\r\n\tIn particular, this book presents topics related to Audio Signal Processing based on the different perspectives of the following: pattern recognition on audio, audio processing, forensic audio, digital filtering, and frequency analysis, and digital signal processing chip for audio, although other topics can be included, too. The most innovative advances on Audio Signal Processing will be included in this book, in order to show the reader, the new researched and developed approaches.
\r\n
\r\n\tSpecific cases of voice applications are welcome, where the Voice over IP (VoIP), internet of things (IoT), deep learning (DL) approaches, etc., are very useful including the recent technologies applied on voice and audio.
",isbn:"978-1-83962-876-4",printIsbn:"978-1-83962-875-7",pdfIsbn:"978-1-83962-877-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"95a662956526e566e5885e68c1d500ed",bookSignature:"Dr. Carlos M. Manuel Travieso-Gonzalez",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8213.jpg",keywords:"Pattern Recognition, Audio Identification, Audio Processing Algorithm, Audio Enhancer, Human Voice Patterns, Text to Speech, Forensic Audio Enhancement, Audio Evidence, Filtering Audio, Wavelet Analysis, Microprocessor for Audio, DSP for Audio",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 24th 2019",dateEndSecondStepPublish:"November 14th 2019",dateEndThirdStepPublish:"January 13th 2020",dateEndFourthStepPublish:"April 2nd 2020",dateEndFifthStepPublish:"June 1st 2020",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,editors:[{id:"27170",title:"Dr.",name:"Carlos M.",middleName:"Manuel",surname:"Travieso-Gonzalez",slug:"carlos-m.-travieso-gonzalez",fullName:"Carlos M. Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Dr. Carlos M. Travieso-González received his M.Sc. degree in 1997 in Telecommunication Engineering at the Polytechnic University of Catalonia (UPC), Spain; and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a Full Professor and the Head of the Signals and Communications Department at ULPGC a. He is teaching in ULPGC from 2001 on signal processing and learning theory subjects and he has been a supervisor on 8 Ph.D. Thesis (9 more in the process), and 130 Master Thesis. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. Dr. Travieso-González has contributed research in more than 50 International and Spanish Research Projects, some of them as the head researcher, and is the co-author of 4 books, co-editor of 24 Proceedings Books, Guest Editor for 8 JCR-ISI international journals and up to 24 book chapters. He has over 430 papers published in international journals and conferences (70 of them indexed on JCR – ISI - Web of Science). Dr. Travieso-González has also published 7 patents on Spanish Patent and Trademark Office. He has been a reviewer in different indexed international journals (<70) and conferences (<200) since 2001. Dr. Carlos M. Travieso-González is the Associate Editor on Computational Intelligence and Neuroscience journal and Entropy, and evaluator on European Projects (H2020), ANECA (Spain), DAAD (Germany), MRC (UK), ANR (France) and other institutions. He is a member of IASTED Technical Committee on Image Processing from 2007 and a member of IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. Dr. Carlos M. Travieso-González is also the founder of The IEEE IWOBI conference series and President of its Steering Committee, the founder of The InnoEducaTIC conference series and the founder of The APPIS conference series. He was the Vice-Dean from 2004 to 2010 in Higher Technical School of Telecommunication Engineers in ULPGC; and the Vice-Dean of Graduate and Postgraduate Studies from March 2013 to November 2017.",institutionString:"University of Las Palmas de Gran Canaria",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"24",title:"Technology",slug:"technology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"192910",firstName:"Romina",lastName:"Skomersic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/192910/images/4743_n.jpg",email:"romina.s@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6126",title:"Colorimetry and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"f74525de04361957bd947a45b0e64378",slug:"colorimetry-and-image-processing",bookSignature:"Carlos M. Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/6126.jpg",editedByType:"Edited by",editors:[{id:"27170",title:"Dr.",name:"Carlos M.",surname:"Travieso-Gonzalez",slug:"carlos-m.-travieso-gonzalez",fullName:"Carlos M. Travieso-Gonzalez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5783",title:"Motion Tracking and Gesture Recognition",subtitle:null,isOpenForSubmission:!1,hash:"8ca234174d55ac5bb4bd994cdf1541aa",slug:"motion-tracking-and-gesture-recognition",bookSignature:"Carlos M. Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/5783.jpg",editedByType:"Edited by",editors:[{id:"27170",title:"Dr.",name:"Carlos M.",surname:"Travieso-Gonzalez",slug:"carlos-m.-travieso-gonzalez",fullName:"Carlos M. Travieso-Gonzalez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9336",title:"Technology, Science and Culture",subtitle:"A Global Vision",isOpenForSubmission:!1,hash:"e1895103eeec238cda200b75d6e143c8",slug:"technology-science-and-culture-a-global-vision",bookSignature:"Sergio Picazo-Vela and Luis Ricardo Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/9336.jpg",editedByType:"Edited by",editors:[{id:"293960",title:"Dr.",name:"Sergio",surname:"Picazo-Vela",slug:"sergio-picazo-vela",fullName:"Sergio Picazo-Vela"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6826",title:"The Use of Technology in Sport",subtitle:"Emerging Challenges",isOpenForSubmission:!1,hash:"f17a3f9401ebfd1c9957c1b8f21c245b",slug:"the-use-of-technology-in-sport-emerging-challenges",bookSignature:"Daniel Almeida Marinho and Henrique Pereira Neiva",coverURL:"https://cdn.intechopen.com/books/images_new/6826.jpg",editedByType:"Edited by",editors:[{id:"177359",title:"Dr.",name:"Daniel Almeida",surname:"Marinho",slug:"daniel-almeida-marinho",fullName:"Daniel Almeida Marinho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6516",title:"Metrology",subtitle:null,isOpenForSubmission:!1,hash:"09e6966a3d9fadcc90b1b723e30d81ca",slug:"metrology",bookSignature:"Anil",coverURL:"https://cdn.intechopen.com/books/images_new/6516.jpg",editedByType:"Edited by",editors:[{id:"190673",title:"Associate Prof.",name:"Anil",surname:"Akdogan",slug:"anil-akdogan",fullName:"Anil Akdogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"16628",title:"Finite Element Modeling of Woven Fabric Composites at Meso-Level under Combined Loading Modes",doi:"10.5772/17333",slug:"finite-element-modeling-of-woven-fabric-composites-at-meso-level-under-combined-loading-modes",body:'\n\t\t
\n\t\t\t
1. Introduction
\n\t\t\t
Woven fabrics are among the most important materials used in today’s modern industries. Next to their high mechanical properties, they are easy to handle in the dry or pre-impregnated pre-forms, offer good drape-ability and are particularly suited for manufacturing of doubly curved components, membranes, inflatable structures, etc (Cavallaro et al., 2003; 2007). In the dry form, fabrics can be formed into a variety of three-dimensional (3D) shapes and then consolidated with resin via resin transfer molding (RTM) or other manufacturing processes (Boisse et al., 2007). Reliable models capable of predicting the mechanical behaviour of woven fabric materials are not fully developed yet. The biggest challenge in this regard is perhaps the multi-scale nature of the fabric materials. Dry fabrics at macro level are composed of numerous yarns interlaced into each other. The yarns usually have characteristic length in the scale of millimetres and their interaction and behaviour at the fabric level can greatly influence the macro-level material behaviour (Guagliano and Riva, 2001). Yarns themselves are heterogeneous media made of bundles of very thin and long fibers. Figure 1 shows different hierarchical levels in a woven fabric along with their typical dimensions.
\n\t\t\t
Figure 1.
Hierarchical levels in woven fabrics
\n\t\t\t
Among different material scales, meso-level modeling of woven fabrics is known to be a strong tool for predicting their effective mechanical properties at macro-level (Peng and Cao, 2002). It can also be useful for studying their local deformation mechanisms that occur during different manufacturing processes and loading conditions. Of different modeling techniques, the 3D finite element modeling is found to be of great interest to the researchers in the field. However, the multi-scale nature of fabrics makes the applicable numerical procedures different from those of the conventional finite element method. The fact that fabric yarns are heterogeneous media formed by bundles of fibres, and that the loose bounding between fibers in each yarn allows them to slide on each other, makes a considerable distinction in postulating the yarns’ constitutive models as well as the numerical procedures applied to analyze their deformation.
\n\t\t\t
(Kawabata et al., 1973; 1973a; 1973b) presented general theories for modeling woven fabric unit cells using bar and stiffness elements. Their sample model was based on the geometrical simplifications on a unit cell along with some parameters that were determined from experiments. Boisse et al., (1997) used the above model and developed a finite element simulation of a dry fabric forming process. Bi-axial tension tests were used to identify the unknown parameters in the constitutive model of the fabric unit cell. In order to develop more accurate models with more insight towards the local deformation phenomena in fibre yarns, Gasser et al. (2000) developed a 3D finite element model of a unit cell under bi-axial tension. Their results were compared to a set of bi-axial tests and satisfactory agreements were obtained. One of the most important features in their approach was to link the meso-level material model to the micro-level behaviour of yarns. For example, quasi-zero shear modulus and Poisson’s ratio, crushing transverse behaviour of yarns, and the update of direction of material orientation during deformation were taken into account. Later on, the model was extended to simulate the in-plane shear behaviour of dry fabrics (Badel et al., 2007) and an algorithm for implementing a hypoelastic constitutive model was presented by \n\t\t\t\t\tBadel et al. (2008\n\t\t\t\t; 2009). For implementation of these models in numerical packages, the explicit solver of Abaqus has been frequently used. Recently, Komeili and Milani (2010) used a modified version of the aforementioned algorithm to implement an implicit integrator in Abaqus, which led to an increased accuracy and significantly decreased the simulation run time.
\n\t\t\t
Based on the brief review above, it appears that the meso-level finite element modeling of fabrics has been mostly based on individual axial tension and shear modes. Other researchers have also looked at the homogenization of yarn properties at micro/meso levels, but again under individual deformation modes (Chen et al., 2001; Peng and Cao, 2002). Similarly, at macro-level, Xue et al. (2003), followed by Peng and Cao (2005), developed a constitutive material model for the dry fabric sheets. The model was based on a non-orthogonal local coordinate system whose in-plane axis is coincident with the weft and warp yarns of the fabric. To identify the unknown material parameters, the model was fitted to the experimental data from individual bi-axial and bias-extension tests. Nonetheless, during actual forming processes, a complex combination of the axial and shear deformation modes may be experienced by woven fabrics (Boisse, 2010). Cavallaro et al. (2007) developed a new test fixture with the capability of applying simultaneous axial tension and shear deformation modes to the fabric specimens, which could be advantageously used for a more reliable identification of constitutive modes that are used for simulation of composite forming processes.
\n\t\t\t
The aim of the present work is to first present a general meso-level fabric unit cell model using an implicit integrator in Abaqus. To this end, modifications to the original model developed by Badel et al. (2008) are required. Then, the effect of combined loading on the response of a typical fabric unit cell is studied under different axial-shear combined loading modes. The axial loading is induced through controlled displacement/stretch along the yarns and the shear is applied through controlled rotation on the boundaries of the unit cell (i.e., simulating the picture frame test).
\n\t\t
\n\t\t
\n\t\t\t
2. Modeling
\n\t\t\t
A typical glass plain-weave fabric was selected (Figure 2). Because of its simple textile architecture and balanced properties, this type of fabric has found a wide range of applications in the composite industries.
\n\t\t\t
Figure 2.
A typical balanced plain weave fabric (Boisse, 2010).
\n\t\t\t
\n\t\t\t\t
2.1. Geometry
\n\t\t\t\t
As mentioned earlier, the meso-level structure of a woven fabric consists of numerous yarns interlaced into each other to construct the whole fabric structure. In order to model such a complex material system (especially if the goal is to find the equivalent/effective material properties at a fabric level) it may be neither necessary nor computationally feasible to consider all individual yarns and their interactions. Instead, a representative volume element (also known as unit cell) may be considered as a sub-model of the whole fabric structure. Based on a given fabric type and the loading mode, different unit cell models have been employed in the literature (Boisse et al., 2006; Peng et al., 2004). Figure 3a shows the unit cell employed in the present study. The geometrical construction of the yarns in the model is based on the sinusoidal curves shown in Figure 3b and defined via Eqs. (1)-(5).
a) Schematic of the unit cell; (b) the yarn generating lines (Mcbride and Chen, 1997); For the current model, \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tw\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t2.11\n\t\t\t\t\t\t\t\t\t \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t,\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\th\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0.5\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t and \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tS\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t5.13\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t are used. This means that the total length of the unit cell is \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tS\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t0.26\n\t\t\t\t\t\t\t\t\t \n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t.\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t
\n\t\t\t
\n\t\t\t\t
2.2. Material
\n\t\t\t\t
The multi-scale nature of woven fabrics at meso-level means that the material behaviour of yarns is dependent on the attributes of micro-level fibrous structure. This, in turn, justifies using particular constitutive models of yarns with a close attention to the characteristics of fibers and their interactions at a lower material level. First, fiber yarns cannot have considerable tolerance for shear, compression or bending. This is due to the fact that yarns are made of bundles of thousands of very thin fibers which can slide on each other in the dry form. In addition, the high length to diameter ratio of yarns makes it almost impossible to carry compression without buckling. On the other hand, fibers can go under high tension in the axial direction of yarns. Indeed, the latter property is one of the main reasons for a fabric demonstrating superior mechanical properties. In the transverse direction, however, the yarn behaviour is more intricate. At the initiation of loading, there may be noticeable gaps/voids between the fibers in the cross section of yarns, but with increasing the load they vanish and the fibers begin side-to-side contacts (Figure 4). This phenomenon makes the transverse stiffness of yarns non-linear/strain dependant. It is not straightforward to directly measure a yarn’s transverse stiffness during fabric deformation. Consequently, inverse identification methods along with experimental measurements are commonly used
\n\t\t\t\t
Figure 4.
The X-ray image from cross section of fibrous yarns (top) before loading; (bottom) after loading (Badel et al., 2008)
The general form of material properties in the current model are adapted from (Komeili and Milani, 2010) which were extracted by matching the numerical simulations to the experimental measurements by Buet-Gautier and Boisse (2001) under axial tension and by Cao et al. (2008) under shear loading. The properties used for a simultaneous extension-shear are summarized in the following stiffness matrix:
\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t[\n\t\t\t\t\t\t\t\tC\n\t\t\t\t\t\t\t\t]\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t is the stiffness matrix, \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tE\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t11\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t and \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tε\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t11\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t are the axial stiffness and strains; \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tE\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tε\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\ttt\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\tt\n\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t{\n\t\t\t\t\t\t\t22,33\n\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t are the transverse stiffness and strains, respectively. \n\t\t\t\t\t\n\t\t\t\t\t\tG\n\t\t\t\t\t\n\t\t\t\t is the shear modulus of the yarns which for dry fabrics should be small compared to the axial and transverse stiffness values. Here \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tG\n\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t60\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tM\n\t\t\t\t\t\t\tP\n\t\t\t\t\t\t\ta\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\tas been selected merely for numerical stability purposes (Gasser et al., 2000); although the shear modulus is at the same order of magnitude as the other two stiffness values in the beginning of loading, it becomes less significant as \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tE\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t11\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t and \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tE\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t22\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t increases with the loading magnitude.
The material model of Eqs (6)-(8) was implemented in the Abaqus finite element software via a UMAT (implicit) user-defined subroutine. In doing so, however, it was noted that the large difference between the stiffness in the yarn axial direction compared to the transverse and shear stiffness values highlights the extreme importance of applying proper material orientation updates during loading steps. The point is that the material properties should be defined in a frame which is rotating with the fiber direction in the yarns. On the other hand, conventional methods in the finite element codes use other (e.g., Green & Naghdi, 1965; Jaumann, 1911) methods for updating the material orientation under large deformation. The problem can be handled with user-defined material subroutines. Subsequently, two approaches may be implemented to ensure that the material properties during stress updates is based on the frame attached to the fibers: (1) Either the stiffness matrix defined along the fiber direction can be transformed to the current working frame of the finite element software, or (2) the stress in the working frame of the software can be transformed to the frame of the fiber and transformed back to the working frame after applying the stress updates in the fiber frame. The details of each method are available in (Badel et al., 2008) and (Komeili and Milani, 2010); the former reference employed an explicit and the latter reference an implicit integrator.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.3. Periodic boundary conditions
\n\t\t\t\t
A single isolated unit cell cannot be considered as a good representative of the whole fabric structure unless the effect of adjacent cells is taken into account. In other words, suitable kinematic (or dynamic) conditions should be applied on the perimeter of the unit cell where it is attached to the adjacent cells. These conditions are often called periodic boundary conditions. They are very similar (though different) to symmetric boundary conditions. A thorough discussion on their mathematical details and implementation under individual loading modes is given in (Badel et al., 2007).
\n\t\t\t\t
The method that has been used in this study is based on the periodic boundary conditions reported in (Peng and Cao, 2002). According to their work, the side surfaces of yarns should remain plane and normal to the unit cell mid surface during deformation. More details of the latter kinematic conditions on unit cells are also given in (Komeili and Milani 2010).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.4. Loading boundary conditions
\n\t\t\t\t
There is a variety of test setups used for the axial tension and shear testing of woven fabrics (Buet-Gautier and Boisse, 2001; Cao et al., 2008). On the other hand, experimental setups for the combined loading modes are new and limited. First, it should be defined how a combined loading mode is exerted on a fabric specimen. For example, having a bi-axial load on a fabric where the axial loads does not rotate with the rotation of the yarns and stays parallel to its original direction during deformation, even after the shear load is applied, may be considered a special case of combined loading. As another example, one may consider a combined loading condition where the direction of the axial load rotates and realigns along the yarn direction. For a practical analysis of fabrics, the latter case of stretching in the yarn direction is more important than the former case of stretching yarns along a (fixed) off-axis direction (Boisse 2010). A new test setup capable of applying combined loading in the form of shear and biaxial stretching along the yarns (Figure 5) has been developed in (Cavallaro et al., 2007).
\n\t\t\t\t
In order to simulate the unit cell of the fabric under such combined loading in the aforementioned Abaqus model, a set of kinematic couplings were applied around the unit cell to satisfy the periodic boundary conditions. Namely, the shear loading has been applied
\n\t\t\t\t
Figure 5.
Experimental fixture for applying combined shear and axial tension on fabrics (Cavallaro et al., 2007).
\n\t\t\t\t
via rotation on one of the yarn sides and the rest of unit cell boundaries have linked to follow this movement through a periodic boundary condition. For the axial tension, connector elements between the two corners of each side yarn have been used (they can be seen as solid lines around the unit cell in Figure 6). The connector elements are chosen from the Abaqus library and provide an axial degree-of-freedom between their reference nodes. The axial distance between the nodes can be changed to apply/simulate stretching on the yarns. The reference points are not part of the yarns geometry, but they are kinematically connected to the nodes on the cross sectional surfaces of yarns (i.e., the side surfaces of the unit cell) to implement the periodic and loading boundary conditions. Moreover, there are four reference points on the mid-points of the side lines to impose the kinematic conditions on the middle yarns. The latter reference points are also connected to the corner points by kinematic constraints. Figure 6 shows the aforementioned conditions schematically. Eventually, the material resistance to deformation in the form of reaction moment from the rotation boundary condition and the normal force from the axial connector elements are calculated and reported in the post processing of simulations. They can then be used in the normalized form and compared with experimental results.
\n\t\t\t
\n\t\t
\n\t\t
Figure 6.
The loading boundary conditions used on the unit cell to model the deformation under a combined loading mode; Circles show the location of reference points.
\n\t\t
\n\t\t\t
3. A preliminary validation
\n\t\t\t
In order to validate the model with the existing data in the literature, it is compared to two basic cases where the unit cell is under pure bi-axial tension and shear (Komeili and Milani, 2010). Figure 7 shows the results of these comparisons. In the same figure, a set of actual picture frame test data, collected at the Hong Kong University of Science and Technology (HKUST), is replicated from (Cao et al., 2008). For the axial mode, however, data with the same unit cell geometrical parameters was not available. The differences between the resultant forces and moments in each mode can be related to the type of the unit cell used, shear stiffness of yarns, the method of applying boundary/loading conditions, and other details of the two finite element models in controlling their convergence (e.g. hourglass stiffness, mesh size, etc). In addition, one may redo the inverse identification of the yarn model using the current model. However, as the main goal of this chapter is to highlight the relative effect of combined loading on the mechanical characterization of woven fabrics (i.e., compared to the individual deformation modes), the current model and material properties are used without a loss of generality of the approach.
\n\t\t\t
Figure 7.
A validation of the current model under (a) pure bi-axial and (b) shear mode.
\n\t\t
\n\t\t
\n\t\t\t
4. The effect of combined loading
\n\t\t\t
In this section the effect of combined loading on the response of the material is analysed, when compared to those obtained from the individual biaxial and shear modes under the same loading magnitude. Figure 8 shows the effect of combined loading on the reaction force in the bi-axial tension and the reaction moment under shear loading. The amount of normalized reaction moment while the fabric is under combined loading has increased up to four times. It has also caused ~12% higher axial reaction force under an identical stretching magnitude.
\n\t\t\t
Figure 8.
The effect of combined loading on the reaction force and moment when compared to the individual (a) shear and (b) biaxial modes. The difference between curves in each graph indicates the presence of additional local deformation phenomena/ interactions between shear and axial modes under combined loading.
\n\t\t\t
The obtained numerical results from bi-axial loading well agree with what has been suggested through experimental measurements in the literature. Namely, Boisse, et al. (2001) and Buet-Gautier and Boisse (2001) argued that the effect of shear strain on the axial behaviour of plain fabrics is not considerable. In other words, it may be concluded that the small effect of shear deformation on the axial behaviour (~12%) can be considered as an inherent material noise in the experimental data. On the other hand, Cavallaro et al. (2007) reported that having the yarns under pretension in axial direction can greatly affect the subsequent shear behaviour of the fabrics, which is in fact the case from the simulation results in Figure 8.
\n\t\t\t
After assessing the effect of combined loading on the basic normal and shear response of the fabric, another important notion may be studied. The question is, “Does the sequence of loading steps affect the response too?” In other words, if the axial loading is applied first, followed by the shear loading, or vice versa, are the resultant reaction force and moments the same as those when the two loadings are applied simultaneously?
\n\t\t\t
To study the latter effect, let us define a normalized loading parameter \n\t\t\t\t\t\n\t\t\t\t\t\tα\n\t\t\t\t\t\n\t\t\t\t. It ranges from 0 to 1, where 0 refers to the initiation of loading and 1 represents the end of loading. For example, during a simultaneous/combined loading:
where \n\t\t\t\t\t\n\t\t\t\t\t\tθ\n\t\t\t\t\t\n\t\t\t\t and \n\t\t\t\t\t\n\t\t\t\t\t\tε\n\t\t\t\t\t\n\t\t\t\t, are the shear angle and axial strain in each step of loading and \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tθ\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\ta\n\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t and \n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\tε\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tm\n\t\t\t\t\t\t\t\t\ta\n\t\t\t\t\t\t\t\t\tx\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t, are the corresponding maximum values. Similarly, for the shear loading followed by the axial loading at \n\t\t\t\t\t\n\t\t\t\t\t\tα\n\t\t\t\t\t\n\t\t\t\t=\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t1\n\t\t\t\t\t\t\t\t2\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t we have:
Results of the new simulations are presented in Figure 9. It can be clearly seen that for the shear response, the sequence of the loading affects the resultant moment up to four times. However, the axial response is still less sensitive to the effect of deformation from the shear mode and the loading sequence. The results also indicate that if the shear deformation is applied to the specimen first, the shear reaction moment is decreased substantially. Moreover, during the step that the pure shear is applied, there seems to be a small reaction force in the form of tension. This is perhaps due to the fact that during shearing, the sliding of yarns on each other and their replacement in the fabric affect their waviness/crimp. In turn, the crimp interchange would induce a small axial stretch in some regions of yarns, especially if they are constrained at their ends (like in the picture frame test).
\n\t\t\t
Figure 9.
The effect of loading sequence on the response of (a) shear and (b) axial deformation; the second loading step is applied after the dashed line for Axial+Shear and Shear+Axial cases.
\n\t\t\t
The results in Figure 9 can also be linked to the constitutive model of yarns. Recalling Eq. (8), the transverse stiffness is a function of yarns’ axial and transverse strains (crushing formula). The bi-axial stretching induces axial strain in the yarns, which leads to an increase in the yarns’ transverse stiffness. In turn, the normal contact forces at the yarns cross over regions are increased, leading to a higher contribution from friction to the total reaction force. However, the opposite effect is not true. Under the bi-axial mode, the shear deformation (before locking point) does not induce considerable axial and transverse stretches in the yarns. Previously, using a sensitivity analysis under individual deformation modes, it was also reported by Komeili and Milani (2010) that the effect of transverse stiffness on the fabric response in the shear mode is considerable whereas it is ignorable in the bi-axial mode.
\n\t\t
\n\t\t
\n\t\t\t
5. Summary
\n\t\t\t
A numerical finite element model of a plain weave fabric unit cell at meso-level is developed. The model is capable of simulating specimens under simultaneous axial loading along the yarn directions and the fabric shearing. It can be a useful tool for predicting the meso-level local deformation phenomena in woven fabrics under complex loading conditions, as well as for developing equivalent material models at macro-level for fast simulation of fabric forming processes. Two fundamental deformation modes (shear and equi-biaxial stretching) are applied through two separate kinematics boundary conditions to facilitate extracting the contributions from each mode on the total resultant force and moment.
\n\t\t\t
The analysis on the effect of combined loading has been conducted in two ways. First, the force and moment response of the unit cell under a predefined combined loading with a specific shear angle and axial strain is compared to those of the pure shear and axial modes. It was of interest to see if there is any interaction effect between the fundamental axial and shear deformation mechanisms when a combined loading is applied. Results showed that this interaction in fact exists and it has a dramatic effect on the ensuing reaction moment response (shear rigidity), but it is less important for the axial reaction force. Second, the effect of applying combined loading in two sequential steps was scrutinized. Again, the shear deformation response showed high sensitivity to the sequence of loading if it is applied before the axial deformation. Moreover, it was noted that during shear deformation there is a small tension reaction force, even though no stretching is applied to the yarns. This is perhaps due to the crimp interchanges along with the imposed boundary conditions on the end surfaces of yarns.
\n\t\t\t
In summary, the above mentioned results show a high level of nonlinear interactions between the material response in the axial tension and shear modes. This can be directly related to the geometrical nonlinearities that exist in woven fabrics at meso-level and the effect of crimp interchanges during loading. After each stage of loading, the rearrangement of yarns in the fabric and their interactions should occur before yarns can go through further stretching/shearing. Under the combined loading, the crimp changes due to each loading mode can affect the reaction from the other mode. If loads are applied in sequence (e.g., shear followed by biaxial tension), the crimp changes in each step can affect the global response due to the effect from the previous loading step. Considerably different magnitudes of the shear moment were found between two cases where the shear and bi-axial deformations are applied at the same time and where the shear is applied after the axial loading. This observation clearly showed the higher sensitivity of the shear response to the crimp interchanges. On the contrary, because the axial reaction forces are more related to the stretching in the yarns, the shear deformation has minor influence on their axial force magnitudes. The effect of axial tension on increasing the transverse stiffness of yarns is deemed to be the main reason for the presence of interactions between the axial tension and shear deformation under combined loading modes. Further experimental and/or numerical studies are needed to scrutinize and validate the reported effects.
\n\t\t
\n\t
Acknowledgments
\n\t\t\t
The authors would like to acknowledge financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada.
\n\t\t
\n',keywords:",",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/16628.pdf",chapterXML:"https://mts.intechopen.com/source/xml/16628.xml",downloadPdfUrl:"/chapter/pdf-download/16628",previewPdfUrl:"/chapter/pdf-preview/16628",totalDownloads:4523,totalViews:509,totalCrossrefCites:0,totalDimensionsCites:5,hasAltmetrics:0,dateSubmitted:"October 20th 2010",dateReviewed:"April 8th 2011",datePrePublished:null,datePublished:"July 27th 2011",readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/16628",risUrl:"/chapter/ris/16628",book:{slug:"advances-in-modern-woven-fabrics-technology"},signatures:"Mojtaba Komeili and Abbas S. Milani",authors:[{id:"28025",title:"Dr.",name:"Abbas",middleName:null,surname:"Milani",fullName:"Abbas Milani",slug:"abbas-milani",email:"abbas.milani@ubc.ca",position:null,institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Modeling ",level:"1"},{id:"sec_2_2",title:"2.1. Geometry",level:"2"},{id:"sec_3_2",title:"2.2. Material",level:"2"},{id:"sec_4_2",title:"2.3. Periodic boundary conditions",level:"2"},{id:"sec_5_2",title:"2.4. Loading boundary conditions",level:"2"},{id:"sec_7",title:"3. A preliminary validation ",level:"1"},{id:"sec_8",title:"4. The effect of combined loading",level:"1"},{id:"sec_9",title:"5. Summary",level:"1"},{id:"sec_10",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBadel\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVidalsalle\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoisse\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007, 2007\n\t\t\t\t\tComputational determination of in-plane shear mechanical behaviour of textile composite reinforcements. Computational Materials Science 40: 439-448.\n\t\t\t'},{id:"B2",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBadel\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVidalsalle\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoisse\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008, 2008\n\t\t\t\t\tLarge deformation analysis of fibrous materials using rate constitutive equations. Computers & Structures 86: 1164-1175.\n\t\t\t'},{id:"B3",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBadel\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVidalsalle\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMaire\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoisse\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008, Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. Composites Science and Technology 68: 2433-2440.\n\t\t\t'},{id:"B4",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBadel\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGauthier\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVidal-Sallé\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoisse\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tRate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming. Composites Part A: Applied Science and Manufacturing\n\t\t\t\t\t40\n\t\t\t\t\t997\n\t\t\t\t\t1007 .\n\t\t\t'},{id:"B5",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoisse\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZouari\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDaniel\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tImportance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming. Composites Part A: Applied Science and Manufacturing 37\n\t\t\t\t\t2201\n\t\t\t\t\t2212 .\n\t\t\t'},{id:"B6",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoisse\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBorr\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBuet\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCherouat\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997 Finite element simulations of textile composite forming including the biaxial fabric behaviour. Composites. Part B: Engineering\n\t\t\t\t\t28\n\t\t\t\t\t453\n\t\t\t\t\t464 .\n\t\t\t'},{id:"B7",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoisse\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGasser\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHivet\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001asser, A, Hivet, G (2001) Analyses of fabric tensile behaviour: determination of the biaxial tension-strain surfaces and their use in forming simulations. Composites Part A: Applied Science and Manufacturing\n\t\t\t\t\t32\n\t\t\t\t\t1395\n\t\t\t\t\t1414 .\n\t\t\t'},{id:"B8",body:'\n\t\t\t\t\n\t\t\t\t\tBoisse,\n\t\t\t\t\t2010 Simulations of Woven Composite Reinforcement Forming. Woven Fabric Engineering, 387\n\t\t\t\t\t414 . SCIYO.\n\t\t\t'},{id:"B9",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoisse\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAkkerman\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCao\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLomov\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLong\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007Composites Forming. Advances in Material Forming- Esaform 10 years on material forming. Springer, Paris.\n\t\t\t'},{id:"B10",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBuet-Gautier\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoisse\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Experimental analysis and modeling of biaxial mechanical behavior of woven composite reinforcements. Experimental Mechanics\n\t\t\t\t\t41\n\t\t\t\t\t260\n\t\t\t\t\t269 .\n\t\t\t'},{id:"B11",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCao\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAkkerman\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoisse\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCheng\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDegraaf\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGorczyca\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHarrison\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHivet\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLaunay\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008, Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Composites Part A: Applied Science and Manufacturing\n\t\t\t\t\t39\n\t\t\t\t\t1037\n\t\t\t\t\t1053 .\n\t\t\t'},{id:"B12",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCavallaro\n\t\t\t\t\t\t\tP. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSadegh\n\t\t\t\t\t\t\tA. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tQuigley\n\t\t\t\t\t\t\tC. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Decrimping Behavior of Uncoated Plain-woven Fabrics Subjected to Combined Biaxial Tension and Shear Stresses. Textile Research Journal\n\t\t\t\t\t77\n\t\t\t\t\t403\n\t\t\t\t\t416 .\n\t\t\t'},{id:"B13",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCavallaro\n\t\t\t\t\t\t\tP. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tME\n\t\t\t\t\t\t\tJohnson\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSadegh\n\t\t\t\t\t\t\tA. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 Mechanics of plain-woven fabrics for inflated structures. Composite Structures\n\t\t\t\t\t61\n\t\t\t\t\t375\n\t\t\t\t\t393 .\n\t\t\t'},{id:"B14",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLussier\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCao\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPeng\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Materials characterization methods and material models for stamping of plain woven composites. International Journal of Forming Processes\n\t\t\t\t\t4\n\t\t\t\t\t269\n\t\t\t\t\t284 .\n\t\t\t'},{id:"B15",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGasser\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoisse\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHanklar\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000Mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests. Computational Materials Science\n\t\t\t\t\t17\n\t\t\t\t\t7\n\t\t\t\t\t20 .\n\t\t\t'},{id:"B16",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGuagliano\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRiva\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 (2001) Mechanical behaviour prediction in plain weave composites. Journal of strain analysis for engineering design\n\t\t\t\t\t36\n\t\t\t\t\t153\n\t\t\t\t\t162 .\n\t\t\t'},{id:"B17",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKawabata\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNiwa\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKawai\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1973 (1973) Finite-deformation theory of plain-weave fabrics- 1. The biaxial-deformation theory. Journal of the Textile Institute\n\t\t\t\t\t64\n\t\t\t\t\t21\n\t\t\t\t\t46 .\n\t\t\t'},{id:"B18",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKawabata\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNiwa\n\t\t\t\t\t\t\tMasako.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKawai\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1973a Finite-deformation theory of plain-weave fabrics- 2. The uniaxial-deformation theory. Journal of the Textile Institute\n\t\t\t\t\t64\n\t\t\t\t\t47\n\t\t\t\t\t61 .\n\t\t\t'},{id:"B19",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKawabata\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNiwa\n\t\t\t\t\t\t\tMasako.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKawai\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1973b Finite-deformation theory of plain-weave fabrics- 3. The shear-deformation theory. Journal of the Textile Institute\n\t\t\t\t\t64\n\t\t\t\t\t62\n\t\t\t\t\t85 .\n\t\t\t'},{id:"B20",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKomeili\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAS\n\t\t\t\t\t\t\tMilani\n\t\t\t\t\t\t\tA.S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tMeso-Level Analysis of Uncertainties in Woven Fabrics. VDM Verlag, Berlin, Germany.\n\t\t\t'},{id:"B21",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMcbride\n\t\t\t\t\t\t\tT. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tJulie.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997 Unit-cell geometry in plain-weave during shear deformations fabrics. Composites Science and Technology\n\t\t\t\t\t57\n\t\t\t\t\t345\n\t\t\t\t\t351 .\n\t\t\t'},{id:"B22",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPeng\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCao\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Composites Part A: Applied Science and Manufacturing\n\t\t\t\t\t36\n\t\t\t\t\t859\n\t\t\t\t\t874 .\n\t\t\t'},{id:"B23",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPeng\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCao\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChen\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXue\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLussier\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLiu\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004Experimental and numerical analysis on normalization of picture frame tests for composite materials. Composites Science and Technology\n\t\t\t\t\t64\n\t\t\t\t\t11\n\t\t\t\t\t21 .\n\t\t\t'},{id:"B24",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPeng\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCao\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 A dual homogenization and finite element approach for material characterization of textile composites. Composites Part B: Engineering\n\t\t\t\t\t33\n\t\t\t\t\t45\n\t\t\t\t\t56 .\n\t\t\t'},{id:"B25",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXue\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPeng\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCao\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003A non-orthogonal constitutive model for characterizing woven composites. Composites Part A: Applied Science and Manufacturing\n\t\t\t\t\t34\n\t\t\t\t\t183\n\t\t\t\t\t193 .\n\t\t\t'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Mojtaba Komeili ",address:null,affiliation:'
School of Engineering, University of British Columbia, Canada
'},{corresp:null,contributorFullName:"Abbas S. Milani",address:null,affiliation:'
School of Engineering, University of British Columbia, Canada
'}],corrections:null},book:{id:"153",title:"Advances in Modern Woven Fabrics Technology",subtitle:null,fullTitle:"Advances in Modern Woven Fabrics Technology",slug:"advances-in-modern-woven-fabrics-technology",publishedDate:"July 27th 2011",bookSignature:"Savvas Vassiliadis",coverURL:"https://cdn.intechopen.com/books/images_new/153.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",editors:[{id:"11871",title:"Dr.",name:"Savvas G.",middleName:null,surname:"Vassiliadis",slug:"savvas-g.-vassiliadis",fullName:"Savvas G. Vassiliadis"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"16625",title:"Electro-Conductive Sensors and Heating Elements Based on Conductive Polymer Composites in Woven Structures",slug:"electro-conductive-sensors-and-heating-elements-based-on-conductive-polymer-composites-in-woven-stru",totalDownloads:4547,totalCrossrefCites:2,signatures:"Irina Cristian, Saad Nauman, Cedric Cochrane and Vladan Koncar",authors:[{id:"30935",title:"Prof.",name:"Vladan",middleName:null,surname:"Koncar",fullName:"Vladan Koncar",slug:"vladan-koncar"},{id:"46032",title:"Dr.",name:"Irina",middleName:null,surname:"Cristian",fullName:"Irina Cristian",slug:"irina-cristian"},{id:"46033",title:"Mr.",name:"Saad",middleName:null,surname:"Nauman",fullName:"Saad Nauman",slug:"saad-nauman"},{id:"46034",title:"Mr.",name:"Cedric",middleName:null,surname:"Cochrane",fullName:"Cedric Cochrane",slug:"cedric-cochrane"}]},{id:"16626",title:"Smart Woven Fabrics In Renewable Energy Generation",slug:"smart-woven-fabrics-in-renewable-energy-generation",totalDownloads:5245,totalCrossrefCites:6,signatures:"Derman Vatansever, Elias Siores, Ravi L. Hadimani and Tahir Shah",authors:[{id:"59532",title:"Prof.",name:"Elias",middleName:null,surname:"Siores",fullName:"Elias Siores",slug:"elias-siores"},{id:"59536",title:"Dr.",name:"Derman",middleName:null,surname:"Vatansever",fullName:"Derman Vatansever",slug:"derman-vatansever"},{id:"59537",title:"Prof.",name:"Ravi",middleName:null,surname:"Hadimani",fullName:"Ravi Hadimani",slug:"ravi-hadimani"}]},{id:"16627",title:"Mechanical Analysis of Woven Fabrics:The State of the Art",slug:"mechanical-analysis-of-woven-fabrics-the-state-of-the-art",totalDownloads:7355,totalCrossrefCites:6,signatures:"Savvas Vassiliadis, Argyro Kallivretaki, Dimitra Domvoglou and Christofer Provatidis",authors:[{id:"11871",title:"Dr.",name:"Savvas G.",middleName:null,surname:"Vassiliadis",fullName:"Savvas G. Vassiliadis",slug:"savvas-g.-vassiliadis"}]},{id:"16628",title:"Finite Element Modeling of Woven Fabric Composites at Meso-Level under Combined Loading Modes",slug:"finite-element-modeling-of-woven-fabric-composites-at-meso-level-under-combined-loading-modes",totalDownloads:4523,totalCrossrefCites:0,signatures:"Mojtaba Komeili and Abbas S. Milani",authors:[{id:"28025",title:"Dr.",name:"Abbas",middleName:null,surname:"Milani",fullName:"Abbas Milani",slug:"abbas-milani"}]},{id:"16629",title:"Multiaxis Three Dimensional (3D) Woven Fabric",slug:"multiaxis-three-dimensional-3d-woven-fabric",totalDownloads:13447,totalCrossrefCites:8,signatures:"Kadir Bilisik",authors:[{id:"25460",title:"Prof.",name:"Kadir",middleName:null,surname:"Bilisik",fullName:"Kadir Bilisik",slug:"kadir-bilisik"}]},{id:"16630",title:"Functional Design of the Woven Filters",slug:"functional-design-of-the-woven-filters",totalDownloads:3748,totalCrossrefCites:0,signatures:"Lucica Cioara and Ioan Cioara",authors:[{id:"28591",title:"Prof.",name:"Lucica",middleName:null,surname:"Cioara",fullName:"Lucica Cioara",slug:"lucica-cioara"},{id:"39258",title:"PhD.",name:"Ioan",middleName:null,surname:"Cioara",fullName:"Ioan Cioara",slug:"ioan-cioara"}]},{id:"16631",title:"Color and Weave Relationship in Woven Fabrics",slug:"color-and-weave-relationship-in-woven-fabrics",totalDownloads:18307,totalCrossrefCites:3,signatures:"Kavita Mathur and Abdel-Fattah Seyam",authors:[{id:"40781",title:"Dr.",name:"Kavita",middleName:null,surname:"Mathur",fullName:"Kavita Mathur",slug:"kavita-mathur"},{id:"49350",title:"Dr.",name:"Abdel-Fattah",middleName:null,surname:"Seyam",fullName:"Abdel-Fattah Seyam",slug:"abdel-fattah-seyam"}]},{id:"16632",title:"Sensory and Physiological Issues",slug:"sensory-and-physiological-issues",totalDownloads:4094,totalCrossrefCites:1,signatures:"Laurence Schacher, Sourour Bensaid, Selsabil El-Ghezal Jeguirim and Dominique Adolphe",authors:[{id:"13716",title:"Prof.",name:"Laurence",middleName:null,surname:"Schacher",fullName:"Laurence Schacher",slug:"laurence-schacher"}]},{id:"16633",title:"Superhydrophobic Superoleophobic Woven Fabrics",slug:"superhydrophobic-superoleophobic-woven-fabrics",totalDownloads:4153,totalCrossrefCites:1,signatures:"Hoon Joo Lee and Jeffery Owens",authors:[{id:"25290",title:"Dr.",name:"Hoon Joo",middleName:null,surname:"Lee",fullName:"Hoon Joo Lee",slug:"hoon-joo-lee"},{id:"27074",title:"Dr.",name:"Jeffery",middleName:null,surname:"Owens",fullName:"Jeffery Owens",slug:"jeffery-owens"}]},{id:"16634",title:"The Flame Retardant Nomex/Cotton, Nylon/Cotton and Polyester/Cotton Blend Fabrics for Protective Clothing",slug:"the-flame-retardant-nomex-cotton-nylon-cotton-and-polyester-cotton-blend-fabrics-for-protective-clot",totalDownloads:5144,totalCrossrefCites:1,signatures:"Charles Q. Yang and Hui Yang",authors:[{id:"25457",title:"Dr.",name:null,middleName:null,surname:"Yang",fullName:"Yang",slug:"yang"}]},{id:"16635",title:"Liquid Transport in Nylon 6.6 Woven Fabrics Used for Outdoor Performance Clothing",slug:"liquid-transport-in-nylon-6-6-woven-fabrics-used-for-outdoor-performance-clothing",totalDownloads:5549,totalCrossrefCites:0,signatures:"Abraham Babs Nyoni",authors:[{id:"39347",title:"Dr.",name:"Abraham Babs",middleName:null,surname:"Nyoni",fullName:"Abraham Babs Nyoni",slug:"abraham-babs-nyoni"}]}]},relatedBooks:[{type:"book",id:"6727",title:"Piezoelectricity",subtitle:"Organic and Inorganic Materials and Applications",isOpenForSubmission:!1,hash:"98bd795d1667ff21314fa4a94a8c0441",slug:"piezoelectricity-organic-and-inorganic-materials-and-applications",bookSignature:"Savvas G. Vassiliadis and Dimitroula Matsouka",coverURL:"https://cdn.intechopen.com/books/images_new/6727.jpg",editedByType:"Edited by",editors:[{id:"11871",title:"Dr.",name:"Savvas G.",surname:"Vassiliadis",slug:"savvas-g.-vassiliadis",fullName:"Savvas G. Vassiliadis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"61113",title:"Nanocellulose as a Piezoelectric Material",slug:"nanocellulose-as-a-piezoelectric-material",signatures:"Sampo Tuukkanen and Satu Rajala",authors:[{id:"236620",title:"Associate Prof.",name:"Sampo",middleName:null,surname:"Tuukkanen",fullName:"Sampo Tuukkanen",slug:"sampo-tuukkanen"},{id:"249767",title:"Dr.",name:"Satu",middleName:null,surname:"Rajala",fullName:"Satu Rajala",slug:"satu-rajala"}]},{id:"61542",title:"Application of Thin Piezoelectric Films in Diamond-Based Acoustoelectronic Devices",slug:"application-of-thin-piezoelectric-films-in-diamond-based-acoustoelectronic-devices",signatures:"Boris P. Sorokin, Gennady M. Kvashnin, Andrey S. Novoselov, Sergey\nI. Burkov, Anton B. Shipilov, Nikolay V. Luparev, Victor V.\nAksenenkov and Vladimir D. Blank",authors:[{id:"181306",title:"Prof.",name:"Boris",middleName:null,surname:"Sorokin",fullName:"Boris Sorokin",slug:"boris-sorokin"},{id:"185347",title:"Dr.",name:"Gennadiy",middleName:null,surname:"Kvashnin",fullName:"Gennadiy Kvashnin",slug:"gennadiy-kvashnin"},{id:"185349",title:"Dr.",name:"Sergey",middleName:null,surname:"Burkov",fullName:"Sergey Burkov",slug:"sergey-burkov"},{id:"185350",title:"Prof.",name:"Vladimir",middleName:null,surname:"Blank",fullName:"Vladimir Blank",slug:"vladimir-blank"},{id:"247388",title:"M.Sc.",name:"Andrey",middleName:null,surname:"Novoselov",fullName:"Andrey Novoselov",slug:"andrey-novoselov"},{id:"247390",title:"BSc.",name:"Anton",middleName:null,surname:"Shipilov",fullName:"Anton Shipilov",slug:"anton-shipilov"},{id:"247392",title:"MSc.",name:"Nikolay",middleName:null,surname:"Luparev",fullName:"Nikolay Luparev",slug:"nikolay-luparev"},{id:"247395",title:"Mr.",name:"Victor",middleName:null,surname:"Aksenenkov",fullName:"Victor Aksenenkov",slug:"victor-aksenenkov"}]},{id:"62191",title:"Hydrodynamic Loading on Vibrating Piezoelectric Microresonators",slug:"hydrodynamic-loading-on-vibrating-piezoelectric-microresonators",signatures:"Huacheng Qiu and Helmut Seidel",authors:[{id:"235257",title:"Associate Prof.",name:"Huacheng",middleName:null,surname:"Qiu",fullName:"Huacheng Qiu",slug:"huacheng-qiu"},{id:"241318",title:"Prof.",name:"Helmut",middleName:null,surname:"Seidel",fullName:"Helmut Seidel",slug:"helmut-seidel"}]},{id:"61886",title:"Piezoelectric Melt-Spun Textile Fibers: Technological Overview",slug:"piezoelectric-melt-spun-textile-fibers-technological-overview",signatures:"Dimitroula Matsouka and Savvas Vassiliadis",authors:[{id:"11871",title:"Dr.",name:"Savvas G.",middleName:null,surname:"Vassiliadis",fullName:"Savvas G. Vassiliadis",slug:"savvas-g.-vassiliadis"},{id:"235096",title:"Dr.",name:"Dimitroula",middleName:null,surname:"Matsouka",fullName:"Dimitroula Matsouka",slug:"dimitroula-matsouka"}]},{id:"62276",title:"Piezoelectric Vibration Energy Harvester Using Polyvinylidene Difluoride Film Formed by Bar-Coating Method and Its Spray- Coating Method on a Three Dimensional Surface",slug:"piezoelectric-vibration-energy-harvester-using-polyvinylidene-difluoride-film-formed-by-bar-coating-",signatures:"Hiroki Takise, Masato Suzuki, Tomokazu Takahashi and Seiji Aoyagi",authors:[{id:"116622",title:"Prof.",name:"Seiji",middleName:null,surname:"Aoyagi",fullName:"Seiji Aoyagi",slug:"seiji-aoyagi"},{id:"238505",title:"M.Sc.",name:"Hiroki",middleName:null,surname:"Takise",fullName:"Hiroki Takise",slug:"hiroki-takise"},{id:"239202",title:"Prof.",name:"Masato",middleName:null,surname:"Suzuki",fullName:"Masato Suzuki",slug:"masato-suzuki"},{id:"239203",title:"Prof.",name:"Tomokazu",middleName:null,surname:"Takahashi",fullName:"Tomokazu Takahashi",slug:"tomokazu-takahashi"}]},{id:"61932",title:"Piezoelectric Sensors Used for Daily Life Monitoring",slug:"piezoelectric-sensors-used-for-daily-life-monitoring",signatures:"Hirokazu Madokoro",authors:[{id:"131366",title:"Associate Prof.",name:"Hirokazu",middleName:null,surname:"Madokoro",fullName:"Hirokazu Madokoro",slug:"hirokazu-madokoro"}]},{id:"61340",title:"Piezoelectric Materials for Medical Applications",slug:"piezoelectric-materials-for-medical-applications",signatures:"Melodie Chen-Glasser, Panpan Li, Jeongjae Ryu and Seungbum\nHong",authors:[{id:"240618",title:"Prof.",name:"Seungbum",middleName:null,surname:"Hong",fullName:"Seungbum Hong",slug:"seungbum-hong"},{id:"242355",title:"Ms.",name:"Melodie",middleName:null,surname:"Glasser",fullName:"Melodie Glasser",slug:"melodie-glasser"},{id:"242359",title:"Dr.",name:"Panpan",middleName:null,surname:"Li",fullName:"Panpan Li",slug:"panpan-li"},{id:"242360",title:"Mr.",name:"Jeongjae",middleName:null,surname:"Ryu",fullName:"Jeongjae Ryu",slug:"jeongjae-ryu"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"64957",title:"The Evolution of the Composite Fuselage: A Manufacturing Perspective",doi:"10.5772/intechopen.82353",slug:"the-evolution-of-the-composite-fuselage-a-manufacturing-perspective",body:'\n
\n
1. Introduction
\n
A historical perspective provides an understanding of how the current state-of-practice for composite fuselage manufacturing has evolved. It also provides insight into what the future state of composite fuselage manufacturing might look like. Figure 1 shows a familiar graph that shows the increase in composites usage in military and commercial aircraft over time. Initial applications of carbon fiber reinforced composites (CFRP) in both commercial and military aircraft were limited mostly to non-structural applications such as fairings and flight control surfaces. Structural applications for military aircraft began to appear in the 1980s as composite usage grew to more than 20% of the weight of the structure. As the industry continued to mature, material and processes became better understood and cost effectiveness improved to the level that commercial aircraft manufacturers incorporated the technology into the latest generation of wide body and other new aircraft.
\n
Figure 1.
Composites usage.
\n
\n
\n
2. Early research and development
\n
Research and development of high performance composite materials and processes for aerospace applications in the Unites States was first conducted in the 1940s at Wright-Patterson Air Force Base in Dayton, Ohio [1]. The focus of this early research was primarily for military applications. This research has continued since that time and today, the Air Force Research Laboratory (AFRL), with support from industry, universities and other government agencies such as the Department of Advanced Research Projects Agency (DARPA) and the Department of Energy (DOE), continues to play a leading role in developing advanced materials for military applications. NASA initiated research devoted to the development of high performance composites for commercial aircraft and space vehicles in the late 1960s. Over the years, NASA has worked collectively with industry and academia to develop affordable technologies to improve safety and performance of aircraft and launch vehicles. The paper NASA Composite Materials Development: Lessons Learned and Future Challenges provides an excellent historical review of NASA’s role in the development of composite materials and processes [2].
\n
A common characteristic shared between AFRL and NASA sponsored programs was the “building-block” approach for research and development programs that progressed through a series of steps, each one having an increase in complexity and cost that built upon the previous step. In general, programs started at a coupon level and looked at a wide range of samples to down select design approaches, materials of construction, tooling and manufacturing processes to build and test coupons, subcomponents and ultimately full scale components. Not unlike the Technology Readiness Levels applied to describe new technologies today, this approach was used successfully in programs such as the Air Force’s Large Aircraft Composite Fuselage (LACF) Program in the late 1980s and NASA’s Advanced Composites Technology (ACT) program in the mid 1990s.
\n
The B-2 Stealth Bomber program was also taking place during the 1980s and provided many lessons learned related to the manufacture of large composite primary structure. For the B-2, survivability performance was one of the primary reasons for the extensive use of carbon fiber composites—cost and producibility were not the most critical factors. Boeing was a prime subcontractor on the program and built the wing skins using Automated Tape Laying (ATL). This program presented the opportunity to demonstrate the productivity that was possible using automated lamination processes such as ATL and AFP.
\n
Another program which derived direct benefit from the ACT program is the V-22. Composites have been used extensively and aggressively in helicopters more than any other type of aircraft because weight is such a critical factor. The V-22 uses composites for the wings, fuselage skins, empennage, side body fairings, doors, and nacelles. AFP technology is used to fabricate the aft fuselage skin in one piece. Both Bell and Boeing also incorporate cocured, hat stiffened fuselage structures, using solid silicone mandrels, on their portions of the program.
\n
\n
2.1. Large Aircraft Composite Fuselage (LACF) program
\n
The LACF program was conducted in part by Northrop and was sponsored by the Air Force Wright Aeronautical Laboratory (AFWAL) during the 1980s. The program was part of an effort focused on manufacturing technology for the Linear Manufacturing of Large Aircraft Composite Primary Structure Fuselage. The multi-phase program was directed toward the definition and demonstration of manufacturing methods for cocuring stringer stiffened fuselage panels using (1) existing, qualified material systems; (2) automated skin fabrication; (3) inner mold line (IML) controlled tooling; (4) non-autoclave curing technology. Like many similar terms, in the 1980s “linear” manufacturing was a code word for “lean” and non-autoclave is referred to today as out-of-autoclave or OOA processes.
\n
The program followed a building-block approach through four phases (Figure 2):
Phase I—methods definition
Phase II—manufacturing methods establishment
Phase III—manufacturing verification
Phase IV—production demonstration
\n
As the program moved through various phases, lessons learned where documented and applied to the next phase. Phase I lessons learned included:
Raw material required (tow bad, tape good) changes to improve panel quality using automated lamination equipment
Non-autoclave cured panel mechanical properties were equivalent to autoclave cured panels
IML tooling is very good at controlling stringer location and dimensions
IML provides very easy tool loading and bagging
Continuous roll forming can be used to preform preplied material into “C” channels ready for tool loading (Figure 3).
\n
Figure 2.
LACF program.
\n
Figure 3.
“I” beam formed from “C” channels.
\n
Phase II lessons learned included:
Non-autoclave cure has risks associated with consumable bagging materials.
Integrally heated tooling strongly supports linear manufacturing.
Confirmed IML tooling is excellent for controlling stringer/skin dimensions and location.
Confirmed IML tooling and “I” beam stringer for part and tool removal.
Flat preplied laminates can be drape formed on gentle contours using IML cure tools.
Automation can be applied but presents reliability risks and potential equipment downtime.
Automation can produce a laminate that does not require additional debulking.
Roll forming of stringer “C” channels is important for linear manufacturing (Figure 4).
\n
Figure 4.
“C” channel roll forming machine.
\n
Among the lessons learned as a result of Phases III and IV were the economics related to process scale up for both size and rate. This included ply cutting and kitting time for panel fabrication and backing paper removal and management issues affecting tow placement and stringer laminate preplying (Figure 5). Another lesson included gaining a better understanding of cocuring longitudinal “I” beams to the skin of a large fuselage panel. One nice feature of the “I” beam construction is that the tooling is not trapped after cure and the channel details that form the “C” of the “I” beam can be removed over any length. Disadvantages were also apparent including the number of laminate preform and tooling details needed to construct an “I” beam vs. the simplicity of the hat stiffener (Figure 6).
\n
Figure 5.
Laminate cross ply equipment.
\n
Figure 6.
“I” beam vs. hat stiffener.
\n
Northrop developed hat stiffened fuselage skin manufacturing technology in support of the YF-23 (Figure 7). One critical problem to solve was the removal of hat stiffener mandrel tooling from the cured part. The fuselage tooling was OML controlled and constructed from CRFP prepreg to match the coefficient of thermal expansion (CTE) of the parts. The resin system used for the tooling was bismaleimide (BMI) and the tools were autoclave cured on male, machined monolithic graphite source tools. The hat stiffeners that run longitudinally along the skin were cocured using a silicone mandrel system developed by Northrop using Rubbercraft as a supplier.
\n
Figure 7.
YF-23 fuselage structure.
\n
The silicone based solid mandrel system included a solid rubber mandrel, a butterfly caul and a resin end dam. The silicone mandrel was designed to be removed from the cured part after pulling and elongating the mandrel to reduce the cross section enough to release from the part. The butterfly caul was designed to help consistently control the OML of the hat stiffener. It also helped to greatly simplify the bagging process which allows for the use of a broader range of operators instead of relying solely on a highly skilled mechanic. The end dam was designed to be cheap and disposable and replace much of the inner bagging process complexity of sealing off the hat stiffener to prevent resin bleed during the cure cycle (Figure 8). This is not a hard process, but is critical and tedious.
\n
Figure 8.
Solid mandrel system.
\n
Northrop subsequently applied this hat stiffener fabrication process technology to the fuselage of the F/A-18E/F as a prime subcontractor to Boeing on the program (Figure 9).
\n
Figure 9.
F/A-18E/F fuselage structure.
\n
During this time period, it was recognized by many of the R&D programs that liquid molding processes presented the opportunity to use resins and fibers in their lowest-cost state by eliminating prepreg from the fabrication process. Other advantages included minimizing material scrap, simplifying raw material storage, and supporting non-autoclave fabrication processes. The development of net shape damage-tolerant textile preforms and the development of innovative liquid molding tooling concepts supported this opportunity. The Advanced Composites Technology (ACT) program included processes such as resin transfer molding (RTM) and pultrusion in the development efforts. The technologies have progressed to state-of-practice processes with both the 787 and the A350 programs using liquid molding and textile preform technology for fabricating fuselage frame elements.
\n
\n
\n
2.2. Advanced Composites Technology (ACT) program
\n
The objective of the ACT fuselage program was to develop composite primary structure for commercial airplanes with 20–25% less cost and 30–50% less weight than equivalent metallic structure [3]. The Advanced Technology Composite Aircraft Structure (ATCAS) program was performed by Boeing as the prime contractor under the umbrella of NASA’s ACT program and focused on fuselage structures. A large team of industry and university partners also supported the program. The primary objective of the ATCAS program was to develop and demonstrate an integrated technology that enables the cost and weight effective use of composite materials in fuselage structures for future aircraft.
\n
The area selected for study was identified as Section 46 on Boeing wide body aircraft (Figure 10). This section contains many of the structural details and manufacturing challenges found throughout the fuselage. This includes variations in design details to address high loads at the forward end and lower portions of the fuselage. The loads decrease toward the aft end and the upper portion of the fuselage, allowing for transitions in the thickness of the structure that are tailored to match the structural loading.
\n
Figure 10.
ACT fuselage section [3].
\n
A quadrant panel approach was selected for study as shown in Figure 11. The cross section is split into four segments, a crown, keel, and left and right side panels. The circumferential, four quadrant panel approach was selected with the idea of reducing assembly costs by reducing the number of longitudinal splices. This built-up assembly approach is baseline to metallic aircraft manufacturing and is similar to the approach Airbus selected for most of the fuselage of the A350.
\n
Figure 11.
ACT quadrant panels [3].
\n
Manufacturing process development and design trade studies contributed to the development of Cost Optimization Software for Transport Aircraft Design Evaluation (COSTADE) which allowed for defining and evaluating the cost-effectiveness and producibility of various designs. Included in the program were assessments of tooling, materials and process controls needed for future full-barrel fabrication like Boeing selected for the 787.
\n
The structural concepts studied included stiffened skin structures achieved by stand alone or combinations of cocuring, cobonding, bonding, and mechanical attachment of stringers and frames to monolithic or sandwich panel skins (Table 1). The crown section study selected fiber placed skins laminated on an IML controlled layup mandrel with the skin subsequently cut into individual panels and transferred to OML cure tools. Hat stiffeners used solid silicone mandrels located longitudinally along the IML of the skin panels for cocuring.
The recommended optimized panel design included cobonding of cured frame elements while cocuring the hat stiffeners and the skin. The cured frames were demonstrated using braided textile preforms and resin transfer molding (RTM). One of the main challenges of the crown panel concept was the bond integrity between the precured frames cobonded to a skin panel that is stiffened with cocured hat stringers. Alternative concepts the team considered during the review process included mechanically attached Z-section frames instead of cobonded J’s. The mechanically fastened frame approach greatly reduces the complexity of IML tooling needed to cocure the hat stiffeners and cobond the frames. This is especially true at the intersections of the frame and hat. Flexible caul plates and custom fit reusable bags became part of the tooling system needed to accomplish the fully integrated skin/stringer/frame structure. Producibility issues are complicated by the blind nature of the IML of the skin being completely covered by flexible cauls and the reusable bagging system. The structural arrangement shown in Figure 12 is very similar to the configurations that ended up on both the 787 and A350 programs.
\n
Figure 12.
ACT crown panel structural arrangement [3].
\n
The program studied the pultrusion process for producing skin stringers. Continuous resin transfer molding (CRTM) developed by Ciba-Geigy was one of the more promising technologies studied. Improved process control and reduced waste are among the perceived advantages; process maturity, constant cross-section stringers and costs associated with secondary bonding or cobonding are among the disadvantages.
\n
Airbus has studied automating stringer fabrication using both pultrusion and RTM but felt limited by aspects of both processes. As an answer, Airbus developed their version of pultrusion RTM. Figure 13 shows equipment completed in 2011 that is being used to develop and qualify the process [4]. This hybrid fabrication approach allows the use of preform laminates instead of being limited to unidirectional reinforcements like traditional pultrusion and supports continuous production instead of batch processing associated with the traditional RTM. Instead of dipping the preform stack through a resin bath, it is pulled into an RTM tool that is open on both ends. To overcome resin being pushed out at both ends of the open tool, Airbus worked with resin suppliers to develop an epoxy resin with a parabolic temperature/viscosity curve. At 120°C resin viscosity is very low with high flow characteristics, but at both room temperature and at 180°C and higher, it is very viscous. The tool entry is cooled so the resin is too viscous to flow out; the middle is heated to obtain resin flow and cure; more heat is added at the end to increase resin viscosity to make sure it does not flow out and reduce cure pressure.
\n
Figure 13.
Airbus continuous pultrusion equipment [4]. Source: CTC Stade.
\n
\n
\n
2.3. Automated fiber placement
\n
Even in the early days of development, industry leaders believed in the possibility of higher layup rates using AFP than was possible with hand layup, but the capabilities and the scale that the industry has achieved today is astounding. Almost as astounding as how the industry reinvented itself from a raw material cost saving technology to an enabling technology for large aircraft structural components.
\n
In the late 1980s and early 1990s Northrop and ATK/Hercules worked on several joint projects sponsored by the Air Force which included fiber placement development and application. The technology was in its infancy as ATK was developing tow placement (as it was more commonly referred to originally) from its roots in filament winding technology. The main prize in the early days was $5 per lb. high modulus carbon fiber and $15 per pound high temperature/high performance resin instead of the $60+ per pound price of prepreg. A wet process of running fiber through a resin bath prior to placement onto the layup mandrel was never able to realize the quality and consistency required by the design. This same process has been used in the large wind blade manufacturing process and it reminds us of how challenging (and messy!) that approach can be. In addition, the wind blade manufacturing industry has learned some valuable lessons from those early days of “build it as cheap as you can” using the lowest cost material you can deal with. While those early blades were built with lower manufacturing costs, the argument can be made that many of those blades failed very early in their lifecycle and required costly repairs or replacement to generate electricity. If the blade cannot turn because it has delaminated, it is not generating any electricity in addition to the cost of repair or replacement.
\n
Not only did the technology not realize the cost savings of dry fiber and wet resin, it was forced to adopt prepreg technology into the process—namely dealing with backing paper and ADDING to the cost of unidirectional prepreg tape by requiring it to be slit into prepreg tows. At the time of the ATCAS program, the AFP process was still evolving from what was originally envisioned as a much lower raw material cost build up starting with a dry fiber/wet resin process instead of a costly unidirectional fiber prepreg. The baseline process the ATCAS program selected for fabricating fuselage skins was AFP using prepreg tow. The dry fiber/wet resin tow had evolved to prepreg tow in an attempt to improve process consistency. The process was selected based on several factors including the potential for reduced material cost (compared to prepreg tape), the potential to achieve high lay-up rates over contoured surfaces, and the potential to efficiently support a significant amount of ply tailoring. In addition, the fact that tow material does not require backing paper eliminated a perceived risk of greater machine downtime.
\n
When compared with the quality and consistency of parts made with prepreg tape, tow preg and subsequent prepreg tow, was not acceptable. The variability seen in the quality of the resultant panels would require compensation in the design of the part, resulting in weight penalties. But this did not prove fatal to the technology, instead tow placement reinvented itself (Figure 14).
\n
Figure 14.
AFP process and tooling.
\n
There have been many studies of the AFP process that have helped to shape and refine the characteristics and capabilities that exist in today’s equipment offerings. But the ACT program allowed Boeing to better understand, study, define and refine the process to guide the technology development based on the needs of the user community. Everything from tack of the initial plies to the tool surface, to overlaps and gaps in the laminate; the most efficient ways to handle window/door cutouts, laminate thickness transitions, lay-up rates for flat, curved, cylindrical and duct shaped parts, etc., etc. What has ended up on production on the 787 is not the direct result of that ACT program, but the ACT program created the path for subsequent AFP development to follow and improve upon.
\n
\n
\n
2.4. Tooling
\n
One clear thread throughout the development of composite fuselage fabrication processes that was recognized and considered very early on, was tooling. The fabrication of large composite fuselage structures was also enabled by the tooling required to support it. The ability of industry to produce tools using specified materials and built to the size, scale and accuracy required by aerospace and defense applications were critical factors. Large scale machining, laser measuring systems, and innovative thinking supported the transition to today’s composite fuselage manufacturing capability.
\n
The ACT program demonstrated how the producibility of large, integrated, composite fuselage structures depend heavily on the tooling to ensure compatibility of the skin cure tool, the cocured or cobonded stringer tooling and the frame tooling. Controlling these elements is necessary to minimize gaps and interference fit between cured detail components. Understanding the effect of tolerance accumulations, warpage, liquid and hard shim allowances and fastener pull-up forces creates the ability to calculate the impact on fuselage structural arrangement and weight, part manufacturing cost and risk and fuselage assembly and integration time. These elements become even more critical as the size of the fuselage grows to 787 and A350 proportions.
\n
One important note was the need for the stringer tooling to be extractable after cure and flexible enough to be able to accommodate skin thickness variations—especially the “joggles” or transitions up-across-down at each of the frame stations. These requirements drove the team toward silicone or flexible laminate mandrels—reusability was also a key consideration. The mandrels needed to be rigid enough for handling or to be used as drape or vacuum forming mandrels; durable and capable of withstanding a 350°F autoclave cure cycle and still be able to conform to skin ply sculpting and tailoring; and be able to be extracted after cure.
\n
While the use of silicone mandrels and the flexible IML tooling proved adequate for controlling hat stiffener shape, quality and location for the demonstration panels, it was also recognized that silicone mandrels presented many challenges in both scale-up and production scenarios. Boeing started to develop hat shaped silicone bladders that fed autoclave pressure into the bladder throughout the cure to provide uniform pressure throughout the stringer. After cure, pressure in the bladder is released making it possible to remove the bladder.
\n
At this same time Rubbercraft was working with engineers on the C-17 program to develop and manufacture inflatable silicone bladders for use on the replacement composite tail (Figure 15). In 1991 on aircraft 51, a composite tail was integrated into the program. Rubbercraft produced silicone bladders with FEP film molded to the OML of the bladders that were used in IML tools to cocure hat stiffeners to the skin of the horizontal stabilizers. The tooling, bladders and hat stiffener design allowed for the bladders to be manufactured with substantial excess length that supported multiple cure cycles despite the dimensional shrinkage of the bladder in the longitudinal direction. The reusability over multiple cure cycles is key to the cost effectiveness of the inflatable bladder system. Rubbercraft product improvement was focused on bladder attributes that supported increasing the number of cure cycles the bladder could be used for (Figure 16).
\n
Figure 15.
C-17 horizontal stabilizer.
\n
Figure 16.
Inflatable bladder.
\n
While Boeing was developing flexible IML tooling for cocuring hat stringers and cobonding frames on the ACT program, they evolved away from one-piece overall cauls to separate, individual flexible cauls constructed from graphite/epoxy fabric with a layer of Viton® fluoroelastomer and an outer layer of FEP film. The fluoroelastomer was shown to be more resistant to the epoxy resin and thus more durable than silicones or other rubbers. An added benefit—but perhaps not as well understood at the time—is the added resistance to permeability offered by both the FEP film and the Viton rubber. This helps to minimize the amount of autoclave gas on the inside the bladder from being introduced into the laminate through the permeability of the bladder system. Fluoroelastomer bladder development continues today in support of new programs and applications.
\n
A comparison of OML and IML cure tool approaches demonstrates some of the tradeoffs that must be considered. OML tooling is less complex, less expensive, can be initiated as soon as the OML of the aircraft is established and is more forgiving of change than an IML tool. The IML tool requires less labor and risk for locating and maintaining locations of stiffeners and other elements and is much more simple to bag (Figures 17–20).
\n
Figure 17.
OML sector panel tool. Source: Premium Aerotec.
\n
Figure 18.
IML tool. Source: Boeing.
\n
Figure 19.
IML and OML cure tools [3].
\n
Figure 20.
IML and OML tooling.
\n
The ACT program also looked at separate male winding mandrels for AFP and then transferring the uncured skin to an OML cure tool. The male layup mandrel improved layup rates and proved to be a less expensive approach to meet production rate than two cure tools. This also plays to the argument for a combined IML controlled layup mandrel and cure tool—as Boeing selected for the 787 program.
\n
One concern using IML controlled cure tooling is the ability to adequately control the aerodynamic shell of the fuselage. For the ACT program this meant meeting surface waviness criteria of ±0.025″ over a 2″ length using caul plates. The concern over aerodynamic surface control seems to be greatly diminished when you look at what has evolved on the 787 program. The recognition that every airplane has a slightly different OML based on a number of factors such as exact resin content percentage in the prepreg (within the nominal tolerance range of ±5%), the amount of resin bleed experienced during cure and the amount of cured material removed during the sanding, smoothing and preparation for painting process. The skin of a composite fuselage allows for greater tailoring of the skin thickness than is usually incorporated into a metal fuselage. At the base, the fuselage is skin is thicker because it carries more load related to passengers, cargo and landing gear. The structural loads at the top of the fuselage are limited primarily to overhead bins, air ducting, and electrical wiring and this allows for lower weight, thinner skins that predominantly function as aerodynamic surfaces. Regardless of where in space it exists, and even though it varies from aircraft-to-aircraft, the surface is sanded smooth enough to satisfy the surface waviness allowance and negligible difference between aircraft.
\n
The ATCAS team envisioned scenarios that included full one piece barrel fabrication. Significant cost savings were estimated from the elimination of longitudinal splices and the need to compensate for tolerance accumulation in assembly. Material out-time, segmented full barrel cure tooling and barrel warpage were the primary risks identified with full scale single piece barrel fabrication.
\n
The sector panel construction used on the A350 allows for the use of invar for all the fuselage tooling. This includes the IML controlled sector panels fabricated by Spirit for Section 15. The approach Spirit applied is very similar to the one used on the 787 with the exception of the use of sector panels instead of a one piece barrel breakdown mandrel (Figure 21).
\n
Figure 21.
Tooling. Source: Boeing, Coast composites.
\n
\n
\n
2.5. Large autoclaves
\n
One enabling capability that supports the evolution of the current state-of-practice for composite fuselage manufacturing is large autoclaves. There are many, many, many, many research and historical, ongoing and planned for the future, development efforts focused on OOA (or non-autoclave as it was called in the 1980s) materials and processes with the goal of eliminating that monument, the autoclave. The goal is noble (and not new) and the development efforts are making great progress and will, someday in the future, represent a significant (if not all) portion of the composite structure on commercial passenger aircraft—just not today. We already see components made from liquid molding processes being used in specific applications and families of parts and components on aircraft like the 787 and A350, just not the primary fuselage panels and stringers—yet. The maturity, forgiving nature, and low risk of baseline autoclave cured systems made it an easy decision for programs like the 787 and A350 to progress knowing that it was just time and money required to build autoclaves large enough to meet the needs of the program. No new technology needed, just scale and incorporation of improvements being realized by the autoclave industry, such as control systems and operational efficiencies. Spirit even built their own liquid nitrogen generating plant onsite to service their large autoclaves (Figure 22).
\n
Figure 22.
Autoclaves. Source: Spirit, DLR.
\n
\n
\n
2.6. NDE/I/T technology
\n
The use of composites for high performance applications requires the ability to identify and ultimately eliminate structural defects that occur during manufacture, assembly, service, or maintenance. The entire field of nondestructive evaluation (NDE) has continued to develop and evolve in parallel to the growth of composite structure applications. It is both an enabling technology and one that has been driven by the market and the need. NDE of composites is a mature technology and has been used successfully for many years, however, the composite structures of today and tomorrow have grown in both scale and complexity. New and improved nondestructive testing (NDT) methods and technologies are necessary to improve detection capabilities, meet growing inspection needs, and address future nondestructive inspection (NDI) requirements. NDT methods currently used in aerospace applications span a broad range of technologies, from the simple coin tap test to fully automated, computerized systems that can inspect very large parts (Figures 23 and 24).
\n
Figure 23.
NDI methods [5].
\n
Figure 24.
Ultrasonic inspection.
\n
Many of the newer NDI methods are “wide-area” inspection techniques, which enable more uniform and rapid coverage of a test surface which can improve productivity and minimize human error. Technical advances in both computing power and commercially available, multi-axis robots and/or gantry systems, now facilitate a new generation of scanning machines. Many of these systems use multiple end effector tools yielding improvements in inspection quality and productivity.
\n
Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 2 decades, ultrasound scanning machines using conventional techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. A limitation of ultrasonic inspection can be the requirement to use a couplant between probe and test part. VACRS (variable automatic couplant and recovery system) has helped changed the way very large area ultrasonic inspections are done [6]. The VACRS system uses a lightweight couplant and delivery/recovery system that makes it possible to conduct a C-scan with large ultrasonic arrays without the large water requirements. It works with Boeing’s mobile automated scanner (MAUS®) and other scanning systems on the market.
\n
Shearography and thermography are relatively fast, non-contact methods that require no coupling or complex scanning equipment. Laser shearography was initially applied to aircraft structure in 1987 by Northrop Grumman on the B-2 bomber. Since that time, laser shearography has emerged as an advanced, high-speed, high-performance inspection method.
\n
An enabler for more widespread use of bonded structure in commercial aircraft applications will be improvements in cost and capability related to quantification of real-time structural bond integrity. Adhesive bonds degrade slowly over time and are highly dependent on surface preparation. On older aircraft, the only gauge for bond integrity is age, environmental exposures and statistics — not the actual condition of bonds. The ability to detect weak adhesive bonds, before they disbond will lead to more integration of parts and reduced fastener count and a reduction in everything that is involved with creating holes in cured composite parts. Military air vehicle platforms are more aggressive in this pursuit and the “pay-for-performance” mindset, the lower production rates and the size, visibility, and objectives of the programs allow for more flexibility in bonded structure implementation. The commercial world is different and just like the widespread implementation of composite material on new aircraft, it will not happen unless there are compelling economic advantages and very low risk.
\n
\n
\n
2.7. Logistics
\n
Boeing knew that the transport time required by land or marine shipping methods would not support a supply chain that included major partners located in Japan, Korea and Italy and that air transport would be the primary shipping method [7]. The Dreamlifter started as the Large Cargo Freighter (LCF) program and is a modified 747-400 freighter. The Dreamlifter and follows a historic trail of oversized or outsize aircraft, which includes the Airbus Beluga, that were borne out of the adage “necessity breeds invention”. The Dreamlifter is a dedicated transport used to deliver full 787 fuselage sections, wings, and horizontal tail from suppliers located across the US and the world. There are four Dreamlifters in operation supporting the 787 program.
\n
The innovation that was the Dreamlifter (Figure 25), also required equipment to support the loading and unloading of such large cargo. Hence was born the largest cargo loaders in the world. The first one designated DBL-100 (DBL has been reported as an acronym for “Damn Big Loader”), were designed for use exclusively with the Dreamlifter.
\n
Figure 25.
Beluga and Dreamlifter [7]. Source: Boeing, Airbus.
\n
Airbus was originally a consortium formed by British, French, German, and Spanish aerospace companies. Historically, each of the Airbus partners makes an entire aircraft section, which would then be transported to a central location for final assembly—even after integration into a single company, the arrangement remained largely the same. When Airbus started in 1970, road vehicles were initially used for the movement of components and sections. As production volume grew quickly, a switch to air transport was required. Beginning in 1972, a fleet of four highly modified “Super Guppies” took over. These were former Boeing Stratocruisers from the 1940s that had been converted with custom fuselages and turbine engines. Airbus’ use of the Super Guppies led to the jest that that every Airbus took its first flight on a Boeing [8].
\n
Today this need is handled by the Airbus A300-600ST (Super Transporter) or Beluga (Figure 25). The Beluga is a modified version of the A300-600 airliner adapted to carry aircraft parts and oversized cargo. The official name was originally Super Transporter, but the name Beluga, a whale, gained popularity based on the appearance of the airplane and has been officially adopted. Interestingly, the Beluga cannot carry most fuselage parts of the A380, which are instead transported by ship and road.
\n
Airbus has an updated design, The Beluga XL, based on the larger Airbus A330-200. Five aircraft are planned to be built as replacements for the existing aircraft and used primarily for A350 work. The Beluga XL is designed with the capacity to ship two A350 wings simultaneously [9].
\n
\n
\n
2.8. 787 vs. A350
\n
The Boeing 787 and the Airbus A350 aircraft share many similarities in size, configuration, manufacturing methods and mission (Figure 26). The primary difference between the composite fuselage structures of the two programs is the exclusive usage of IML controlled cure tooling and full barrel fabrication applied by Boeing and the sector panel approach selected by Airbus with a high percent incorporation of cobonded fuselage skin stiffeners. The true results of these decisions will not be known until more information can be collected about actual fabrication and assembly costs being realized by Boeing and Airbus.
\n
Figure 26.
787 and A350 fuselage sections.
\n
\n
2.8.1. Boeing 787
\n
The ACT/ATCAS program had a tremendous influence on the direction Boeing selected for the 787 program. Lessons learned from all aspect of the program influenced everything from the material systems that were selected to the tooling materials, structural arrangement, and the selection of IML tooled, full barrel fuselage structures. Major considerations that influenced that decision were the concerns about the cost of the assembly of very large stiffened structure and the stresses induced on the structure due to assembly.
\n
The program helped Boeing better understand the assembly loads related to composite panel warpage from cured part spring back and cocured and/or cobonded stiffener or frame mislocation. At minimum, these loads need to be understood and accounted for in the part design. Boeing saw an opportunity to minimize these assembly related penalties to the design by the tooling and structural arrangement approach applied on the 787.
\n
Boeing’s selection of the AFP process over a male mandrel that serves as both a layup and cure tool is forgiving enough to accommodate different caul plate approaches on different sections of the fuselage. All the fuselage sections use multiple caul plates that nest together to cover the entire outer mold line of the fuselage. The cauls are floating on the surface of the skin and move with the skin during cure to establish the cured part OML whenever and wherever it is at the time the resin gels and things stop moving. Shared characteristics of the cauls include the ability to be individually and positively located before cure and removed individually after cure. Also the ability to ensure the cauls do not interfere with each other during cure. However, differences do exist in the choice of material (either graphite reinforced composite cauls or aluminum cauls) and in the thickness of the caul. In some cases, the composite caul is very thick and stiff and will behave more rigidly during the cure cycle. In other barrel sections, a thin aluminum caul is employed, which will more closely conform to the surface of the as AFP laminated skin. Both extremes are successfully being used by different fabrication partners.
\n
Invar was the material of choice for Sections 43, 44 and 46 and the tail. Invar tooling was not the right choice for Spirit as it designed the layup mandrel/cure tooling for Section 41. An invar tool of that size and weight would have imposed very expensive requirements on the foundation of the AFP machine that winds the skin. The size of the motors and energy required to turn and manipulate the mandrel during the fiber placement process was also determined to be prohibitive. Instead Spirit elected to fabricate graphite reinforced BMI mandrels fabricated on invar cure tools and then machined to final IML dimensions (Figure 27).
\n
Figure 27.
Spirit 787 Section 41. Photo: Bill Carey.
\n
Composite tooling is also used for Sections 47 and 48. In addition to lower mandrel weight, faster heat up and cool down rates contributed to this decision.
\n
All the partners on the 787 program follow similar manufacturing processes for fabricating cocured, hat stiffened, full fuselage barrel sections. All use AFP over IML controlled male layup mandrels that also serve as cure tools. Each section (except the tail) uses multi-piece breakdown mandrels which are disassembled and removed from inside the fuselage after cure (Figures 28 and 29).
\n
Figure 28.
787 Section 43. Source: Boeing.
\n
Figure 29.
Sections 44 and 46. Source: Boeing.
\n
Alenia manufactures Sections 44 and 46 of the 787. Section 44 is a composite half barrel section that covers the main wing box. The lower portion of this fuselage section is mostly metallic and the structure is designed to handle the primary loads from the wings and landing gear.
\n
Fabrication of fuselage barrel Sections 47 and 48 were originally contracted to Vought as part of their statement of work (SOW) on the 787 program. Financial pressures driven by initial program delays led to Boeing acquiring the Vought SOW including partnership in subassembly work with Alenia (Figures 30–32).
\n
Figure 30.
787 Sections 47 and 48. Source: Boeing.
\n
Figure 31.
787 Tail. Source: Boeing.
\n
Figure 32.
Airbus A350.
\n
The tail is the only barrel section that does not require a breakdown cure mandrel. The natural draft angles allow for cured part removal by simply sliding the cured part off the mandrel.
\n
Boeing achieved stretch version of the 787 by extending the fuselage sections on either side of the wing center of gravity. The 20′ stretch for the −9 was achieved by adding 10′ to Sections 43 and 47. The additional 18′ added for the −10 configurations was achieved by adding 10′ to the forward fuselage and 8′ aft end. When new AFP mandrels were added to meet production ramp-up rate needs and to meet the −9 configurations, the tools were designed to support −10 also.
\n
\n
\n
2.8.2. Airbus A350 XWB
\n
While the focus of this paper has concentrated on developments in the United States, the composites community in Europe was just as active. There were many R&D programs that were directed at high performance composites design and manufacturing activities [10].
\n
The results of this work along with many lessons learned on historical programs fed into the approach taken on the A350XWB program (XWB stands for eXtra Wide Body). The A350 composite fuselage manufacturing approach is not as uniform as the method selected by Boeing on the 787.
\n
The A350 incorporates one complete barrel section, the tail, produced in Spain that uses an approach similar to the one used by Boeing and its partners on the 787 (Figure 33). The rest of the A350 fuselage follows a more conventional panel assembly approach, but with some unique manufacturing process used along the way. The use of AFP, invar tooling and longitudinally incorporated omega (like the Greek letter Ω) stiffeners, more traditionally called hat stiffeners, are also common between the programs. The panel approach used on the A350 supports long part lengths and this is reflected in Section 15 which is approximately 65′ in length. How the omega stiffeners are incorporated on the fuselage panels is quite different between sections and suppliers.
\n
Figure 33.
A350 fuselage panel and tail. Source: Airbus.
\n
Spirit is a common key supplier on both programs and the fabrication approaches share some key characteristics. Spirit produces Section 15 of the A350 and applies the sector panel approach that is common throughout the fuselage. Spirit cocures the omegas using an IML controlled layup/cure tool with a stiff composite caul plate to control the aerodynamic OML surface smoothness. Uncured omega stiffeners are laminated, formed and located into troughs machined into the invar tool. Inflatable rubber bladders are located on top of the omega laminates and fill the void between the omega and the AFP skin that is laminated on top of over the assembly. The part is autoclave cured and the rubber bladders removed after cure leaving the cocured, and now hollow, omega on the panel (Figure 34).
\n
Figure 34.
A350 fuselage side panel. Source: Spirit.
\n
The rest of the A350 fuselage structure uses cobonding to incorporate the omega stiffeners with the fuselage skin (Figure 35). Precured omega stiffeners are located onto green AFP skins with a layer of film adhesive between the elements and then autoclave cured (Figure 36). During the cobonding cycle shaped tube bags are located inside the cured stiffener and are open to autoclave pressure during the cure/cobonding cycle to ensure the already cured stringer does not collapse or become damaged when subjected to autoclave pressure (Figures 36 and 37).
\n
Figure 35.
A350 fuselage panel. Source: CTC Stade.
\n
Figure 36.
A350 precured omega stringers. Source: Deseret News, Jeffrey D. Allred; CW/Photos: Jeff Sloan.
\n
Figure 37.
A350 omega stringer cobonding [11].
\n
Like the 787 program, liquid molding processes are used to fabricate fuselage frames which are mechanically attached to the skins. The structural arrangements and assembly methods used by both programs are remarkably similar.
\n
One significant difference (if not THE most significant difference) is the frame integration to the fuselage. The 787 incorporates a “mouse hole” in the frame that nests around the hat stiffener and is attached directly to the IML of the fuselage skin. Boeing can do this because the IML surface of the 787 is a tooled surface with features that have controlled heights and locations. This includes hat stiffeners and skin joggles. Both programs use fuselage frames produced using a closed molding process that tools the surface that mates with the skin. On the 787, this creates a tooled surface-to-tooled surface interface creating a very predictable assembly. Components fit together as well as it can be produced because early in the program, it paid the price of being designed for assembly (Figure 38).
\n
Figure 38.
787 fuselage.
\n
The A350 fuselage frames are attached only at the crowns of the omega stiffeners using secondary clips. Airbus did not try to attach the frames directly to the skins because the IML of the fuselage skin is not a controlled surface. It is a bagged surface that might use caul plates to create uniform pressure and a smooth surface, but the IML surface “floats” depending on factors such as bagging, resin bleed and initial prepreg resin content. Just as the OML of each 787 fuselage “floats” and is different aircraft-to-aircraft depending on these same factors. Airbus uses a standard carbon fiber reinforced clip, molded from thermoplastic material, to absorb the skin fabrication tolerance in the assembly process (Figure 39).
\n
Figure 39.
A350 fuselage. Source: Borga Paquito.
\n
\n
\n
\n
\n
3. Future developments/trends
\n
There are several recently developed commercial aircraft, such as the Bombardier C Series, Mitsubishi’s MRJ, and Comac’s C919, that all have similar overall airframe architecture as the 787 and the A350. However, none of these aircraft incorporate an all composite fuselage. The advantages for composites on large, wide body aircraft have been validated by the short service history of the 787 and even shorter history of the A350. The debate regarding smaller aircraft achieving the same gains continues for Next Generation Single Aisles.
\n
Wide body aircraft spend much of their life cruising at 40,000 ft. and the structure is sized for pressure loads and structural needs—this provides adequate thickness for good damage tolerant designs. The fuselage designs for single aisle aircraft could be more efficient based on cabin pressure and structural loading alone. But, to provide for designs that will be tolerant of many more takeoff and landings and in service hazards such as luggage and catering carts, dropped tools and equipment, hail and bird strikes, the fuselage panels must be thicker and heavier, thus sacrificing weight.
\n
Wings are one area of implementation for composites on the single aisle upgrades and new aircraft of the future. The Boeing 777X has incorporated a composite wing into the design. A composite wing allows for a very high degree of laminate tailoring and can be designed and built for maximum efficiency. This creates an elegant wing that is incredible to watch in-flight, but appears alarmingly thin compared to conventional metal aircraft wings. But composite wings for high rates present challenges. Production rates of 12–14 per month for wide bodies have proven to be achievable. Building composite wings to support production rates as high as 60 aircraft per month for narrow bodies has not. Costs related to rate tooling alone can be daunting.
\n
Remarkable advances in OOA technology might help provide a solution. Bombardier chose an OOA process for wings of the C-series and the MRJ is using an OOA system for the vertical tail wing box, a similar process to what United Aircraft (Russia) has announced for their MS-21 wing. Still, there are complex issues to resolve that will affect the timeline for OOA system usage on next generation, commercial, single aisle aircraft wings and fuselages. The industry is risk adverse and OOA systems are in their infancy compared to autoclave systems. The autoclave process has proven to be very forgiving and tolerant of variabilities that exist in raw materials, support materials, supply chain manufacturing processes and through final part fabrication. The effect of manufacturing variability is well understood and incorporated into efficient designs that contain minimal penalties for the unknown or less well understood. The same will not be true of OOA systems until more lessons learned have been earned. Many of these lessons will continue to come from military applications that are more aggressive in implementing new technologies. The benefit for the military is usually not cost; the benefit for the commercial world is always cost.
\n
On a little longer timeline affecting future composite fuselage construction is sensor and technologies related to structural health monitoring (SHM). This is a very large field with growing interest by many OEM’s in many applications by many industries, including aerospace, automotive, and power generation. Advances in this technical arena could be one of the next revolutionary changes or “step changes” (vs. evolutionary) to advance the industry. Advanced sensor technology could supplant many NDT applications by supporting in-situ “structural health monitoring.” Installed on or within composite structures, such systems would continuously monitor a component and detects degradation and damage as it occurs. This could eliminate the possibility of damage being overlooked and reduce costly downtime for manual inspections.
\n
The future of SHM and other smart composite structures includes morphing technology that changes part shape in-flight to create optimal flight conditions. Built-in sensing, computing, and actuation are emerging new frontiers for structures that self-tailor their properties for changing flight conditions. Similar developments include multi-functional composites—laminates that not only provide lightweight, load-bearing structures, but also perform additional functions such as energy harvesting and storage. The 20th International Conference on Composite Materials (July 19–24, 2015, Copenhagen, Denmark), featured more than 100 presentations on multifunctional composites [12].
\n
3-D printing is another emerging technology that will impact the future of composite fuselage construction. Already making an impact in prototyping, early design and development, and tooling applications. Small, highly complex parts will follow the path being created by 3-D printed metallic parts. Larger applications are sure to follow. Nano technology may also develop as a viable standalone technology or perhaps integrated with 3-D printing. Remarkable innovations are surely on the horizon.
\n
\n
\n
4. Conclusions
\n
The state-of-practice for dual aisle, wide body commercial aircraft fuselages has evolved over the past generation from minor aerodynamic composite fairings and flaps to entire composite fuselage structures. It has been a methodical, tenacious process that has included determined efforts by resources from the military and defense department, academia and many industry participants. It has been a global race between teams in the US and Europe with both competitors realizing a win-win outcome. Enormous technical advances were required on many fronts, from tooling to transportation. Equally enormous advances were requisite on the cost competitiveness of manufacturing and assembling composite materials in order to earn their way onto commercial aircraft platforms. New mid-market aircraft platforms from both sides of the Atlantic will be the launching pad for the next wave of technologies that have earned their way onto dual aisle commercial aircraft. After that, the industry anticipates direction on long awaited replacement designs for workhorse single aisle aircraft—composite fuselage or not?
\n
\n
Acknowledgments
\n
A special “nod of the head” to my colleagues at Northrop and Rubbercraft and the many capable and knowledgeable engineers I worked with at Boeing, Spirit, Alenia, KHI and KAL (and others too numerous to callout).
\n
Conflict of interest
No conflict of interest exists with this research.
\n
Notes/thanks/other declarations
\n
Special thank you to my family for your patience and support over the years—you know I love you.
\n
\n',keywords:"composites, fuselage, manufacturing, aviation, structures, 787, A350",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/64957.pdf",chapterXML:"https://mts.intechopen.com/source/xml/64957.xml",downloadPdfUrl:"/chapter/pdf-download/64957",previewPdfUrl:"/chapter/pdf-preview/64957",totalDownloads:1564,totalViews:0,totalCrossrefCites:0,dateSubmitted:"July 17th 2018",dateReviewed:"October 31st 2018",datePrePublished:"December 28th 2018",datePublished:null,readingETA:"0",abstract:"A review of critical technologies and manufacturing advances that have enabled the evolution of the composite fuselage is described. The author’s perspective on several development, military, and production programs that have influenced and affected the current state of commercial fuselage production is presented. The enabling technologies and current approaches being used for wide body aircraft fuselage fabrication and the potential reasons why are addressed. Some questions about the future of composite fuselage are posed based on the lessons learned from today and yesterday.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/64957",risUrl:"/chapter/ris/64957",signatures:"Alan Hiken",book:{id:"8613",title:"Aerospace Engineering",subtitle:null,fullTitle:"Aerospace Engineering",slug:"aerospace-engineering",publishedDate:"November 20th 2019",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8613.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Early research and development",level:"1"},{id:"sec_2_2",title:"2.1. Large Aircraft Composite Fuselage (LACF) program",level:"2"},{id:"sec_3_2",title:"2.2. Advanced Composites Technology (ACT) program",level:"2"},{id:"sec_4_2",title:"2.3. Automated fiber placement",level:"2"},{id:"sec_5_2",title:"2.4. Tooling",level:"2"},{id:"sec_6_2",title:"2.5. Large autoclaves",level:"2"},{id:"sec_7_2",title:"2.6. NDE/I/T technology",level:"2"},{id:"sec_8_2",title:"2.7. Logistics",level:"2"},{id:"sec_9_2",title:"2.8. 787 vs. A350",level:"2"},{id:"sec_9_3",title:"2.8.1. Boeing 787",level:"3"},{id:"sec_10_3",title:"2.8.2. Airbus A350 XWB",level:"3"},{id:"sec_13",title:"3. Future developments/trends",level:"1"},{id:"sec_14",title:"4. Conclusions",level:"1"},{id:"sec_15",title:"Acknowledgments",level:"1"},{id:"sec_18",title:"Conflict of interest",level:"1"},{id:"sec_15",title:"Notes/thanks/other declarations",level:"1"}],chapterReferences:[{id:"B1",body:'Palucka T, Bensaude-Vincent B. Composites overview\n'},{id:"B2",body:'Tenney D. Darrel R, Pipes D, Byron R, Johnston N. NASA composite materials development: Lessons learned and future challenges\n'},{id:"B3",body:'Willden KS, Harris CG, Flynn BW, Gessel MG, et al. Advanced technology composite fuselage—Program overview. NASA Contractor Report. 1997;4735\n'},{id:"B4",body:'CompositesWorld. February 2017\n'},{id:"B5",body:'Shepard S, Kulowitch P. Automated, Rapid Non-Destructive Inspection (NDI) of Large Scale Composite Structures. Available from: www.thermalwave.com\n\n'},{id:"B6",body:'Bredahl B. NDT Solutions Inc.: Embracing Innovation and Providing Solutions. 2013. Available from: www.manufacturing.net\n\n'},{id:"B7",body:'Available from: https://en.wikipedia.org/wiki/Boeing_Dreamlifterhttps:/\n\n'},{id:"B8",body:'Available from: https;//en.wikipedia.org/wiki/Airbus_Beluga\n'},{id:"B9",body:'Platoni K. Big ideas: Megalifters prove you’re never too fat to fly. Air & Space Magazine. 2008\n'},{id:"B10",body:'Herbeck IL, Kindervater IC. Ein neues Designkonzept für einen CFK-Flugzeugrumpf. Werksroffkolloquium 2006—Wettbewerb der Werkstoffe\n'},{id:"B11",body:'Available from: http://www.maschinenmarkt.vogel.de/schlauchkerntechnik-sorgt-fuer-qualitaetssicherheit-a-373139\n\n'},{id:"B12",body:'CompositesWorld. February 2016\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Alan Hiken",address:"alanhiken@gmail.com",affiliation:'
AJ Technical Services and Consulting, Redondo Beach, USA
'}],corrections:null},book:{id:"8613",title:"Aerospace Engineering",subtitle:null,fullTitle:"Aerospace Engineering",slug:"aerospace-engineering",publishedDate:"November 20th 2019",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8613.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"16349",title:"Dr.",name:"Wisnu",middleName:null,surname:"Jatmiko",email:"wisnuj@cs.ui.ac.id",fullName:"Wisnu Jatmiko",slug:"wisnu-jatmiko",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{title:"Mel-Frequency Cepstrum Coeffficients as Higher Order Statistics Representation to Characterize Speech Signal for Speaker Identification System in Noisy Environment Using Hidden Markov Model",slug:"mel-frequency-cepstrum-coeffficients-as-higher-order-statistics-representation-to-characterize-speec",abstract:null,signatures:"Agus Buono, Wisnu Jatmiko and Benyamin Kusumoputro",authors:[{id:"16347",title:"Dr.",name:"Agus",surname:"Buono",fullName:"Agus Buono",slug:"agus-buono",email:"pudesha@yahoo.co.id"},{id:"16348",title:"Prof.",name:"Benyamin",surname:"Kusumoputro",fullName:"Benyamin Kusumoputro",slug:"benyamin-kusumoputro",email:"nynykusumo@yahoo.com"},{id:"16349",title:"Dr.",name:"Wisnu",surname:"Jatmiko",fullName:"Wisnu Jatmiko",slug:"wisnu-jatmiko",email:"wisnuj@cs.ui.ac.id"}],book:{title:"Self Organizing Maps",slug:"self-organizing-maps-applications-and-novel-algorithm-design",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"2041",title:"Prof.",name:"Flavius",surname:"Gorgonio",slug:"flavius-gorgonio",fullName:"Flavius Gorgonio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Flavius L. Gorgônio received the B.S. and M.S. degrees in Computer Science, from the Federal University of ParaÃba, Campina Grande/PB, Brazil, in 1995 and 1999, respectively. He was Professor at Faculdades Integradas de Patos, Patos/PB, Brazil, from 2000 to 2008. Currently, he is Professor at the Federal University of Rio Grande do Norte, Natal/RN, Brazil. His currently researches interests include pattern recognition, distributed clustering algorithms, cluster ensemble and self-organizing maps.",institutionString:null,institution:null},{id:"14245",title:"Prof.",name:"Ryotaro",surname:"Kamimura",slug:"ryotaro-kamimura",fullName:"Ryotaro Kamimura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"14748",title:"Professor",name:"Lidia",surname:"Angulo Meza",slug:"lidia-angulo-meza",fullName:"Lidia Angulo Meza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Fluminense Federal University",institutionURL:null,country:{name:"Brazil"}}},{id:"14750",title:"Dr.",name:"Luiz",surname:"Neto",slug:"luiz-neto",fullName:"Luiz Neto",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"14751",title:"Dr.",name:"Pedro Henrique",surname:"Gouvea Coelho",slug:"pedro-henrique-gouvea-coelho",fullName:"Pedro Henrique Gouvea Coelho",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"14752",title:"Prof.",name:"João Carlos",surname:"Soares de Mello",slug:"joao-carlos-soares-de-mello",fullName:"João Carlos Soares de Mello",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"15579",title:"Dr.",name:"Hideki",surname:"Mori",slug:"hideki-mori",fullName:"Hideki Mori",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Hideki Mori received his MS and PhD both from Keio University in 1974\nand 1978, respectively. He joined the Faculty at Toyo University from 1978 to 2008.\nHe was a University Scholar of the Department of Computer Science of UCLA in 1984. \nHe was a Visiting Professor of the Graduate School of Open Information Systems of Toyo University.\nHe is a Professor of the department of Network Design, School of Interdisciplinary Mathematical Sciences of Meiji University.\nHis research interests include parallel architecture,\ndistributed processing and fault-tolerant computation. Most recently, his research\nhas emphasized on fault-tolerant systems and distributed parallel processing.\nHe is a member of IEEE, ACM, IPSJ and IEICE.",institutionString:null,institution:null},{id:"16842",title:"Dr.",name:"Shingo",surname:"Kawamura",slug:"shingo-kawamura",fullName:"Shingo Kawamura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"16843",title:"Prof.",name:"Minoru",surname:"Uehara",slug:"minoru-uehara",fullName:"Minoru Uehara",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"22504",title:"Prof.",name:"Jose Alfredo Ferreira",surname:"Costa",slug:"jose-alfredo-ferreira-costa",fullName:"Jose Alfredo Ferreira Costa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"WIS-cost",title:"What Does It Cost?",intro:"
Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.
",metaTitle:"What Does It Cost?",metaDescription:"Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"
We are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact Dr. Anke Beck at anke@intechopen.com.
\\n\\n
All of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\\n\\n
\\n\\t
European Commission
\\n\\t
Bill and Melinda Gates Foundation
\\n\\t
Wellcome Trust
\\n\\t
National Institute of Health (NIH)
\\n\\t
National Science Foundation (NSF)
\\n\\t
National Institute of Standards and Technology (NIST)
We are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact Dr. Anke Beck at anke@intechopen.com.
\n\n
All of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\n\n
\n\t
European Commission
\n\t
Bill and Melinda Gates Foundation
\n\t
Wellcome Trust
\n\t
National Institute of Health (NIH)
\n\t
National Science Foundation (NSF)
\n\t
National Institute of Standards and Technology (NIST)
\n\t
Research Councils United Kingdom (RCUK)
\n\t
Foundation for Science and Technology (FCT)
\n\t
Chinese Academy of Sciences
\n\t
Natural Science Foundation of China (NSFC)
\n\t
German Research Foundation (DFG)
\n\t
Max Planck Institute
\n\t
Austrian Science Fund (FWF)
\n\t
Australian Research Council (ARC)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5319},{group:"region",caption:"Middle and South America",value:2,count:4828},{group:"region",caption:"Africa",value:3,count:1471},{group:"region",caption:"Asia",value:4,count:9370},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14788}],offset:12,limit:12,total:108345},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"20"},books:[{type:"book",id:"8565",title:"Aeronautics and Astronautics",subtitle:null,isOpenForSubmission:!0,hash:"43f114ba03e5e42ba53da372ffc3cbde",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8565.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8183",title:"Differential Hardening",subtitle:null,isOpenForSubmission:!0,hash:"3960c9c8b7a83b8e61db186dcf59d65a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8183.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9207",title:"Telescopes",subtitle:null,isOpenForSubmission:!0,hash:"57bcf0a5b15fc2ed722e4b79f9183ae5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9207.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9465",title:"Sputtering",subtitle:null,isOpenForSubmission:!0,hash:"9ca7edff5f5d5c991efb8a8d40d7dded",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9465.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9861",title:"Supersymmetry in Physics",subtitle:null,isOpenForSubmission:!0,hash:"ef9240efb577442af37dc1f899e7dea9",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9861.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9871",title:"Photometry",subtitle:null,isOpenForSubmission:!0,hash:"9ef5705e1c2ad6c8823e84dca0ea1864",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9871.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9899",title:"Star Rotation",subtitle:null,isOpenForSubmission:!0,hash:"43fe887126b97826cfeba2e51302ccaf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9899.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10084",title:"Catenary Curve",subtitle:null,isOpenForSubmission:!0,hash:"d4bc9f20742fcb7053961b65983ad9b9",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10084.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10081",title:"Astrophysics",subtitle:null,isOpenForSubmission:!0,hash:"e2b699f2e8f11f107dc753f7a0166f70",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10081.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10083",title:"Baryons",subtitle:null,isOpenForSubmission:!0,hash:"4824640c88eb4f4f1eed7a9ca53ef4f2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10083.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9189",title:"Hyperfine Structures",subtitle:null,isOpenForSubmission:!0,hash:"df6ed610ec763f455e222cff7ab5ae7a",slug:null,bookSignature:"Dr. Sivarama Krishnan",coverURL:"https://cdn.intechopen.com/books/images_new/9189.jpg",editedByType:null,editors:[{id:"305542",title:"Dr.",name:"Sivarama",surname:"Krishnan",slug:"sivarama-krishnan",fullName:"Sivarama Krishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7857",title:"String Theory",subtitle:null,isOpenForSubmission:!0,hash:"c0f1f74e6dfe0087e52325fc64b48235",slug:null,bookSignature:"Prof. Mohammad Reza Pahlavani",coverURL:"https://cdn.intechopen.com/books/images_new/7857.jpg",editedByType:null,editors:[{id:"101263",title:"Prof.",name:"Mohammad Reza",surname:"Pahlavani",slug:"mohammad-reza-pahlavani",fullName:"Mohammad Reza Pahlavani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:34},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:10},{group:"topic",caption:"Chemistry",value:8,count:30},{group:"topic",caption:"Computer and Information Science",value:9,count:25},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:71},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:38},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:136},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Genesiology",value:300,count:1},{group:"topic",caption:"Machine Learning and Data Mining",value:521,count:1},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:30},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,isOpenForSubmission:!1,hash:"76361b4061e830906267933c1c670027",slug:"antioxidants",bookSignature:"Emad Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4398},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editedByType:"Edited by",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8747",title:"Asphalt and Asphalt Mixtures",subtitle:null,isOpenForSubmission:!1,hash:"6083f7c9881029f1e033a1e512af7e20",slug:"asphalt-and-asphalt-mixtures",bookSignature:"Haitao Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8747.jpg",editedByType:"Edited by",editors:[{id:"260604",title:"Prof.",name:"Haitao",middleName:null,surname:"Zhang",slug:"haitao-zhang",fullName:"Haitao Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editedByType:"Edited by",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,isOpenForSubmission:!1,hash:"327e750e83634800ace02fe62607c21e",slug:"oral-health-by-using-probiotic-products",bookSignature:"Razzagh Mahmoudi",coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",editedByType:"Edited by",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editedByType:"Edited by",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Dr.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editedByType:"Edited by",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editedByType:"Edited by",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editedByType:"Edited by",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"809",title:"Mobile Computing",slug:"engineering-knowledge-engineering-mobile-computing",parent:{title:"Knowledge Engineering",slug:"engineering-knowledge-engineering"},numberOfBooks:1,numberOfAuthorsAndEditors:2,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"engineering-knowledge-engineering-mobile-computing",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6449",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",subtitle:null,isOpenForSubmission:!1,hash:"130d15f6e439fa4a07b8e8cd9066d5b3",slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",bookSignature:"Jaromir Gottvald and Petr Praus",coverURL:"https://cdn.intechopen.com/books/images_new/6449.jpg",editedByType:"Edited by",editors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"57112",doi:"10.5772/intechopen.71098",title:"Traffic Management by Admission Control in IMS Networks",slug:"traffic-management-by-admission-control-in-ims-networks",totalDownloads:342,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Ivan Baroňák, Michal Čuba, Chien-Ming Chen and Ladislav Beháň",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]},{id:"57113",doi:"10.5772/intechopen.71100",title:"Study of Admission Control Methods for IPTV Services",slug:"study-of-admission-control-methods-for-iptv-services",totalDownloads:408,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Erik Chromy, Tsu-Yang Wu, Roman Cipov, Matej Kavacky, Stanislav\nKlucik, Ivan Baronak and Lukas Orcik",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]},{id:"57114",doi:"10.5772/intechopen.71104",title:"New Features of Labor Market and Their Impact in China",slug:"new-features-of-labor-market-and-their-impact-in-china",totalDownloads:420,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Yajun Meng",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]}],mostDownloadedChaptersLast30Days:[{id:"57129",title:"Review of Applying European Option Pricing Models",slug:"review-of-applying-european-option-pricing-models",totalDownloads:504,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Haochen Guo",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]},{id:"57132",title:"Prepaid Voice Services Based on OpenBTS Platform",slug:"prepaid-voice-services-based-on-openbts-platform",totalDownloads:600,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Ladislav Behan, Lukas Orcik, Filip Rezac, Ivan Baronak and Jerry\nChun Wei Lin",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]},{id:"57128",title:"Employing Monitoring System to Analyze Incidents in Computer Network",slug:"employing-monitoring-system-to-analyze-incidents-in-computer-network",totalDownloads:526,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Lukáš Macura, Jan Rozhon and Jerry Chun-Wei Lin",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]},{id:"57130",title:"Mobile Probe for Cellular Network Coverage and Quality Measurement",slug:"mobile-probe-for-cellular-network-coverage-and-quality-measurement",totalDownloads:526,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"David Vasicek, Martin Mikulec, Erik Gresak, Filip Rezac and Erik\nChromy",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]},{id:"57131",title:"Influence of Bit Depth on Objective Video Quality Assessment for High Resolutions",slug:"influence-of-bit-depth-on-objective-video-quality-assessment-for-high-resolutions",totalDownloads:462,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Juraj Bienik, Miroslav Uhrina and Peter Kortis",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]},{id:"57257",title:"The Way of Building Human Capital in China",slug:"the-way-of-building-human-capital-in-china",totalDownloads:393,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Małgorzata Wróblewska and Maria Bernat",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]},{id:"57113",title:"Study of Admission Control Methods for IPTV Services",slug:"study-of-admission-control-methods-for-iptv-services",totalDownloads:408,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Erik Chromy, Tsu-Yang Wu, Roman Cipov, Matej Kavacky, Stanislav\nKlucik, Ivan Baronak and Lukas Orcik",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]},{id:"57114",title:"New Features of Labor Market and Their Impact in China",slug:"new-features-of-labor-market-and-their-impact-in-china",totalDownloads:420,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Yajun Meng",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]},{id:"57256",title:"Influence of Chroma Subsampling on Objective Video Quality Assessment for High Resolutions",slug:"influence-of-chroma-subsampling-on-objective-video-quality-assessment-for-high-resolutions",totalDownloads:375,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Miroslav Uhrina, Juraj Bienik and Peter Kortis",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]},{id:"57112",title:"Traffic Management by Admission Control in IMS Networks",slug:"traffic-management-by-admission-control-in-ims-networks",totalDownloads:342,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"proceedings-of-the-3rd-czech-china-scientific-conference-2017",title:"Proceedings of the 3rd Czech-China Scientific Conference 2017",fullTitle:"Proceedings of the 3rd Czech-China Scientific Conference 2017"},signatures:"Ivan Baroňák, Michal Čuba, Chien-Ming Chen and Ladislav Beháň",authors:[{id:"200987",title:"Prof.",name:"Jaromir",middleName:null,surname:"Gottvald",slug:"jaromir-gottvald",fullName:"Jaromir Gottvald"}]}],onlineFirstChaptersFilter:{topicSlug:"engineering-knowledge-engineering-mobile-computing",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9284",title:"Computational Aeroacoustics",subtitle:null,isOpenForSubmission:!0,hash:"7019c5e5985faef7dc384c87dca5c8ef",slug:null,bookSignature:"Prof. Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/9284.jpg",editedByType:null,editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/16349/wisnu-jatmiko",hash:"",query:{},params:{id:"16349",slug:"wisnu-jatmiko"},fullPath:"/profiles/16349/wisnu-jatmiko",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()