Histone modifying enzymes involved in metastasis.
\r\n\tAll book chapters are produced by forward-thinking specialists in the area of renewable energy and smart grids, with detailed analysis and/or case studies. This book is intended to serve as a reference for graduate students, academics, professionals, and system operators.
",isbn:"978-1-83881-907-1",printIsbn:"978-1-83881-906-4",pdfIsbn:"978-1-83881-909-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"42f44a6c474bb1bb3664945884ff1879",bookSignature:"Prof. Wenping Cao and Dr. Shubo Hu",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10498.jpg",keywords:"Wind Speed, Wind Farm Design, Wind Energy Prediction, Power Dispatch, Optimization Algorithms, Stability Analysis, Distributed Generation, Integrated Energy System, Market Mechanism, Demand Side Management, Data-Driven Method, Electric Grid Security",numberOfDownloads:39,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 1st 2020",dateEndSecondStepPublish:"June 22nd 2020",dateEndThirdStepPublish:"August 21st 2020",dateEndFourthStepPublish:"November 9th 2020",dateEndFifthStepPublish:"January 8th 2021",remainingDaysToSecondStep:"7 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"A Chair Professor of Electrical Power Engineering at the Aston University, UK, and a Marie Curie Fellow at the Massachusetts Institute of Technology, USA.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"174154",title:"Prof.",name:"Wenping",middleName:null,surname:"Cao",slug:"wenping-cao",fullName:"Wenping Cao",profilePictureURL:"https://mts.intechopen.com/storage/users/174154/images/system/174154.jpg",biography:"Dr. Wen-Ping Cao received the B.Eng degree in electrical engineering from Beijing Jiaotong University, Beijing, China, in 1991, and the Ph.D. degree in electrical machines and drives from the University of Nottingham, Nottingham, UK, in 2004. He is currently a Chair Professor of Electrical Power Engineering with Aston University, Birmingham, UK, and also a Marie Curie Fellow with Massachusetts Institute of Technology, Cambridge, MA, USA. His research interests include fault analysis and condition monitoring of electric machines and power electronics for renewable energy.",institutionString:"Aston University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Aston University",institutionURL:null,country:{name:"United Kingdom"}}}],coeditorOne:{id:"321201",title:"Dr.",name:"Shubo",middleName:null,surname:"Hu",slug:"shubo-hu",fullName:"Shubo Hu",profilePictureURL:"https://mts.intechopen.com/storage/users/321201/images/system/321201.jpg",biography:"Dr. Shubo Hu received a B.S. degree and a Ph.D. degree in Electrical Engineering from Dalian University of Technology, Dalian, China, in 2012 and 2019, respectively. Currently, she is an academic in the Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, China. Her research interests include power system dispatch with renewable power energy, big data, and energy storage.",institutionString:"Dalian University of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:[{id:"74556",title:"Assessment and Analysis of Offshore Wind Energy Potential",slug:"assessment-and-analysis-of-offshore-wind-energy-potential",totalDownloads:32,totalCrossrefCites:0,authors:[null]},{id:"74223",title:"Nonlinear Control Strategies of an Autonomous Double Fed Induction Generator Based Wind Energy Conversion Systems",slug:"nonlinear-control-strategies-of-an-autonomous-double-fed-induction-generator-based-wind-energy-conve",totalDownloads:7,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"4623",title:"Renewable Energy",subtitle:"Utilisation and System Integration",isOpenForSubmission:!1,hash:"a95f39bf464b9e664978e0ed8e4d77ca",slug:"renewable-energy-utilisation-and-system-integration",bookSignature:"Wenping Cao and Yihua Hu",coverURL:"https://cdn.intechopen.com/books/images_new/4623.jpg",editedByType:"Edited by",editors:[{id:"174154",title:"Prof.",name:"Wenping",surname:"Cao",slug:"wenping-cao",fullName:"Wenping Cao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5835",title:"Development and Integration of Microgrids",subtitle:null,isOpenForSubmission:!1,hash:"f7816bff39f3662d16a4df91841e2b5b",slug:"development-and-integration-of-microgrids",bookSignature:"Wen-Ping Cao and Jin Yang",coverURL:"https://cdn.intechopen.com/books/images_new/5835.jpg",editedByType:"Edited by",editors:[{id:"174154",title:"Prof.",name:"Wenping",surname:"Cao",slug:"wenping-cao",fullName:"Wenping Cao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"47962",title:"Surgical Techniques to Improve the Smile",doi:"10.5772/59213",slug:"surgical-techniques-to-improve-the-smile",body:'A smile has always been an important key in our social life, not to mention if it is an attractive one. The type, degree, tone, at static or a dynamic figure concerns facial beauty as well as the internal mood, or what might be called “ the internal smile.“ The society in the current century is turning towards social media, gadgets, electronics and advertisements mainly based on pictures. Those corporates seeking to recruit applicants for job positions assess the persons photograph in addition to their CV because a photo can tell a lot about an applicant. Hence, there is a growing trend towards enhancement of facial esthetics.
Among the medical professions, many specialties are dealing with smiles; however, the approach to management can vary considerably due to improper diagnosis and lack of knowledge toward the variable treatment options. Specialists such as restorative dentist, prosthodontist, orthodontist, periodontist, maxillofacial surgeon, plastic surgeon, and dermatologist are working around the “smile complex”; however, no clear inter-specialty communication exists to provide the best intervention for patients. This might be a reason for variable management to smile imperfections via different specialties.
In this chapter, the “unattractive smile”, is being discussed from different angles and in a totally different manner. The objective is to collect the expertise of variable cosmetic specialties in a single chapter to help practitioners in future decision-making processes in “smile management.” Hence, the concepts are presented along with multiple challenging cases with different interventions. Interventions such as restorative veneers in the maxillary anterior teeth can be the answer to all patients’ troubles if used in the right cases; while crown lengthening as a sole procedure or in combination with veneers can be the ultimate solution for others [1].
Maxillary surgical procedures such as LeFort 1 may be the only solution in others. Laser therapy for lip irregularities can provide more convenient results in case of fine wrinkles, while Botox and fillers may provide better outcomes for some gummy smiles. The case can be a little bit more challenging if the patient is known to have a repaired cleft lip, previous lip trauma, or secondary facial deformity [2].
Other situations where patients visit clinics with a clear demand of what can make them feel happier, such as piercing or cheek dimples can be linked to the patient’s own personal satisfaction. On other occasions, clients may be confused, and complain of resenting their profile pictures without clear understanding of their problem needing correction. It is well known, that in the current era of cosmetic revolution and subspecialty care and techniques, continuous evaluation and research regarding the principles of “smile management” are evolving. Therefore, practitioners should keep in mind that proper training in the field, careful case selection, and inter-specialty communication can provide the best results with the least possible complications.
A smile is expressed as a form of one’s feature reflecting pleasure and happiness usually shown by upturning the corners of the mouth [1]. It can be presented in a static state mostly during taking pictures, or can be as part of a dynamic state during articulation. However, the personal self-evaluation can be more complicated due to the era of advanced social networking. Hence, it is not surprising that critics of smiles and perfectionism are increasing [2].
Medical practitioners may describe the smile as a status of the orofacial complex where muscles of the facial expression are harmonized. Muscles such as the frontalis, orbicularis oculi, orbicularis oris, zygomaticus major, risorius, platysma and depressor anguli oris are working in harmony to provide various facial expressions [3]. A common mistake is considering the oral complex as the only item composing the smile, though midfacial muscles such as the zygomaticus major and minor originate from the midface and hence affect the general character and smile. The muscles around the orbital complex are critical to facial expression as a reflection of youth and beauty when lacking heavy wrinkles [4]. Hence, the components of a smile can be evaluated according to different factors namely:
Anatomical components
Smile lip line
Dental smile lines
Facial character
Anatomical components: The smile is composed of the upper lip, the maxillary bone, the maxillary teeth, and the gingival tissue envelope [5, 6].
The upper lip represents the area from the point subnasal to the upper lip stomion which varies between 18-22mm (Figure 1) [5]. The width of the lip is composed of mucosa, orbicularis muscle, fat, and skin, which varies between individuals in height and thickness. However, the extension of muscles into the surrounding structures such as the nose can affect the nasal shape when smiling. A lot of patients have their nasal tips turned downward when they smile, or have the alae of the nose extremely widen or flare, which can be unsightly [7].
Lateral cephalometric analysis showing the lip form and position. Nasolabial angle (Cm-Sn-Ls), mentolabial sulcus depth (Si to Li-Pog’), maxillary incisor exposure (Stms-1). Upper lip protrusion (Ls to Sn-Pog’), lower lip protrusion (Li to Sn-Pog’), vertical lip-chin ratio (Sn-Stms/Stmi-Me’), interlabial gap (Stms- Stmi). [5]
The maxillary bone and teeth constitute the second and third parts. The maxilla extends from the subnasal down to the alveolar component housing the teeth. The width of the smile is correlated with the width of the maxilla, as transverse deficiency will lead to narrow V-shaped maxillary arch and a wide buccal corridor which is not pleasant, and vice versa. While in the vertical dimension, maxillary excessive growth will lead to over expression of gum and teeth during smiling or a gummy smile; while extreme maxillary bone vertical deficiency will lead to absence of teeth and gingival show at static or dynamic orofacial states reflecting an unpleasant aging character. Evaluation of the maxillomandibular complex is accomplished via clinical and radiographic modalities clarified later in this chapter [5].
The gingival architecture is the fourth factor. Gingival recession exposing more tooth structure and roots is as unpleasant as gingival overgrowth -leading to short clinical crowns. As the crown shape, including height, width, curvature, and alignment have an important role [3], once the dental smile arc line is upturned posteriorly it will reflect better cosmetic results compared to a flat or downturned arc line. [6] Hence, a defect in a single component or inappropriate harmony between each can provide patients with unpleasant smiles. Therefore it is very critical to diagnose the major contributor to the disharmony and formulate the best management plan accordingly.
Smile lip line: This is divided into high, moderate or low horizontal smile lines according to the magnitude of upper lip coverage of the maxillary anterior teeth when static and smiling.[6] A high lip line refers to a smile showing the maxillary anterior teeth and part of the gingival tissue, while a low lip line shows 0-2mm of the anterior teeth. A high smile line is considered to be a challenging factor when rehabilitating the anterior maxilla. As any defect in the crown or gingival tissue can be disclosed; unlike patients with moderate or low smile lines (Figure 2).
Dental smile line (smile arc): This pertains to maxillary teeth from the incisor going along to the 1st molar and describes the best cosmetic relation as evaluated by an expert restorative dentist.[4,6] A smooth transition of dental lines, alignment, shape, and color can provide pleasant smiles. The dental smile line is an imaginary line drawn from the incisal edges of the maxillary anterior teeth and following the upper lip inferior border curvature. It can be flat, upturned, or downturned. These lines do have more fine details that a specialist restorative dentist can analyze. [3, 4, 6] The fine dental line details are beyond the scope of the chapter.
A young female patient referred complaining that she does not like her smile. On examination the patient was presented an option of orthodontic treatment to adjust the spaces and dental relation before any final restorative esthetic procedures. However, the patient did not prefer any orthodontic intervention. Hence, the cosmetic restorative team evaluated the patient for possible prosthetic rehabilitation of the smile and anterior teeth via dental veneers. Proper examination, impression and lab simulation using wax up models was performed and showed a favorable outcome. Therefore, the team elected to proceed with the treatment. Although the team advised the patient to receive restorative therapy of the premolar teeth, the patient refused, as she was mainly interested in betterment of the anterior tooth show (Figure 2).
(Left) a moderate smile lip line, with unfavorable dento-gingival relationship and dental esthetics. (Right) Postoperative results after treatment with restorative veneers (Courtesy of Professor Motaz Ghulman, King Abdulaziz University).
Facial character: The overall shape, color, and harmony of the face and maxillomandibular relationship should be evaluated clinically as well as radiologically. Clinical pictures of the frontal and profile views from different angles are necessary for documentation. Static evaluation as well as dynamic evaluation of the facial expression is important and any facial asymmetry should not go unforeseen. [2, 7, 8]
Beside the clinical examination of the head and neck region, radiographic evaluation is important to investigate the maxillomandibular complex, temporomandibular joint, and dentition using panoramic radiography and cephalometrics. [5, 7, 8]
Unpleasant smiles can be due to clear defect in one or more of the major smile components, lack of harmony of the smile pillars, or loss of self-satisfaction, which can be due either to a specific demand the patient is requesting (such as cheek dimples) or pure personal psychological dissatisfaction. The most important principle in managing such patients is to diagnose the etiology to see if it is actually an organic anatomical issue or is it an issue of self-concept. The answer is usually explored via careful teamwork consultation that will help guide the patient to the proper treatment channels.
Botox (Botulinum toxin) is a neurotoxin that is derived from the bacterium Clostridium Botulinum that has several serologically distinct subtypes, A, B, C, D, E, and G. It acts by blocking acetylcholine release at the neuromuscular junction, and hence preventing muscular contraction leading to smoothening of the hyperkinetic unpleasant looking facial rhytids or skin lines. The most common one is Botulinum A, Botox. [9, 10]
Botox has many applications in medical fields such as:
Treating facial rhytids: forehead, periorbital, and paranasal area
Treating neck vertical platysmal bands
Myofacial pain of the head and neck
Migraines
Muscle palsy
Muscle hypertrophy, commonly masseter and temporalis muscle hypertrophy.
For smiles with hyperactive muscular complex of the upper lip, Botox can be carefully deposited in the main hyperactive areas to reduce the action and hence to allow better draping of the upper lip complex on the maxillary teeth. [11]
The advantages are: easier application, less invasive, quick procedure, reasonable price, reasonably fast onset, and duration of about 6 months.
Disadvantages are: the action may start with fine dropping of the upper lip that patients may perceive as unpleasant, it takes from days to weeks to stabilize, asymmetric smile, uncomfortable injections, requiring re-injection after 6 months to stabilize results. [9, 11]
A 29-year-old woman complained that she was unsatisfied with her smile and that she had to use her hand to cover her mouth while laughing. On examination it was noticed that she had a hyperactive upper lip muscles, orbicularis oris and elevator labii alaeque nasi. She agreed to start management with a simple non-invasive method such as Botox therapy of the hyperactive areas (Figure 3, 4).
A 29-year-old woman with a gummy smile.
The patient after treatment with selective Botox therapy at the hyperactive muscular areas. The pictures showing two pleasant smile poses, as compared to the preoperative smile in Figure 3.
A LeFort 1 maxillary procedure is a surgical intervention where the maxillary bone is osteotomized in the semi-horizontal plane to disengage it from the cephalic end and allow moving the disengaged part into a more favorable position as dictated in relation to the opposing jaw and thus, improving the general facial harmony. The movement can be accomplished in three dimensions as needed. A maxillofacial surgeon trained in the field of orthognathics and facial reconstruction usually performs the procedure [5, 12]. Preoperative evaluation and consultation with an orthodontist trained in the field is necessary to estimate the defect and treatment planning including a thorough preoperative work up. This usually includes the following: Facial clinical photographs, intraoral photographs, panoramic radiograph, lateral cephalometric radiograph, anteroposterior cephalometric radiograph, impressions to develop study casts, mounting casts and a face bow transfer to aid in the cast mounting (Figure 5) [5,12]. Once this is accomplished, a proper data analysis is required for each aspect to develop a preoperative documented record, a diagnosis, and a provisional plan.
Lateral cephalometric radiograph with superimposing face bow transfer is a method to insure proper dentoskeletal relation before sending the face bow and impressions to the laboratory.
One of the most common indications is in gummy smile cases due to maxillary vertical excess. The procedure can be more challenging in cases with a short upper lip that contributes to the unpleasant smile complex. The procedure is mainly directed toward reducing the maxillary excess by moving the maxilla in the superior direction, and hence, it improves the smile.
The advantages of such a procedure are that it provides a major improvement in the shape of the face and smile.
The disadvantages are that it is done under general anesthesia, requires hospitalization, requires prolonged recovery time that can be up to a month (hence usually done during a prolonged vacation), postoperative expectations include swelling, pain, midface paresthesia, difficulty eating, minor changes in nasal shape, and general discomfort. [12, 13]
A 27-year-old patient with an unpleasant smile and difficulty eating. Clinical and radiographic evaluation revealed vertical maxillary excess and mandible deviation. The patient underwent multi-team comprehensive consultation and found it best to be treated via orthognathic surgery. LeFort 1 maxillary osteotomy was done to position the maxilla in upward position and correct the rotation, while the mandible underwent bilateral sagittal split osteotomy to optimize symmetry and occlusion. The patient still requires final orthodontic treatment (Figure 6).
Maxillary vertical excess that required orthognathic surgery intervention to correct the deformity seen on the left. The right picture shows the postoperative favorable results.
Facial aging is a continuous process that can be accelerated by smoking, sun exposure, or personal genetic predisposition. The loss of elastic fibers and replacement with collagen fibers leads to reduction in skin elasticity and sagging of the skin complex. Hence, cosmetic procedures such as facial fillers, lipofillers, chemical peeling, surgical lifting procedures, and laser treatment can optimize the general results. [10-14]
Other surgical procedures are not as common such as upper lip elongation or shortening that can treat cases of short upper lip that require some elongation to redrape the maxillary teeth. The upper lip is measured from the subnasal point to upper lip stomion, and has an average of 18-22mm length. [8]
A subnasal upper lip-lift is a procedure used to shorten a long upper lip and to evert it outward. This will allow more maxillary teeth show, upper lip outward eversion, and hence, a more pleasant youthful smile. It can be designed in a W-lift direction to provide better enhancement of the cupid bow area. The W arms can be designed in asymmetric fashion to manage upper lip asymmetric deformities. [2]
The lips can be in inverted, everted, hypoplastic, or with fine mucosal irregularities [13]. Such lip irregularities can be managed using laser therapy to eliminate superficial folds, or even cut and plan the rotation movements needed (Figure 7). [13, 14]
A 23-year-old female referred complaining of unesthetic upper lip and unpleasant smile. The patient had had multiple cleft lip and palate repair procedures in the past. The patient was presented an option of asymmetric upper lip lift and fat transfer to the upper lip. The procedure took place under general anesthesia and the results were immediately noticed (Figure 7, 8).
The patient at the preoperative stage (left); the upper lip is thin, inverted and flat. The plan surgically was to lift up the upper lip, evert it outward, and augment it using fat transfer. The picture on the right shows the preoperative W-lift marking. [2]
One-week postoperatively showing the upper lip volume, lip lift, and outward eversion of the patient in Figure 7.
Upper lip volume enhancement can be accomplished using autogenous grafts such as fascia, muscle, and periosteum especially if more volume is needed in compromised sites such as repaired cleft lip with notching or whistle deformity (Figure 9). Synthetic fillers are a common option now days to achieve lip volume enhancement or final border definition [7-9, 13].
A 34-year-old male patient referred complaining of extramucosal fold of his upper lip that shows more during smiling. The patient was presented an option of Erbium-Yag laser therapy to remove the mucosal folds under local anesthesia (Figure 9).
The left picture presents a smile of a 34-year-old male patient complaining of extramucosal fold of his upper lip that shows more during smiling. The patient was presented an option of Erbium-Yag laser therapy to remove the mucosal folds under local anesthesia. The picture on the right showing the result immediately after laser therapy, indicating the dry field and a potential of favorable secondary intentional healing.
A 23-year-old female presented with severe whistle deformity and notching of the upper lip secondary to repaired cleft lip 6 years ago. She was presented an option of upper lip revision; however, she was not keen to do so. Hence, she was presented the option of periosteum-muscular graft augmentation harvest from the lower lip / chin mass and transfer to the upper lip (Figure 10).
Reconstruction of an upper lip with severe notch deformity on the left picture using autologous muscular graft. The photograph on the right is three months postoperative. Final fine-tuning of lip boundaries can be achieved using synthetic fillers.
Crown lengthening is defined as a procedure used to increase the height of the clinical crowns by removing part of the gingival tissue with or without the crestal alveolar bone [14]. The procedure is usually designed according to the demand of the clinical crown height or the planned prosthetic crown or veneer. The tissue ablation is performed using blades, lasers, or less favorably, electrocautery, which has the tendency to damage the soft tissue cuff when compared to laser-based precise cutting capabilities. However, Laser treatment will require a set up to be ready, such as machine position, extensions, wires plastic covers, goggle’s for the team and patient, surgical sites protections, and proper infection control protocol (Figure 11). [14]
The dental gingival relation describes the maxillary teeth height, width, shape, and alignment status in relation to the gingival envelope. This can never be satisfying unless it was reflected in a beautiful smile [1, 2]. Therefore, a specialized restorative dentist should evaluate the case to verify the needed consultation and intervention, which can vary from simple odontoplasty, placing veneers, crowns, orthodontic treatment, or even extraction, alveolar bone reconstruction and implant-based rehabilitation (Figure 12).[15-17] Hence, teamwork is always the key to reach the best dento-gingival relation to provide a satisfying smile. This can be clarified through two examples, the first one illustrating the role of the oral and maxillofacial surgeon to evaluate a poor alveolar bone supporting the gingival tissue that requires alveolar reconstruction in horizontal and/ or vertical dimensions before prosthetic rehabilitation. [17] The second example illustrates the role to manage patients with short lip and vertical maxillary excess that will never be managed properly if crown-lengthening procedure was only performed. Such a case will require a LeFort 1 surgical procedure to reposition the maxilla superiorly first. [5, 12]
Showing the laser setup in the dental office as well as surgical site preparation for laser assisted labial frenoplasty.
The indication for crown lengthening is: cases of satisfying harmony of the upper lip height and maxillary bone relation, healthy dentition and periodontium but with poor dentogingival relation such as gingival overgrowth or poor architecture. It is used as well to optimize the restorability of the coronal portion of teeth. [14, 15]
The advantages: done under office local anesthesia, can be done using a laser for less bleeding and better postoperative recovery.
The disadvantages: Asymmetry, might require re-treatment to remove more gingival tissue or/ and bone, gingival recession, discomfort that lasts for few days. [14, 15]
A young male patient referred complaining of unesthetic anterior maxillary teeth. On clinical and radiographic evaluation, the patient had a poor dentogingival relation of the anterior maxillary teeth, poor crown shape, color and texture. The patient was presented to the team which advised a multi-step intervention starting from proper planning to restore the eight anterior teeth after a crown lengthening procedure using laser therapy (Figure 12).
The picture on the left showing poor dentogingival relation of the anterior maxillary teeth. The right figure is showing the poor alveolar crestal bone relation to the first maxillary right crowned incisor, which looks short and misshapen. Those poor relations lead to esthetically non-balanced anterior maxillary teeth.
Some patients can be unsatisfied with their smiles regardless of the type of treatment planned. Unless the operator figures out the exact factor contributing to the problem treatment will not really work. To provide examples, patients might be looking for cheek, lip, or chin piercing as the major key factors to their internal satisfaction while others, regardless of the procedures performed on their teeth, a single cheek dimple may be the change that the patient desires. And once that left cheek dimple procedure is performed, self-satisfaction is reflected positively on the actual smile (Figure 13). [18]
The patient had the desire to get a dimple on the left cheek that made her satisfied with her smile. The postoperative picture on the right side indicates a more pleasant smile.
Another situation, is where patients can have acceptable jaw skeletal relations, however, microgenia (small chin bone) or macrogenia (large chin bone) reduces their self-satisfaction of their smiles (Figure 14). Such chin deformities can be treated with genioplasty, chin augmentation or chin reduction procedures [2, 5, 7, 9, and 13].
Although the patient presented with what looks like a retruded lower jaw (left), his occlusion is in an acceptable relation, that clarifies that the defect is mainly at the chin level, microgenia (right).
In conclusion, this chapter presents the major components of a “smile” from the anatomical aspect as well as the evaluation methodology. A multi team approach can provide the best evaluation and management plan. Hence, the term “Smile Team” is appropriate to be embraced in the medical and dental professions.
The trick is always the proper diagnosis, treatment plan, and best implementation of one or more of the treatment modalities.
It is recommended that dental students, medical students, general practitioners, and residents dealing with the facial complex consider applying training rotations at the involved specialty departments in order to get a clear exposure to the capabilities of each specialty. Such will help expanding their skills in treatment planning and seeking interspecialty care. As well, it should be noted that dealing with smiles is considered to be a very challenging task at every step of treatment, hence, managing teeth in the anterior maxillary zone with veneers, placing dental implants, or lips enhancement procedures should always be approached with caution and perhaps under the supervision of specialized providers.
The author would like to thank:
The administration of Umm Alqura University for the research support.
My colleagues and friends; Professor Motaz Ghulman (Vice dean of the faculty of dentistry at King Abdulaziz University) for his continuous support of the “smile team” patient management. As well as special gratitude to Dr Khalid Zawawi, Dr Ibrahim Yamani, Dr Mohammad Khalil, and Dr Ahmad Halawani for their interspecialty patient care.
My dear colleagues; the resident at the Saudi Board of Oral Maxillofacial Surgery, the dental students in Umm Alqura University and King Abdulaziz University whom have always been of continuous help in research and case documentation.
Approximately 90% of cancer deaths are caused by metastasis [1]. Cancer metastasis is an exceedingly complex process involving tumor cell motility, intravasation, and circulation in the blood or lymph system, extravasation, and growth in new tissues and organs [2, 3]. During invasion, tumor cells lose cell–cell adhesion, gain mobility and leave the site of the primary tumor to invade adjacent tissues. In intravasation, tumor cells penetrate through the endothelial barrier and enter the systemic circulation through blood and lymphatic vessels. In extravasation, cells that survive the anchorage-independent growth conditions in the bloodstream attach to vessels at distant sites and leave the bloodstream. Finally, in metastatic colonization, tumor cells form macrometastases in the new host environment [2, 3]. All of these steps, from initial breakdown of tissue structure, through increased invasiveness, and ultimately distribution and colonization throughout the body, are developmental characteristics of the processes, epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET). EMT is a distinctive morphogenic process that occurs during embryonic development, chronic degeneration and fibrosis of organs, and tumor invasion and metastasis [4, 5, 6]. The similarity of genetic controls and biochemical mechanisms that underlie the acquisition of an invasive phenotype and the subsequent systemic spread of cancer cells highlights the concept that tumor cells usurp this developmental pathway for metastatic dissemination. In total, EMT provides tumor cells with the proclivity for early metastasis, renders them resistance to therapeutics and endows cells with cancer stem cell (CSC)-like traits [6].
The hallmark of EMT is the loss of E-cadherin expression, an important caretaker of the epithelial phenotype. Loss of E-cadherin expression is often correlated with the tumor grade and stage because it results in the disruption of the cell–cell adhesion and an increase in the nuclear β-catenin. Several transcription factors have been implicated in the regulation of EMT, including the zinc finger proteins of the SNAIL family (SNAIL1/2/3), the basic helix–loop–helix (HLH) factor TWIST (TWIST1/2, E12/E47), and two double zinc finger and homeodomain ZEB family (ZEB1/ZEB2). These factors act as a molecular switch for the EMT program by repressing a subset of common genes that encode cadherins, claudins, integrins, mucins, plakophilin, occludin and ZO1, and thereby induce EMT.
EMT is a dynamic process that preserves plasticity [6]. In this instance, the reprogramming of gene expression provides a rapid and dynamic regulatory mechanism to switch between the epithelial and mesenchymal conditions during cancer progression. Consistent with this, these EMT-activating transcriptional factors (EMT-TFs) are liable proteins that turn over rapidly and do not have long residence times at their binding sites. Interestingly, disseminating cells orchestrate a metastatic cascade without a concomitant need for genomic mutations, which indicates that this dissemination is epigenetically templated. Both EMT and epigenetic modification (DNA methylation and histone modifications) are dynamic and efficient processes during development, differentiation and carcinogenesis. These studies indicate that the epigenetic mechanism plays an important role in modulating the induction of EMT and tumor metastasis.
The term “epigenetics” was first coined by Conrad H. Waddington in his Principles of Embryology textbook in 1942 to designate a process in which gene regulation modulated development. The final definition of epigenetics was confirmed in the Epigenetic Meeting held by the Banbury Conference Center and Cold Spring Harbor Laboratory in 2008 as “a stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence.” In general, epigenetic regulation includes changes that impact histone modification, DNA methylation, histone variants, chromatin looping, noncoding RNAs and nucleosomal occupancy and remodeling.
Genomic DNA is tightly packaged in chromatin by both histone and nonhistone proteins in the nucleus of eukaryotic cells. The basic chromatin subunits, nucleosomes, are formed by wrapping 146 base pairs (bp) of DNA around an octamer of four core histones: H2A, H2B, H3, and H4. Whereas the nucleosomal core is compact, eight flexible lysine-rich histone tails protrude from the nucleosome that modulate internucleosomal contacts and provide binding sites for nonhistone proteins. From the perspective of gene transcription, chromatin structure can be divided into two distinct categories: euchromatin and heterochromatin. “Euchromatin” is an open chromatin structure that affords accessibility of transcription factors to DNA, resulting in gene activation. In contrast, “heterochromatin” is a closed chromatin structure with a low interaction between transcription factors and the genome, leading to gene repression.
The histone code hypothesis was first proposed by Strahl and Allis in 2000. They suggested that “multiple histone modifications, acting in a combinatorial or sequential fashion on one or multiple histone tails, specify unique downstream functions” [7]. The histone “language,” based on this “histone code,” is encoded in these modifications and read by chromatin-associated proteins. So far, several histone post-translational modifications (PTMs) have been identified, including acetylation, methylation, phosphorylation, ubiquitination, sumoylation, ADP ribosylation, proline isomerization, biotinylation, citrullination and their various combinations [8]. These modifications constitute a unique “code” to regulate histone interactions with other proteins and thereby allow modification (either overcoming or solidifying) of the intrinsic histone barrier to transcription. Accordingly, with these modifications, the various proteins that add, recognize and remove these PTMs, termed writers, readers and erasers, respectively, have been identified and structurally characterized. While “writer” and “eraser” enzymes modify histones by catalyzing the addition and removal of histone PTMs, respectively; “reader” proteins recognize these modified histones and ‘translate’ the PTMs by executing distinct cellular programs. In addition, numerous core histone chaperones also facilitate core histone deposition or removal from chromatin. Histone modifications control dynamic transitions between transcriptionally active or silent chromatin states, and regulate the transcription of genetic information encoded in DNA (the “genetic code”) [9]. Analyses of genome-wide profiles of histone modifications and gene expression identified three distinct types of configurations: repressed, active and bivalent. First, the closed chromatin configuration is linked with suppression of gene transcription, the repressed state. Second, an open chromatin configuration is associated with active gene transcription, the active state. Third, bivalent chromatin consists of domains that have both repressive and active histone markers, predominately on developmental genes, which allows phenotypic plasticity before committing to a specific cell fate.
During EMT, histone modifications provide a regulatory platform to orchestrate the repression or activation between epithelial and mesenchymal genes. Here, we only focus on the well-studied histone acetylation and methylation, and discuss their diverse regulation and role in transcriptional reprogramming of tumor metastasis (Table 1).
Histone modifying enzymes involved in metastasis.
Evidence has established that histone acetylation is associated with gene activation. A genome-wide study demonstrated that all forms of histone acetylation are positively correlated with gene expression [10]. Histones contain amino acids with basic side chains that are positively charged and attracted to the negatively charged genomic DNA. Ultimately, histone acetylation reduces the positive charge on histones and decreases the interaction between nucleosomes and DNA. Generally, histone acetylation is greater in the promoters of active genes and influences both the initiation and elongation of gene transcription. Histone acetylation also stabilizes the binding of chromatin remodeling factors at promoter regions and induces nucleosomes unfolding as well as reduces nucleosome occupancy. The acetylation state of a chromatin leads to the structural modification of the nucleosome. Acetylated (or hyperacetylated) chromatin is in a relaxed confirmation and associated with active transcription. In contrast, deacetylated (or hypoacetylated) chromatin is condensed and supercoiled, and is associated with transcriptional silencing (and, in the context of cancer, the inhibition of tumor suppressor genes).
Histone acetylation is a rapid and reversible process controlled by histone acetyltransferases (HATs) and histone deacetylases (HDAC)s. The HATs transfer acetyl groups from acetyl-coenzyme A (CoA) to the ε-amino groups of lysine residues in histone tails, which results in gene activation. HATs contain a bromodomain that recognizes and binds to acetylated histones, categorized into three major families, GNAT (GCN5 and PCAF), MYST (Tip60 and MOF), and CBP/p300. The HDACs remove acetyl groups from lysine residues, leading to gene silencing. Sequence homology, subcellular location, and the features of the catalytic site have been used to classify the 18 members of the human HDAC family into 4 groups: class I (HDACs 1, 2, 3, and 8), class II (HDACs 4, 5, 6, 7, 9, and 10), class III (SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7), and class IV (HDAC11) [11]. Class I HDACs have sequence homology to class II HDACs and class IV HDACs but not class III HDACs. Class I, II, and IV HDACs are zinc-dependent, whereas class III HDACs are nicotinamide adenine dinucleotide (NAD)+-dependent. Genome-wide mapping of the binding of HATs and HDACs to the human genome demonstrate that these enzymes regulate the activation and repression of transcription, respectively. The dysfunctional balance between acetylation and deacetylation is clearly associated with human disease and tumorigenesis.
p300 cooperates in an epigenetic manner with a DOT1L-c-Myc complex to induce EMT in breast metastasis [12]. The elevated level of p300-DOT1L-c-Myc is associated with the acquisition of CSC-like properties during breast carcinogenesis, which implies that p300 functions as a potential oncogene to influence the clinical outcome of breast cancer. In addition, transforming growth factor-beta (TGF-β) and WNT co-operated to mediate EMT. TGF-β induces the translocation of β-catenin to the nucleus where it binds to T- cell Factor (TCF); this complex recruits p300/CBP to assemble a transcriptional complex on target gene promoters that promotes EMT signaling. Intriguingly, over-expression of SNAIL/SLUG up-regulates TGF-β-receptor 2 (TGFBR2) expression with an increase of H3K9 acetylation on TGFBR2 promoter to increase TGF-β signaling [13]. In contrast, however, p300 was reportedly recruited by the hepatocyte nuclear factor (HNF) 3 to the E-cadherin promoter, increasing expression, and thus reducing the metastatic potential of breast cancer cells [14]. Similarly, the p300-CBP-associated factor (PCAF) has functions that can differ among cancer types. PCAF is an anti-oncogene and its expression is down-regulated and negatively correlated with tumor metastasis in hepatocellular carcinoma (HCC) [15]. This complex plays an important role in suppressing EMT and HCC metastasis and by targeting Gli1 [16]. However, it was also reported that PCAF acetylates the enhancer of zeste homolog 2 (EZH2) at K348 to augment EZH2 stability, and thus promotes lung cancer cell migration and invasion [17]. These reports indicate that the role of PCAF is context-dependent. In several breast cancer cell lines, hMOF catalyzes promoter H4K16 acetylation, which is critical to maintain expression of EMT-related tumor suppressor genes [18]. Consistent with this, MOF also acetylates the histone demethylase lysine-specific histone demethylase 1 (LSD1), to suppress EMT, indicating that MOF is a critical suppressor of EMT and tumor progression [19]. Recently, we found that Tip60 appears to be an important regulator of TWIST activity by acetylating at H3K73 and H3K76 of the GK-X-GK motif, resulting in an interaction between BRD4 and TWIST, hence promoting the aggressiveness of basal-like breast cancer (BLBC) [20].
Dysfunctional class I HDAC expression and activity is associated with cancer metastasis. HDAC1 regulates invasiveness by increasing matrix metalloproteinase (MMP) expression. Furthermore, HIF-2α is a transcriptional regulator of the HDAC1 gene, and hypoxia increase HIF-2α and HDAC1 expression [21]. TGF-β-driven E-cadherin silencing and EMT in human pancreatic cancer cells also depend on HDAC activity [22]. HDAC1 and HDAC2 form a transcriptional repressor complex with SNAIL to downregulate the E-cadherin expression of pancreatic cancer cells during metastasis. Intriguingly, SNAIL also recruits the HDAC1/2-containing SIN3A complex to deacetylate histones on the E-cadherin promoter for gene silencing [23]. In a similar manner, SLUG recruits the HDAC1-containing CtBP complex to silence genes by binding to the E-box on the BRCA2 promoter [24]. ZEB1/2 also recruits the CtBP/HDAC1 complex to the E-cadherin promoter, while ZEB1 recruits SIRT1, a class III HDAC, to silence E-cadherin and promote EMT and metastasis in prostate cancer cells [25, 26]. Moreover, ZEB1-induced EMT is accomplished by repression of other epithelial genes, including EPCAM, ESRP1 and RAB25, and is accomplished by a reduced acetylation of H3K9 and H3K27 at their promoters. In fact, evidence suggests that H3K27 deacetylation is a key epigenetic event in ZEB1-induced transcriptional reprogramming [27]. In addition to the EMT transcriptional factors, HDAC1 co-purifies with TCF12 and promotes migration and invasion; elevated expression of TCF12 and HDAC1 correlate with a poor prognosis in gallbladder cancer. These findings suggest that this HLH transcription factor TCF12 could also target HDACs for epithelial gene silencing during EMT [28]. The expression of the HDAC1 and HDAC3 correlates with nuclear receptor (NR) (i.e., ER and PR) status. HDAC assembles a complex with ERα that binds to the SLUG promoter to repress expression [29]. Interestingly, HDAC6 and SIRT1 counteract the p300-catalyzed acetylation on Cortactin, which enhances its F-actin binding ability to facilitate EMT and tumor progression [30]. Conversely, HDAC6 and ERα are co-localized in the cytoplasm of renal cell carcinoma (RCC) cells and HDAC6 enhances cell motility by decreasing acetylated α-tubulin expression [21]. Loss of α-Tubulin acetylation by HDAC6 is also associated with TGF-β-induced EMT [31].
Recently, the clinical relevance of HDACs and the therapeutic potential of HDAC inhibitors (HDACi) have been reported. HDACi can generally be classified into hydroximates, cyclic peptides, aliphatic acids, and benzamides [32], and grouped according to their specificity. Thus far three HDACi: vorinostat (SAHA), romidepsin (Istodax) and PTCL (Belinostat or Beleodaq) are approved by the FDA for some T-cell lymphomas [33]. However, these molecules have not produced favorable and expected outcomes in solid tumors. Currently, a number of small molecules HDACi were investigated in clinical trials with variety of solid neoplasms, including breast cancer, either alone or in combination with hormonal treatments. Entinostat (MS-275), a benzamide with high specificity for the class I HDACs, is currently in a phase II/III trial for advanced ER+ breast cancer [34, 35]. Vorinostat exerts EMT reversal effects by restoring the expression of E-cadherin. An expanded screen on 41 HDACi further identified 28 HDACi compounds, such as the class I-specific inhibitors Mocetinosat, Entinostat and CI994, that restore E-cadherin and ErbB3 expressions in ovarian, pancreatic and bladder carcinoma cells [36]. Mocetinostat, but not other HDACi, specifically interferes with ZEB1 function, restores miR-203 expression, represses stemness properties, and induces sensitivity against chemotherapy by restoring histone acetylation on the E-cadherin promoter [37]. Given that persistent genes activation may require targeting of multiple epigenetic silencing machineries, a combination of HDACi with anticancer drugs and/or radiotherapy demonstrate synergistic or additive effects in clinical trials. For example, HDACi have been utilized in combination with 5 Aza-dC as a synergistic strategy [38]. However, recent reports also found that HDACi could promote EMT in prostate and nasopharyngeal cancer cells [39, 40], indicating the application of HDACi in anti-cancer therapy is cancer-context dependent and may limit application.
Histone methylation occurs at specific lysine or arginine residues on the histone tails. This modification is associated with either transcriptional activation or repression. Histone methylation does not change the electrostatic charge of histones or affect the chromatin structure. The functional effects of histone methylation are affected by both the position of the modified residues and number of methyl groups. Histone methyltransferases (HMTs) transfer methyl groups from S-adenosylmethionine (SAM) to either lysine or arginine residues, whereas histone demethylases (HDMs) remove methyl groups. The HMTs and HDMs specifically catalyze particular lysine or arginine residues.
Methylation of lysine residues on histones was first identified in the 1960s. Histone lysines can have four states of methylation at different lysine sites. Histones H2B lysine 5 (H2BK5), H3K4, H3K9, H4K20, H3K27, H3K36, and H3K79 are subject to unmethylated, mono-methylation (me1), di-methylation (me2), or tri-methylation (me3) on the ε-amino groups of lysine residues. These lysine methylations change the chromatin structure and regulate gene transcription. Histone lysine methylation is a reversible modification and is maintained by the balance lysine methyltransferases (KMTs) and lysine demethylases (KDMs). The KMTs recruit SAM as a cofactor and catalyze the addition of methyl groups to lysine residues through the SET domain. The KMTs are grouped into the SET domain-containing enzyme families (KMT1–3 and KMT5–7), the KMT4/DOT1 family, and others. The KDMs include the flavin adenine dinucleotide- (FAD-) dependent monoamine oxidase family (KDM1/LSD), the Jumonji C domain-containing demethylase (JMJD) families (KDM2–6), and others. Methylation of H3K4, H3K36, and H3K79 usually correlate with gene activation, whereas methylation of H3K9, H3K20, H3K27, and H3K56 are associated with transcriptional silencing.
H3K4: H3K4 methylation (H3K4me) is present in euchromatic regions and is usually associated with transcriptional activation. H3K4me3 occurs principally at the 5′ end of actively transcribed genes, near the transcription start site (TSS). H3K4me2 is located throughout genes, but frequently found towards the middle of the coding region of transcribed genes, and H3K4me1 is more abundant at the 3′ ends [41]. H3K4me2 marks can be present at both active and inactive euchromatic genes, whereas H3K4me3 is present exclusively at active genes. H3K4me favors transcriptional activation by facilitating H3 acetylation and the recruitment of RNA polymerase II, but it also antagonizes gene repression by preventing the binding of nucleosome remodeling and deacetylase co-repressor complexes, such as NuRD, and interfering with substrate recognition by the variegation 3–9 (SUV39H) methyltransferases [42]. The balance between KMTs and KDMs is an important dynamics for H3K4me and the regulation of gene transcription. More than ten H3K4 KMTs have been identified, including the mixed-lineage leukemia (MLL)1–4 proteins, along with Set 1a and Set 1b, Ash1L, Set7/9, and also the SET and MYND domain-containing enzymes (SMYD) family members (SMYD1 and SMYD3). SMYD are involved in many cellular processes, including tumorigenesis and invasiveness. For example, SMYD3 is a novel histone H3K4-specific N-lysine di- and tri-methyltransferase, and highly characteristic active transcription. SMYD3 exerts its effects on initiation, invasion and metastasis of diverse tumors (e.g., esophageal squamous cell carcinoma (ESCC), gastric cancer, HCC, cholangiocarcinoma, breast cancer, prostate cancer, and leukemia). SMYD3 stimulates EZR and LOXL2 transcription to enhance proliferation, migration and invasion by directly binding to sequences of the promoter regions of these target genes [43]. SMYD3 is also capable of increasing cell migration through MMP-9 expression [44]. The MLL proteins (Trithorax homologs in Drosophila) are important for the regulation of developmental genes such as the Hox cluster, and deficiency of MLL1 or MLL2 causes embryonic lethality [45]. MLL1 coordinates with HIF1α and regulates hypoxia-induced HOTAIR expression to facilitate tumorigenesis [46]. In addition, MLL1 interacts with β-catenin to promote cervical carcinoma cell tumorigenesis and metastasis [47]. KMT2B/MLL2 is highly expressed in ESCC and promotes tumor progression by inducing EMT [48]. Another member of MLL family, MLL3 is reportedly mutated in multiple cancers. MLL3 regulates many migration-related genes and downregulation of MLL3 has a profound impact on the progression of ESCC [49]. Furthermore, Kim et al. [50] showed that KMT2D/MLL4 expression is associated with poor survival in breast cancer and regulates tumor proliferation and invasiveness.
Histone lysine methylation is a reversible process. H3K4 is demethylated by the KDM1 family (LSD1 and LSD2), the KDM2 family (FBXL10 and FBXL11), and the KDM5 family (JARID1A, JARID1B, JARID1C, and JARID1D) as well as JARID2 and NO66. The LSD subgroup of KDMs specifically targets the mono- and dimethylated lysines. This group demethylates substrates through a flavin adenine dinucleotide-dependent oxidative reaction, producing lysine and formaldehyde. KDM1A/LSD1 was the first H3K4 lysine-specific demethylase to be identified. We and others demonstrated that SNAIL recruits LSD1 to epithelial gene promoters with demethylation of H3K4me2 and subsequent silencing of target genes to enhance tumor metastasis [51]. SLUG also interacts with LSD1 to facilitate tumor metastasis [52]. In addition, both SNAIL and SLUG recruit LSD1 and bind to a series of E-boxes located within the BRCA1 promoter to repress BRCA1 expression. LSD1 overexpression promoted metastasis whereas knockdown of LSD1 inhibited tumor spread, suggesting that LSD1 is a key regulator of ESCC metastasis [53]. LSD1 and LSD2 act differently in the regulation of gene transcription and chromatin remodeling. However, both of KDM1A and KDM1B are overexpressed in invasive breast carcinoma, and depletion results in high levels of H3K4me1–2. The KDM5/JARID1 family is frequently found in the promoter region of transcriptionally active genes, and results in repressed expression of the target genes. KDM5A is highly expressed in ovarian cancer tissues and facilitates EMT and metastasis [54]. KDM5A promotes an increase in TNC expression, which augments breast cancer cell invasion and metastasis [55]. Reports indicate that, in gastric cancer cell, KDM5A is induced by TGF-β1 and recruited by p-SMAD3 to silence the E-cadherin promoter and promote tumor progression [56]. KDM5B plays a role in cell differentiation, stem cell self-renewal and other developmental progresses. Recent studies showed that KDM5B expression was increased in breast, bladder, lung, prostate and many other tumors and promote tumor initiation, invasion and metastasis. Mechanistically, KDM5B exerts its function through modulation of H3K4me3 at the PTEN gene promoter [57]. KDM5C/JARID1C is overexpressed in breast cancer, and its expression is significantly associated with metastasis. This demethylase modulates the status of H3K4 methylation in the breast cancer metastasis suppressor-1 (BRMS1) promoter, and thereby controls the expression of BRMS1 to inhibit tumor progression. Accordingly, the expression of KDM5C and BRMS1 are inversely correlated in human breast cancer [58].
H3K36: Because the level of H3K36me3 is high at the promoter site in active genes, H3K36me3 is involved in active transcription. In contrast, the H3K36me1 signal has a low association with active promoters. H3K36 is methylated by the KMT3 family (SETD2 and NSD1) as well as by NSD2, NSD3, SMYD1, SMYD2, SMYD3, SMYD4, and SMYD5. SETD2 plays a tumor suppressor role in tumor metastasis. Interestingly, SETD2 is frequently either deleted or mutated [59]. In contrast, H3K36 is demethylated by the KDM2 family (FBXL10 and FBXL11), the KDM4/JMJD family (JMJD2A, JMJD2B, and JMJD2C), and NO66. KDM2A expression is increased in breast cancer and associated with poor clinical outcomes [60]. KDM2A promotes lung tumorigenesis by epigenetically enhancing ERK1/2 signaling through demethylation of H3K36 [61]. In addition, KDM8/JMJD5 also demethylates H3K36me2, and overexpression of JMJD5 promotes cell invasion and is significantly correlated with clinical stage, histological grade and lymph node metastasis [62].
H3K79: H3K79me3 is associated with active transcription in yeast, whereas it is localized at both active and silent promoters in humans. H3K79me1 and H3K79me2 do not have any association with either active or silent promoters. H3K79 is methylated by the KMT4 family (DOT1L) and demethylated by PHF8 [63]. Methylation of H3K79 has been implicated in cell cycle regulation and the DNA damage response [63]. Disruption of this methylation can lead to cancers, making DOT1L a potential therapeutic target for cancers such as leukemia [64]. More recently, DOT1L has been implicated in the stimulation of proliferation, self-renewal, and metastatic potential of breast cancer cells [65]. DOTL1 cooperates with c-Myc-p300 complex to epigenetically activate EMT regulators in breast cancer progression. Clinically, DOTL1 expression is associated with poorer survival and aggressiveness of breast cancer [12]. PHF8 is highly expressed in metastatic prostate tissues and plays an important role in controlling invasion and metastasis [66]. PHF8 also interacts with β-catenin, and binds to the promoter region of vimentin, leading to the promotion of gastric cancer progression and metastasis [67].
H3K9: The methylation of H3K9 (H3K9me) was the first mechanism of gene repression to be linked to KMT. Studies in Drosophila showed that the gene Su(var)39, later shown to encode a H3K9 HMT, had an important role in the regulation of position-effect variegation [68] and similar enzymes were subsequently discovered in humans (SUV39H1/H2, G9a and Riz1 among others) [69]. H3K9 methylation is important for chromatin condensation and heterochromatin formation. H3K9me is recognized and bound by heterochromatin protein 1 (HP1), which recruits SUV39H, to reinforce the silencing process. H3K9 methylation plays a critical role in the formation of transcriptionally silent heterochromatin and the stable inheritance of the heterochromatin state. H3K9me1 and H3K9me2 are associated with euchromatic gene repression, whereas H3K9me3 is associated with stably silenced heterochromatin. H3K9me2 marks contribute to the maintenance of gene repression in differentiated tissues in large genomic regions known as ‘large organized chromatin K9–modifications (LOCKs)’, and require the activity of the methyltransferase G9a [70]. H3K9me is methylated by the KMT1 family (SUV39H1, SUV39H2, G9a, GLP, SETDB1, and SETDB2). H3K9 is demethylated by the KDM1 family (LSD1), the KDM3 family (JMJD1A, JMJD1B and JMJD1C), and the KDM4 family (JMJD2A, JMJD2B, JMJD2C, and JMJD2D) as well as PHF8 and KDM7A/JHDM1D. SUV39H1 generates H3K9me3, and is involved in breast carcinogenesis. In addition, we found that SUV39H1 cooperates with SNAIL to repress the expression of E-cadherin. Knockdown of SUV39H1 blocked the formation of H3K9me3 and DNA methylation and inhibited cell migration, invasion and metastasis of BLBC [71]. Furthermore, we demonstrated that knocking down G9a resulted in suppression of H3K9 methylation and inhibition of tumor cell migration or invasion [72]. Mechanically, we found that G9a interacted with SNAIL and is critical for SNAIL-mediated E-cadherin repression in human breast cancer. Consistent with our research, Huang et al. [73] demonstrated that knocking down G9a or pharmacological inhibition of its activity suppressed tumor cell growth, colony formation, invasion and migration in non-small-cell lung cancer cells (NSCLC). G9a is also associated with an increased expression in lung cancer [74]. SETDB1 is the most significantly up-regulated epigenetic regulator in human HCCs and prostate cancer [75, 76]. Knockdown of SETDB1 decreases cell migration and invasion and reduces EMT and CSC properties [77]. SETDB1 indirectly up-regulates STAT3 expression and induces TWIST. KDM3A catalyzes the demethylation of H3K9 associated with transcriptional repression, resulting in the derepression and activation of genes involved with invasion and metastasis [78]. Global gene expression profiling demonstrated KDM3A regulates genes and pathways that augment cell migration and metastasis. KDM3A promotes both migration in vitro and metastasis in vivo by targeting melanoma cell adhesion molecule (MCAM) [79]. Surprisingly, increased expression of KDM3B correlates with improved clinical outcomes [80]. Accordingly, JMJD1B and JMJD2B are associated with PRL-3, a gene crucial to metastasis in colorectal cancer (CRC). However, JMJD1B seems to be a candidate tumor suppressor while JMJD2B seems to be a potential oncoprotein for CRC metastasis and progression [81]. With respect to the breast cancer, KDM4A is a regulator of cancer cell growth and metastasis, which correlates with breast cancer progression, and is associated with the attenuation of the tumor suppressor ARHI [82]. KDM4B is physically associated with β-catenin and binds to the promoter of the β-catenin target gene vimentin to increase its transcription by inducing H3K9 demethylation [83]. Inhibition of JMJD2B attenuates migration and invasion of gastric cancer cells in vitro and metastasis in vivo. KDM4C expression correlates significantly with genes driving metabolic alterations in breast cancer; the mechanism involves an interaction between KDM4C and HIF1α, which is recruited to a subset of genes involved in metabolic remodeling and metastasis [84].
H4K20: H4K20 methylation is also associated with repressed chromatin. A recent genome-wide analysis demonstrated that H4K20me3 was associated with heterochromatin and played a pivotal role in chromatin integrity. In addition, loss of histone H4K20me3 predicts poor prognosis in breast cancer and is associated with invasive activity. On the other hand, H4K20me1 is located in the promoters or coding regions of active genes and co-localizes with H3K9me1, which suggest that H4K20me1 is associated with transcriptional activity. H4K20 is methylated by the KMT5 family (PR-Set7, SUV4-20H1, and SUV4-20H2) and the KMT7 family (SET7/9). KDMs that catalyze H4K20 demethylation have not been reported. Moreover, ectopic expression of SUV420H1 and SUV420H2 in breast cancer cells suppressed cell invasiveness, whereas knockdown of SUV420H2 activated invasion by normal mammary epithelial-cell in vitro [85]. Through its repressive H4K20me3 mark, SUV420H2 silences several key drivers of the epithelial state. Knockdown of SUV420H2 elicited MET on a molecular and functional level. An analysis of human pancreatic cancer biopsies suggests that high levels of SUV420H2 correlate with a loss of epithelial characteristics and progressively invasive cancer [86]. SET8 (also known as PR-Set7/9, SETD8, KMT5A), a member of the SET domain-containing methyltransferase family that specifically target H4K20 for monomethylation, physically interacts with TWIST to promote EMT and invasion by breast cancer cells [87]. Interestingly, SET8 acts as a dual epigenetic modifier on the promoters of E-cadherin and N-cadherin through its H4K20 monomethylation activity [88]. These bipolar roles of SET8 in EMT were also found in prostate cancer, which were mediated by ZEB1 [89]. A recent report indicates that the activation of the Shh pathway is required for EMT in NSCLCs [90]. SET7-mediated Gli3 methylations contribute to the tumor growth and metastasis in NSCLCs in vitro and in vivo [91].
H3K27: Another important repressive mark is H3K27 methylation which plays an essential role in embryogenesis, cell differentiation and organogenesis. H3K27me3 is associated with constitutive heterochromatin and maintenance of gene repression during early development. According to a genome-wide analysis, the levels of H3K27me2 and H3K27me3 are elevated in silent promoters and reduced in both active promoters and genic regions, whereas the level of H3K27me1 is high in promoters engaged in active transcription, especially downstream of the TSS [92, 93]. In embryonic stem cells (ESCs), H3K27 methylation usually overrides the effect of H3K4me3 in bivalent regions, maintaining them in a repressed state. Upon differentiation, these regions become exclusively marked by either of these modifications, leading to gene activation or repression [92]. H3K27 methylation is catalyzed by the polycomb repressive complex 2 (PRC2), which is composed mainly of suppressor of zeste 12 (SUZ12), embryonic ectoderm development (EED) and EZH2. H3K27 is demethylated by the KDM6 family (KDM6A/UTX and KDM6B/JMJD3), as well as UTY and JHDM1D [94, 95]. EZH2 is overexpressed in prostate and breast cancers and correlates with poor prognosis. Interestingly, EZH2 is essential for CSC self-renewal, and these CSCs provide the seeds for metastatic dispersal and differentiate into tumor-associated endothelial cells. Pre-clinical studies showed that EZH2 can silence several anti-metastatic genes (e.g., E-cadherin and tissue inhibitors of metalloproteinases), thereby favoring cell invasion and anchorage-independent growth. Accordingly, Tiwari and colleagues delineated an elegant pathway wherein TGF-β induces EZH2 expression to elicit EMT programs and metastasis of breast cancers by reprogramming the epigenome [96]. EZH2 represses TIMP2 transcription, which leads to increased activity of MMP-2 and MMP-9 and the invasive capacity of BLBC cells [97]. In pancreatic cancer cells, SNAIL recruits PRC to the E-cadherin promoter by binding to SUZ12 [98]. Increased KDM6A expression is associated with poor prognosis, along with derepression/activation of genetic programs that induce cell proliferation, luminal to basal-like transition, and metastasis. Furthermore, the function of KDM6A correlates with the activity of the MLL4, and increased expression of these epigenetic enzymes correlates with poor survival outcomes in breast cancer [50]. UTX interacts with the MLL4 complex to activate several pro-metastatic genes including MMP9 and SIX1, leading to increased EMT and metastasis of breast cancer [50]. In colon cancer, KDM6A not only demethylates H3K27me3 at the E-cadherin promoter but also recruits CBP to the E-cadherin promoter, resulting in increased H3K27ac [99]. However, it was also reported that KDM6A inhibited EMT by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1 [100]. Therefore, the role of KDM6A an EMT suppressor or enhancer requires further investigation. KDM6B expression is also increased in invasive breast carcinomas and enforcing KDM6B overexpression induces EMT, invasive migration, stem cell-like traits, and metastatic properties. The mechanism involves demethylation associated with increased SNAIL or SLUG expression mediating the EMT [101]. Interestingly, KDM6B also modulates the tumor microenvironment and promotes melanoma progression and metastasis through upregulation several targets of NF-κB and BMP signaling, including stanniocalcin 1 (STC1) and chemokine (C-C motif) ligand 2 (CCL2) [102].
In summary, histone lysine methylation modulates chromatin accessibility, transcriptional status, and control of tumor suppressor and oncogene expression in aberrant cell metastasis. Dynamic regulation of the either permissive or repressive histone methylation at different genomic loci and through different molecular mechanisms facilitates the dynamic EMT process.
Histone arginine methylation also occurs in many arginine sites, histone H3 arginine 2 (H3R2), H3R8, H3R17, H3R26, and H4R3 undergo monomethylation (me1), symmetrical dimethylation (me2s), or asymmetrical dimethylation (me2a) on the guanidinyl groups of arginine residues. The N-arginine methyltransferases (PRMTs) are a class of enzymes that transfer a methyl group from SAM to the guanidino nitrogen of arginine. PRMTs generate three arginine methylation forms: monomethylarginine (MMA), asymmetric dimethylarginine (aDMA), and symmetric dimethylarginine (sDMA). Human PRMTs are composed of nine members that are categorized into three groups based on the type of arginine methylation reaction each member catalyzes. Type I is comprised of PRMT1, PRMT2, PRMT3, CARM1/PRMT4, PRMT6, and PRMT8; these catalyze both mono-methyl and asymmetric dimethyl arginine reactions. The type II group is made up of two members, PRMT5 and PRMT9, which catalyze both mono-methyl arginine and symmetric dimethyl arginine. Finally, PRMT7 is, at this point, considered the only bona fide type III methyltransferase and can generate only mono-methyl arginines. Many studies demonstrated that PRMTs regulate a wide range of genetic programs and cellular processes including cell cycle, RNA splicing and differentiation. Although the consequence of lysine methylation is relatively well studied, the role of PRMT action in tumorgenesis is poorly understood. Here, we provide a description of these PRMTs regarding tumor metastasis.
PRMT1: PRMT1 has been extensively studied in many fields. Its activity is responsible for a substantial percentage of methylated arginine residues and modulates a wide range of cell types. Specifically, asymmetric dimethylation on H4R3 by PRMT1 is involved in transcriptional activation, thereby driving oncogenic pathways. PRMT1 is an important regulator of EMT, cancer cell migration, and invasion. PRMT1 can generate H4R3me2a on the promoter region of ZEB1 and TWIST, which play a critical role in EMT [103, 104]. Furthermore, PRMT1 is overexpressed in melanoma; silencing PRMT1 significantly suppresses tumor growth and metastatic ability by targeting activated leukocyte cell adhesion molecule (ALCAM) [105]. Similarly, downregulation of PRMT1 inhibits cell migration and invasion in HCC and oral squamous cell carcinoma (OSCC) [106, 107]. Because of complex alternative splicing in the 5′ region of its pre-mRNA, there are seven distinct PRMT1 isoforms [108]. Each of these isoforms, named PRMT1v1-v7, has distinct characteristics in terms of expression. PRMT1v1 is the most abundantly expressed isoform and likely represents the isoform that is described as PRMT1 in most reports. The expression of alternatively spliced PRMT1 (PRMT1v2) isoform, which is generated through inclusion of alternative exon 2, is significantly altered in breast cancer and promotes invasiveness. The RNA binding protein RALY regulates the PRMT1v2 isoform and promotes metastatic potential [109].
PRMT2: PRMT2 is also reported to be overexpressed in breast cancer [110]. PRMT2 interacts with many NRs, including ERα and ERβ in vitro [111]. Interestingly, the activation of these receptors within cells has both distinct and in some cases opposing effects, which suggests that the functional role(s) PRMT2 are quite diverse. Recently, four alternatively spliced PRMT2 isoforms (PRMT2L2, PRMT2α, β, and γ) in addition to the original PRMT2 isoform were identified [112]. Several splice variants (i.e., PRMT2-α, −β, −γ) were identified as induced in breast cancer, particularly in ER, PR-positive breast cancer [110]. PRMT2 directly binds and enhances estrogen-mediated transactivation of ERα, and enhances the promoter activity of the downstream target gene SNAIL. These findings suggest that the increased PRMT2 expression is associated with breast aggressiveness and metastasis [110].
PRMT4: PRMT4, more commonly known as coactivator-associated arginine methyltransferase 1 (CARM1), is involved in the regulation of a number of cellular processes including transcription, pre-mRNA splicing and cell cycle progression. The expression of CARM1 is dysregulated in colorectal, prostate and breast cancer. CARM1 methylates the chromatin-remodeling SWI/SNF core subunit, BAF155 in breast cancer [113]. The methylation of arginine 1064 residue of BAF155 is associated with breast cancer recurrence and metastasis, indicating that CARM1 plays an important role in tumorigenic activity through BAF155. Accordingly, CARM1-induced tumorigenic effects and its expression is increased in invasive breast cancer, and correlates with a high tumor grade [114]. Interestingly, the CARM1 gene also transcribes four isoforms: the primary isoform CARM1 (CARM1v1) and three alternative isoforms, v2, v3 and v4 [115]. Whether these isoform are responsible for the methylation of distinct substrates and their individual functions requires further study.
PRMT5: PRMT5 is a type II enzyme that generates symmetric dimethylarginine (sDMA). The PRMT5 symmetrically methylates H3R8 site and functions in gene silencing. H3R8me2s strongly associates with H4R3me2s, because both modifications are catalyzed by PRMT5. However, acetylation of H3K9 and H3K14 prevents H3R8 methylation. PRMT5 also acts as a novel cofactor of SHARPIN (Shank-associated RH domain interacting protein), which plays a central role in controlling lung cancer cell metastasis. SHARPIN-PRMT5 is essential for the monomethylation of histones at key metastasis-related genes [116]. PRMT5 has another distinct function; PRMT5 coordinates with multiple Mediator complex subunits to dimethylate H4R3 at the promoter regions of immune response genes and C/EBPβ target genes [117]. Conversely, PRMT5 methylation of histone H3R2 recruits WDR5 and the MLL complex, stimulating H3K4 methylation and euchromatin maintenance [118]. In the context of cancer metastasis, PRMT5 is involved in TGF-β-WDR77 signaling, which induces cancer cell invasion [119]; this report indicates PRMT5 interacts with the WDR77 complex to catalyze arginine methylation. With respect to the acquisition of EMT via TGF-β signaling, epigenetic PRMT5-WDR77 activity is necessary for tumor invasion and metastasis. Furthermore, PRMT5 appears to be recruited by AJUBA to SNAIL and functions as a co-repressor. PRMT5, AJUBA and SNAIL form ternary complex to repress E-cadherin, concomitant with increase arginine methylation at the locus [120]. PRMT5 also modulates metastasis by methylating KLF4. Methylation blocks ubiquitylation of KLF4 by the von Hippel–Lindau tumor suppressor, and as a result, arginine methylation of KLF4 via PRMT5 increases the level of KLF4 protein and increases the probability of breast carcinogenesis [121].
PRMT6: PRMT6 primarily catalyzes asymmetric dimethylation of H3R2. H3R2me2a counter-correlates with the methylation of H3K4, which suggests that H3R2me2a is a repressive marker. However, PRMT6 also methylates H3K4 since both H3R2me2a and H3K4me3 markers are likely to coexist. Furthermore, genome-wide analyses indicate that both H3R2me1 and H3R2me2a are associated with active genes [93]. Thus, the data on the H3R2me2a marker are contradictory, and further studies are required to resolve this issue. There is also emerging evidence of an oncogenic role of PRMT6 in cancer. Overexpression of PRMT6 is associated with several cancer types, including breast, cervix, prostate, and lung cancers, indicating that PRMT6 might play an important role for the onset, incidence, and metastasis of cancer [122]. Furthermore, Dowhan et al. [123] demonstrated a PRMT6-dependent signature that influences long-term survival in patients with breast cancer.
PRMT7: The oncogenic role of PRMT7 has been emerging over the past few years. There are two isoforms, PRMT7α and β, which are active and have slightly different methylation profiles and locations. PRMT7α localizes to the cytoplasm and nucleus, whereas PRMT7β is exclusively cytoplasmic. R531 of PRMT7 is self-methylated and loss of PRMT7 automethylation leads to a reduced recruitment to the E-cadherin promoter by YY1, which consequently derepresses E-cadherin expression by decreasing the H4R3me2’s level [124]. In terms of the functional role of PRMT7, this methytransferase is highly expressed in breast cancer and induces EMT by inhibiting E-cadherin. Baldwin et al. [125] also showed that PRMT7 promotes a well-known metastasis mediator, MMP9 and induces breast cancer cell invasion. Importantly, a gene expression analysis of independent data sets of more than 1200 breast tumors identified PRMT7 expression as significantly increased. In addition, this gene is located 16q22, where the chromosomal region was correlated with an increased metastatic potential of breast cancer [126].
PRMT9: PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming sDMA residues as type II PRMTs. However, the specificity of these enzymes for their substrates is distinct and not redundant. Interestingly Yang et al. [127] showed that PRMT9 is also nonhistone methyltransferase. For example, it methylates the arginine 508 site of the alternative splicing factor SAP145. Given that alternative splicing is of paramount importance in RNA processing, PRMT9 might play a key role in many cellular programs including cancer biology. Recent reports demonstrate that overexpression of PRMT9 strongly promotes HCC invasion and metastasis through EMT by regulating SNAIL expression via activation of the PI3K/Akt/GSK-3β/SNAIL signaling pathway [128].
Many HMTs and HDMs inhibitors have been developed and evaluated in clinical trials, such as chaetocin, BIX-01294, BIX-01338, UNC0638 and DZNep. Chaetocin, a natural fungal substance, is the first inhibitor of an HMT, which targets SUV39H1 without high selectively [129]. Treatment with Chaetocin induces expression of E-cadherin while reducing H3K9me3 but does not produce a global H3K9 methylation on its promoter in multiple tumor cells [130]. By the contrast, BIX-01294 specifically reduces the dimethylation of H3K9me2 through an inhibition of the enzymatic activities of G9a and GLP [131]. Treatment of BIX-01294 activates E-cadherin expression and reverse EMT phenotypes in a variety of cancer cells, and is accompanied by reduced H3K9me2 and increased H3K9 acetylation on the E-cadherin promoter [132]. Another G9a/GLP inhibitor, UNC0638, was developed with higher potency and selectively [133]. UNC0638 treatment not only resulted in lower global H3K9me2 levels but also markedly reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes. UNC0638 treatment activates E-cadherin expression and reverses EMT in PANC-1 pancreatic cancer cells and triple negative breast cancer (TNBC) and suppresses migration and invasion [134]. Because of the importance of H3K27 methylation in cancer, several highly specific EZH2 inhibitors have been developed, such as GSK2816126 and EPZ-6438, which are currently being evaluated in clinical trials for lymphoma and solid tumor/lymphoma respectively [135]. Another EZH2 inhibitor, 3-deazaneplanocin A (DZNep), selectively inhibits H3K27me3 and H4K20me3 [136]. DZNep dampens TGF-β-induced EMT signals and reduces tumor metastasis in pancreatic cancer and colon cancer [136, 137]. We found that Parnate, an LSD1 inhibitor, activates E-cadherin expression and suppresses motility and invasiveness in breast cancer cells [51]. Two highly specific LSD1 inhibitors, GSK2879552 and ORY-1001 are employed to clinical trials for the treatment of small cell lung cancer and acute leukemia [135]. Several inhibitors targeting HDMs also have been developed as well. For example, JIB-04, a specific inhibitor targeting the JMJC-domain, inhibits the activity of H3K4 and H4K9 and attenuates lung cancer cell proliferation [138]. The first reported small molecule PRMT inhibitors, including AMI-1 and AMI-5 were identified through virtual screening and high throughput screening [139]. AMI-1 was reported as type I PRMT and PRMT5 inhibitor [140]. AMI-1 inhibits proliferation and decreases cell migratory activity of CRC cells in vitro and in xenograft mouse models [141].
Sometimes, histone modifications can directly regulate the chromatin dynamic. However, in most cases, the modifications are recognized by proteins containing distinct recognition domains, which act as “readers” and bind to different histone modifications. For example, bromodomain acts as lysine acetylation “readers” of modified histones that mediate signaling transduction changes in gene regulatory networks. In the human genome, there are 61 bromodomains found within 46 proteins that can be divided into eight families based on structure/sequence similarity. Among them, bromodomain and the extra-terminal domain (BET) family recognize acetylated lysine residues in histones H3 and H4. BRD4 is a member of the BET family that carries two bromodomains. Recently, our studies revealed that the di-acetylated TWIST, mediated by Tip60, recruits BRD4 and related transcriptional components to the super-enhancer of its targeted genes during tumor progression in BLBC [20]. In addition, pharmacologic inhibition of BRD4 with the BET-specific bromodomain inhibitors, JQ1 and MS417, effectively reduces WNT5A expression and suppresses invasion, CSC-like properties and tumorigenicity of breast cancer cells in vitro and in vivo [20]. Given the extensive cancer-related functions of BRD4 and the proof-of-concept demonstrated by disruption of the BRD4–acetyl-lysine interactions as a therapeutic target, significant efforts have thus been made to develop BRD4 inhibitors from both pharmaceutical and academic settings. BRD4 inhibitors have several chemical classifications including azepines, 3,5-dimethylisoxazoles, pyridones, triazolopyrazines, tetrahydroquinolines (THQs), 4-acyl pyrroles and 2-thiazolidinones [142]. BET inhibitor treatment results in AMIGO2 silencing and changes in PTK7 proteolytic processing, and thus inhibit melanoma metastasis [143].
Histone methylation provides docking sites and is recognized by specific reader proteins that contain a methyllysine binding protein, which has emerged as a focus of epigenetic research due to its critical role in gene regulation and oncogenesis. This reader harbors specific motifs, including Chromodomain (CD), MBT, WD40 repeat, PHD finger, PWWP, Tudor and Ankyrin repeat. Methyllysine binding proteins distinguish methylation marks on different residues as well as different methylation states on the same residue and in turn mediate distinct downstream functions [144]. CD-containing HP1 proteins were the first identified methyl-lysine binding proteins and recognize methylated-H3K9 (methyl-H3K9) [145]. HP1α was down-regulated in metastatic cells of colon cancer and thyroid carcinomas relative to non-metastatic cells, indicating HP1α may be directly involved in the silencing of genes that potentiate cancer cell invasive potential and metastasis. Recent evidence implicate HP1α in EMT. The association of HP1α to major satellite repeat sequences located in pericentric heterochromatin decreased during the initial steps of TGF-β-induced EMT in a SNAIL/LOXL2-dependent manner [146]. In addition, HP1α post-translational modifications could participate in the heterochromatin dynamics associated with EMT. In a different set of modifications, four MBT-repeats domain of SFMBT1 recognize H3K4me2/3 and form a stable complex with LSD1. SFMBT1 is essential for SNAIL-dependent recruitment of LSD1 to chromatin, demethylation of H3K4me2, transcriptional repression of epithelial markers, and induction of EMT by TGF-β [147]. H3K4me2/3 is also recognized by the WD40 repeat domain of WDR5, which is also important for the assembly and activity of the SET1 protein complex catalyzing H3K4me3 [148]. Under hypoxic conditions, WDR5 is induced, interacts with HDAC3 and further recruits SET1 complex to activate mesenchymal gene expression to promote EMT [149]. Furthermore, the PRC2 component, EED, also contains a WD40 repeat that recognizes H3K27me3. EED recruits PRC2 to chromatin with pre-existing H3K27me3 to spread the same methylation into adjacent regions [150]. Intriguingly, G9a and GLP itself contain a methyl-lysine binding module (the ankyrin repeat domains), which generates and reads the same epigenetic mark [151]. Several small molecule compounds targeting the lysine methylation reader domain have been developed, including UNC1215 and UNC3866 that block the methyl-lysine binding mediated by the MBT domain-containing protein L3MBTL3, and the CD-containing protein CBX4/7 respectively [152, 153]. However, whether these inhibitors reverse EMT and tumor progression remains unknown.
Because different chromatin modifying enzymes coexist in the same protein complex, and because diverse catalyzed modifications have been implicated in regulating the same set of genes, it is likely that these processes act in concert to orchestrate transcriptional regulation during EMT. For example, HDAC1/2, G9a/GLP, LSD1, HP1 and ZEB1/2 were co-purified in the CtBP1 co-repressor complex [154, 155]. ZEB1/2 could first target the complex to E-cadherin promoter to initiate repression. Next, HADC1/2 would deacetylate histones while the primed H3K9 was methylated by G9a/GLP. Meanwhile, LSD1, which removes H3K4me1/2, whereby the un-methylated H3K4 could also prevent H3K9 from re-acetylation [156, 157]. An affinity purification of Flag-TWIST identified several components of the NuRD chromatin remodeling complex. Among them, TWIST directly interacts with Mi2β, MTA2 and RbAp46 and likely targets the NuRD complex for histone deacetylation and chromatin remodeling on E-cadherin promoter. Together, these epigenetic events lead to gene silencing and promote EMT and breast cancer metastasis [158]. In addition, TWIST was also co-purified with SET8, BRCA1-associated protein (BRAP), NF-kB subunit RelA, PPP2CA and HES6 in MCF7 breast cancer cells [88]. SET8 interacts with TWIST. However, SET8 and TWIST are functionally interdependent in promoting EMT. SET8 mediates E-cadherin repression and N-cadherin activation simultaneously via its H4K20 monomethylation to promote cell invasion and EMT. However, the molecular mechanism that underlies the same repressive protein complex that contributes to opposite functions on different genomic loci remains an open question. Our recent study found that TWIST is diacetylated by Tip60, which was further recognized by BRD4, thereby constructing an activated TWIST/BRD4/P-TEFβ/RNA-Pol II complex at the WNT5A promoter and enhancer to promote EMT and breast cancer cell metastasis [20]. In breast cancer cells, the UTX-MLL4 forms a complex with LSD1/HDAC1/DNMT1 on the promoter of several EMT-TFs and decreases H3K4mes and H3 acetylation. UTX facilitates epigenetic silencing of EMT-TFs by inducing competition between MLL4 and the H3K4 demethylase LSD1, which results in inhibition of EMT and CSC-like properties [100].
MPP8, another methy-H3K9 binding protein, bridges DNMT3A and G9a/GLP to assemble a repressive trimeric protein complex on chromatin by binding to different methyl-lysines. MPP8 also couples H3K9 methylation and DNA methylation to silence epithelial genes and EMT [159, 160]. Interestingly, MPP8 also cooperates with the SIRT1 in this process through a physical interaction [161]. SIRT1 and MPP8 reciprocally promote each other’s function and coordinate epithelial gene silencing and EMT. SIRT1 antagonizes PCAF-catalyzed MPP8-K439 acetylation to protect MPP8 from ubiquitin-proteasome-mediated proteolysis. Conversely, MPP8 recruits SIRT1 for H4K16 deacetylation after binding to methyl-H3K9 on target promoters. Therefore, MPP8 not only promote DNA-methylation but also H4K16 deacetylation to fine-tune the transcriptional regulation of EMT.
Increasing evidences show that aberrant profiles of histone modifications contribute to a dysregulation those results in the metastatic cascade. The biochemically reversible nature of histone modifications provides a platform for rapid changes in a variety of epithelia and mesenchymal genes during EMT and MET. In concert with different ETM-TFs and oncogenic signaling, pleiotropic histone modifications form a sophisticated and regulated network to coordinate the plasticity and dynamic change required for EMT.
Recent research identifies the critical role of histone modifications in metastasis, but leaves many important, open questions. First, do tumor microenvironmental signals trigger the formation of histone modification enzyme complexes present on different EMT-TFs? Whether these extrinsic signals affect enzyme activity indirectly through intracellular signaling pathways or directly through the EMT-TFs remains to be determined. Second, how do these EMT-TFs form distinct complexes that coordinate the epigenetic regulation of gene expression programs during EMT? Third, EMT is usually activated only transiently and partially. Therefore, which and how do different histone modifying enzymes and the catalyzed modifications contribute to these dynamic changes? Finally, what consequences do epigenetic instabilities have on cancer cell fitness? Do these activities increase plasticity and/or lead to vulnerabilities that it could influence the metastasis?
We know that histone modification enzymes are highly correlated with tumor progression and a poor clinical outcome. Therefore, these enzymes can serve not only as effective biomarkers for earlier diagnosis, but also present multiple therapeutic opportunities. Over the last decade, considerable progress has been made in the discovery and development of potent and selective small molecule inhibitors targeting specific histone modifiers. Many of these molecules are currently under extensive preclinical testing or being evaluated in clinical trials. These inhibitors show great potential as clinically useful drugs. Additionally, inhibitors to specific histone modifying enzymes could serve as useful chemical probes to characterize the function of different epigenetic pathways in EMT in vivo as well as many other important pathological diseases.
In all, advances in our understanding of the landscape of histone modifications in metastasis will provide a better sense of the molecular mechanisms associated with metastasis and thus help speed the development of new therapeutic strategies and biomarkers for metastasis.
We thank Dr. Cathy Anthony for the critical editing of this manuscript. Our research was supported by the Shared Resources of the University of Kentucky Markey Cancer Center (P30CA177558). Our research was also supported by grants from American Cancer Society Research Scholar Award (RSG13187) and NIH (P20GM121327 and CA230758) (to Y Wu).
The authors have declared that no conflict of interests exists.
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5699},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:15},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5145},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"90",title:"Computer Science and Engineering",slug:"computer-science-and-engineering",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:33,numberOfAuthorsAndEditors:771,numberOfWosCitations:720,numberOfCrossrefCitations:637,numberOfDimensionsCitations:1179,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-science-and-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8423",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",subtitle:null,isOpenForSubmission:!1,hash:"dc4f0b68a2f903e7bf1ec7fbe042dbf2",slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",bookSignature:"Christos Kalloniatis and Carlos Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/8423.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editedByType:"Edited by",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6958",title:"High Performance Parallel Computing",subtitle:null,isOpenForSubmission:!1,hash:"dd811128360e48c520a91871f0279659",slug:"high-performance-parallel-computing",bookSignature:"Satyadhyan Chickerur",coverURL:"https://cdn.intechopen.com/books/images_new/6958.jpg",editedByType:"Edited by",editors:[{id:"239076",title:"Dr.",name:"Satyadhyan",middleName:null,surname:"Chickerur",slug:"satyadhyan-chickerur",fullName:"Satyadhyan Chickerur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6715",title:"Petri Nets in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"b0b98cd043ed2dc582d8365630929d33",slug:"petri-nets-in-science-and-engineering",bookSignature:"Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia",coverURL:"https://cdn.intechopen.com/books/images_new/6715.jpg",editedByType:"Edited by",editors:[{id:"178524",title:"Dr.",name:"Raul",middleName:null,surname:"Campos-Rodriguez",slug:"raul-campos-rodriguez",fullName:"Raul Campos-Rodriguez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5368",title:"Radio Frequency Identification",subtitle:null,isOpenForSubmission:!1,hash:"c86dd0c6a48afce125a9f8f2363fd4b8",slug:"radio-frequency-identification",bookSignature:"Paulo Cesar Crepaldi and Tales Cleber Pimenta",coverURL:"https://cdn.intechopen.com/books/images_new/5368.jpg",editedByType:"Edited by",editors:[{id:"38288",title:"Prof.",name:"Paulo",middleName:"Cesar",surname:"Crepaldi",slug:"paulo-crepaldi",fullName:"Paulo Crepaldi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6038",title:"Wireless Sensor Networks",subtitle:"Insights and Innovations",isOpenForSubmission:!1,hash:"e63cb7f71bc1fed54902b371cbe21a2a",slug:"wireless-sensor-networks-insights-and-innovations",bookSignature:"Philip Sallis",coverURL:"https://cdn.intechopen.com/books/images_new/6038.jpg",editedByType:"Edited by",editors:[{id:"10893",title:"Prof.",name:"Philip John",middleName:null,surname:"Sallis",slug:"philip-john-sallis",fullName:"Philip John Sallis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5966",title:"Heuristics and Hyper-Heuristics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"da699185a8b84a430d96d54bc35acdb2",slug:"heuristics-and-hyper-heuristics-principles-and-applications",bookSignature:"Javier Del Ser Lorente",coverURL:"https://cdn.intechopen.com/books/images_new/5966.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5745",title:"Recent Progress in Parallel and Distributed Computing",subtitle:null,isOpenForSubmission:!1,hash:"dba64b23d703d16339860ebf4a13f022",slug:"recent-progress-in-parallel-and-distributed-computing",bookSignature:"Wen-Jyi Hwang",coverURL:"https://cdn.intechopen.com/books/images_new/5745.jpg",editedByType:"Edited by",editors:[{id:"108614",title:"Prof.",name:"Wen-Jyi",middleName:null,surname:"Hwang",slug:"wen-jyi-hwang",fullName:"Wen-Jyi Hwang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5707",title:"Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"9eec1723d4d4775dc9755db55aa387a6",slug:"computer-simulation",bookSignature:"Dragan Cvetkovic",coverURL:"https://cdn.intechopen.com/books/images_new/5707.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5183",title:"Face Recognition",subtitle:"Semisupervised Classification, Subspace Projection and Evaluation Methods",isOpenForSubmission:!1,hash:"d693acce19fca9cbf40d8f3f759e491d",slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/5183.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5150",title:"Electronics Cooling",subtitle:null,isOpenForSubmission:!1,hash:"b95856cfcc87ef3cb7d7c7c7bac4010d",slug:"electronics-cooling",bookSignature:"S M Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/5150.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4655",title:"Applications of Digital Signal Processing through Practical Approach",subtitle:null,isOpenForSubmission:!1,hash:"b20308efd28e8a487949997c8d673fb8",slug:"applications-of-digital-signal-processing-through-practical-approach",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/4655.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"50801",doi:"10.5772/62898",title:"Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications",slug:"performance-evaluation-of-nanofluids-in-an-inclined-ribbed-microchannel-for-electronic-cooling-appli",totalDownloads:1949,totalCrossrefCites:44,totalDimensionsCites:78,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohammad Reza Safaei, Marjan Gooarzi, Omid Ali Akbari, Mostafa\nSafdari Shadloo and Mahidzal Dahari",authors:[{id:"178854",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Safaei",slug:"mohammad-reza-safaei",fullName:"Mohammad Reza Safaei"},{id:"179807",title:"Dr.",name:"Mostafa",middleName:null,surname:"Safdari Shadloo",slug:"mostafa-safdari-shadloo",fullName:"Mostafa Safdari Shadloo"},{id:"179809",title:"Dr.",name:"Mahidzal",middleName:null,surname:"Dahari",slug:"mahidzal-dahari",fullName:"Mahidzal Dahari"},{id:"179813",title:"MSc.",name:"Marjan",middleName:null,surname:"Goodarzi",slug:"marjan-goodarzi",fullName:"Marjan Goodarzi"},{id:"185093",title:"MSc.",name:"Omid",middleName:null,surname:"Ali Akbari",slug:"omid-ali-akbari",fullName:"Omid Ali Akbari"}]},{id:"5184",doi:"10.5772/6180",title:"From the Lab to the Real World: Affect Recognition Using Multiple Cues and Modalities",slug:"from_the_lab_to_the_real_world__affect_recognition_using_multiple_cues_and_modalities",totalDownloads:3132,totalCrossrefCites:34,totalDimensionsCites:51,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hatice Gunes, Massimo Piccardi and Maja Pantic",authors:null},{id:"5197",doi:"10.5772/6167",title:"Generating Facial Expressions with Deep Belief Nets",slug:"generating_facial_expressions_with_deep_belief_nets",totalDownloads:3140,totalCrossrefCites:1,totalDimensionsCites:46,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Joshua M. Susskind, Geoffrey E. Hinton, Javier R. Movellan and Adam K. Anderson",authors:null}],mostDownloadedChaptersLast30Days:[{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:16004,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:null},{id:"15946",title:"Wake-Up-Word Speech Recognition",slug:"wake-up-word-speech-recognition",totalDownloads:4003,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"speech-technologies",title:"Speech Technologies",fullTitle:"Speech Technologies"},signatures:"Veton Kepuska",authors:[{id:"24379",title:"Prof.",name:"Veton",middleName:null,surname:"Kepuska",slug:"veton-kepuska",fullName:"Veton Kepuska"}]},{id:"51031",title:"Face Recognition: Issues, Methods and Alternative Applications",slug:"face-recognition-issues-methods-and-alternative-applications",totalDownloads:10292,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Waldemar Wójcik, Konrad Gromaszek and Muhtar Junisbekov",authors:[{id:"24059",title:"Dr.Ing.",name:"Konrad",middleName:null,surname:"Gromaszek",slug:"konrad-gromaszek",fullName:"Konrad Gromaszek"}]},{id:"56541",title:"Routing Protocols for Wireless Sensor Networks (WSNs)",slug:"routing-protocols-for-wireless-sensor-networks-wsns-",totalDownloads:4344,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"wireless-sensor-networks-insights-and-innovations",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks - Insights and Innovations"},signatures:"Noman Shabbir and Syed Rizwan Hassan",authors:[{id:"206600",title:"Mr.",name:"Noman",middleName:null,surname:"Shabbir",slug:"noman-shabbir",fullName:"Noman Shabbir"},{id:"206601",title:"Mr.",name:"Syed Rizwan",middleName:null,surname:"Hassan",slug:"syed-rizwan-hassan",fullName:"Syed Rizwan Hassan"}]},{id:"62639",title:"Reliability Evaluation for Mechanical Systems by Petri Nets",slug:"reliability-evaluation-for-mechanical-systems-by-petri-nets",totalDownloads:514,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"petri-nets-in-science-and-engineering",title:"Petri Nets in Science and Engineering",fullTitle:"Petri Nets in Science and Engineering"},signatures:"Jianing Wu and Shaoze Yan",authors:[{id:"238979",title:"Dr.",name:"Jianing",middleName:null,surname:"Wu",slug:"jianing-wu",fullName:"Jianing Wu"}]},{id:"70973",title:"Social Media, Ethics and the Privacy Paradox",slug:"social-media-ethics-and-the-privacy-paradox",totalDownloads:850,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",fullTitle:"Security and Privacy From a Legal, Ethical, and Technical Perspective"},signatures:"Nadine Barrett-Maitland and Jenice Lynch",authors:[{id:"311821",title:"Ph.D. Student",name:"Nadine",middleName:null,surname:"Barrett-Maitland",slug:"nadine-barrett-maitland",fullName:"Nadine Barrett-Maitland"},{id:"311822",title:"Ms.",name:"Jenice",middleName:null,surname:"Lynch",slug:"jenice-lynch",fullName:"Jenice Lynch"}]},{id:"50437",title:"Face Recognition: Demystification of Multifarious Aspect in Evaluation Metrics",slug:"face-recognition-demystification-of-multifarious-aspect-in-evaluation-metrics",totalDownloads:2343,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Mala Sundaram and Ambika Mani",authors:[{id:"180904",title:"Mrs.",name:"Mala",middleName:null,surname:"Sundaram",slug:"mala-sundaram",fullName:"Mala Sundaram"},{id:"180905",title:"Mrs.",name:"Ambika",middleName:null,surname:"Mani",slug:"ambika-mani",fullName:"Ambika Mani"}]},{id:"50065",title:"Heat Pipes for Computer Cooling Applications",slug:"heat-pipes-for-computer-cooling-applications",totalDownloads:4038,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohamed H.A. Elnaggar and Ezzaldeen Edwan",authors:[{id:"178453",title:"Dr.",name:"Mohamed",middleName:null,surname:"Elnaggar",slug:"mohamed-elnaggar",fullName:"Mohamed Elnaggar"},{id:"184278",title:"Dr.",name:"Ezzaldeen",middleName:null,surname:"Edwan",slug:"ezzaldeen-edwan",fullName:"Ezzaldeen Edwan"}]},{id:"5175",title:"Facial Expression Recognition Using 3D Facial Feature Distances",slug:"facial_expression_recognition_using_3d_facial_feature_distances",totalDownloads:3825,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hamit Soyel and Hasan Demirel",authors:null},{id:"68561",title:"Cyberspace and Artificial Intelligence: The New Face of Cyber-Enhanced Hybrid Threats",slug:"cyberspace-and-artificial-intelligence-the-new-face-of-cyber-enhanced-hybrid-threats",totalDownloads:527,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Carlos Pedro Gonçalves",authors:[{id:"278948",title:"Prof.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves"}]}],onlineFirstChaptersFilter:{topicSlug:"computer-science-and-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/155631/german-gonzalez-perez",hash:"",query:{},params:{id:"155631",slug:"german-gonzalez-perez"},fullPath:"/profiles/155631/german-gonzalez-perez",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()