Results of studies of the use of MDCT to evaluate coronary stent patency.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"}]},book:{item:{type:"book",id:"3123",leadTitle:null,fullTitle:"Ant Colony Optimization - Techniques and Applications",title:"Ant Colony Optimization",subtitle:"Techniques and Applications",reviewType:"peer-reviewed",abstract:"Ant Colony Optimization (ACO) is the best example of how studies aimed at understanding and modeling the behavior of ants and other social insects can provide inspiration for the development of computational algorithms for the solution of difficult mathematical problems. Introduced by Marco Dorigo in his PhD thesis (1992) and initially applied to the travelling salesman problem, the ACO field has experienced a tremendous growth, standing today as an important nature-inspired stochastic metaheuristic for hard optimization problems. This book presents state-of-the-art ACO methods and is divided into two parts: (I) Techniques, which includes parallel implementations, and (II) Applications, where recent contributions of ACO to diverse fields, such as traffic congestion and control, structural optimization, manufacturing, and genomics are presented.",isbn:null,printIsbn:"978-953-51-1001-9",pdfIsbn:"978-953-51-5717-5",doi:"10.5772/3423",price:119,priceEur:129,priceUsd:155,slug:"ant-colony-optimization-techniques-and-applications",numberOfPages:214,isOpenForSubmission:!1,isInWos:1,hash:"6851c23288f4a6174d81d2df0b665527",bookSignature:"Helio J.C. Barbosa",publishedDate:"February 20th 2013",coverURL:"https://cdn.intechopen.com/books/images_new/3123.jpg",numberOfDownloads:21513,numberOfWosCitations:23,numberOfCrossrefCitations:13,numberOfDimensionsCitations:20,hasAltmetrics:1,numberOfTotalCitations:56,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 14th 2012",dateEndSecondStepPublish:"April 6th 2012",dateEndThirdStepPublish:"July 2nd 2012",dateEndFourthStepPublish:"August 2nd 2012",dateEndFifthStepPublish:"November 3rd 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"17250",title:"Dr.",name:"Helio",middleName:"J.C.",surname:"Barbosa",slug:"helio-barbosa",fullName:"Helio Barbosa",profilePictureURL:"https://mts.intechopen.com/storage/users/17250/images/system/17250.jpg",biography:"Helio J.C. Barbosa (www.lncc.br/~hcbm) is a Senior Technologist at the Laboratório Nacional de Computação Científica, Brazil. \nHe received a Civil Engineering degree (1974) from the Federal University of Juiz de Fora, where he is an Associate Professor in the Computer Science Department, and M.Sc. (1978) and D.Sc. (1986) degrees in Civil Engineering from the Federal University of Rio de Janeiro, Brazil. \nDuring 1988-1990 he was a visiting scholar at the Division of Applied Mechanics, Stanford University, USA. He is currently mainly interested in the design and application of nature-inspired metaheuristics in engineering and biology.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"525",title:"Soft Computing",slug:"soft-computing"}],chapters:[{id:"39688",title:"Ant Colony Optimization Toward Feature Selection",doi:"10.5772/51707",slug:"ant-colony-optimization-toward-feature-selection",totalDownloads:3522,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"Monirul Kabir, Md Shahjahan and Kazuyuki Murase",downloadPdfUrl:"/chapter/pdf-download/39688",previewPdfUrl:"/chapter/pdf-preview/39688",authors:[{id:"154612",title:"Prof.",name:"Kazuyuki",surname:"Murase",slug:"kazuyuki-murase",fullName:"Kazuyuki Murase"}],corrections:null},{id:"43016",title:"Parallel Ant Colony Optimization: Algorithmic Models and Hardware Implementations",doi:"10.5772/54252",slug:"parallel-ant-colony-optimization-algorithmic-models-and-hardware-implementations",totalDownloads:3248,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Pierre Delisle",downloadPdfUrl:"/chapter/pdf-download/43016",previewPdfUrl:"/chapter/pdf-preview/43016",authors:[{id:"155923",title:"Associate Prof.",name:"Pierre",surname:"Delisle",slug:"pierre-delisle",fullName:"Pierre Delisle"}],corrections:null},{id:"40485",title:"Strategies for Parallel Ant Colony Optimization on Graphics Processing Units",doi:"10.5772/51679",slug:"strategies-for-parallel-ant-colony-optimization-on-graphics-processing-units",totalDownloads:3101,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Jaqueline S. Angelo, Douglas A. Augusto and Helio J. C. Barbosa",downloadPdfUrl:"/chapter/pdf-download/40485",previewPdfUrl:"/chapter/pdf-preview/40485",authors:[{id:"17250",title:"Dr.",name:"Helio",surname:"Barbosa",slug:"helio-barbosa",fullName:"Helio Barbosa"},{id:"17251",title:"D.Sc.",name:"Jaqueline",surname:"Angelo",slug:"jaqueline-angelo",fullName:"Jaqueline Angelo"},{id:"142942",title:"Dr.",name:"Douglas",surname:"Augusto",slug:"douglas-augusto",fullName:"Douglas Augusto"}],corrections:null},{id:"38724",title:"An Ant Colony Optimization Algorithm for Area Traffic Control",doi:"10.5772/51695",slug:"an-ant-colony-optimization-algorithm-for-area-traffic-control",totalDownloads:3452,totalCrossrefCites:6,totalDimensionsCites:7,signatures:"Soner Haldenbilen, Ozgur Baskan and Cenk Ozan",downloadPdfUrl:"/chapter/pdf-download/38724",previewPdfUrl:"/chapter/pdf-preview/38724",authors:[{id:"15540",title:"Prof.",name:"Ozgur",surname:"Baskan",slug:"ozgur-baskan",fullName:"Ozgur Baskan"},{id:"18799",title:"Dr.",name:"Soner",surname:"Haldenbilen",slug:"soner-haldenbilen",fullName:"Soner Haldenbilen"},{id:"151557",title:"Ph.D.",name:"Cenk",surname:"Ozan",slug:"cenk-ozan",fullName:"Cenk Ozan"}],corrections:null},{id:"40443",title:"ANGEL: A Simplified Hybrid Metaheuristic for Structural Optimization",doi:"10.5772/52188",slug:"angel-a-simplified-hybrid-metaheuristic-for-structural-optimization",totalDownloads:1732,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Anikó Csébfalvi",downloadPdfUrl:"/chapter/pdf-download/40443",previewPdfUrl:"/chapter/pdf-preview/40443",authors:[{id:"152699",title:"Prof.",name:"Anikó",surname:"Csébfalvi",slug:"aniko-csebfalvi",fullName:"Anikó Csébfalvi"}],corrections:null},{id:"39584",title:"Scheduling in Manufacturing Systems – Ant Colony Approach",doi:"10.5772/51487",slug:"scheduling-in-manufacturing-systems-ant-colony-approach",totalDownloads:2002,totalCrossrefCites:1,totalDimensionsCites:0,signatures:"Mieczyslaw Drabowski and Edward Wantuch",downloadPdfUrl:"/chapter/pdf-download/39584",previewPdfUrl:"/chapter/pdf-preview/39584",authors:[{id:"15491",title:"D.Sc.",name:"Mieczyslaw",surname:"Drabowski",slug:"mieczyslaw-drabowski",fullName:"Mieczyslaw Drabowski"},{id:"152506",title:"Prof.",name:"Edward",surname:"Wantuch",slug:"edward-wantuch",fullName:"Edward Wantuch"}],corrections:null},{id:"43017",title:"Traffic-Congestion Forecasting Algorithm Based on Pheromone Communication Model",doi:"10.5772/52563",slug:"traffic-congestion-forecasting-algorithm-based-on-pheromone-communication-model",totalDownloads:2576,totalCrossrefCites:4,totalDimensionsCites:5,signatures:"Satoshi Kurihara",downloadPdfUrl:"/chapter/pdf-download/43017",previewPdfUrl:"/chapter/pdf-preview/43017",authors:[{id:"16768",title:"Dr.",name:"Satoshi",surname:"Kurihara",slug:"satoshi-kurihara",fullName:"Satoshi Kurihara"}],corrections:null},{id:"43018",title:"Ant Colony Algorithm with Applications in the Field of Genomics",doi:"10.5772/52051",slug:"ant-colony-algorithm-with-applications-in-the-field-of-genomics",totalDownloads:1888,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"R. Rekaya, K. Robbins, M. Spangler, S. Smith, E. H. Hay and K. Bertrand",downloadPdfUrl:"/chapter/pdf-download/43018",previewPdfUrl:"/chapter/pdf-preview/43018",authors:[{id:"15048",title:"Prof.",name:"Romdhane",surname:"Rekaya",slug:"romdhane-rekaya",fullName:"Romdhane Rekaya"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"6122",title:"Computational Intelligence and Modern Heuristics",subtitle:null,isOpenForSubmission:!1,hash:"4cd7e6ab7c0c6664559b97ea8cd66b8b",slug:"computational-intelligence-and-modern-heuristics",bookSignature:"Al-Dahoud Ali",coverURL:"https://cdn.intechopen.com/books/images_new/6122.jpg",editedByType:"Edited by",editors:[{id:"1532",title:"Dr.",name:"Ali",surname:"Al-Dahoud",slug:"ali-al-dahoud",fullName:"Ali Al-Dahoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6554",title:"From Natural to Artificial Intelligence",subtitle:"Algorithms and Applications",isOpenForSubmission:!1,hash:"0b018b22e9462ac7c75edbc6392b2a6e",slug:"from-natural-to-artificial-intelligence-algorithms-and-applications",bookSignature:"Ricardo Lopez-Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/6554.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",surname:"Lopez-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo Lopez-Ruiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66064",slug:"corrigendum-to-textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high",title:"Corrigendum to: Textured BST Thin Film on Silicon Substrate: Preparation and Its Applications for High Frequency Tunable Devices",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66064.pdf",downloadPdfUrl:"/chapter/pdf-download/66064",previewPdfUrl:"/chapter/pdf-preview/66064",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66064",risUrl:"/chapter/ris/66064",chapter:{id:"62285",slug:"textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high-frequency-tuna",signatures:"Congchun Zhang, Jianze Huang, Chunsheng Yang and Guifu Ding",dateSubmitted:"February 7th 2018",dateReviewed:"June 3rd 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"33329",title:"Prof.",name:"guifu",middleName:null,surname:"Ding",fullName:"guifu Ding",slug:"guifu-ding",email:"gfding@sjtu.edu.cn",position:null,institution:{name:"Shanghai Jiao Tong University",institutionURL:null,country:{name:"China"}}},{id:"244624",title:"Associate Prof.",name:"Congchun",middleName:null,surname:"Zhang",fullName:"Congchun Zhang",slug:"congchun-zhang",email:"zhcc@sjtu.edu.cn",position:null,institution:null},{id:"255541",title:"Mr.",name:"Jianze",middleName:null,surname:"Huang",fullName:"Jianze Huang",slug:"jianze-huang",email:"huangjz420@sjtu.edu.cn",position:null,institution:null},{id:"255547",title:"Mr.",name:"Chunsheng",middleName:null,surname:"Yang",fullName:"Chunsheng Yang",slug:"chunsheng-yang",email:"csyang@sjtu.edu.cn",position:null,institution:null}]}},chapter:{id:"62285",slug:"textured-bst-thin-film-on-silicon-substrate-preparation-and-its-applications-for-high-frequency-tuna",signatures:"Congchun Zhang, Jianze Huang, Chunsheng Yang and Guifu Ding",dateSubmitted:"February 7th 2018",dateReviewed:"June 3rd 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"33329",title:"Prof.",name:"guifu",middleName:null,surname:"Ding",fullName:"guifu Ding",slug:"guifu-ding",email:"gfding@sjtu.edu.cn",position:null,institution:{name:"Shanghai Jiao Tong University",institutionURL:null,country:{name:"China"}}},{id:"244624",title:"Associate Prof.",name:"Congchun",middleName:null,surname:"Zhang",fullName:"Congchun Zhang",slug:"congchun-zhang",email:"zhcc@sjtu.edu.cn",position:null,institution:null},{id:"255541",title:"Mr.",name:"Jianze",middleName:null,surname:"Huang",fullName:"Jianze Huang",slug:"jianze-huang",email:"huangjz420@sjtu.edu.cn",position:null,institution:null},{id:"255547",title:"Mr.",name:"Chunsheng",middleName:null,surname:"Yang",fullName:"Chunsheng Yang",slug:"chunsheng-yang",email:"csyang@sjtu.edu.cn",position:null,institution:null}]},book:{id:"7253",title:"Coatings and Thin-Film Technologies",subtitle:null,fullTitle:"Coatings and Thin-Film Technologies",slug:"coatings-and-thin-film-technologies",publishedDate:"January 3rd 2019",bookSignature:"Jaime Andres Perez-Taborda and Alba G. Avila Bernal",coverURL:"https://cdn.intechopen.com/books/images_new/7253.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"193020",title:"Dr.",name:"Jaime Andres",middleName:null,surname:"Perez Taborda",slug:"jaime-andres-perez-taborda",fullName:"Jaime Andres Perez Taborda"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7342",leadTitle:null,title:"Manifolds II",subtitle:"Theory and Applications",reviewType:"peer-reviewed",abstract:"Differential geometry is a very active field of research and has many applications to areas such as physics, in particular gravity. The chapters in this book cover a number of subjects that will be of interest to workers in these areas. It is hoped that these chapters will be able to provide a useful resource for researchers with regard to current fields of research in this important area.",isbn:"978-1-83880-310-0",printIsbn:"978-1-83880-309-4",pdfIsbn:"978-1-83880-716-0",doi:"10.5772/intechopen.75217",price:119,priceEur:129,priceUsd:155,slug:"manifolds-ii-theory-and-applications",numberOfPages:146,isOpenForSubmission:!1,hash:"97f5bd89a6e5006ea10d90df5a6df5a5",bookSignature:"Paul Bracken",publishedDate:"May 22nd 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7342.jpg",keywords:null,numberOfDownloads:2797,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:2,numberOfTotalCitations:2,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 11th 2018",dateEndSecondStepPublish:"May 2nd 2018",dateEndThirdStepPublish:"July 1st 2018",dateEndFourthStepPublish:"September 19th 2018",dateEndFifthStepPublish:"November 18th 2018",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken",profilePictureURL:"https://mts.intechopen.com/storage/users/92883/images/system/92883.JPG",biography:"Professor Paul Bracken is currently a Professor in the Department of Mathematics, at the University of Texas RGV in Edinburg, TX. He obtained his BSc degree from the University of Toronto and holds a Ph.D. from the University of Waterloo in Canada. His research interests include mathematical problems from the area of quantum mechanics and quantum field theory, differential geometry, a study of partial differential equations as well as their overlap with other problems in physics. He has published more than 160 papers in journals and books and has given many talks at different levels over the years. This is the seventh volume he has worked on with IntechOpen publishers.",institutionString:"The University of Texas Rio Grande Valley",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"9",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"The University of Texas Rio Grande Valley",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"165",title:"Geometry & Topology",slug:"geometry-and-topology"}],chapters:[{id:"65349",title:"The Generalized Weierstrass System in Three-Dimensional Euclidean Space",slug:"the-generalized-weierstrass-system-in-three-dimensional-euclidean-space",totalDownloads:436,totalCrossrefCites:0,authors:[{id:"92883",title:"Prof.",name:"Paul",surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}]},{id:"63626",title:"On Conformal Anti-Invariant Submersions Whose Total Manifolds Are Locally Product Riemannian",slug:"on-conformal-anti-invariant-submersions-whose-total-manifolds-are-locally-product-riemannian",totalDownloads:384,totalCrossrefCites:0,authors:[null]},{id:"62804",title:"Recent Advances of Manifold Regularization",slug:"recent-advances-of-manifold-regularization",totalDownloads:571,totalCrossrefCites:0,authors:[null]},{id:"63130",title:"Manifold Learning in Medical Imaging",slug:"manifold-learning-in-medical-imaging",totalDownloads:547,totalCrossrefCites:0,authors:[null]},{id:"63747",title:"Trajectory Tracking Control of Parallel Manipulator with Integral Manifold and Observer",slug:"trajectory-tracking-control-of-parallel-manipulator-with-integral-manifold-and-observer",totalDownloads:452,totalCrossrefCites:0,authors:[null]},{id:"63611",title:"Manifold-Based Robot Motion Generation",slug:"manifold-based-robot-motion-generation",totalDownloads:415,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"250240",firstName:"Nino",lastName:"Popovic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/250240/images/7088_n.png",email:"nino@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"3513",title:"Advances in Quantum Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"bbea1c081216f267a4480707f4ead9cf",slug:"advances-in-quantum-mechanics",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/3513.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5488",title:"Manifolds",subtitle:"Current Research Areas",isOpenForSubmission:!1,hash:"e1193790ca2c8027d4ffc6911dd24365",slug:"manifolds-current-research-areas",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/5488.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5213",title:"Research Advances in Quantum Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"15678b0555c714101f8d707a46b4ac60",slug:"research-advances-in-quantum-dynamics",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/5213.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10076",title:"Quantum Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"78f2b316d6bb97464dbbf9b683164aff",slug:"quantum-mechanics",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/10076.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7776",title:"Research Advances in Chaos Theory",subtitle:null,isOpenForSubmission:!1,hash:"e9646ec4b2bff873ce958ed4d5ad7248",slug:"research-advances-in-chaos-theory",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/7776.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"43617",title:"Multidector CT Imaging of Coronary Artery Stent and Coronary Artery Bypass Graft",doi:"10.5772/54085",slug:"multidector-ct-imaging-of-coronary-artery-stent-and-coronary-artery-bypass-graft",body:'Coronary artery stenting has become the most important nonsurgical treatment for coronary artery disease. However, in-stent restenosis occurs at a relatively high rate and this problem has led to the routine use of invasive angiography for assessing stent patency. Although coronary angiography is the clinical gold standard and it is a very effective diagnostic tool for detecting such in-stent restenosis, it’s clearly an invasive procedure with its associated morbidity and mortality risks. Therefore, a noninvasive technique for detecting in-stent restenosis would be of great interest and use for following up patients after coronary angioplasty. Multidetector-row CT (MDCT) is being increasingly used for noninvasive coronary artery imaging as it has high diagnostic accuracy for detecting coronary artery stenosis in native, non-stented, coronary arteries. The recently introduced 64-slice CT offers more improved spatial and temporal resolution than does 4 and 16-slice CT and this results in superior visualization of the stent lumen and in-stent restenosis. However, although 64-slice MDCT allows for improved stent visualization, a relevant part (up to 47%) of the stent lumen is still not assessable (Mahnken et al., 2006). The metal of the stents can cause blooming artifacts that prevent the accurate interpretation of a lumen’s patency. To improve a stent’s visualization, numerous methods have been attempted such as dedicated post-processing or the use of dual-source CT. However, because of its presently limited sensitivity and high radiation exposure, MDCT should not be used as the first-line test to screen for in-stent restenosis in asymptomatic patients. Given its high specificity and negative predictive value, MDCT might be valuable for confirming stent occlusion in symptomatic patients.
Coronary artery bypass graft (CABG) surgery is the standard care in the treatment of advanced coronary artery disease. Notwithstanding the clear benefits of bypass grafting, recurrent chest pain after myocardial revascularization surgery is a common postoperative presentation and the long-term clinical outcome after myocardial revascularization surgery is largely dependent on graft patency and the progression of coronary artery disease. Therefore, assessment of the status of the grafts and graft disease after CABG surgery is an important issue in cardiology. Although conventional coronary angiography is still standard method for assessment of the status of naïve and recipient vessels after CABG surgery, it is an invasive and costly procedure that is not risk-free. Recently, MDCT with retrospective electrocardiographic (ECG) gating has gained rapid acceptance as a diagnostic cardiac imaging modality, allowing assessment of coronary bypass graft patency with high spatial resolution. Initial assessment of bypass grafts was done with single-slice scanners and electron-beam CT. Subsequently, the addition of electrocardiographic (ECG) gating and the improved capabilities available with 4- or 16-slice MDCT scanners for rapid scanning of the area of interest led to promising results in the imaging of bypass grafts (Marano et al., 2005; Ueyama et al., 1999). Recently, the introduction of 64-slice MDCT permitted improved temporal resolution (94 to 200 msec) and spatial resolution (upto submillimeter) and reduction of both cardiac and respiratory motion, leading to improved assessment of graft stenosis and occlusion (Frazier et al., 2005; Lee et al., 2010). Moreover, 3-dimensional (3D) image processing and advanced volumetric visualization techniques now allow radiologists and cardiologists to evaluate coronary grafts in multiple planes using various projections. With the capability of acquiring 3D data volumes along with its tomographic nature, it shares many of the advantages of intravascular ultrasound and thus has the potential to enhance the practice of percutaneous coronary intervention (PCI) in the catheterization laboratory by providing data which was difficult to obtain by invasive coronary angiography (Song et al., 2010; Dikkers et al., 2007; Vembar et al., 2003). MDCT scanners characterized by submillimeter spatial resolution and a temporal resolution of 94 to 200 ms are now available and are increasingly used for cardiac imaging with promising results.
Cardiac CTA technique requires rapid injection of nonionic, iodinated, low-osmolar intravenous contrast. A bolus of 100 to 120 mL nonionic contrast material (high iodine concentration is recommended) is administered intravenously using an automatic injector at a flow rate of 3 to 4 mL/s. A region of interest was placed in the descending aorta by using a preset threshold of 150 HU; a 10-second delay followed before scanning was begun to ensure filling of the distal vessels with contrast material. Axial images are reconstructed in the mid-to-late diastolic phase, using a fraction (percentage; relative delay) of the R-R interval of the cardiac cycle. Images are acquired with a heart rate < 70 beats per minute, if possible, and with breath-holding during mid-inspiration to prevent substantial inflow of unopacified blood into the right atrium, which may result in heterogeneity of contrast. Low heart rates (< 65 beats/min for 16-slice MDCT or < 70 beats/min for 64-slice MDCT) are recommended to obtain high-quality CT scans, and in the absence of contraindications (heart failure, systolic BP < 100 mm Hg, atrioventricular blockade greater than grade I, and referred adverse reaction), beta-blockers can be administered before CT acquisition (Frazier et al., 2005; Marano et al., 2005). Oral or intravenous beta-adrenergic blocking medications, specifically metoprolol (Lopressor; Novartis Pharmaceuticals Corp., East Hanover, NJ), are administered prior to scanning to prevent heart rate variabilityand tachycardia. Retrospective ECG-gated CTA is essential for optimal image acquisition and reconstruction of evenly spaced phases of the cardiac cycle. The images are acquired in a limited field of view with axial images centered on the heart. Using 60% to 80% of the R-R interval, with 0.6-0.75 mm thick images reconstructed in 0.4-0.5 mm increments, axial source images, three-dimensional (3D) volume-rendered images, and multiplanar reformatted (MPR) images are generated.
There are a variety of protocols for image acquisition in the evaluation of patients after CABG surgery. In many respects, the protocol is similar to that for coronary CT angiography (CTA). One important difference is that the scan should be extended superiorly to include the origins of the internal mammary arteries. Scanning is performed with the patient in the supine position, during breath-hold. After placement of the leads for ECG recording on the chest wall and a check of the heart rate, a noncontrast CT scan image is acquired through the entire thorax in order to define the volume of the subsequent CT angiography and to detect associated or unsuspected findings. Hence, MDCT angiography is performed during ECG recording, from the subclavian arteries to the cardiac base; in patients with venous grafts, a smaller scanning volume starting from the lower third of the ascending aorta is usually sufficient. On the contrary, when a right gastroepiploic artery (RGEA) has been used, the scanning volume should include the upper abdomen. Since the left internal mammary artery (LIMA) is the most frequently used graft to the anterior cardiac wall, a right arm venous access is preferable in order to avoid streak artifacts from the left subclavian vein that may hamper a complete evaluation of LIMA course and takeoff. Both 3D volume-rendering and MPR images are used to assess the bypass grafts, proximal and/or distal graft anastomoses, and the cardiac anatomy. In particular, curved multiplanar images with centerlines through the bypass grafts and native coronary arteries are obtained. To correctly assess graft patency and/or the presence of significant stenosis and occlusion, a thorough knowledge of CABG anatomy and its configuration on CTA is important for radiologists and cardiologists. There are 2 types of bypass grafts, arterial and venous. Venous grafts are generally larger in caliber than arterial grafts, and for this reason, jointly to the absence of surgical clips along their course, venous grafts are usually better assessable by noninvasive imaging techniques. In order of frequency of use, graft arteries include the internal mammary arteries (IMAs), radial arteries (RAs), right gastroepiploic artery (RGEA), and inferior epigastric artery. Although arterial grafts have better long-term outcomes, venous grafts, specifically saphenous vein grafts (SVGs), are more readily available. CTA following CABG surgery is done by first assessing the morphology and size of the ascending aorta and the origin of the in situ vessel such as the IMA. Then, graft patency is assessed for homogeneous, contrast-enhanced graft lumen and for regular shape and border of the graft wall. The graft is usually divided into 3 different segments: the origin or proximal anastomosis of the graft, the body of the graft, and the single (or sequential) distal anastomosis. During the CTA evaluation of bypass grafts, the proximal anastomosis is usually better visualized than the distal anastomosis. In cases in which the distal anastomosis is not well evaluated, the bypass graft is usually considered patent as long as contrast is evident within the graft lumen.
The advantages of MDCT are the relatively rapid imaging time and high spatial resolution attributable to the multi-row detector system. Numerous studies dealing with MDCT coronary bypass angiography have reported cardiac and respiratory motion artifacts as the most significant limitations in the reliable assessment of graft patency and stenosis of recipient vessels. It is well known that heart rate greatly influences image quality and stenosis detection. The introduction of 64-slice MDCT scanners, with faster gantry rotation times and shorter breath-hold times, improved diagnostic image quality by reducing cardiac and respiratory motion artifacts. However, optimum performance was observed primarily in patients with heart rates below 70 beats per minute. Even with improved spatial and temporal resolution with 64-slice technology, routine administration of β-blockers is still required. If graft segment image quality is suboptimal due to motion artifacts, a potential remedy is to obtain additional image reconstructions in smaller increments throughout the cardiac cycle. The other limitations of MDCT are the presence of calcification and metal clip artifacts, which make assessment of graft patency difficult, and accurate evaluation of the degree of stenosis impossible. Nevertheless, the thinner slices of 64-slice MDCT give increased temporal resolution, and 3-dimentional reconstructions show consistent detail in every plane. Moreover, bypass grafts are characterized by minor calcification compared to naive vessels, allowing more accurate analysis in most cases. Coronary calcifications and metal clip artifacts still remain a challenging issue with 64-slice cardiac CT despite improvements with the use of sharper image filters, e.g. the B46 Kernel (Siemens Medical Solutions) (Seifarth et al., 2005). The another important limitation is the high radiation dose required for 64-slice MDCT, although electrocardiogram-dependent dose modulation can reduce this by 30%–50%. The minimization of radiation exposure as well as optimization of the diagnostic accuracy in calcified vessels remain the chief goals for future MDCT advances.
Current limitations of coronary CTA include image noise and radiation dose. As a result, a number of techniques and strategies have become available on newer CT platforms to enable dose reduction in coronary CT. These include sequential or prospective ECG triggering, reduced tube voltage scanning, and high-pitch helical scanning. Recently, iterative reconstruction (Adaptive Statistical Iterative Reconstruction [ASIR], GE Healthcare) has been introduced as a new reconstruction algorithm (Rajiah et al., 2012; Leipsic et al., 2007; Min et al., 2009). In comparison with filtered back projection (FBP), ASIR reduces image noise (increase contrast-to-noise ratio [CNR]) by iteratively comparing the acquired image to a modeled projection. This reconstruction algorithm is used to help deal with one of the primary issues of dose and tube current reduction for coronary CTA with FBP: increased image noise with decreased tube current. Recently, a high-definition CT (HDCT) scanner, with improved in-plane spatial resolution of 230 μm and the ability to reconstruct images with the use of a novel applied ASIR algorithm, has been developed (Min et al., 2009).
High definition (HD) versus non-HD CT imagings. HD images show more clearly visualization of the stent and in-stent area.
Coronary artery stenting is currently the standard practice in nonsurgical myocardial revascularization. However, coronary in-stent restenosis attributable to intimal hyperplasia remains problematic, with an incidence rate of 20% to 30%. The evaluation of stent patency is a major issue in the follow-up after stent placement. It would be desirable to obviate the use of invasive and costly angiography in the evaluation of stent patency. Initial studies using 4-detector coronary CTA for the evaluation of stent patency showed difficulties in imaging small and high-attenuating structures such as coronary stents (Table 1). With 16-detector coronary CTA, coronary artery stent patency has been assessed on the basis of contrast enhancement measurements or pixel count methods. However, stent diameter (≤ 3 mm), strut thickness, and stent material are still a cause of poor lumen visualization. In a study by Gilard et al, 232 stents were evaluated in vivo with 16-detector CT. Lumen interpretability depended on stent diameter: for stents with diameter > 3mm, 81% of lumens were interpretable, compared with 51% for stents with diameter ≤ 3 mm (Gilard et al., 2006). Restenosis detection depended on stent diameter: for stents with diameter > 3 mm, sensitivity and specificity of MDCT were 86% and 100%, respectively. For small stents with diameter ≤ 3 mm, corresponding values were 54% and 100% (Lefebvre et al., 2007; Pugliese et al., 2006). As stated by Kitagawa et al, the importance of metal artifacts and partial volume effect of stents is related to the stent material, the stent diameter and thickness, and the strut design (Kitagawa et al., 2006). In vitro studies comparing 16-slice CT with 4-slice CT showed improvement in lumen visibility, with the same medium smooth body kernel (B30f) for reconstruction (Maintz et al., 2003). The use of a dedicated high spatial resolution reconstruction kernel (sharp kernel or “B46f”), compared with a standard reconstruction kernel (medium-smooth kernel or “B30f”), resulted in a further improvement of the visible stent lumen diameter because, with the B46f-kernel, the stent boundary was depicted more sharply than on the B30f-kernel images. Further, a larger window width to suppress the high attenuation of the stent strut seemed to contribute better delineation and more accurate measurement of the in-stent lumen. In a phantom study, Seifarth et al. showed that the use of 64-slice CT results in superior visualization of the stent lumen and in-stent stenosis, compared with 16-slice CT (Seifarth et al., 2006). In addition to evaluating the in vitro and in vivo performance of 64-slice CT for stent analysis, further developments could focus on the design of stents to reduce artifacts.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Pump, et al., 2000 | \n\t\t\tElectron beam | \n\t\t\t202 | \n\t\t\t321 | \n\t\t\t- | \n\t\t\tDistal runoff | \n\t\t\t78 | \n\t\t\t98 | \n\t\t
Knollman, et al., 2004 | \n\t\t\tElectron beam | \n\t\t\t117 | \n\t\t\t152 | \n\t\t\t2.5- 3.0 | \n\t\t\tDistal runoff | \n\t\t\t72 | \n\t\t\t60 | \n\t\t
Maintz, et al., 2003 | \n\t\t\t4-MDCT | \n\t\t\t29 | \n\t\t\t47 | \n\t\t\t3.0-5.0 | \n\t\t\tDistal runoff | \n\t\t\t100 | \n\t\t\t100 | \n\t\t
Ligabue, et al., 2004 | \n\t\t\t4-MDCT | \n\t\t\t48 | \n\t\t\t72 | \n\t\t\t2.5-4.5 | \n\t\t\tDistal runoff | \n\t\t\t100 | \n\t\t\t100 | \n\t\t
Schuijf, et al., 2004 | \n\t\t\t16-MDCT | \n\t\t\t22 | \n\t\t\t68 | \n\t\t\t2.25-5.0 | \n\t\t\tDistal runoff | \n\t\t\t78 | \n\t\t\t100 | \n\t\t
Gilard, et al., 2006 | \n\t\t\t16-MDCT | \n\t\t\t143 | \n\t\t\t232 | \n\t\t\t2.5-4.5 | \n\t\t\tvisualize lumen | \n\t\t\t100 | \n\t\t\t92 | \n\t\t
Results of studies of the use of MDCT to evaluate coronary stent patency.
Metallic struts cause a severe CT artifact known as blooming effect. Blooming effect results from beam hardening and causes the stent struts to appear thicker than they are and, often, to overlap the vessel lumen. As a result the in-stent luminal diameter is underestimated. The energy spectrum of the x-ray beam increases as it passes through a hyperattenuating structure because lower-energy photons are absorbed more rapidly than are higher-energy photons, resulting in the beam being more intense when it reaches the detectors. Calcified spots of vessel wall near or at the outer surface of an implanted stent also contribute to beam hardening, which further erodes the assessability of the stent lumen. Depending on the metal type and the design of the stent, the magnitude of this artifact varies. As a rule, the depiction of stents with the slimmest profile is least affected by blooming artifacts (Lefebvre et al., 2007; Pugliese et al., 2006).
Another obstacle to coronary stent imaging is related to partial volume averaging and interpolation. Inherent in all digital tomographic imaging techniques, partial volume averaging yields a CT number that represents average attenuation of the materials within a voxel. At stent imaging in vessels with a large diameter, such as the aorta or iliac arteries, partial volume averaging effects are present but are limited to the proximity of the vessel wall. In coronary arteries with smaller diameters, the artifacts are of the same magnitude, but a reliable assessment of the lumen is much more problematic. The smaller the stent, the more detrimental the effect of partial volume averaging on the assessability of the in-stent lumen. The thinner detector width on 64-section CT scanners partly solves this problem by reducing the voxel size and thereby the general assessability of the stent lumen (Lefebvre et al., 2007; Pugliese et al., 2006).
The visibility of lumens of different stents varies and this largely depends upon the stent type and the diameter. The blooming effect is more disturbing for smaller coronary stents with thicker struts. Uninterpretable images tend to be obtained for stents with thicker struts and/or a smaller diameter. When the lumen diameter is less than 3mm, the lumen visibility is worse. Regarding the type of stent, the most severe artifacts are found with tantalum, gold or gold-coated stents, or with covered stent grafts as compared with stainless steel stents. Maintz et al. recently evaluated 68 different stents in vitro with using 64-slice MDCT and they created a catalogue of the CT appearance of most of the currently available coronary stents (Maintz et al., 2009). They confirmed that the high variability for stent lumen visibility depended on the stent type, and this was previously reported on with using 4-slice and 16-slice CT. They also concluded that while in vivo studies will be required to verify their results, it can be assumed that a reliable evaluation of lumens of stents in the more advantageous stent types, such as the Radius, Teneo, Symbiot or Flex standard stents, will be possible with using 64-slice MDCT. First-generation drug-eluting stents, which released sirolimus or paclitaxel, were shown to be superior to bare-metal stents and to balloon angioplasty in reducing the magnitude of neointimal proliferation, the incidence of clinical restenosis, and the need for reintervention. Unfortunately, late stent thrombosis (thrombosis that occurs 30 days or more after implantation of the stent) is more likely to occur with drug-eluting stents than with bare-metal stents. The gradual release of the antiproliferative agent effectively inhibits endothelialization of the stent struts, thereby allowing them to continue to serve as a nidus for platelet aggregation and thrombus formation. Second or third-generation drug-eluting stents are designed to provide better stent deployment, safety, and efficacy. They differ from the first-generation stents with respect to the antiproliferative agent, the polymer layer (which acts as a reservoir for controlled drug delivery), and the stent frame. Improvements in stent structure may result in better stent apposition to the vessel wall, improved endothelialization (a thin stent strut elicits less neointimal proliferation and requires less endothelialization to cover the struts completely), and reduced platelet aggregation and thrombus formation, thereby reducing the incidence of stent thrombosis.
Detail render of drug-eluting stents. Diverse drug-eluting stents are currently available, differing in the type of metal used, stent design, and drug coating.
Type of metal used, stent design, and images of fluoroscopy and 64-slice MDCT of Cypher, first-generation Sirolimus-eluting stent.
Type of metal used, stent design, and images of fluoroscopy and 64-slice MDCT of Taxus, first-generation Paclitaxel-eluting stent.
Type of metal used, stent design, and images of fluoroscopy and 64-slice MDCT of Xience, second-generation Everolimus-eluting stent.
Type of metal used, stent design, and images of fluoroscopy and 64-slice MDCT of Endeavor, second-generation Zotarolimus-eluting stent.
Type of metal used, stent design, and images of fluoroscopy and 64-slice MDCT of Promus, third-generation Everolimus-eluting stent.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Cypher | \n\t\t\tStainless steel | \n\t\t\tSirolimus (Rapamune) | \n\t\t
Endeavor | \n\t\t\tCobalt-chromium | \n\t\t\tZotarolimus | \n\t\t
Taxus | \n\t\t\tStainless steel | \n\t\t\tPaclitaxel (Taxol) | \n\t\t
Xience, Promus | \n\t\t\tCobalt-chromium | \n\t\t\tEverolimus (Afinitor) | \n\t\t
Types of Drug-Eluting Stents Available for Clinical Use
Prominent contrast enhancement in the lumen is a prerequisite for robust coronary CT angiography. It is achieved not only by optimizing the contrast material injection parameters (example, using a high-concentration contrast agent and a fast injection rate) but also by accurately synchronizing CT data acquisition with the passage of the contrast agent by means of bolus tracking or a test bolus. Edge-enhancing convolution filters, which may be used for better delineation of stents, have the drawback of producing noisier data sets. If such convolution filter is used, the assessability of in-stent lumen particularly benefits from the presence of high degree of intraluminal contrast enhancement, which somewhat compensates for the kernel-related noise. A high degree of intraluminal enhancement is recommended especially for the investigation of stent patency in vessels that have a small diameter and thus contain less blood (Lefebvre et al., 2007; Pugliese et al., 2006).
Residual cardiac motion is of the utmost importance as a cause of vessel non-assessability at MDCT. Residual cardiac motion also plays a role in exacerbating metal-related artifacts such as beam hardening or partial volume averaging effects. The use of high gantry rotation speeds, multisegmental reconstruction techniques, and beta-blockers to lower the heart rate consistently improves the interpretability of MDCT. ECG-based editing techniques allow improvement of image quality for patients with mild irregularities in sinus rhythm, such as premature beats, and for those with bundle-branch block (Lefebvre et al., 2007; Pugliese et al., 2006).
As mentioned earlier, the direct visualization of the in-stent lumen is important for assessing patency, because collateral vessels may be feeding vessel segment distal to the occluded stent in a retrograde direction. An accurate intraluminal evaluation can best be performed by means of multiplanar reformation of the CT data volume. The stent may be considered to be occluded if the lumen inside the device appears darker than the contrast-enhanced vessel lumen proximal to the stent. Unless severe artifacts affect the CT data set, stent evaluation may proceed beyond a judgment of patency or occlusion. Nonocclusive in-stent neointimal hyperplasia is characterized by the presence of a darker rim between the stent and the contrast-enhanced vessel lumen and is secondary to the healing response to procedurerelated vessel injury. If neointimal hyperplasia exceeds a luminal diameter reduction of 50%, the process is consistent with hemodynamically significant in-stent restenosis. Instent restenosis typically occurs as a localized nonenhancing lesion, often (but not invariably) associated with complex lesion anatomy and discontinuity in lesion coverage. Restenosis may occur either within or adjacent to the stent (within 5 mm of the stent extremities). Edge restenosis might occur because of a decrease in local drug availability, incomplete lesion coverage due to a gap between two stents, procedure-related trauma, or damage to the polymer coating of a stent from calcifications or an overlapping stent.
Stent fracture (SF) is an important and potentially serious complication of drug-eluting stents (DES), resulting in thrombosis and in-stent restenosis. Recent reports suggest that the prevalence of fracture ranges between 1.9% and 2.6% (Dimitrios et al., 2011; Lim et al., 2008). SF is probably related to mechanical fatigue of the metallic stent strut, which may be aggravated by highly pulsatile structures such as myocardial bridge, use of long stents or DES unsupported by neointimal tissue. SF may also result from a manufacturing defect. Various factors that have been implicated for a stent fracture include vessel tortuosity, the presence of a right coronary artery lesion, overlapping stents, and the use of a DES such as a sirolimus-eluting stent. In general stent fractures have been reported to be more common when placed in the right coronary artery (RCA) probably due to its curved course, than in the left anterior descending (LAD) or circumflex (LCX) coronary arteries. The type of stent also influences its risk for fracture. The Cypher stent is more prone to fracture as compared to Taxus and Endeavor stents. Overlapping stents are more likely to fracture rather than isolated stents. The presence of stent fracture was classified as grade I to V: I = involving a single-strut fracture; II = 2 or more strut fractures without deformation; III = 2 or more strut fractures with deformation; IV = multiple strut fractures with acquired transection but without gap; and V = multiple strut fractures with acquired transection with gap in the stent body (Nakazawa et al., 2009).
Classification of stent fracture.
Images of fluoroscopy and 64-slice MDCT of stent fracture type I. A single strut fracture is seen in the mid portion of the stent in RCA.
Images of fluoroscopy and 64-slice MDCT of stent fracture type II. Two strut fractures are seen in the proximal and distal portion of the stent in LCX.
Images of fluoroscopy and 64-slice MDCT of stent fracture type III. Transverse fracture with deformation is seen in the proximal portion of the stent in middle RCA. The stent in proximal RCA is intact in coronary angiography suggesting pseudo-lesion due to step artifact in MDCT.
Images of fluoroscopy and 64-slice MDCT of stent fracture type IV. Multiple strut fractures with acquired transection without gap are seen in the proximal and mid portion of the stent in RCA. The distal portion of the stent is intact in coronary angiography suggesting pseudo-lesion due to step artifact in MDCT.
Images of fluoroscopy and 64-slice MDCT of restenosis due to stent fracture. (Left) Thrombus with stenosis is seen in the proximal edge of the LAD stent. (Right) Transverse fracture with stent displacement and moderate stenosis is seen in the RCA stent.
Images of fluoroscopy and 64-slice MDCT of pseudoaneurysm due to stent fracture. Type I fracture with pseudoaneurysm formation is seen in the LAD stent.
SF has been evaluated mainly by using conventional coronary angiography or fluoroscopy and in selected cases by intravascular ultrasound (IVUS). Recently, MDCT has been found to be more sensitive than conventional coronary angiography in the detection of SF, due to its nearly isotropic multi-planar imaging capabilities, that can depict stents in their long and short axes (Lim et al., 2008; Pang et al., 2009). MDCT imaging on 64-slice scanners provide most of the relevant details required to assess stents on follow-up. In a retrospective evaluation, 64-slice MDCT angiography of 371 patients with 545 stents identified 24 SFs, of which 6 were not detected on conventional angiograms at the initial readings (Lim et al., 2008). An
Coronary bypass graft CT can be performed with 2 different objectives, each with a separate clinical context and goal: the evaluation of graft patency, and the evaluation of graft and anastomotic stenoses. Within the first postoperative month, the main cause of graft failure is thrombosis.75 Graft closure from thrombosis at 1 month is a known complication in 10% to 15% of cases. Coronary bypass graft patency assessment has been shown to be excellent with ECG-gated 4-detector CT, with mean sensibility and specificity for occlusion of 97% and 98%, respectively, in comparison with catheter angiography (Nieman K et al., 2003; Marano R et al., 2004). With 16-detector CT, accuracy is also excellent, with mean sensitivity of 100 % and mean specificity of 99% for detecting bypass graft occlusion, in comparison with catheter angiography (Chiurlia E et al., 2005; Anderson K et al., 2006). Recent studies using 64-slice MDCT have reported sensitivity and specificity values of 95% to 100% and 93% to 100%, respectively, for graft occlusion and high-grade stenosis with > 50% luminal narrowing. Since naïve coronary arteries and coronary grafts are small vessels, 2 to 4 mm in diameter, and are characterized by both complex anatomy and continuous movements, high spatial and temporal resolutions are mandatory to visualize these vessels at MDCT. Vascular clips in the proximity of grafts and their anastomoses, as well as artifacts owing to residual cardiac motion, can be a cause of significant artifacts for the evaluation of graft stenoses.
The SVG was first successfully used in a CABG operation by Sabiston in 1962. Both the benefits and limitations of SVG have been well documented in the literature (Bourassa et al., 1985; Campeau et al., 1983). Saphenousveins are fairly simple to access and harvest from the lower extremities, and they are more versatile and widely available than arterial grafts. In addition, during the intra- and perioperative period, saphenous veins are resistant to spasm versus their arterial counterparts. However, the use of SVG is limited by distortion from varicose and sclerotic disease as well as a higher occurrence of intimal hyperplasia and atherosclerotic changes after exposure to systemic blood pressure, resulting in lower patency rates. Graft occlusion can also occur due to vascular damage during harvesting of the saphenous vein. In a large study, the SVG patency was 88% perioperatively, 81% at 1 year, 75% at 5 years, and 50% at greater than or equal to 15 years (Fitzgibbon et al., 1996). The graft attrition rate between 1 and 6 years after CABG surgery is 1% to 2% per year, and between 6 and 10 years is 4% per year. The great saphenous vein is the vein routinely used for CABG surgery. The proximal anastomosis of the venous graft with the ascending aorta is usually performed cranial to the origin of coronary arteries and as distal as the proximal portion of the aortic arch. The SVG can be sutured directly to the anterior portion of the ascending aorta or attached with an anastomotic device, allowing faster, sutureless attachment. The device, called the Symmetry Bypass System aortic connector (St Jude Medical, St Paul, Minn), alters the common appearance of the bypass graft by requiring the aortic connector to be anastomosed perpendicularly to the aorta (Mack et al., 2003; Poston et al., 2004). Recent reports have documented the development of significant stenosis and occlusion in 13.7%-15.5% of vein grafts attached with the aortic connector (Carrel et al., 2003; Wiklund et al., 2002). In order to support the course of the aortovenous anastomosis, the left-sided SVG is connected to the left side of the aorta, stabilizing the graft on top of the main pulmonary artery. A right-sided SVG is attached either to the lower aspect or right side of the ascending aorta, allowing the graft to traverse the right arterio-ventricular groove. SVGs tend to appear as large contrast-filled vessels (Fig.1).
Saphenous vein grafts. Three-dimensional volume-rendered images show the typical appearance of right (arrow) and left (arrowhead) saphenous vein grafts (SVGs) sutured to the anterior aorta. The left SVG is attached to the mid-portion of left anterior descending (LAD) artery and the right SVG is attached to the distal-portion of right coronary artery (RCA).
An SVG to the right side is attached to the distal right coronary artery (RCA), posterior descending artery (PDA), or distal LAD artery. The distal anastomosis may lie on the phrenic wall of the heart. An SVG to the left side is attached distally to the LAD artery, diagonal artery, left circumflex (LCx) artery, or the obtuse marginal (OM) arteries, by traversing anteriorly and superiorly to the right ventricular outflow tractor main pulmonary artery (Fig. 2, 3, 4).
Saphenous vein grafts. Three-dimensional volume-rendered images show the typical appearance of right (arrow) and left (arrowhead) saphenous vein grafts (SVGs) sutured to the anterior aorta. The right SVG is attached to the mid-portion of left anterior descending (LAD) artery and the left SVG is attached to the obtuse marginal (OM) artery.
Saphenous vein graft. Three-dimensional volume-rendered images show the left saphenous vein graft (SVG) with its anastomosis with the left circumflex (LCx) artery.
SVG may present a horizontal or slightly oblique course on axial images, especially when the distal anastomosis is placed on the LCx or a diagonal branch to supply the left cardiac wall. In these cases, the graft can be recognized in the fatty tissue of mediastinum, posterior to the sternum and anterior to the RVOT. On occasion, the distal SVG is anastomosed sequentially to greater than or equal to 2 coronary vessels or in the same vessel, using side-to-side and end-to-side anastomoses. The naive vessel distal to the anastamotic site should be assessed and is recognized by its position and smaller caliber compared with the SVG (Fig. 3, 4). Typically, venous grafts are larger than arterial grafts and are not accompanied by surgical clips along their course. Sometimes a circumferential clip can be identified at the site of proximal anastomosis with the ascending aorta (Fig.1).
Saphenous vein graft. Three-dimensional volume-rendered images show the left saphenous vein graft (SVG), which is attached to the mid-portion of left anterior descending (LAD) artery.
The internal mammary artery (IMA) is characterized by unique resistance to atherosclerosis and extremely high long-term patency rates compared with the saphenous vein. The IMA has a nonfenestrated internal elastic laminawithout vaso vasorum inside the vessel wall, which tends to protect against cellular migration and intimal hyperplasia. Moreover, the medial layer of IMA is thin and poor of muscle cells with poor vasoreactivity. In addition, the endothelium produces vasodilator(nitric oxide) and platelet inhibitor (prostacyclin). Glycosaminoglycan and lipid compositions of IMA result in being less atherogenetic in comparison with venous grafts. Therefore, use of the IMA decreases all postoperative cardiac events and mortality, and is associated with a long-term patency rate well >90% at 10 years (Loop et al., 1986; Motwani & Topol, 1998).
The Left IMA (LIMA) is the vessel of choice for the surgical revascularization of the left anterior descending (LAD) artery for its biological and anatomical characteristiscs, being the conduit more proximal to the LAD artery and the easiest to harvest both in median sternotomy and mini-thoracotomy. Due to anatomical proximity to the LAD artery and favorable patency rates, the left IMA (LIMA) is most commonly used as an in situ graft to revascularize the LAD or diagonal artery, supplying the anterior or anterolateral cardiac wall. The LIMA extends from its origin at the subclavian artery and courses through the anterior mediastinum along the right ventricular outflow tract after being separated surgically from its original position in the left parasternalRegion (Fig. 5).
Left internal mammary artery (IMA) graft. Three-dimensional volume-rendered images show the left IMA graft from its origin at the left subclavian artery to its anastomosis with the left anterior descending (LAD) artery. There is also a left saphenous vein graft (SVG), which is attached to the obtuse marginal (OM) artery. Note the smaller diameter of the arterial graft compared with that of the venous graft.
Infrequently, sequential distal anastomoses, with side-to-side and end-to-side anastomoses to the diagonal and LAD arteries, respectively, or involving separate sections of the LAD artery, are performed. On axial images, the LIMA is no longer visible in its usual site, on the left side of the sternum, but courses as a small vessel in the anterior mediastinum along the right ventricle outflow tract (RVOT). Although in most cases LIMA grafts show a single distal anastomosis to the left anterior descending artery (LAD) or a diagonal branch, multiple sequential anastomoses to both the LAD and diagonal branches are sometimes performed. Surgical clips are routinely used to occlude collaterals and to avoid arterial bleeding and can be seen either adjacent to the graft or at the original site of the LIMA. As with other grafts, on CTA, the distal anastamosis is typically most difficult to visualize. Surgical clips are used routinely to occlude branch vessels of the IMA, and metallic artifact may limit assessment in some instances (Fig. 6).
Left internal mammary artery (IMA) graft. Three-dimensional volume-rendered images show the left IMA graft from its origin at the left subclavian artery to its anastomosis with the left anterior descending (LAD) artery. There is also a right saphenous vein graft (SVG) sutured to the anterior aorta with its anastomosis with the posterior descending artery (PDA). The left saphenous vein grafts (SVG) are attached to diagonal artery and the obtuse marginal (OM) artery.
The right IMA (RIMA) is used less frequently than the LIMA. The RIMA may be used in a variety of ways. As an in situ graft, The RIMA remains attached to the right subclavian artery proximally and anastomoses with the target coronary artery distally. However, it is more commonly used as “free” graft from the ascending aorta to the RCA or from the LIMA to the left circumflex artery (LCx) or obtuse marginal (OM) branches. In cases in which both in situ IMAs are necessary for revascularization of the left heart, either the RIMA is connected to the LCx artery or OM branches by extension through the transverse sinus of the pericardium and the LIMA is attached to the LAD artery or the RIMA is attached to the LAD artery and the LIMA is anastomosed to the LCx artery or other side branches (OM or diagnonal branches). Otherwise, the RIMA can be removed from the right subclavian artery and used as a composite or free graft. As a segment of a composite graft to perform an arterial "T" or "Y" graft, the RIMA is anastomosed proximally to LIMA, allowing total arterial revascularization instead of using a venous graft with LIMA. As a free graft, a RIMA is anastomosed to the anterior ascending aorta and used in the same way as an SVG. The CTA appearance of the RIMA is similar to that of the LIMA. As already described for LIMA grafts, surgical clips are used to occlude collaterals. Studies have shown that total arterial myocardial revascularzation has the advantages of decreased recurrent angina and superior patency rates at 1 year when compared with those of conventional coronary artery bypass surgery in which a LIMA graft is coupled with an SVG (Muneretto et al., 2003).
The first use of the radial artery (RA) as arterial conduit for coronary revascularization has been de-scribed by Carpentier et al in 1971 (Carpentier et al., 1973). As a muscular artery from the forearm, the RA has a prominent medial layer and elevated vasoreactivity, which results in a lower patency rate than that of IMA grafts (Possati et al., 2003). The RA is usually harvested from the nondominant arm and is used as a third arterial graft, either as a free or composite graft or to avoid using a venous graft in case of unavailability of IMA grafts. The RA is often grafted to supply the left cardiac wall (LCx, OM). On CTA, the caliber of the RA is similar to the IMA, but it typically is visualized coursing from the ascending aorta to the naïve coronary artery (Fig. 7). In the early postoperative period, the RA may be reduced in caliber and may be difficult to identify because of vasospasm. In addition, because the RA is a muscular artery, the number of surgical clips used to close collaterals along the graft is usually higher than with IMA. This may represent a limit for noninvasive assessment of RA grafts with MDCT because of artifacts from surgical clips limiting a full CTA evaluation of an RA graft.
Radial artery (RA) graft. (A) Three-dimensional volume-rendered image shows radial artery graft sutured to the anterior aorta with its anastomosis with diagonal artery. There are also left internal mammary artery (LIMA) graft from its origin at the left subclavian artery to its anastomosis with the left anterior descending (LAD) artery and right saphenous vein graft (SVG), which is attached to the distal right coronary artery (RCA). Note the diameter of the RA is similar to the IMA, but it typically is visualized coursing from the ascending aorta to the diagonal artery. (B) Curved multiplanar reformation image shows patent RA graft within the anterior mediastinum. The full extent of the graft is seen from the ascending aorta to diagonal artery.
The use of right gastroepiploic and inferior epigastric arteries in CABG procedures has been limited because of the need to extend the median sternotomy to expose the abdominal cavity (Buche et al., 1992; Manapat et al., 1994; Pym et al., 1987). Although the use of these arteries increases surgical time and technical difficulty of the surgery, these arteries can be used as a free graft to perform total arterial revascularization. The use of the RGEA was first described by Pym et al in June 1984 (Pym et al., 1987). Although it has been originally used in reoperation, in the absence of other suitable conduits, RGEA is now used as secondary, tertiary, or quaternary arterial conduit to provide all-arterial revascularization. The biological characteristics of RGEA are similar to IMA, but unclear benefits for third or fourth arterial grafts, the increment of surgery time, and the involvement of an additional body cavity are the main drawbacks limiting the widespread use of this conduit. Occasionally, the RGEA is used to supply the inferior cardiac wall and is anastomosed as an in situ graft to the posterior descending artery (PDA). In these cases, the mobilized artery is seen coursing anterior to the liver and through the diaphragm to reach the site of anastomosis. Small clips can be identified at the original site of the RGEA, near the small curvature of stomach. These instances require that the surgical history be conveyed to the radiologist so the CTA protocol can be modified to include the upper abdomen, because the gastroepiploic artery is freed to course anteriorly to the liver and through the diaphragm to reach the target vessel. The inferior epigastric artery (IEA) is an arterial branch of the abdominal wall, arising from the external iliac artery and coursing inside the abdominal rectus muscle. Similar to the radial artery (RA), the IEA has a predominant muscular structure, while the limited length of the vessel with an adequate caliber is a constraint to using this vessel only as a lateral branch of a multiple arterial graft.
Bypass graft failures are classified either as early or late following CABG surgery. During the early phase, usually within 1 month after CABG surgery, the most common cause of graft failure is thrombosis from platelet dysfunction at the site of focal endothelial damage during surgical harvesting and anastomosis. Graft closure from thrombosis at 1 month is a recognized complication in 10-15% of cases (Fitzgibbon et al., 1996). Perioperative venous graft failure after off-pump CABG procedures is chiefly determined by the two factors of graft endothelial damage and patient hypercoagulability. Early bypass graft failure can also be due to a malpositioned graft (Ricci et al., 2000). If the graft is too long, it may twist or kink. Technical factors associated with use of an aortic connector may predispose venous grafts to kinking (Traverse et al., 2003). Late-phase venous graft failure is due primarily to progressive changes related to systemic blood pressure exposure. One month after surgery, the venous graft starts to undergo neointimal hyperplasia. Although this process does not produce significant stenosis, it is the foundation for later development of graft atheroma. Beyond 1 year, atherosclerosis is the dominant process, resulting in graft stenosis and occlusion. On the other hand, arterial grafts, specifically IMA graft, are resistant to atheroma development. Late IMA graft failure is more commonly due to progression of atherosclerotic disease in the native coronary artery distal to the graft anastomosis. CTA can delineate multiple findings associated with graft stenosis and occlusion. Calcifiedand noncalcified atherosclerotic plaque is readily identified, and the calculation of the extent of graft narrowing is straightforward. Occlusion can be determined by non-visualization of a vessel which is known to have been used for surgical grafting. In many instances, the most proximal part of an occluded aortocoronary graft fills with contrast, creating a small out-pouching from the ascending aorta, allowing a diagnosis. Acute or chronic graft occlusion can sometimes be differentiated by the diameter of the bypass graft. In chronic occlusion, the diameter is usually reduced from scarring, as compared with acute occlusion in which the diameter is usually enlarged.
Radial artery (RA) grafts are susceptible to vasospasm because the RA is a muscular artery with elevated vasoreactivity. The appearance is similar to fixed graft stenosis, although the luminal narrowing is more extensive in length. Nevertheless, the administration of intraoperative alpha-adrenergic antagonist solution or posteroperative calcium channel blockers can overcome many cases of graft vasospasm postoperatively (Locker et al., 2002; Myers & Fremes, 2003).
There are 2 types of bypass graft aneurysms: true aneurysms and pseudoaneurysms (Dubois & Vandervoort, 2001; Mohara et al., 1998). True aneuryms are usually found 5 to 7 years after CABG surgery and are related to atherosclerotic disease. On the other hand, pseudoaneuryms more commonly occur within 6 months after surgery, although they may also arise several years later. Pseudoaneurysms arise at either proximal or distal anastomotic sites. Pseudoaneurysm cases that are found earlier may be related to infection or tension at the anastomotic site, resulting in suture rupture. In late-onset pseudoaneurysms, similar to true aneurysms, atherosclerotic changes likely played a role. Currently, there is no clear guideline for surgery. Nevertheless, size >2 cm has been a cause for concern (Memon et al., 2003). Graft aneurysms may lead to various complications, including compression and mass effect on adjacent structures, thrombosis and embolization of the bypass graft leading to an acute coronary event, formation of fistula to the right atrium and ventricle, sudden rupture leading to hemothorax, hemopericardium, or death.
Approximately 22%-85% of patients have postoperative pericardial effusions after CABG surgery (Meurin et al., 2004; Pepi et al., 1994). Although pericardial effusions are common, only 0.8%-6% of patients progress to cardiac temponade (Katara et al., 2003). Risk factors include postoperative coagulation abnormality or use of anticoagulation agents that are often related to the use of cardiopulmonary bypass. Nearly all significant pericardial effusions are diagnosed within 5 days postoperatively, peak in 10 days, and resolve within a month (Kuvin et al., 2002). Postoperative pleural effusions are even more numerous after surgery, a prevalence of 89% within 7 days after surgery (Hurlbut et al., 1990; Vargas et al., 1994). These pleural effusions are usually unilateral, small, left-sided, and without clinical significance. Only 1%-4% of CABG surgery patients proceed to develop clinically significant effusions that require thoracentesis (Peng et al., 1992).
The sternal infection is an important complication of the CABG surgery, with a prevalence of 1% to 20% (Roy, 1998). Three different compartments may be affected: the presternal (cellulitis, sinus tracts, and abscess), sternal (osteomyelitis, and dehiscence), or retrosternal (mediastinitis, hematoma, and abscess) compartments (Li & Fishman, 2003). Risk factors include diabetes mellitus, obesity, current cigarette smoking, and steroid therapy. Surgical risk factors include complexity of surgery, type of bone saw used, type of sternal closure, length of surgical time, blood transfusions, and early reexploration to control hemorrhage. The CTA is important in revealing the extent and depth of infection, which, in turn, will help guide treatment planning. Usually, the preservation of mediastinalfat planes in CTA excludes surgical intervention. On the other hand, obliteration of mediastinalfat planes and diffuse soft tissue infiltration without or with gas collection, or low-density fluid collections within the mediastinum, are concerning for sternal infection. Recently published studies reported a 1-year mortality rate of approximately 22% (Loop et al., 1986; Sarr et al., 1984).
Clinical diagnosis of deep vein thrombosis and pulmonary embolism may be especially challenging because postoperative atelectasis, pleural effusion, or fluid overload may all contribute to the development of chest pain and dyspnea after CABG surgery. A recent report regarding pulmonary embolism in the post-CABG surgery population showed an overall prevalence of 23% for deep vein thrombosis by 1 week after surgery, with less than 2% of these cases identified clinically (Shammas, 2000).
Despite image-degrading effects caused by the metallic scaffold of the stent, recent experience with the current generation of 64-section scanners suggests improved assessability of the in-stent lumen with the capability to appreciate more subtle degrees of in-stent neointimal hyperplasia. Knowledge of the different types of artifacts and how they can be compensated for with dedicated postprocessing and appropriate image views and window settings is a prerequisite for reliable depiction of the in-stent lumen and leads to a more robust application of CT findings. In future, the development of biodegradable stents may create optimal conditions for noninvasive post-implantation follow-up with MDCT. In recent years, MDCT with retrospective ECG gating has gained rapid acceptance as a diagnostic cardiac imaging modality, allowing assessment of coronary bypass graft patency with high spatial resolution. This tool could play an important role in patients with recurrence of chest pain or with unclear stress test results after myocardial revascularization surgery. Therefore, it is crucial that cardiologists and radiologists understand CABG anatomy with knowledge of the type and number of bypass grafts used during myocardial revascularization surgery.
Currently, the world’s leading authority on global warming issues is the Intergovernmental Panel on Climate Change (IPCC). The IPCC is a scientific-political organization, created in 1988 by the United Nations (UN), and received the Nobel Peace Prize in 2007 [1, 2]. Since its foundation, the IPCC has issued five reports (Assessment Reports), the first in 1990, the next ones in 1995, 2001, 2007, and 2014. The next report of IPCC is expected for the year 2022. The IPCC reports have reinforced, with growing evidence, that human influence on Earth’s climate is incontestable and that the terrestrial climate system’s warming is evident [2].
Aerosols, in particular, can alter the most diverse atmospheric processes, significantly affecting weather and climate. For example, they can absorb or scatter specific solar radiation wavelengths and radiation reflected by the Earth’s surface [3]. They can also modify the albedo (ability to reflect solar radiation on a given surface) and the lifetime of clouds [4]. A decrease in the albedo of clouds, for example, can lead to less reflection of radiation from the Sun, contributing to possible global warming effects. In this context, it is expected that the aerosol climatological behavior in the Earth’s atmosphere and its influence on climate change processes are of paramount importance.
The World Meteorological Organization (WMO) has encouraged the creation and expansion of networks aimed at atmospheric observations, and ground-based lidar networks have acquired great importance, both for atmospheric monitoring and research. Thus, regional lidar networks’ development to research the most diverse atmospheric configurations is strategic. The main fields where ground-based lidar measurements can be applied include [5, 6] atmospheric aerosol optical properties, urban aerosols and pollution, dust and biomass burning transportation, and cloud impacts on climate, planetary boundary layer dynamics, and processes of satellite data validation.
In terms of atmospheric structure, ground base lidars cover from the mesosphere down to the troposphere, through the stratosphere, and inspect each atmospheric layer in question. Under this perspective, laser radars’ operation began in the early ‘70s by observing stratospheric aerosols in Brazil and continued with sodium atoms (Na) concentration in the mesosphere. The stratospheric aerosols and ozone studies followed some years later in Argentina [7] and the late ‘80s in Cuba. By the late ‘90s and early 2000, the introduction of the lidar for tropospheric studies began.
We intend to summarize the most significant scientific achievements and developments related to ground-based Lidar remote sensing in South America in the next sections. LALINET’s most recent efforts in establishing standard protocols of system configurations, quality assurance, measurements, and data processing also will be approached [7, 8, 9, 10, 11]. The chapter organization should first follow the studies performed in the mesosphere, followed by the work devoted to the stratosphere, and then we should show the studies related to the troposphere. These sections will be distributed over many specific studies regarding the scientific drives and methodologies employed.
The South American continent, encompassing 42% of the Americas, is a region that shelters the most remarkable ecosystems. Among these, we can cite the Amazon Rainforest, which is the largest tropical forest in the world, the Pantanal (or Chaco), one of the UNESCO World Heritage Sites [12], and the Andes, the most extensive mountain chain in the world, and which hold a plethora of active and inactive volcanoes, extending from Venezuela to Patagonia, crossing all the continent from north to south. Patagonia, the continent’s southern region, presents many plants and wildlife, mostly endemic. It also houses another UNESCO World Heritage Site: The National Park Los Glaciares, in Santa Cruz, Argentina. [12].
Developing a regional ground-based lidar network in Latin and South America is of strategic importance: The knowledge rendered by the high-resolution profiles allows the knowledge of a wide variety of atmospheric phenomena to complement satellite observations and other retrievals by diverse ground-based instruments. Unfortunately, the available infrastructure of lidar stations in Latin America is limited in certain aspects. For example, only a few stations operate regularly (contrasted to Europe and North America), stations have different instrument designs, radiosonde launchings are not occurring nearby all stations, and only a reduced number of sun photometers is distributed across the continent [7, 11]. To get around such limitations and consolidate standard protocols of measurements, data acquisition, quality control, and assurance routines, and data analysis, the Latin America Lidar Network, LALINET, was established in 2001, during the First Workshop on Lidar Measurements in Latin America, held in Camagüey, Cuba, in March 2001 [7, 11, 13]. It was recognized as being part of the GAW (Global Atmospheric Watch) Aerosol Lidar Observation Network (GALION) in 2013 [7, 11, 13]. Figure 1 shows the location of the LALINET stations [14].
Schematic representation for the location of the LALINET stations in South America. Argentina (AR): 1-) SMN Headquarters (Buenos Aires), 2-) CEILAP Headquarters (Buenos Aires), 3-) Comodoro Rivadavia (Chubut), 4-) Neuquén (Neuquén), 5-) Pilar (Cordoba), 6-) Río Gallegos airport (Santa Cruz), 7-) OAPA Río Gallegos (Santa Cruz), 8-) San Carlos de Bariloche (Río Negro), 9-) San Miguel de Tucumán (Tucumán). Bolivia (BO): 10-) La Paz (La Paz). Brazil (BR): 11-) Manaus (Amazonas), 12-) São Paulo (São Paulo), 13-) Cubatão (São Paulo), 14-) Natal (Rio Grande do Norte). Chile (CH): 15-) Punta Arenas (Magallanes), 16-) Temuco (Cautín). Colombia (CO): 17-) UNAL Medellín (Antioquia), 18-) SIATA Medellín (Antioquia), 19-) Cali (Valle del Cauca). Edited using Google my maps [
The next sections of this chapter will present information about mesospheric, stratospheric, and tropospheric monitoring by LALINET stations and teams around South America and Cuba, plus some significant results. Table 1 below shows the operational stations and their characteristics. A detailed description of LALINET origin and its evolution is given in Ref. [7]. The Letter of Agreement between LALINET and GAW can be found in Ref. [15].
Country, City, Location Coordinates, Altitude (a.s.l.) | System configuration | ||
---|---|---|---|
Instrument | Emits (nm) | Detects (nm) | |
AR, Buenos Aires, SMN 34.5641 S, 58.4171 W, 10 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 (∥, ⊥) |
AR, Buenos Aires, CEILAP 34.5553 S, 58.5062 W, 26 m | HSRL | 1064, 532, 355 | 1064, 607, (HSRL, ∥, ⊥), 408, 387, 355 (∥, ⊥) |
AR, Rivadavia, CRD Airport 45.7922 S, 67.4629 W, 48 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 (∥, ⊥) |
AR, Neuquén, NQN Airport 38.9521 S, 68.1368 W, 266 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 (∥, ⊥) |
AR, Pilar, OMGP 31.6755 S, 63.8730 W, 332 m | HSRL | 1064, 532, 355 | 1064, 607, 532 (HSRL, ∥, ⊥), 408, 387, 355 (∥, ⊥) |
AR, R. Gallegos, RGL Airport 51.6117 S, 69.3072 W, 17 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 (∥, ⊥) |
AR, Río Gallegos, OAPA 51.6004 S, 69.3194 W, 19 m | DIAL | 355 (Nd:YAG), 308 (Xe:Cl) | 387, 355, 347, 332, 308 |
AR, Bariloche, BRC Airport 41.1473 S, 71.1640 W, 837 m | Raman | 1064, 532, 355 | 1064, 532, 408, 387, 355 |
AR, S. M. de Tuc., TMO 26.7871 S, 65.2068 W, 485 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 (∥, ⊥) |
BO, La Paz, UMSA 16.5381 S, 68.0686 W, 3420 m | Scanning Elastic | 532 | 532 |
BR, Manaus, Embrapa 2.8906 S, 59.9698 W, 80 m | Raman | 355 | 408, 387 |
BR, São Paulo, IPEN 23.5607 S, 46.7398 W, 764 m | Raman | 1064, 532, 355 | 1064, 532, 530, 408, 387, 355 |
BR, Cubatão, CEPEMA 23.8865 S, 46.4370 W, 8 m | Mobile Raman | 532 | 532, 607 |
BR, Natal, UFRN 5.8431 S, 35.2043 W, 20 m | Elastic Polarized | 1064, 532, 355 | 1064, 532 (∥, ⊥), 355 |
CH, Punta Arenas, UMAG 53.1344 S, 70.8802 W, 10 m | Raman Polarized | 1064, 532, 355 | 1064, 607, 532 (∥, ⊥), 408, 387, 355 (∥, ⊥) |
CH, Temuco, UFRO 38.7459 S, 72.6156 W, 108 m | Elastic | 532 | 532 |
CO, Medellín, UNAL 6.2619 N, 75.5760 W, 1538 m | Elastic | 1064, 532 | 1064, 532 |
CO, Medellín, SIATA 6.2017 N, 75.5784 W, 1502 m | Elastic Polarized | 355 | 355 (∥, ⊥) |
CO, Cali, CIBioFi-UniValle 3.3770 N 76.5337 W, 982 m | Elastic Polarized | 1064, 532, 355 | 1064 (∥, ⊥), 532 (∥, ⊥), 355 (∥, ⊥) |
Details about the contributing teams, measurement protocols, reports, and equipment can be found on the web page http://www.lalinet.org. Detection of polarized light in the parallel (∥) and perpendicular (⊥) directions are indicated.
Meteors enter in the upper atmosphere at very high velocities (15–70 km s−1), and the collisions with the atmospheric constituents cause flash heating until the particles melt and their chemical elements vaporize. This ablation process is responsible for the layers of metal atoms as Na, K, Fe, Mg, Ca, Si, among others, which occur globally in the mesosphere and lower thermosphere (MLT). This cosmic dust’s primary sources are the sublimation of comets as they approach the Sun on their orbits through the solar system and the collisions between asteroids.
Lidar use for the upper stratosphere, mesosphere, and lower thermosphere investigations started in São José dos Campos, Brazil, in 1969 with a ruby laser operated at 694.3 nm. Clemesha and Rodrigues obtained the first aerosol profile using lidar in South America in 1971 [16]. The height range of measurement was 5 to 35 km due to the use of an 8 x 10″ receiver mirror. Later were obtained profiles up to 90 km in height using a 48″ mirror. In this work, high concentrations of aerosols were observed in the troposphere, a minimum just below the tropopause, around 15 km height, and higher concentrations in the lower stratosphere.
In 1972, when a new “handmade” dye laser became operational (see a Photo of this equipment in Figure 2), it was possible to start measurements of the Na layer in the MLT region, using Fabry-Perot interferometers and tuning the laser in the Na D2 line, 5890 Å, with a precision of 0.02 Å [17]. This system enabled the measurement of the mesospheric Na from 75 to 105 km of height [18]. The system continued to be operated regularly for long years obtaining the Na concentration at MLT region with different time and height resolutions, the stratospheric aerosol by Mie Scattering, and the atmospheric density and temperature from 30 to 65 km by Rayleigh scattering. In April 1975, 6 months after the eruption of Volcán de Fuego in Guatemala, a massive increase in aerosol loads was observed in São José dos Campos, which remained in the atmosphere for almost two years [19].
The handmade dye laser for Na probing (it operates from 1972 to 1992). See also in the picture Dr. Barclay R. Clemesha (in memoriam), the project’s head.
Through Na profiles between 82 and 99 km obtained with the laser beam directed alternately in three positions in the sky, it was possible to estimate the wind’s speed in the mesosphere [20, 21]. The velocities vary with height in an oscillatory manner, with the amplitude increasing with height. These wave-like formations vary slowly with time and might be produced by propagating tides in the atmosphere. These structures’ common feature is their downward motion with time, consistent with the upward propagation of gravity wave energy. The more extended periods of oscillations are attributed to tides [22, 23]. Lidar measurements of the stratospheric aerosols enabled the observation of the eruption of El Chichón in México, eight months after in São José dos Campos, Brazil [24]. The transport of aerosols of the Pinatubo eruption was much more rapid and could be seen just 45 days after the eruption [25].
Research involving Na has included the first detection of the so-called Sporadic Sodium Layers [26]. The events occurred more frequently through periods of more significant meteor showers, especially in August. It is common to have sporadic E layers coincident with Na enhancement, which suggests that enhanced layers are generated by the wind shear distortion of Na clouds originated from meteor ablation. A significant result was that the long-lived sporadic layers appear to have a different nature from the short-lived ones. The difference is manifested in the more extensive duration and broader thickness and how the events are correlated with sporadic E layers [27].
In 1992, analyses of the vertical distribution of atmospheric Na layer with lidar showed a long-term trend of the centroid height, which decayed by approximately 700 meters between 1972 and 1987 [28]. However, from 1972 to 2001, the trend was 93 meters per decade. This new result appears dramatically diminishes the possibility of long-term cooling of the upper atmosphere [29].
In 1997 a new technique was developed to measure the Doppler temperature of the atmospheric Na layer by using a two-element birefringent filter together with a 0.2 nm free spectral range Fabry-Perot interferometer to produce a linewidth of about 20 pm. It produced a multi-line signal of the laser, with the lines spacing precisely equal to the separation of D2a and D2b transition of Na. With this assembly, it was possible to obtain the mesosphere’s temperature with a 5 K precision, a height resolution of 1 km, and a time resolution of 6 minutes [30, 31]. Lately, in 2004 the lidar was equipped with a new laser, which permitted more precise measurements of the mesopause temperature (see the assembly in Figure 3) [32, 33]. Gravity wave’s effects on the temperature in the mesopause were also studied [34, 35].
Photo presenting the continuum narrowband tunable laser for Na concentration and Mesopause temperatures. It operated at São José dos Campos measuring mesopause temperature from 2007 to 2009 and Na concentration from 2006 to 2016. This photo was taken by Barclay R. Clemesha (in memoriam).
Several mesospheric dynamics studies involving other instruments like photometers, meteor radar, and onboard rocket instruments have been made [23, 36, 37, 38, 39]. A mobile lidar has been developed to measure the Na concentration simultaneously with the volume emission profile for the NaD line of airglow in rocket campaigns in the Brazilian equatorial region of Alcântara (2.3728 S, 44.3965 W). An illustrative photo of this system is shown in Figure 4. This experiment allowed calculating the branching ratio of the reaction involved in the Na airglow [40].
Photo illustrating the INPE mobile lidar used during rocket campaigns in the Brazilian equatorial region of Alcântara, on 31 may 1992.
Along the time, the São José dos Campos lidar underwent many modifications and upgrades. In 1993, the transmitter laser was upgraded with a commercial laser (see its illustration in Figure 5). With this upgrade, it was possible to use the Rayleigh signal from the clean atmosphere from 30 to 75 km (below the resonant Na signal) to measure the relative atmospheric density and the absolute temperature. These measurements have been used to study mesospheric temperature general behavior and the effects of atmospheric waves [41]. The long series of measurements have enabled long-term studies of the mesospheric Na, aerosols, and temperatures associated with global change [29, 42, 43]. A dual-beam Na/K lidar was assembled in São José dos Campos, Brazil, to extend the Na layer studies and improve the knowledge about metal layers in the MLT region. This system was installed owing to a cooperative agreement between the National Space Science Center (China) and the National Institute for Space Research (Brazil) in November of 2016.
Photos showing the candela laser system assembled at INPE São José dos Campos in 1993. This system operated between 1993 and 2006—Photos taken by B. R. Clemesha (in memoriam).
The lidar uses two laser beams of 589 nm and 770 nm to simultaneously measure Na and K concentrations by the resonant scattering at MLT. The signal-to-noise ratio response allows 3 min time resolution and 96 m of height resolution in the profiles [44]. Figure 6 shows the Na/K lidar during operation.
Picture showing the dual-beam Na/K lidar located at São José dos Campos, Brazil. The vertical orange beam is at 589 nm for Na scattering and the infrared one at 770 nm for K scattering. This last is not visible in the photo, but the red star indicates the beam position. Liu Zhengkuan took the original photo.
It is essential to point out that, up to the present time, this is the unique K lidar system operating in the Southern Hemisphere (SH). For the first time, it was presented the nocturnal and seasonal behavior of K and Na concentrations measured simultaneously at SH [44]. The seasonal variation of these two metals was determined, and it is interesting to note their different behavior even though both are alkali metals and come from meteor ablation. Semiannual variation is observed in both metal concentrations with different maxima: K shows its maxima around the solstices more pronounced around June, and Na concentration shows a maximum around May and a broad one centered in September [44]. A plausible interpretation of the different seasonal changes between Na and K concentrations is presented in Ref. [45]. This analysis is based on two points: 1) the neutralization of K+ ions is particularly favored at low temperatures through summer (North Hemisphere), and 2) cycling between K and its primary neutral reservoir KHCO3 is substantially temperature independent [44]. Unfortunately, the first argument is not significant for this latitude, where the mesopause temperature has not a great summer to winter variation [33].
The first lidar measurements concerning stratospheric aerosols in Latin America were performed in Kingston, Jamaica, between 1964 and 1979 [46]. The lidar system held for these measurements was managed by the University of the West Indies and supported by the US Air Force [47]. Its primary purpose was to investigate the atmospheric profile, measuring molecular scattering. Moreover, the system proved valuable for measurements of stratospheric aerosol layers at wavelength 694 nm [48]. These lidar measurements from Jamaica represented a pioneering role, concomitantly with different research teams, developing lidars’ capacities to measure aerosols in the lower stratosphere [49]. Those measurements were also an essential contribution to the stratosphere’s early studies in the tropics [50].
In 1969, a new lidar instrument was designed and developed at INPE by Prof. Barclay Clemesha (see Section 3 for details). This equipment’s primary objective was to investigate the mesosphere dynamics; besides, stratospheric aerosol measurements were also performed. The first measurements were carried in 1970 at wavelength 694 nm [16], and regular measurements began in 1972 [51]. This project was responsible for collecting the longest stratospheric aerosol profile measurements in Latin America and the Southern Hemisphere’s tropical zone, extending from 1971 to 2016. It includes stratospheric aerosols profiles from the two more significant volcanic eruptions of the XX century second half: the first happened in Mexico on 04 April 1982 (El Chichón), and the second in the Philippines on 14 June 1991 (Mount Pinatubo) [51, 52]. Measurements conducted at INPE between 1972 and 2016 proved the value and the importance of the stratospheric aerosols’ long-term monitoring. They have rendered information to understand the stratospheric aerosols layer evolution in the Southern Hemisphere’s tropics since the ‘50s [53].
A Cuban-Soviet scientific cooperation agreement supported the deployment in 1988 of a lidar system designed for stratospheric aerosols measurements at the Camagüey Meteorologic Center in Cuba [54]. The instrument operated intermittently between 1988 and 1997, providing stratospheric aerosols measurements from the Mount Pinatubo eruption in 1991. The 1988–1990 lidar aerosol profiles, at 532 nm, combined with satellite measurements, have been used to study background stratospheric aerosols in the Caribbean [55]. Camagüey Lidar Station (CLS) stratospheric aerosols profiles from Mount Pinatubo also contributed to the study of the radiative impacts of the eruption at regional [56] and global [57] scales. Moreover, the Camagüey lidar database was also used to validate the stratospheric aerosol SAGE II satellite measurements from Mount Pinatubo eruption [58, 59]. Furthermore, it was used to generate an extinction climatology in the UV for correcting Brewer ozone measurements [60].
By 1994 the Laser and Applications Research Center (CEILAP - UNIDEF) in Buenos Aires, Argentina, developed various lidar systems for atmospheric research [7]. One of these devices was designed to measure the atmospheric boundary layer, cirrus clouds, and tropospheric aerosols, operating at wavelength 532 nm [61]. A collaborative study between CEILAP and CLS evaluated how this lidar system could also be used for the higher troposphere and lower stratospheric aerosols research. Upon analyzing two tropospheric aerosols profiles extending into the lower stratosphere, encouraging results were found [62]. In June 2005, another lidar system was designed and installed by CEILAP in Río Gallegos, Patagonia. This instrument’s primary goal was performing measurements of stratospheric ozone, tropospheric and stratospheric aerosols, and water vapor. In particular, stratospheric aerosol profiles are used to correct the stratospheric ozone [63].
Western South America is bordered by the Andes, which divides the continent into two distinct regions. In South America, the vast majority of active volcanoes are located in the eastern part of the continent, and ash eruptions are routinely reported throughout the region. The volcanic activity includes periods of ash eruptions and cycling eruptions that spread out over months or even years [64, 65]. Great active volcanoes in South America are Nevado del Ruíz, in Colombia; Cotopaxi, Tungurahua, and Reventador, in Ecuador; Villarrica, Llaima, Nilahue, Lascar, Chaitén, and Calbuco, in Chile; El Misti, Ubinas and Sabancaya, in Peru; Aracar, Copahue, and Planchón-Peteroa in Argentina. There are no reported active volcanoes in Paraguay, Uruguay, Venezuela, Guyana, Suriname, and Brazil [64, 65].
On 22 April 2015, in Chile, the Calbuco volcano erupted and injected a significant amount of ashes and aerosols into the atmosphere [66].
The volcanic aerosol profiles in both the upper troposphere and the lower stratosphere, which originated from the Calbuco volcano eruption in Chile on 22 April 2015, were measured by different lidar stations in South America [7]. It was the first time that LALINET lidar stations, distributed across the continent, could analyze aerosol profiles together during an event. Lidar stations located in Buenos Aires, Comodoro Rivadavia, San Carlos de Bariloche, Neuquén, and Rio Gallegos (all five in Argentina), Concepción (Chile), and São Paulo (Brazil) observed the aerosols profiles [7, 67]. LALINET stations’ capabilities to operate in a coordinated way in case of a volcanic eruption were challenged, highlighting the coordination among LALINET teams.
On 23 April 2015 (one day after the eruption), the lidar system at the University of Concepción measured the aerosols profiles between 5 and 9 km, showing a multilayer structure. Both layers merged at around 7 km, decreasing its intensity and narrowing. The following day 24 April 2015, the two layers registered in the day before at Concepción were detected in the nighttime by the lidar system placed in Buenos Aires, Argentina, in heights varying between 5 and 7 km showing a drowning leaning. The aerosol’s multilayer formation was present at both lidar sites when identified for the first time. Lidar measurements conducted at IPEN in São Paulo on 27 April 2015 (five days after the eruption) exhibited aerosols found at an altitude of about 19 km in the stratosphere (Figure 7) [66]. Those lidar extinction profiles were confronted with those measured by the Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) instrument, revealing promising results [7].
Quick-look of the RCS at 532 nm measured at SPU Lidar Station on 27 April 2015. The SPU Lidar Station is installed at the Center for Lasers and Applications of the nuclear and energy research institute (CELAP/IPEN) in São Paulo. The signal between 18 km and 20 km shows aerosols originating from the Calbuco volcano eruption on 22 April 2015, in Chile.
The behavior of trace constituents in the Earth’s upper atmosphere, dictated by diverse physical processes, is of particular interest for the balance of stratosphere and mesosphere. Expressly, ozone has a principal function by absorbing the short-wavelength UV radiation (which might damage life) and keep the radiative budget stable [68]. For those reasons, ozone has been at the focus of the middle atmosphere research effort [69, 70].
Researchers’ interest in performing lidar measurements from the southern region of the southern hemisphere dates back to 1995. Researchers from CEILAP, together with Prof. Gérard Mégie (who was then head of the
The instrument became operational in 1997 in Villa Martelli, Buenos Aires, where the headquarters of CEILAP is located. The initial version had only one telescope, which was 50 cm in diameter. It operated successfully until 2002. Later, the number of telescopes was increased to four, and a spectrometer was added. The apparatus was fine-tuned at the Villa Martelli headquarters.
The
The campaign’s feasibility study was conducted, considering the nocturnal cloud cover over four towns in Argentine Patagonia. The data were compared with those corresponding to days when the Antarctic polar vortex crosses over these towns.
Different tracers were also considered, such as the total ozone column values measured by total ozone mapping spectrometry, the equivalent latitude method, and the potential vorticity maps calculated for the mid-stratosphere, according to studies carried out in collaboration with the Service d’Aeronomie in France and the National Institute for Environmental Studies in Japan.
The city of Río Gallegos region met the necessary conditions for the measurements. It is located at 2612 km from Buenos Aires, on the River Gallegos estuary banks, and has 140,000 inhabitants. Like other cities in southern Argentina and Chile, Río Gallegos is reached by the ozone hole’s edge during the austral spring. However, compared with its counterparts, it has a more significant number of clear nights or nights with less than one-eighth cloud cover, which means more opportunities for making measurements with the ozone DIAL. Río Gallegos also hosts the National University of Southern Patagonia, whose staff could participate in the campaign, and is near to Punta Arenas, Chile, where another research group has used a Brewer instrument to make ozone measurements, in cooperation with Brazilian researchers. On 10 June 2005, the team set off overland for Río Gallegos in two trucks that traveled 2612 km from Buenos Aires to the Military Air Base in Río Gallegos, where a mobile laboratory was set up. The base is located 18 km from the center of the town [72, 73].
A Xe:Cl excimer laser emission at 308 nm is employed for the absorbed wavelength in the DIAL technique, and an Nd:YAG laser at 355 nm third harmonic line is employed as the reference wavelength. Six channels are used for signal acquisition [72]. Four of them detect the emitted wavelengths’ elastically backscattered signal (high energy mode for the higher altitude ranges, attenuated energy for the lower ranges), and two correspond to the Raman wavelengths [72]. The CEILAP’s DIAL instrument setup is shown in Figure 8, and its full description can be found in Ref. [10].
Experimental setup of differential absorption lidar (DIAL) developed at CEILAP.
The CEILAP Lidar Division, in cooperation with other national and international institutions, has organized the SOLAR (Stratospheric Ozone Lidar of ARgentina) Campaign as a part of environmental investigations in the Southern Hemisphere [72]. This campaign’s objective was to monitor different atmospheric constituents using remote sensing techniques, mainly related to lidar, in Argentina’s southern part. The most critical and complex instrument involved in this campaign is a differential absorption lidar capable of producing precise and accurate stratospheric ozone profiles [72, 73].
The most substantial decrease of the ozone column over Río Gallegos through the 2005 spring was observed on 8 October, with a total ozone column of 196 DU estimated from integrating an ozone profile based on the lidar measurement and the US Standard 1976. This value expresses a decrease of 45% in the total ozone column concerning the mean total ozone value outside the ozone hole for this month (about 350 DU). Figure 9 shows the measured lidar profile on this day (dashed line), together with the ozone profile measured on 17 October (dotted line), which corresponds to standard ozone conditions outside the ozone hole (about 357 DU). The figure also shows the climatologic profile (black line) from the SAGE II measurements, which corresponds to the mean of the ozone measurements outside the ozone hole for the 1995–2004 period.
Lidar ozone profile inside (dashed line) and outside (gray dotted line) ozone hole in Río Gallegos. Climatologic profile for October from SAGE II data (black line) [
From the full set of lidar measurements, were selected 37 lidar profiles that match the HRLS profiles. The monthly mean lidar profiles were confronted with similar profiles measured by the High-Resolution Dynamics Limb Sounder (HIRDLS) device onboard the NASA-Aura satellite. The collocation criteria for selecting satellite data were set using a distance of up to 500 km from site measurement and a temporal selection of about twelve hours for the measurement time. The mean stratospheric ozone lidar profile for October in Río Gallegos is shown in Figure 10. For comparison, the same quantity from satellite data is included.
Mean lidar profile (black line - error bar corresponds to ±1 std) and mean HIRDLS (white line) ±1 std. (shadow area) for October.
In general, good agreement between lidar and satellite data was found (inside the statistical error bar, with a relative difference of around 10%). The maximum disagreement between lidar and satellite data was observed in August mean profiles around 30 km. For October, the agreement was better than 10% above the ozone peak concentration. In general, it was observed that the variability of lidar profile concentrations is higher around the ozone peak, decreasing with height.
Differential Absorption lidar techniques have been demonstrated to be a reliable remote sensing technique to retrieve the stratosphere’s ozone profile [73]. Argentina has used DIAL techniques since 1999. In 2005, with French and Japanese researchers’ collaboration, the Lidar Division of CEILAP established a new site in Southern Patagonia, the South Patagonia Atmospheric Observatory (OAPA). This device has been part of Network Data for Atmospheric Composition Change (NDACC) since 2008, and the research using its measurements allows the study of ozone hole overpass from South America [75] and the satellite validation in the South Hemisphere. After the SOLAR Campaign, several initiatives were carried out related to stratospheric ozone monitoring in Argentina. For example, the UVO3-Patagonia (2008–2010) and SAVER-Net projects (2013–2018) were the research activities made in collaboration with JICA, and Japanese and Chilean Researchers went more in-depth the observation of ozone in vertical profiles and total ozone column [76].
Part I of this chapter offered the opportunity to give a scientific overview of current and past lidar observation activities conducted in South America, with Cuba’s participation. This overview spans over almost 50 years of activities and grants how this part of the world is concerned with laser remote sensing of the atmosphere in almost its whole structure: Mesosphere and Stratosphere. This top-down approach also followed a chronological delivery of results, with the first results coming from the region in the highest portion of the atmosphere (mesosphere), and going downwards to stratospheric, and finally at the tropospheric studies. If, in the first years, these activities started as individual initiatives at different countries and research groups levels, the creation of a federative lidar network, namely LALINET, helped somehow to have more coordinated measurements. Moreover, the implementation of SAVERNET in Argentina and Chile improved how these joint measurements are conducted. The studies conducted in the mesosphere account for one of the most extended time series of lidar data, being of great importance in the Southern Hemisphere. Also, significant results about Na and K concentrations and their variability over almost three decades are available. The studies of ozone concentration in the stratosphere also provided relevant results, unprecedented for this portion of the globe. Part II of this chapter will be dedicated to tropospheric lidar observations.
The authors are thankful to the Brazilian Agencies National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), São Paulo Research Foundation (FAPESP), Brazilian Agricultural Research Corporation (EMBRAPA), and National Institute of Amazonian Research (INPA) LBA Central Office in Manaus. The authors also thank the NASA/AERONET teams, Japan International Cooperation Agency (JICA), the Argentine Agencies National Scientific and Technical Research Council (CONICET), National Agency for the Promotion of Research, Technological Development and Innovation (ANPCyT), the Argentine National Defense University (UNDEF), UNDEFI and PID-UTN Projects, the Ministry of Defense of Argentina, and the French National Centre for Scientific Research (CNRS). Also, to all NASA’s technical personnel, the Argentine Institute of Scientific and Technical Research for Defense (CITEDEF), and the Argentine National Meteorological Service (SMN), who have kept the solar photometers in operation, and especially to Raúl D’Elia. The authors wish to acknowledge the entire NASA CALIPSO and MODIS (AQUA/TERRA) teams, the NOAA Air Resources Laboratory, for providing the HYSPLIT transport and dispersion model and the READY website, ESA/EOM projects teams, the Suomi NPP (National Polar-orbiting Partnership) Mission teams, and the Sentinel 5-P TROPOMI team. The authors also acknowledge the financial support from CIBioFi, the Colombian Science, Technology, and Innovation Fund-General Royalties System (Fondo CTeI-Sistema General de Regalías), and Gobernación del Valle del Cauca. The authors acknowledge the China-Brazil Joint Laboratory for Space Weather (CBJLSW) for Supporting this Book Chapter. Vania F. Andrioli would like to thank the CBJLSW and the National Space Science Center (NSSC) of the Chinese Academy of Sciences (CAS) for supporting her postdoctoral fellowship. The authors from the Universidad de Magallanes would like to acknowledge the financial support of the Japan Science and Technology Agency (JST) / Japan International Cooperation Agency (JICA), the Science and Technology Research Association for Sustainable Development (SATREPS) through the SAVERNet project; and the Program FONDECYT of the Chilean National Agency for Research and Development (ANID) through Project FONDECYT 11181335.
The authors declare no conflict of interest.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15913}],offset:12,limit:12,total:119061},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"1175"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:26},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:45},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1021",title:"Hepatology",slug:"gastroenterology-hepatology",parent:{title:"Gastroenterology",slug:"gastroenterology"},numberOfBooks:56,numberOfAuthorsAndEditors:1687,numberOfWosCitations:492,numberOfCrossrefCitations:385,numberOfDimensionsCitations:921,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"gastroenterology-hepatology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7888",title:"Hepatitis A and Other Associated Hepatobiliary Diseases",subtitle:null,isOpenForSubmission:!1,hash:"e027bb08025546d9beb242d55e87c84c",slug:"hepatitis-a-and-other-associated-hepatobiliary-diseases",bookSignature:"Costin Teodor Streba, Cristin Constantin Vere, Ion Rogoveanu, Valeria Tripodi and Silvia Lucangioli",coverURL:"https://cdn.intechopen.com/books/images_new/7888.jpg",editedByType:"Edited by",editors:[{id:"55546",title:"Dr.",name:"Costin Teodor",middleName:"Teodor",surname:"Streba",slug:"costin-teodor-streba",fullName:"Costin Teodor Streba"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,isOpenForSubmission:!1,hash:"8dd6dab483cf505d83caddaeaf497f2c",slug:"hepatitis-b-and-c",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8330",title:"Nonalcoholic Fatty Liver Disease",subtitle:"An Update",isOpenForSubmission:!1,hash:"d0f8ff2a0673b7be22f7e7c531a2e410",slug:"nonalcoholic-fatty-liver-disease-an-update",bookSignature:"Emad Hamdy Gad",coverURL:"https://cdn.intechopen.com/books/images_new/8330.jpg",editedByType:"Edited by",editors:[{id:"222727",title:"Associate Prof.",name:"Emad Hamdy",middleName:null,surname:"Gad",slug:"emad-hamdy-gad",fullName:"Emad Hamdy Gad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8838",title:"Liver Cirrhosis",subtitle:"Debates and Current Challenges",isOpenForSubmission:!1,hash:"17163eb18a082da0fe70ccc20b7fe69a",slug:"liver-cirrhosis-debates-and-current-challenges",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/8838.jpg",editedByType:"Edited by",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6718",title:"Hepatitis C",subtitle:"From Infection to Cure",isOpenForSubmission:!1,hash:"7448805e61bfa52ce552c427ad6f16fc",slug:"hepatitis-c-from-infection-to-cure",bookSignature:"Imran Shahid",coverURL:"https://cdn.intechopen.com/books/images_new/6718.jpg",editedByType:"Edited by",editors:[{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6663",title:"Management of Chronic Liver Diseases",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"833ebcb9a2596f81deff0246ed7c9642",slug:"management-of-chronic-liver-diseases-recent-advances",bookSignature:"Xingshun Qi",coverURL:"https://cdn.intechopen.com/books/images_new/6663.jpg",editedByType:"Edited by",editors:[{id:"197501",title:"Dr.",name:"Xingshun",middleName:null,surname:"Qi",slug:"xingshun-qi",fullName:"Xingshun Qi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6440",title:"Liver Research and Clinical Management",subtitle:null,isOpenForSubmission:!1,hash:"e4bbd66ccead286ab737f23feb053cf8",slug:"liver-research-and-clinical-management",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/6440.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6073",title:"Non-Alcoholic Fatty Liver Disease",subtitle:"Molecular Bases, Prevention and Treatment",isOpenForSubmission:!1,hash:"6141320881651ddc40a3f35893c209e7",slug:"non-alcoholic-fatty-liver-disease-molecular-bases-prevention-and-treatment",bookSignature:"Rodrigo Valenzuela",coverURL:"https://cdn.intechopen.com/books/images_new/6073.jpg",editedByType:"Edited by",editors:[{id:"72355",title:"Prof.",name:"Rodrigo",middleName:null,surname:"Valenzuela Baez",slug:"rodrigo-valenzuela-baez",fullName:"Rodrigo Valenzuela Baez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5931",title:"Stomach Disorders",subtitle:null,isOpenForSubmission:!1,hash:"489f823dd49e3fa397e477a8101ca4ff",slug:"stomach-disorders",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/5931.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5714",title:"Esophageal Abnormalities",subtitle:null,isOpenForSubmission:!1,hash:"132a5e5097b78a76535fde4196596ac9",slug:"esophageal-abnormalities",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/5714.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6061",title:"Ascites",subtitle:"Physiopathology, Treatment, Complications and Prognosis",isOpenForSubmission:!1,hash:"ead9b3e5c36413f9ff2c3129fbc57574",slug:"ascites-physiopathology-treatment-complications-and-prognosis",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/6061.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6014",title:"Update on Hepatitis C",subtitle:null,isOpenForSubmission:!1,hash:"b812442f63938a061f1c84b2338bb187",slug:"update-on-hepatitis-c",bookSignature:"Martina Smolic, Aleksandar Vcev and George Y. Wu",coverURL:"https://cdn.intechopen.com/books/images_new/6014.jpg",editedByType:"Edited by",editors:[{id:"172734",title:"Dr.",name:"Martina",middleName:null,surname:"Smolic",slug:"martina-smolic",fullName:"Martina Smolic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:56,mostCitedChapters:[{id:"46479",doi:"10.5772/57353",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:2046,totalCrossrefCites:85,totalDimensionsCites:196,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]},{id:"22945",doi:"10.5772/17640",title:"Pathophysiology of Gastric Ulcer Development and Healing: Molecular Mechanisms and Novel Therapeutic Options",slug:"pathophysiology-of-gastric-ulcer-development-and-healing-molecular-mechanisms-and-novel-therapeutic-",totalDownloads:11792,totalCrossrefCites:8,totalDimensionsCites:21,book:{slug:"peptic-ulcer-disease",title:"Peptic Ulcer Disease",fullTitle:"Peptic Ulcer Disease"},signatures:"Matteo Fornai, Luca Antonioli, Rocchina Colucci, Marco Tuccori and Corrado Blandizzi",authors:[{id:"28973",title:"Prof.",name:"Corrado",middleName:null,surname:"Blandizzi",slug:"corrado-blandizzi",fullName:"Corrado Blandizzi"},{id:"44227",title:"Dr.",name:"Matteo",middleName:null,surname:"Fornai",slug:"matteo-fornai",fullName:"Matteo Fornai"},{id:"44229",title:"Dr.",name:"Luca",middleName:null,surname:"Antonioli",slug:"luca-antonioli",fullName:"Luca Antonioli"},{id:"44230",title:"Dr.",name:"Rocchina",middleName:null,surname:"Colucci",slug:"rocchina-colucci",fullName:"Rocchina Colucci"},{id:"44231",title:"Dr.",name:"Marco",middleName:null,surname:"Tuccori",slug:"marco-tuccori",fullName:"Marco Tuccori"}]},{id:"35446",doi:"10.5772/47946",title:"Delivery of Probiotic Microorganisms into Gastrointestinal Tract by Food Products",slug:"delivery-of-probiotic-microorganisms-into-gastrointestinal-tract-by-food-products",totalDownloads:5861,totalCrossrefCites:0,totalDimensionsCites:19,book:{slug:"new-advances-in-the-basic-and-clinical-gastroenterology",title:"New Advances in the Basic and Clinical Gastroenterology",fullTitle:"New Advances in the Basic and Clinical Gastroenterology"},signatures:"Amir Mohammad Mortazavian, Reza Mohammadi and Sara Sohrabvandi",authors:[{id:"97458",title:"Dr.",name:"Amir M.",middleName:null,surname:"Mortazavian",slug:"amir-m.-mortazavian",fullName:"Amir M. Mortazavian"},{id:"99974",title:"Dr.",name:"Sarah",middleName:null,surname:"Sohrabvandi",slug:"sarah-sohrabvandi",fullName:"Sarah Sohrabvandi"}]}],mostDownloadedChaptersLast30Days:[{id:"45493",title:"Biliary Dyspepsia: Functional Gallbladder and Sphincter of Oddi Disorders",slug:"biliary-dyspepsia-functional-gallbladder-and-sphincter-of-oddi-disorders",totalDownloads:5553,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"dyspepsia-advances-in-understanding-and-management",title:"Dyspepsia",fullTitle:"Dyspepsia - Advances in Understanding and Management"},signatures:"Meena Mathivanan, Liisa Meddings and Eldon A. Shaffer",authors:[{id:"165693",title:"Dr.",name:"Eldon",middleName:null,surname:"Shaffer",slug:"eldon-shaffer",fullName:"Eldon Shaffer"}]},{id:"56262",title:"Anatomy of Esophagus",slug:"anatomy-of-esophagus",totalDownloads:2872,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Murat Ferhat Ferhatoglu and Taner Kıvılcım",authors:[{id:"200126",title:"M.D.",name:"Murat Ferhat",middleName:null,surname:"Ferhatoglu",slug:"murat-ferhat-ferhatoglu",fullName:"Murat Ferhat Ferhatoglu"},{id:"206240",title:"Dr.",name:"Taner",middleName:null,surname:"Kivilcim",slug:"taner-kivilcim",fullName:"Taner Kivilcim"}]},{id:"56068",title:"Minimally Invasive Esophagectomy",slug:"minimally-invasive-esophagectomy",totalDownloads:924,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Rafael Cholvi Calduch, Isabel Mora Oliver, Fernando Lopez Mozos\nand Roberto Martí Obiol",authors:[{id:"203292",title:"Ph.D.",name:"Fernando",middleName:null,surname:"Lopez",slug:"fernando-lopez",fullName:"Fernando Lopez"},{id:"203687",title:"Dr.",name:"Roberto",middleName:null,surname:"Martí",slug:"roberto-marti",fullName:"Roberto Martí"},{id:"204943",title:"Dr.",name:"Rafael",middleName:null,surname:"Cholvi",slug:"rafael-cholvi",fullName:"Rafael Cholvi"},{id:"204944",title:"Dr.",name:"Isabel",middleName:null,surname:"Mora",slug:"isabel-mora",fullName:"Isabel Mora"}]},{id:"21425",title:"Histopathological Diagnosis of Non-Alcoholic and Alcoholic Fatty Liver Disease",slug:"histopathological-diagnosis-of-non-alcoholic-and-alcoholic-fatty-liver-disease",totalDownloads:2948,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"liver-biopsy-in-modern-medicine",title:"Liver Biopsy in Modern Medicine",fullTitle:"Liver Biopsy in Modern Medicine"},signatures:"Andrea Tannapfel and Berenike Flott-Rahmel",authors:[{id:"34863",title:"Dr.",name:"Andrea",middleName:null,surname:"Tannapfel",slug:"andrea-tannapfel",fullName:"Andrea Tannapfel"},{id:"53108",title:"Prof.",name:"Berenike",middleName:null,surname:"Flott-Rahmel",slug:"berenike-flott-rahmel",fullName:"Berenike Flott-Rahmel"}]},{id:"55879",title:"Portal Hypertensive Gastropathy (PHG)",slug:"portal-hypertensive-gastropathy-phg-",totalDownloads:1115,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"stomach-disorders",title:"Stomach Disorders",fullTitle:"Stomach Disorders"},signatures:"Samia Ali Gamie",authors:[{id:"204157",title:"Prof.",name:"Samia",middleName:null,surname:"Ali Abdo Gamie",slug:"samia-ali-abdo-gamie",fullName:"Samia Ali Abdo Gamie"}]},{id:"57005",title:"Health-Related Quality of Life in Antiviral-Treated Chronic Hepatitis C Patients",slug:"health-related-quality-of-life-in-antiviral-treated-chronic-hepatitis-c-patients",totalDownloads:988,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"update-on-hepatitis-c",title:"Update on Hepatitis C",fullTitle:"Update on Hepatitis C"},signatures:"Aleksandar Včev, Jelena Jakab, Lucija Kuna and Martina Smolić",authors:[{id:"154595",title:"Prof.",name:"Aleksandar",middleName:null,surname:"Vcev",slug:"aleksandar-vcev",fullName:"Aleksandar Vcev"},{id:"172734",title:"Dr.",name:"Martina",middleName:null,surname:"Smolic",slug:"martina-smolic",fullName:"Martina Smolic"},{id:"204953",title:"Ms.",name:"Lucija",middleName:null,surname:"Kuna",slug:"lucija-kuna",fullName:"Lucija Kuna"},{id:"205159",title:"Dr.",name:"Jelena",middleName:null,surname:"Jakab",slug:"jelena-jakab",fullName:"Jelena Jakab"}]},{id:"55818",title:"Tissue Engineering of Esophagus",slug:"tissue-engineering-of-esophagus",totalDownloads:998,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Yabin Zhu, Mi Zhou and Ruixia Hou",authors:[{id:"40618",title:"Prof.",name:"Yabin",middleName:null,surname:"Zhu",slug:"yabin-zhu",fullName:"Yabin Zhu"}]},{id:"55045",title:"Hemodynamic Optimization Strategies in Anesthesia Care for Liver Transplantation",slug:"hemodynamic-optimization-strategies-in-anesthesia-care-for-liver-transplantation",totalDownloads:1298,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"liver-cirrhosis-update-and-current-challenges",title:"Liver Cirrhosis",fullTitle:"Liver Cirrhosis - Update and Current Challenges"},signatures:"Alexander A. Vitin, Dana Tomescu and Leonard Azamfirei",authors:[{id:"201176",title:"Associate Prof.",name:"Alexander",middleName:null,surname:"Vitin",slug:"alexander-vitin",fullName:"Alexander Vitin"},{id:"202442",title:"Dr.",name:"Dana",middleName:null,surname:"Tomescu",slug:"dana-tomescu",fullName:"Dana Tomescu"},{id:"202600",title:"Prof.",name:"Leonard",middleName:null,surname:"Azamfirei",slug:"leonard-azamfirei",fullName:"Leonard Azamfirei"}]},{id:"56177",title:"Nutritional Management of Esophageal Cancer Patients",slug:"nutritional-management-of-esophageal-cancer-patients",totalDownloads:1240,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"esophageal-abnormalities",title:"Esophageal Abnormalities",fullTitle:"Esophageal Abnormalities"},signatures:"Dimitrios Schizas, Irene Lidoriki, Demetrios Moris and Theodore\nLiakakos",authors:[{id:"203349",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Schizas",slug:"dimitrios-schizas",fullName:"Dimitrios Schizas"},{id:"204000",title:"MSc.",name:"Irene",middleName:null,surname:"Lidoriki",slug:"irene-lidoriki",fullName:"Irene Lidoriki"},{id:"204001",title:"Dr.",name:"Demetrios",middleName:null,surname:"Moris",slug:"demetrios-moris",fullName:"Demetrios Moris"},{id:"204002",title:"Prof.",name:"Theodore",middleName:null,surname:"Liakakos",slug:"theodore-liakakos",fullName:"Theodore Liakakos"}]},{id:"46479",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:2046,totalCrossrefCites:86,totalDimensionsCites:196,book:{slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]}],onlineFirstChaptersFilter:{topicSlug:"gastroenterology-hepatology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/159659/y-l-mo",hash:"",query:{},params:{id:"159659",slug:"y-l-mo"},fullPath:"/profiles/159659/y-l-mo",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()