The hazards associated with welding Processes
\r\n\tWe accept scientific papers which can be presented as original research papers and review papers. The required length of the full chapters is 10-20 pages and the chapters should be original works (not republished).
\r\n\tAs a self-contained collection of scholarly papers, the book will target an audience of practicing researchers, academics, Ph.D. students and other scientists. Since it will be published as an Open Access publication, it will allow unrestricted online access to chapters with no reading or subscription fees.
Welding is a very common operation in many industries and workplaces [1, 2]. According to American Welding Society, it is defined as “a metal joining process wherein coalescence is produced by heating to suitable temperature with or without the use of filler metal” [3]. There is a variety of welding processes that are used in different working conditions. According to some reports, from 0.2 to 2.0% of the working population in industrialized countries are engaged in welding activities [4]. Worldwide, over five million workers perform welding as a full time or part time duty [5, 6]. These welders, depending on conditions, work in outdoor or indoor workplaces, in open or confined spaces, underwater, and above construction sites. Welding operators face various hazards resulting in different injuries, adverse health effects, discomfort and even death. Furthermore, air pollution due to welding leads to certain consequents on humans and environment. Therefore, there are strong reasons to deal with the welding processes and the working environment of the welder from different aspects. A large number of welders experience some type of adverse health effects. Other workers near the place where welding process is done may be affected by the risks generated by it [1, 7]. Totally, welding risks can be classified as risks deriving from physical agents and risks related to the chemical components. The main hazards related to welding include electricity, radiation, heat, flames, fire, explosion, noise, welding fumes, fuel gases, inert gases, gas mixtures and solvents. Welders may be exposed to other hazards not directly related to welding, such as manual handling, working at height, in confined spaces, or in wet, hot or humid situations, and working with moving equipment, machinery and vehicles. Welding in a static awkward or horizontal posture may result in musculoskeletal injuries, such as strains and sprains. Prolonged use of a hard hat and a helmet can cause strain on the neck. Furthermore, long-term exposure, repetitive motions with arms and hands, and tasks inducing high force may lead to cumulative effects, increasing risk of injury. The main components of welding emissions are oxides of metals due to contact between the oxygen in the air and the vaporized metals. Common chemical hazards include particulates (lead, nickel, zinc, iron oxide, copper, cadmium, fluorides, manganese, and chromium) and gases (carbon monoxide, oxides of nitrogen, and ozone). Recently, nanoparticles emitted by welding operations are considered as an important group of air pollutants and there is a need to assess particle sizes and size distributions when risk assessment is done. Each welding technique produces a distinctive range of particulate composition and morphology. Different and complex profiles of exposures may be related to various welding environments [8-10].
\n\t\t\t\tHAZARD\n\t\t\t | \n\t\t\t\n\t\t\t\tWELDING PROCESS\n\t\t\t | \n\t\t|||
\n\t\t\t\tPAW/PAC\n\t\t\t\t \n\t\t\t\tCarbon Arc Processes\n\t\t\t | \n\t\t\t\n\t\t\t\tSMAW\n\t\t\t\t \n\t\t\t\tGTAW\n\t\t\t\t \n\t\t\t\tGMAW\n\t\t\t\t \n\t\t\t\tFCAW\n\t\t\t | \n\t\t\t\n\t\t\t\tSAW\n\t\t\t | \n\t\t\t\n\t\t\t\tOxyfuel\n\t\t\t | \n\t\t|
Ergonomic | \n\t\t\t+ | \n\t\t\t+ | \n\t\t\t+ | \n\t\t\t+ | \n\t\t
Electric Shock | \n\t\t\t+ | \n\t\t\t+ | \n\t\t\t+ | \n\t\t\tx | \n\t\t
Bright light | \n\t\t\t+ | \n\t\t\t+ | \n\t\t\t- | \n\t\t\t+ | \n\t\t
Ultraviolet radiation | \n\t\t\t+ | \n\t\t\t+ | \n\t\t\t- | \n\t\t\tx | \n\t\t
Toxic fumes and gases | \n\t\t\t+ | \n\t\t\t+ | \n\t\t\t- | \n\t\t\t+ | \n\t\t
Heat, Fire, and Burns | \n\t\t\t+ | \n\t\t\t+ | \n\t\t\t+ | \n\t\t\t+ | \n\t\t
Noise | \n\t\t\t+ | \n\t\t\tx | \n\t\t\tx | \n\t\t\tx | \n\t\t
The hazards associated with welding Processes
x No hazards, + Hazard present, - Hazard present if SAW flux is absent [11]
Welding is used extensively in various manufacturing industries including shipyards, automobile factories, machines, home appliances, computer components, bridge building and other constructions. Welding is used for manufacturing pressure vessels, heat exchangers, tanks, sheet metal, prefabricated metal buildings and architectural work. Also, welding is an applicable technique in maintenance operations and repair shops. It is used in mining, oil and gas transmission companies, piping systems, heavy equipment manufacturing, aerospace, electronics, medical products, precision instruments, electric power, and petrochemical industries. Perhaps artists and sculptors are the smallest group who use welding techniques to create artworks. Therefore, many things that people use in daily lives are welded or made by welded parts [12].
Welders, depending on conditions, work in outdoor or indoor workplaces, in open or confined spaces, underwater, and above construction sites. In some conditions, welding processes are carried out in confined spaces where the welding work area is surrounded on most sides by walls and there is no sufficient space for the installation of a conventional exhaust hood [1, 7].
Working in indoor environments includes all works which are done in buildings like workshops, repairing shops, storages, office, and any closed area in industries, factories, and other places. Welders may work in indoor areas to do welding tasks full time or part time. An important benefit of indoor workplaces is the protection against environmental factors such as rain, wind and sunshine. Outdoor workers spend long periods of time working in open areas. They are exposed to different hazards depending on their type of work, as well as geographic region, season, and the period of time they are outside. Outdoor works include agriculture, construction, mining, oil and gas transmission through pipelines, transportation, warehousing, utilities, and service sectors. Sometimes welders should work in such workplaces to do their tasks. Some workplace hazards related to outdoor areas include unpredictable weather conditions, bugs and wild animals, extreme heat, extreme cold, and ultraviolet (UV) radiation.
Many workplaces contain spaces that are considered “confined” because their configurations hinder the activities of employees who must enter, work in, and exit them. A confined space has limited or restricted means for entry or exit. Confined spaces include underground vaults, tanks, storage bins, manholes, reactor vessels, silos, process vessels, and pipelines. Confined spaces have the following characteristics: limited space, entry, or exit; poor ventilation and lack of safe breathing air. Welders may experience various hazards when welding in confined spaces, such as fire, explosion, electric shock, asphyxiation, and exposure to hazardous air contaminants [13-16].
There are different welding processes (over 50 types) that differ greatly in some parameters such as heat, pressure, and the type of equipment used. Welding process can be classified into various types based on different literatures. Some common types of welding are listed in five categories each of which includes some subcategories (Figure 1). The most common and known types of welding include:
Shielded Metal Arc Welding: (SMAW) also is known as Manual Metal Arc welding (MMA) or stick electrode welding. It is one of the oldest, simplest, and most versatile arc welding processes used for carbon steel welding and low alloy welding. In SMAW, the electrode is held manually, and the electric arc flows between the electrode and the base metal. The electrode is covered with a flux material which provides a shielding gas for the weld to help minimize impurities. A wide range of metals, welding positions and electrodes are available based on intended requirements. This type of welding is especially suitable for jobs such as the erection of structures, construction, shipbuilding, and pipeline work. Contrary to the other methods requiring shielding gas which are unsuitable in wind, SMAW can be used outdoors in different weather conditions. However, owing to the time required for removing the slag after welding and changing the electrodes, its arc time factor is relatively low. As a disadvantage, forming fumes in SMAW makes the process control difficult.
Gas Metal Arc Welding: (GMAW) or metal inert gas (MIG) welding is used for most types of metal and is faster than SMAW. It may be applied to weld vehicles, pressure vessels, cranes, bridges and others. This process involves the flow of an electric arc between the base metal and a continuous and consumable wire electrode. Shielding gas (usually an argon and carbon dioxide mixture) is supplied externally; therefore, the electrode has no flux coating or core. MIG welding is used for mild steel, low alloyed and stainless steel, for aluminum, for copper, nickel, and their alloys. Some parameters can affect MIG welding process, such as:
Electrode diameter
Voltage
Wire feed speed and current
Welding speed
Shielding gas and gas flow rate
Torch and joint position
To perform an optimum welding, most of the mentioned parameters should be matched to each other. In addition to affecting the quality of welding, some of these parameters can influence the fumes and gases emitted from the process. However, the fume produced by MIG welding is less than that of SMAW. Unlike the SMAW that is discontinuous due to limited length of the electrodes, GMAW is a continuous welding process. There is no slag and no need for high level of operators’ skill. Nevertheless, expensive and non-portable equipment is required, and also outdoor applications are limited because of the negative effects of weather conditions like wind on the shielding gas [17, 18].
Gas Tungsten Arc Welding: (GTAW) is also known as tungsten inert gas (TIG) welding. GTAW is used on metals such as aluminum, magnesium, carbon steel, stainless steel, brass, silver and copper-nickel alloys. This technique uses a permanent non-consumable tungsten electrode. The filler metal is fed manually, the weld pool and the electrode are protected by an inert gas (usually argon), and high electrical currents are used in this type. Welding of stainless steel, welding of light metals, such as aluminum and magnesium alloys, and the welding of copper are the main applications of TIG welding. GTAW welds are highly resistant to corrosion and cracking over long time periods. However, TIG welding is suitable to weld thin materials and produces a high quality weld of most of metals. There is no need for slag removal in GTAW process. The concentration of heat takes place in a small zone, resulting in the minimal thermal distortion of work piece. The TIG welding has some disadvantages including low welding rate, expensiveness, and need for high level of operators skill. Although during TIG welding operators are exposed to dangerous gases and fumes, the generation of these compounds is very little in comparison with other welding processes.
Classification of welding processes [18]
Submerged Arc Welding: (SAW) is a highly-productive welding method (4-10 times as much as the SMAW). SAW may be automatic or semi-automatic. It is used to weld thick plates of carbon steel and low alloy steels. In this welding process, the electric arc flows between the base metal and a consumable wire electrode; however, the arc is not visible since it is submerged under flux material. This welding process is usually used for large structures such as large tubes, cylindrical vessels, and plates in shipyards. Some parameters can affect SAW process such as welding arc voltage, arc current, the size and shape of the welding wire, and the number of welding wires. A low fume emission is produced during SAW process and there is a little ozone, nitric oxide and nitrogen dioxide generation because of the invisibility of the arc. Very high welding rate, suitability for automation, suitability for both indoor and outdoor works, and high weld quality are mentioned as advantages of SAW. Some limitations of this welding process include: slag inclusion, limited applications often for welding in a horizontal position, and need for precise parameter setting and positioning of the wire electrode.
Plasma Arc Welding: (PAW) is an arc welding process in which arc is formed between an electrode and the workpiece. In PAW process, the plasma arc can be separated from the shielding gas cover by positioning the electrode within the body of the torch. It can be named as a key difference between GTAW and PAW. Two inert gases are used in the process, one forms the arc plasma and the second shields the arc plasma. Applying the plasma arc welding is being increased in industries, because it provides a high level of control and accuracy to produce high quality welds. Also, using the PAW leads to long electrode life for high production conditions. This welding process is suitable for both manual and automatic applications. It can be used for precise welding of surgical equipment, jet engine blades, and instruments required for food and dairy industry. There is a low level of fume generation during PAW, but welding gases especially ozone is often formed in this process. Need for less operator skill, high welding rate, high penetrating capacity, long electrode life, high accuracy and precision, and short weld time are considered as the advantages of PAW process. Its limitations include expensive process tools, needs for high power electrical equipment, more distortion and loss of mechanical properties due to the greater heat input.
Flux Core Arc Welding: (FCAW) is used for carbon steels, low alloy steels and stainless steels. This welding process has similarities to both SMAW and GMAW. This process is used in construction because of its high welding speed and portability. The consumable tubular electrode is continuously fed from a spool and an electric arc flows between the electrode and base metal. The electrode wire has a central core containing fluxing agents. There are a variety of cored wires; some of them require the use of shielding gas like carbon dioxide or the mixture of argon/carbon dioxide and the others (self-shielded flux cored wires) do not require additional shielding gas. The slag produced in FCAW process acts as an additional protection during cooling time but has to be chipped away after that. Like other welding process, FCAW has some advantages and limitations. No needs for skilled operators and pre-cleaning of metals, suitability for use in the outdoor or windy condition (it is true about self-shielded flux cored wires), suitability for use in all positions, and ease of varying the alloying constituents are mentioned as FCAW advantages. Its limitations include: emission of considerable amount of fumes in self-shielded wires, higher price of filler material and wire in comparison with GMAW, and needs for slag removal. Also, escaping of the shielding gas from the welded area leaves holes in welded metal, resulting in porosity in products [17, 18].
According to Flagan and Seinfeld definition, “the phenomenon of air pollution involves a sequence of events: the generation of pollutants at and their release from a source; their transport and transformation in and removal from the atmosphere; and their effects on human beings, materials, and ecosystems” [19]. Air pollution is indoor or outdoor contamination by particulates, biological molecules, or other harmful materials that changes the natural characteristics of the Earth\'s atmosphere. Household combustion devices, motor vehicles, forest fires, and industrial processes are common sources of air pollution. Major industrial sources of particulate matter include the metals, mineral products, petroleum, and chemical industries. Air pollution is considered as a threat to human health as well as to the Earth\'s ecosystems. Based on WHO report, around 7 million people worldwide died due to the air pollution in 2012 [20]. Welding, as an important operation in most industries, can considerably cause air pollution. In all types of welding processes, fume and gases are formed as air pollutants. Due to high temperature during the welding process, different substances in the arc are vaporized. Then, the vapor condenses and oxidizes in contact with the air, leading to the formation of fumes. The fume particles are so small and they can reach the narrowest airways of respiratory system (respiratory bronchioles). Some parameters like the welding type and consumables (filler metal and surface coatings) determine the kind and amount of generated particles and gases.
The composition of welding fumes and their generation rate is a function of different parameters. Welding fume particles are in the fine (<2.5 μm) to ultrafine (<100 nm) respirable size and can penetrate into the alveolar regions of the lungs. The generation of fumes depends on:
-Amperage, voltage, gas and arc temperatures and heat input in the welding process
-Consumables like electrodes
-Materials
The most common gases emitted during welding are ozone, nitrous gases and carbon monoxide. Phosphine and phosgene are the other gases that may be produced during welding. Gases are generated due to the high temperature and ultraviolet (UV) radiation from the arc. Like fumes, some factors can affect the emission of gases during welding processes. For instance, ozone formation during welding depends on process type, used material, and shielding gases. Welding gases can also be generated when surface coatings or contaminants contact with hot surfaces or UV radiation.
Along with harming human health, air pollution may lead to various environmental impacts. Air pollution can adversely cause critical impacts on the atmosphere and natural environment in many ways. Welding, as an industrial process, causes serious impacts on the environment depending on its operation mode and the technological equipment. Environmental pollution in welding process is the result of some parameters, such as high percentage of heat that is released into the environment and materials including large amount of gases and fumes. Some factors needed to carry out the welding operation include: energy, mineral or organic substances (protective gases, cooling water, oils, grease and protective substances etc.). These consumables can be harmful for the environment. Furthermore, produced waste during the welding processes results in undesirable impact on the work or natural environment. To protect the welding region and prevent oxidation, inert gases like carbon dioxide and argon are used because of their availability and low cost. They are used as shielding gases and have undesirable impacts on the environment. To protect the environment and keep the resource for future, energy conservation and reducing greenhouse gas emissions should be considered. In this respect, the average consumption rate, usage rate and the purity of products and consumables are important factors [22, 23].
The generation of fumes and gases is directly related to the welding process. Fumes emitted during manual metal arc welding (MMA) and MIG welding is the same. In some conditions, the level of fume generated during MIG welding (with solid wire) may be much lower in comparison with the fumes produced by MMA. In TIG welding, a lower level of fumes is emitted compared to MMA and MIG welding. The composition of fumes is directly associated with the composition of used wire. MMA welding causes adverse health effects because of forming the hexavalent chromium (Cr (VI)) in the process. In addition, high rates of emission of toxic compounds generate in MMA-stainless steel (MMA-SS) welding [24]. During TIG welding, very little fume are generated. Welding fumes may be composed of oxides of chromium, nickel and copper, with very low specific limit values. The individual elements and also their synergetic effect must be considered when assessing fume toxicity. Lower ozone and nitrogen oxides are emitted during TIG welding than those in MIG/MAG welding. The amount of mentioned gases during TIG welding is dependent on current, arc length and the flow and type of shielding gas. High electrical currents cause the significant levels of ozone, nitric oxide and nitrogen dioxide. During MIG welding, significant levels of ozone and nitrogen oxides are produced because of intense current levels.
There is a little information concerning emissions during plasma arc welding (PAW). Due to the similarity of TIG and PAW welding techniques, they may probably emit air pollutants with the same magnitude. MIG welding of aluminum produces larger quantities of ozone than TIG welding of aluminum. Forming more nitrogen oxides in the latter process will keep the emitted ozone levels down [25, 26]. A study by Schoonover et al. showed that welders performing MIG and SMAW are exposed to higher fume concentrations than welders performing TIG. According to mentioned study, exposure to manganese during MIG was nearly two and ten times higher than in SMAW and TIG, respectively. In fact, not using a consumable electrode during TIG welding results in lower exposures. The highest average exposures occur in SMAW, followed by GMAW, and GTAW [21]. K. Fuglsang et al. investigated the Fume Generation Rates (FGR). This rate for MMA was 3-5 times higher than that found for MAG and MIG. The same FGR was found for TIG and MIG/MAG welding [27].
Various welding processes generate particles in different size distributions. Particles produced during MMAW, MAG, MIG, and laser welding are quite similar in size. Resistance Spot Welding (RSW) and TIG welding have a completely different structure for particle size distribution. These techniques produce particles smaller than 100 nm, in which, at least 90% are smaller than 50 nm. Particles generated during processes with high mass emission rates (MMAW, MAG, MIG, and Laser) have diameters about 100–200 nm and there are few nanoscaled particles between them. Processes with low mass emission rates (TIG and RSW) generate exclusively particles smaller than 50 nm; however, the number concentration of particles in these techniques is similar to the others. Although, welding types with low mass emission rates are called “clean techniques”, their potential toxicological properties and health effects due to exposure to nanoscaled particles should be further studied [28].
A study by Keane M. introduced the pulsed axial spray method (from MIG process) as the best choice of the welding processes because of minimal fume generation (especially Cr (VI)) and cost per weld. The advantages of this method include usability in any position, high metal deposition rate, and simple learning and use. Totally, the highest amounts of fume are produced by the self-shielded cored wire electrodes. These electrodes are used without a shielding gas. Using solid wire electrodes results in emission of ozone and nitrogen oxides as in MAG welding [25, 29].
Airborne particles with diameter smaller than 100 nm are known as nanoparticles or ultrafine particles. According to researches, nanoparticles are more harmful to human health than larger particles. They can deeply penetrate inside the respiratory system and then enter the blood stream. The main character of nanoparticles is the high surface area, and their toxicity depends on the shape and penetration potential inside the respiratory system. In addition to the emission of fine particles with diameter less than 10 μm, nanoparticles may be emitted during welding operations. Some studies have indicated that the highest values of nanoparticles are related to MAG and TIG processes when applying the highest current intensities. Therefore, the higher amounts of nanoparticles are emitted by processes in which the higher energy intensities are used.
As it was stated, the emission of nanoparticles during welding operations increases with the increase of welding parameters like current intensity. Welding with short-circuit mode results in lower value of nanoparticles, because its low current intensity and tension causes an electric arc with lower temperature and thus emitting lower amounts of elements. Also, the high quantity of nanoparticles is generated by the stainless steel welding, which can be related to the presence of helium in the gas mixture of welding. Helium, due to high ionization energy, results in electric arc with high temperature that generates higher values of nanoparticles. Furthermore, the study of different base materials indicated that the higher quantity of nanosized particles is obtained for stainless steel compared to carbon steel. According to data from different investigations, the lowest level of ultrafine particles deposited in alveolar region of lungs was related to FSW, followed by TIG and MAG. Totally, all welding processes can result in deposition of a significant concentration of nanosized particles in lungs of exposed welders [30-32].
Fume and gases emitted during welding pose a threat to human health while welding. The exposures may be varied depending on where the welding is done (on the ship, in confined space, workshop, or in the open air). The welding process and metal welded affect the contents of welding fumes. On the other hand, physical and chemical properties of the fumes and individual worker factors are effective on deposition of inhaled particles. In this respect, particle size and density, shape and penetrability, surface area, electrostatic charge, and hygroscopicity are the important physical properties. Also, the acidity or alkalinity of the inhaled particles are the chemical properties that may influence the response of respiratory tract. Welding gases can be classified into two groups; some gases are used as a shielding gas and the others are generated by the process. Shielding gases are usually inert, therefore, they are not defined as hazardous to health but they may be asphyxiants. Gases generated by welding processes are different based on welding type and may cause various health effects if over-exposure occurs. Welding emissions depending on some factors like their concentration, their properties, and exposure duration can lead to health effects on different parts of human body.
Hazards on Respiratory System - The inhalation exposures may lead to acute or chronic respiratory diseases in all welding processes. In the occupational lung diseases, the various reactions produced in respiratory tract depend on some parameters such as the nature of the inhaled matter, size, shape and concentration of particles, duration of exposure, and the individual workers susceptibility. Chronic bronchitis, interstitial lung disease, asthma, pneumoconiosis, lung cancer, and lung functions abnormalities are some hazardous effects on respiratory systems. The pulmonary disorders are various based on the differences in welding metals and their concentrations. Ozone, at low concentrations, irritates the pulmonary system and can cause shortness of breath, wheezing, and tightness in the chest. More severe exposures to ozone can lead to pulmonary edema. Exposure to nitrogen dioxide may cause lung function disorders like decrements in the peak expiratory [33, 34]. Kim JY in a study showed the PM2.5 concentration for welders (1.66 mg/m3) was significantly greater than that for controls (0.04 mg/m3), and the exposure of healthy working population to high levels of welding fumes resulted in the acute systemic inflammation [35].
Hazards on Kidney- Substantial exposure to metals and solvents may be nephrocarcinogenic. Chromium can deteriorate renal function because of accumulation in the epithelial cells of the proximal renal tubules and induce tubular necrosis and interstitial changes in animals and humans. Tubular dysfunctions have been identified in subjects occupationally exposed to Cr (VI) [33, 36]. Welders exposed to heavy metals like cadmium and nickel have also experienced kidney damage [7]. Pesch et al. indicated that there was an excess nephrocarcinogenic risk involved with soldering, welding, milling in females. So, it can be considered an evidence for a gender-specific susceptibility of the kidneys [37].
Hazards on Skin - Erythema, pterygium, non-melanocytic skin cancer, and malignant melanoma are the adverse health effects of welding on the skin among which erythema is a common one. The intense UV as well as visible and infrared radiations are produced by welding arc machines. Exposure to UV can lead to short- and long-term injuries to the skin [33, 38-40]. Some metals like beryllium, chromium and cobalt can cause direct effects (irritation and allergic impacts) on the skin. Also, they may be absorbed through the skin and cause other health effects such as lung damage. When the particles are small and there are cuts or other damages to the skin, the absorption through the skin is raised [7, 36]. Chromium (VI) may cause irritating and ulcerating effects when contacting with skin. An allergic response including eczema and dermatitis may be induced in sensitized individuals exposed to Cr (VI) [34].
Hazards on the visual systems - Most welding processes emit intense ultraviolet as well as visible and infrared radiations. Adverse effects on the eyes may be induced by these optical radiations. In addition, Tenkak reported that, welding may cause photokeratitis and some types of cataract. Erhabor et al. showed the most frequent symptoms among the welders were eye irritation (95.43%). Exposure to UV radiation can lead to short- and long-term injures to the eyes. Acute overexposure to UV radiation can result in the photokeratitis and photoconjunctivitis that are the inflammation of the cornea and the conjunctiva, respectively. These responses of the human eye to UV radiation are commonly known as snow blindness or welder’s flash [33, 38, 41].
Hazards on Reproductive System - In the past, some studies have indicated the increased risk for infertility and reduced fertility rate in mild steel welders. There are some evidences that reduced fecundity can be related to exposure to hexavalent chromium and nickel. According to new investigations, damages to male reproduction system have been reported less than before, probably because of decreasing the exposure levels in the developed countries. However, some special tasks like stainless steel welding may impair welders’ reproduction system [42-44]. A study by Bonde showed that mild steel welding, but not stainless one, resulted in significant effects on the fertility during years [45]. Mortensen [46] observed a greater risk for poor sperm quality among welders compared to controls, especially welders who worked with stainless steel. Therefore, welding in general, and specifically with stainless steel, may cause the reduced sperm quality. According to Sheiner, impaired semen parameters can be associated with the exposures to lead and mercury [47].
Hazards on the nervous system - Memory loss, jerking, ataxia and neurofibrillary degeneration have been attributed to exposure to aluminum. The accumulation of aluminum in the brain may develop some neuropathological conditions, including amyotrophic lateral sclerosis, Parkinsonian dementia, dialysis encephalopathy and senile plaques of Alzheimer’s disease [36]. A review of literatures by Iregren suggests that occupational exposure to manganese results in the central nervous system damage that is generally irreversible [48]. Although there are multiple toxic agents in welding, more literatures have dealt with manganese as an important agent of toxicity. Welders are also exposed to high concentrations of carbon monoxide and nitrogen dioxide. Carbon monoxide can cause the neurological impairments of memory, attention, and visual evoked potentials. Both central and peripheral nervous system damages may be induced by exposure to welding fumes [49]. Some neurobehavioral impairments associated with exposure to lead and manganese have been indicated by Wang [50]. A study by Bowler (2003) showed there is a relation between welding and a decline in brain functions and motor abilities. In this survey, various questionnaire and tests like neuropsychological tests were used [49].
Carcinogenic effects - There are some concerns regarding the presence of carcinogens in the welding fumes and gases. Sufficient evidences for carcinogenicity of nickel, cadmium, and chromium (VI) have been reported through experimental and epidemiological studies. These three metals have been categorized as carcinogen “Class 1” by the International Agency for Research on Cancer [51-52]. Ozone has been introduced as a suspect lung carcinogen in experimental animals, but there are very few documents about its long term effects on welders. The ultraviolet emissions resulting from welding arc can potentially cause skin tumors in animals and in overexposed individuals, however, there is no definitive evidence for this effect in welders [53].
Other health problems - Welding on surfaces covered with asbestos insulation may lead to risk of asbestosis, lung cancer, mesothelioma, and other asbestos-related diseases in exposed welders. The intense heat and sparks of welding can cause burns. Eye injuries are possible because of contact with hot slag, metal chips, and hot electrodes. Lifting or moving heavy objects, awkward postures, and repetitive motions result in strains, sprains and musculoskeletal disorders. High prevalence of musculoskeletal complaints (back injuries, shoulder pain, tendonitis, carpal tunnel syndrome, and white finger) is seen in welders [54].
Usually, exposure standards apply to long term exposure to a substance over an eight hour work per day for a normal working week, over an entire working life. Some organizations like American Conference of Governmental Industrial Hygienists (ACGIH), National Institute for Occupational Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA) have published the exposure standards for various components in welding fumes and gases (table 2). According to Work Safe Australia exposure standards cannot be used as a fine dividing line between a healthy and unhealthy workplace. Adverse health effects below the exposure limits might be seen in some people because of individual susceptibilities and natural biological variation. ACGIH, however, recommends a TLV-TWA (Threshold Limit Value-Time Weighted Average) of 5 mg/m3 for total welding fume, assuming that it contains no highly toxic components. Each metal or gas within the welding has its own exposure standard. As Table 2 indicates, biological media, Biological Exposure Index (BEI), and carcinogenicity class have been proposed for some welding emissions [55, 56].
\n\t\t\t\tSubstance\n\t\t\t | \n\t\t\t\n\t\t\t\tOSHA\n\t\t\t\t \n\t\t\t\tPEL-TWA (mg/m3)\n\t\t\t | \n\t\t\t\n\t\t\t\tNIOSH\n\t\t\t\t \n\t\t\t\tREL-TWA (mg/m3)\n\t\t\t | \n\t\t\t\n\t\t\t\tACGIH\n\t\t\t\t \n\t\t\t\tTLV-TWA (mg/m3)\n\t\t\t | \n\t\t\tACGIH BEI | \n\t\t\t\n\t\t\t\tCarcinogenicity\n\t\t\t | \n\t\t
\n\t\t\t\tAluminum Fume\n\t\t\t | \n\t\t\t15 (Total) 5 (res) | \n\t\t\t5 | \n\t\t\t5 | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tArsenic\n\t\t\t | \n\t\t\t0.01 | \n\t\t\t0.002 (Ceiling) | \n\t\t\t0.01 | \n\t\t\t35 μg As/L | \n\t\t\tA1 | \n\t\t
\n\t\t\t\tBarium\n\t\t\t | \n\t\t\t0.5 | \n\t\t\t0.5 | \n\t\t\t0.5 | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tBeryllium\n\t\t\t | \n\t\t\t0.002 | \n\t\t\t0.5 (Ceiling) | \n\t\t\t0.002 | \n\t\t\t\n\t\t\t | A1 | \n\t\t
\n\t\t\t\tCadmium Fume\n\t\t\t | \n\t\t\t0.005 | \n\t\t\tLFC (Ca) | \n\t\t\t0.01 (Total) 0.002 (Res) | \n\t\t\t5 μg Cd/g creatinine | \n\t\t\tA2 | \n\t\t
\n\t\t\t\tCobalt\n\t\t\t | \n\t\t\t0.1 | \n\t\t\t0.05 | \n\t\t\t0.02 | \n\t\t\t15 μg Co/L | \n\t\t\tA3 | \n\t\t
\n\t\t\t\tChromium(VI)\n\t\t\t | \n\t\t\t-- | \n\t\t\t0.001 | \n\t\t\t0.05 | \n\t\t\t25 μg Cr/L | \n\t\t\tA1 | \n\t\t
\n\t\t\t\tChromium metal\n\t\t\t | \n\t\t\t1 | \n\t\t\t0.5 | \n\t\t\t0.5 | \n\t\t\t\n\t\t\t | A4 | \n\t\t
\n\t\t\t\tCopper Fume\n\t\t\t | \n\t\t\t0.1 | \n\t\t\t0.1 | \n\t\t\t0.2 | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tIron Oxide\n\t\t\t | \n\t\t\t10 (as Fe) | \n\t\t\t5 | \n\t\t\t5 | \n\t\t\t\n\t\t\t | A4 | \n\t\t
\n\t\t\t\tLithium\n\t\t\t | \n\t\t\t-- | \n\t\t\t-- | \n\t\t\t-- | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tManganese\n\t\t\t | \n\t\t\t5 (Ceiling) | \n\t\t\t1 | \n\t\t\t0.2 | \n\t\t\trange 0.5 to 9.8 mg/L; up to 50 mg/L for occupational exposure | \n\t\t\t\n\t\t |
\n\t\t\t\tMolybdenum\n\t\t\t | \n\t\t\t5(Soluble) 15 (Insoluble) | \n\t\t\t-- | \n\t\t\t5 (Soluble) 10 (Insoluble) | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tLead\n\t\t\t | \n\t\t\t0.05 | \n\t\t\t0.1 | \n\t\t\t0.05 | \n\t\t\t30 μg /dL (whole blood) | \n\t\t\tA3 | \n\t\t
\n\t\t\t\tNickel\n\t\t\t | \n\t\t\t1 | \n\t\t\t0.015 (Ca) | \n\t\t\t1 | \n\t\t\t10μmol/mol creatinine | \n\t\t\tElemental (A5) Insoluble inorganic (A1) | \n\t\t
\n\t\t\t\tPlatinum\n\t\t\t | \n\t\t\t0.002 (Soluble) | \n\t\t\t1(Metal) 0.002 (Soluble) | \n\t\t\t1 | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tSelenium\n\t\t\t | \n\t\t\t0.2 | \n\t\t\t0.2 | \n\t\t\t0.2 | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tSilver\n\t\t\t | \n\t\t\t0.01 | \n\t\t\t0.01 | \n\t\t\t0.1 | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tTellurium\n\t\t\t | \n\t\t\t0.1 | \n\t\t\t0.1 | \n\t\t\t0.1 | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tThallium\n\t\t\t | \n\t\t\t0.1 | \n\t\t\t0.1(Soluble) | \n\t\t\t0.1 | \n\t\t\t50 μg Th/g creatinine | \n\t\t\t\n\t\t |
\n\t\t\t\tTitanium Dioxide\n\t\t\t | \n\t\t\t15 | \n\t\t\tLFC (Ca) | \n\t\t\t10 | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tVanadium Pentoxide\n\t\t\t | \n\t\t\t0.1 (Ceiling) | \n\t\t\t0.05(Ceiling) | \n\t\t\t0.05 | \n\t\t\t50 μg V/g creatinine | \n\t\t\t\n\t\t |
\n\t\t\t\tZinc Oxide\n\t\t\t | \n\t\t\t5 | \n\t\t\t5 | \n\t\t\t5 | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tZirconium\n\t\t\t | \n\t\t\t5 | \n\t\t\t5 | \n\t\t\t5 | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tTotal fumes\n\t\t\t | \n\t\t\t-- | \n\t\t\tLFC (Ca) | \n\t\t\t5 | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tCarbon monoxide\n\t\t\t | \n\t\t\t50 ppm | \n\t\t\t35 ppm | \n\t\t\t25 ppm | \n\t\t\t3.5% of (Hemoglobin) 20 ppm (end-exhaled air) | \n\t\t\t\n\t\t |
\n\t\t\t\tNitrogen dioxide\n\t\t\t | \n\t\t\t5 ppm (ceiling) | \n\t\t\t5 ppm (ceiling) 1ppm (STEL) | \n\t\t\t3 ppm | \n\t\t\t\n\t\t\t | \n\t\t |
\n\t\t\t\tOzone\n\t\t\t | \n\t\t\t0.1 ppm | \n\t\t\t0.1 ppm | \n\t\t\t0.08 ppm | \n\t\t\t\n\t\t\t | \n\t\t |
Managing the risks of pollutants generated by welding process is carried out in some steps inculing identifying hazards, assessing the risks arising from these hazards, eliminating or minimising the risks via proper control ways, and checking the effectiveness of controls. Monitoring the welder’s exposure is a main component of risk management process. Welding process leads to chemical exposures to fumes and toxic gases in enormous quantity. The hazard identification and risk assessment are necessary to work safely in a welding environment. Enough information, education, training and experience are required in this respect. In addition to the full-time welders, a large number of part-time welders who work in small shops and workers in the vicinity of the welding process may also be exposed. There is a greater potential for exposure due to welding in confined spaces with poor ventilation such as ship hulls, metal tanks and pipe, therefore, monitoring such welders should be seriously considered.
As it was stated previously, the level of welder’s exposure to welding emission depends on some factors like the process type, process parameters, and consumables used. Materials and consumables used in welding determine the chemical composition of welding emissions. The specific toxicity of each element and the synergetic effect of generated constituents must be considered to evaluate the exposure status of welders. There are some other workplace specific factors, including the ventilation condition, welder position or posture, and the volume of welding room, that influence the exposure level. The emission rate and also its concentration in the breathing zone of the welder or in the work environment are directly related to the mentioned factors. When it is probable that the welders’ exposure will be exceeded the prescribed limits, or when the workers’ health and the environment are at risk, the monitoring of hazards and the risk assessment program are required. To evaluate the hazards caused by different welding emissions, collecting various information is recommended. Air monitoring and measuring related pollutants via personal and environmental sampling, biological monitoring, workplace assessment with regard to physical and chemical hazards, and occupational medical findings can be used to evalute the welder’s exposure status compeletely [59-60].
Air Monitoring -Airborne pollutants generated by welding can threaten the worker’s health and safety. Thus, during the health and safety program, air monitoring is used to identify and quantify welding emissions. To evaluate air contaminants, a sampling strategy is used for collection of exposure measurements. The choice of the best strategy is based on site-specific conditions. In a sampling strategy, some parameters like selection of workers for personal monitoring, sampling duration and required number of samples are important. The measurement of contaminants is carried out in the breathing zone of selected worker. The collected samples must be representative of the normal work activity and exposure of welder, because the sampling results are used to prevent overexposures. Air monitoring in welding processes includes the sampling and analysis of welding fumes and welding gases [61].
Within recent years, standard practices have been developed to monitor exposures considering the occupational exposure limits for elements. Most measurements are made using personal monitoring systems with a pump at a proper flow rate connected to a cassette containing a membrane filter for a suitable period of time. To obtain the accurate result, filter cassette must be placed inside the welding helmet. Time-weighted average concentrations of total fumes is obtained by weighing the filter before and after exposure; the concentrations of elements are determined by chemical analysis methods provided by related organizations like American Welding Society and British Standards Institution [51], NIOSH Manual of Analytical Methods (NMAM) for metals in air and urine and OSHA Sampling and Analytical Methods are used to monitor the welding workplaces. In these methods, analysis of metals is performed by Inductively Coupled Argon Plasma-Atomic Emission Spectroscopy (ICP-AES) after sample preparation by acidic ashing [61, 62]. It is worth mentioning that the microwave digestion can be used instead of acidic ashing to prepare samples, leading to reduction in ashing time up to 90 percent, as well as cost saving and providing a healthier work environment for laboratory operators. Golbabaei et al. used the microwave digestion to prepare urine samples before urinary metal analysis by graphite furnace atomic absorption spectrometry [52].
As it was stated previously, there are different workplace conditions for workers who are welding in confined spaces compared to other welders. Limited access and little airflow or ventilation are the characteristics of a confined space. Hazardous concentrations of welding emissions can accumulate very quickly in such small spaces. Hazardous concentrations of welding emissions can accumulate very quickly in such small space. Thus, confined spaces should be monitored for toxic, flammable, or explosive emissions to evaluate welders’ exposure. In some situations, continuous air monitoring may be necessary when workers are welding in a confined space with special conditions. Golbabaei et al. conducted an investigation to assess the risk related to welding pollutants for welders who work in confined spaces. Almost for all analyzed metals, there were significant differences between back welders and controls. Back welding is a task that workers perform welding inside the pipe as a confined space. Based on risk assessment, back welding was a high risk task [16]. These authors in another study assessed the welder’s exposure to carcinogen metals (Cr, Cd, and Ni). The NIOSH methods were used for sampling and measurement of metals. Back welders group had maximum exposure to total fume and mentioned elements [52].
Determination of occupational exposures to gases must be based on workplace measurements, because the local ventilation and workplace design can affect the actual concentrations of toxic gases (ozone, carbon monoxide, nitrogen oxides) in the welders\' breathing zone. Hariri et al. surveyed the appropriate personal sampling methods to measure the welding emissions in small and medium enterprises. They proposed NIOSH methods to evaluate the fumes and direct reading instruments for measurement of gases. Also, they offered some guidelines for correct assessment of welding workplaces [60]. Choonover et al. showed welders were exposed to higher concentrations of NO2 and O3 than controls. These gases were collected on pre-treated filters with proper solutions. Then, NO2 and O3 were analyzed by spectrophotometry and ion chromatography (IC), respectively [21]. Azari et al. conducted a study to evaluate exposure of mild steel welders to ozone and nitrogen oxides during TIG and MIG welding. OSHA ID214 and NIOSH 6014 methods were used to evaluate ozone and nitrogen oxides, respectively. High exposure of welders to these gases was reported in the study [64]. Golbabaei et al. also used OSHA and NIOSH methods as well as direct reading instruments for sampling and measurement of various gases [65].
Although there are various techniques for monitoring of welding emissions (both fumes and gases) in air samples, selecting the proper ones depends on some parameters. Availability of sampling media, sample storage time, and the simplicity, cost, time and sensitivity of analytical technique are essential to planning proper sampling strategies. It is necessary to consider those workers who probably have the highest exposures due to used materials and processes, the characteristics of their tasks, their postures during welding, the conditions of work environment, and other pollutants from processes in the vicinity of welding environment. It is known that high concentrations of some welding fumes and gases can also be explosive; therefore, the workplace should be tested to ensure a safe working environment [61, 66].
Biological Monitoring - Biological monitoring means the measurement of the concentration of a contaminant, its metabolites or other indicators in the tissues or body fluids of the worker. In some cases, biological monitoring may be a supplementary monitoring for the personal assessment [53]. Another advantage of the biological monitoring is the detection of biological effects of the chemical by monitoring reversible and irreversible biochemical changes. It can be used in the medical treatment to identify the real exposures of chemicals absorbed into the body of employees suspected of over-exposing to a chemical [58]. Airborne contaminants measurement and biological monitoring are complementary procedures used to prevent occupational disease, assess the risk to workers’ health, and evaluate the effectiveness of control ways. Biological monitoring must be conducted based on a proper strategy. Careful considerations are required to select the best biological matrix for each component. To obtain valid results, timing sample collection, sample preparation and analytical method used to determine the concentration of components are critical. There are different methods for biological monitoring of some welding emissions. As it is indicated in Table 2, biological media and biological exposure indices (BEIs) have been recommended for some metals and gases emitted by welding processes. Totally, complete information can be provided by biological monitoring and air monitoring to assess the worker exposure to welding emissions.
Ellingsen et al. studied the concentration of manganese in whole blood and urine in welders. Concentration of Mn in whole blood (B-Mn) was about 25% higher in the welders compared to the controls. The increase in B-Mn and the dose-response relation between air-Mn and B-Mn in the welders are strong indicators of Mn. Long-term high exposure to welding fumes may lead to alterations of the urinary excretion of certain cations that are transported through the DMT1 transport system (divalent metal transporter 1 that is found on the surface of the lung epithelial cells) [67]. Kiilunen study showed the metal concentration in post shift urine samples were correlated with the personal air monitoring results. There were statistical significant correlations between urinary concentrations of chromium and nickel and the related total metal concentration in air in wire welding processes. Also, in MIG/MAG welding, chromium is accumulated in the body with a long half life. There is an association between the airborne concentration of nickel and its post shift urinary concentration. In welding, the nickel concentration in post shift urine samples can indicate the body burden [68]. In a study conducted by Hassani et al. the correlation between airborne Mn and urinary Mn was significant for all exposed subjets. The obtained result can introduce the urinary Mn as a biomarker for exposure to this element [69]. Azari et al. measured the serum level of malondialdehyde in welders. Serum MDA of welders was significantly higher than that of the control group. A significant correlation was detected between ozone exposure and level of serum MDA, but the correlation was not observed for nitrogen dioxide exposure [64]. Rossbach recommended the determination of Al in urine for biological monitoring because of the higher sensitivity and robustness of this marker compared to Al in plasma [70]. Golbabaei et al. analyzed the urinary metals among the different groups of welders. According to the results, exposure of welders to fume components leads to more accumulation of them at welders’ bodies [52]. Based on different studies, the soluble metal compounds are accumulated in the body, affecting the critical organs. Urinary concentration of metal is used as a biomarker of metal exposure. Therefore, biomonitoring serves as an appropriate tool to monitor both the recent and past exposure and it can be related to the total chemical uptake through all exposure routes [69].
Health monitoring - In addition to the assessment of the airborne concentration of a particular contaminant and its comparison with standard limit, health monitoring may also be done for some hazardous chemicals to assess risks to exposed workers. Health monitoring means monitoring workers exposed to hazardous pollutants to identify changes in their health status and evaluate the effects of exposure. Health monitoring can provide effevtive information to implement proper ways for eliminating or minimizing the risk of exposure and improving control measures. Health monitoring considers all routes of exposure to contaminants [9, 66, 71]. Some tests including spirometry (lung function), audiometry (hearing), biochemical tests (e.g. kidney or liver function), cardiac function tests (heart function), nerve conduction velocity and electromyography tests (nerve and muscle function), and neurobehavioural tests (nerve and brain function) may be used in health monitoring. The type of test used will depend on the occupational hazards that the employee are exposed to [58]. Donaldson [72] and Antonini [73] surveyed lung functions in exposed welders and showed that exposure to welding fumes is associated with both pulmonary and systemic health endpoints, including decrease in pulmonary function, increased airway responsiveness, bronchitis, fibrosis, lung cancer and increased incidence of respiratory infection. In addition to these pulmonary effects, metal fume fever is frequently observed in welders. Exposure to metal fumes and irritating gases cause chronic obstructive pulmonary disease (COPD). Health monitoring of welders can help detect breathing problems and reduced lung functions in early stages, resulting in prevention of further damages. Spirometric tests are used by an occupational phisycian to assess lung functions [74]. Totally, health monitoring may include simple observation of the worker’s skin to complicated tests in special cases. Health monitoring must be done by the experienced medical practitioner. An occupational physician can provide specialist services and testing such as spirometric tests, respiratory screening and chest X-rays. It is necessary to do the health monitoring before beginning work with a hazardous chemical to provide enough information for following changes in the worker’s health during periods of exposure.
Risk is defined as the possibility of occurance of an event leading to clear concequences. Evaluating risks to workers’ safety and health is conducted in risk assessment process. It is performed in some steps including:
Hazards identification and those at risk
Evaluating the risks (qualitative or quantitative)
Elimination or minimization of risks via implementing control measures and taking actions
Monitoring and reviewing the effectiveness of adopted controls
The severity of hazard and the exopsure level determine the health risk and the type of chemical and nature of work are important factors in this regard. All workers in the vicinity of a special activity should be considered to assess the risk associated with chemical hazards, because they may potentially be at risk of chemicals emmitted by that activity.
In welding environments, employers are resposible to ensure the safety and health of welders and take proper measures for their protection. Although, preventing the occupational risks is the main purpose of risk assessment, it is not possible in all situations; therefore, risks should be reduced using control measures. There are different hazards related to welding process resulting in risks to welders. Chemical hazards, physical hazards, and those associated with ergonomics threaten the health of welders. Since this text deals with air pollution, the risk assessment of welding emissions i.e. fumes and gases is considered. Hazardous chemicals in the workplace result in different risks to workers.
There are different methods to do risk assessment of chemicals in which some principles should be considered. These principles include addressing all relevant hazards and risks and beginning the elimination of risks, if it is possible.
The ministry of manpower of Singapore has published a guideline intitled “semi-quantitave method to assess occupational exposure to harmful chemicals”[75]. This method may be useful to assess the risks resulting from welding emissions. Risk assessment is conducted for following purposes:
Identifying the hazards related to each harmful chemical
Evaluating the degree of exposure to chemical of interest
Determining the likelihood of chemical adverse effects
A risk rating to different tasks can be designate using the mentioned method. After that, using risk rating matrix, hazards are ranked as negligible, low, medium, high and very high (legends 1 to 5) and required actions are prioritized to select appropriate controlling plans. This guideline deals with the health risk to workers exposed to chemicals via inhalation. There are eleven steps for hazard identification and rating, exposure evaluation, and assessing risk. The actual exposure level is required for determination of exposure rating and risk level. A step by step flow chart for assessing the risk, forms needed for completing some steps, and different tables and equations for evaluating the risk have been provided by guideline. All components to assess the risks are available in guideline and it can be used for risk assessment of welding emissions in a simple and fast way. Following, the process flow chart has been presented to understand the consept of risk assessment.
Golbabaie et al. used mentioned guideline to assess the health risks arising from metal fumes on back welders. Risk assessment was performed according to the steps previously explained. Cadmium concentration was ranked as “very high” group. Also, total fumes, total chromium, and nickel were ranked as “high” legend. Findings indicated back welding is a high risk task. High concentration of metals confirmed that working in confined spaces creates a great risk for welders. In some cases as in cadmium despite the rather low concentration of the pollutants, the risk is ranked as “very high” due to the carcinogenisity nature of this element. Therefore, it is not always possible to judge the health hazards of the pollutants based on their concentrations.
Process flow chart of semi quantitave method for chemicals risk assessment [75]
Following the risk assessment, employers can decide on required preventive measures, the working and production procedures, and also improving the level of welder protection. To complete risk assessment of welding chemicals, data related to air monitoring, biological monitoring, and health monitoring may be required for true judgement. Totally, risk assessment in workplace can result in some advantages. Workers do their tasks in a safe manner; employers provide appropriate programs to prevent high exposure and increase job satisfaction; regulators and related organizations can reliably present health and safety standards. The process of risk assessment is a basis for risk management to reduce welding hazards by choosing correct actions [76-77].
Air pollution control deals with the reduction of air pollutants emitted into the atmosphere using different technologies. Sometimes, managing the production process is used to control air pollutant emisstion, therefore, checking the production process can be useful for beginnig the air pollution control. Elimination of a hazard is the first aim to control related risk. In essence, keeping the pollutant emission at the minimum level during the process is the main purpose of controling the air pollution. Based on the risk assessment results, employers can decide for control of risk using proper ways. There are various ways to control the risk of chemicals like welding emissions. If the hazard elimination in not reasonably practicable, other approaches are used to minimize the risk. Substitution, isolation, engineering controls, work practices, and personal protective equipment (PPE) are used to reduce risks to the lowest practicable level in order of priority. Using personal protective equipment is the least recommended control way. To provide a layered safety net, a combination of several control ways may be adopted for preventing risks [66, 76, 78]. In the case of welding, if the elimination of fumes is not practicable, other controling measures should be applied. Modifying the welding process, improving working practices, ventilation, and using PPEs are considered in order to control of fumes.
Employers can choose the welding type for production process based upon its efficiency, weld quality, available equipment, and economics. For instance, TIG welding generates less fume compared to MMA, MIG and FCAW processes, so, it can be a proper choice for welding operations. In order to modify the welding process, selecting consumables with minimum fume emissions and considering the welding parameters to minimize the emissions are recommended to employers. The generation of welding fumes is minimized using the lowest acceptable amperage. To optimize the process modification, paying attention to consumables, equipment, and control system is necessary. Selecting proper consumbles leads to minimizing the environmental impacts and controling risks to welders. Welding on non-painted or coated surfaces can also reduce the production of emissions. Process modification in welding results in decreasing needs for administrative controls and other expensive procedures, and also simplifying the process of risk assessment.
Working practice, the way used to do work, can be improved for control of workers’ exposure. Safe work practices are provided by company or organization to perform a task with minimum risk to workforce, environment, and process. Such practices control the manner of performing work and complete engineering measures. Placing the workpiece, as an improving measure, can keep the welders away from plume rising above the weld. Minimizing the welding in confined or enclosed spaces leads to reduction of exposure to pollutants. Proper training programs, housekeeping, maintenance, and doing task on time are the safe welding habits to reduce exposure. Consequently, welding based on safe practices and instructions results in healthier workplace and diminishing the risks of exposure to hazardous emmisions [79, 80].
Ventilation is the most effective way for removing welding emissions at source to reduce exposure to fumes and gases in welding operations. Designing the ventilation system in accordance with the types of hazardous emissions results in providing a safe atmosphere in the workplace. This control procedure is classified into dilution (general) ventilation and local exhaust ventilation (LEV). The most efficient method to control welding emissions is the combination of LEV and dilution ventilation.
General or Dilution Ventilation -This type of ventilation uses the flow of air into and out of a working environment to dilute contaminants by fresh air. The required fresh air can be supplied by natural or mechanical ways. Dilution ventilation may not be sufficient to control exposure to welding emissions, because it cannot provide enough air movement to prevent the entry of fumes and gases into the welder’s breathing zone before removing them from welding environment. In fact, the general ventilation is not suitable for controlling the toxic substances, specially when the worker is downstream of contaminant. To ensure the efficiency of the system, measuring airflow regularly and sampling contaminants to assess exposure are required. A well designed dilution system can be approprite for situations in which welding is done on clean, uncoated, mild steels. In dilution ventilation, draft fans or air-movers, wall fans, roof vents, open doors and windows may be used to move air through the work environment. Totally, if the generated contaminant is in low concentration and can be controlled to the standard exposure level, dilution systems will be effective enough as a control measure [66, 80-82].
Local Exhaust Ventilation - Local exhaust ventilation (LEV), as a primary engineering control, is used to remove contaminants before entering the breathing zone of workers. LEV can be used to control welding emissions close to the generation source. To be effective, LEV system should be well designed and installed, used correctly and properly maintained. Type of generated contaminants and characteristics of the process and work environment are crucial to design LEV [81]. To design a suitable system in welding process, some parameters should be considered, such as fume generation rate, arc- to-breathing zone distance, work practices and worker’s exposure. Various parameters related to type of welding have important roles in the fume generation rate and fume composition. Therefore, considering these parameters is necessary to design LEV system [83-85].
For welding processes like stainless steel or plasma arc welding in which fumes containing heavy metals are generated, the LEV system can effectively be used to control worker’s exposure. A local exhaust ventilation consists of a hood, fan, duct, and air cleaner. All parts of LEV system must be designed according to correct rules and requirements to remove air pollutants with appropriate efficiency. For instance, the ducting material and structure, air velocity through ducts, the number of branches, and the probability of the leakage and corrosion are important factors related to duct that can affect the LEV system. There are some considereations to select a suitable fan for the system. Some variables such as pressure, flow rate, power, noise, and rotation speed are the main characteristics influencing on the fan performance. Air cleaner is a device to capture welding emissions before it can escape into the ambient air. To select an appropriate air cleaner, some design considereations need to be addressed. Size and shape of welding space, pollutants generation rate, pollutant composition, cost of devices, process type, and the availability of equipment may be effective factors in this respect. In welding processes, source capture systems can be the ideal choise to control fume contaminants using the least air flow rate. In some situations, a source capture system cannot be used. For example situations in which worker has to work on mobile positions; there are a large number of small welding points producing hazardous emissions; welding must be done in confined spaces; and there are some obstructions like overhead cranes leading to problems with ducting installation. Dust collectors (filtration units) and electrostatic precipitators (ESP) can also be used as air cleaners to capture welding emissions before escaping into the environment. ESPs are ideal to collect submicron particles, especially in carbon steel welding. Although the efficiency of ESP is lower than filtration system, it needs very little maintenance and also there is no cost for filter replacement. ESPs are not recommended for stainless steel welding.
Some general considereations should be addressed to design a LEV system. Ducting system should be resistant to the captured emissions; the risks of contaminants accumulation and fire propagation in ducting system should be taken into account; exhausted air containing welding emissions should not be discharged where other workers or people are present; any draught from open doors or windows should be considered because of interference with hood performance. In addition, a maintenance program is required to ensure that control measures remain effective. For instance, regular inspections of LEVsystems should be carried out to check their effectiveness. As an other maintening plan, periodic air monitoring is done to ensure the system has proper performance. Therefore, as well as correct and completed design of LEV system, other elements like employee training, proper use, cleaning, and maintenance are required to achieve the effective protection.
Portable Systems - In some situations, portable systems may be used. These systems are used where welding is infrequently performed and the existing sysrem can be shared between working stations. Also, small mobile units may be used in confined spaces where installing the usual systems is not practical. In these cases, installing the hood close to the emissions point of origin, the hood placement and its distance from the source of welding emissions should be considered. Adequate ventiltion is essential in confined spaces, because the accumulation of hazardous emissions may lead to oxygen deficiency and also adverse effects related to generated fumes and gases. Commercially, there are different portable ventilation systems to use in confined spaces. Flexible air ducts and different kinds of portable fans are available for a variety of ventilation applications. In general, approximately 10 air exchanges per hour should be provided by ventilation in confined spaces. The volume of space and the flow rate of fan determine the time of each exchange. Before entry into the confined space for welding, that space should be ventilated for a minimum of five minutes. It is important to select a proper fan with enough capacity and position it in correct place. Some related organizations have provided procedures and instructions related to working in confined spaces, including ventilation equipment, confined spaces entry, emergency action plan, permit forms, and other requirements for working in these spaces [66, 81, 84, 86].
Personal protective equipment (PPE) should not be used instead of other control measures, but sometimes they may be required along with engineering controls and safe work practices. Respiratory Protection Equipments (RPEs) are used to protect the workers against inhalation of hazardous emissions in the workplace, where exposures cannot adequately be controlled by other ways.
Using a respirator not selected appropriately leads to a false sense of protection for wearer and exposure to hazardous substances. It must be specific to the pollutant and fitted, cleaned, stored and maintained based on provided standards and guidelines for respirators. Each RPE has a protection factor (PF) that is determined as the ratio of the concentration of the pollutant outside the respirator to that inside the respirator. There is a wide range, from low to high, for protection factors. Some organizations like NIOSH have provided required equations and tables to calculate protection factors for respirators. There are different types of respirators and it is possible to select the most appropriate type for existing circumstances. In welding processes, respirators should be selected in accordance with generated emissions, welding type, welding task, and working conditions. For example, NIOSH recommends a self-contained breathing apparatus for welding in confined spaces because the oxygen concentration in the space may be reduced due to welding. Also, a combination of particulate/vapour respirator may be used because of the generation of both of fumes and gases during welding. A standard program is needed for using raspiratory protection devices. Some requirements are followed in this program including hazard assessment, selecting the appropriate respirators in respect of pollutants, respirator fitting test, worker training on how to use respirator correctly, inspection and maintenance of respirator, and recordkeeping. There are two types of RPE. The first type is respirators that clean workplace air before being inhaled and the second type is air-supplied respirators in which air supply is separate from workplace atmosphere. Totally, the suitable RPE for welding processes should be selected by an expert and based on fume concentration, presence of toxic gases, and the probability of oxygen deficiency. Selecting air-purifying respirators with correct filtration cartridge results in protection of welders from low levels of metal fumes and welding gases [87, 88].
Air pollution is contamination of the indoor or outdoor environment, leading to changes in the natural characteristics of the atmosphere. In all welding processes, various types of air pollutants are generated. Air pollutants created by welding include fumes and gases whose composition and emission level depend on some factors such as the welding method, welding parameters (current, voltage, shielding gas and shielding gas flow), base metal and other consumables. Exposure to excessive levels of fume and gases can cause different adverse health effects on workers. Since a large number of workers are exposed to welding emissions and also the generated pollutants have negative impacts on environment, a risk assessment program is required to protect workers and environment by suitable procedures. In an effective program, worker’s safety and health is considered by management as a fundamental value.Taking different precautions can improve the welder’s work situation. There are various techniques for evaluating and monitoring welding pollutants in air samples and biological matrices and also different procedures for their control. Selecting the proper engineering controls can lead to protection of workers and environment. During the risk assessment program and selection of control measures, it is necessary to consider nanoparticles emitted by welding operations. Particle sizes and size distributions of welding emission are critical to determine the efficient control devices. In some cases, breathing zone protection can be used. Health hazards can be reduced by choosing a correct welding helmet and by using the proper shielding gas and welding parameters. It is worth mentioning that proper information should be provided for workers about hazards of their tasks. The welder should be informed of operating techniques and all procedures that reduce welding fumes. The training programs should be included proper ways to perform tasks and proper work practices to reduce fumes. This program includes safety training, monitoring the good safety practices and good environmental practices. Also, the respirator and cartridge selection, fit-testing and respirator maintenance and storage are considered in a suitable training program. Furthermore, employers must be informed about industrial hygiene programs at workplaces and quantitative risk assessment for workers exposed to hazardous compounds. In recent years, different organizations have focused on climate change and environmental impacts of all industrial activities including welding. Various laws, instructions, and guidelines have been provided for protecting the air, environment, and water. Employers are responsible for the purchase of proper welding equipment to meet environmental requirements and choose more environmentally friendly processes.
In the central region of mainland Portugal, mainly in the valleys embedded in the Serra da Estrela massif [1], the traditional management of native dairy sheep (\nFigure 1\n) based on the use of natural and semi-natural grasslands, gives their products a strong identity and an appreciable quality, while contributing to regional development and the conservation of valuable mountain ecosystems.
\nNative breed of dairy sheep “Bordaleira serra da Estrela” grazing.
Serra da Estrela is a region of rugged and mountainous relief [2], composed of shrub and herbaceous strata, with peculiar soil-climatic conditions [3]. It is characterized by hot and dry summers, generally cold and long winters and with some inter-annual and inter-monthly precipitation irregularity [4]. The soils are mostly of granite or schist origin, with low pH and low fertility, especially based on low organic matter levels [2].
\nThe main types of herbaceous formations that occur in Serra da Estrela mountain grasslands include permanent semi-natural meadows (“lameiros”), mesophille perennial Nardus grasslands, available in areas of higher altitude and high oligotrophy and other perennial pastures of high ecological and scenic value [5].
\nPermanent semi-natural meadows play an important role in the feed regime of dairy sheep while they are grazing. Lameiros are usually characterized by their water availability [6] and for their grazing management regime as pasture, forage and hay meadows, where Poaceae and Fabaceae species of some nutritional value predominate, namely, Dactylis glomerata, Lolium perenne, Festuca arundinacea, Holcus lanatus, Trifolium pratense and Trifolium repens, tolerant to soil and climatic conditions [7].
\nThe management of these meadows consists of grazing throughout the year, except in the spring to allow a cut for hay production, being the feeding basis of the native breeds [8]. It is precisely the alternation of cutting with grazing, as well as the practice of cleaning and meticulous distribution of irrigation water, that has contributed to its maintenance and sustainability [7]. However, the trend towards depopulation of mountain regions, coupled with a scenario of increasing limitation of water resources, may endanger the sustainability of semi-natural mountain grasslands.
\nBeyond its economic relevance for livestock grazing and hay production, it is of huge interest to emphasize the great importance of mountain meadows for the essential services they perform, such as soil improvement and conservation, increased infiltration, drainage and water availability, soil protection against erosion and carbon sequestration [9]. Besides that, meadows are recognized as a protected habitat particularly of rare plant and fauna species and contribute to the beauty of the landscape mosaic [10].
\nThus, the attributes, potential and practices of pasture management in Serra da Estrela are described, based on a bibliographic review. This chapter aims to provide useful information, especially for farmers who want to make pasture management more efficient and promote environmental sustainability in this region.
\nSerra da Estrela is the highest mountain massif in mainland Portugal (40° 20’ N, 7° 35’ W, 1993 m ASL) and is part of the Iberian Central Cordillera [1]. It is covered by a biogeographical unit known as the Estrelensean Sector (Carpetan-Leonese subprovince) [4] aligned in a NE–SW direction (\nFigure 2\n) [1]. Its relief is characterized by the widespread occurrence of uplifted planation surfaces, the majority of which are between 600 and 900 m in altitude, dissected by deep river valleys, sometimes interrupted by larger tectonic basins [2].
\nGeographic location of mountain region—Serra da Estrela, Portugal.
Acid1 and phosphorus-poor palaeozoic schists intruded by variscan granitoids are the prevailing lithological types in Serra da Estrela mountain [2]. Phyto-geographic elements suggest that the Serra da Estrela is in the transition between the Mediterranean and Atlantic influence [4]. Its very particular geographical position, in conjunction with the territory orography, influences the local climate characteristics and allows the existence of several bioclimatic stages [3].
\nDespite widespread perceptions of more recent changes in climate behavior patterns, the warmest month is July and the coldest is January. The average annual temperature is lower than 7°C mostly in the plateau areas [12].
\nDuring the summer, there are usually periods of a few consecutive days with high temperatures. Climate data show that it has been a trend towards an increasing frequency of days with very high temperatures, as well as the occurrence of several heat waves in last years [13].
\nAverage precipitation values vary between 1000 mm in the territories of the Mondego valley, Seia and Gouveia and values above 2500 mm per year at the highest altitudes of the central plateau. Despite its irregular pattern, rainfall occurs mainly between November and March [14]. The western side of the mountain presents a larger number of days with rainfall, but a slightly lower total amount than the eastern part, which in turn shows a smaller number of days with rain [15]. There is a large snowfall irregularity and rarely lasts more than a few weeks per year, especially below 1700 m. Wind regimes are complex and show large spatial variations. The more frequent directions are west and northwest [16].
\nMountain grasslands are semi-natural permanent meadows dominated by spontaneous or sub-spontaneous herbaceous plants, with the predominance of poaceae species [7, 17]. They are typified by extensive farming using traditional breeds of sheep [9] and represent a valuable resource in the livestock farming activity of the region [5]. Their management is very different due to the high species richness and heterogeneous locations [18]. Semi-natural grasslands require continued grazing and/or mowing for their maintenance [9, 19] and have a relatively low productivity compared with intensively managed grasslands [20]. Their productivity is low, but they offer a number of services valued by society [21].
\nIn fact, mountain grasslands of Serra da Estrela (\nFigure 3\n) are an important aspect of landscape and management and of great ecological value [5, 18], being part of the most protected ecosystem in Europe. They are recognized as key habitats for maintaining biodiversity in agricultural landscapes [20] and also an extremely important carbon store [22].
\nMountain grasslands in Louriga, Serra da Estrela.
Mountain pastures on private land are often subject to mixed use of mowing and trampling. Mowing is important for getting hay in late spring or early summer depending on its location [7, 17]. In territories above 1000 m altitude and generally in Common lands (Baldios), pastures are used only for grazing, in many cases just in the summer season, with lower intensities of use and, consequently, with invasion of shrub species [21].
\nMountain meadows growth is strongly conditioned by environmental conditions, in particular by altitude, slope, exposure, soil and inter-annual climate variation, and also due to the management conditions, such as irrigation, fertilization and utilization management (grazing and mowing) [7].
\nThe main types of herbaceous formations that occur in Serra da Estrela mountain grasslands include permanent semi-natural meadows (“lameiros”), mesophille perennial Nardus grasslands and other perennial pastures, which will be described below [5].
\nMountain semi-natural meadows (“lameiros”) are one of the most characteristic elements of the mountain landscapes of northern and central Portugal [10], namely in the Serra da Estrela, dominated by complexes of spontaneous and sub-spontaneous herbaceous vegetation whose composition varies in place and time as a function of soil and climatic conditions and the duration and grazing or mowing intensity, chemical or organic fertilization or the irrigation system [23].
\nThey are usually found in places with good water availability and fine-textured soils with high levels of organic matter [6]. Mountain meadows are not a result of deliberate sowing of improved species and are not subjected to practices such as pesticide application or soil tillage [7].
\n“Lameiros” are usually characterized by their water availability, as irrigated meadows located along permanent watercourses, imperfect irrigated meadows when located along non-permanent or reduced low-flow watercourses and non-irrigated meadows (or lameiros de secadal), next to temporary watercourses without water for irrigation and usually located on the highest altitude plateaus [7, 17].
\nThe grazing management regime in the meadows is generally characterized as:
\nPasture meadows, also known as “pastigueiros,” whenever its production is used exclusively for grazing [7, 17]. They occupy non-irrigated plateau areas, therefore are less productive, but can sustain livestock during spring and early summer [24];
\nForage meadows, usually irrigated at least for some part of the year, are more productive than “pastigueiros” and made up of a larger number of nutritious species. They are also used in a mixed regime (mowing and grazing), excluding grazing in the spring [24] so that the grass grows and can be cut for hay in early summer to be reserved for consumption during the following winter [7, 17].
\nHay meadows, also known as “segadeiros” or cutting meadows, are the most productive pastures, irrigated all year round, fertilized and cut exclusively during the summer, and the grass is immediately consumed by the animals [7, 17, 24].
In meadows with a large animal density, the replacement of Juncus effusus and J. acutiflorus with J. inflexus is often observed, accompanied by several other nitrophilic species such as Agrostis stolonifera, Potentilla reptans, Mentha suaveolens and Ranunculus repens. In fact, these are low-yielding species, produce poor-quality hay and avoided by ruminants. The most productive and palatable species include Holcus lanatus, Cynosurus cristatus, Festuca arundinacea subsp. arundinacea, Plantago lanceolata, Trifolium pratense and T. repens (\nTable 1\n). The drier parts of the meadows often show an impoverished community of Arrhenatherum elatius subsp. bulbosum or communities of Agrostis castellana in even drier soils [23].
\nTypes of mountain semi-natural meadows | \n|||||
---|---|---|---|---|---|
\n | Irrigated meadows | \nImperfect irrigated meadows | \nNon-irrigated meadows | \nPasture meadows | \nHay meadows | \n
\nSpecies\n | \n\nHolcus lanatus\n | \n\nFloristic composition close to irrigated or non-irrigated meadows, depending on the greater or lesser availability of water\n | \n\nAgrostis castellana\n | \n\nRumex crispus\n | \n\nLolium perenne\n | \n
\nPlantago lanceolata\n | \n\nAgrostis x fouilladei\n | \n\nRumex obtusifolius\n | \n\nDactylis glomerata\n | \n||
\nCynosurus cristatus\n | \n\nTrifolium dubium\n | \n\nRumex conglomeratus\n | \n\nTrifolium repens\n | \n||
\nHypochaeris radicata\n | \n\nGaudinia fragilis\n | \n\nMentha suaveolens\n | \n\nTrifolium pratense\n | \n||
\nPoa trivialis\n | \n\nArrhenatherum elatius subsp. bulbosum\n | \n\nBrachypodium rupestre\n | \n\nHolcus lanatus\n | \n||
\nDactylis glomerata\n | \n\nRanunculus repens\n | \n||||
\nTrifolium pratense\n | \n\n | \n | \nPlantago lanceolata\n | \n||
\nTrifolium repens\n | \n\n | \n | \nGlyceria declinata\n | \n||
\nNotes\n | \n\n | \n\n | \n\n | \n\nAbundance of species rejected by animals\n | \n\nHave the largest amounts of plants of great nutritional value\n | \n
\n | \n\n | \n\n | \n|||
\n | \n\n | \n\n | \n|||
\n | \n | \n |
Floristic composition in meadows with different water and use regimes—Adapted from [7].
Beyond its economic relevance for livestock grazing and hay production, meadows are recognized as a protected habitat particularly of rare plant and fauna species. “Lameiros” also contribute to the beauty of the landscape mosaic, thus with impacts on tourism, particularly relative to nature trails [10].
\nSheep grazing controls the development of various herbaceous species on the meadows, acting as an agent for the pasture maintenance [25, 26]. Grazing occurs in spring due to the higher precocity of its vegetative development in relation to the common lands (“baldios”), thus ensuring an adequate transition between feeding of herds with hay in winter and with grazing the common lands in the summer.
\nWhen the grass is ready to be grazed in the common lands, access to the meadows is limited in order to allow the development of the vegetation to obtain hay [8]. Hay cutting time should coincide as closely as possible with the dominant grass spike in the meadows to obtain hay with good nutritional value [7].
\nWhen the common lands vegetation becomes scarce and very dry in the late summer and, at the same time, there occurs the regrowth of vegetation in the meadows after hay cutting, grazing is allowed again until mid or late autumn [8] depending on the environmental and growing conditions of the grass [21].
\nThe absence of the flocks grazing results in loss of biodiversity, due to changes in vegetation development [25]. Similarly, hay cutting also acts as a maintenance agent favouring the development of the most desirable plants and the persistence of rare plant species. Haying has a very positive effect on yield, both on hay and pasture, which is less significant with late haying [17].
\nIrrigation is practised in meadows throughout the year whenever water is available although its functionality changes seasonally. During the summer (usually, July to September), it aims to meet the water needs of vegetation and, during the winter period, provides a favourable thermal balance at the grass’s micro-climate level (“lima” watering) [24].
\nThe meadows irrigation is made by surface run-off using a system in which the run-off water concentrated in water lines is diverted to small slope channels from where it flows over the permanent pastures [24, 27, 28].
\nWater flowing over pasture is a traditional practice of winter irrigation made by a continuous flowing of a thin layer of water (“lima”) covering the entire soil surface, to prevent frost damage [29] and to allow the rapid resumption of vegetation development during the spring [30]. Especially at night, irrigation water is relatively hotter than soil, pasture and air temperature, so the effect of frost is attenuated [31].
\nIf water availability is not enough to guarantee this kind of irrigation for a relatively long period of frost, it is preferable to not irrigate, so as to avoid freezing of water in the soil upper layers causing damages to the plants root system, a phenomenon that is locally referred to as “descalçamento” [24].
\nFertilizer application is a cultural technique with a positive effect on hay and pasture productivity [29, 30]. Studies by several authors show the positive effect of this cultural technique on the mountain meadows yield [30, 32, 33].
\nTraditional fertilization relies essentially on grazing animal waste and run-off “waters” from where they occur. Animal droppings are the main source of nutrients in mountain pastures and can reach 100 kg of nitrogen, 90 kg of potassium and 9 kg of phosphorus per hectare in 365 days of grazing [7].
\nNitrogen fertilizers are indicated as those that lead to greater production increases and contribute more to the evolution of pasture composition, with repercussions on dry matter (DM) production [7].
\nIn meadows, the main problems with weeds are fetuses, brambles and other weeds rejected by grazing animals (low-palatability plants).
\nThese weeds’ incidence is generally associated with poor management of grass use. Its control is generally made by means of a cleaning cut which, at the same time, enhances the growth of more palatable species, correcting or nullifying the effects of a less efficient use [7]. Controlled fire use is used as a cleaning technique in the continuous weed patches.
\nThe clearing of furrows, waterline banks is also a cultural operation with a positive effect on the meadows productivity, as it favors the conditions for water conduction and, consequently, the homogeneity of its distribution. This operation is normally carried out during the winter period by farmers and shepherds [34].
\nThe practice of rotational and rationed grazing by conditioning the number of grazing animals, per unit area and grazing time, avoids the under-utilization of “lameiros” in summer, resorting to the use of fences or regular displacement of animals between plots [7].
\nThe yields can vary from 4 to 6 tons of dry matter (DM) per hectare (ha) per year, up to 12 tons DM/ha/year, which corresponds, respectively, to less than 1 livestock unit (LSU)/ha and more than 2 LSU/ha [7].
\nThese differences in pasture production are related to the availability of water, the type of vegetation, the irrigation management and also the geographical location. The best returns and economic results are obtained when a community management is adopted as opposed to the individual management of semi-natural meadows [35].
\nThis particular ecosystem in Serra da Estrela, named “cervunal,” is characterized by the dominance of Nardus stricta L. (Poaceae), and involves 10.000 ha of a biogenetic reservation (DL n° 140/99, 24th April—Appendix B-1, 6230) within the Natural Park of Serra da Estrela (NPSE) [36].
\n\nCervunais occur in areas of higher altitude (above 1600 m) and high oligotrophy. They are well adapted to winter cold and also to poor, acidic, often moist and poorly drained soils and are usually grazed by sheep and not submitted to mowing [5]. Due to their late development, Cervunais are an important resource for sheep feeding during late spring/early summer, playing an important role in the local economy, often arising from the Serra da Estrela cheese production system [37].
\nTheir maintenance is clearly dependent on the correct management of grazing, which is fundamental in controlling invasion by woody species. At present, grazing management is in decline and the woody species are invading some of the grassland. The greater amount of combustible material in the woody plants has the potential to increase the temperature of fires to damaging levels, even in wet areas, compared to the fires by shepherds on the grasslands [36].
\nFire represents the main threat to the conservation of this type of grasslands and is associated with inadequate practices of land management and planning [38]. Severe fires over the last decade have transformed the high-altitude grassland biogenetic reserve in the Natural Park of Estrela Mountain (NPSE) of Portugal. The most remarkable change in the herbaceous vegetation after fire was the abrupt increase of Festuca trichophylla in the burnt area, to the detriment and abrupt decrease of Nardus stricta [36].
\nLowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis) are made up of tall grass, associated with deep and well-drained soil. Their maintenance promotes the infiltration of water in the soil, the regulation of nutrient levels, the lack of continuity of the forest mosaic and, consequently, the prevention of forest fires. These grasslands are dominated by the species Arrhenatherum elatius subsp. bulbosum, Agrostis castellana or Festuca rothmaleri [39].
\nMolinia meadows are associated with calcareous, peaty and loamy soils (Molinion caeruleae), including the juncal and juncal-meadows, dominated by Juncus effusus and/or Juncus acutiflorus which develop in deep and acidic soils conserving moisture during almost the whole year. They are usually near water lines, occupying the territory of riparian forests. Juncal and juncal-meadows are not fertilized and have reduced feed value for sheep [40].
\n\nPseudo-steppe with grasses and annuals of the Thero-Brachypodietea\n are distinguished by the occupation of deep, well-drained, oligotrophic soils, including communities dominated by Agrostis castellana, which are frequent in non-irrigated meadows [41]. They also include perennial grasslands, usually dominated by heliophilous grasses such as Arrhenatherum elatius subsp. baeticum, Agrostis castellana, Celtica gigantea and Festuca elegans [38].
\nOn established pastures, cocksfoot (Dactylis glomerata) initiates growth early in the spring. Grazing should begin when growth reaches approximately 20 cm. A 28- to 35-day recovery period is recommended [41].
\nWinter grazing should be limited to 60% of annual growth. Autumn to early winter is the preferred time for sowing. Spring sowing may be an option in higher altitude areas, or areas with more reliable rainfall over late spring and summer [42].
\nCocksfoot is capable of moderate to high levels of herbage production in well-managed, regularly fertilized pastures. Growth rates of 60–80 kg DM/ha/day are possible in autumn and spring under conditions of good moisture and temperature. In winter, production will commonly range from 5 to 20 kg DM/ha/day. The actual amount of herbage produced will be influenced by many factors, including altitude, soil texture, soil moisture and temperature [42].
\nThe protein content declines with maturity. This high protein content is balanced by a fiber content that is often higher than that of other grasses (ryegrass and fescue) at the same stage of maturity [43].
\nCocksfoot is highly palatable to livestock especially in the early part of the growing season [41] (\nTable 2\n).
\n\n | \n | Composition (% DM) | \nNutritive value | \n|||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Herbage | \nDM (% as fed) | \nCP | \nCF | \nNDF | \nADF | \nLignin | \nAsh | \nOMD (%) | \nED (%) | \nDE (MJ/kg DM) | \nME (MJ/kg DM) | \nND (%) | \n
Fresh | \n20.7 | \n16.3 | \n29.7 | \n59.9 | \n32.3 | \n4.5 | \n9.7 | \n69.4 | \n66.3 | \n12.0 | \n9.5 | \n58.9 | \n
Dried | \n89.1 | \n13.1 | \n30.2 | \n63.7 | \n36.5 | \n4.5 | \n8.7 | \n65.1 | \n61.5 | \n11.1 | \n8.9 | \n57.7 | \n
Chemical composition and nutritive value of cocksfoot (Dactylis glomerata) [44].
DM: Dry matter; CP: Crude protein; CF: Crude fiber; NDF: Neutral detergent fiber; ADF: Acid detergent fiber; OMD: Organic matter digestibility; ED: Energy digestibility; DE: Digestible energy; ME: Metabolizable energy; ND: Nitrogen digestibility.
\nFestuca arundinacea (tall fescue) is a perennial plant with large size and well adapted to a wide range of climates. Tolerant of various soil types, it has a better yield on deep and fertile soils. It is not compatible with ryegrass (Lolium spp.). Sowing is done in the fall, usually mixed with lucerne in irrigated meadows. Seed establishment is slow and grassland has a weak initial development [45]. It can be used for direct grazing, mowing, hay production, hay silage or silage. Growth begins in early spring and grazing should begin after the plants are at least 15 cm tall. The height of the stubble should be kept at 10 cm. Regrowth is favourable in cool spring and fall weather. The recommended rest period between grazing cycles is approximately 21–28 days. Frequent spring grazing cycles when plants are in the vegetative stage will help reduce alkaloid concentrations in animal diets if there is a symbiotic relation with endophyte organisms [41].
\nTall fescue has high digestibility at the appearance of the first year and provides good-quality biomass with 14–15% protein content in dry matter [41] (\nTable 3\n).
\n\n | \n | Composition (% DM) | \n||||||
---|---|---|---|---|---|---|---|---|
Phenology | \nDM (%) | \nCP | \nCF | \nNDF | \nADF | \nNDF | \nAsh | \nOM | \n
Early flowering | \n83.4 | \n15.0 | \n30.7 | \n65.1 | \n39.9 | \n4.6 | \n— | \n83.4 | \n
Chemical composition of tall fescue (Festuca arundinacea) [46].
DM: Dry matter; CP: Crude protein; CF: Crude fiber; NDF: Neutral detergent fiber; ADF: Acid detergent fiber; OM: Organic matter.
\n | \n | Composition (% DM) | \n\n | |||||
---|---|---|---|---|---|---|---|---|
Phenology | \nDM (%) | \nCP | \nCF | \nNDF | \nADF | \nNDF | \nAsh | \nOM | \n
Spikelet | \n21.0 | \n15.0 | \n26.8 | \n56.8 | \n30.2 | \n3.8 | \n— | \n84.7 | \n
Hay | \n80.0 | \n22.1 | \n19.6 | \n41.9 | \n29.6 | \n4.9 | \n— | \n91.6 | \n
\nLolium perenne L. (perennial ryegrass) (Table 4) is better adapted to the temperate climate of the Atlantic than to hot summers as they slow down its growth. It also prefers fertile, heavy and moist soil, slightly acidic pH—demanding in nitrogen.
\nSowing is preferably made in the fall, with fast seed germination and crop establishment. It has regeneration speed and resistance to trampling. It can be mixed with red clover, white clover or hybrid ryegrass (L. perenne, L. multiflorum). Thus, when mixed with white clover, it produces about 12–14 t MS per ha/year.
\nPerennial ryegrass has high digestibility and protein content compared to other perennial grasses [45].
\n\nHolcus lanatus occurs over a wide range of soil types, although it prefers a soil pH range of 5–7.5. It is found in hay meadow communities, poorly drained and water-logged soils, and low-fertility and nutrient-rich soils, pastures and meadows. Although H. lanatus is adapted to growing in wet conditions, it can also survive moderate drought, but with a much reduced growth rate [48].
\nNormally, H. lanatus is not preferred by flocks as its hairy nature means it is less digestible than perennial ryegrass (Lolium perenne) [49]. The young shoots are promptly consumed by the flocks, the dry matter content is low, digestibility is good and the mineral composition is relatively high [48] (\nTable 5\n).
\n\n | \n | Composition (% DM) | \n\n | |||||
---|---|---|---|---|---|---|---|---|
Phenology | \nDM (%) | \nCP | \nCF | \nNDF | \nADF | \nNDF | \nAsh | \nOM | \n
Spikelet | \n28.7 | \n6.3 | \n34.2 | \n71.5 | \n41.0 | \n5.6 | \n— | \n91.1 | \n
Chemical composition of Holcus lanatus [47].
DM: Dry matter; CP: Crude protein; CF: Crude fiber; NDF: Neutral detergent fiber; ADF: Acid detergent fiber; OM: Organic matter.
\nTrifolium pratense (red clover) is sown in autumn or spring. It is a very productive plant, but demanding in humidity, phosphorus, potassium and other elements. It shows predominant growth in autumn-winter, is more suited to cutting than grazing, produces up to 5–6 cuts in the first year when sown in the fall and is used for mowing when pure and mainly for grazing in mixtures [45].
\nRed clover should be cut for hay when no more than 50% is in flower, when it has the optimal feeding value, with more than 14–15% protein. Mowing red clover later impairs its feeding value but also compromises the second cut, as young shoots already elongated may be removed during the first cutting [50].
\nRed clover is preferably grazed in spring. Grazing begins at the quarter to half-bloom stage. In spring and early summer, a rest period of 21–35 days is recommended. Regrowth is excellent in spring when temperatures are low and soil moisture is available, but poor later in the summer [41]. Its contribution to biomass production declines rapidly after the first 2–3 years under grazing [51] (\nTable 6\n).
\n\n | \n | Composition (% DM) | \nNutritive value | \n|||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Herbage | \nDM (% as fed) | \nCP | \nCF | \nNDF | \nADF | \nLignin | \nAsh | \nOMD (%) | \nED (%) | \nDE (MJ/kg DM) | \nME (MJ/kg DM) | \nND (%) | \n
Fresh | \n19.0 | \n19.7 | \n22.4 | \n36.4 | \n26.6 | \n4.1 | \n10.4 | \n74.1 | \n70.9 | \n13.1 | \n10.4 | \n73.3 | \n
Dried | \n89.5 | \n18.3 | \n27.4 | \n37.7 | \n28.3 | \n6.0 | \n6.8 | \n66.2 | \n62.7 | \n11.9 | \n9.5 | \n65.1 | \n
Chemical composition and nutritive value of red clover (Trifolium pratense) [50].
DM: Dry matter; CP: Crude protein; CF: Crude fiber; NDF: Neutral detergent fiber; ADF: Acid detergent fiber; OMD: Organic matter digestibility; ED: Energy digestibility; DE: Digestible energy; ME: Metabolizable energy; ND: Nitrogen digestibility.
White clover (Trifolium repens) is the most important forage legume for grazing, whether as a spontaneous component of natural or permanent pastures or sown in association with grasses such as perennial ryegrass (Lolium perenne) [51]. The inclusion of white clover (\nFigure 4\n) in mixed pasture (grass and legume) increases the feeding value of the pasture due to the high protein and organic matter (OM) digestibility of white clover [52].
\nWhite clover (Trifolium repens).
White clover can withstand both continuous stocking and rotational grazing. In rotational grazing systems, stolons can regrow during rest periods, thereby increasing the white clover contribution to the stand. White clover cultivars should be chosen in accordance with the intended type of grazing: small leaf cultivars are best suited for continuous grazing by sheep, while large leaf types are best adapted to rotational grazing by sheep. In mixed swards, grazing should be heavy enough to prevent white clover being shaded and thus its decline [52] (\nTable 7\n).
\n\n | \n | Composition (% DM) | \nNutritive value | \n|||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Herbage | \nDM (% as fed) | \nCP | \nCF | \nNDF | \nADF | \nLignin | \nAsh | \nOMD (%) | \nED (%) | \nDE (MJ/kg DM) | \nME (MJ/kg DM) | \nND (%) | \n
Fresh | \n16.8 | \n24.9 | \n19.6 | \n27.5 | \n22.1 | \n3.9 | \n11.3 | \n80.9 | \n77.3 | \n14.2 | \n11.1 | \n82.2 | \n
Dried | \n82.7 | \n22.7 | \n23.4 | \n29.4 | \n28.8 | \n3.5 | \n12.3 | \n65.1 | \n61.6 | \n10.7 | \n8.4 | \n69.3 | \n
Chemical composition and nutritive value of white clover (Trifolium repens) [53].
DM: Dry matter; CP: Crude protein; CF: Crude fiber; NDF: Neutral detergent fiber; ADF: Acid detergent fiber; OMD: Organic matter digestibility; ED: Energy digestibility; DE: Digestible energy; ME: Metabolizable energy; ND: Nitrogen digestibility.
Ribwort plantain (Plantago lanceolata) has a good production of dry matter, mainly in winter activity. In many environments, plantain produces similar amounts of perennial ryegrass fodder. A feature of plantain productivity is its rapid response to moisture in autumn and also the rapid rumen degradation rates to improve dry matter intake [54].
\nIn sheep grazing swards of white clover, ribwort plantain is fairly palatable. It proves to be suitable in combination with grass in swards to sustain growth in finishing lambs. It may also be recommended as an alternative to hay. However, compared to chicory (Cichorium intybus), it supports less live-weight gain and lower hot carcass weights [55] (\nTable 8\n).
\n\n | \n | Composition (% DM) | \n\n | |||||
---|---|---|---|---|---|---|---|---|
Herbage | \nDM (% as fed) | \nCP | \nCF | \nNDF | \nADF | \nLignin | \nAsh | \nOM | \n
Aerial part | \n15.7 | \n20.4 | \n13.6 | \n41.1 | \n29.3 | \n13.8 | \n12.4 | \n— | \n
Chemical composition of Plantago lanceolata [55].
DM: Dry matter; CP: Crude protein; CF: Crude fiber; NDF: Neutral detergent fiber; ADF: Acid detergent fiber; OM: Organic matter.
The sustainability depends on the multi-functional role of farming systems. Pastures are central part of these High Natural Value (HNV) systems [56]. Mediterranean mountain grasslands generate high levels of biodiversity and a range of other environmental services and amenities [57].
\nAs the total area of grasslands has declined, particularly grasslands of high biodiversity, mountain areas are now among the last refuges of High Nature Value (HNV) grassland in Europe. Many traditionally managed mountain grasslands, which have developed under centuries of livestock grazing, are still species-rich compared with lowlands [18].
\nWell-managed grassland is associated with environmental advantages, including soil carbon sequestration, reduced soil erosion, and maintenance of ecosystem services associated with grasslands [9]. Shrub vegetation associated with these grasslands may contribute to the retention of soil water, a reduction in run-off and diminished soil erosion. Under climate changes scenarios that predict an increased frequency of high-intensity rainfall and more events leading to downstream flooding, the positive role of grasslands in mitigating such events may increase [57]. In tests conducted in different regions of the USA, with different soils and slopes varying between 2 and 16.5%, soil losses of 14.6–250.4 t ha−1 year−1 were observed with monocultures of corn or cotton, while under the same conditions with pastures the losses amounted to only 0.01–0.70 t ha−1 year−1 [58].
\nExtensive grazing is an essential tool for reducing fire risk on semi-natural pastures with shrubs and trees [21]. In the Mediterranean, grasslands have an important role in fire prevention. Rural abandonment is leading to the development and dominance of shrub formations, increasing vegetation fuel load and the hazards of fire. Frequently, extensive woodland and shrub vegetation are interrupted by areas of grassland or pasture, which act as effective barriers against propagation of wildfires. Maintenance of open grassland areas is thus essential to maintain landscape heterogeneity and a potential tool to mitigate the risks of wildfires [57]. In drier regions of Europe, and more widely with future climate change projections, wild fires will cause considerable loss of human life, environmental and property damage, and carbon release [21].
\nThreats are endangering the future of grasslands [59]. Although biodiversity is one of the most important ecosystem services provided by European semi-natural grasslands, agriculture remains as a driver of biodiversity loss, either through intensification and conversion of grassland to arable cropping, or land abandonment and loss of the traditional farming practices that have often generated species-rich habitats [18].
\nAppreciation and implementation of mechanisms for payment of environmental services, possibly similar to those already in uses in some forest land uses, may potentially contribute to the economic sustainability and future conservation of grasslands and their multifunctional role [57]. Recently, the Portuguese Carbon Fund has demonstrated interest in remunerating the farmers willing to control shrub encroachment at pastures through the use of non-invasive techniques that promote soil carbon sequestration [59].
\nThe potential of pasture soils as carbon sinks, however, can be difficult to maintain in relation to predicted climate change scenarios, such as increased frequency of droughts and heat waves [57].
\nThe sheep farming associated with permanent mountain pastures is of great significance for the sustainability and for the social and economic development of the local populations; so, the greater and better knowledge of the potential of this type of grasslands is of great relevance for the valorization of regions affected by desertification and less economically favoured.
\nSemi-natural pastures are an important source of feed for sheep grazing and when harvested as hay for the winter period in Serra da Estrela mountain. Therefore, it is necessary to optimize meadow management practices in order to meet their increasing needs for quality forages, as well as the knowing of adequate nutritive value of herbage, essential for a high rate of live-weight gain and overall sheep performance. In this sense, we suggest a guidance or training programmes that should be promoted to make farmers aware of how to improve and sustain pasture productivity.
\nPermanent mountain pastures are also of major importance for the conservation of floristic, faunistic and landscape biodiversity and other related ecosystem services such as carbon sequestration, soil conservation or as a factor in regulating the hydrological cycle. It is important that the traditional practices and the environmental management undertaken by farmers are not endangered by a desire of other stakeholders to transform the landscape, reducing farm capital.
\nDue to its ecological and economic value, it is also important to ensure the maintenance and improvement of these ecosystems in order to promote or increase its biodiversity. Encouraging the development of these land use will allow activities linked to livestock production and provide different externalities and ecosystems, thus according to the environment-supporting programmatic indications of the Common Agricultural Policy.
\nFurthermore, studies are necessary to fully understand the ecological and economical implications of reduction and changes in mountain grasslands in the context of a future rain decrease and global warming.
\nFinally, new researches should be carried out, such as the integrated processing and data analysis related to animal behavior and location, together with the analysis of the nutritional value of pasture species that will allow the creation of a decision support tool in the livestock management process.
\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117096},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"9"},books:[{type:"book",id:"9226",title:"Intelligent User Interfaces",subtitle:null,isOpenForSubmission:!0,hash:"2540a73b78f2f13158366ac0ab9d62a1",slug:null,bookSignature:"Dr. Rüdiger Heimgärtner",coverURL:"https://cdn.intechopen.com/books/images_new/9226.jpg",editedByType:null,editors:[{id:"135236",title:"Dr.",name:"Rüdiger",surname:"Heimgärtner",slug:"rudiger-heimgartner",fullName:"Rüdiger Heimgärtner"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9980",title:"Vision Sensors",subtitle:null,isOpenForSubmission:!0,hash:"fc472f04a4214bf13db3f693a2c7c323",slug:null,bookSignature:"Dr. Vasanth Iyer",coverURL:"https://cdn.intechopen.com/books/images_new/9980.jpg",editedByType:null,editors:[{id:"301000",title:"Dr.",name:"Vasanth",surname:"Iyer",slug:"vasanth-iyer",fullName:"Vasanth Iyer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10260",title:"E-Service",subtitle:null,isOpenForSubmission:!0,hash:"11dab65781b3c4347022c56477311f46",slug:null,bookSignature:"Dr. Kyeong Kang",coverURL:"https://cdn.intechopen.com/books/images_new/10260.jpg",editedByType:null,editors:[{id:"2114",title:"Dr.",name:"Kyeong",surname:"Kang",slug:"kyeong-kang",fullName:"Kyeong Kang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10394",title:"Blockchain Potential in AI",subtitle:null,isOpenForSubmission:!0,hash:"700eff7270bae63fd214974a0bd8e77f",slug:null,bookSignature:"Dr. Tiago M. Fernández-Caramés and Dr. Paula Fraga-Lamas",coverURL:"https://cdn.intechopen.com/books/images_new/10394.jpg",editedByType:null,editors:[{id:"186818",title:"Dr.",name:"Tiago M.",surname:"Fernández-Caramés",slug:"tiago-m.-fernandez-carames",fullName:"Tiago M. Fernández-Caramés"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10403",title:"Recent Advances on Numerical Simulations",subtitle:null,isOpenForSubmission:!0,hash:"d74c4bc8f3f49c49eb2e80810d938611",slug:null,bookSignature:"Dr. Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10403.jpg",editedByType:null,editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10452",title:"Computer-Mediated Communication",subtitle:null,isOpenForSubmission:!0,hash:"ed2d494d96079740341956fe830814ac",slug:null,bookSignature:"Dr. Indrakshi Dey",coverURL:"https://cdn.intechopen.com/books/images_new/10452.jpg",editedByType:null,editors:[{id:"321151",title:"Dr.",name:"Indrakshi",surname:"Dey",slug:"indrakshi-dey",fullName:"Indrakshi Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10517",title:"Swarm Intelligence",subtitle:null,isOpenForSubmission:!0,hash:"c184136bf5b833b19f7e12ace5531773",slug:null,bookSignature:"Dr. Mehmet Emin Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/10517.jpg",editedByType:null,editors:[{id:"148497",title:"Dr.",name:"Mehmet",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10522",title:"Coding Theory - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:null,bookSignature:"Dr. Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:null,editors:[{id:"26327",title:"Dr.",name:"Sudhakar",surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10576",title:"Factoring Ethics in Technology, Policy Making and Regulation",subtitle:null,isOpenForSubmission:!0,hash:"eff20787f4c5417ea12367e8a6d72e92",slug:null,bookSignature:"Prof. Ali G. Hessami and Dr. Patricia Shaw",coverURL:"https://cdn.intechopen.com/books/images_new/10576.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali G.",surname:"Hessami",slug:"ali-g.-hessami",fullName:"Ali G. Hessami"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10651",title:"Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"5806b4efae3bd91c3f56e64e0442df35",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:63},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:19},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"91",title:"Human-Computer Interaction",slug:"human-computer-interaction",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:43,numberOfAuthorsAndEditors:1051,numberOfWosCitations:1806,numberOfCrossrefCitations:1420,numberOfDimensionsCitations:2570,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"human-computer-interaction",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7603",title:"Mixed Reality and Three-Dimensional Computer Graphics",subtitle:null,isOpenForSubmission:!1,hash:"96e6d4a84d98903e442415024f7403f5",slug:"mixed-reality-and-three-dimensional-computer-graphics",bookSignature:"Branislav Sobota and Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/7603.jpg",editedByType:"Edited by",editors:[{id:"109378",title:"Dr.",name:"Branislav",middleName:null,surname:"Sobota",slug:"branislav-sobota",fullName:"Branislav Sobota"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8321",title:"Digital Forensic Science",subtitle:null,isOpenForSubmission:!1,hash:"15540cde4d2e598046f7a520f6c4b107",slug:"digital-forensic-science",bookSignature:"B Suresh Kumar Shetty and Pavanchand Shetty H",coverURL:"https://cdn.intechopen.com/books/images_new/8321.jpg",editedByType:"Edited by",editors:[{id:"70242",title:"Dr.",name:"B Suresh",middleName:"Kumar",surname:"Shetty",slug:"b-suresh-shetty",fullName:"B Suresh Shetty"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6935",title:"Toward Super-Creativity",subtitle:"Improving Creativity in Humans, Machines, and Human - Machine Collaborations",isOpenForSubmission:!1,hash:"98c0eed8bde901e69239d5217d9be28d",slug:"toward-super-creativity-improving-creativity-in-humans-machines-and-human-machine-collaborations",bookSignature:"Sílvio Manuel Brito",coverURL:"https://cdn.intechopen.com/books/images_new/6935.jpg",editedByType:"Edited by",editors:[{id:"170935",title:"Ph.D.",name:"Sílvio Manuel",middleName:"Da Rocha",surname:"Brito",slug:"silvio-manuel-brito",fullName:"Sílvio Manuel Brito"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6563",title:"Machine Learning and Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"223cc648caec000bbfb5bdb3aeca345e",slug:"machine-learning-and-biometrics",bookSignature:"Jucheng Yang, Dong Sun Park, Sook Yoon, Yarui Chen and Chuanlei Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/6563.jpg",editedByType:"Edited by",editors:[{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5518",title:"Holographic Materials and Optical Systems",subtitle:null,isOpenForSubmission:!1,hash:"b028b2c4c816f05035ff7fb7178fc04b",slug:"holographic-materials-and-optical-systems",bookSignature:"Izabela Naydenova, Dimana Nazarova and Tsvetanka Babeva",coverURL:"https://cdn.intechopen.com/books/images_new/5518.jpg",editedByType:"Edited by",editors:[{id:"32332",title:"Prof.",name:"Izabela",middleName:null,surname:"Naydenova",slug:"izabela-naydenova",fullName:"Izabela Naydenova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4519",title:"The Thousand Faces of Virtual Reality",subtitle:null,isOpenForSubmission:!1,hash:"711575fce3e5b5d3d7d44a7cbc1a0746",slug:"the-thousand-faces-of-virtual-reality",bookSignature:"Cecilia Sik Lanyi",coverURL:"https://cdn.intechopen.com/books/images_new/4519.jpg",editedByType:"Edited by",editors:[{id:"106377",title:"Dr.",name:"Cecília",middleName:null,surname:"Sik Lányi",slug:"cecilia-sik-lanyi",fullName:"Cecília Sik Lányi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3532",title:"Brain-Computer Interface Systems",subtitle:"Recent Progress and Future Prospects",isOpenForSubmission:!1,hash:"5005164831ec70d92d9d69788277eb20",slug:"brain-computer-interface-systems-recent-progress-and-future-prospects",bookSignature:"Reza Fazel-Rezai",coverURL:"https://cdn.intechopen.com/books/images_new/3532.jpg",editedByType:"Edited by",editors:[{id:"1995",title:"Dr.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3327",title:"Holography",subtitle:"Basic Principles and Contemporary Applications",isOpenForSubmission:!1,hash:"7589c5eb833076268ef362804d998cf5",slug:"holography-basic-principles-and-contemporary-applications",bookSignature:"Emilia Mihaylova",coverURL:"https://cdn.intechopen.com/books/images_new/3327.jpg",editedByType:"Edited by",editors:[{id:"151277",title:"Dr.",name:"Emilia",middleName:null,surname:"Mihaylova",slug:"emilia-mihaylova",fullName:"Emilia Mihaylova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2176",title:"Modern Speech Recognition",subtitle:"Approaches with Case Studies",isOpenForSubmission:!1,hash:"5b7bf5acf914b5a023b47d690de0da52",slug:"modern-speech-recognition-approaches-with-case-studies",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/2176.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3120",title:"New Trends and Developments in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"beef3079663a77be4c578d4454065e7d",slug:"new-trends-and-developments-in-biometrics",bookSignature:"Jucheng Yang, Shan Juan Xie",coverURL:"https://cdn.intechopen.com/books/images_new/3120.jpg",editedByType:"Edited by",editors:[{id:"36689",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3167",title:"Applications of Self-Organizing Maps",subtitle:null,isOpenForSubmission:!1,hash:"e9d75ec4b405059c7edf889ad434a7cb",slug:"applications-of-self-organizing-maps",bookSignature:"Magnus Johnsson",coverURL:"https://cdn.intechopen.com/books/images_new/3167.jpg",editedByType:"Edited by",editors:[{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:43,mostCitedChapters:[{id:"211",doi:"10.5772/4847",title:"Machine Analysis of Facial Expressions",slug:"machine_analysis_of_facial_expressions",totalDownloads:4868,totalCrossrefCites:81,totalDimensionsCites:147,book:{slug:"face_recognition",title:"Face Recognition",fullTitle:"Face Recognition"},signatures:"Maja Pantic and Marian Stewart Bartlett",authors:null},{id:"205",doi:"10.5772/4841",title:"Investigating Spontaneous Facial Action Recognition through AAM Representations of the Face",slug:"investigating_spontaneous_facial_action_recognition_through_aam_representations_of_the_face",totalDownloads:3274,totalCrossrefCites:66,totalDimensionsCites:99,book:{slug:"face_recognition",title:"Face Recognition",fullTitle:"Face Recognition"},signatures:"Simon Lucey, Ahmed Bilal Ashraf and Jeffrey F. Cohn",authors:null},{id:"9895",doi:"10.5772/8678",title:"A Review of Indoor Localization Technologies: towards Navigational Assistance for Topographical Disorientation",slug:"a-review-of-indoor-localization-technologies-towards-navigational-assistance-for-topographical-disor",totalDownloads:6810,totalCrossrefCites:50,totalDimensionsCites:75,book:{slug:"ambient-intelligence",title:"Ambient Intelligence",fullTitle:"Ambient Intelligence"},signatures:"Jorge Torres-Solis, Tiago H. Falk and Tom Chau",authors:null}],mostDownloadedChaptersLast30Days:[{id:"53837",title:"Volume Bragg Gratings: Fundamentals and Applications in Laser Beam Combining and Beam Phase Transformations",slug:"volume-bragg-gratings-fundamentals-and-applications-in-laser-beam-combining-and-beam-phase-transform",totalDownloads:2236,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"holographic-materials-and-optical-systems",title:"Holographic Materials and Optical Systems",fullTitle:"Holographic Materials and Optical Systems"},signatures:"Ivan Divliansky",authors:[{id:"192442",title:"Dr.",name:"Ivan",middleName:null,surname:"Divliansky",slug:"ivan-divliansky",fullName:"Ivan Divliansky"}]},{id:"70281",title:"Advancing Automation in Digital Forensic Investigations Using Machine Learning Forensics",slug:"advancing-automation-in-digital-forensic-investigations-using-machine-learning-forensics",totalDownloads:620,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"digital-forensic-science",title:"Digital Forensic Science",fullTitle:"Digital Forensic Science"},signatures:"Salman Iqbal and Soltan Abed Alharbi",authors:[{id:"304135",title:"Dr.",name:"Salman",middleName:null,surname:"Iqbal",slug:"salman-iqbal",fullName:"Salman Iqbal"},{id:"304140",title:"Dr.",name:"Soltan",middleName:null,surname:"Alharbi",slug:"soltan-alharbi",fullName:"Soltan Alharbi"}]},{id:"44926",title:"Emotion Recognition Based on Brain-Computer Interface Systems",slug:"emotion-recognition-based-on-brain-computer-interface-systems",totalDownloads:4726,totalCrossrefCites:1,totalDimensionsCites:12,book:{slug:"brain-computer-interface-systems-recent-progress-and-future-prospects",title:"Brain-Computer Interface Systems",fullTitle:"Brain-Computer Interface Systems - Recent Progress and Future Prospects"},signatures:"Taciana Saad Rached and Angelo Perkusich",authors:[{id:"164187",title:"M.Sc.",name:"Taciana",middleName:null,surname:"Rached",slug:"taciana-rached",fullName:"Taciana Rached"},{id:"165310",title:"Dr.",name:"Angelo",middleName:null,surname:"Perkusich",slug:"angelo-perkusich",fullName:"Angelo Perkusich"}]},{id:"44252",title:"Review of Wireless Brain-Computer Interface Systems",slug:"review-of-wireless-brain-computer-interface-systems",totalDownloads:8181,totalCrossrefCites:21,totalDimensionsCites:35,book:{slug:"brain-computer-interface-systems-recent-progress-and-future-prospects",title:"Brain-Computer Interface Systems",fullTitle:"Brain-Computer Interface Systems - Recent Progress and Future Prospects"},signatures:"Seungchan Lee, Younghak Shin, Soogil Woo, Kiseon Kim and\nHeung-No Lee",authors:[{id:"141571",title:"Prof.",name:"Kiseon",middleName:null,surname:"Kim",slug:"kiseon-kim",fullName:"Kiseon Kim"},{id:"164977",title:"Prof.",name:"Heung-No",middleName:null,surname:"Lee",slug:"heung-no-lee",fullName:"Heung-No Lee"},{id:"165217",title:"Mr.",name:"Seungchan",middleName:null,surname:"Lee",slug:"seungchan-lee",fullName:"Seungchan Lee"},{id:"168249",title:"Mr.",name:"YoungHak",middleName:null,surname:"Shin",slug:"younghak-shin",fullName:"YoungHak Shin"},{id:"168250",title:"Mr.",name:"SooGil",middleName:null,surname:"Woo",slug:"soogil-woo",fullName:"SooGil Woo"}]},{id:"16502",title:"Minutiae-based Fingerprint Extraction and Recognition",slug:"minutiae-based-fingerprint-extraction-and-recognition",totalDownloads:8531,totalCrossrefCites:10,totalDimensionsCites:14,book:{slug:"biometrics",title:"Biometrics",fullTitle:"Biometrics"},signatures:"Naser Zaeri",authors:[{id:"28590",title:"Dr.",name:"Naser",middleName:null,surname:"Zaeri",slug:"naser-zaeri",fullName:"Naser Zaeri"}]},{id:"53618",title:"Volume Holography: Novel Materials, Methods and Applications",slug:"volume-holography-novel-materials-methods-and-applications",totalDownloads:2240,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"holographic-materials-and-optical-systems",title:"Holographic Materials and Optical Systems",fullTitle:"Holographic Materials and Optical Systems"},signatures:"Tina Sabel and Marga C. Lensen",authors:[{id:"56428",title:"Prof.",name:"Marga",middleName:null,surname:"Lensen",slug:"marga-lensen",fullName:"Marga Lensen"},{id:"192619",title:"Dr.",name:"Tina",middleName:null,surname:"Sabel",slug:"tina-sabel",fullName:"Tina Sabel"}]},{id:"17173",title:"Thermal Infrared Face Recognition – A Biometric Identification Technique for Robust Security system",slug:"thermal-infrared-face-recognition-a-biometric-identification-technique-for-robust-security-system",totalDownloads:10495,totalCrossrefCites:13,totalDimensionsCites:26,book:{slug:"reviews-refinements-and-new-ideas-in-face-recognition",title:"Reviews, Refinements and New Ideas in Face Recognition",fullTitle:"Reviews, Refinements and New Ideas in Face Recognition"},signatures:"Mrinal Kanti Bhowmik, Kankan Saha, Sharmistha Majumder, Goutam Majumder, Ashim Saha, Aniruddha Nath Sarma, Debotosh Bhattacharjee, Dipak Kumar Basu and Mita Nasipuri",authors:[{id:"33231",title:"Mr.",name:"Mrinal",middleName:null,surname:"Kanti Bhowmik",slug:"mrinal-kanti-bhowmik",fullName:"Mrinal Kanti Bhowmik"},{id:"47022",title:"Dr.",name:"Debotosh",middleName:null,surname:"Bhattacharjee",slug:"debotosh-bhattacharjee",fullName:"Debotosh Bhattacharjee"},{id:"47023",title:"Mr.",name:"Dipak Kumar",middleName:null,surname:"Basu",slug:"dipak-kumar-basu",fullName:"Dipak Kumar Basu"},{id:"104795",title:"Mr.",name:"Kankan",middleName:null,surname:"Saha",slug:"kankan-saha",fullName:"Kankan Saha"},{id:"104930",title:"Mr.",name:"Goutam",middleName:null,surname:"Majumder",slug:"goutam-majumder",fullName:"Goutam Majumder"},{id:"104932",title:"Ms.",name:"Sharmistha",middleName:null,surname:"Majumder",slug:"sharmistha-majumder",fullName:"Sharmistha Majumder"},{id:"104935",title:"Mr.",name:"Ashim",middleName:null,surname:"Saha",slug:"ashim-saha",fullName:"Ashim Saha"},{id:"104937",title:"Mr.",name:"Aniruddha",middleName:null,surname:"Nath Sarma",slug:"aniruddha-nath-sarma",fullName:"Aniruddha Nath Sarma"},{id:"104942",title:"Prof.",name:"Mita",middleName:null,surname:"Nasipuri",slug:"mita-nasipuri",fullName:"Mita Nasipuri"}]},{id:"72065",title:"The Immersive Power of Augmented Reality",slug:"the-immersive-power-of-augmented-reality",totalDownloads:166,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"human-4-0-from-biology-to-cybernetic",title:"Human 4.0",fullTitle:"Human 4.0 - From Biology to Cybernetic"},signatures:"Gabriela Kiryakova",authors:[{id:"314284",title:"Associate Prof.",name:"Gabriela",middleName:null,surname:"Kiryakova",slug:"gabriela-kiryakova",fullName:"Gabriela Kiryakova"}]},{id:"596",title:"Posture and Movement Estimation Based on Reduced Information. Application to the Context of FES-based Control of Lower-Limbs",slug:"posture_and_movement_estimation_based_on_reduced_information__application_to_the_context_of_fes-base",totalDownloads:1958,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"human_robot_interaction",title:"Human Robot Interaction",fullTitle:"Human Robot Interaction"},signatures:"Nacim Ramdani, Christine Azevedo-Coste, David Guiraud, Philippe Fraisse, Rodolphe Heliot and Gael Pages",authors:null},{id:"44907",title:"A Review of P300, SSVEP, and Hybrid P300/SSVEP Brain- Computer Interface Systems",slug:"a-review-of-p300-ssvep-and-hybrid-p300-ssvep-brain-computer-interface-systems",totalDownloads:5551,totalCrossrefCites:36,totalDimensionsCites:60,book:{slug:"brain-computer-interface-systems-recent-progress-and-future-prospects",title:"Brain-Computer Interface Systems",fullTitle:"Brain-Computer Interface Systems - Recent Progress and Future Prospects"},signatures:"Setare Amiri, Ahmed Rabbi, Leila Azinfar and Reza Fazel-Rezai",authors:[{id:"1995",title:"Dr.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai"},{id:"165327",title:"Ms.",name:"Setare",middleName:null,surname:"Amiri",slug:"setare-amiri",fullName:"Setare Amiri"},{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"},{id:"165329",title:"Mr.",name:"Ahmed",middleName:null,surname:"Rabbi",slug:"ahmed-rabbi",fullName:"Ahmed Rabbi"}]}],onlineFirstChaptersFilter:{topicSlug:"human-computer-interaction",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/163162/valentina-di-pasquale",hash:"",query:{},params:{id:"163162",slug:"valentina-di-pasquale"},fullPath:"/profiles/163162/valentina-di-pasquale",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()