfo-fernandez",fullName:"Adolfo Fernández"}]},{id:"23617",doi:"10.5772/24118",title:"Collagen- vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives",slug:"collagen-vs-gelatine-based-biomaterials-and-their-biocompatibility-review-and-perspectives",totalDownloads:9461,totalCrossrefCites:63,totalDimensionsCites:203,abstract:null,book:{id:"1487",slug:"biomaterials-applications-for-nanomedicine",title:"Biomaterials",fullTitle:"Biomaterials Applications for Nanomedicine"},signatures:"Selestina Gorgieva and Vanja Kokol",authors:[{id:"55577",title:"Prof.",name:"Vanja",middleName:null,surname:"Kokol",slug:"vanja-kokol",fullName:"Vanja Kokol"},{id:"61285",title:"BSc",name:"Selestina",middleName:null,surname:"Gorgieva",slug:"selestina-gorgieva",fullName:"Selestina Gorgieva"}]},{id:"46243",doi:"10.5772/57255",title:"Corrosion Inhibitors – Principles, Mechanisms and Applications",slug:"corrosion-inhibitors-principles-mechanisms-and-applications",totalDownloads:13737,totalCrossrefCites:40,totalDimensionsCites:163,abstract:null,book:{id:"3817",slug:"developments-in-corrosion-protection",title:"Developments in Corrosion Protection",fullTitle:"Developments in Corrosion Protection"},signatures:"Camila G. Dariva and Alexandre F. Galio",authors:[{id:"169261",title:"Dr.",name:"Camila",middleName:"G.",surname:"Dariva",slug:"camila-dariva",fullName:"Camila Dariva"},{id:"170138",title:"Dr.",name:"Alexandre",middleName:"Ferreira",surname:"Galio",slug:"alexandre-galio",fullName:"Alexandre Galio"}]}],mostDownloadedChaptersLast30Days:[{id:"76780",title:"Basics of Clay Minerals and Their Characteristic Properties",slug:"basics-of-clay-minerals-and-their-characteristic-properties",totalDownloads:1930,totalCrossrefCites:16,totalDimensionsCites:25,abstract:"Clay minerals such as kaolinite, smectite, chlorite, micas are main components of raw materials of clay and formed in presence of water. A large number of clays used to form the different structure which completely depends on their mining source. They are known as hydrous phyllosilicate having silica, alumina and water with variable amount of inorganic ions like Mg2+, Na+, Ca2+ which are found either in interlayer space or on the planetary surface. Clay minerals are described by presence of two-dimensional sheets, tetrahedral (SiO4) and octahedral (Al2O3). There are different clay minerals which are categorized based on presence of tetrahedral and octahedral layer in their structure like kaolinite (1:1 of tetrahedral and octahedral layers), smectite group of clay minerals (2:1 of tetrahedral and octahedral layers) and chlorite (2:1:1 of tetrahedral, octahedral and octahedral layers). The particle size of clay minerals is <2microns which can be present in form of plastic in presence of water and solidified when dried. The small size and their distinctive crystal structure make clay minerals very special with their unique properties including high cation exchange capacity, swelling behavior, specific surface area, adsorption capacity, etc. which are described in this chapter. Due to all these unique properties, clay minerals are gaining interest in different fields.",book:{id:"10949",slug:"clay-and-clay-minerals",title:"Clay and Clay Minerals",fullTitle:"Clay and Clay Minerals"},signatures:"Neeraj Kumari and Chandra Mohan",authors:[{id:"258132",title:"Dr.",name:"Chandra",middleName:null,surname:"Mohan",slug:"chandra-mohan",fullName:"Chandra Mohan"},{id:"352399",title:"Dr.",name:"Neeraj",middleName:null,surname:"Kumari",slug:"neeraj-kumari",fullName:"Neeraj Kumari"}]},{id:"51535",title:"An Introduction to Hydrogels and Some Recent Applications",slug:"an-introduction-to-hydrogels-and-some-recent-applications",totalDownloads:11734,totalCrossrefCites:70,totalDimensionsCites:140,abstract:"Hydrogels have existed for more than half a century, and today they have many applications in various processes ranging from industrial to biological. There are numerous original papers, reviews, and monographs focused on the synthesis, properties, and applications of hydrogels. This chapter covers the fundamental aspects and several applications of hydrogels based on the old and the most recent publications in this field.",book:{id:"5251",slug:"emerging-concepts-in-analysis-and-applications-of-hydrogels",title:"Emerging Concepts in Analysis and Applications of Hydrogels",fullTitle:"Emerging Concepts in Analysis and Applications of Hydrogels"},signatures:"Morteza Bahram, Naimeh Mohseni and Mehdi Moghtader",authors:[{id:"179718",title:"Prof.",name:"Morteza",middleName:null,surname:"Bahram",slug:"morteza-bahram",fullName:"Morteza Bahram"},{id:"185713",title:"Dr.",name:"Naimeh",middleName:null,surname:"Mohseni",slug:"naimeh-mohseni",fullName:"Naimeh Mohseni"},{id:"185714",title:"Dr.",name:"Mehdi",middleName:null,surname:"Moghtader",slug:"mehdi-moghtader",fullName:"Mehdi Moghtader"}]},{id:"70661",title:"Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects",slug:"bioremediation-techniques-for-polluted-environment-concept-advantages-limitations-and-prospects",totalDownloads:2672,totalCrossrefCites:10,totalDimensionsCites:27,abstract:"Environmental pollution has been rising in the past few decades due to increased anthropogenic activities. Bioremediation is an attractive and successful cleaning technique to remove toxic waste from polluted environment. Bioremediation is highly involved in degradation, eradication, immobilization, or detoxification diverse chemical wastes and physical hazardous materials from the surrounding through the all-inclusive and action of microorganisms. The main principle is degrading and converting pollutants to less toxic forms. Bioremediation can be carried out ex-situ and in-situ, depending on several factors, which include but not limited to cost, site characteristics, type, and concentration of pollutants. Hence, appropriate bioremediation technique is selected. Additionally, the major methodologies to develop bioremediation are biostimulation, bioaugmentation, bioventing, biopiles, and bioattenuation provided the environmental factors that decide the completion of bioremediation. Bioremediation is the most effective, economical, eco-friendly management tool to manage the polluted environment. All bioremediation techniques have its own advantage and disadvantage because it has its own specific applications.",book:{id:"9343",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",title:"Trace Metals in the Environment",fullTitle:"Trace Metals in the Environment - New Approaches and Recent Advances"},signatures:"Indu Sharma",authors:[{id:"301262",title:"Associate Prof.",name:"Indu",middleName:null,surname:"Sharma",slug:"indu-sharma",fullName:"Indu Sharma"}]},{id:"18275",title:"Modeling and Identification of Parameters the Piezoelectric Transducers in Ultrasonic Systems",slug:"modeling-and-identification-of-parameters-the-piezoelectric-transducers-in-ultrasonic-systems",totalDownloads:10197,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"201",slug:"advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment",title:"Advances in Ceramics",fullTitle:"Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment"},signatures:"Pawel Fabijanski and Ryszard Lagoda",authors:[{id:"13086",title:"Dr.",name:"Pawel",middleName:null,surname:"Fabijański",slug:"pawel-fabijanski",fullName:"Pawel Fabijański"}]},{id:"60680",title:"Environmental Contamination by Heavy Metals",slug:"environmental-contamination-by-heavy-metals",totalDownloads:16251,totalCrossrefCites:187,totalDimensionsCites:407,abstract:"The environment and its compartments have been severely polluted by heavy metals. This has compromised the ability of the environment to foster life and render its intrinsic values. Heavy metals are known to be naturally occurring compounds, but anthropogenic activities introduce them in large quantities in different environmental compartments. This leads to the environment’s ability to foster life being reduced as human, animal, and plant health become threatened. This occurs due to bioaccumulation in the food chains as a result of the nondegradable state of the heavy metals. Remediation of heavy metals requires special attention to protect soil quality, air quality, water quality, human health, animal health, and all spheres as a collection. Developed physical and chemical heavy metal remediation technologies are demanding costs which are not feasible, time-consuming, and release additional waste to the environment. This chapter summarises the problems related to heavy metal pollution and various remediation technologies. A case study in South Africa mines were also used.",book:{id:"6534",slug:"heavy-metals",title:"Heavy Metals",fullTitle:"Heavy Metals"},signatures:"Vhahangwele Masindi and Khathutshelo L. Muedi",authors:[{id:"225304",title:"Dr.",name:"Vhahangwele",middleName:null,surname:"Masindi",slug:"vhahangwele-masindi",fullName:"Vhahangwele Masindi"},{id:"241403",title:"M.Sc.",name:"Khathutshelo",middleName:"Lilith",surname:"Muedi",slug:"khathutshelo-muedi",fullName:"Khathutshelo Muedi"}]}],onlineFirstChaptersFilter:{topicId:"14",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"83123",title:"Natural Fibers: The Sustainable Alternatives for Textile & Non-Textile Applications",slug:"natural-fibers-the-sustainable-alternatives-for-textile-non-textile-applications",totalDownloads:1,totalDimensionsCites:null,doi:"10.5772/intechopen.106393",abstract:"The increasing environmental concerns and depletion of petroleum resources have increased the importance of natural fibers and have stimulated researchers and industries to use sustainable fibers instead of conventional synthetic fibers. Besides exceptionally brilliant mechanical and physical properties are also attractive aspects of natural fibers enabling the utilization of natural fibers in myriad of textile and non-textile applications such as clothing, and reinforced composite products in various industries such as automotive, building, and furniture. Natural fiber composites are composite materials comprising of reinforcing fibers derived from renewable and carbon dioxide neutral resources such as wood or plants. NFCs find application in molded articles that demand moderate strength for acceptable performance for various indoor and outdoor applications. A rapid drift from oil-derived polymers and mineral-reinforced materials to sustainable alternatives has fostered automotive and packaging industries to start utilizing natural fiber composites in their designs. Accordingly, natural fiber composites are serving as energy efficient and sustainable alternatives replacing traditional materials such as metals, polymeric resins, and reinforcement fibers. A worldwide clamor for green products and thus upsurge in sustainable alternatives have been witnessed as a result of diminishing petroleum reserves worldwide, exorbitant prices of petroleum, and high disposal costs of petroleum-based composites along with inability of decomposition of some petroleum-based composites. Contrastingly, natural materials outshine the petroleum-based products in being renewable, inexpensive, biodegradable, and eco-friendly.",book:{id:"11122",title:"Natural Fiber",coverURL:"https://cdn.intechopen.com/books/images_new/11122.jpg"},signatures:"Yamini Jhanji Dhir"},{id:"82948",title:"Study on Miniaturization of Antenna Using Metamaterials",slug:"study-on-miniaturization-of-antenna-using-metamaterials",totalDownloads:1,totalDimensionsCites:null,doi:"10.5772/intechopen.106222",abstract:"Metamaterials (MTMs) are artificially built materials intended to give its properties from the internal structure, rather than the chemical composition found in natural materials. Electric permittivity (ε) and magnetic permeability (μ) are the two basic parameters which describe the electromagnetic property of a material or medium. Permittivity describes how a material is affected when it is placed in electric field. And permeability describes how a material is affected in presence of magnetic field. Metamaterials may have either negative permittivity or permeability or both may be negative simultaneously. The concept of metamaterials has additionally been utilized to design different kinds of patches with upgraded performance, such as improved gain and enhanced efficiency. Also, it has been utilized for the scaling down of patches. Two parameters are utilized in the collected works for antennas using metamaterials. We can adjust the refractive index of the metamaterial to positive, near-zero or negative values. Utilization of epsilon negative, MNG (μ - Mu negative) or DNG (double negative) are called metamaterial- based antennas and the use of metamaterial unit cell for example complementary split ring resonator, split ring resonator and so on are alluded as metamaterial inspired antennas. The design of complementary split ring resonator and its equivalent circuit will be discussed in this work. CSRR (complementary split ring resonator) provides both isolation enhancement and miniaturization for MIMO antenna.",book:{id:"11824",title:"Metamaterials - History, Current State, Applications, and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11824.jpg"},signatures:"Andrews Christina Josephine Malathi"},{id:"83080",title:"Boron Doping in Next-Generation Materials for Semiconductor Device",slug:"boron-doping-in-next-generation-materials-for-semiconductor-device",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.106450",abstract:"The article surveys the most recent achievements starting with the boron doping mechanism, mainly focused on doping in semiconductor materials such as Si, Ge, graphene, carbon nanotube, or other 2D materials. Frequently used doping methodologies are discussed, including ion implantation and solid-phase doping, mainly focused on recent developing techniques of monolayer doping. These doped materials’ structural, electronic, and chemical properties are addressed to understand the boron doping effect better. Theoretical and experimental information and data are used to support such atomic-level effects. Therefore, this review can provide valuable suggestions and guidelines for materials’ properties manipulation by boron doping for further research exploration.",book:{id:"11762",title:"Characteristics and Applications of Boron",coverURL:"https://cdn.intechopen.com/books/images_new/11762.jpg"},signatures:"Linh Chi T. Cao, Luqman Hakim and Shu-Han Hsu"},{id:"83055",title:"Boron Clusters in Biomedical Applications: A Theoretical Viewpoint",slug:"boron-clusters-in-biomedical-applications-a-theoretical-viewpoint",totalDownloads:10,totalDimensionsCites:0,doi:"10.5772/intechopen.106215",abstract:"In this chapter, we presented an analysis of the recent advances in the applications of boron clusters in biomedical fields such as the development of biosensors and drug delivery systems on the basis of quantum chemical calculations. Biosensors play an essential role in many sectors, e.g., law enforcement agencies for sensing illicit drugs, medical communities for detecting overdosed medications from human and animal bodies, etc. The drug delivery systems have theoretically been proposed for many years and subsequently implemented by experiments to deliver the drug to the targeted sites by reducing the harmful side effects significantly. Boron clusters form a rich and colorful family of atomic clusters due to their unconventional structures and bonding phenomena. Boron clusters and their complexes have various biological activities such as the drug delivery, imaging for diagnosis, treatment of cancer, and probe of protein-biomolecular interactions. For all of these reactivities, the interaction mechanisms and the corresponding energetics between biomaterials and boron clusters are of essential importance as a basic step in the understanding, and thereby design of relevant materials. During the past few years, attempts have been made to probe the nature of these interactions using quantum chemical calculations mainly with density functional theory (DFT) methods. This chapter provides a summary of the theoretical viewpoint on this issue.",book:{id:"11762",title:"Characteristics and Applications of Boron",coverURL:"https://cdn.intechopen.com/books/images_new/11762.jpg"},signatures:"Ehsan Shakerzadeh, Elham Tahmasebi, Long Van Duong and Minh Tho Nguyen"},{id:"83048",title:"Structural, Magnetic, and Magnetodielectric Properties of Bi-Based Modified Ceramic Composites",slug:"structural-magnetic-and-magnetodielectric-properties-of-bi-based-modified-ceramic-composites",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.106569",abstract:"In this chapter, we introduce a promising composite material, which can be used as a potential candidate in the field of charge storage, sensors, and spintronic devices. The structural, magnetic, and magnetodielectric properties of the pure cum composite samples are investigated. The Rietveld refinement of the X-ray data confirmed the presence of a single (A21am) and mixed phases (A21am + R-3c + Pbam) in the pure and composite sample, correspondingly. The SEM microstructure suggests the contrasting nature of the homogeneous and heterogeneous distribution of grains in the corresponding pure and composite sample. The magnetic properties of the composite sample increase due to the enhanced exchange interaction between the different magnetic ions. The frequency-dependent dielectric subjected to a constant magnetic field indicates the signature of magnetodielectric (MD) coupling for both the samples. The field variation of the MD loop shows the symmetric hysteresis loop in the composite due to the addition of magnetostrictive La0.67Sr0.33MnO3 and the non-collinear antiferromagnetic Bi2Fe4O9 phase. The maximum value of MD% (~0.12%) is enhanced by ~13 times in the composite than in the pure sample. Therefore, the improved MD coupling and symmetric switching of the MD loop of the composite make it a suitable candidate for low power consumption storage devices.",book:{id:"11117",title:"Smart and Advanced Ceramics and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11117.jpg"},signatures:"Rasmita Jena, Kouru Chandrakanta and Anil Kumar Singh"},{id:"83035",title:"Breaking the Property Trade-Offs by Using Entropic Conceptions",slug:"breaking-the-property-trade-offs-by-using-entropic-conceptions",totalDownloads:12,totalDimensionsCites:0,doi:"10.5772/intechopen.106532",abstract:"Entropic conception has been used as an effective strategy for developing materials to break the property recordings of current materials, for example, breaking the trade-off between the high-strength and low-ductility structural alloys. The performance of materials usually under a complex circumstance, a balance of multiple properties, for example, combined the high-strength, high ductility, high conductivity, high corrosion resistance, high irradiation resistance, etc., the strategy of high-entropy-alloy (HEA) will provide a materials design and development technology to realize the goal. Magnetic materials usually exhibit excellent magnetic properties but weak mechanical properties and corrosion resistance. The reported unique behaviors of HEAs, for example, self-healing effects may be the mechanism for the high irradiation resistance of the HEAs, and self-sharpening behaviors of the tungsten-based HEAs main closely be related to the serration behaviors.",book:{id:"11468",title:"High Entropy Materials - Microstructures and Properties",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg"},signatures:"Yong Zhang and Xuehui Yan"}],onlineFirstChaptersTotal:83},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:0,paginationItems:[]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:21,paginationItems:[{id:"83115",title:"Fungi and Oomycetes–Allies in Eliminating Environmental Pathogens",doi:"10.5772/intechopen.106498",signatures:"Iasmina Luca",slug:"fungi-and-oomycetes-allies-in-eliminating-environmental-pathogens",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82991",title:"Diseases of the Canine Prostate Gland",doi:"10.5772/intechopen.105835",signatures:"Sabine Schäfer-Somi",slug:"diseases-of-the-canine-prostate-gland",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82956",title:"Potential Substitutes of Antibiotics for Swine and Poultry Production",doi:"10.5772/intechopen.106081",signatures:"Ho Trung Thong, Le Nu Anh Thu and Ho Viet Duc",slug:"potential-substitutes-of-antibiotics-for-swine-and-poultry-production",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82905",title:"A Review of Application Strategies and Efficacy of Probiotics in Pet Food",doi:"10.5772/intechopen.105829",signatures:"Heather Acuff and Charles G. Aldrich",slug:"a-review-of-application-strategies-and-efficacy-of-probiotics-in-pet-food",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82773",title:"Canine Transmissible Venereal Tumor: An Infectious Neoplasia in Dogs",doi:"10.5772/intechopen.106150",signatures:"Chanokchon Setthawongsin, Somporn Techangamsuwan and Anudep Rungsipipat",slug:"canine-transmissible-venereal-tumor-an-infectious-neoplasia-in-dogs",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82797",title:"Anatomical Guide to the Paranasal Sinuses of Domestic Animals",doi:"10.5772/intechopen.106157",signatures:"Mohamed A.M. Alsafy, Samir A.A. El-Gendy and Catrin Sian Rutland",slug:"anatomical-guide-to-the-paranasal-sinuses-of-domestic-animals",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82170",title:"Equine Stress: Neuroendocrine Physiology and Pathophysiology",doi:"10.5772/intechopen.105045",signatures:"Milomir Kovac, Tatiana Vladimirovna Ippolitova, Sergey Pozyabin, Ruslan Aliev, Viktoria Lobanova, Nevena Drakul and Catrin S. Rutland",slug:"equine-stress-neuroendocrine-physiology-and-pathophysiology",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:3,group:"subseries"},{caption:"Animal Science",value:19,count:18,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10897",title:"Food Systems Resilience",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",slug:"food-systems-resilience",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Ana I. Ribeiro-Barros, Daniel S. Tevera, Luís F. Goulao and Lucas D. Tivana",hash:"ae9dd92f53433e4607f1db188dc649b4",volumeInSeries:1,fullTitle:"Food Systems Resilience",editors:[{id:"171036",title:"Dr.",name:"Ana I.",middleName:null,surname:"Ribeiro-Barros",slug:"ana-i.-ribeiro-barros",fullName:"Ana I. Ribeiro-Barros",profilePictureURL:"https://mts.intechopen.com/storage/users/171036/images/system/171036.jpg",institutionString:"University of Lisbon",institution:{name:"University of Lisbon",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Sustainable Economy and Fair Society",value:91,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:189,paginationItems:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221831/images/system/221831.jpeg",biography:"Niansheng Tang is a Professor of Statistics and Dean of the School of Mathematics and Statistics, Yunnan University, China. He was elected a Yangtze River Scholars Distinguished Professor in 2013, a member of the International Statistical Institute (ISI) in 2016, a member of the board of the International Chinese Statistical Association (ICSA) in 2018, and a fellow of the Institute of Mathematical Statistics (IMS) in 2021. He received the ICSA Outstanding Service Award in 2018 and the National Science Foundation for Distinguished Young Scholars of China in 2012. He serves as a member of the editorial board of Statistics and Its Interface and Journal of Systems Science and Complexity. He is also a field editor for Communications in Mathematics and Statistics. His research interests include biostatistics, empirical likelihood, missing data analysis, variable selection, high-dimensional data analysis, Bayesian statistics, and data science. He has published more than 190 research papers and authored five books.",institutionString:"Yunnan University",institution:{name:"Yunnan University",country:{name:"China"}}},{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",biography:"Prof. António J. R. Neves received a Ph.D. in Electrical Engineering from the University of Aveiro, Portugal, in 2007. Since 2002, he has been a researcher at the Institute of Electronics and Informatics Engineering of Aveiro. Since 2007, he has been an assistant professor in the Department of Electronics, Telecommunications, and Informatics, University of Aveiro. He is the director of the undergraduate course on Electrical and Computers Engineering and the vice-director of the master’s degree in Electronics and Telecommunications Engineering. He is an IEEE Senior Member and a member of several other research organizations worldwide. His main research interests are computer vision, intelligent systems, robotics, and image and video processing. He has participated in or coordinated several research projects and received more than thirty-five awards. He has 161 publications to his credit, including books, book chapters, journal articles, and conference papers. He has vast experience as a reviewer of several journals and conferences. As a professor, Dr. Neves has supervised several Ph.D. and master’s students and was involved in more than twenty-five different courses.",institutionString:null,institution:{name:"University of Aveiro",country:{name:"Portugal"}}},{id:"11317",title:"Dr.",name:"Francisco",middleName:null,surname:"Javier Gallegos-Funes",slug:"francisco-javier-gallegos-funes",fullName:"Francisco Javier Gallegos-Funes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/11317/images/system/11317.png",biography:"Francisco J. Gallegos-Funes received his Ph.D. in Communications and Electronics from the Instituto Politécnico Nacional de México (National Polytechnic Institute of Mexico) in 2003. He is currently an associate professor in the Escuela Superior de Ingeniería Mecánica y Eléctrica (Mechanical and Electrical Engineering Higher School) at the same institute. His areas of scientific interest are signal and image processing, filtering, steganography, segmentation, pattern recognition, biomedical signal processing, sensors, and real-time applications.",institutionString:"Instituto Politécnico Nacional",institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"428449",title:"Dr.",name:"Ronaldo",middleName:null,surname:"Ferreira",slug:"ronaldo-ferreira",fullName:"Ronaldo Ferreira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/428449/images/21449_n.png",biography:null,institutionString:null,institution:{name:"University of Aveiro",country:{name:"Portugal"}}},{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:{name:"Association for Computing Machinery",country:{name:"United States of America"}}},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"310576",title:"Prof.",name:"Erick Giovani",middleName:null,surname:"Sperandio Nascimento",slug:"erick-giovani-sperandio-nascimento",fullName:"Erick Giovani Sperandio Nascimento",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y00002pDKxDQAW/ProfilePicture%202022-06-20%2019%3A57%3A24.788",biography:"Prof. Erick Sperandio is the Lead Researcher and professor of Artificial Intelligence (AI) at SENAI CIMATEC, Bahia, Brazil, also working with Computational Modeling (CM) and HPC. He holds a PhD in Environmental Engineering in the area of Atmospheric Computational Modeling, a Master in Informatics in the field of Computational Intelligence and Graduated in Computer Science from UFES. He currently coordinates, leads and participates in R&D projects in the areas of AI, computational modeling and supercomputing applied to different areas such as Oil and Gas, Health, Advanced Manufacturing, Renewable Energies and Atmospheric Sciences, advising undergraduate, master's and doctoral students. He is the Lead Researcher at SENAI CIMATEC's Reference Center on Artificial Intelligence. In addition, he is a Certified Instructor and University Ambassador of the NVIDIA Deep Learning Institute (DLI) in the areas of Deep Learning, Computer Vision, Natural Language Processing and Recommender Systems, and Principal Investigator of the NVIDIA/CIMATEC AI Joint Lab, the first in Latin America within the NVIDIA AI Technology Center (NVAITC) worldwide program. He also works as a researcher at the Supercomputing Center for Industrial Innovation (CS2i) and at the SENAI Institute of Innovation for Automation (ISI Automação), both from SENAI CIMATEC. He is a member and vice-coordinator of the Basic Board of Scientific-Technological Advice and Evaluation, in the area of Innovation, of the Foundation for Research Support of the State of Bahia (FAPESB). He serves as Technology Transfer Coordinator and one of the Principal Investigators at the National Applied Research Center in Artificial Intelligence (CPA-IA) of SENAI CIMATEC, focusing on Industry, being one of the six CPA-IA in Brazil approved by MCTI / FAPESP / CGI.br. He also participates as one of the representatives of Brazil in the BRICS Innovation Collaboration Working Group on HPC, ICT and AI. He is the coordinator of the Work Group of the Axis 5 - Workforce and Training - of the Brazilian Strategy for Artificial Intelligence (EBIA), and member of the MCTI/EMBRAPII AI Innovation Network Training Committee. He is the coordinator, by SENAI CIMATEC, of the Artificial Intelligence Reference Network of the State of Bahia (REDE BAH.IA). He leads the working group of experts representing Brazil in the Global Partnership on Artificial Intelligence (GPAI), on the theme \"AI and the Pandemic Response\".",institutionString:null,institution:null},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"417317",title:"Mrs.",name:"Chiedza",middleName:null,surname:"Elvina Mashiri",slug:"chiedza-elvina-mashiri",fullName:"Chiedza Elvina Mashiri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Midlands State University",country:{name:"Zimbabwe"}}},{id:"352140",title:"Dr.",name:"Edina",middleName:null,surname:"Chandiwana",slug:"edina-chandiwana",fullName:"Edina Chandiwana",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Midlands State University",country:{name:"Zimbabwe"}}},{id:"342259",title:"B.Sc.",name:"Leonard",middleName:null,surname:"Mushunje",slug:"leonard-mushunje",fullName:"Leonard Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Midlands State University",country:{name:"Zimbabwe"}}},{id:"347042",title:"Mr.",name:"Maxwell",middleName:null,surname:"Mashasha",slug:"maxwell-mashasha",fullName:"Maxwell Mashasha",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Midlands State University",country:{name:"Zimbabwe"}}},{id:"2941",title:"Dr.",name:"Alberto J.",middleName:"Jorge",surname:"Rosales-Silva",slug:"alberto-j.-rosales-silva",fullName:"Alberto J. Rosales-Silva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"437913",title:"Dr.",name:"Guillermo",middleName:null,surname:"Urriolagoitia-Sosa",slug:"guillermo-urriolagoitia-sosa",fullName:"Guillermo Urriolagoitia-Sosa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"435126",title:"Prof.",name:"Joaquim",middleName:null,surname:"José de Castro Ferreira",slug:"joaquim-jose-de-castro-ferreira",fullName:"Joaquim José de Castro Ferreira",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Aveiro",country:{name:"Portugal"}}},{id:"437899",title:"MSc.",name:"Miguel Angel",middleName:null,surname:"Ángel Castillo-Martínez",slug:"miguel-angel-angel-castillo-martinez",fullName:"Miguel Angel Ángel Castillo-Martínez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"289955",title:"Dr.",name:"Raja",middleName:null,surname:"Kishor Duggirala",slug:"raja-kishor-duggirala",fullName:"Raja Kishor Duggirala",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jawaharlal Nehru Technological University, Hyderabad",country:{name:"India"}}}]}},subseries:{item:{id:"3",type:"subseries",title:"Bacterial Infectious Diseases",keywords:"Antibiotics, Biofilm, Antibiotic Resistance, Host-microbiota Relationship, Treatment, Diagnostic Tools",scope:"
\r\n\tThe era of antibiotics led us to the illusion that the problem of bacterial infection is over. However, bacterial flexibility and adaptation mechanisms allow them to survive and grow in extreme conditions. The best example is the formation of a sophisticated society of bacteria defined as a biofilm. Understanding the mechanism of bacterial biofilm formation has changed our perception of the development of bacterial infection but successfully eradicating biofilm remains a challenge. Considering the above, it is not surprising that bacteria remain a major public health threat despite the development of many groups of antibiotics. Additionally, increasing prevalence of acquired antibiotic resistance forces us to realize that we are far from controlling the development of bacterial infections. On the other hand, many infections are endogenous and result from an unbalanced relationship between the host and the microorganism. The increasing use of immunosuppressants, such as chemotherapy or organ transplantation, increases the incidence of patients highly susceptible to bacterial infections in the population.
\r\n
\r\n\tThis topic will focus on the current challenges and advantages in the diagnosis and treatment of bacterial infections. We will discuss the host-microbiota relationship, the treatment of chronic infections due to biofilm formation, and the development of new diagnostic tools to rapidly distinguish between colonization and probable infection.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11399,editor:{id:"205604",title:"Dr.",name:"Tomas",middleName:null,surname:"Jarzembowski",slug:"tomas-jarzembowski",fullName:"Tomas Jarzembowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKriQAG/Profile_Picture_2022-06-16T11:01:31.jpg",biography:"Tomasz Jarzembowski was born in 1968 in Gdansk, Poland. He obtained his Ph.D. degree in 2000 from the Medical University of Gdańsk (UG). After specialization in clinical microbiology in 2003, he started studying biofilm formation and antibiotic resistance at the single-cell level. In 2015, he obtained his D.Sc. degree. His later study in cooperation with experts in nephrology and immunology resulted in the designation of the new diagnostic method of UTI, patented in 2017. He is currently working at the Department of Microbiology, Medical University of Gdańsk (GUMed), Poland. Since many years, he is a member of steering committee of Gdańsk branch of Polish Society of Microbiologists, a member of ESCMID. He is also a reviewer and a member of editorial boards of a number of international journals.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorTwo:{id:"484980",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Garbacz",slug:"katarzyna-garbacz",fullName:"Katarzyna Garbacz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003St8TAQAZ/Profile_Picture_2022-07-07T09:45:16.jpg",biography:"Katarzyna Maria Garbacz, MD, is an Associate Professor at the Medical University of Gdańsk, Poland and she is head of the Department of Oral Microbiology of the Medical University of Gdańsk. She has published more than 50 scientific publications in peer-reviewed journals. She has been a project leader funded by the National Science Centre of Poland. Prof. Garbacz is a microbiologist working on applied and fundamental questions in microbial epidemiology and pathogenesis. Her research interest is in antibiotic resistance, host-pathogen interaction, and therapeutics development for staphylococcal pathogens, mainly Staphylococcus aureus, which causes hospital-acquired infections. Currently, her research is mostly focused on the study of oral pathogens, particularly Staphylococcus spp.",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"190041",title:"Dr.",name:"Jose",middleName:null,surname:"Gutierrez Fernandez",slug:"jose-gutierrez-fernandez",fullName:"Jose Gutierrez Fernandez",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"University of Granada",institutionURL:null,country:{name:"Spain"}}},{id:"156556",title:"Prof.",name:"Maria Teresa",middleName:null,surname:"Mascellino",slug:"maria-teresa-mascellino",fullName:"Maria Teresa Mascellino",profilePictureURL:"https://mts.intechopen.com/storage/users/156556/images/system/156556.jpg",institutionString:"Sapienza University",institution:{name:"Sapienza University of Rome",institutionURL:null,country:{name:"Italy"}}},{id:"164933",title:"Prof.",name:"Mónica Alexandra",middleName:null,surname:"Sousa Oleastro",slug:"monica-alexandra-sousa-oleastro",fullName:"Mónica Alexandra Sousa Oleastro",profilePictureURL:"https://mts.intechopen.com/storage/users/164933/images/system/164933.jpeg",institutionString:"National Institute of Health Dr Ricardo Jorge",institution:{name:"National Institute of Health Dr. Ricardo Jorge",institutionURL:null,country:{name:"Portugal"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:11,numberOfPublishedChapters:91,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:333,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:11,numberOfPublishedChapters:144,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:23,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"10",title:"Animal Physiology",scope:"Physiology, the scientific study of functions and mechanisms of living systems, is an essential area of research in its own right, but also in relation to medicine and health sciences. The scope of this topic will range from molecular, biochemical, cellular, and physiological processes in all animal species. Work pertaining to the whole organism, organ systems, individual organs and tissues, cells, and biomolecules will be included. Medical, animal, cell, and comparative physiology and allied fields such as anatomy, histology, and pathology with physiology links will be covered in this topic. Physiology research may be linked to development, aging, environment, regular and pathological processes, adaptation and evolution, exercise, or several other factors affecting, or involved with, animal physiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",keywords:"Physiology, Comparative, Evolution, Biomolecules, Organ, Homeostasis, Anatomy, Pathology, Medical, Cell Division, Cell Signaling, Cell Growth, Cell Metabolism, Endocrine, Neuroscience, Cardiovascular, Development, Aging, Development"},{id:"11",title:"Cell Physiology",scope:"
\r\n\tThe integration of tissues and organs throughout the mammalian body, as well as the expression, structure, and function of molecular and cellular components, is essential for modern physiology. The following concerns will be addressed in this Cell Physiology subject, which will consider all organ systems (e.g., brain, heart, lung, liver; gut, kidney, eye) and their interactions: (1) Neurodevelopment and Neurodevelopmental Disease (2) Free Radicals (3) Tumor Metastasis (4) Antioxidants (5) Essential Fatty Acids (6) Melatonin and (7) Lipid Peroxidation Products and Aging Physiology.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",keywords:"Neurodevelopment and Neurodevelopmental Disease, Free Radicals, Tumor Metastasis, Antioxidants, Essential Fatty Acids, Melatonin, Lipid Peroxidation Products and Aging Physiology"},{id:"12",title:"Human Physiology",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions"},{id:"13",title:"Plant Physiology",scope:"Plant Physiology explores fundamental processes in plants, and it includes subtopics such as plant nutrition, plant hormone, photosynthesis, respiration, and plant stress. In recent years, emerging technologies such as multi-omics, high-throughput technologies, and genome editing tools could assist plant physiologists in unraveling molecular mechanisms in specific critical pathways. The global picture of physiological processes in plants needs to be investigated continually to increase our knowledge, and the resulting technologies will benefit sustainable agriculture.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",keywords:"Plant Nutrition, Plant Hormone, Photosynthesis, Respiration, Plant Stress, Multi-omics, High-throughput Technology, Genome Editing"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"August 16th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:124,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},subseries:[{id:"3",title:"Bacterial Infectious Diseases",keywords:"Antibiotics, Biofilm, Antibiotic Resistance, Host-microbiota Relationship, Treatment, Diagnostic Tools",scope:"
\r\n\tThe era of antibiotics led us to the illusion that the problem of bacterial infection is over. However, bacterial flexibility and adaptation mechanisms allow them to survive and grow in extreme conditions. The best example is the formation of a sophisticated society of bacteria defined as a biofilm. Understanding the mechanism of bacterial biofilm formation has changed our perception of the development of bacterial infection but successfully eradicating biofilm remains a challenge. Considering the above, it is not surprising that bacteria remain a major public health threat despite the development of many groups of antibiotics. Additionally, increasing prevalence of acquired antibiotic resistance forces us to realize that we are far from controlling the development of bacterial infections. On the other hand, many infections are endogenous and result from an unbalanced relationship between the host and the microorganism. The increasing use of immunosuppressants, such as chemotherapy or organ transplantation, increases the incidence of patients highly susceptible to bacterial infections in the population.
\r\n
\r\n\tThis topic will focus on the current challenges and advantages in the diagnosis and treatment of bacterial infections. We will discuss the host-microbiota relationship, the treatment of chronic infections due to biofilm formation, and the development of new diagnostic tools to rapidly distinguish between colonization and probable infection.
",annualVolume:11399,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",editor:{id:"205604",title:"Dr.",name:"Tomas",middleName:null,surname:"Jarzembowski",fullName:"Tomas Jarzembowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKriQAG/Profile_Picture_2022-06-16T11:01:31.jpg",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorTwo:{id:"484980",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Garbacz",fullName:"Katarzyna Garbacz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003St8TAQAZ/Profile_Picture_2022-07-07T09:45:16.jpg",institutionString:"Medical University of Gdańsk, Poland",institution:null},editorThree:null,editorialBoard:[{id:"190041",title:"Dr.",name:"Jose",middleName:null,surname:"Gutierrez Fernandez",fullName:"Jose Gutierrez Fernandez",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"University of Granada",institutionURL:null,country:{name:"Spain"}}},{id:"156556",title:"Prof.",name:"Maria Teresa",middleName:null,surname:"Mascellino",fullName:"Maria Teresa Mascellino",profilePictureURL:"https://mts.intechopen.com/storage/users/156556/images/system/156556.jpg",institutionString:"Sapienza University",institution:{name:"Sapienza University of Rome",institutionURL:null,country:{name:"Italy"}}},{id:"164933",title:"Prof.",name:"Mónica Alexandra",middleName:null,surname:"Sousa Oleastro",fullName:"Mónica Alexandra Sousa Oleastro",profilePictureURL:"https://mts.intechopen.com/storage/users/164933/images/system/164933.jpeg",institutionString:"National Institute of Health Dr Ricardo Jorge",institution:{name:"National Institute of Health Dr. Ricardo Jorge",institutionURL:null,country:{name:"Portugal"}}}]},{id:"4",title:"Fungal Infectious Diseases",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",annualVolume:11400,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"302145",title:"Dr.",name:"Felix",middleName:null,surname:"Bongomin",fullName:"Felix Bongomin",profilePictureURL:"https://mts.intechopen.com/storage/users/302145/images/system/302145.jpg",institutionString:null,institution:{name:"Gulu University",institutionURL:null,country:{name:"Uganda"}}},{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",fullName:"Payam Behzadi",profilePictureURL:"https://mts.intechopen.com/storage/users/45803/images/system/45803.jpg",institutionString:"Islamic Azad University, Tehran",institution:{name:"Islamic Azad University, Tehran",institutionURL:null,country:{name:"Iran"}}}]},{id:"5",title:"Parasitic Infectious Diseases",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",annualVolume:11401,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"188881",title:"Dr.",name:"Fernando José",middleName:null,surname:"Andrade-Narváez",fullName:"Fernando José Andrade-Narváez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRIV7QAO/Profile_Picture_1628834308121",institutionString:null,institution:{name:"Autonomous University of Yucatán",institutionURL:null,country:{name:"Mexico"}}},{id:"269120",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",fullName:"Rajeev Tyagi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRaBqQAK/Profile_Picture_1644331884726",institutionString:"CSIR - Institute of Microbial Technology, India",institution:null},{id:"336849",title:"Prof.",name:"Ricardo",middleName:null,surname:"Izurieta",fullName:"Ricardo Izurieta",profilePictureURL:"https://mts.intechopen.com/storage/users/293169/images/system/293169.png",institutionString:null,institution:{name:"University of South Florida",institutionURL:null,country:{name:"United States of America"}}}]},{id:"6",title:"Viral Infectious Diseases",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",annualVolume:11402,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}},{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",fullName:"Imran Shahid",profilePictureURL:"https://mts.intechopen.com/storage/users/188219/images/system/188219.jpeg",institutionString:null,institution:{name:"Umm al-Qura University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"214235",title:"Dr.",name:"Lynn",middleName:"S.",surname:"Zijenah",fullName:"Lynn Zijenah",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEJGQA4/Profile_Picture_1636699126852",institutionString:null,institution:{name:"University of Zimbabwe",institutionURL:null,country:{name:"Zimbabwe"}}},{id:"178641",title:"Dr.",name:"Samuel Ikwaras",middleName:null,surname:"Okware",fullName:"Samuel Ikwaras Okware",profilePictureURL:"https://mts.intechopen.com/storage/users/178641/images/system/178641.jpg",institutionString:null,institution:{name:"Uganda Christian University",institutionURL:null,country:{name:"Uganda"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/164410",hash:"",query:{},params:{id:"164410"},fullPath:"/profiles/164410",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()