Some crop residue and their lignocellulosic composition [71, 72].
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"3315",leadTitle:null,fullTitle:"Advancements and Breakthroughs in Ultrasound Imaging",title:"Advancements and Breakthroughs in Ultrasound Imaging",subtitle:null,reviewType:"peer-reviewed",abstract:"Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world.",isbn:null,printIsbn:"978-953-51-1159-7",pdfIsbn:"978-953-51-7159-1",doi:"10.5772/46053",price:139,priceEur:155,priceUsd:179,slug:"advancements-and-breakthroughs-in-ultrasound-imaging",numberOfPages:306,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"af19682391476ebb4c6a9a556458aef0",bookSignature:"Gunti Gunarathne",publishedDate:"June 5th 2013",coverURL:"https://cdn.intechopen.com/books/images_new/3315.jpg",numberOfDownloads:34565,numberOfWosCitations:50,numberOfCrossrefCitations:56,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:82,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:188,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 18th 2012",dateEndSecondStepPublish:"May 9th 2012",dateEndThirdStepPublish:"October 13th 2012",dateEndFourthStepPublish:"January 11th 2013",dateEndFifthStepPublish:"February 11th 2013",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"156746",title:"Dr.",name:"G P P",middleName:null,surname:"Gunarathne",slug:"g-p-p-gunarathne",fullName:"G P P Gunarathne",profilePictureURL:"https://mts.intechopen.com/storage/users/156746/images/system/156746.jpg",biography:"Dr Gunarathne is a Reader at the School of Engineering, Robert Gordon University (RGU), UK. He received his PhD in electrical engineering from Loughborough University of Technology, UK, in 1985, developing a patented ultrasound imaging system. At RGU, Dr Gunarathne formed the Industrial & Biomedical Instrumentation Research Group. He is also the founder and Director of the LabVIEW Academy & Centre of Excellence for Industrial Instrumentation at RGU. \nDr Gunarathne has gained over 40 years of combined experience in high-speed electronic circuit design, ultrasonic engineering, industrial and biomedical instrumentation, quality control, and Non-destructive-testing research. Dr Gunarathne has chaired many national and international events and his work has been widely published with developments receiving media coverage in television, radio and in the press.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Robert Gordon University",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1008",title:"Radiology Diagnosis",slug:"radiology-diagnosis"}],chapters:[{id:"45098",title:"3D Ultrasound Imaging in Image-Guided Intervention",doi:"10.5772/55230",slug:"3d-ultrasound-imaging-in-image-guided-intervention",totalDownloads:3288,totalCrossrefCites:8,totalDimensionsCites:10,hasAltmetrics:1,abstract:null,signatures:"Aaron Fenster, Jeff Bax, Hamid Neshat, Nirmal Kakani and Cesare\nRomagnoli",downloadPdfUrl:"/chapter/pdf-download/45098",previewPdfUrl:"/chapter/pdf-preview/45098",authors:[{id:"158134",title:"Dr",name:null,surname:"Fenster",slug:"fenster",fullName:"Fenster"}],corrections:null},{id:"45006",title:"Ultrasound-Based Guidance and Therapy",doi:"10.5772/55884",slug:"ultrasound-based-guidance-and-therapy",totalDownloads:3684,totalCrossrefCites:6,totalDimensionsCites:9,hasAltmetrics:0,abstract:null,signatures:"Frank Lindseth, Thomas Langø, Tormod Selbekk, Rune Hansen,\nIngerid Reinertsen, Christian Askeland, Ole Solheim, Geirmund\nUnsgård, Ronald Mårvik and Toril A. Nagelhus Hernes",downloadPdfUrl:"/chapter/pdf-download/45006",previewPdfUrl:"/chapter/pdf-preview/45006",authors:[{id:"161173",title:"Dr.",name:"Frank",surname:"Lindseth",slug:"frank-lindseth",fullName:"Frank Lindseth"}],corrections:null},{id:"44472",title:"Ultrasound Diagnosis of Chest Diseaseses",doi:"10.5772/55419",slug:"ultrasound-diagnosis-of-chest-diseaseses",totalDownloads:3799,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Wei-Chih Liao, Chih-Yen Tu, Chuen-Ming Shih, Chia-Hung Chen,\nHung-Jen Chen and Hsu Wu-Huei",downloadPdfUrl:"/chapter/pdf-download/44472",previewPdfUrl:"/chapter/pdf-preview/44472",authors:[{id:"160412",title:"Dr.",name:"Chih-Yen",surname:"Tu",slug:"chih-yen-tu",fullName:"Chih-Yen Tu"},{id:"167993",title:"Dr.",name:"Wei-Chih",surname:"Liao",slug:"wei-chih-liao",fullName:"Wei-Chih Liao"},{id:"167994",title:"Dr.",name:"Chuen-Ming",surname:"Shih",slug:"chuen-ming-shih",fullName:"Chuen-Ming Shih"},{id:"167995",title:"Dr.",name:"Wu-Huei",surname:"Hsu",slug:"wu-huei-hsu",fullName:"Wu-Huei Hsu"},{id:"167996",title:"Dr.",name:"Hung-Jen",surname:"Chen",slug:"hung-jen-chen",fullName:"Hung-Jen Chen"},{id:"167997",title:"Dr.",name:"Chia-Hung",surname:"Chen",slug:"chia-hung-chen",fullName:"Chia-Hung Chen"}],corrections:null},{id:"44638",title:"Diagnostic Use of Sonography in the Evaluation of Hypertension",doi:"10.5772/56171",slug:"diagnostic-use-of-sonography-in-the-evaluation-of-hypertension",totalDownloads:2794,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Nikolaos Pagonas, Stergios Vlatsas and Timm H. Westhoff",downloadPdfUrl:"/chapter/pdf-download/44638",previewPdfUrl:"/chapter/pdf-preview/44638",authors:[{id:"162890",title:"Dr",name:"Timm",surname:"Westhoff",slug:"timm-westhoff",fullName:"Timm Westhoff"},{id:"163037",title:"Dr.",name:"Nikolaos",surname:"Pagonas",slug:"nikolaos-pagonas",fullName:"Nikolaos Pagonas"},{id:"163038",title:"Mr.",name:"Stergios",surname:"Vlatsas",slug:"stergios-vlatsas",fullName:"Stergios Vlatsas"}],corrections:null},{id:"45100",title:"Ultrasound-Guided Peripheral Nerve Block Anesthesia with Emphasis on the Interscalene Approach to Brachial Plexus Blockade",doi:"10.5772/56645",slug:"ultrasound-guided-peripheral-nerve-block-anesthesia-with-emphasis-on-the-interscalene-approach-to-br",totalDownloads:3084,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"James C. Krakowski and Steven L. Orebaugh",downloadPdfUrl:"/chapter/pdf-download/45100",previewPdfUrl:"/chapter/pdf-preview/45100",authors:[{id:"166482",title:"Dr",name:"Steven L.",surname:"Orebaugh",slug:"steven-l.-orebaugh",fullName:"Steven L. Orebaugh"}],corrections:null},{id:"43905",title:"A New Functional Transcranial Doppler Spectroscopy (fTCDS) Study of Cerebral Asymmetry During Neuro-Cognitive Functions in Men and Women",doi:"10.5772/54877",slug:"a-new-functional-transcranial-doppler-spectroscopy-ftcds-study-of-cerebral-asymmetry-during-neuro-co",totalDownloads:1924,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Philip C. Njemanze",downloadPdfUrl:"/chapter/pdf-download/43905",previewPdfUrl:"/chapter/pdf-preview/43905",authors:[{id:"156033",title:"Prof.",name:"Philip",surname:"Njemanze",slug:"philip-njemanze",fullName:"Philip Njemanze"}],corrections:null},{id:"45102",title:"Follicle Detection and Ovarian Classification in Digital Ultrasound Images of Ovaries",doi:"10.5772/56518",slug:"follicle-detection-and-ovarian-classification-in-digital-ultrasound-images-of-ovaries",totalDownloads:5953,totalCrossrefCites:5,totalDimensionsCites:17,hasAltmetrics:0,abstract:null,signatures:"P. S. Hiremath and Jyothi R. Tegnoor",downloadPdfUrl:"/chapter/pdf-download/45102",previewPdfUrl:"/chapter/pdf-preview/45102",authors:[{id:"30838",title:"Prof.",name:"Prakash S.",surname:"Hiremath",slug:"prakash-s.-hiremath",fullName:"Prakash S. Hiremath"}],corrections:null},{id:"45101",title:"Speckle Noise Reduction in Medical Ultrasound Images",doi:"10.5772/56519",slug:"speckle-noise-reduction-in-medical-ultrasound-images",totalDownloads:5177,totalCrossrefCites:28,totalDimensionsCites:36,hasAltmetrics:0,abstract:null,signatures:"P.S. Hiremath, Prema T. Akkasaligar and Sharan Badiger",downloadPdfUrl:"/chapter/pdf-download/45101",previewPdfUrl:"/chapter/pdf-preview/45101",authors:[{id:"30838",title:"Prof.",name:"Prakash S.",surname:"Hiremath",slug:"prakash-s.-hiremath",fullName:"Prakash S. Hiremath"},{id:"168831",title:"Prof.",name:"Prema T.",surname:"Akkasaligar",slug:"prema-t.-akkasaligar",fullName:"Prema T. Akkasaligar"},{id:"168832",title:"Prof.",name:"Sharan",surname:"Badiger",slug:"sharan-badiger",fullName:"Sharan Badiger"}],corrections:null},{id:"43702",title:"Strategies for Hardware Reduction on the Design of Portable Ultrasound Imaging Systems",doi:"10.5772/55910",slug:"strategies-for-hardware-reduction-on-the-design-of-portable-ultrasound-imaging-systems",totalDownloads:3003,totalCrossrefCites:6,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"D. Romero-Laorden, J. Villazón-Terrazas, O. Martínez-Graullera and\nA. Ibáñez",downloadPdfUrl:"/chapter/pdf-download/43702",previewPdfUrl:"/chapter/pdf-preview/43702",authors:[{id:"22931",title:"Ph.D. Student",name:"David",surname:"Romero-Laorden",slug:"david-romero-laorden",fullName:"David Romero-Laorden"}],corrections:null},{id:"43980",title:"Breaking Through the Speed Barrier — Advancements in High-Speed Imaging",doi:"10.5772/56378",slug:"breaking-through-the-speed-barrier-advancements-in-high-speed-imaging",totalDownloads:1862,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"G. P. P. Gunarathne",downloadPdfUrl:"/chapter/pdf-download/43980",previewPdfUrl:"/chapter/pdf-preview/43980",authors:[{id:"156746",title:"Dr.",name:"G P P",surname:"Gunarathne",slug:"g-p-p-gunarathne",fullName:"G P P Gunarathne"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2266",title:"Infrared Spectroscopy",subtitle:"Life and Biomedical Sciences",isOpenForSubmission:!1,hash:"21ed0818c4fcaf44b2f1e201e68014e3",slug:"infrared-spectroscopy-life-and-biomedical-sciences",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/2266.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3390",title:"Electrodiagnosis in New Frontiers of Clinical Research",subtitle:null,isOpenForSubmission:!1,hash:"ccd9da6b93d7419d735f17e246f78fe2",slug:"electrodiagnosis-in-new-frontiers-of-clinical-research",bookSignature:"Hande Turker",coverURL:"https://cdn.intechopen.com/books/images_new/3390.jpg",editedByType:"Edited by",editors:[{id:"63331",title:"Prof.",name:"Hande",surname:"Turker",slug:"hande-turker",fullName:"Hande Turker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"601",title:"Applied Aspects of Ultrasonography in Humans",subtitle:null,isOpenForSubmission:!1,hash:"1ae2d6052ed8fe2ea909f848105a45f7",slug:"applied-aspects-of-ultrasonography-in-humans",bookSignature:"Phil Ainslie",coverURL:"https://cdn.intechopen.com/books/images_new/601.jpg",editedByType:"Edited by",editors:[{id:"87381",title:"Prof.",name:"Philip",surname:"Ainslie",slug:"philip-ainslie",fullName:"Philip Ainslie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"389",title:"Neuroimaging",subtitle:"Methods",isOpenForSubmission:!1,hash:"e4321a4d45346699f9ada729290e156a",slug:"neuroimaging-methods",bookSignature:"Peter Bright",coverURL:"https://cdn.intechopen.com/books/images_new/389.jpg",editedByType:"Edited by",editors:[{id:"49019",title:"Prof.",name:"Peter",surname:"Bright",slug:"peter-bright",fullName:"Peter Bright"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"772",title:"Positron Emission Tomography",subtitle:"Current Clinical and Research Aspects",isOpenForSubmission:!1,hash:"3812ec1b51ddc478d2a17167a0a576d3",slug:"positron-emission-tomography-current-clinical-and-research-aspects",bookSignature:"Chia-Hung Hsieh",coverURL:"https://cdn.intechopen.com/books/images_new/772.jpg",editedByType:"Edited by",editors:[{id:"126167",title:"Dr.",name:"Chia-Hung",surname:"Hsieh",slug:"chia-hung-hsieh",fullName:"Chia-Hung Hsieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1481",title:"Radioisotopes",subtitle:"Applications in Bio-Medical Science",isOpenForSubmission:!1,hash:"408245da32dcf9a061e72275dd348b04",slug:"radioisotopes-applications-in-bio-medical-science",bookSignature:"Nirmal Singh",coverURL:"https://cdn.intechopen.com/books/images_new/1481.jpg",editedByType:"Edited by",editors:[{id:"48584",title:"Prof.",name:"Nirmal",surname:"Singh",slug:"nirmal-singh",fullName:"Nirmal Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"163",title:"Ultrasound Imaging",subtitle:"Medical Applications",isOpenForSubmission:!1,hash:"aa3c22596ff5852287143fe66a643289",slug:"ultrasound-imaging-medical-applications",bookSignature:"Igor V. Minin and Oleg V. Minin",coverURL:"https://cdn.intechopen.com/books/images_new/163.jpg",editedByType:"Edited by",editors:[{id:"3712",title:"Prof.",name:"Oleg",surname:"Minin",slug:"oleg-minin",fullName:"Oleg Minin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"719",title:"Magnetic Resonance Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"22a011ac72d696199044d841c9ac653b",slug:"magnetic-resonance-spectroscopy",bookSignature:"Donghyun Kim",coverURL:"https://cdn.intechopen.com/books/images_new/719.jpg",editedByType:"Edited by",editors:[{id:"85279",title:"Prof.",name:"Dong-Hyun",surname:"Kim",slug:"dong-hyun-kim",fullName:"Dong-Hyun Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"722",title:"Medical Imaging",subtitle:null,isOpenForSubmission:!1,hash:"3f49fd64e920334f3d51343640f6ee82",slug:"medical-imaging",bookSignature:"Okechukwu Felix Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/722.jpg",editedByType:"Edited by",editors:[{id:"68312",title:"Prof.",name:"Felix",surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1349",title:"Neuroimaging",subtitle:"Cognitive and Clinical Neuroscience",isOpenForSubmission:!1,hash:"c31b8cddd9fb1eff4ad0fc68854b9f54",slug:"neuroimaging-cognitive-and-clinical-neuroscience",bookSignature:"Peter Bright",coverURL:"https://cdn.intechopen.com/books/images_new/1349.jpg",editedByType:"Edited by",editors:[{id:"49019",title:"Prof.",name:"Peter",surname:"Bright",slug:"peter-bright",fullName:"Peter Bright"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73132",slug:"corrigendum-to-soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-ch",title:"Corrigendum to: Soil Erosion Influencing Factors in the Semiarid Area of Northern Shaanxi Province, China",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73132.pdf",downloadPdfUrl:"/chapter/pdf-download/73132",previewPdfUrl:"/chapter/pdf-preview/73132",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73132",risUrl:"/chapter/ris/73132",chapter:{id:"72647",slug:"soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-china",signatures:"Ning Ai, Qingke Zhu, Guangquan Liu and Tianxing Wei",dateSubmitted:"February 25th 2020",dateReviewed:"May 22nd 2020",datePrePublished:"June 29th 2020",datePublished:"March 24th 2021",book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"319114",title:"Ph.D.",name:"Ning",middleName:null,surname:"Ai",fullName:"Ning Ai",slug:"ning-ai",email:"aining_office@126.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},{id:"319299",title:"Prof.",name:"Tianxing",middleName:null,surname:"Wei",fullName:"Tianxing Wei",slug:"tianxing-wei",email:"weitianxing925@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319300",title:"Prof.",name:"Qingke",middleName:null,surname:"Zhu",fullName:"Qingke Zhu",slug:"qingke-zhu",email:"xiangmub@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319301",title:"Prof.",name:"Guangquan",middleName:null,surname:"Liu",fullName:"Guangquan Liu",slug:"guangquan-liu",email:"gqliu@iwhr.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}}]}},chapter:{id:"72647",slug:"soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-china",signatures:"Ning Ai, Qingke Zhu, Guangquan Liu and Tianxing Wei",dateSubmitted:"February 25th 2020",dateReviewed:"May 22nd 2020",datePrePublished:"June 29th 2020",datePublished:"March 24th 2021",book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"319114",title:"Ph.D.",name:"Ning",middleName:null,surname:"Ai",fullName:"Ning Ai",slug:"ning-ai",email:"aining_office@126.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},{id:"319299",title:"Prof.",name:"Tianxing",middleName:null,surname:"Wei",fullName:"Tianxing Wei",slug:"tianxing-wei",email:"weitianxing925@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319300",title:"Prof.",name:"Qingke",middleName:null,surname:"Zhu",fullName:"Qingke Zhu",slug:"qingke-zhu",email:"xiangmub@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319301",title:"Prof.",name:"Guangquan",middleName:null,surname:"Liu",fullName:"Guangquan Liu",slug:"guangquan-liu",email:"gqliu@iwhr.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}}]},book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11931",leadTitle:null,title:"Structural Shells",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tShells are one of the special and, at the same time, widely used structures in civil engineering. Shells form a wide range of structures, including bridge decks, retaining walls, slabs, tunnel linings, dams, etc. The concrete structure formworks are also designed using steel shells usually. Shells can be made using various materials such as prestressed or reinforced concrete, steel plates, and even fabrics. Although the analysis, design, and construction of shell structures are slightly more complex than other types of structures, in many cases, such as fuel tanks, decks, and some underground structures, the use of shells is inevitable. Also, from an architectural point of view, in many cases, no other type of structure can be as beautiful as structural shells. Therefore, this book has covered all matters related to the history, analysis, design, and construction of shell structures. Also, the design of shells against special loads such as earthquakes, blasting, and wind has been considered. Special shell structures such as pneumatic and fabric shells are also described in detail.
",isbn:"978-1-83969-675-6",printIsbn:"978-1-83969-674-9",pdfIsbn:"978-1-83969-676-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"b6e8444b2c45773bf9b3d60c236b5630",bookSignature:"Dr. Saeed Nemati and Prof. Farzaneh Tahmoorian",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11931.jpg",keywords:"Types of Shells, Background of Shells, Finite Element Methods, Approximate Methods, Prestressed Shells Design, Pneumatic Shells, Fabric Shells, Steel Shells Construction, Preconstructed Shells, Shells in Tunnels, Shells in Dams, Shells",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 27th 2022",dateEndSecondStepPublish:"May 25th 2022",dateEndThirdStepPublish:"July 24th 2022",dateEndFourthStepPublish:"October 12th 2022",dateEndFifthStepPublish:"December 11th 2022",remainingDaysToSecondStep:"20 hours",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Professional civil engineer and creative researcher in infrastructure and construction fields. Board member of some companies with about 60 books and the winner of 17 national/international awards with more than 30 years of experience in academic and industrial roles.",coeditorOneBiosketch:"Dr. Farzaneh Tahmoorian works as a lecturer at the Central Queensland University (CQU), Australia, and has broad work experience for over 10 years in many construction projects and projects related to road construction, waste management, landfills construction, etc. She is the recipient of various awards such as the Australian Postgraduate Award, Western Sydney Top-up Award, Award of Best Employee of Tehran Municipality, and the author of more than 20 books and book chapters.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"296316",title:"Dr.",name:"Saeed",middleName:null,surname:"Nemati",slug:"saeed-nemati",fullName:"Saeed Nemati",profilePictureURL:"https://mts.intechopen.com/storage/users/296316/images/system/296316.jpeg",biography:"Dr. Saeed Nemati (1969) is a professional writer, translator, editor, journalist, engineer, researcher, and inventor. He is a senior academic member at QIAU and executive director of the World Civil Engineering Information Centre. Dr. Nemati obtained his diploma in building and construction from TAFE Australia. He also received his B.Eng degree in civil engineering, M.Eng degree in environmental engineering, and PhD in infrastructure engineering from Tehran Polytechnic, Tarbiat Modares University (as a top student) and Western Sydney University, respectively. He has about 30 years of work experience in large infrastructure project management. Dr. Nemati is a full member of the Australia Society of Authors with many published ISI articles and books. In addition, he is the winner of 17 national and international awards in civil engineering. His main research interest is innovative ideas in civil engineering with a focus on the design automation and construction robotic technology.",institutionString:"Western Sydney University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Western Sydney University",institutionURL:null,country:{name:"Australia"}}}],coeditorOne:{id:"223271",title:"Prof.",name:"Farzaneh",middleName:null,surname:"Tahmoorian",slug:"farzaneh-tahmoorian",fullName:"Farzaneh Tahmoorian",profilePictureURL:"https://mts.intechopen.com/storage/users/223271/images/system/223271.jpg",biography:"Dr. Farzaneh Tahmoorian works as a lecturer at the Central Queensland University (CQU), Australia, and has broad work experience for over 10 years in many construction projects and projects related to road construction, waste management, landfill construction, etc. She obtained her Ph.D. at Western Sydney University (WSU), Australia; her M.Sc. at the University of Technology, Sydney (UTS), Australia, and her B.Sc. at the International University of Qazvin, Iran. Dr. Tahmoorian is the recipient of various awards such as the Australian Postgraduate Award, Western Sydney Top-up Award, Award of Best Employee of Tehran Municipality, etc. Her research interests are in asphalt mix design, pavement engineering, road and transport engineering, waste management, and sustainability. She is the author of more than 20 books and book chapters and has published in international journals and conference proceedings.",institutionString:"Central Queensland University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Central Queensland University",institutionURL:null,country:{name:"Australia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347259",firstName:"Karmen",lastName:"Daleta",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"karmen@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"62260",title:"Significance of Agricultural Residues in Sustainable Biofuel Development",doi:"10.5772/intechopen.78374",slug:"significance-of-agricultural-residues-in-sustainable-biofuel-development",body:'\nAs at 2012, world basic energy supply touched 560 EJ, corresponding to about 19,000 Mtce [1]. Of this energy supply, more than two-third is made up of fossil fuels, nuclear power was made up of 5% while 3% was renewable energy comprising hydropower, geothermal, solar, wind, and tidal. The balance is made up almost entirely of biomass and waste, which amounted to 10% of the world market. This portion of the energy considerably provided about 56EJ/y of the energy supplies; an amount, which is equal to three times the energy contributed by all other renewable energies in totality. However, considering resource report and reserves, biomass did not comparatively attract desired interest and data are not as extensively available as those for oil, gas, and coal, although reasonably good data are available for the demand and supply of biomass [2, 3].
\nOf importance is the renewable energy resources meant for locomotion and generation of electric power to curb the menace of climatic, economic, environmental and political concerns associated with the combustion of fossil fuel. Bioenergy, which is the utilization of bio-based materials, including plant materials and manure, to produce renewable fuels for transportation and to generate electricity sustainably. This fuel is characterized with low-carbon emission compare to fossil fuels while communities also stand to benefit immensely from the sale of this local resource [4]. Bioenergy is among the various policies put in place to reduce the dependence on the use of fossil fuel and it has been propose to cut US. oil use in half by 2030, and consequently, this practice will ensure the propensity of phasing out coal as electricity producing feedstock. An important key to exploring biomass resources sustainably is to focus on the right ones, and to develop them in holistic ways and at appropriate measures [5].
\nCellulosic biomass may be derived from agricultural sources, such as crop residues and perennial energy grasses, as well as forest sources, such as forest residues and woody biomass. Crop residues mainly include corn stover, wheat straw, and rice straw. Because these resource is by-products of crop production, their collection and utilization ensures sustainable practice and does not result in food energy feud and land competition. Therefore, the negative effects of cellulosic biomass production from crop residues on food prices can be expected to be negligible. Although cellulosic feedstocks differ significantly in their environmental performance [5], they can provide commensurate advantage and prospect for various environmental benefits when compared with the coal they will substitute [6]. China is a major producer of corn, wheat, and rice. It produced about 20% of the world’s corn and wheat, and 26% of the world’s rice, in 2010 [7]. Therefore, China is among the nation that can ensure universal practice of potential production of a large amount of crop residues, which can reduce the nation’s reliance on coal as a major energy source.
\nThe union of concerned Scientists evaluated the magnitude of biomass resource potentially feasible from the united states production capacity in a bid to possibly comprehend the main biomass feedstock as well as the operational scales in order that the synthesized biofuel carefully balances the energy and environmental trade-offs. It was discovered that the nation could harness nearly 680 million tons of biomass resources annually up to 2030 [8]. This resource was sufficiently observed to be suitable to generate well above 10 billion gallons of ethanol, or 166 billion kilowatt-hours of electricity, which is equivalent to about 4% of total US. power consumption in 2010. Agricultural biomass has been earmarked to be an important energy resource in this wise [9]. Among the feedstocks available in abundance to the US are the crop residues and the choice of selecting the appropriate agricultural biomass and manure for bioenergy production is a measure of some factors, which may include the type and scale of resources in each location. The use of agricultural residues and manure to produce bioenergy offers a significant edge for local and regional economies.
\nCurrently, 17% of the global population remains without electricity an amount, which is estimated to be about 1.2 billion people [10]. The climatic and geographical hindrances prevent easy accessibility to rural or remote areas where mainstream of this estimates reside; this constraint hampers the extension of power grids to these locations. An alternative to this problem is the exploration of renewable energy sources, which are increasingly the source of electricity for isolated systems in rural areas [10]. The physicochemical characteristics of biomass make it an attractive source to be harnessed for energy generation [11].
\nAgricultural residues are carbon-based materials generated as a byproduct during the harvesting and processing of agricultural crops. Agricultural residues which are produced during harvesting are primary or field-based residues while those produced along with the product during processing are secondary or processed based residues. Agricultural residues are heterogeneous, varying in bulk density, moisture content, particle size and distribution relative to operational handling. They are usually fibrous, low in nitrogen and vary with geographical location [12]. These field residues are occasionally utilized as fertilizer, for erosion control and as fodder for livestock. Almost half of these resource are combusted on the farm prior to the commencement of another farm season.
\nProcess residues offer high prospect as an energy source. Chemical composition of any crop residue varies depending on several factors among, which may include species, age of residue or period of harvest, physical composition including length of storage and harvesting practices [13, 14]. Agricultural residues are produced as a waste product from food crops such as maize, wheat, sunflowers, and so on. Currently, only small proportion of these residues are being used by farmers as feed for livestock and the rest of these are plowed back into the soil or burned to get rid of the huge volumes of biomass before planting the next crop. The biggest advantage of utilizing agricultural residues is that it does not compete with the production of food, and if it can become a by-product that can be utilized economically for the production of energy, it will result in lower food prices. It is estimated that roughly one ton of residue is produced for every ton of grain harvested [15].
\nApart from the grains of crops such as corn, wheat, and rice which as sourced for food, the remnants or left over from the processing of these grains also serve as an important resource. These residues generally makeup at least 50% by mass of the biomass in US grown crops. Over time, these resources have been sourced for animal bedding, combusted, or allowed to decay on farmlands. The recent development for use of the biomass residues for ethanl production or electricity generation sequel to scientific discovery has raised hope for the resource for both economical and environmental benefits. Significantly, the US agriculture can probably support up to 155 million tons of residues for producing bioenergy in 2030 [8]. Without the need of additional land requirement since these residues is by-product of major crops [16].
\nResidues are known to offer a lot of advantages ranging from erosion prevention and mitigation against soil carbon depletion, their use for soil bioenergy production may adversely impact on these benefits, therefore, their utilization should be subject to certain circumstances, and even then, only at a predetermined magnitude. The amount of residues that can be collected is subjective and depends on several conditions relative to the farmland, this should be considered sustainably as removal of too much resdiues may cause exposure of the land to excessive erosion while too less or no removal of the residues can inadvertently prevent soils from drying in spring, thereby affect the planting season.
\nRemoval of residues for bioenergy potential and application can impact negatively on other agricultural practices. The environment could be worsen as a result of excessive exposure of the farmland. In order to minimize the effect of this, farmers can employ various strategies to curb the effect. For instance they can use no-till farming and indulge in cover cropping to decrease soil erosion and water pollution. This will enhance agricultural production sufficiency while also provide abundantly the amount of residues for bioenergy biofuel production [17].
\nIn corn-growing regions, large quantities of corn stover—leaves and stalks left over after corn is harvested—are available to produce ethanol. Corn residues are abundant near existing facilities fitted to produce and distribute ethanol made from corn grain. Indeed, companies are building the first three commercial-scale efforts to produce ethanol from agricultural residues near such existing facilities in Iowa and Kansas. Producing ethanol from corn grain and corn stover at the same location can reduce the use of natural gas and electricity by the combined facility, curbing the environmental footprint of the fuel [18].
\nLivestock raised in very large confined animal feeding operations generate an enormous amount of manure, which can be used for bioenergy, but also frequently pollute water supplies in many locations. Fortunately, on the smaller end of the livestock production scale, farmers convert manure into biogas with the aid of anaerobic digesters resulting in both economic and environmental paybacks. The biogas can be employed to provide heat and power on the farm, or it can be further purified and sold as renewable natural gas for use elsewhere. Prospect of anaerobic digesters for biogas production from manure can enhance water quality, reduce obnoxious greenhouse gas from manure, and assist farmers to fixate nutrients to the soil. In the United States, reports show that almost 60 million tons of manure can be adopted to produce bioenergy in 2030 [8].
\nThis resource is best used close to where livestock produces it, and would ideally be integrated with crop production. Crop residues do not usually appear in official statistics hence an estimate of the amount of crop residues produced are usually deduced based on production data [19, 20]. Available data for processing residues is generally poor, due to a wide variety of processing techniques producing an array of different stocks of residues [21, 22]. The ratio between main product and residue vary depending on a set of factors including variety, moisture content, nutrient supply, and use of chemical growth regulators among others. In reality, there are factors which limit the use of certain residues for bioenergy production such as scattered abundance, technical constraints, ecosystem functions, and other demands such as animal fodders, fertilizer, domestic heating, and cooking for which the application of the resource is being explored for.
\nBentsen et al., presented a report relative to the production data of some crops which were combined with the residue-to-product ratios (RPR) of the different crops to obtain the amount of residues for each annual crop and from perennial plantation crops. The analysis showed that the estimated total amount of crop residue that is potentially available for energy was 150 million tonnes. Using 30% conversion that is typically obtained in biomass to energy conversion systems efficiency and the heating value data, these residues can generate about 0.60 EJ, which is equivalent to 34% of the current energy consumed in Nigeria.
\nIn accordance to the report of World Health Organization (WHO), United Nations Development Program (UNDP), 1.5 billion people, implying an estimated one-quarter of the world’s population, do not have access to electricity [23]. In order to meet the UNDP millenium development goals, modern energy service need be supply to about two billion people. Lack of accessible and uninterrupted electricity supply and liquid transportation fuels undermines undeveloped and developing countries deleteriously, where population density is high and access to resources is low. About 2 billion people require on solid fuels (Figure 1), which are employed primarily for cooking and heating purposes. This development of combusting biomass environmental pollution and health issues. In the long run, the effect incurs health costs, where the main victims are the woman and children, due to the burning of solid fuels in poorly ventilated housing [23, 24, 25].
\nPrimary energy supply of biomass resources globally in 2013 (WBA Global Bioenergy Statistics 2016). Source: Based on data from World Bioenergy Association (2016).
Contrarily, developed nations sourced for bioenergy to combact the menace of environmental pollution due to CO2 emission and possibly reduce it and provide domestic energy [26]. Energy crops with potential to generate high-yielding lignocellulosic biomass have been studied by [27]. Exploration of the special energy crops in developing countries may possibly displace food crops resulting in food-energy fued [28, 29, 30]. Food security, as well as energy provision from these crops, can be ensured when the degraded farmlands are used to grow crops after the deforestation, which can result in CO2 emissions as a result of excessive land use [31]. Hence, opportunities abound from dual cropping process, which can enhance agricultural productivity by generating bioenergy from agricultural waste while food production is ensured.
\nAlbeit the enormous advantages of using agricultural residues as a waste stream [32], Kim and Dale opined that clearing the farm of some types of agricultural residues may result in some serious environmental concerns [26]. For instance, recurrent continual harvesting of total above ground biomass from annual cereal crops can ultimately reduce soil organic matter, causing long-term degradation of soil fertility, and rapidly promoting CO2 emissions [33]. However, an example of removing partial residues has been demonstrated for rice (
In exploring parallel circumstances, environmental factors such as temperature, rainfall, and altitude affect the production of crop from different locations. Thus, identification of source feedstocks suitable for dual-use cropping and that are available in regions with energy scarcity is imperative. In this regard, an existing dual-use feedstock that is underused is endocarp tissues from horticultural fruit crops. For instance, the endocarp of a drupe fruit is the inedible shaft of the fruit that encloses the seed, and which is mostly thrown out after processing. The hardened drupe endocarp is made up of predominantly lignin content of any woody feedstock which can be as high as 50% wt/wt [35, 36].
\nIn biofuel synthesis, lignin offers much higher energy content compared to cellulosic biomass [37, 38]. In practice these crops are majorly horticultural crops. The geographical distribution of selected crops and their individual potential for bioenergy synthesis was studied by Mendua et al. [35] The considered crops include coconut (
The prospect of biomass feedstock for synthesis of biofuel and as starting materials for industrial processes cannot be overemphasized, following this development; experts forecast the potential of agricultural residues in augmenting the energy need globally in the near future thereby accounting for a significant part of international agricultural transactions in the nest few decades. However, the cost of petroleum product is usually the yardstick for evaluating the economic viability of bioenergy, although social ane environmental concerns are possible factors that can possibly fast track the schedule [39].
\nTypically, biomass composition is usually considered from three major components namely, cellulose, hemicellulose, and lignin (Table 1). The process of biochemical transformation processes of biomass is aimed at the disruption of the hemicellulose part in order to enable easy reachability to the cellulose, however, there is no alteration done to the lignin component [21]. Nevertheless, the lignin fraction can be converted to important fuel using a thermochemical conversion mean. Anaerobic digestion and fermentation are the two biochemical methods where biomass is converted into a valuable substance (Table 2).
\nCrop | \nResidues | \nResidue | \nComposition | \n(Dry weight basis) | \n
---|---|---|---|---|
\n | \n | Cellulose | \nHemicellulose | \nLignin | \n
Rice | \nStraw, husk, stalk | \n0.36 | \n0.24 | \n0.16 | \n
Maize | \nCob, husk, stalk, stover | \n0.35 | \n0.23 | \n0.19 | \n
Soybean | \nHusk, stalk | \n0.40 | \n0.16 | \n0.16 | \n
Groundnut | \nHusk | \n0.30 | \n0.30 | \n0.40 | \n
Hazelnut | \nHusk shell | \n0.30 0.26 | \n0.16 0.30 | \n0.53 0.43 | \n
Tobacco | \nStalk, leaf | \n0.36 | \n0.34 | \n0.12 | \n
Sunflower | \nStalk, head | \n0.48 | \n0.35 | \n0.17 | \n
Almond | \nShell | \n0.51 | \n0.29 | \n0.20 | \n
Wheat | \nPods, stalk | \n0.38 | \n0.27 | \n0.18 | \n
Sugar cane | \nBaggasse, top and leaves | \n0.44 | \n0.32 | \n0.24 | \n
Cotton lint and cotton seed | \nBoll, shell, husk, stalks | \n0.80 | \n0.20 | \n— | \n
Grasses | \nStraw | \n0.40 | \n0.50 | \n0.10 | \n
Barley | \nStraw | \n0.46 | \n0.23 | \n0.16 | \n
Conversion processes | \n\n | Biomass | \nComponents | \n\n |
---|---|---|---|---|
\n | Fat and oils | \nProtein | \nSugar and starch | \nLignocellulosic | \n
Direct combustion | \n✓ | \n\n | \n | ✓ | \n
Anaerobic digestion | \n✓ | \n✓ | \n✓ | \nCellulose only | \n
Fermentation | \n\n | ✓ | \n✓ | \nCellulose only | \n
Transesterification | \n✓ | \n\n | \n | \n |
Pyrolysis | \n✓ | \n✓ | \n✓ | \n✓ | \n
Gasification | \n✓ | \n✓ | \n✓ | \n✓ | \n
Primary biomass conversion process and processed biomolecules [21].
Anaerobic digestion is an important conversion method appropriate for bioenergy synthesis from agricultural residues and some other organic products [40]. It has been researched extensively in the production of bioenergy for both domestic and industrial applications [41]. The process involves the utilization of microorganism for conversion of moist organic substance in an anaerobic environment to generate CO2, biogas and some other impurities such as hydrogen sulfide [21]. Along the product a waste stream digestate is generated which are usually utilized as manure of the farmland. The generated biogas is characterized with high-energy content of one-third of the lower heating magnitude of the feedstock from which it is produced [42]. In the quest for renewable energy production in the form of biogas, this method has been studied succinctly. Moreover, there is inherent advantage of carbon capture for CO2 mitigation [39, 41]. Among the various biomass resources that has been investigated, algae stand prominent as an agricultural residue producing significant amount of biogas in many locations of the world [39].
\nBesides, another vital approach of biomass conversion is an enzymatic controlled anaerobic process [43], which is employed in the synthesis of bioethanol from lignocellulosic biomass. In this process, the first action is the pretreatment of the raw biomass and subsequent hydrolysis prior to fermentation process. The cellulosic component of the biomass is transformed into glucose via enzymatic hydrolysis converts the cellulose component of the biomass into glucose while the hemicellulose part affords pentose and hexoses. Microorganism then converts the glucose into ethanol. This is affected by the action of biological catalysts to turn fermentable sugars to important chemicals (usually alcohols or organic acids). The most essential product of fermentation has been ethanol; however, there are some other useful substances such as hydrogen, methanol, and succinic acid that are generated. The major fermentation substrates are hexoses, which are mostly glucose, while modified fermentation organisms are used to convert pentose, glycerol, and other hydrocarbons to ethanol [44].
\nFurthermore, fermentation process is a conventional and extensively considered method in the treatment of waste streams, as well as for ethanol synthesis from agricultural residues, such as corn cobs and sugar beets [43]. Using fermentation sugars in sugarcane as feedstock, Brazil established a successful bioethanol plant. In 2011, about 5.57 billion gallons of ethanol is generated as fuel from this program, an equivalent of about 24.9% of the world’s total ethanol utilization in form of fuel [21].
\nTransesterification reaction is used to synthesize biodiesel by employing the ethanol along with large branched triglycerides into smaller straight-chain molecules usually in the presence of a catalyst [40]. The biodiesel produced is used in diesel engines either pure or in blend with fossil diesel. In spite of the success recorded in various part of the world, biodiesel production in commercial scale is still at evolving stage in Africa [40, 45] despite the myriad of feedstock available and the potential of this important biofuel.
\nVarious other methods of thermochemical conversion processes for biomass conversion abounds, which are carried out at supercritical temperature and pressure and are usually at higher reaction condition compared to biochemical processes [46]. This process has been employed to generate a number of important bio-based products. These methods include direct combustion, pyrolysis, gasification and hydrothermal liquefaction (Table 2).
\nAn important method for biomass conversion via thermochemical route is direct combustion methods is employed to produce the major bioenergy resource of the world accounting well above 97% of world bioenergy index [43]. It is the most common way of extracting energy from biomass. Direct combustion methods produce energy only in the form of heat and electric power as such it is not employed for biofuel production [47] and it considered several feedstocks such as energy crops, agriculture residues, forest residues, industrial and other wastes [48].
\nAnother production process is pyrolysis, which is an important biomass conversion method that heralds the combustion or gasification of solid fuels. It comprises of thermal degradation of biomass feedstock at temperatures of about 350–550°C, under pressure, in air tight compartment [21]. This approach affords three fractions: liquid fraction (bio-oil), solid (largely ash), and gaseous fractions. Pyrolysis has been useful over time in charcoal production, however, it is only been recently considered due to the mild temperature and short residence time [49]. The product generated from the fast pyrolysis technic is known to be made up of more than two-third of the feedstock in liquid content and is suitable for use in engines, machinery and myriads of other applications [49]. An integrated approach where fast-pyrolysis can be co-processed with fossil fuel in conventional refinery is the current trends in research in which refined hydrogen can be utilized for blend to upgrade the oil into locomotive fuels and, in turn, some gases of pyrolysis are employed in the refinery [42, 50]. The feasibility of this approach is a measure of the comparable cost of natural gas, biomass feedstock, and incremental capital costs. Co-processing of petroleum with renewable agricultural residues offers advantages from both technological and economic considerations.
\nSubject to sustainable practices and advocacy as well as the availability of feedstock, the utilization of biomass feedstock in biofuel and bioenergy production promise to be prominent approach and the generated biofuel products are known to be comparative in characteristic feature with petroleum products. The first large-scale plant facility employing fast pyrolysis and bio-crude refining method in the United States amounting to about $215 million projects is the KiOR Inc. plant situated in Columbus, Mississippi [50].
\nPyrolysis of biomass and their direct liquefaction method with water are often used mistaking to mean the same thing; however, there exist a striking difference between the two processes. Although they are both thermochemical conversion methods that involve the alteration of various components of biomass into liquid products. Whence liquefaction involves decomposition of macro-molecule feedstock into smaller fragments of light molecules where an appropriate catalyst is employed in the conversion. Subsequently, the unstable smaller fragments are re-polymerized into oily constituent with comparable molecular weights with fossil equivalent. Whereas in pyrolysis, the generated fragments are instantaneously merged to an oily compound and the use of catalyst is predominantly may be subject to necessity [43].
\nThe potential for bioenergy generation from agricultural residues is being studied intensively and many studies have been conducted on both a regional and a global scale. In most cases, the outcomes of these studies vary considerably because of factors, such as the residue to product ratio and the sustainable removable amount of residues, used to calculate potentials range substantially.
\nSo far, a lot of studies in different countries have been conducted for the assessment of availability of residual biomass. Scarlat et al. [51] assessed the availability of residual biomass of agricultural and forest crops suitable for bioenergy synthesis in Romania. Crop yield, variation multi-annual yield, environmental and economic constraints, and competitive uses were the various measures utilized to estimate agricultural residues. A comparable work was developed by Shonhiwa [52] who explored the magnitude of biomass available for energy production using thermochemical conversion technologies in Zimbabwe. Besides, Iye and Bilsborrow [53] evaluated the propensity of agricultural residues in Nigeria based in six areas; three situations were considered subject to the collection and availability of biomass proportion.
\nMoreover, in Argentina energy potential of residual biomass derived from herbaceous and horticultural crops was studied by Roberts et al. [54]. In Colombia, several studies were carried out to determine the features of residues from agriculture, animal, forestry, and municipal solid waste in order to evaluate its energy potential [11, 55]. Subject to the geographical location of Colombia tropics, Colombia has comparative advantages in the production of agricultural and forest biomass and its potential is sufficient to satisfy the energy demands [56].
\nAs an example, Hiloidhari assumes a RPR of 2 for maize [57], whereas the IEA considers a RPR of 1.5 [58] while Kim et al. adopted a ratio of 1 [59]. Similarly, the fraction of the produced residues that can be detached in a sustainable manner is in the range of 20 [60] to 50% [61] although 70% is recorded in some studies [62]. Apparently, this has a huge impact on the resulting propensity for bioenergy production.
\nFurthermore, numerous works have assessed the technical feasibility of crop residue production in China. Jiang et al. [63] used a GIS-based approach to examine the availability of crop residues in China. A number of cereal crop were considered and the findings demostrated China potential to provide about 506 million dry biomass metric tons of the residues annually. In another study, Qiu et al. [64] adopted remote sensing data and reported about 729 million MT crop residues in 2010, of which about 20–45% of this amount could substitute coal subject to regional utilization and customary needs of crop residues. Liu et al. [65] discovered that about 630 million MT of crop residues was harvested annually over a decade between 1995 and 2005. The observable dicotomy is as a result of the several factors such as considered crops, assumptions relative to crop-to-residue ration, and residue collection methodology, which is evidence in the estimated technical availability of crop residues available in the results.
\nIn estimation of the technical potential of crop residues production, production cost of the residues and the cost of feedstock were never considered in past reports. In certainty, farmers’ preparedness to collect crop residues rely significantly on the yields and production costs of crop residues as well as on the biomass prices provided in the market. Specifically, the biomass prices offered must cover the costs of collecting crop residues. In this regard, Chen [66] examined the potential yield of each type of crop residue in China at various prices and subsequently, estimated the collective supply of crop residues at these prices. As regards the crop residues, different residues were considered as potential residues and due to the inherent yield and cost uncertainty, they derived the supply curves of the crop residues using alternative assumptions about the production costs of crop residues and residue collection technology.
\nIn Tanzania, the major commercially sourced after agricultural crops include sugar, cotton, tea, cashew nut, tobacco, coffee, and sisal. Significant amounts of residues from these crops have been utilized for the cogeneration of electricity in the sugar sector. Convesely, only a small amount of sisal residues had been utilized as substrate in a pilot biogas plant to generate electricity since 2008. Moreover, almost all biomass can be converted into energy; crop residues are not an exception. The types of residues available for energy generation in the commercial crop sector in Tanzania were bagasse, coffee husks, cashew nut shells, tobacco stems and sisal pulp [67].
\nThe energetically available share of these residues was determined by the termed non-energy applications, whence the energy content of residues is influenced by the plant structure and the moisture content of the residue. Considering the account of these different parameters, the heating value for every tonne of dry matter had been reported. Although they submitted to probability of the estimation due to expedient losses during collection and transportation, the upper bound demonstrated that all residue types contain a incredible energy propensities. The combined potential of 6053 TJ is equivalent to 1680 Gigawatt hours (GWh). This estimated maximum potential is equivalent to over 37% of the country’s electricity generation of 4553 GWh in 2008 [68].
\nSignificantly, the role of biofuels and bioelectricity as an important sustianble fuel in today’s fuel and electricity grid cannot be underestimated due to their presumed potential to revolutionize the bioenergy sector. Researchers in various research institutions around the world are engaging in unprecedented investigation on converting biomass into biofuels and other chemicals and products. For instance, reserachers of diverse field of specialization at the Biocentury research farm, Iowa State University are currently investigating new approaches for conversting agricultural residues and other advanced feedstocks into biofuels, while social scientists are preoccupied with the analysis of the economic blueprint of bioenergy on Iowa agriculture.
\nIn developing the technological practices and policies, there is the need to use agricultural biomass resources responsibly to ensure that communities across the every location and agencies benefit both financially and environmentally while the nation abates its oil and coal use and global warming emissions. However, achieving this quest will require private investment and smart public policy.
\nThe IEA World Energy Outlook [69] suggested that renewables could form an integral proportion of the global primary energy mix in the near future, up to a fifth of demand (Figure 2), while coal could provide a quarter by 2040. A great deal of this renewable energy could be from hydroelectricity, solar PV, and wind power while cofiring practices of biomass could augment these sources while not requiring the premature retirement of coal assets, many of which are still in the early days of operation in places Asia. Cofiring solid fuel with coal is a relatively low-cost, relatively safe method of adding biomass capacity without a major disbursement of capital expenditure compared to a dedicated biomass plant. In an effort to compare the different global biomass resource, a presentation of specific types of biomass that exist and identification of those best suited for combustion for power generation is imperative. Numerous practices have been suggested to ensure a sustainable practice. This biomass resource can be combined with any fossil-fuel in any of the following practice, such as:
Cofiring solid biomass particles with coal;
Mixing with synthesis gas; and
Landfill gas or biogas with natural gas.
A comparable projection of the primary energy demand in the world in 2040 (Source: [
Bioenergy is derived from biomass, which can be deployed as solid, liquid, and gaseous fuel for a wide range of uses including heating, electricity, and cooking. It can also provide substantial climate change mitigation benefits when developed appropriately, and therefore, can be instrumental in working toward the attainment of the Paris Agreement goals. Among the variously available resource, agricultural wastes are biomass considered in on-going research for biofuel and bioenergy production as well as synthesis of important chemicals for industrial applications. These resources are relatively abundant around the world and can serve a dual purpose of energy production and environmental protection.
\nMoreover, the quantity of residues originating from the food processing is usually huge, and their exploration for energy generation can provide a considerable volume of renewable energy. Nevertheless, current application of these residues includes utilization as livestock feed, promoting the production of highly valued meat and dairy products. These commodities are important sources of protein in the human diet, and cannot be left out without affecting the quality of food consumption. Hence, exploring residues for non-feed purposes such as biofuel and bioelectricity requires adaptations in the food system to compensate for protein losses. Therefore, based on the available reports in literature and the various policies for sustainable practices that is geared toward pollution mitigation. Hence, these residues are important feedstocks of immense potential for sustainable biofuel and bioenergy production.
\nThe authors would like to express our gratitude to Dr. Olorunnisola Kola Saheed for his effort in taking time to read through the manuscript and providing his valuable technical inputs.
\nThe authors declare that there is no conflict of interest in the chapter whatsoever.
Textiles are susceptible to micro-organisms and their products (e.g. toxins) known to cause infection and intoxication. Myriad textile products such as herbal textiles and clothing are available in the market to support healthy lifestyle and hygiene. Most textile products are meant to come in contact with the skin; hence, herbally treated fabrics are better choice as they do not harbor harmful chemicals and thus are ecofriendly. People of yore used to live in harmony with nature and passionately protected their environment; however, nowadays, excessive exploitation of natural resources has led to a phenomenal increase in environmental pollution. This is taking a serious toll on the lives of all living beings on the planet earth. Right kind of fabric is of paramount importance to a healthy lifestyle, and synthetic fabrics’ teeming with chemicals and dyes poses severe health threat. One would not like to eat a bowl of pesticide-drenched food. Then, why wear clothing doused in chemicals? Textile dyes obtained from natural sources are usually friendly to human skin and are biodegradable and ecofriendly. Some natural dyes have medicinal properties and impart healing qualities to the fabric. They are ecofriendly, save energy, provide rural employment, and preserve traditional craftsmanship [1].
Clothing is our second skin and plays an important role in human life. Textiles finished or dyed from extracts of various medicinal herbs are called herbal textiles. Textiles and clothing infused with medicinal herbs are becoming popular, especially in urban India. The use of such products helps in providing protection against myriad biological toxins and pathogens. Customers demand for new ranges of technology, owing to upward trend in enhancing beauty, that provide better esthetics along with improved health and a sense of relief and satisfaction during use. This trend has produced Cosmetotextiles.
Among technical textiles, medical textiles are a promising product, which plays an important role in maintaining the human health. Medical textiles consist of textiles used in operative and postoperative tasks on and around the patient and medical practitioners. They are broadly classified as nonimplantable materials, implantable materials, extracorporeal devices, hygiene products, protective, and healthcare textiles. Healthcare, disposable, and nondisposable hygiene products mainly used in hospitals to reduce the chances of contamination by biological toxins and infectious organisms.
India has good potential to produce natural dyes commercially as it is considered as 1 of the 17 mega diversity countries globally [2]. Traditional knowledge facilitates the use of plants and their products for healing the wounds and burn injuries and treating the skin infections. Herbal extracts are being used successfully for imparting antimicrobial finish to textiles [3].
Herbal products derived from plants are gaining popularity worldwide for use in textiles on account of their easy availability, green approach, low toxicity, biocompatibility, and ecofriendly nature [2, 3]. Owing to market demand for textile products having added comfort and functional properties, herbal products may be explored for their potential benefits to produce such products. This mandates scientists to devise methods and techniques to use plants containing bioactive agent in producing value added and more attractive functional textile substrates. Insect repellent, deodorizing/aroma, UV protection, antimicrobial, and flame retardant are some of the new properties, which have been imparted recently to textiles. In recent years, the growing demand for herbal products has led to the idea of developing healthcare textile products using herbal extracts.
Currently, herbal colorants are the most attractive option because of high biodegradability, low toxicity, green chemistry, and potential application in the textile dyeing and finishing industry. Natural colorants from plant sources are considered as novel agents in imparting multifunctional properties such as antimicrobial, insect repellent, deodorizing, and UV protection to textiles. Many natural colorants possess some inherent functions in addition to their coloring attribute. These inherent properties are transferred to the textile substrate dyed with an herbal colorant. Alternatively, dyeing textiles with these herbal colorants can combine dyeing with functionality finishes, an ecofriendly process using less water and energy than currently used separate wet treatments. Recently, increased interest in the use of natural dyes in textile dyeing has been observed due to enforcement of the stringent environmental regulations by many countries because of toxic effects of synthetic dyes. This review gives an overview of the herbal methods available at present for dyeing textile materials with aim to provide other useful finishes [4].
Textiles dyed exclusively with herbal extracts without using any chemicals are called herbal textiles. The herbs utilized in dyeing are different from vegetable dyes as they also have medicinal values. These herbs are applied to the fabric using natural ingredients in order to preserve medicinal properties. Further, bleaching of cloth is done by exposing it to sunlight without the use of any chemical bleach. The concept of herbal textiles has been derived from Ayurveda, the ancient Indian method of vedic healthcare. Ayurvastra is a branch of Ayurveda. In Sanskrit,
It is made by embedding essential oils and herbs into textiles. A wide range of herbs such as turmeric, tulsi, neem, rose, Indigo, lemon grass, castor, and ber can be used for this process providing medicinal value and aroma to the fabric. Ayurvastra (marketed as cosmetotextiles) has been used for curing several diseases such as diabetes, arthritis, skin infections, hypertension, and hay fever [5].
Herbal clothing is an ancient technique of dyeing textiles in medicinal herbs. This alternative method of treatment originated more than 5000 years ago in India. Its core principles are rooted in the Vedas, which are an ancient book of Hindus. The Vedas date back to around 3000 BC. The science of life or Ayurveda dates back to around 1000 BC. The origins of Ayurveda are also found in the Atharvaveda. It contains incantations and hymns that cure various diseases through mantra. Mythology says that Ayurveda was given to Dhanvantri by Lord Brahma. Charaka Samhita and Sushruta Samhita are the oldest known Ayurvedic texts [6]. About 100 years ago, people from different parts of India were using various forms of natural dyeing in which they repeatedly dipped clothes in herb-based preparations following each wash [7]. These herbs are used traditionally in Ayurvedic treatment and many medical applications. When this fabric is worn, the medicinal property of the fabric is then transferred to the skin. The process of herbal dyeing was developed through extensive research during the age-old dyeing methods practiced since the days of the Indus civilization. Herbs were used to create different colors and to provide various health benefits. The natural/herbal fabrics are 100% organic, completely free of synthetic chemicals, and toxic irritants and are biodegradable [8].
Herbal clothing is prepared from organic cotton fabric impregnated with special herbs and oils for health benefits. Since ancient times, herbal clothing (Ayurvastra) is believed to cure diabetes, skin infections, psoriasis, hypertension, asthma, arthritis, rheumatism, high blood pressure, eczema, and cancer. Antimicrobial property or natural dyes such as indigo, pomegranate, myrobalan, and Indian madder of against bacteria such as
Skin is the largest sense organ in the human body (Figure 1). It can act as a barrier as well as a medium for entry of certain substances in the body. Several toxins and chemicals present in the environment get accumulated in the conventional clothing and may enter into the body through the skin. Hence, enhancing skin’s ability to resist entry of harmful chemicals and toxins into the body will improve the health. The radiated heat activates herbal molecules of the cloth and is reflected back to the body along with the herbal molecules. Through the blood, the herbal molecules enter deep into the body, show its effects at different levels of the body, and help in curing various diseases [5]. The skin can act not only as a protective barrier but also as a medium for outside substances to enter into the body. In the same way, the skin has the ability to absorb herbs found in our natural dyes. These herbs release their medicinal qualities in the body and strengthen the skin’s ability to block and resist the harmful substances. The close contact of herbal clothing next to the skin enhances the body metabolism, which leads to effective elimination of body toxins. The herb-infused and herb-dyed organic fabrics act as healing agents after the herbs being absorbed through the skin [6].
Structure of the human skin [
Skin temperature helps the herbal molecules to be absorbed into the body through sweat pores to manifest the desired medicinal effect.
The cloth should be in direct contact with the skin to manifest its curative effects.
Herbs are garden plants that are grown and harvested for culinary, aromatic, medicinal, and fibrous uses. Plant herbs are placed in the garden for their unmistakable fragrances, attractive textures, appealing colors, and variety of home uses. Due to current ecoconsciousness, there has been a revival of inherent in ecofriendly natural dyes throughout the world. The application of herbal products has given a new direction toward the treatments of various diseases through textile products. The herbs also do not pollute the environment through contamination of water resources in areas close to processing units. All kinds of shades of red, yellow, brown, orange, and green can be obtained with the help of the herbs.
Functional finishes using natural dyes have been in the vogue that promotes an ecofriendly lifestyle. Natural dyes are environmental friendly, nontoxic, noncarcinogenic, nonallergic, and renewable resources. Biosphere is being gifted with more than 500 plant species that yield the natural dyes [11]. The roots, flowers, leaves, seeds, and barks of more than 200 medicinal herbs, plants, flowers, roots, and barks are used to make the dyes. In herbal textiles, the color is gained from the medicinal preparation only, and no other colorants are used. As a result, its properties will last as long as the color is there. Since the herbs make beautiful shades, herbal wears are also becoming very popular for its primordial elegance.
Only herbal preparations devoid of any chemical are used in dyeing herbal textiles, whereas chemicals such as copper sulfate and ferrous sulfate are used as catalysts when dyeing is done with vegetable dyes. Thus, herbal dyes are different from vegetable dyes as they also impart some medicinal value. Herbal clothing is believed to help restore the balance within the body’s systems and strengthen the immune system. Some of the medi-herbs used in herbal textiles give the magical healing quality to the dyed fabric or yarn (Table 1) [12, 13, 14, 15]. Table 1 shows the diseases cured by different herbs.
S. no. | Name of the herb | Medicinal properties | Diseases claimed to be cured |
---|---|---|---|
1. | Antibacterial and antifungal | Common skin diseases, skin allergy, controls blood sugar levels | |
2. | Medicinal value | Beneficial in curing arthritis suppresses pain and reduces inflammation | |
3. | Controls blood sugars | Diabetes | |
4. | Medicinal value | Controls cholesterol, hypertension | |
5. | Antifungal, antibacterial, antiviral | Boosts immunity | |
6. | Antifungal, antibacterial | Used for treatment of parasitic infestation and itching | |
7. | Medicinal value | Blood purifier and diuretic, leprosy | |
8. | Medicinal value | It helps in fighting asthma | |
9. | Medicinal value | Cardiovascular support, hypertension, asthma | |
10. | Pomegranate ( | Antibacterial, antiviral, astringent | Antimicrobial treatment, hypertension |
11. | Antiseptic, anti-inflammatory, controls cholesterol | Hypertension, anemia, asthma cures, wounds, ulcers | |
12. | Antibacterial, antifungal | Burns, wounds, common skin diseases, psoriasis, anemia | |
13. | Controls blood sugar levels | Diabetes | |
14. | Controls blood sugar levels | Diabetes controls blood sugar levels | |
15. | Controls blood sugar levels | Control diabetes | |
16. | Controls blood sugar levels | Diabetes, anemia | |
17. | Medicinal value | Controls blood sugar levels, diabetes | |
18. | Antiseptic | Relieve congestion, prevent infection, ease muscle soreness | |
19. | Antibacterial, antiseptic, antispasmodic, diaphoretic, febrifuge, nervine, controls cholesterol | Respiratory disorders, viral, bacterial infections. Controls blood sugar levels, boosts immunity, hypertension, HIV/AIDS | |
20. | Chitosan | Antimicrobial | Naturally occurring biopolymer having antimicrobial properties |
21. | Balloon vine ( | Antiphlogistic, analgesic, blood refrigerant, anti-infectious | Cold, fever, renal edema, urinary tract infections,·furuncle, carbuncle, eczema, sprains, external wounds |
22. | Alterative, antibacterial, anti-inflammatory, antiseptic, astringent, carminative, disinfectant, diuretic, expectorant, hemostatic, refrigerant, sedative, stimulant | Headache, acute dermatitis, bronchitis, cystitis, eye diseases, gonorrhea, herpes zoster, infection, palpitations, sunstroke, urethritis cools the skin, curing skin itching, burns, its mild fragrance has a soothing effect that helps in fighting stress | |
23. | Antioxidant, antimicrobial | Skin diseases, control diabetes | |
24. | Antibacterial, anti-inflammatory, antiseptic, astringent, sedative, stimulant | It removes blood impurities and cures various skin diseases, HIV/AIDS | |
25. | Antibacterial, anti-inflammatory | It is blood purifier and used for wound healing, control diabetes | |
26. | Medicinal value | Controls heart disease | |
27. | Antibacterial, antiallergy, antiseptic and aromatic, anti-inflammatory properties | Controls cholesterol, helps reducing the insulin resistance, thus controls diabetes, boosts immunity, anemia, skin diseases | |
28. | Antihepatotoxic, antioxidant, antimicrobial antiseptic, antiallergic | Fighting skin diseases and helps fight skin disease, anemia, psoriasis, liver disorders | |
29. | Blood purifier, anti-irritant, deodorant, antiseptic | Skin irritations such as heat rashes and skin allergies and to cool the body. Because of this cooling property, henna used as a prophylactic against skin diseases like burns, bruises, and skin inflammations, including sores from leprosy | |
30. | Blood purifier, anti-irritant | Skin diseases such as burns, bruises, and skin inflammations | |
31. | Blood purifier | Skin diseases | |
32. | Controls cholesterol | Hypertension, anemia | |
33. | Controls cholesterol | Hypertension | |
34. | Controls cholesterol | Hypertension, HIV/AIDS | |
35. | Medicinal value | Psoriasis, skin disease | |
36. | Therapeutic effect | Psoriasis | |
37. | Therapeutic effect | Psoriasis | |
38. | Therapeutic effect | Psoriasis, rheumatism |
Some of the medi-herbs used for herbal textiles.
Different parts of the plants namely root, bark, leaf, fruit, wood, seed, and flower are used to extract dyes. It is estimated that over 2000 pigments are found in various parts of plants; however, only about 150 have been commercially utilized [16]. Herbal cloth production by a particular method is accomplished by utilizing extracts of selected herbs for dyeing cotton/silk/linen, yarn, and fabric. Synthetic/chemical dyes are not used at any stage, and for washing, specific products are used [17].
The process of herbal dyeing was developed through extensive research during the age-old dyeing methods practiced since the days of Indus civilization. Manufacturing herbal textile begins with 100% hand-loomed organic cotton or silk wool, linen, jute, hemp, and so on and their natural blends that are dyed exclusively in herbal infusions for both color and health purposes. No chemical process is involved while dyeing and processing the fabric. The fabrics have to pass through various stages of treatment before they are turned into finished products. Herbal textiles are extra smooth and good for transpiration that helps in recovering from various diseases. Each fabric is infused with specific herbs, which are known to cure diseases. It may help to treat a broad range of diseases and skin infections such as eczema and psoriasis; the fabric also helps with conditions such as heart ailments, rheumatism, arthritis, blood pressure, diabetes, and respiratory conditions, such as asthma and sleeping disorders. It also helps in boosting immunity. The antibacterial and anti-inflammatory properties of herbal medicated clothing extend its use as dressings and bandages. It can also relieve the general body aches, stimulate the weight loss, and strengthen the immune system. It can also be used as energy booster; mood enhancer, for overall wellbeing, calming, and blood purification; and cooling [18]. The most effective time to wear herbal cured clothing is when the body is at rest, such as during sleep, relaxation, or meditation because this is when the body is naturally healing and re-establishing balance. Hence, most of herbal clothing products are sleepwear, bed sheets, towels, meditation clothes, and cotton mats [19].
The herbal textile production begins with pure organic yarn/fabric, and each step is carefully and meticulously controlled without the use of any chemical process in dyeing and processing. The process starts with the gray cloth going through various stages of treatment before it is dyed and becomes ready to wear. Only certified organic cotton, natural cotton, silk wool, linen, jute, hemp, and their natural blends should be used for herbal dyeing. The herbal dyeing process has been developed following the extensive research and is in practice since the Indus civilization. Machines are not used to prepare herbal clothing, and all the processes namely bleaching, dyeing, and other processes are accomplished in big vessels fabricated according to need. Further, no chemicals are added during spinning, weaving, or enhancing the appearance [20].
Most common fabric used is organic cotton, the cotton that is cultivated without chemical pesticides and fertilizers. Silk, wool, coir, linen, hemp banana, nettle, and bamboo are also used to prepare herbal clothing. For handloom, the process starts with the cotton yarn and goes through a process named desizing (to remove loose particles, debris, etc.). The common processes used in manufacturing of herbal clothing are detailed in the following paragraphs.
It involves washing of the processed gray cloth with mineral-rich water and sea salt to remove sizing, gums, and oils used in the weaving.
This process is actualized with biodegradable, organic cleaning agents, and surfactants and sun dried. The bleaching of cloth is done naturally by exposing it to sunlight on a natural grass base and by using animal manure. The fabric or yarn is first bleached using cow urine, milk, honey, along with biodegradable, naturally derived, organic cleaning agents, and surfactants such as Saptala (
To make the colors look bright and retain color fastness, natural mordants such as myroballans, rubhabs leaves, oils, alum, fruit extracts of haritaki, bark of lodhra, minerals, and iron are used. Use of heavy metallic mordants such as copper, chrome, zinc, and tin is avoided as they are not ecofriendly. Mordanting is done before dyeing the fabric or yarn to make the colors look bright and retain fastness.
The word medication is used instead of dyeing because the medicinal herbs are used to impart required color to fabric or yarn [20, 23]. The yarn or fabric is then medicated in a carefully controlled mixture of herbal medicinal preparations depending on the disease or ailment being treated. Required herbs are applied directly to the fabric with the help of natural ingredients so as to keep the medicinal value of herbs intact [7, 11]. Steps involved are as follows:
The organic cotton yarn/fabric is dyed carefully with concoction of herbal dyes indicated for the treatment of desired disease(s).
The herbal dyes are prepared by careful blending of medicinal herbs derived from plants, flowers, roots, and barks.
The temperature, duration, number of the soaks, blend of herbs, and equipment are carefully controlled.
Desired herbs with the help of natural ingredients are applied directly on fabric in order to preserve the medicinal value of herbs.
Shades of red, yellow, brown, orange, and green can be obtained with careful use of herbs.
Finally, the medicated cloth is cooled and washed several times to remove the nonabsorbed particles and always dried in shade.
The finishing process used after herbal dyeing is also organic and is given by sprinkling pure water on the cloth and then stretching under pressure, using hand rolls,
After dyeing, residue can be recycled. Solid and liquid wastes are separated by the filtration and used for farming purposes—as biomanure and for watering the fields and also to generate the biogas [11].
Herbal textile is made by embedding essential oils and herbal extract finishes into textiles. Such textiles have their applications in providing medicinal value and aroma to the garment. Microencapsulation, sensory perception technology, liposomes, dyes, and coated textile technology are used for incorporating the herbal drugs and oils in textiles. The temperatures of the finish, the duration and concentration of plant extract, the blend of herbs, and even the equipment used are carefully controlled [24].
Spray drying, air suspension coating, solvent evaporation, sol-gel microencapsulation, and in-situ polymerization are some commonly used techniques used for textile finishing by microencapsualtion. For encapsulation of flavor, fragrance, and oils, spray drying is used in which core particles dispersed in a polymer solution and sprayed into a hot chamber leading to solidification of shell particles on core material and polynuclear or matrix-type microcapsules are obtained. Air suspension coating is done by suspending solid particles of core material in a hot or cold upward moving steam of air. Coating material may be derived from cellulose derivatives, dextrins, emulsifiers, lipids, protein derivatives, and starch derivatives, which is atomized through nozzles into the chamber and deposits as a thin layer on the surface of suspended particles. Solvent evaporation is a process in which the drug is dissolved, dispersed, or emulsified in an external aqueous or oil phase; it has been used to impart antifungal finish to textiles. Sol-gel microencapsulation is used to produce flame retardant, water/oil repellent, UV protecting, antiwrinkle, self-cleaning, flavor and odor containing, and antibacterial textiles. Sol-gel synthesis involves the hydrolysis of silicone monomer and the condensation of silica into a porous structure with a three-dimensional networked structure, which can be tailored for a wide range of useful properties.
Microencapsulation, widely used in textile finishing, is a process in which small capsules having desired properties are prepared using small particles/droplets surrounded by a coating material. The material inside the microcapsule is known as core material, whereas outer coating is called a shell. Microcapsules may have diameter ranging a few micrometers to a few millimeters. Many special and functional properties can be imparted to the fabrics by microencapsulating the core material. This core material can be any substance having a special function to perform for the fabric. Encapsulation has allowed moisturizers, therapeutic oils, and insecticides to be incorporated into fabrics. Microencapsulation of antimicrobial agents is also gaining popularity in sportswear and medical textiles [25].
For preparation of herbal textile by microencapsulation, the “core material” along with the wall material should give a durable finish. This wall material can be certain substances like gum acacia, and the core material is the desired herbal extract. The microencapsulated herbal extracts have shown antimicrobial activity and wash durability up to 20 washes [26]. Microencapsulation is a very popular technique for incorporating fragrance into fabrics. These capsules applied are unbreakable under the normal conditions, and the application of pressure on fabric releases fragrance, which causes healing in aromatherapy [27]. Microencapsulated herbal extracts such as
New textile technologies have enabled the application of cosmetic ingredients on fabric to provide its functional benefit to the end-use product, and therefore, cosmetic textiles are moving from laboratory to showrooms. Fragrance finish is one such finish that falls under this category. A fragrance is made from a pleasant smelling aroma compound. Aromachology is a science that studies the effects of fragrances on the human body and mind. It researches how scents can be used to induce relaxation and make life more pleasant. Fragrances can be used in various forms such as essential oils, perfumes, colognes, household products, and potpourri. Some areas in textiles where fragrance finish can find application include Cosmetotextiles.
The major use of microencapsulation in cosmetic textiles is in the application of vitamins, essential oils, skin moisturizing agents, skin cooling, and antiaging agents [30]. Yamato et al. studied microcapsules having active substances that can improve the physiological conditions of human skin. The microcapsule gradually released its content when the textile structure was subjected to light pressure created due to the movement of human body [31].
Aroma finish is a process by which textile material is treated with the pleasant odor producing essential oils and aromatic compounds so that the wearer gets beneficial effects. Various essential oils such as lavender, rosemary, and jasmine are used.
The fragrance compounds and the essential oils are volatile substances, and prolonging life span of their odor is most difficult task in preparation of the textiles for aromatherapy. Microencapsulation is an effective technique to achieve this task. Microcapsules are tiny spherical enclosures containing a liquid or gas and assume the shape of the enclosed particle if containing a solid [32]. With microencapsulation method, fragrance lasts for more number of washes since microencapsulation makes the finished particles more securely attached to the internal structure of the fiber and thus releasing them slowly [33].
Bacteria often cause decay of fabrics leading to loss of various useful properties of fabrics. This problem can be prevented by the use of antimicrobial finishes that can be applied with the help of microencapsulation. This finish is especially beneficial for textiles for medical and technical uses [34].
Herbal extracts prepared from Chamomile, sage, and green tea were applied to cotton fabric using pad-dry-cure method. Treated fabrics exhibited antimicrobial activity against Gram-negative, Gram-positive bacteria and yeasts. This antimicrobial activity was retained even after 10 cyclic washes [35].
Textile materials having antimicrobial activity are used in hygienic, health, personal care, and surgical products. Some products include baby and adult diapers and sanitary pads. Most of the diapers are made by synthetic materials, which are nonbiodegradable and poor antimicrobial properties, and may cause rashes and dermatitis. Natural antimicrobial coatings on diapers obtained by using curcumin,
Wet processing of textile substrates from its preparatory stage to dyeing and then finishing is important for enhancing its esthetic value, removal of impurities, color shade, color pattern, and requisite functionality. Some of the traditional processes used in herbal finishing involve an excessive use of water, energy, and chemicals. Recently, due to global concerns on environmental pollution, sustainability mandates the development of sustainable dyeing and finishing processes using plant waste and nonfood plant extracts [41]. Based on environmental friendly, plant-based products having biocompatibility, biodegradability, and nontoxicity along with insect repellent, deodorizing, flame retardant, UV protection, and antimicrobial activity are in great demand all around the world for producing more appealing and highly functional value-added textiles [42, 43, 44, 45]. A wide variety of finishing chemicals from plants are now available in the market that matches the expectations of consumers [46]. Various plants reported as source of natural dyes are teak, mahogany, ketapang, tamarind, mangosteen, mango, suji, pandan, indigofera, guava, banana, and onion [47]. Plant parts including roots, leaves, twigs, stems, heartwood, bark, wood shavings, flowers, fruits, rinds, hulls, husks, and the like used to produce herbal dye. Additionally, most of the herbal dyes have inherent medicinal properties [48].
Natural fibers such as cotton and wool are susceptible to microbial growth and even dust mites because they retain oxygen, water, and nutrients. Hence, antimicrobial finishes should be applied to textiles to destroy or suppress the growth of microorganisms and also to protect the textiles from strength and color loss, unpleasant odor, and quality deterioration [49]. Micro-organisms may deteriorate the clothes in a closet, curtains, carpets, bed, bath and kitchen linens, pillows, and mattresses. Several microorganisms also thrive on the skin, while dust mites live on skin cells sheded on sheets, towels, and clothing. A hospital houses an immense amount of textiles with high volumes of traffic. Because of the constant flow of people, especially those with infectious diseases, specific finish hospital uses are required. Patients, caretakers, and hospital staff are at risk of acquiring infection as inherent properties of the textile fibers susceptible to the growth of micro-organisms.
In past, natural dyes were applied to textiles for simultaneous coloration and antimicrobial finishing successfully. Finish imparted by catechu on wool was found to be effective against
Pure cotton woven/knitted fabrics treated with the selected medicinal 16 medicinal herb extracts such as neem, turmeric, holy basil, and sandal wood have been evaluated for curing seven different diseases such as allergic dermatitis, psoriasis, asthma, liver disorders, headache, joint pain, and sinus trouble/cold. Seven different types of curative garments have been developed. The antibacterial assessments of the medicinal herb extracts treated fabrics and clinical trials have confirmed the correlation between the curative performance and its antibacterial activity. The curative property of the garments in all the cases was found to be significant and lasted for 10–15 washes [53].
Although known since long for dyeing and medicinal value, the protective properties of herbal dyes have been noticed only recently. Several plants used for dye production are classified as medicinal, and some have recently been shown to possess significant antimicrobial activity. Several natural dyes have demonstrated to possess antimicrobial activity like curcumin from turmeric; naphthoquinones such as lawsone from
Ultraviolet (UV) rays, electromagnetic spectrum between visible light and X-rays, influence the physiology of living organisms. Exposure may cause tanning to skin cancers. Sunscreen lotions and clothing provide protection from dangers of UV rays. Change in construction parameters of fabrics with appropriate UV absorbers and adequate finishing methods may be used to prepare the UV protective fabrics.
Textiles, as a protective shield against solar radiation, have been since ancient times. Textile structures provide the desired characteristics such as pliability, good mechanical strength, softness, esthetics, and other engineered properties, which are required for preparing good sunscreening apparels. Textiles themselves are not able to provide effective protection against UV rays; hence, UV blocking agents should be applied over the fabric to make them UV protective. Quantum of protection required for different skin types is determined by UV radiation intensity and distribution subject to geographical location, time of day, and season. Several UV protection agents have been developed to enhance the UV protection offered by different textiles. Both organic and inorganic UV blocking agents are available. The organic blockers are also termed as UV absorbers because they absorb UV rays, whereas inorganic blockers scatter them [47].
Three yellow dyes obtained from
Bacterial growth and/or waste released from human body are the main causes for odor in garments. Recent advances in textile manufacturing have improved the performance of textiles with respect to odor with antimicrobial and UV protection properties. To meet the consumer’s growing demand for hygienic clothing, extensive research has been done to deodorizing property to textiles with the application of natural colorants. The deodorizing performance of fabrics dyed with herbal colorants has been compared, and pomegranate was found to be best among gardenia,
Carpets, blankets, and shawls are prepared from wool, and other similar fibers have properties such as warmth, softness, and flame retardancy protein content of the fiber, which are susceptible to attack by moth as its larvae thrive on the protein present in the wool. Cloth moth (
Synthetic/chemical dyes are increasingly being banned for use in the textile industry, which have led to severe blow to the handloom industry. At the same time, textiles dyed with natural herbal dyes having medicinal attributes are commanding a huge market due to their inherent advantages. Nowadays, the use of herbal dyes in the textile industry is preferred owing to the advantage of dyes extracted from the medicinal plants, origin from the renewable resources, limited chemical reactions involved in their preparation, biodegradable properties, disease-curing properties, and ecofriendly in nature [18, 67].
Herbal textiles are of two kinds: one category is for curing diseases and the other is for wellbeing. The first category of cloths, which are used for curing diseases, includes sleep wear, bed sheets, towels, meditation clothes, and coir mats. Herbal textiles are mostly used in making such garments that stay close to human skin, so that all the medicinal components could be absorbed through the skin. Herbal textiles can fetch more competitive than conventional fabrics owing to low production cost. For example, a common chemical dye costs around $75 per kg, and a herbal dye costs approximately $5 per kg. Most of the herbs used in dyeing are cultivated in South Asian countries, namely India, Pakistan, and Bangladesh, India being the largest producer. The Handloom Weavers Development Society (HLWDS) of Kerala, India has exported herbal and organic textile worth Rs. 50 Lakh to the United States, Europe, and Japan. The herbal textile is gaining such popularity that the Japanese Government has accorded HLWDS a $40,218 grant. Large consignments of herbal textiles have been shipped to international markets of the United States, Canada, France, Denmark, Italy, Poland, Maldives, Mauritius, Japan, and Sri Lanka [17, 68, 69, 70].
Most effective time to wear the herbal-infused clothing is while resting, sleeping, or meditating, when the body is naturally healing and re-establishing balance, so many of the products are created with these factors in mind. The technique for producing the herbal textiles is also used for floor coverings and coir mats. For coir mats, the fibers are first soaked in herbal dyes and then woven into coir mats. Apart from medicated handloom clothes such as sarees, T-shirts, shirts, trousers, kurtas, dhods, chudidhars, nightwear, fashion wear, sportswear, and inner wears, caps for healing headaches, goosery caps for head balance, cooling caps, hair shining caps, hair strengthening caps, bandages, and mask are also prepared [68, 71].
Plant dyes are increasingly being incorporated by designers into their designs contributing to revival of Ayurvastra or herbal clothing. Ayurganic is a line of loungewear inspired from the concept of Ayurvastra. Designer duo Lecoanet and Hemant have revived the tradition of Ayurvastra in Ayurganic, their line of medicinal clothing. The multi-award winning designers who began their journey as couturiers in Paris are now refining the concept of Ayurvastra. Anjelika dreams organic produces fair trade, organic handmade clothing that follows this tradition. Gibie towels specialize in Ayurvastra towels, Ayurvastram in Ayurvastra textiles and yoga mats, and niraamaya in Ayurvastra yoga mats. The handloom weavers’ development society in India is producing a wide range of herbal fabrics including sarees, bed sheets, and dress materials using medicinal dyes and exporting them to the United States, Germany, the United Kingdom, Singapore, and Taiwan [6, 11].
“Herbalfab” ecofriendly fabric brand has developed a unique technique to dye with flowers, fruits, roots, and so on. Turmeric, myrabolams, onion, kesu and dhavadi flowers, and natural indigo are used for preparing the natural dyes. This prevents the water pollution by replacing the petrochemical dyes with herbal dyes and imparts the medicinal value to cloth. The colors obtained are unique, which can kick start a new fashion trend. Herbalfab also encompasses a range of other ecofriendly fabrics like khadi, which is handspun and handwoven, nonviolent silk, organic denim, and so on [72].
The Handloom Weavers’ Development Society, India produces a variety of home textiles using herbal fabrics in India. They also export herbal clothing such as sarees, bed sheets, and dress materials to other countries. With increasing demand for herbal clothing, companies such as Ayurvastra online have started offering the online products. Many textile industries are getting inclined toward Cosmetotextiles. The brands making herbal clothes are Aura, Cognis, Pantaloons, Quiospheres, and so on. These brands have a range of clothing namely bandee, vest, camisole, men and women’s tee, coirs, and so on [73].
It acts as a revitalizing tonic and helps in keeping the body fresh and healthy. The uses of proper herbs in the textiles have proven to cure diseases such as arthritis and fever. We breathe through our body more than we do through nose. It can improve the skin’s natural ability to block and resist the harmful chemicals and toxins from entering the body, which will be beneficial to health.
Herbal cloths have the ability to protect us from various skin diseases and provide relief from infectious diseases and mental ailments.
No synthetic/chemical dye is used at any stage of herbal cloth production. For washing and cleaning purpose, the nut or nut powder of
Medicinal herbs treated fabrics also have a lot of therapeutic value; thus, the fabric has been found very helpful for people suffering from ailments such as skin allergies, breathing problems, sleeping disorders, and blood pressure.
The health benefits of herbal clothing and its usage depend on the theory of touch. The body loses toxins when it comes in contact with herbal clothing, and this improves the metabolism. Herbal clothing is also known to help fight against many common diseases such as diabetes, hypertension, skin allergies, asthma, and heart ailments.
The human body naturally heals itself during sleep or meditation. Thus, when the body is at rest, herbal clothing will work most effectively. The skin is known as the largest organ of the body. Not only it acts as a fence and protects the body, but it can also be the channel for outside germs and toxins to enter into the body. Herbal clothing guards against the harmful toxins trying to enter the body through the skin [75, 76].
Herbal textiles are mainly used in making sleepwear, undergarments, bed coverings, towels, meditation clothing, and so on, which remain close to the skin absorbing all the benefits it gives out. Herbal textiles are also used in home textile products such as mattresses, coir mats, door mats, bath towels, bed spreads, and carpets.
Some of herbal constituents are antiallergens and hence are safe for skin contact and are mostly nonhazardous to human beings.
Natural dyes are usually moth proof and can replace the synthetic dyes in kids’ garments.
We breathe through our skin more than we do through nose, and chemically dyed textiles having carcinogenic amines and chemicals may be allergic and dangerous to human skin. Organic clothing can help reduce the exposure to allergens and other irritants and give a comfortable feeling [77, 78, 79].
Preparation of herbal cloths is a labor-intensive industry and hence will provide the job opportunities for manpower engaged in cultivation, extraction, and application on textile, food, leather, and so on.
Use of natural dyes may earn the carbon credit as it reduces the consumption of petroleum-based synthetic dyes.
It promotes the agriculture and balances the ecological cycle.
Waste can be used as manure.
No heavy metals such as chrome and copper are used in natural/herbal Ayurvedic dyeing.
Manual farming and organic practices have a lower carbon footprint as the entire process consumes less fuel and energy and emits fewer greenhouse gases than chemical textiles.
Herbal dyes are extracted from the plants cultivated without the use of synthetic pesticides and fertilizers, and also no chemical defoliants are used.
Processing is in green environment; hence, workers’ health is not compromised, and also water and electric use and toxic runoff are reduced.
Stringent testing ensures that product is free from contaminants such as nickel, lead, formaldehyde, amines, and pesticides.
It improves the soil fertility and soil structure by increasing the soil activity, thus reducing the risk of erosion.
It is the massive saving of precious water.
It promotes the development of earthworms and other arthropods leading to improvement in the growth conditions of the crop. Furthermore, organic crops thrive on root symbioses and are better equipped to exploit the soil; hence, fields can accommodate a more number of plants, animals, and microorganisms [80, 81, 82].
Natural fibers and natural dyes used in the preparation of herbal clothing allow its natural breakdown without damaging the environment compared to the synthetic material, which takes hundreds of years to breakdown and leaves the pollutant material in soil [66, 67, 83].
Herbal textiles are ecofriendly, and also residues they produce can be further used for making the other green products.
Solid and liquid wastes from herbal dyeing are amenable to recycling producing the organic manure.
Some of the ecofriendly industries producing the herbal textiles produce organically recycled paper bags by utilizing the residual organic and herbal dyed fabrics that can reduce the pollution due to plastic bags [84].
It also promotes the cultivation of herbs required for the production of herbal textile products.
Herbal dyes add value to the cotton fabrics in ecofriendly manner.
Herbal fabrics are lightweight and so used to construct the perfect breezy clothes. The biggest advantage of cotton herbal cloth is that it is cool in summer and warm in winter [85, 86].
The color shades produced by herbal dyes are unique, hence commanding high demand in market.
Herbal fabrics and dyes are not good substitutes for synthetic dyes offering broader range and variations.
Retaining color and its herbal benefits demands utmost care in washing; herbal cloths should be washed separately, preferably hand wash or gentle machine wash with bleach-free detergents and should be shed dried. This causes inconvenience to the user.
The dyeing process is cumbersome and time taking, and each stage should be carefully controlled.
Medicinal herbs impart colors; hence, color choice for consumer is very limited as only few herbs can be used for dyeing a fabric that meant to be used in a particular disease condition.
Herbal cloths show the curative effects, but progress is slow.
Though there are no complaints on allergic reaction by the consumers, some people think that the herbal clothing shows side effects on children [87, 88, 89].
Textile industry has realized its negative contribution to the environmental pollution through the harmful chemicals used in manufacturing processes and is continuously trying to find solution for this problem. Herbal dyeing is one important step toward achieving the organic lifestyle, thus reducing the environmental pollution. Herbal textile products are devoid of pesticides, fertilizers, antibiotics, growth hormones, genetically modified organisms, additives, irradiation, or sewage sludge, hence avoiding many ailments that are common with conventional clothing.
Modern consumer’s demand for novel ecomaterials is expected to increase in future. Recently, efforts have been made toward the development of commercially viable natural colorants by making advances in aspects such as identification of new sources, formulations, extraction, purification, and stability techniques. In spite of enthusiastic studies discussing the socioeconomic viability of natural dye production and applications at commercial scale for sustainable utilization of bioresources, there is a need for investigations related to hygiene and ecosafety, which have great future for the discovery of relatively better and more stable natural pigments that may have wider industrial applications.
Herbal textiles have tremendous scope in world textile market and may become a major textile product in future. The blend of herbs and textiles to achieve the health in an ecofriendly manner is the great way of adopting the healthy life. Herbal clothing is receiving the increased awareness all over the world. Herbally treated textiles are one of the great solutions to revive and increase the share of Indian handloom industry in world textile market. Furthermore, herbal clothing is nontoxic, noncarcinogenic, biodegradable, and ecofriendly; these characteristics make them an obvious choice for modern informed costumer looking for a healthy product. Additionally, the production of biocolorants to meet the rising demand shall force entrepreneurs to take up this venture for greater profits leading to more employment generation.
IntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"19"},books:[{type:"book",id:"11680",title:"Immune Checkpoint Inhibitors - New Insights and Recent Progress",subtitle:null,isOpenForSubmission:!0,hash:"65dc94eb0a8dd733522f67d95b2c2d48",slug:null,bookSignature:"Dr. Afsheen Raza",coverURL:"https://cdn.intechopen.com/books/images_new/11680.jpg",editedByType:null,editors:[{id:"339296",title:"Dr.",name:"Afsheen",surname:"Raza",slug:"afsheen-raza",fullName:"Afsheen Raza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11688",title:"Advances in Drug Delivery Methods",subtitle:null,isOpenForSubmission:!0,hash:"b237999737fb375b4f629ab01a498a9f",slug:null,bookSignature:"Prof. Bhupendra Gopalbhai Prajapati",coverURL:"https://cdn.intechopen.com/books/images_new/11688.jpg",editedByType:null,editors:[{id:"340226",title:"Prof.",name:"Bhupendra",surname:"Prajapati",slug:"bhupendra-prajapati",fullName:"Bhupendra Prajapati"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11690",title:"COVID-19 Drug Development - Recent Advances, New Perspectives, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f8092a491f68ca0b63cc6d40936a010a",slug:null,bookSignature:"Dr. Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/11690.jpg",editedByType:null,editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11812",title:"New Insights Into Pharmacodynamics",subtitle:null,isOpenForSubmission:!0,hash:"b889e24b3132aa437b6745db36fffe9b",slug:null,bookSignature:"Prof. Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/11812.jpg",editedByType:null,editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11813",title:"RNA Therapeutics - History, Design, Manufacturing, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"fbffd7b2f97a65ffb0901de38a65bed0",slug:null,bookSignature:"Prof. Irina Vlasova-St. Louis",coverURL:"https://cdn.intechopen.com/books/images_new/11813.jpg",editedByType:null,editors:[{id:"211159",title:"Prof.",name:"Irina",surname:"Vlasova-St. Louis",slug:"irina-vlasova-st.-louis",fullName:"Irina Vlasova-St. Louis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12205",title:"Photodynamic Therapy",subtitle:null,isOpenForSubmission:!0,hash:"8099dd8f660b401e5ecfa85ce3f0df81",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12205.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12206",title:"Antibiotic Resistance - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"708d9c997d91bdbe75c55cb5d9f7b526",slug:null,bookSignature:"Dr. Ghulam Mustafa",coverURL:"https://cdn.intechopen.com/books/images_new/12206.jpg",editedByType:null,editors:[{id:"298756",title:"Dr.",name:"Ghulam",surname:"Mustafa",slug:"ghulam-mustafa",fullName:"Ghulam Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12207",title:"Statins",subtitle:null,isOpenForSubmission:!0,hash:"245ddb277df310de302579b803b715b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12207.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin",subtitle:null,isOpenForSubmission:!0,hash:"6c00637f80ef05f5f46217dcbeaaa6e9",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12209",title:"Vitamin B Complex",subtitle:null,isOpenForSubmission:!0,hash:"f1277fdd717bc84d0437d483a1b78332",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12209.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12210",title:"Pharmacy Practice - Recent Advances in Therapeutic Approaches for Improved Health",subtitle:null,isOpenForSubmission:!0,hash:"faa98d6992643387af28c6ddf1b8df3e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12210.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12211",title:"Performance-Enhancing Substances",subtitle:null,isOpenForSubmission:!0,hash:"4a93f00b6a0012976ab33814e12a6956",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12211.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:17},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4380},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"206",title:"Composite Materials",slug:"nanotechnology-and-nanomaterials-composite-materials",parent:{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"},numberOfBooks:15,numberOfSeries:0,numberOfAuthorsAndEditors:713,numberOfWosCitations:2278,numberOfCrossrefCitations:895,numberOfDimensionsCitations:2214,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"206",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6854",title:"Nanocomposites",subtitle:"Recent Evolutions",isOpenForSubmission:!1,hash:"fed595e75f84d3ab7e0817721acca1bd",slug:"nanocomposites-recent-evolutions",bookSignature:"Subbarayan Sivasankaran",coverURL:"https://cdn.intechopen.com/books/images_new/6854.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",middleName:null,surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6233",title:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources",subtitle:null,isOpenForSubmission:!1,hash:"3bdc5c86f24513451093c4484320aa8a",slug:"natural-and-artificial-fiber-reinforced-composites-as-renewable-sources",bookSignature:"Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/6233.jpg",editedByType:"Edited by",editors:[{id:"186402",title:"Associate Prof.",name:"Ezgi",middleName:null,surname:"Günay",slug:"ezgi-gunay",fullName:"Ezgi Günay"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5167",title:"Carbon Nanotubes",subtitle:"Current Progress of their Polymer Composites",isOpenForSubmission:!1,hash:"f3551c28c8054c6ff0ca06ee3f3a3db7",slug:"carbon-nanotubes-current-progress-of-their-polymer-composites",bookSignature:"Mohamed Reda Berber and Inas Hazzaa Hafez",coverURL:"https://cdn.intechopen.com/books/images_new/5167.jpg",editedByType:"Edited by",editors:[{id:"41703",title:"Dr.",name:"Mohamed",middleName:"R.",surname:"Berber",slug:"mohamed-berber",fullName:"Mohamed Berber"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4753",title:"Graphene",subtitle:"New Trends and Developments",isOpenForSubmission:!1,hash:"7a2a89285055016ae39942309f30c4b5",slug:"graphene-new-trends-and-developments",bookSignature:"Farzad Ebrahimi",coverURL:"https://cdn.intechopen.com/books/images_new/4753.jpg",editedByType:"Edited by",editors:[{id:"20062",title:"Dr.",name:"Farzad",middleName:null,surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3087",title:"Nanocomposites",subtitle:"New Trends and Developments",isOpenForSubmission:!1,hash:"418833096f70a3aa12b5cbd6c8734d86",slug:"nanocomposites-new-trends-and-developments",bookSignature:"Farzad Ebrahimi",coverURL:"https://cdn.intechopen.com/books/images_new/3087.jpg",editedByType:"Edited by",editors:[{id:"71997",title:"Dr.",name:"Farzad",middleName:null,surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1275",title:"Graphene",subtitle:"Synthesis, Characterization, Properties and Applications",isOpenForSubmission:!1,hash:"6fddb872d37abf20533e73c030b55566",slug:"graphene-synthesis-characterization-properties-and-applications",bookSignature:"Jian Ru Gong",coverURL:"https://cdn.intechopen.com/books/images_new/1275.jpg",editedByType:"Edited by",editors:[{id:"61172",title:"Prof.",name:"Jian Ru",middleName:null,surname:"Gong",slug:"jian-ru-gong",fullName:"Jian Ru Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"180",title:"Carbon Nanotubes",subtitle:"Growth and Applications",isOpenForSubmission:!1,hash:"32865140876c21193ac4e9b1f5d95d2d",slug:"carbon-nanotubes-growth-and-applications",bookSignature:"Dr. Mohammad Naraghi",coverURL:"https://cdn.intechopen.com/books/images_new/180.jpg",editedByType:"Edited by",editors:[{id:"67361",title:"Dr.",name:"Mohammad",middleName:null,surname:"Naraghi",slug:"mohammad-naraghi",fullName:"Mohammad Naraghi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"465",title:"Carbon Nanotubes",subtitle:"Applications on Electron Devices",isOpenForSubmission:!1,hash:null,slug:"carbon-nanotubes-applications-on-electron-devices",bookSignature:"Jose Mauricio Marulanda",coverURL:"https://cdn.intechopen.com/books/images_new/465.jpg",editedByType:"Edited by",editors:[{id:"9142",title:"Prof.",name:"Jose Mauricio",middleName:null,surname:"Marulanda",slug:"jose-mauricio-marulanda",fullName:"Jose Mauricio Marulanda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"328",title:"Graphene Simulation",subtitle:null,isOpenForSubmission:!1,hash:"26044659f984fbaeac93a996ab1d4995",slug:"graphene-simulation",bookSignature:"Jian Ru Gong",coverURL:"https://cdn.intechopen.com/books/images_new/328.jpg",editedByType:"Edited by",editors:[{id:"61172",title:"Prof.",name:"Jian Ru",middleName:null,surname:"Gong",slug:"jian-ru-gong",fullName:"Jian Ru Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"466",title:"Carbon Nanotubes",subtitle:"Synthesis, Characterization, Applications",isOpenForSubmission:!1,hash:null,slug:"carbon-nanotubes-synthesis-characterization-applications",bookSignature:"Siva Yellampalli",coverURL:"https://cdn.intechopen.com/books/images_new/466.jpg",editedByType:"Edited by",editors:[{id:"62863",title:"Dr.",name:"Siva",middleName:null,surname:"Yellampalli",slug:"siva-yellampalli",fullName:"Siva Yellampalli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"469",title:"Carbon Nanotubes",subtitle:"From Research to Applications",isOpenForSubmission:!1,hash:null,slug:"carbon-nanotubes-from-research-to-applications",bookSignature:"Stefano Bianco",coverURL:"https://cdn.intechopen.com/books/images_new/469.jpg",editedByType:"Edited by",editors:[{id:"32081",title:"Dr.",name:"Stefano",middleName:null,surname:"Bianco",slug:"stefano-bianco",fullName:"Stefano Bianco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",middleName:null,surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:15,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"15270",doi:"10.5772/14156",title:"Thermal Reduction of Graphene Oxide",slug:"thermal-reduction-of-graphene-oxide",totalDownloads:21081,totalCrossrefCites:19,totalDimensionsCites:159,abstract:null,book:{id:"57",slug:"physics-and-applications-of-graphene-experiments",title:"Physics and Applications of Graphene",fullTitle:"Physics and Applications of Graphene - Experiments"},signatures:"Seung Hun Huh",authors:[{id:"17002",title:"Dr.",name:"Seung Hun",middleName:null,surname:"Huh",slug:"seung-hun-huh",fullName:"Seung Hun Huh"}]},{id:"50950",doi:"10.5772/62497",title:"Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications",slug:"carbon-nanotube-based-polymer-composites-synthesis-properties-and-applications",totalDownloads:4777,totalCrossrefCites:40,totalDimensionsCites:78,abstract:"The present chapter covers the designing, development, properties and applications of carbon nanotube-loaded polymer composites. The first section will provide a brief overview of carbon nanotubes (CNTs), their synthesis, properties and functionalization routes. The second section will shed light on the CNT/polymer composites, their types, synthesis routes and characterization. The last section will illustrate the various applications of CNT/polymer composites; important properties, parameters and performance indices backed by comprehensive literature account of the same. The chapter concludes with the current challenges and future aspects.",book:{id:"5167",slug:"carbon-nanotubes-current-progress-of-their-polymer-composites",title:"Carbon Nanotubes",fullTitle:"Carbon Nanotubes - Current Progress of their Polymer Composites"},signatures:"Waseem Khan, Rahul Sharma and Parveen Saini",authors:[{id:"149897",title:"Dr.",name:"Parveen",middleName:null,surname:"Saini",slug:"parveen-saini",fullName:"Parveen Saini"}]},{id:"16802",doi:"10.5772/19331",title:"Carbon Nanotube Synthesis and Growth Mechanism",slug:"carbon-nanotube-synthesis-and-growth-mechanism",totalDownloads:17897,totalCrossrefCites:32,totalDimensionsCites:67,abstract:null,book:{id:"466",slug:"carbon-nanotubes-synthesis-characterization-applications",title:"Carbon Nanotubes",fullTitle:"Carbon Nanotubes - Synthesis, Characterization, Applications"},signatures:"Mukul Kumar",authors:[{id:"34559",title:"Dr.",name:"Mukul",middleName:null,surname:"Kumar",slug:"mukul-kumar",fullName:"Mukul Kumar"}]},{id:"16834",doi:"10.5772/18009",title:"Syntheses of Carbon Nanotube-Metal Oxides Composites; Adsorption and Photo-degradation",slug:"syntheses-of-carbon-nanotube-metal-oxides-composites-adsorption-and-photo-degradation",totalDownloads:11322,totalCrossrefCites:23,totalDimensionsCites:58,abstract:null,book:{id:"469",slug:"carbon-nanotubes-from-research-to-applications",title:"Carbon Nanotubes",fullTitle:"Carbon Nanotubes - From Research to Applications"},signatures:"Vinod Gupta and Tawfik A. Saleh",authors:[{id:"30105",title:"Prof.",name:"Vinod",middleName:"Kumar",surname:"Gupta",slug:"vinod-gupta",fullName:"Vinod Gupta"},{id:"30752",title:"Dr.",name:"Tawfik A.",middleName:"Abdo",surname:"Saleh",slug:"tawfik-a.-saleh",fullName:"Tawfik A. Saleh"}]},{id:"17504",doi:"10.5772/20477",title:"DFT Calculation for Adatom Adsorption on Graphene",slug:"dft-calculation-for-adatom-adsorption-on-graphene",totalDownloads:10438,totalCrossrefCites:21,totalDimensionsCites:55,abstract:null,book:{id:"328",slug:"graphene-simulation",title:"Graphene Simulation",fullTitle:"Graphene Simulation"},signatures:"Kengo Nakada and Akira Ishii",authors:[{id:"39143",title:"Prof.",name:"Akira",middleName:null,surname:"Ishii",slug:"akira-ishii",fullName:"Akira Ishii"},{id:"39156",title:"Dr.",name:"Kengo",middleName:null,surname:"Nakada",slug:"kengo-nakada",fullName:"Kengo Nakada"}]}],mostDownloadedChaptersLast30Days:[{id:"64843",title:"Polymer Nanocomposites with Different Types of Nanofiller",slug:"polymer-nanocomposites-with-different-types-of-nanofiller",totalDownloads:4029,totalCrossrefCites:19,totalDimensionsCites:52,abstract:"The development of polymer nanocomposites has been an area of high scientific and industrial interest in the recent years, due to several improvements achieved in these materials, as a result of the combination of a polymeric matrix and, usually, an inorganic nanomaterial. The improved performance of those materials can include mechanical strength, toughness and stiffness, electrical and thermal conductivity, superior flame retardancy and higher barrier to moisture and gases. Nanocomposites can also show unique design possibilities, which offer excellent advantages in creating functional materials with desired properties for specific applications. The possibility of using natural resources and the fact of being environmentally friendly have also offered new opportunities for applications. This chapter aims to review the main topics and recent progresses related to polymer nanocomposites, such as techniques of characterization, methods of production, structures, compatibilization and applications. First, the most important concepts about nanocomposites will be presented. Additionally, an approach on the different types of filler that can be used as reinforcement in polymeric matrices will be made. After that, sections about methods of production and structures of nanocomposites will be detailed. Finally, some properties and potential applications that have been achieved in polymer nanocomposites will be highlighted.",book:{id:"6854",slug:"nanocomposites-recent-evolutions",title:"Nanocomposites",fullTitle:"Nanocomposites - Recent Evolutions"},signatures:"Amanda Dantas de Oliveira and Cesar Augusto Gonçalves Beatrice",authors:[{id:"249768",title:"Ph.D.",name:"Amanda",middleName:null,surname:"Oliveira",slug:"amanda-oliveira",fullName:"Amanda Oliveira"},{id:"254512",title:"Ph.D.",name:"Cesar",middleName:"Augusto Gonçalves",surname:"Beatrice",slug:"cesar-beatrice",fullName:"Cesar Beatrice"}]},{id:"57267",title:"Natural Fibers for Sustainable Bio-Composites",slug:"natural-fibers-for-sustainable-bio-composites",totalDownloads:2373,totalCrossrefCites:15,totalDimensionsCites:23,abstract:"Over the past decade, the concept of utilizing green materials has become more mainstream. With considerable awareness of preserving the environment, sincere efforts across the globe can be cited in looking for bio-degradable and bio-based sources. Applications of bio-based materials from renewable and bio-degradable sources for preparation of higher valued green chemicals and bio-based products have forced many scientists to investigate the potential use of natural fibers as reinforcement materials for green bio-composites. Cellulosic fibers are becoming very interesting for bio-based material development as they possess advantages with their mechanical properties, low density, environmental benefits, renewability, and economic feasibility. Recently, natural-fiber polymer composites have received much attention for different industrial applications because of their low density and renewability. The bio-composites with natural fiber components are derivatives of depleting resources and can be considered to have substantial environmental and economic benefits. This chapter addresses the potential utilization of natural fiber for the development of green polymer composite materials, with the objective to elucidate the possibility of using these bio-based materials for various industrial applications.",book:{id:"6233",slug:"natural-and-artificial-fiber-reinforced-composites-as-renewable-sources",title:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources",fullTitle:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources"},signatures:"Tri-Dung Ngo",authors:[{id:"208798",title:"Ph.D.",name:"Tri-Dung",middleName:null,surname:"Ngo",slug:"tri-dung-ngo",fullName:"Tri-Dung Ngo"}]},{id:"57169",title:"Development of Hemp Fibers: The Key Components of Hemp Plastic Composites",slug:"development-of-hemp-fibers-the-key-components-of-hemp-plastic-composites",totalDownloads:1823,totalCrossrefCites:4,totalDimensionsCites:6,abstract:"Plant fibers in general and hemp fibers in particular have great prospects for their use in various innovative applications such as ecological, biodegradable, and renewable resources with unique properties. Such properties together with the increased strength due to high-cellulose content and specific morphological parameters are widely used to produce plant fiber–based plastic composites. The properties of plant fibers that may influence the properties of composites depend on crop processing, but the basis for them is provided during fiber development in planta. It is known that two types of bast fibers are developed in the hemp stem: primary fibers formed from procambium cells and secondary fibers that originate as a result of cambium activity. Both types of fibers may significantly vary in their yield and quality depending on the variety and growth conditions. Differences in the anatomical and morphological characteristics of the two types of hemp fibers, together with peculiarities in the composition and architecture of cell wall, influence the technical parameters of the raw material quality. Based on our study of both primary and secondary fiber development in hemp stem that was focused on the two key stages, intrusive elongation and deposition of thick cell wall layers, we suggest the set of parameters that can influence the quality of the mature fibers and trace their biological origin.",book:{id:"6233",slug:"natural-and-artificial-fiber-reinforced-composites-as-renewable-sources",title:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources",fullTitle:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources"},signatures:"Chernova Tatyana, Mikshina Polina, Salnikov Vadim, Ageeva\nMarina, Ibragimova Nadezda, Sautkina Olga and Gorshkova\nTatyana",authors:[{id:"158372",title:"Dr.",name:"Tatyana",middleName:null,surname:"Chernova",slug:"tatyana-chernova",fullName:"Tatyana Chernova"},{id:"209953",title:"Prof.",name:"Tatyana",middleName:null,surname:"Gorshkova",slug:"tatyana-gorshkova",fullName:"Tatyana Gorshkova"},{id:"209955",title:"Dr.",name:"Polina",middleName:null,surname:"Mikshina",slug:"polina-mikshina",fullName:"Polina Mikshina"},{id:"209956",title:"Dr.",name:"Marina",middleName:null,surname:"Ageeva",slug:"marina-ageeva",fullName:"Marina Ageeva"},{id:"209957",title:"MSc.",name:"Olga",middleName:null,surname:"Sautkina",slug:"olga-sautkina",fullName:"Olga Sautkina"}]},{id:"50950",title:"Carbon Nanotube-Based Polymer Composites: Synthesis, Properties and Applications",slug:"carbon-nanotube-based-polymer-composites-synthesis-properties-and-applications",totalDownloads:4770,totalCrossrefCites:39,totalDimensionsCites:77,abstract:"The present chapter covers the designing, development, properties and applications of carbon nanotube-loaded polymer composites. The first section will provide a brief overview of carbon nanotubes (CNTs), their synthesis, properties and functionalization routes. The second section will shed light on the CNT/polymer composites, their types, synthesis routes and characterization. The last section will illustrate the various applications of CNT/polymer composites; important properties, parameters and performance indices backed by comprehensive literature account of the same. The chapter concludes with the current challenges and future aspects.",book:{id:"5167",slug:"carbon-nanotubes-current-progress-of-their-polymer-composites",title:"Carbon Nanotubes",fullTitle:"Carbon Nanotubes - Current Progress of their Polymer Composites"},signatures:"Waseem Khan, Rahul Sharma and Parveen Saini",authors:[{id:"149897",title:"Dr.",name:"Parveen",middleName:null,surname:"Saini",slug:"parveen-saini",fullName:"Parveen Saini"}]},{id:"56947",title:"Waste and Recycled Textiles as Reinforcements of Building Materials",slug:"waste-and-recycled-textiles-as-reinforcements-of-building-materials",totalDownloads:1559,totalCrossrefCites:6,totalDimensionsCites:9,abstract:"Currently, the use of composite materials in the construction areas has had a great impact on the society; mainly, those related with sustainability and environment aspects. Daily proposals aimed at overcoming the properties of traditional materials that arise, which include emergent materials either from waste or recycled products. One of them is related to the textile materials, which include fibers such as wool, hemp, linen, and cotton. In the past decade, special attention has been focused on the used clothes, which represent a source of raw materials environmentally responsible and economically profitable. Textile materials are discarded daily around the world, representing approximately 1.5% of the generated waste. Blue jeans are the most used clothing in the world, and they are elaborated by one of the most commonly used natural textile fibers—cotton. Textile materials have been reused in different applications, for example, in the production of poor-quality wires, crushed to manufacture noise and temperature insulation materials, and as fillers or reinforcements of concrete. In this chapter, different topics are described that include: (a) environmental impact of textile waste—a result of massive consumption of clothing, (b) recycling and reuse of textile waste, and (c) waste and recycled textile materials used as building materials.",book:{id:"6233",slug:"natural-and-artificial-fiber-reinforced-composites-as-renewable-sources",title:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources",fullTitle:"Natural and Artificial Fiber-Reinforced Composites as Renewable Sources"},signatures:"Patricia Peña Pichardo, Gonzalo Martínez-Barrera, Miguel Martínez-\nLópez, Fernando Ureña-Núñez and Liliana I. Ávila-Córdoba",authors:[{id:"102080",title:"Dr.",name:"Gonzalo",middleName:null,surname:"Martínez-Barrera",slug:"gonzalo-martinez-barrera",fullName:"Gonzalo Martínez-Barrera"},{id:"110214",title:"Dr.",name:"Fernando",middleName:null,surname:"Ureña-Nuñez",slug:"fernando-urena-nunez",fullName:"Fernando Ureña-Nuñez"},{id:"177864",title:"Dr.",name:"Liliana Ivette",middleName:null,surname:"Ávila-Córdoba",slug:"liliana-ivette-avila-cordoba",fullName:"Liliana Ivette Ávila-Córdoba"},{id:"177865",title:"Dr.",name:"Miguel",middleName:null,surname:"Martínez-López",slug:"miguel-martinez-lopez",fullName:"Miguel Martínez-López"},{id:"217120",title:"MSc.",name:"Patricia",middleName:null,surname:"Peña-Pichardo",slug:"patricia-pena-pichardo",fullName:"Patricia Peña-Pichardo"}]}],onlineFirstChaptersFilter:{topicId:"206",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 19th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Parasitic Infectious Diseases",value:5,count:1,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:2,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"92",type:"subseries",title:"Health and Wellbeing",keywords:"Ecology, Ecological, Nature, Health, Wellbeing, Health production",scope:"\r\n\tSustainable approaches to health and wellbeing in our COVID 19 recovery needs to focus on ecological approaches that prioritize our relationships with each other, and include engagement with nature, the arts and our heritage. This will ensure that we discover ways to live in our world that allows us and other beings to flourish. We can no longer rely on medicalized approaches to health that wait for people to become ill before attempting to treat them. We need to live in harmony with nature and rediscover the beauty and balance in our everyday lives and surroundings, which contribute to our well-being and that of all other creatures on the planet. This topic will provide insights and knowledge into how to achieve this change in health care that is based on ecologically sustainable practices.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11976,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:[{id:"169536",title:"Dr.",name:"David",middleName:null,surname:"Claborn",slug:"david-claborn",fullName:"David Claborn",profilePictureURL:"https://mts.intechopen.com/storage/users/169536/images/system/169536.jpeg",institutionString:null,institution:{name:"Missouri State University",institutionURL:null,country:{name:"United States of America"}}},{id:"248594",title:"Ph.D.",name:"Jasneth",middleName:null,surname:"Mullings",slug:"jasneth-mullings",fullName:"Jasneth Mullings",profilePictureURL:"https://mts.intechopen.com/storage/users/248594/images/system/248594.jpeg",institutionString:"The University Of The West Indies - Mona Campus, Jamaica",institution:null},{id:"331299",title:"Prof.",name:"Pei-Shan",middleName:null,surname:"Liao",slug:"pei-shan-liao",fullName:"Pei-Shan Liao",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000032Fh2FQAS/Profile_Picture_2022-03-18T09:39:41.jpg",institutionString:"Research Center for Humanities and Social Sciences, Academia Sinica, Taiwan",institution:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80959",title:"Biological Application of Essential Oils and Essential Oils Components in Terms of Antioxidant Activity and Inhibition of Cholinesterase Enzymes",doi:"10.5772/intechopen.102874",signatures:"Mejra Bektašević and Olivera Politeo",slug:"biological-application-of-essential-oils-and-essential-oils-components-in-terms-of-antioxidant-activ",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80859",title:"Antioxidant Effect and Medicinal Properties of Allspice Essential Oil",doi:"10.5772/intechopen.103001",signatures:"Yasvet Yareni Andrade Avila, Julián Cruz-Olivares and César Pérez-Alonso",slug:"antioxidant-effect-and-medicinal-properties-of-allspice-essential-oil",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80777",title:"Starch: A Veritable Natural Polymer for Economic Revolution",doi:"10.5772/intechopen.102941",signatures:"Obi P. Adigwe, Henry O. Egharevba and Martins O. Emeje",slug:"starch-a-veritable-natural-polymer-for-economic-revolution",totalDownloads:44,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80673",title:"Teucrium ramosissimum Derived-Natural Products and Its Potent Effect in Alleviating the Pathological Kidney Damage in LPS-Induced Mice",doi:"10.5772/intechopen.102788",signatures:"Fatma Guesmi and Ahmed Landoulsi",slug:"teucrium-ramosissimum-derived-natural-products-and-its-potent-effect-in-alleviating-the-pathological",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80600",title:"Essential Oil as Green Preservative Obtained by Ecofriendly Extraction Techniques",doi:"10.5772/intechopen.103035",signatures:"Nashwa Fathy Sayed Morsy",slug:"essential-oil-as-green-preservative-obtained-by-ecofriendly-extraction-techniques",totalDownloads:61,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Nashwa",surname:"Morsy"}],book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79875",title:"Comparative Study of the Physiochemical Composition and Techno-Functional Properties of Two Extracted Acorn Starches",doi:"10.5772/intechopen.101562",signatures:"Youkabed Zarroug, Mouna Boulares, Dorra Sfayhi and Bechir Slimi",slug:"comparative-study-of-the-physiochemical-composition-and-techno-functional-properties-of-two-extracte",totalDownloads:51,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80395",title:"History, Evolution and Future of Starch Industry in Nigeria",doi:"10.5772/intechopen.102712",signatures:"Obi Peter Adigwe, Judith Eloyi John and Martins Ochubiojo Emeje",slug:"history-evolution-and-future-of-starch-industry-in-nigeria",totalDownloads:52,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80168",title:"Benzimidazole: Pharmacological Profile",doi:"10.5772/intechopen.102091",signatures:"Mahender Thatikayala, Anil Kumar Garige and Hemalatha Gadegoni",slug:"benzimidazole-pharmacological-profile",totalDownloads:75,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80122",title:"Pharmaceutical and Therapeutic Potentials of Essential Oils",doi:"10.5772/intechopen.102037",signatures:"Ishrat Nazir and Sajad Ahmad Gangoo",slug:"pharmaceutical-and-therapeutic-potentials-of-essential-oils",totalDownloads:127,totalCrossrefCites:1,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80130",title:"Exploring the Versatility of Benzimidazole Scaffolds as Medicinal Agents: A Brief Update",doi:"10.5772/intechopen.101942",signatures:"Gopakumar Kavya and Akhil Sivan",slug:"exploring-the-versatility-of-benzimidazole-scaffolds-as-medicinal-agents-a-brief-update",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80018",title:"Potato Starch as Affected by Varieties, Storage Treatments and Conditions of Tubers",doi:"10.5772/intechopen.101831",signatures:"Saleem Siddiqui, Naseer Ahmed and Neeraj Phogat",slug:"potato-starch-as-affected-by-varieties-storage-treatments-and-conditions-of-tubers",totalDownloads:92,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80023",title:"Binary Interactions and Starch Bioavailability: Critical in Limiting Glycemic Response",doi:"10.5772/intechopen.101833",signatures:"Veda Krishnan, Monika Awana, Debarati Mondal, Piyush Verma, Archana Singh and Shelly Praveen",slug:"binary-interactions-and-starch-bioavailability-critical-in-limiting-glycemic-response",totalDownloads:78,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79964",title:"The Anticancer Profile of Benzimidazolium Salts and their Metal Complexes",doi:"10.5772/intechopen.101729",signatures:"Imran Ahmad Khan, Noor ul Amin Mohsin, Sana Aslam and Matloob Ahmad",slug:"the-anticancer-profile-of-benzimidazolium-salts-and-their-metal-complexes",totalDownloads:92,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79835",title:"Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside",doi:"10.5772/intechopen.101702",signatures:"Kashif Haider and Mohammad Shahar Yar",slug:"advances-of-benzimidazole-derivatives-as-anticancer-agents-bench-to-bedside",totalDownloads:107,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79856",title:"Starch-Based Hybrid Nanomaterials for Environmental Remediation",doi:"10.5772/intechopen.101697",signatures:"Ashoka Gamage, Thiviya Punniamoorthy and Terrence Madhujith",slug:"starch-based-hybrid-nanomaterials-for-environmental-remediation",totalDownloads:103,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},publishedBooks:{paginationCount:0,paginationItems:[]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/162212",hash:"",query:{},params:{id:"162212"},fullPath:"/profiles/162212",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()