Types of materials used in 4D printing.
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5609",leadTitle:null,fullTitle:"Phenolic Compounds - Biological Activity",title:"Phenolic Compounds",subtitle:"Biological Activity",reviewType:"peer-reviewed",abstract:"Phenolic compounds comprise a broad class of natural products formed mainly by plants, but also microorganisms and marine organisms that have the capacity to form them. Nowadays the interest in these compounds has increased mainly due to their diverse chemical structure and wide biological activity valuable in the prevention of some chronic or degenerative diseases. The functional foods are a rich source of these phytochemicals, and this is the starting point for this book, which shows the state of the art of the phenolic compounds and their biological activity. This book integrates eleven chapters that show the state of the art of diverse biological activity of the phenolic compounds, present in some crops or fruits.",isbn:"978-953-51-2960-8",printIsbn:"978-953-51-2959-2",pdfIsbn:"978-953-51-5090-9",doi:"10.5772/63693",price:119,priceEur:129,priceUsd:155,slug:"phenolic-compounds-biological-activity",numberOfPages:238,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"008b92507ee2f757322ec4565e631bb5",bookSignature:"Marcos Soto-Hernandez, Mariana Palma-Tenango and Maria del Rosario Garcia-Mateos",publishedDate:"March 8th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5609.jpg",numberOfDownloads:36036,numberOfWosCitations:244,numberOfCrossrefCitations:164,numberOfCrossrefCitationsByBook:9,numberOfDimensionsCitations:355,numberOfDimensionsCitationsByBook:12,hasAltmetrics:1,numberOfTotalCitations:763,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 1st 2016",dateEndSecondStepPublish:"June 22nd 2016",dateEndThirdStepPublish:"September 18th 2016",dateEndFourthStepPublish:"December 17th 2016",dateEndFifthStepPublish:"February 15th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"65790",title:"Prof.",name:"Marcos",middleName:null,surname:"Soto-Hernández",slug:"marcos-soto-hernandez",fullName:"Marcos Soto-Hernández",profilePictureURL:"https://mts.intechopen.com/storage/users/65790/images/system/65790.jpg",biography:"Dr. Marcos Soto Hernández is a pharmacist from the National University of México. He has obtained his PhD from the University of Wales Cardiff UK and he is now a full time Professor at Colegio de Postgraduados where conducts research in phytochemistry and bioactivity natural products. He has established collaboration with research groups in UK, The Netherlands, Spain and others groups in México. He has received several awards locally and abroad. Today his main line of research is the bio-guided isolation of secondary metabolites with importance in medicine and agriculture (the potential of the local aromatic plants are part of his recent research). He has published more than 150 research papers and several book chapters and conference proceedings. He is member of several professional societies (national or international).",institutionString:"Colegio de Postgraduados",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Colegio de Postgraduados",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"193077",title:"Dr.",name:"Mariana",middleName:null,surname:"Palma-Tenango",slug:"mariana-palma-tenango",fullName:"Mariana Palma-Tenango",profilePictureURL:"https://mts.intechopen.com/storage/users/193077/images/system/193077.jpg",biography:"Dr. Mariana Palma-Tenango is an engineer agronomist from the Universidad Autónoma Chapingo and holds a PhD degree in Plant Physiology from the Colegio de Postgraduados, México. Dr. Tenango has teaching duties in the National Autonomous University of Mexico, and is an assistant professor of Phytochemistry at the Colegio de Postgraduados. She has participated in the organization of meetings and symposiums in México and is a supervisor of master and PhD degree students. Her research line is phytochemistry, medicinal, and aromatic plants.",institutionString:"Colegio de Postgraduados",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Colegio de Postgraduados",institutionURL:null,country:{name:"Mexico"}}},coeditorTwo:{id:"194366",title:"Dr.",name:"Rosario",middleName:null,surname:"García-Mateos",slug:"rosario-garcia-mateos",fullName:"Rosario García-Mateos",profilePictureURL:"https://mts.intechopen.com/storage/users/194366/images/system/194366.jpg",biography:"Dr. María del Rosario García-Mateos is a full Professor cat the Universidad Autónoma Chapingo, in Texcoco, Estado de México, Mexico. and holds a PhD degree from the Colegio de Postgraduados, Mexico. Her research line is related with the nutraceutical properties and biological activity of horticultural crops. She has supervised master and PhD thesis, has published more than 71 papers, and has been a reviewer of several scientific journals.",institutionString:"Universidad Autonoma Chapingo",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"500",title:"Phytochemistry",slug:"organic-chemistry-phytochemistry"}],chapters:[{id:"53128",title:"Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability",doi:"10.5772/66368",slug:"phenolic-compounds-functional-properties-impact-of-processing-and-bioavailability",totalDownloads:9324,totalCrossrefCites:76,totalDimensionsCites:143,hasAltmetrics:0,abstract:"In this chapter, we discuss the influence of the processing methods on the content of phenolic compounds in fruits and vegetables. The intake of fruits and vegetables based‐foods are associated with delayed aging and a decreased risk of chronic disease development. Fruits and vegetables can be consumed in natura, but the highest amounts are ingested after some processing methods, such as cooking procedures or sanitizing methods. These methods are directly methods are directly related to alteration on the phenolic content. In addition, the postharvest conditions may modify several phytochemical substances. Phenolic compounds are referred to as phytochemicals found in a large number of foods and beverages. The relative high diversity of these molecules produced by plants must be taken into account when methods of preparation are employed to obtain industrial or homemade products. Phenolic compounds comprise one (phenolic acids) or more (polyphenols) aromatic rings with attached hydroxyl groups in their structures. Their antioxidant capacities are related to these hydroxyl groups and phenolic rings. Despite the antioxidant activity, they have many other beneficial effects on human health. However, before attributing health benefits to these compounds, absorption, distribution, and metabolism of each phenolic compound in the body are important points that should be considered.",signatures:"Igor Otavio Minatel, Cristine Vanz Borges, Maria Izabela Ferreira,\nHector Alonzo Gomez Gomez, Chung-Yen Oliver Chen and\nGiuseppina Pace Pereira Lima",downloadPdfUrl:"/chapter/pdf-download/53128",previewPdfUrl:"/chapter/pdf-preview/53128",authors:[{id:"146379",title:"Dr.",name:"Giuseppina",surname:"Lima",slug:"giuseppina-lima",fullName:"Giuseppina Lima"},{id:"194002",title:"MSc.",name:"Cristine",surname:"Vanz Borges",slug:"cristine-vanz-borges",fullName:"Cristine Vanz Borges"},{id:"194003",title:"Prof.",name:"Igor Otavio",surname:"Minatel",slug:"igor-otavio-minatel",fullName:"Igor Otavio Minatel"},{id:"194004",title:"Dr.",name:"Maria Izabela",surname:"Ferreira",slug:"maria-izabela-ferreira",fullName:"Maria Izabela Ferreira"},{id:"194005",title:"Prof.",name:"Hector",surname:"Gomez-Gomez",slug:"hector-gomez-gomez",fullName:"Hector Gomez-Gomez"},{id:"194006",title:"Prof.",name:"Chung-Yen Oliver",surname:"Chen",slug:"chung-yen-oliver-chen",fullName:"Chung-Yen Oliver Chen"}],corrections:null},{id:"53885",title:"The Relationship Between Phenolic Compounds from Diet and Microbiota",doi:"10.5772/66908",slug:"the-relationship-between-phenolic-compounds-from-diet-and-microbiota",totalDownloads:2340,totalCrossrefCites:2,totalDimensionsCites:7,hasAltmetrics:0,abstract:"All multicellular organisms live in a strong bond with the microorganisms from around the world, and the humans are not the exceptions. Human microbiota (a complex bacterial community) contains about 1014 microbial cells, 10 times more than the content of the cells from our body and the microbial genome named microbiome, 1000 more that the human genome. It colonises any surface of the human body, above our skin, in the genitourinary tract, gut and airways. From all this, the gut is the most colonised organ, with an amount of almost 70% of the human microbes. Considering the large size of the gut, compared with a tennis terrain, filled with substances that plays a key, nutritive role for the microbes, polyphenols are micronutrients from our diet, with an emerging role in the modulation of the colonic microbial population composition and activity. Therefore, many studies underline that long-term consumption of diets rich in plants polyphenols offers protection against cancer, cardiovascular diseases, diabetes, osteoporosis and neurodegenerative diseases. This chapter reviews the biological effects of plant polyphenols in the context of relevance to human health, especially considering the food functionality area, together with the complexity of the human microbiota and the bioavailability highly dependent on their intestinal absorption.",signatures:"Daniela Elena Popa, Cristina Manuela Drăgoi, Andreea Letiţia\nArsene, Ion Bogdan Dumitrescu, Alina Crenguţa Nicolae, Bruno Stefan Velescu and\nGeorge T.A. Burcea-Dragomiroiu",downloadPdfUrl:"/chapter/pdf-download/53885",previewPdfUrl:"/chapter/pdf-preview/53885",authors:[{id:"190111",title:"Dr.",name:"Andreea",surname:"Arsene",slug:"andreea-arsene",fullName:"Andreea Arsene"},{id:"192919",title:"Associate Prof.",name:"Cristina Manuela",surname:"Drăgoi",slug:"cristina-manuela-dragoi",fullName:"Cristina Manuela Drăgoi"},{id:"193026",title:"Dr.",name:"Daniela Elena",surname:"Popa",slug:"daniela-elena-popa",fullName:"Daniela Elena Popa"},{id:"193027",title:"Dr.",name:"George Traian Alexandru",surname:"Burcea Dragomiroiu",slug:"george-traian-alexandru-burcea-dragomiroiu",fullName:"George Traian Alexandru Burcea Dragomiroiu"},{id:"193030",title:"Mrs.",name:"Alina Crenguta",surname:"Nicolae",slug:"alina-crenguta-nicolae",fullName:"Alina Crenguta Nicolae"},{id:"195925",title:"Mr.",name:"Ion Bogdan",surname:"Dumitrescu",slug:"ion-bogdan-dumitrescu",fullName:"Ion Bogdan Dumitrescu"},{id:"198528",title:"Dr.",name:"Bruno Ștefan",surname:"Velescu",slug:"bruno-stefan-velescu",fullName:"Bruno Ștefan Velescu"}],corrections:null},{id:"53580",title:"Application of Phenolic Compounds for Food Preservation: Food Additive and Active Packaging",doi:"10.5772/66885",slug:"application-of-phenolic-compounds-for-food-preservation-food-additive-and-active-packaging",totalDownloads:3907,totalCrossrefCites:23,totalDimensionsCites:49,hasAltmetrics:0,abstract:"Phenolic compounds are well known for their health benefits related to antioxidant activity. In addition, this kind of compounds can be extracted from natural sources, such as olives, grapes, fruits, vegetables, rice, spices, herbs, tea and algae, among others. In this way, these compounds have increased their popularity and, little by little, the consumers are more interested in these compounds due to the fact that they come from natural sources and because they have health biological activity. In fact, other important characteristics associated to phenolic compounds are the antimicrobial activity, because phenolics have the capacity of retarding the microbial invasion in some products and avoiding the putrefaction of others, mainly fruits and vegetables. These properties allow phenolic compounds to be suitable for numerous food preservation applications. Therefore, different kinds of products can be fortificated with phenolic compounds to extend the shelf life of some foods, to turn them in functional food or to incorporate them in food packaging. Active packing is an innovative strategy where phenolic compounds can play an important role for improving the global assessment and extend the shelf life of commercial products.",signatures:"Sara Martillanes, Javier Rocha-Pimienta, Manuel Cabrera-Bañegil,\nDaniel Martín-Vertedor and Jonathan Delgado-Adámez",downloadPdfUrl:"/chapter/pdf-download/53580",previewPdfUrl:"/chapter/pdf-preview/53580",authors:[{id:"193618",title:"Dr.",name:"Jonathan",surname:"Delgado-Adámez",slug:"jonathan-delgado-adamez",fullName:"Jonathan Delgado-Adámez"},{id:"193962",title:"Ms.",name:"Sara",surname:"Martillanes",slug:"sara-martillanes",fullName:"Sara Martillanes"},{id:"193963",title:"Mr.",name:"Javier",surname:"Rocha-Pimienta",slug:"javier-rocha-pimienta",fullName:"Javier Rocha-Pimienta"},{id:"193964",title:"Mr.",name:"Manuel",surname:"Cabrera-Bañegil",slug:"manuel-cabrera-banegil",fullName:"Manuel Cabrera-Bañegil"},{id:"193965",title:"Dr.",name:"Daniel",surname:"Martín",slug:"daniel-martin",fullName:"Daniel Martín"}],corrections:null},{id:"53658",title:"Phenolic Antioxidant Capacity: A Review of the State of the Art",doi:"10.5772/66897",slug:"phenolic-antioxidant-capacity-a-review-of-the-state-of-the-art",totalDownloads:3206,totalCrossrefCites:12,totalDimensionsCites:30,hasAltmetrics:1,abstract:"There are many evidences pointing to oxidative stress as the promoter of the development of many degenerative diseases such as cancer, cardiovascular diseases, and neurodegeneration. It has been suggested that a diet rich in antioxidants would be beneficial to human health. To determine the antioxidant capacity of the different sources of antioxidants, they have different chemical methods used, in vitro cells, laboratory animals, and recently nanoparticles. This chapter provides an account of the main antioxidant evaluation methods applied to phenolic compounds, recounting their advantages and disadvantages, as well as a reflection on the parameters that should always care to obtain reproducible results.",signatures:"Rubén San Miguel-Chávez",downloadPdfUrl:"/chapter/pdf-download/53658",previewPdfUrl:"/chapter/pdf-preview/53658",authors:[{id:"193235",title:"M.Sc.",name:"Ruben",surname:"San Miguel",slug:"ruben-san-miguel",fullName:"Ruben San Miguel"}],corrections:null},{id:"53564",title:"Plant Phenolic Compounds as Immunomodulatory Agents",doi:"10.5772/66112",slug:"plant-phenolic-compounds-as-immunomodulatory-agents",totalDownloads:2820,totalCrossrefCites:10,totalDimensionsCites:20,hasAltmetrics:1,abstract:"Immunology is a source of continuous discoveries; Immunology was and still is a source of continuous discoveries. Immunomodulation encompasses all therapeutic interventions aimed at modifying the immune response. Immunostimulation is desirable to prevent infection in states of immunodeficiency and to fight infections and cancer. On the other hand, immunosuppressive agents inhibit the activity of the immune system, and they are used to prevent the rejection of transplanted organs and tissues and to treat autoimmune diseases or diseases that are most likely of autoimmune origin (e.g., rheumatoid arthritis, systemic lupus erythematosus, Crohn’s disease, ulcerative colitis, etc.), or other nonautoimmune inflammatory diseases (e.g., allergic asthma). The discovery of immunomodulatory agents from medicinal plants devoid of toxic side effects, with enhanced bioavailability and that can be used for a long duration, is of great actuality. Research on natural immunomodulators provides a therapeutic solution that addresses a multitude of disorders. Plant phenolic compounds already proved beneficial effects in cardiovascular diseases, diabetes, and cancer, exerting mainly antioxidant and anti-inflammatory effects. The concepts of “immunomodulatory,” “anti-inflammatory,” and “antioxidant” are often strongly related, and a review of phenolic compound action on immune system should be analyzed in a context, revealing their mechanism of action on effector cells and also on the system as a whole.",signatures:"Alice Grigore",downloadPdfUrl:"/chapter/pdf-download/53564",previewPdfUrl:"/chapter/pdf-preview/53564",authors:[{id:"193003",title:"Dr.",name:"Alice",surname:"Grigore",slug:"alice-grigore",fullName:"Alice Grigore"}],corrections:null},{id:"53576",title:"Inhibitory Properties of Phenolic Compounds Against Enzymes Linked with Human Diseases",doi:"10.5772/66844",slug:"inhibitory-properties-of-phenolic-compounds-against-enzymes-linked-with-human-diseases",totalDownloads:2634,totalCrossrefCites:14,totalDimensionsCites:40,hasAltmetrics:0,abstract:"Some drugs currently used are inhibitors of enzymes involved in mediating many disease processes. Concerns over the toxicity and side effects of synthetic enzyme inhibitors have led to a search for new safe and effective inhibitors particularly from natural sources. Owing to their wide range of biological effects, plant phenolic compounds are one of the most studied families of natural products. This chapter aims to provide an overview of the potential of phenolic compounds as enzyme inhibitors. Extensive research has been conducted to study the enzyme inhibitory capacity of many phenolic compounds against several enzymes linked with important human conditions. Investigations conducted are mainly focused on the inhibition of angiotensin I-converting enzyme, α-amylase and α-glucosidase, lipase, cholinesterases, proinflammatory enzymes (cyclooxygenases and 5-lipoxygenase) and tyrosinase, which are related with hypertension, type II diabetes, obesity, Alzheimer’s diseases, inflammation and skin hyperpigmentation, respectively. Overall, among phenolics, flavonoids are probably those with great capacity to inhibit the activity of the enzymes revised. Several studies demonstrated the potent antioxidant and anti-inflammatory properties of flavonoids, which highlight the therapeutic potential of these compounds. Although our literature survey showed that a huge number of phenolic compounds have been studied and there are some promising compounds depending on the enzyme, more in vivo tests and subsequent steps to be a drug candidate are required before therapeutic application.",signatures:"Sandra Gonçalves and Anabela Romano",downloadPdfUrl:"/chapter/pdf-download/53576",previewPdfUrl:"/chapter/pdf-preview/53576",authors:[{id:"193464",title:"Prof.",name:"Anabela",surname:"Romano",slug:"anabela-romano",fullName:"Anabela Romano"},{id:"193968",title:"Dr.",name:"Sandra",surname:"Gonçalves",slug:"sandra-goncalves",fullName:"Sandra Gonçalves"}],corrections:null},{id:"53840",title:"Grape Seed Nutraceuticals for Disease Prevention: Current Status and Future Prospects",doi:"10.5772/66894",slug:"grape-seed-nutraceuticals-for-disease-prevention-current-status-and-future-prospects",totalDownloads:2567,totalCrossrefCites:3,totalDimensionsCites:11,hasAltmetrics:0,abstract:"Grapes (Vitis spp.) are consumed as fresh table fruits, raisins, and processed into wine, juice, jelly and other value-added products. Grapes contain bioactive secondary metabolites (polyphenols), such as proanthocyanins (oliogemeric flavonoids), flavonoids (catechin, epicatechin, and quercetin), and anthocyanins. They have non-flavonoids such as hydroxycinnamic acids (p-coumaric, cinnamic, caffeic, gentisic, ferulic, and vanillic acids), and hydroxybenzoic acids: trihydroxy stilbenes (resveratrol and polydatin). These phytochemicals are of economic importance to pharmaceutical, food and cosmetic industries. Nutraceuticals from grape seeds have potential cardioprotective, anti-cancer, antioxidant, anti-inflammatory, antiviral, neuroprotective, hepatoprotective and antimicrobial properties. Grape seed nutraceuticals have been re-invented in the past few years as a new paradigm in human medicine. In particular, nutraceuticals from grape seeds have been used in stopping wound bleeding, anti-inflammatory agents, pain relief, and anti-diarrhea. In addition, they can be used for the treatment of various human health conditions such as cancer, cholera, smallpox, and nausea as well as eye infections, skin, kidney, liver diseases, etc. Nowadays, consumers are demanding for healthy supplements and personal care products with natural ingredients. Therefore, the present review highlights recent developments and future opportunities of grape seed nutraceuticals for the prevention of human diseases.",signatures:"Anthony Ananga, James Obuya, Joel Ochieng and Violeta Tsolova",downloadPdfUrl:"/chapter/pdf-download/53840",previewPdfUrl:"/chapter/pdf-preview/53840",authors:[{id:"74792",title:"Dr.",name:"Joel W.",surname:"Ochieng",slug:"joel-w.-ochieng",fullName:"Joel W. Ochieng"},{id:"126149",title:"Dr.",name:"Anthony",surname:"Ananga",slug:"anthony-ananga",fullName:"Anthony Ananga"},{id:"137412",title:"Dr.",name:"Violetka",surname:"Tsolova",slug:"violetka-tsolova",fullName:"Violetka Tsolova"},{id:"193798",title:"Dr.",name:"James",surname:"Obuya",slug:"james-obuya",fullName:"James Obuya"}],corrections:null},{id:"53180",title:"Phenolic Compounds with Anti-virulence Properties",doi:"10.5772/66367",slug:"phenolic-compounds-with-anti-virulence-properties",totalDownloads:2388,totalCrossrefCites:11,totalDimensionsCites:18,hasAltmetrics:0,abstract:"Natural products represent the major source of approved drugs and still play an important role in supplying chemical diversity as well as new structures for designing more efficient antimicrobials. They are also the basis for the discovery of new mechanisms of antibacterial action. In this regard, a large number of substances, mainly extracts from natural sources, have been obtained in order to identify their anti-virulence activity. In recent years, there is an increase in the study of anti-virulence natural product derivatives. Different targets have been proposed as a solution to the serious problem of bacterial antibiotic resistance. Inhibition of bacterial quorum-sensing systems has been one of the most studied; however, there are other mechanisms involved in virulence regulation, damage to the host and bacterial survival, which suggests that there are another good targets such as bacterial secretion systems, biofilm formation, two-component systems, flagellum, fimbriae, toxins and key enzymes. Within the natural products, the main anti-virulence compounds are phenolic in nature, so that the next chapter describes and analyzes the relationship between chemical structure and activity of the main phenolic compounds reported.",signatures:"Naybi Muñoz-Cazares, Rodolfo García-Contreras, Macrina Pérez-\nLópez and Israel Castillo-Juárez",downloadPdfUrl:"/chapter/pdf-download/53180",previewPdfUrl:"/chapter/pdf-preview/53180",authors:[{id:"193519",title:"Dr.",name:"Castillo",surname:"Juárez",slug:"castillo-juarez",fullName:"Castillo Juárez"},{id:"193520",title:"Dr.",name:"García",surname:"Contreras Rodolfo",slug:"garcia-contreras-rodolfo",fullName:"García Contreras Rodolfo"},{id:"193521",title:"MSc.",name:"Pérez",surname:"López Macrina",slug:"perez-lopez-macrina",fullName:"Pérez López Macrina"},{id:"193522",title:"MSc.",name:"Muñoz",surname:"Cazares Naybi",slug:"munoz-cazares-naybi",fullName:"Muñoz Cazares Naybi"},{id:"197805",title:"Dr.",name:"Israel",surname:"Castillo Juárez",slug:"israel-castillo-juarez",fullName:"Israel Castillo Juárez"}],corrections:null},{id:"52824",title:"Regulatory Mechanism of Skeletal Muscle Glucose Transport by Phenolic Acids",doi:"10.5772/65968",slug:"regulatory-mechanism-of-skeletal-muscle-glucose-transport-by-phenolic-acids",totalDownloads:2102,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Type 2 diabetes mellitus (T2DM) is one of the most severe public health problems in the world. In recent years, evidences show a commonness of utilization of alternative medicines such as phytomedicine for the treatment of T2DM. Phenolic acids are the most common compounds in non-flavonoid group of phenolic compounds and have been suggested to have a potential to lower the risk of T2DM. Skeletal muscle is the major organ that contributes to the pathophysiology of T2DM. Studies have shown that several phenolic acids (caffeic acid, chlorogenic acid, gallic acid, salicylic acid, p-coumaric acid, ferulic acid, sinapic acid) have antidiabetic effects, and these compounds have been implicated in the regulation of skeletal muscle glucose metabolism, especially glucose transport. Glucose transport is a major regulatory step for whole-body glucose disposal, and the glucose transport processes are regulated mainly through two different systems: insulin-dependent and insulin-independent mechanism. In this chapter, we reviewed recent experimental evidences linking phenolic acids to glucose metabolism focusing on insulin-dependent and insulin-independent glucose transport systems and the upstream signaling events in skeletal muscle.",signatures:"Tatsuro Egawa, Satoshi Tsuda, Rieko Oshima, Ayumi Goto, Xiao Ma,\nKatsumasa Goto and Tatsuya Hayashi",downloadPdfUrl:"/chapter/pdf-download/52824",previewPdfUrl:"/chapter/pdf-preview/52824",authors:[{id:"193107",title:"Dr.",name:"Tatsuro",surname:"Egawa",slug:"tatsuro-egawa",fullName:"Tatsuro Egawa"},{id:"193126",title:"MSc.",name:"Satoshi",surname:"Tsuda",slug:"satoshi-tsuda",fullName:"Satoshi Tsuda"},{id:"193127",title:"Prof.",name:"Katsumasa",surname:"Goto",slug:"katsumasa-goto",fullName:"Katsumasa Goto"},{id:"193128",title:"Prof.",name:"Tatsuya",surname:"Hayashi",slug:"tatsuya-hayashi",fullName:"Tatsuya Hayashi"},{id:"195578",title:"Dr.",name:"Rieko",surname:"Oshima",slug:"rieko-oshima",fullName:"Rieko Oshima"},{id:"195646",title:"Dr.",name:"Ayumi",surname:"Goto",slug:"ayumi-goto",fullName:"Ayumi Goto"},{id:"195708",title:"Prof.",name:"Xiao",surname:"Ma",slug:"xiao-ma",fullName:"Xiao Ma"}],corrections:null},{id:"54035",title:"Health Benefits of Phenolic Compounds Against Cancers",doi:"10.5772/67232",slug:"health-benefits-of-phenolic-compounds-against-cancers",totalDownloads:2966,totalCrossrefCites:11,totalDimensionsCites:34,hasAltmetrics:1,abstract:"Phenolic compounds are the biggest group of phytochemicals, and many of them have been found in plant‐based foods. Polyphenol‐rich diets have been linked to many health benefits including cancer. The potential anti‐carcinogenic mechanisms of action that have been so far identified for phenolic compounds, as well as the feasibility reports occurred in vivo. In general terms, under the oxidative stress, polyphenols could act in those cellular mechanisms by participating in the modulation of the redox status and on multiple key elements in intracellular signal transduction pathways related to cell proliferation, differentiation, apoptosis, inflammation, angiogenesis and metastasis. A protective role of polyphenols against carcinogenesis is supported by many studies carried out on animal models and different mechanisms of action have been proposed to explain such protective effects. Studies performed in animals have demonstrated that phenolic components can prevent and/or slow down the initiation‐progression of different types of cancers. They act through the regulation of cell signal transduction and gene expression and exhibit either up or down regulation of genes controlling tumor development.",signatures:"Abdelkader Basli, Nassim Belkacem and Iman Amrani",downloadPdfUrl:"/chapter/pdf-download/54035",previewPdfUrl:"/chapter/pdf-preview/54035",authors:[{id:"193750",title:"Dr.",name:"Basli",surname:"Abdelkader",slug:"basli-abdelkader",fullName:"Basli Abdelkader"},{id:"195990",title:"Mr.",name:"Belkacem",surname:"Nacim",slug:"belkacem-nacim",fullName:"Belkacem Nacim"},{id:"195991",title:"Dr.",name:"Amrani",surname:"Iman",slug:"amrani-iman",fullName:"Amrani Iman"}],corrections:null},{id:"53661",title:"Health Status Improved by Aronia Melanocarpa Polyphenolic Extract",doi:"10.5772/66882",slug:"health-status-improved-by-aronia-melanocarpa-polyphenolic-extract",totalDownloads:1783,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter focuses on certain natural polyphenolic extracts from Aronia melanocarpa (Michx.) Elliott and also on their effects in insulin-dependent diabetes mellitus. The phenolic profile of berries ethanolic extract was characterized by HPLC/DAD/ESI-MS. HPLC/DAD/ESI-MS allowed identification of five phenolic compounds: chlorogenic acid, kuromanin, rutin, hyperoside, and quercetin. The results reveal that the glycosylated hemoglobin values are much higher in the diabetic group (DM) and they are significantly lower in the group protected by polyphenols (DM+P). It is found that due to the polyphenolic protection of the rats from the DM+P, the atherogen risk is preserved at normal limits. The serous activity of glutathione-peroxidase (GSH-Px) and superoxide-dismutase (SOD) has significantly lower values in the diabetic group as compared to the group protected by polyphenols. Renal function indicators like creatinine and blood-urea nitrogen (BUN) were also elevated in the streptozotocin diabetic rats when compared with control rats. When compared with the diabetic group the elevated levels of BUN was significantly (p < 0.001) reduced in animals treated with natural polyphenols. Through the hypoglycemiant, hypolipemiant, and antioxidant effects, A. melanocarpa represents a possible dietary adjunct for the treatment of diabetes and a potential source of active agents for the prevention of microvascular diabetes complications.",signatures:"Manuela Ciocoiu, Laurentiu Badescu and Magda Badescu",downloadPdfUrl:"/chapter/pdf-download/53661",previewPdfUrl:"/chapter/pdf-preview/53661",authors:[{id:"193903",title:"Prof.",name:"Manuela",surname:"Ciocoiu",slug:"manuela-ciocoiu",fullName:"Manuela Ciocoiu"},{id:"195685",title:"Dr.",name:"Laurentiu",surname:"Badescu",slug:"laurentiu-badescu",fullName:"Laurentiu Badescu"},{id:"195686",title:"Prof.",name:"Magda",surname:"Badescu",slug:"magda-badescu",fullName:"Magda Badescu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6029",title:"Phenolic Compounds",subtitle:"Natural Sources, Importance and Applications",isOpenForSubmission:!1,hash:"348060e7a0fee08ee1feb9d82b330ec3",slug:"phenolic-compounds-natural-sources-importance-and-applications",bookSignature:"Marcos Soto-Hernandez, Mariana Palma-Tenango and Maria del Rosario Garcia-Mateos",coverURL:"https://cdn.intechopen.com/books/images_new/6029.jpg",editedByType:"Edited by",editors:[{id:"65790",title:"Prof.",name:"Marcos",surname:"Soto-Hernández",slug:"marcos-soto-hernandez",fullName:"Marcos Soto-Hernández"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7688",title:"Plant Physiological Aspects of Phenolic Compounds",subtitle:null,isOpenForSubmission:!1,hash:"16f7407afbf69173f4fa419b4338a6c8",slug:"plant-physiological-aspects-of-phenolic-compounds",bookSignature:"Marcos Soto-Hernández, Rosario García-Mateos and Mariana Palma-Tenango",coverURL:"https://cdn.intechopen.com/books/images_new/7688.jpg",editedByType:"Edited by",editors:[{id:"65790",title:"Prof.",name:"Marcos",surname:"Soto-Hernández",slug:"marcos-soto-hernandez",fullName:"Marcos Soto-Hernández"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65667",slug:"erratum-the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",title:"Erratum - The Roll of the Entrepreneur in the Establishment of Economic Equilibria",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65667.pdf",downloadPdfUrl:"/chapter/pdf-download/65667",previewPdfUrl:"/chapter/pdf-preview/65667",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65667",risUrl:"/chapter/ris/65667",chapter:{id:"57461",slug:"the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",signatures:"Er’el Granot",dateSubmitted:"April 7th 2017",dateReviewed:"August 22nd 2017",datePrePublished:"December 20th 2017",datePublished:"January 24th 2018",book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"181601",title:"Prof.",name:"Er'El",middleName:null,surname:"Granot",fullName:"Er'El Granot",slug:"er'el-granot",email:"erelgranot@gmail.com",position:null,institution:{name:"Ariel University",institutionURL:null,country:{name:"Israel"}}}]}},chapter:{id:"57461",slug:"the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",signatures:"Er’el Granot",dateSubmitted:"April 7th 2017",dateReviewed:"August 22nd 2017",datePrePublished:"December 20th 2017",datePublished:"January 24th 2018",book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"181601",title:"Prof.",name:"Er'El",middleName:null,surname:"Granot",fullName:"Er'El Granot",slug:"er'el-granot",email:"erelgranot@gmail.com",position:null,institution:{name:"Ariel University",institutionURL:null,country:{name:"Israel"}}}]},book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11579",leadTitle:null,title:"Animal Welfare - New Insights",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tAt present, especially in the last years, the achievements made by scientists have been exceptional, leading to major advancements in the fast-growing field of animal science. Therefore, experimental animals play a very important role in scientific research.
\r\n\r\n\tPigs, rodents, and aquaculture animals are important experimental animals. To obtain the accuracy of the experimental data and meet the basic quality requirements of biological experiment materials, the quality of the experimental animals for the biological experiments should reach the level of specific pathogen-free (SPF). These SPF animals are applied not only to meet the demand for biomedical research but can also be used for the research and the development of drugs and vaccines. Furthermore, as animal welfare has gradually attracted attention in recent years, the reduction of animal pain and quantity and the increase of the experimental refinement are important issues in the 3R (replacement, reduction, and refinement) of animal welfare.
\r\n\r\n\tAnimal testing is an important verification stage before the listing of biomedical products. This book will focus on new insights, novel developments, current challenges, latest discoveries, recent advances, and future perspectives in the field of animal welfare.
",isbn:"978-1-83768-202-7",printIsbn:"978-1-83769-983-4",pdfIsbn:"978-1-83768-203-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"12e4f41264cbe99028655e5463fa941a",bookSignature:"Dr. Shao-Wen Hung, Dr. Chia-Chi Chen, Dr. Chung-Lun Lu and Dr. Tseng-Ting Kao",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",keywords:"Animal Welfare, New Insights, Experiment, Rodents, Larger Animals, Aquaculture Animals, Replacement, Reduction, Refinement, Alternative Methods, Animal Studies, Biological Experiments",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 4th 2022",dateEndSecondStepPublish:"July 8th 2022",dateEndThirdStepPublish:"September 6th 2022",dateEndFourthStepPublish:"November 25th 2022",dateEndFifthStepPublish:"January 24th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"7 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Hung is a pioneering researcher in animal and cell sciences. He focuses his research interests on Experimental Animals, Animal Welfare, and Epilepsy. He has authored 112 journal papers, and 12 book chapters, edited 7 books and authored 160 other publications including conference proceedings and abstracts. He is also the holder of 12 registered patents and is a member of the Chinese Society of Veterinary Sciences.",coeditorOneBiosketch:"Associate Researcher Chia-Chi Chen works in the Animal Technology Research Center, Agricultural Technology Research Institute. She is a pioneering researcher in animal science and has published many articles and books related to life science.",coeditorTwoBiosketch:"Dr. Chung-Lun Lu is a researcher at Aquaculture Technology Research Center, Agricultural Technology Research Institute. Dr. Chung-Lun Lu is a pioneering researcher in aquaculture sciences. He is the holder of some registered patents and has published many papers and books related to aquaculture science.",coeditorThreeBiosketch:"Dr. Tseng-Ting Kao is a researcher at the Animal Technology Research Center, Agricultural Technology Research Institute. Dr. Tseng-Ting Kao is a pioneering researcher in cell science. She is the holder of a few registered patents and has published many articles and books related to life science.",coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",middleName:null,surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung",profilePictureURL:"https://mts.intechopen.com/storage/users/51520/images/system/51520.jpg",biography:"Dr. Shao-Wen Hung (DVM, Ph.D.) graduated from the Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan. Currently, Dr. Shao-Wen Hung works in Animal Technology Research Center, Agricultural Technology Research Institute, Miaoli 350, Taiwan, and is also the chief of Division of Animal Industry, Animal Technology Research Center, Agricultural Technology Research Institute. Dr. Shao-Wen Hung focuses his research interests in the following fields: Fish & Shellfish Immunology, Oncology & Cancer Medicine, Veterinary Medicine & Immunology, Fish Diseases & Therapy, Flow Cytometry, Experimental Animal, Animal Welfare, and Epilepsy.",institutionString:"Agricultural Technology Research Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Agricultural Technology Research Institute",institutionURL:null,country:{name:"Taiwan"}}}],coeditorOne:{id:"326391",title:"Dr.",name:"Chia-Chi",middleName:null,surname:"Chen",slug:"chia-chi-chen",fullName:"Chia-Chi Chen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zXRnyQAG/Profile_Picture_1643271944701",biography:"Associate Researcher Chia-Chi Chen works in the Animal Technology Research Center, Agricultural Technology Research Institute. She is a pioneering researcher in animal science and has published many articles and books related to life science.",institutionString:"Agricultural Technology Research Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Agricultural Technology Research Institute",institutionURL:null,country:{name:"Taiwan"}}},coeditorTwo:{id:"117136",title:"Dr.",name:"Chung-Lun",middleName:null,surname:"Lu",slug:"chung-lun-lu",fullName:"Chung-Lun Lu",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS6mIQAS/Profile_Picture_1643271901162",biography:"Dr. Chung-Lun Lu is a researcher in Aquaculture Technology Research Center, Agricultural Technology Research Institute. Dr. Chung-Lun Lu is a pioneering researcher in aquaculture sciences. He is the holder of some registered patents and has published many papers and books related to aquaculture science.",institutionString:"National Taiwan University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Taiwan University",institutionURL:null,country:{name:"Taiwan"}}},coeditorThree:{id:"452241",title:"Dr.",name:"Tseng-Ting",middleName:null,surname:"Kao",slug:"tseng-ting-kao",fullName:"Tseng-Ting Kao",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003LeREsQAN/Profile_Picture_1643271866991",biography:"Dr. Tseng-Ting Kao is a researcher at the Animal Technology Research Center, Agricultural Technology Research Institute. Dr. Tseng-Ting Kao is a pioneering researcher in cell science. She is the holder of a few registered patents and has published many articles and books related to life science.",institutionString:"Agricultural Technology Research Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Agricultural Technology Research Institute",institutionURL:null,country:{name:"Taiwan"}}},coeditorFour:null,coeditorFive:null,topics:[{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"278926",firstName:"Ivana",lastName:"Barac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/278926/images/8058_n.jpg",email:"ivana.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!1,hash:"75cdacb570e0e6d15a5f6e69640d87c9",slug:"veterinary-anatomy-and-physiology",bookSignature:"Catrin Sian Rutland and Valentina Kubale",coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"73065",title:"Constructed Wetlands in Wastewater Treatment and Challenges of Emerging Resistant Genes Filtration and Reloading",doi:"10.5772/intechopen.93293",slug:"constructed-wetlands-in-wastewater-treatment-and-challenges-of-emerging-resistant-genes-filtration-a",body:'\nWetland is a unique and distinct ecosystem that is flooded by water, either permanently or seasonally, where oxygen-free processes prevail, and the primary distinctive factor of wetlands from other landforms or water bodies is the occurrence of adaptive vegetation of aquatic plants, characteristic to the unique hydric soil [1, 2]. The modified form of wetland is termed “constructed wetland.” Constructed wetlands for water treatment are complex, integrated systems of water, plants, animals, microorganisms, and the environment [3, 4]. Wetlands play a number of functions, including water purification, water storage, processing and recycling of carbon and other micro and macro nutrients, stabilization of shorelines, and support of plants and animals. While wetlands are generally reliable, self-adjusting systems, an understanding of how natural wetlands are structured and how they function greatly increases the likelihood of successfully constructing a wetland treatment system [5, 6].
\nThe cleansing of water has always occurred through natural processes as the water flows through rivers, lakes, streams, and wetlands, and in the last several decades, systems have been constructed to use some of these processes for water quality improvement [7]. Wetlands are now highly preferred as systems for improving the quality of point and nonpoint sources of water pollution, including stormwater runoff, domestic wastewater, agricultural wastewater, as well as coal mine drainage [4]. To enhance sustainability in wastewater management, the use of constructed wetlands has been applied in the treatment of different forms of wastes. Artificially created wetlands have been successful in the treatment of petroleum refinery wastes, wastes from sugar factory, leachates from landfills and composts, wastes from aquaculture systems, wastes from pulp and paper mills, and wastes that emanate from slaughter houses, textile mills, and plants that process sea food. Under the management of these wastes, the constructed wetlands can serve as the sole treatment or may be part of an integrated wastewater treatment system [8].
\nAntimicrobial resistance (AMR) is defined as the ability of a microbe to resist the effects of medication that was once successful and efficient in treating the microbe [9]. The term antibiotic resistance (ABR) is a subset of AMR, as it applies only to bacteria becoming resistant to antibiotics. The AR phenotypes can arise within a microorganism through the lateral and horizontal gene transfers and mutation. The mutations of the chromosomal DNA alter the existing bacterial proteins, through transformation, resulting in the creation of mosaic proteins and/or as a result of the transfer and acquisition of new genetic material between bacteria of the same or different species or genera [10]. The emerging pollutants in forms of antibiotic resistance genes (ARGs) have remained prevalent in aquatic environments such as wetlands that receive ARG-loaded sewage [11].
\nAs much as the use of constructed wetland has been recommended in the treatment of various forms of wastewater, the system efficiency is a factor of very many natural and artificial factors, with the emerging pollutants and contaminants such as resistant genes being the most complicated contaminants to eliminate through the system [11, 12]. Moreover, some studies have reported constructed wetlands as reservoirs to various forms of resistant genes, which trap them and release them to other aquatic systems, hence contributing to their higher concentration in streams, rivers, or lakes [13]. Numerous suggestions have been provided to improve wetland’s functional effect, efficiency, and predictability and provide a proper ecosystem management [6, 7]. This chapter covers a discussion on the constructed wetlands in wastewater treatment and the challenges of emerging related contaminants, such as resistant genes, and provides recommendation for the proper handling and removal of such wastes from the wetland’s functional system.
\nWetlands are ecotones/transitional areas between land and water, with indistinct boundaries between the wetland area and uplands or deep water [14]. The definition expansion of the term wetland covers a broad range of systems that range from marshes, bogs, swamps, wet meadows, tidal wetlands, floodplains, and ribbon (riparian) zones along stream channels. However, all wetlands, whether they are natural or artificial, freshwater, or salty, pose a single characteristic or numerous characteristics, and they occur within the surface or near-surface water, whether they are permanently or temporarily submerged under water [15]. In most wetlands, hydrologic conditions are such that the substrate is saturated long enough during the growing season, a mechanism that creates oxygen-poor conditions in the substrate, limiting the vegetation to those species that are adapted to low-oxygen environments [16].
\nWetlands provide a number of functions and benefits. Wetland functions are inherent processes occurring in wetlands; wetland values are the attributes of wetlands that society perceives as beneficial [17]. The wetland hydrology is generally one of slow flows with either shallow waters or saturated substrates, which allows sediments and other pollutants, including emerging contaminants to settle as the water passes through the wetland system. The occurrence of slow flows provides prolonged contact times between the water and the surfaces within the wetland [15]. The wetland treatment mechanisms are anchored on the complex mass of organic and inorganic materials, with diverse opportunities for gas/water interchanges, which foster a diverse community of microorganisms that break down or transform a wide variety of substances [7]. Within the wetland’s ecosystems, there are dense growths of vascular plants adapted to saturated conditions, which slow the water, create microenvironments within the water column, and provide attachment sites for the microbial communities as well as other contaminants. The litter that accumulates as plants die back in the fall creates additional material and exchange sites and provides a source of carbon, nitrogen, and phosphorous to fuel microbial processes [18].
\nEven though, not all wetlands can perform all functions and values, majority of them provide several benefits. When subjected to appropriate ecological management without any threats, majority of wetlands can provide the following:
Water quality services
Flood storage services under excessive precipitation and the desynchronization of storm
Nutrients and other materials cycling services
Habitat for fish and wildlife
Services for passive recreation, such as bird watching and photography
Services for active recreation, such as hunting education and research
Services for esthetics and landscape enhance merit
A constructed wetland is an artificial shallow basin filled with substrate, usually soil or gravel, and planted with vegetation that has tolerance to saturated conditions. Water is then directed into the system from one end and flows over the surface (surface flow) or through the substrate (subsurface flow) and gets discharged from the other end at the lower point through a weir or other structure, which controls the depth of the water in the wetland [11]. Several forms of constructed wetlands have been introduced, including surface flow wetlands, subsurface flow wetlands, and hybrid systems that integrate surface and subsurface flow wetland types [6, 19]. Constructed wetland systems can also be combined with conventional treatment technologies to provide higher treatment efficiency [8]. The choice of constructed wetland types depends on the existing environmental conditions and how appropriate they are for domestic wastewater, agricultural wastewater, coal mine drainage, and stormwater [6].
\nConstructed wetlands have been widely used in the treatment of primary or secondary domestic sewage effluents, and others have been used to treat domestic wastewater and have also been modeled to handle high organic loads associated with agriculture or domestic wastewater [5]. A large number of constructed wetlands have also been built to treat drainage from active and abandoned coal mines [20]. The constructed wetland technology has recently been used in the control and management of stormwater flows, and its application in reducing the impacts by stormwater floods within urban areas is expanding globally [21]. The constructed wetland technology is not only preferred in stormwater flow control but also in the treatment of wastewater, and its preference is based on its low cost, low energy requirement, and need for minimal operational attention and skills. Due to its numerous merits and high sustainability potential, there is an increasing extensive research on its practical application to expand the knowledge on its operation and to provide more insight on its appropriate design, performance, operation, and maintenance for optimum environmental benefits. Even though the constructed wetlands are sturdy and effective systems, their performance depends on the periodic improvements to handle emerging contaminants such as antibiotic and antibacterial resistant genes, and for them to remain effective, they must be carefully designed, constructed, operated, and maintained [11, 12].
\nConstructed wetland is a system that puts together different units that work together to ensure that its intended purpose is achieved. Constructed wetland systems entail a properly designed and constructed basin that holds water, a substrate that provides filtration pathways, habitat/growth media for the needed organisms, and also communities of microbes and aquatic invertebrates, which in most cases develop naturally. Most importantly, constructed wetlands also hold vascular plants whose nature depends on the intended purification role and efficiency. The efficiency of the constructed wetlands in waste treatment depends on the interaction and maintenance of these components [22].
\nIn a constructed wetland system, natural geochemical and biological processes within a wetland realm are involved in the treatment of metals, explosives, and other contaminants that exist within the water. Normally, there are three primary components in a constructed wetland. Constructed wetland has an impermeable layer (generally clay). It also has a gravel layer that acts as a substrate needed for the provision of nutrients and support to the root zone. It also has an above-surface vegetation zone [16]. The impermeable layer within the constructed wetland system prevents infiltration of wastes down into underground aquifers. The gravel layer and root zone comprise of a layer where water flows and bioremediation and denitrification occur. The above-ground vegetative layer contains the well-adopted plant material. Within the wetlands, both the aerobic and anaerobic processes occur, and these can be divided into separate cells [5, 16]. Groundwater can be made to flow through pumping or naturally by gravity through the wetland. Within the anaerobic cells, plants and other natural microbes are involved in the degradation of the contaminant. The aerobic cell performs the work of further improving the water quality through continued exposure to the plants and the movement of water between cell compartments. The use of straw, manure, or compost with little or no soil substrate has been beneficial in the wetlands constructed primarily for the removal of metals. However, for wetlands constructed to treat explosives-contaminated water, certain plant species are used to enhance the degradation through a process termed phytoremediation [23].
\nWetlands are formed on substrates that are fully or partially submerged in water, where a relatively impermeable subsurface layer prevents the surface water from seeping into the ground [1, 2]. These conditions can be created with few modifications to form a constructed wetland. A constructed wetland can be built almost anywhere in the landscape by shaping the land surface to collect the surface water and by sealing the basin to retain the water [7]. Hydrology that enhances the linking of all the functions in a wetland system stands as the most important design factor to be considered in constructed wetlands, as it is often the primary factor in the success or failure of most constructed wetlands. Therefore, planning and putting up of constructed wetlands require the contribution of a qualified hydrologist to ensure that all the hydrological requirements and conditions are taken care of [24]. Even though the hydrology of most constructed wetlands is very much similar to the other surface and near-surface water, it does differ in several important respects. Small changes in hydrology can have fairly significant effects on a wetland’s functionality and its treatment effectiveness and efficiency. Indeed, due to the large surface area of the water and its shallow depth, a wetland system interacts strongly with the atmosphere through rainfall and evapotranspiration. This (the combined loss of water by evaporation from the water surface and loss through transpiration by plants) and the density of the vegetation of a wetland strongly affect the constructed wetlands’ hydrology. This can be experienced through the obstruction of water flow paths as the water finds its sinuous way through the network of stems, leaves, roots, and rhizomes, and it can also occur through the blockage of exposure to wind and sun [7, 24, 25]. Water always acts as a vehicle for delivering the pollutants to the system and also for discharging the untapped pollutants away from the system [24].
\nSubstrates for constructed wetlands can come in the form of sediment or litter. Substrates used to construct wetlands include soil, sand, gravel, rock, and organic materials such as compost [26]. Due to low water velocities and high productivity typical of wetlands, the sediment and litter accumulation occurs within the wetlands. The substrates, sediments, and litter have numerous functions that are beneficial to the efficiency of the constructed wetlands. They provide support to many of the living organisms in wetlands, and the substrate permeability also affects the movement of water through the wetland and provides numerous chemical and biological processes, many of which are microbial in nature and also enhance the transformation of pollutants within the substrates. The substrates also provide storage for many contaminants, and the accumulation of litter increases the amount of organic matter in the wetland, which provides sites for material exchange and microbial attachment. Through this process, carbon source is realized as well as the energy source that drives some of the important biological reactions in wetlands.
\nFlooding of the constructed wetlands with water has a contribution in its functional mechanism. The physical and chemical characteristics of soils and other substrates are altered when they are wholly or partially under water. For example, under saturated substrate, the water replaces the atmospheric gases within the pore spaces and the microbial-driven metabolism results in the consumption of the available oxygen. Therefore, since oxygen is consumed more rapidly than it can be replaced by diffusion from the atmosphere, the substrates change to anoxic condition (without oxygen). Such conditions become significant in the removal of pollutants such as nitrogen and metals. However, substrates can also act as reservoirs for most contaminants, with high concentration of emerging contaminants such as resistant genes being detected in the constructed wetland substrates [27, 28].
\nConstructed wetlands can work with both the vascular plants (the higher plants) and nonvascular plants (algae), and the photosynthesis process by algae increases the dissolved oxygen content of the water which in turn affects nutrients and metals [18, 29]. Constructed wetlands also attract large organisms such as birds which can feed on contaminants. Additionally, they form attachment surfaces for other protozoans and other microorganisms such as zooplanktons, phytoplanktons, and bacterioplanktons which also aid in the elimination of pollutants and contaminants [30, 31]. Vegetation acts as the main trapping and retention points for most contaminants. Studies have continued to detect a high concentration of emerging contaminants such as resistant genes within the root systems of most constructed wetland vegetations [11, 32].
\nConstructed wetlands’ performance is also a factor of other life-forms. Organisms within the wetlands include microorganisms and other larger animals. The regulation functions by the microorganisms and their metabolism processes are the fundamental functions of the wetlands systems [33]. The microorganisms are varied in species and possess the required adaptions to drive the functions of the wetland systems. The known significant microorganisms include bacteria, yeasts, fungi, protozoa, and rind algae. The biomass generated from these microbes (microbial biomass) forms a major useful sink for organic carbon and many nutrients. Additionally, the microbial activities also transform a great number of organic and inorganic substances into innocuous or insoluble substances as well as alter the reduction/oxidation (redox) conditions of the substrate, and thus not only affect the processing capacity of the wetland but also enhance the recycling of nutrients. Some microbial transformation processes are aerobic as they require free oxygen to occur, while others are anaerobic as they occur under the absence of free oxygen. However, most of the bacterial species are also facultative anaerobes in nature. These groups are capable of functioning under the constructed wetland conditions of either aerobic or anaerobic in response to changing environmental conditions [6, 34].
\nThe level of water within a constructed system is crucial to the microbial activities, and microbial populations undergo adjustments to changes in the water delivered to them. Populations of microbes can rapidly expand under the condition of suitable energy-containing materials. However, when environmental conditions become unsuitable, many microorganisms become dormant and can remain dormant for years [35]. The microbial community of a constructed wetland can be affected by toxic substances, such as pesticides and heavy metals, and care must be taken to prevent such chemicals from being introduced at damaging concentrations. The biodiversity with the constructed wetlands is rich, and this is based on the favorable habitat that the system provides to different forms of organisms, which range from animals to plants, including invertebrates and vertebrates. The invertebrate animals, which include insects and worms, contribute to the treatment process by actively fragmenting detritus and consuming organic matter [36]. Additionally, the larvae of many insects are also aquatic and they undertake the consumption of a significant amount of material during their larval stages, which may last for several years in most insect species. The invertebrates also perform a number of ecological roles; for example, dragonfly nymphs have been confirmed to be important predators of mosquito larvae which results in biocontrol of malaria in most waterlogged areas. Despite invertebrates being the most important animals as far as water quality improvement is concerned, constructed wetlands also harbor a variety of amphibians, turtles, birds, and mammals, all of which are important in the systems’ ecological balancing [37].
\nThe mechanisms that are available to improve water quality within a constructed wetland system are numerous and often interrelated. The mechanisms involve the settling of suspended particulate matter; the filtration and chemical precipitation through contact of the water with the substrate and litter; chemical transformation; adsorption and ion exchange on the surfaces of plants, substrate, sediment, and litter; the breakdown and transformation of pollutants by microorganisms and plants uptake; and transformation of nutrients by microorganisms and plants as well as the predation and natural die-off of pathogens [36]. The removal can be undertaken biologically through microbiological degradation through catabolism and anabolism, protozoic predation and digestion, and through plant uptake and storage; chemically through adsorption (ionic and covalent) oxidation, reduction, and UV degradation and physically through filtration and settlement, which filters some materials and degrades others [38, 39, 40].
\nConstructed wetland treatment technology incorporates the principal components of wetland ecosystems that promote degradation and control of contaminants by plants, degradation by microbial activity, and increased sorption, filtering, and precipitation [38, 39, 40]. The treatment need dictates the nature of technology required and requires proper selection of designs, such as surface or subsurface flow, single or multiple cells, and parallel or series flow. Putting up of constructed wetland systems are sometimes part of a treatment train that integrates processes in series such as settling ponds, oil/water separators, and physical/chemical treatment methods. The removal mechanisms within the constructed wetlands can act uniquely, sequentially, or simultaneously on each contaminant group or species [3, 4]. For instance, the volatile organic compounds (VOCs) in contaminated groundwater are primarily eliminated through the integrative physical mechanism of diffusion-volatilization. Further to this, mechanisms such as adsorption to suspended matter, photochemical oxidation, and biological degradation may also play a role. Within a constructed wetland treatment system, physical removal mechanisms of contaminants include settling, sedimentation, and volatilization. Gravitational settling is responsible for most of the removal of suspended solids. The most effective treatment wetlands are those that foster these mechanisms.
\nThe long-term effectiveness of constructed wetlands to contain or treat some contaminants is not well known. Wetland aging may contribute to a decrease in contaminant removal rates over time. However, constructed wetlands are a cost-effective and technically feasible approach to treating wastewater and runoff for several reasons [41].
\nConstructed wetlands’ demerits outweigh the merits. Some of the merits are that they can be less expensive and more affordable to build than other forms of treatments, their cost of operation and maintenance (required supplies and energy) are low, and the operation and maintenance only require periodic and not continuous on-site labor. Furthermore, the constructed wetlands are able to tolerate fluctuations in flow, they sustainably facilitate water recycling and reuse, they provide favorable habitat for many wetland organisms, and the system can be built to fit harmoniously into the landscape. Constructed wetlands have the ability to provide numerous benefits in addition to water quality improvement, such as wildlife habitat that supports tourism and other sporting, and they enhance the esthetic enhancement of open spaces. Therefore, due to all the above economic, ecological, and esthetic benefits, constructed wetlands are environmentally sensitive treatment approaches that are viewed with favor by the general public [42].
\nThe use of constructed wetlands is also subject to limitations that are associated with the use and putting up of the system. Compared to conventional wastewater treatment systems, constructed wetlands generally require larger land areas. Even though wetland treatment may be economical relative to other options, this only applies to where land is available and affordable. The constructed wetland’s performance efficiency may be less consistent as compared to the conventional treatment. The treatment efficiency of constructed wetlands may vary; this variation may be seasonal in response to changing environmental conditions, including rainfall and drought or spatial in relation to the existing weather conditions in different places. While the average performance over the year may be acceptable, but due to such fluctuations in performance efficiency, wetland treatment cannot be relied upon if the effluent quality must meet stringent discharge standards at all times. The biological components are always sensitive to toxic chemicals, such as ammonia, and other pesticides that are periodically flushed or surged by the flowing water, and this may temporarily reduce treatment effectiveness and reduce the efficiency. For proper survival and improved efficiency, constructed wetlands also require a minimum amount of water. While wetlands can tolerate temporary drawdowns, they cannot withstand complete drying and some plants in it can also not tolerate complete submergence [1]. The use of constructed wetlands for wastewater treatment and stormwater control is a fairly recent development. There is yet no consensus on the optimal design of wetland systems, nor is there much information on their long-term performance. Furthermore, its ability and potential to eliminate emerging contaminants such as resistant genes have not been fully realized [32].
\nAntibiotic-resistant genes (ARGs) originate from hospitals, wastewater treatment plants effluents and sewage sludge, and animal slurry in farmland. Soils, surface water (e.g., seas and rivers), and sediments are contaminated by these large arrays of antibiotic resistance genes [43]. Resistant genes are the major courses of antibiotic resistance, which is one of the upcoming crucial concerns to global health care with considerable effect in rising morbidity, mortality, and costs associated with major public health problems. Antimicrobial resistance occurs naturally over time, usually through genetic changes. However, the misuse and overuse of antimicrobials is accelerating this process [44]. Horizontal and lateral gene transfers have greatly contributed to the increasing number of drug-resistant pathogens within the environment (Figure 1).
\nThe transfer of resistant genes between resistant and nonresistant microbes.
Antibiotic resistance has the potential to affect people at any stage of life as well as the health-care, veterinary, and agriculture industries, making it one of the world’s most urgent environmental and public health problems. [45]. Its chain of spread spans from contaminated wastewater discharges from the hospitals to the consumption of contaminated food material (Figure 2). The occurrence of antibiotic-resistant genes in the environment is considered one of the most urgent threats to modern health care and environmental quality and safety. It is often assumed that the abundance and diversity of known resistance genes are representative also for the non-characterized fraction of the resistome in a given environment [46]. Antibiotic resistance genes are ubiquitous in the environment, which has led to the suggestion that there is a high risk these genes can cause in the spread of the disease [46, 47].
\nResistant genes contamination pathways.
Constructed wetlands, though designed to remove and eliminate pollutants from wastewater, can also be the hot spots for horizontal or vertical gene transfer, enabling the spread of antibiotic resistance genes between different microorganisms. Antibiotic resistance occurs due to changes or mutations in the DNA of the microorganism, or due to the acquisition of antibiotic resistance genes from other microbial species through gene transfer. The transfer of genetic materials between unrelated individuals is termed horizontal gene transfer, while the transfer of genetic materials from parent to their offspring is termed vertical gene transfer [48]. Horizontal gene transfer is the major source of ARGs as well as the emergence of pathogenic forms of microorganisms with new virulence [11, 12]. Constructed wetlands being the reservoir for various strains and species of microorganisms may provide the media for such transfers to occur, hence contributing to problems of drug resistance [11]. There is rising concern due to the wide presence of antibiotics in the constructed wetlands, as it not only causes serious toxic effects on organisms but also promotes the spread of antibiotic-resistant genes (ARGs), even with low concentrations in the environment. ARGs being spread through horizontal or vertical gene transfers can also be spread and maintained in microbial populations, even without selection pressure from antibiotics, and wetlands systems provide favorable transfer grounds [12].
\nThe recognition that the environment could serve as a source for resistance genes to human pathogens has spurred interest in investigating the distribution of resistance genes in various environments to better understand the process [10, 32]. Wastewater and wastewater treatment plants such as constructed wetlands can act as reservoirs and environmental suppliers of antibiotic resistance through filtration and load of resistant genes into the aquatic ecosystems [13]. Indeed, wastewater has been confirmed to be the major route by which the antimicrobials, ARBs, and ARGs are introduced into the natural ecosystem from the human settings. Although wastewater treatment plants such as the constructed wetlands significantly reduce the load of bacteria, the final effluents may contain ARBs, sometimes even at higher concentrations than in the raw wastewater [11, 12].
\nConsiderable research has been conducted on the behavior and fate of ARBs and ARGs discharged from different forms of wastewater to soil through the application of animal manure wastewater irrigation and to aquatic environments through wastewater discharge and runoff. The impact of discharging ARGs in treated wastewater to aquatic systems as well as associated ARG amplification and attenuation dynamics has neither been adequately researched nor discussed. Indeed, intracellular and free ARGs in surface and groundwater can propagate through horizontal gene transfer to indigenous pathogenic microbes. Furthermore, these ARBs may eventually reach and colonize humans through multiple pathways resulting in acute infections or long-term silent colonization that can eventually evolve into an infection [13].
\nThere are various routes through which the antibiotic-resistant genes can enter the environment. One major route is when the antibiotic-resistant pathogens and associated metabolites are released from hospitals through urine and feces from patients as hospital wastewater. After the release, the effluent physical chemical characteristics and the prevailing environmental factors determine the biodegradation, adsorption, and uptake processes of these drug-resistant pathogens and related genes, eventually shaping the abundance and diversity of the available drug-resistant bacteria. Similarly, antibiotics may be released into the wastewater treatment system via people taking antibiotics from home (Figure 3). From the wastewater treatment plants, the antibiotics can load into sludge, which are later dispersed on fields as fertilizer or released as runoff directly into the receiving surface water [49, 50]. Further to this, wastewater can also be treated by releasing it into constructed wetlands. In such cases, the constructed wetlands will be exposed to antibiotic contaminants from the wastewater. Even though the constructed wetland is expected to filter all the contaminants, including the drug-resistant pathogens and related genes, that is always not the case, the receiving effluents may still receive some amount of drug-resistant pathogens and related genes as effluent loads from the constructed wetland system. Additionally, antibiotics are also used therapeutically or as growth promoters in livestock and poultry. Antibiotics and their metabolites can spread through animal excrements and end up in the treatment systems such as the constructed wetlands, which can eventually release the treated effluents into the fields and groundwater, or in the case of antibiotic use in fish farms, directly into the aquatic environment. It is also worth noting that wherever antibiotics are spread, it is also likely that resistant bacteria follow the same routes of dispersal [51, 52]. Due to these interactions and movements of the drug-resistant pathogens and related genes, there have been increased levels of antibiotics, ARGs, and drug-resistant bacteria within the environment. Furthermore, the environmental bacterial flora which also harbor ARGs and potential ARGs continue to increase within the receiving aquatic environments. Therefore, these types of environments are the likely resistance hot spots where ARGs proliferate and new resistant strains are created by and transferred to other parts of the environment. Due to the increased spread of drug-resistant bacteria and related genes, the routes by which humans come into contact with these bacteria are also increasing. These may include consumption of crops grown by contaminated sludge used as fertilizer, drinking of water drawn from contaminated groundwater or surface water, and frolicking in marine water linked to contaminated surface water. When these resistant bacteria enter humans, they have the opportunity to spread their ARGs to the human microbiome and, through constructed wetlands in wastewater treatment, the cycle repeats [50, 53].
\nContribution of constructed wetland in the ARG removal and reloading.
While ARGs in their environmental context may originally have had other primary functions aside from conferring resistance to antibiotics, these genes have now been recruited as resistance genes in pathogenic bacteria. Reuse of treated wastewater is increasingly seen as one of the solutions to tackle the water scarcity problem and to limit the pollution load to surface water. Yet, using reclaimed water for non-potable purposes and particularly to irrigate food crops presents an exposure pathway for antibiotics and antibiotic-resistant bacteria and genes (ARB & G) to enter the human food chain. Wastewater reuse is currently of particular concern as the potential source of selective pressure that elevates the levels of antibiotic resistance in native bacteria [54]. Aquatic ecosystems are considered important matrices for the release, mixing, persistence, and spread of ARBs and ARGs associated with horizontally transferable genetic elements [11, 12]. Presently, existing regulations give little attention to the protection and management of wetlands, making them to increasingly get exposed to resistant gene-loaded human excreta, raw sewage, untreated wastewater, and other pollutants from diverse sources, making natural and constructed wetlands to be the potential reservoirs of ARBs carrying ARGs that might spread to microbes as well as man [55].
\nThe knowledge on antibiotic resistance in wastewater has continued to expand, but proper management for complete elimination with zero reloading into the environment has not been achieved. Indeed, in the past few years, introduction of high-tech molecular studies has increased the understanding on this study subject. However, there are still numerous gaps on the subject, such as how active are horizontal and lateral gene transfers in wastewater, what are the specific main driving factors to the transfer mechanisms, and what is the role of the wastewater treatment plants in increasing the spread of drug-resistant microbes. Indeed, even though constructed wetlands have been commercially used to control and degrade municipal and industrial wastewater, there is need for caution on how exotic wastes such as explosives and those that harbor resistant genes are handled by these systems. With the growing concerns that environmental concentrations of antibiotics exert a selective pressure on clinically relevant bacteria, for the control of such acute strains, there is need for a major shift toward a more localized management of the water cycle, pioneering low-cost wastewater treatment technologies, and more efficient monitoring strategies based on a limited number of indicators that would facilitate the assessment of the anthropogenic impact on the water cycle. Furthermore, there is need to better understand the dispersion processes and the fate of pathogenic and antibiotic-resistant bacteria in the environment, in order to prevent risks to humans and their environment, while also controlling and reducing as much as possible the anthropogenic bacterial input into the environment.
\nThe authors appreciate Egerton University for providing review materials and an opportunity to produce this chapter.
\nThe process of joining materials layer upon layer from 3D digital model data or Computer-Aided Design (CAD) model is known as additive manufacturing (AM) or 3D printing as per International Organization for Standardization (ISO)/American Society for Testing and Materials (ASTM) 52900:2015 standard [1]. 3D printing has a long history of development for using it in the rapid prototyping of products for manufacturing since the 1980s. This development has since then led to also accessibility to the public. These developments started when Chuck Hull of 3D System Corp. filed their patent for a stereolithographic process eventually evolving into a 3D-printing technology boom [2]. Today 3D printer is priced as low as $100 [3] and is therefore accessible to the general public. Recent advances in 3D printing include, for example, the manufacturing of biomaterials for biomedical applications, such as tissue engineering. With recent advancements in the 3D printers, the industrial printers can build as small layers as 16 μm and thus creating a major milestone for biomedical applications [4]. 3D-printing technology can be used in various forms of materials printing, including fused deposition modeling (FDM), stereolithography (SLA), selective laser melting (SLM), and electron beam melting (EBM). The most used techniques are stereolithography and fused deposition modeling [5].
The International Organization for Standardization (ISO)/American Society for Testing and Materials (ASTM) 52900:2015 has classified the additive manufacturing (AM) process into seven categories (Figure 1) [5, 6].
Additive manufacturing processes.
There are several benefits to using 3D printing, such as [5, 7]:
Design to component translation.
Greater customization.
Manufacturing of complex, flexible, or lightweight components with no additional cost.
Potential of zero-waste manufacturing.
On-demand manufacturing.
Excellent scalability.
Although the 3D-printing industry is rapidly growing, there have been several economic, social, and environmental challenges that need to be addressed, such as recycling of materials, energy usage, organic compounds emission, high cost of raw materials, and standards and certifications [6]. The lack of printing material [8] and the high cost of thermoplastic polymers add to the barrier to the industrialization of 3D-printing technologies [9]. The market growth potential is considerable for 3D-printing as it is estimated that the filament market will be worth $ 6.6 billion by 2026 [10]. One concern for the advancement of 3D printing other than the high cost of raw material is the emission of volatile organic compounds (VOC), including iso-butanol and methyl-methacrylate [11]. To address the abovementioned economic and environmental concerns, there has been a new advancement in the additive manufacturing process which includes the addition of additives can such as diatoms [10] and biodegradable materials, such as ceramics, biomaterials, graphene, carbon fibers, binders for metals, sand, and plaster [12]. The cost of these additives is relatively much less than the thermoplastic filaments. In addition, there are added benefits including included in the addition of additives, such as improved moisture resistance that may slow down the process of decomposition of the filament material and may potentially open up other innovative functional possibilities, such as immobilization of chemical sensors and bacteria and virus-killing agents for novel biomedical applications.
In general, the structures fabricated with 3D printing either using single or multiple materials are intrinsically static, hence 3D printing cannot meet the demands where dynamic materials applications are needed including, for example, hygromorph biocomposites [13], adaptive wind turbines [14], active biocomposites [15], and self-folding microgrippers [16]. This addition of a new dimension to 3D printing has started a new era of printing known as 4D printing and includes novel materials compositions, additives, and chemical functionalization.
There are several challenges associated with manufacturing or scaling up of 3D printing mentioned as follows [17]:
Earlier 3D printing or additive manufacturing was normally used for rapid prototyping only but in the current scenario, 3D printing has already established a large pool of diverse applications, for example, in manufacturing, sociocultural, food, and biomedical sectors. There is a wide range of applications from nano to macro to large scale for 3D printing (Figure 2).
Range of applications of 3D printing.
There are several types of advancements are done recently to increase the efficiency of the additive manufacturing process, such as materials advancement, process advancement, and post-processing advancement.
There are several challenges associated with 3D printing, such as emission of volatile organic compounds, creation of voids, and high cost of thermoplastic polymers. To avoid all these issues, recent advancements have been done which include the use of fillers, such as carbon fibers, nanofibers, graphite, and diatomaceous earth [9, 10]. Carbon nanotube/polylactic acid composites (CNT/PLA) and multi-walled carbon nanotube/polylactic acid composites (MWCNT/PLA) with strong mechanical properties are being explored in microelectronics [19]. The smaller particles sizes are used in composites to produce stiffness and high density in the printed products, such as hydroxyapatite-reinforced polyethylene/polyamide composites (HA-PE/PA) [20]. Carbon black/polyamide 12 (CA/PA12) composites were fabricated which enhance the mechanical, thermal, and electrical properties of printed products [21]. Nanomaterial composites, such as nanosilica/polyamide, nanoclay/polyamide, and graphite nanoplatelets/polyamide composites, have also been fabricated leading to improved mechanical properties [9]. These composites can be used for multiple applications, such as biomedical applications, because of the high surface area of fillers present (Figure 3) [10].
3D-printed Diatoms in the PLA matrix (original work).
3D-printed titanium firefighting drone [
There is an innovative advancement that mimics the living organism’s organic cellular structure and bone growth. The world’s largest 3D-printed airplane cabin component with a “bionic partition” which separates the passenger cabin from the galley has been divulged by Autodesk and Airbus. This design has made the partition very light with a 45% reduction in weight compared to traditional designs but still very strong. It has been estimated that this design would save 465,000 metric tons of CO2 emissions per year. This new bionic partition used the second-generation alloy of scandium, aluminum, and magnesium named “Scalmalloy” created by the 3D-printing expertise of Airbus subsidiary “APWorks” (Figure 5) [24].
Airbus 3D printed bionic partition cabin [Source: Airbus].
Similarly, Airbus has collaborated with Materialise to produce the 3D-printed bionic spacer panel using FDM and Materialise’s post-production processes which made the panel 15% light in weight compared to traditional panels (Figure 6) [25, 26].
3D-printed finished spacer panel, [Source: Materialise].
Stratasys has been 3D printing more Airbus cabin components for years now [27]. Airbus A350 XWB was decided to be manufactured by 3D printing (Figure 7) [28].
Airbus 3D metal-printed bionic titanium bracket [Source: Airbus].
Alquist 3D has printed the first-ever 3D-printed house in the US which was assembled in 22 hours. The printer head was connected to the tube through which the traditional concrete was being pumped. Alquist 3D has teamed up with the nonprofit organization known as “Habitat for Humanity” where they will be providing homes to the people in need. Alquist 3D has claimed that the 3D-printed houses are 10–15% less in cost compared to traditional house building. It has saved the manpower also as according to Alquist 3D, only 3–4 humans were required to operate the printer [29]. This was not the first time 3D-printed houses have been built. In France, 3D-printed houses were built and Europe’s first 3D-printed house was built in 22 days which was later shortened to 3 days. In Dubai, there have been 3D-printed offices have been built. According to the Dubai government, it has saved them almost 50% of the total cost [30]. Initially, 3D printing was used only for prototyping the construction but now 3D printing has been used for constructing the whole buildings.
Porsche has used 3D-printing technology to produce 3D-printed pistons, spare parts, and sports seats. Porsche has developed the lightweight, better thermal resistance, high-performance pistons for the twin-turbo boxer engine of the 911GT2 RS model leading to a 30-horsepower gain. This process used the laser printing or laser metal fusion process in collaboration with MAHLE & TRUMPF which uses the high-precision machine, TruPrint 3000 with a 500-Watt fiber laser and high-purity metal special aluminum alloy powder which melted to print 1200 layers ending into the desired shape (Figure 8) [31, 32].
Pistons of the twin-turbo boxer engine of 911GT2 RS [Source: Porsche AG].
Porsche has been manufacturing spare parts using selective laser melting since 2018 but recently, Porsche has started manufacturing personalized bodyform full-bucket sports seats for Porsche 911 and 718. Porsche has also invested in 3D-printing specialist INTAMSYS (Figure 9).
3D-Printed bodyform full-bucket sports seats [Source: Porsche AG].
Porsche has also produced its first complete housing for its electric drive using the additive laser fusion process which has opened the possibilities for 3D printing in the highly stressed electric sports cars sector (Figure 10) [33].
Prototype for small series production [Source: Porsche AG].
4D printing or smart printing has a unique basic characteristic that differentiates it from the static 3D-printing structures; 4D-printing materials are dynamic and able to have functionality [8]. The well-used definition describing the 4D-printing states “It is the evolution of a 3D printed structure either in shape, property, and functionality when it is exposed to external factors such as light [38], heat [39], pH [40], and water [41]”. 4D printing can be defined as the best combination of a smart material, a 3D printer, and a well-programmed automated design (Figure 11) [8].
3D vs 4D printing.
There are five factors that influence the 4D printing which are the additive manufacturing process, feedstock material, stimuli, interaction mechanism, and modeling [42].
According to F. Momeni and J. Ni, there are three laws that define the shape-changing behavior of 4D-printed objects [43]. The first law states that “all the shapes changing behaviors such as curling, twisting, coiling, bending, etc. of multi-material 4D structures are due to the relative expansion between active and passive materials.”
The second law states that “there are four physical factors behind the shape changing ability of all multi-material 4D structures i.e., mass diffusion, thermal expansion, molecular transformation, and organic growth.”
The third law states that the “time-dependent shape-morphing behavior of nearly all multi-material 4D printed structures is governed by two “types” of time constants” (Table 1).
Types of materials | Examples | References |
---|---|---|
Responsive toward moisture: Hydrogels | Hydrogels respond to moisture or water and can expand up to 200% of their original volume. Sustainable materials, such as cellulose, can be used as hydrogel printing ink compatible with various types of printers | [8, 14, 40] |
Responsive toward light: photo-responsive | Chromophore (photosensitive) materials are inserted into smart material for which light acts as an indirect stimulus because light generates the heat which eventually changes the shape of the material. | [8, 37] |
Responsive toward temperature: thermo-responsive | Temperature (heating or cooling) is used as an external stimulus either to change the shape of material – shape change effect (SCE) or to transform the deformed shape into the original shape – shape memory effect (SME). SMEs can be polymers, metals, ceramics, alloys, and gels. These smart materials are used in biomedical applications such as orthodontics, physiotherapy, orthopedics, surgeries, etc. | [8, 38] |
Materials responsive toward pH | Polyelectrolytes are used as smart material which changes their shape as the pH changes with the release or gain of protons. It has found applications in biocatalysts, valves, actuators, drug delivery, etc. | [8, 39] |
Materials responsive toward the electric field | An electric field is also the indirect stimulus that produces the heat and causes the change in shape. For instance, origami using polypyrrole | [8] |
Materials responsive toward the magnetic field | Smart materials change their shape in the presence of a magnetic field. Magnetic nanoparticles are incorporated into hydrogels which respond in the presence of a magnetic field | [8, 41, 42] |
Piezoelectric materials | The charge is produced with mechanical stress which eventually causes the deformation. | [8, 41, 42] |
Types of materials used in 4D printing.
There are revolutionary applications associated with the 4D printing, such as biomedical applications of 4D printing in drug delivery, organ regeneration and transplantation, and tissue fabrication [44]. 4D-printed structures have great potential in soft robotics because of their capability to deform, adjust to environmental changes, and flexibility [8]. 4D-printed structures with smart materials can be used as self-evolving structures [45, 46], active origami structures [47], self-sustainable satellite manufacturing parts [8], sensors responsive toward moisture, temperature, pH, magnetic energy, etc. [8]. Despite diverse applications, 4D printing needs more research and development, especially in scaling it up. Commercializing the 4D printing is troublesome because of the high production cost, installation cost and material used and availability. Multi-materials printers could be a possible solution but need furthermore research (Figure 12).
4D printed metamaterials reconfigurable object [
Additive manufacturing was invented in the 1940s and it has developed a lot with innovative inventions since then. The different additive manufacturing process techniques have specific peculiarities and the disadvantage of one technique can lead to the innovation of a new technique. The development of different types of printers has enabled the AM to use different types of materials which include plastics, metals, and ceramics. New improvements in AM techniques allow the high filler loading in thermoplastic composites.
3D printing has diverse applications include for instance food, fashion, biomedical, health, aerospace, and cultural heritage preservation. 3D printing helps the consumer to customize the product as per their requirements. There are a few challenges that need to be addressed, such as emission of volatile organic compounds, creation of voids, high cost of thermoplastic polymers, and weak mechanical strength, of printed structures. To overcome these challenges composites with fillers have been fabricated such as carbon nanotube/polylactic acid composites, nanosilica/polyamide composites, and carbon black/polyamide composites which have increased the mechanical, electrical, and thermal properties of the composites.
Despite highly diverse applications of 3D printing and new advancements in 3D printing, there are still a few challenges that restrict the usage of 3D printing on a commercial scale. These include the resistance and adaptability of 3D-printed material’s properties and structures against the change in environmental factors, such as temperature, electric energy, and pH.
4D printing is basically the combination of a 3D printer, smart material, and well-designed programming that allows the 3D-printed object to change its shape, properties, and functionality with time. 4D-printed objects change or modify against environmental conditions. These materials can be responsive to heat, water, pH, electric energy, and magnetic field. 4D printing has increased the number of application areas for additive manufacturing and thus expanded to include aviation, self-sustaining material, sensors, active materials, and bioprinting.
There has been a tremendous amount of technological advancement and research on 3D and 4D printing, and its applications. New advancements have been, however, the commercialization and implementation at a larger stage are still in progress and therefore more research and development are needed. Importantly more sustainable materials need to be explored due to the environmental risks associated with some of the materials and techniques used. The potential to create solutions to some of the most challenging product development needs in various industries using 3D- and 4D-printing technologies remain high. These developments are many times related to niche products that cannot be manufactured otherwise.
Our business values are based on those any scientist applies to their research. The values of our business are based on the same ones that all good scientists apply to their research. We have created a culture of respect and collaboration within a relaxed, friendly, and progressive atmosphere, while maintaining academic rigour.
\n\nPlease check out our job board for open positions.
',metaTitle:"Careers at IntechOpen",metaDescription:"Employee quote to be added",metaKeywords:null,canonicalURL:"/page/careers-at-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\\n\\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\\n\\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\\n\\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\\n\\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\n\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\n\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\n\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\n\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\n\n\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2458},{group:"region",caption:"Asia",value:4,count:12717},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:12718},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,10,11,14,15,20,22,24"},books:[{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11922",title:"Watermarking - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9843dc1d810407088ed9eef10768a64b",slug:null,bookSignature:"Prof. Joceli Mayer",coverURL:"https://cdn.intechopen.com/books/images_new/11922.jpg",editedByType:null,editors:[{id:"110638",title:"Prof.",name:"Joceli",surname:"Mayer",slug:"joceli-mayer",fullName:"Joceli Mayer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11762",title:"Characteristics and Applications of Boron",subtitle:null,isOpenForSubmission:!0,hash:"611776f7f3cc9951a8956d2e3d535a8e",slug:null,bookSignature:"Associate Prof. Chatchawal Wongchoosuk",coverURL:"https://cdn.intechopen.com/books/images_new/11762.jpg",editedByType:null,editors:[{id:"34521",title:"Associate Prof.",name:"Chatchawal",surname:"Wongchoosuk",slug:"chatchawal-wongchoosuk",fullName:"Chatchawal Wongchoosuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11910",title:"Frontiers in Voltammetry",subtitle:null,isOpenForSubmission:!0,hash:"fc53a7599a61ed04a0672a7bca81e9c2",slug:null,bookSignature:"Dr. Rajendrachari Shashanka, Dr. Kiran Kenchappa Somashekharappa, Dr. Sharath Peramenahalli Chikkegouda and Dr. Shamanth Vasanth",coverURL:"https://cdn.intechopen.com/books/images_new/11910.jpg",editedByType:null,editors:[{id:"246025",title:"Dr.",name:"Shashanka",surname:"Rajendrachari",slug:"shashanka-rajendrachari",fullName:"Shashanka Rajendrachari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11517",title:"Phase Change Materials - Technology and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1b7a5f2631db5e49399539ade1edf264",slug:null,bookSignature:"Dr. Manish K Rathod",coverURL:"https://cdn.intechopen.com/books/images_new/11517.jpg",editedByType:null,editors:[{id:"236035",title:"Dr.",name:"Manish",surname:"Rathod",slug:"manish-rathod",fullName:"Manish Rathod"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11451",title:"Molecular Docking - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8c918a1973786c7059752b28601f1329",slug:null,bookSignature:"Dr. Erman Salih Istifli",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",editedByType:null,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11932",title:"New Materials and Enhanced Performance of Sodium-Ion Batteries",subtitle:null,isOpenForSubmission:!0,hash:"75c27a6f2739e8af817bace95b0e50d6",slug:null,bookSignature:"Ph.D. Fatma SARF",coverURL:"https://cdn.intechopen.com/books/images_new/11932.jpg",editedByType:null,editors:[{id:"245850",title:"Ph.D.",name:"Fatma",surname:"SARF",slug:"fatma-sarf",fullName:"Fatma SARF"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11528",title:"Maintenance Management - Current Challenges, New Developments, and Future Directions",subtitle:null,isOpenForSubmission:!0,hash:"a3e4ad5806a77b0e930fbd4cb191bee2",slug:null,bookSignature:"Prof. Germano Lambert-Torres, Dr. Erik Leandro Bonaldi and Dr. Levy Ely Oliveira",coverURL:"https://cdn.intechopen.com/books/images_new/11528.jpg",editedByType:null,editors:[{id:"112971",title:"Prof.",name:"Germano",surname:"Lambert-Torres",slug:"germano-lambert-torres",fullName:"Germano Lambert-Torres"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11760",title:"Applications and Use of Diamond",subtitle:null,isOpenForSubmission:!0,hash:"2edcf9a24450d8655e756e1080defe32",slug:null,bookSignature:"Mr. Evgeniy Lipatov",coverURL:"https://cdn.intechopen.com/books/images_new/11760.jpg",editedByType:null,editors:[{id:"21254",title:"Mr.",name:"Evgeniy",surname:"Lipatov",slug:"evgeniy-lipatov",fullName:"Evgeniy Lipatov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11486",title:"Climate Change - Recent Observations",subtitle:null,isOpenForSubmission:!0,hash:"741543ff220f5cf688efbf12d3e2f536",slug:null,bookSignature:"Assistant Prof. Terence Epule Epule",coverURL:"https://cdn.intechopen.com/books/images_new/11486.jpg",editedByType:null,editors:[{id:"348146",title:"Assistant Prof.",name:"Terence Epule",surname:"Epule",slug:"terence-epule-epule",fullName:"Terence Epule Epule"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11509",title:"Wireless Power Transfer - Perspectives and Application",subtitle:null,isOpenForSubmission:!0,hash:"f188555eee4211fc24b6cca361983149",slug:null,bookSignature:"Dr. Kim Ho Yeap",coverURL:"https://cdn.intechopen.com/books/images_new/11509.jpg",editedByType:null,editors:[{id:"126825",title:"Dr.",name:"Kim Ho",surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:174},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"202",title:"Surgery",slug:"surgery",parent:{id:"16",title:"Medicine",slug:"medicine"},numberOfBooks:142,numberOfSeries:0,numberOfAuthorsAndEditors:3738,numberOfWosCitations:1281,numberOfCrossrefCitations:976,numberOfDimensionsCitations:2244,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"202",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10708",title:"Topics in Regional Anesthesia",subtitle:null,isOpenForSubmission:!1,hash:"264f7f37033b4867cace7912287fccaa",slug:"topics-in-regional-anesthesia",bookSignature:"Víctor M. Whizar-Lugo, José Ramón Saucillo-Osuna and Guillermo Castorena-Arellano",coverURL:"https://cdn.intechopen.com/books/images_new/10708.jpg",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11238",title:"Hernia Surgery",subtitle:null,isOpenForSubmission:!1,hash:"1663b79cce4c6cddb688a027bd0cd34d",slug:"hernia-surgery",bookSignature:"Selim Sözen and Hasan Erdem",coverURL:"https://cdn.intechopen.com/books/images_new/11238.jpg",editedByType:"Edited by",editors:[{id:"90616",title:"Associate Prof.",name:"Selim",middleName:null,surname:"Sözen",slug:"selim-sozen",fullName:"Selim Sözen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editedByType:"Edited by",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10866",title:"Skin Grafts for Successful Wound Closure",subtitle:null,isOpenForSubmission:!1,hash:"7f96063ba4feb9aab82c344a88a8c90c",slug:"skin-grafts-for-successful-wound-closure",bookSignature:"Madhuri Gore",coverURL:"https://cdn.intechopen.com/books/images_new/10866.jpg",editedByType:"Edited by",editors:[{id:"157243",title:"Dr.",name:"Madhuri",middleName:null,surname:"Gore",slug:"madhuri-gore",fullName:"Madhuri Gore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10711",title:"Arthroscopy",subtitle:null,isOpenForSubmission:!1,hash:"afa83f11ba2442e7612f5b8c6aa3c659",slug:"arthroscopy",bookSignature:"Carlos Suarez-Ahedo",coverURL:"https://cdn.intechopen.com/books/images_new/10711.jpg",editedByType:"Edited by",editors:[{id:"235976",title:"M.D.",name:"Carlos",middleName:null,surname:"Suarez-Ahedo",slug:"carlos-suarez-ahedo",fullName:"Carlos Suarez-Ahedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10723",title:"Brachial Plexus Injury",subtitle:"New Techniques and Ideas",isOpenForSubmission:!1,hash:"94c1a38f1ee7a078ee6ec640360c39f2",slug:"brachial-plexus-injury-new-techniques-and-ideas",bookSignature:"Jörg Bahm",coverURL:"https://cdn.intechopen.com/books/images_new/10723.jpg",editedByType:"Edited by",editors:[{id:"78207",title:"Prof.",name:"Jörg",middleName:null,surname:"Bahm",slug:"jorg-bahm",fullName:"Jörg Bahm"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10447",title:"The Art and Science of Abdominal Hernia",subtitle:null,isOpenForSubmission:!1,hash:"d3ace0f00ca1fdef094c105930ad353a",slug:"the-art-and-science-of-abdominal-hernia",bookSignature:"Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/10447.jpg",editedByType:"Edited by",editors:[{id:"235128",title:"Dr.",name:"Muhammad",middleName:null,surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10492",title:"Advances in Minimally Invasive Surgery",subtitle:null,isOpenForSubmission:!1,hash:"99d1149818bdb9bfa83675488599529c",slug:"advances-in-minimally-invasive-surgery",bookSignature:"Andrea Sanna",coverURL:"https://cdn.intechopen.com/books/images_new/10492.jpg",editedByType:"Edited by",editors:[{id:"327116",title:"M.D.",name:"Andrea",middleName:null,surname:"Sanna",slug:"andrea-sanna",fullName:"Andrea Sanna"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10302",title:"Aortic Aneurysm",subtitle:"Clinical Findings, Diagnostic, Treatment and Special Situations",isOpenForSubmission:!1,hash:"edb4662797c08616dc42b7796f1d17fe",slug:"aortic-aneurysm-clinical-findings-diagnostic-treatment-and-special-situations",bookSignature:"Ana Terezinha Guillaumon and Daniel Emilio Dalledone Siqueira",coverURL:"https://cdn.intechopen.com/books/images_new/10302.jpg",editedByType:"Edited by",editors:[{id:"251226",title:"Prof.",name:"Ana Terezinha",middleName:null,surname:"Guillaumon",slug:"ana-terezinha-guillaumon",fullName:"Ana Terezinha Guillaumon"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10537",title:"Frontiers in Clinical Neurosurgery",subtitle:null,isOpenForSubmission:!1,hash:"908c7edd9fcb3cbafbf42d30232db9a0",slug:"frontiers-in-clinical-neurosurgery",bookSignature:"Xianli Lv, Guihuai Wang, James Wang and Zhongxue Wu",coverURL:"https://cdn.intechopen.com/books/images_new/10537.jpg",editedByType:"Edited by",editors:[{id:"153155",title:"Dr.",name:"Xianli",middleName:null,surname:"Lv",slug:"xianli-lv",fullName:"Xianli Lv"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9818",title:"Bariatric Surgery",subtitle:"From the Non-Surgical Approach to the Post-Surgery Individual Care",isOpenForSubmission:!1,hash:"6083018185852f95759958b4d9e5e33b",slug:"bariatric-surgery-from-the-non-surgical-approach-to-the-post-surgery-individual-care",bookSignature:"Nieves Saiz-Sapena and Juan Miguel Oviedo",coverURL:"https://cdn.intechopen.com/books/images_new/9818.jpg",editedByType:"Edited by",editors:[{id:"204651",title:"Dr.",name:"Nieves",middleName:null,surname:"Saiz-Sapena",slug:"nieves-saiz-sapena",fullName:"Nieves Saiz-Sapena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9790",title:"Surgical Management of Head and Neck Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"8ae195fe1164fd55b69b775d596f1e8a",slug:"surgical-management-of-head-and-neck-pathologies",bookSignature:"Ho-Hyun (Brian) Sun",coverURL:"https://cdn.intechopen.com/books/images_new/9790.jpg",editedByType:"Edited by",editors:[{id:"184302",title:"Dr.",name:"H. Brian",middleName:null,surname:"Sun",slug:"h.-brian-sun",fullName:"H. Brian Sun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:142,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"26862",doi:"10.5772/27413",title:"Titanium as a Biomaterial for Implants",slug:"titanium-as-a-biomaterial-for-implants",totalDownloads:16257,totalCrossrefCites:51,totalDimensionsCites:125,abstract:null,book:{id:"938",slug:"recent-advances-in-arthroplasty",title:"Recent Advances in Arthroplasty",fullTitle:"Recent Advances in Arthroplasty"},signatures:"Carlos Oldani and Alejandro Dominguez",authors:[{id:"70012",title:"Dr.",name:"Carlos",middleName:null,surname:"Oldani",slug:"carlos-oldani",fullName:"Carlos Oldani"},{id:"73445",title:"MSc.",name:"Alejandro",middleName:"Anibal",surname:"Dominguez",slug:"alejandro-dominguez",fullName:"Alejandro Dominguez"}]},{id:"58199",doi:"10.5772/intechopen.71963",title:"Virtual and Augmented Reality in Medical Education",slug:"virtual-and-augmented-reality-in-medical-education",totalDownloads:3079,totalCrossrefCites:21,totalDimensionsCites:41,abstract:"Virtual reality (VR) and augmented reality (AR) are two contemporary simulation models that are currently upgrading medical education. VR provides a 3D and dynamic view of structures and the ability of the user to interact with them. The recent technological advances in haptics, display systems, and motion detection allow the user to have a realistic and interactive experience, enabling VR to be ideal for training in hands-on procedures. Consequently, surgical and other interventional procedures are the main fields of application of VR. AR provides the ability of projecting virtual information and structures over physical objects, thus enhancing or altering the real environment. The integration of AR applications in the understanding of anatomical structures and physiological mechanisms seems to be beneficial. Studies have tried to demonstrate the validity and educational effect of many VR and AR applications, in many different areas, employed via various hardware platforms. Some of them even propose a curriculum that integrates these methods. This chapter provides a brief history of VR and AR in medicine, as well as the principles and standards of their function. Finally, the studies that show the effect of the implementation of these methods in different fields of medical training are summarized and presented.",book:{id:"6211",slug:"medical-and-surgical-education-past-present-and-future",title:"Medical and Surgical Education",fullTitle:"Medical and Surgical Education - Past, Present and Future"},signatures:"Panteleimon Pantelidis, Angeliki Chorti, Ioanna Papagiouvanni,\nGeorgios Paparoidamis, Christos Drosos, Thrasyvoulos\nPanagiotakopoulos, Georgios Lales and Michail Sideris",authors:[{id:"211650",title:"M.D.",name:"Panteleimon",middleName:null,surname:"Pantelidis",slug:"panteleimon-pantelidis",fullName:"Panteleimon Pantelidis"},{id:"211654",title:"Ms.",name:"Angeliki",middleName:null,surname:"Chorti",slug:"angeliki-chorti",fullName:"Angeliki Chorti"},{id:"220557",title:"Ms.",name:"Ioanna",middleName:null,surname:"Papagiouvanni",slug:"ioanna-papagiouvanni",fullName:"Ioanna Papagiouvanni"},{id:"220558",title:"Mr.",name:"Georgios",middleName:null,surname:"Paparoidamis",slug:"georgios-paparoidamis",fullName:"Georgios Paparoidamis"},{id:"220559",title:"Mr.",name:"Georgios",middleName:null,surname:"Lales",slug:"georgios-lales",fullName:"Georgios Lales"},{id:"220560",title:"Mr.",name:"Thrasyvoulos",middleName:null,surname:"Panagiotakopoulos",slug:"thrasyvoulos-panagiotakopoulos",fullName:"Thrasyvoulos Panagiotakopoulos"},{id:"220561",title:"Mr.",name:"Christos",middleName:null,surname:"Drosos",slug:"christos-drosos",fullName:"Christos Drosos"},{id:"220562",title:"Dr.",name:"Michail",middleName:null,surname:"Sideris",slug:"michail-sideris",fullName:"Michail Sideris"}]},{id:"50915",doi:"10.5772/63266",title:"Doped Bioactive Glass Materials in Bone Regeneration",slug:"doped-bioactive-glass-materials-in-bone-regeneration",totalDownloads:3480,totalCrossrefCites:13,totalDimensionsCites:33,abstract:"In the arena of orthopaedic surgery, autograft is considered to be the gold standard for correction of fracture repair or other bone pathologies. But, it has some limitations such as donor site morbidity and shortage of supply, which evolved the use of allograft that also has some disadvantages such as immunogenic response to the host, low osteogenicity as well as possibilities of disease transmission. Despite the benefits of autografts and allografts, the limitations of each have necessitated the pursuit of alternatives biomaterials that has the ability to initiate osteogenesis, and the graft should closely mimic the natural bone along with regeneration of fibroblasts. A variety of artificial materials such as demineralised bone matrix, coralline hydroxyapatite and calcium phosphate-based ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and bioactive glass have been used over the decades to fill bone defects almost without associated soft tissue development. Most of them were having only the properties of osteointegration and osteoconduction. Only bioactive glass possesses osteogenic property that stimulates proliferation and differentiation of osteoprogenitor cells and in some cases influencing the fibroblastic properties. But, this material has also some disadvantages such as short-term and low mechanical strength along with decreased fracture resistance; but, this was further minimised by ion doping that positively enhanced new bone formation. There are many metal ions such as magnesium (Mg), strontium (Sr), manganese (Mn), iron (Fe), zinc (Zn), silver (Ag) and some rare earths that have been doped successfully into bioactive glass to enhance their mechanical and biological properties. In some of the cases, mesoporous bioactive glass materials with or without such doping have also been employed (with homogeneous distribution of pores in the size ranging between 2 and 50 nm). These biomaterials can be served as scaffold for bone regeneration with adequate mechanical properties to restore bone defects and facilitate healing process by regeneration of soft tissues as well. This chapter encompasses the use of bioactive glass in bulk and mesoporous form with doped therapeutic ions, their role in bone tissue regeneration, use as delivery of growth factors as well as coating material for orthopaedic implants.",book:{id:"5164",slug:"advanced-techniques-in-bone-regeneration",title:"Advanced Techniques in Bone Regeneration",fullTitle:"Advanced Techniques in Bone Regeneration"},signatures:"Samit Kumar Nandi, Arnab Mahato, Biswanath Kundu and Prasenjit\nMukherjee",authors:[{id:"60514",title:"Dr.",name:"Samit",middleName:null,surname:"Nandi",slug:"samit-nandi",fullName:"Samit Nandi"}]},{id:"37120",doi:"10.5772/29607",title:"Trigeminocardiac Reflex in Neurosurgery - Current Knowledge and Prospects",slug:"the-trigeminocardiac-reflex-in-neurosurgery-current-knowledge-and-prospects",totalDownloads:3423,totalCrossrefCites:10,totalDimensionsCites:27,abstract:null,book:{id:"749",slug:"explicative-cases-of-controversial-issues-in-neurosurgery",title:"Explicative Cases of Controversial Issues in Neurosurgery",fullTitle:"Explicative Cases of Controversial Issues in Neurosurgery"},signatures:"Amr Abdulazim, Martin N. Stienen, Pooyan Sadr-Eshkevari, Nora Prochnow, Nora Sandu, Benham Bohluli and Bernhard Schaller",authors:[{id:"78171",title:"Prof.",name:"Bernhard",middleName:null,surname:"Schaller",slug:"bernhard-schaller",fullName:"Bernhard Schaller"},{id:"78525",title:"Mr.",name:"Amr",middleName:null,surname:"Abdulazim",slug:"amr-abdulazim",fullName:"Amr Abdulazim"},{id:"78530",title:"Dr",name:"Pooyan",middleName:null,surname:"Sadr-Eshkevari",slug:"pooyan-sadr-eshkevari",fullName:"Pooyan Sadr-Eshkevari"},{id:"126039",title:"Dr.",name:"Martin",middleName:"Nikolaus",surname:"Stienen",slug:"martin-stienen",fullName:"Martin Stienen"},{id:"126040",title:"Dr.",name:"Nora",middleName:null,surname:"Prochnow",slug:"nora-prochnow",fullName:"Nora Prochnow"},{id:"126041",title:"Dr.",name:"Benham",middleName:null,surname:"Bohluli",slug:"benham-bohluli",fullName:"Benham Bohluli"}]},{id:"26559",doi:"10.5772/28833",title:"Local Antibiotic Therapy in the Treatment of Bone and Soft Tissue Infections",slug:"local-antibiotic-therapy-in-the-treatment-of-bone-and-soft-tissue-infections",totalDownloads:6551,totalCrossrefCites:5,totalDimensionsCites:21,abstract:null,book:{id:"784",slug:"selected-topics-in-plastic-reconstructive-surgery",title:"Selected Topics in Plastic Reconstructive Surgery",fullTitle:"Selected Topics in Plastic Reconstructive Surgery"},signatures:"Stefanos Tsourvakas",authors:[{id:"75532",title:"Dr.",name:"Stefanos",middleName:null,surname:"Tsourvakas",slug:"stefanos-tsourvakas",fullName:"Stefanos Tsourvakas"}]}],mostDownloadedChaptersLast30Days:[{id:"65467",title:"Anesthesia Management for Large-Volume Liposuction",slug:"anesthesia-management-for-large-volume-liposuction",totalDownloads:5965,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The apparent easiness with which liposuction is performed favors that patients, young surgeons, and anesthesiologists without experience in this field ignore the many events that occur during this procedure. Liposuction is a procedure to improve the body contour and not a surgery to reduce weight, although recently people who have failed in their plans to lose weight look at liposuction as a means to contour their body figure. Tumescent liposuction of large volumes requires a meticulous selection of each patient; their preoperative evaluation and perioperative management are essential to obtain the expected results. The various techniques of general anesthesia are the most recommended and should be monitored in the usual way, as well as monitoring the total doses of infiltrated local anesthetics to avoid systemic toxicity. The management of intravenous fluids is controversial, but the current trend is the restricted use of hydrosaline solutions. The most feared complications are deep vein thrombosis, pulmonary thromboembolism, fat embolism, lung edema, hypothermia, infections and even death. The adherence to the management guidelines and prophylaxis of venous thrombosis/thromboembolism is mandatory.",book:{id:"6221",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery"},signatures:"Sergio Granados-Tinajero, Carlos Buenrostro-Vásquez, Cecilia\nCárdenas-Maytorena and Marcela Contreras-López",authors:[{id:"273532",title:"Dr.",name:"Sergio Octavio",middleName:null,surname:"Granados Tinajero",slug:"sergio-octavio-granados-tinajero",fullName:"Sergio Octavio Granados Tinajero"}]},{id:"42855",title:"Critical Care Issues After Major Hepatic Surgery",slug:"critical-care-issues-after-major-hepatic-surgery",totalDownloads:8909,totalCrossrefCites:2,totalDimensionsCites:2,abstract:null,book:{id:"3164",slug:"hepatic-surgery",title:"Hepatic Surgery",fullTitle:"Hepatic Surgery"},signatures:"Ashok Thorat and Wei-Chen Lee",authors:[{id:"52360",title:"Prof.",name:"Wei-Chen",middleName:null,surname:"Lee",slug:"wei-chen-lee",fullName:"Wei-Chen Lee"},{id:"157213",title:"Dr.",name:"Ashok",middleName:null,surname:"Thorat",slug:"ashok-thorat",fullName:"Ashok Thorat"}]},{id:"72175",title:"Fontan Operation: A Comprehensive Review",slug:"fontan-operation-a-comprehensive-review",totalDownloads:1252,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Since the first description of the Fontan operation in the early 1970s, a number of modifications have been introduced and currently staged, total cavopulmonary connection with fenestration has become the most commonly used multistage surgery in diverting the vena caval blood flow into the lungs. The existing ventricle, whether it is left or right, is utilized to supply systemic circuit. During Stage I, palliative surgery is performed, usually at presentation in the neonatal period/early infancy, on the basis of pathophysiology of the cardiac defect. During Stage II, a bidirectional Glenn procedure is undertaken in which the superior vena caval flow is diverted into the lungs at an approximate age of 6 months. During Stage IIIA, the blood flow from the inferior vena cava (IVC) is rerouted into the pulmonary arteries, typically by an extra-cardiac conduit along with a fenestration, generally around 2 years of age. During Stage IIIB, the fenestration is closed by transcatheter methodology 6–12 months after Stage IIIA. The evolution of Fontan concepts, the indications for Fontan surgery, and the results of old and current types of Fontan operation form the focus of this review.",book:{id:"9585",slug:"advances-in-complex-valvular-disease",title:"Advances in Complex Valvular Disease",fullTitle:"Advances in Complex Valvular Disease"},signatures:"P. Syamasundar Rao",authors:[{id:"68531",title:"Dr.",name:"P. Syamasundar",middleName:null,surname:"Rao",slug:"p.-syamasundar-rao",fullName:"P. Syamasundar Rao"}]},{id:"45712",title:"Serdev Sutures® in Middle Face",slug:"serdev-sutures-in-middle-face",totalDownloads:4919,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2989",slug:"miniinvasive-face-and-body-lifts-closed-suture-lifts-or-barbed-thread-lifts",title:"Miniinvasive Face and Body Lifts",fullTitle:"Miniinvasive Face and Body Lifts - Closed Suture Lifts or Barbed Thread Lifts"},signatures:"Nikolay Serdev",authors:[{id:"32585",title:"Dr.",name:"Nikolay",middleName:null,surname:"Serdev",slug:"nikolay-serdev",fullName:"Nikolay Serdev"}]},{id:"55812",title:"Postural Restoration: A Tri-Planar Asymmetrical Framework for Understanding, Assessing, and Treating Scoliosis and Other Spinal Dysfunctions",slug:"postural-restoration-a-tri-planar-asymmetrical-framework-for-understanding-assessing-and-treating-sc",totalDownloads:7646,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Current medical practice does not recognize the influence of innate, physiological, human asymmetry on scoliosis and other postural disorders. Interventions meant to correct these conditions are commonly based on symmetrical models of appearance and do not take into account asymmetric organ weight distribution, asymmetries of respiratory mechanics, and dominant movement patterns that are reinforced in daily functional activities. A model of innate, human asymmetry derived from the theoretical framework of the Postural Restoration Institute® (PRI) explicitly describes the physiological, biomechanical, and respiratory components of human asymmetry. This model is important because it gives an accurate baseline for understanding predisposing factors for the development of postural disorders, which, without intervention, will likely progress to structural dysfunction. Clinical tests to evaluate tri-planar musculoskeletal relationships and function, developed by PRI, are based on this asymmetric model. These tests are valuable for assessing patient’s status in the context of human asymmetry and in guiding appropriate exercise prescription and progression. Balancing musculoskeletal asymmetry is the aim of PRI treatment. Restoration of relative balance decreases pain, restores improved alignment, and strengthens appropriate muscle function. It can also halt the progression of dysfunction and improve respiration, quality of life, and appearance. PRI’s extensive body of targeted exercise progressions are highly effective due to their basis in the tri-planar asymmetric human model.",book:{id:"5816",slug:"innovations-in-spinal-deformities-and-postural-disorders",title:"Innovations in Spinal Deformities and Postural Disorders",fullTitle:"Innovations in Spinal Deformities and Postural Disorders"},signatures:"Susan Henning, Lisa C. Mangino and Jean Massé",authors:[{id:"204825",title:"Dr.",name:"Susan",middleName:null,surname:"Henning",slug:"susan-henning",fullName:"Susan Henning"},{id:"206242",title:"Dr.",name:"Lisa C",middleName:null,surname:"Mangino",slug:"lisa-c-mangino",fullName:"Lisa C Mangino"},{id:"206245",title:"Dr.",name:"Jean",middleName:null,surname:"Massé",slug:"jean-masse",fullName:"Jean Massé"}]}],onlineFirstChaptersFilter:{topicId:"202",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"
\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems.
\r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
\r\n This topic aims to provide a comprehensive overview of the latest trends in Oral Health based on recent scientific evidence. Subjects will include an overview of oral diseases and infections, systemic diseases affecting the oral cavity, prevention, diagnosis, treatment, epidemiology, as well as current clinical recommendations for the management of oral, dental, and periodontal diseases.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11397,editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",slug:"sandra-marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",biography:"Dr. Sandra A. Marinho is an Associate Professor and Brazilian researcher at the State University of Paraíba (Universidade Estadual da Paraíba- UEPB), Campus VIII, located in Araruna, state of Paraíba since 2011. She holds a degree in Dentistry from the Federal University of Alfenas (UNIFAL), while her specialization and professional improvement in Stomatology took place at Hospital Heliopolis (São Paulo, SP). Her qualifications are: a specialist in Dental Imaging and Radiology, Master in Dentistry (Periodontics) from the University of São Paulo (FORP-USP, Ribeirão Preto, SP), and Doctor (Ph.D.) in Dentistry (Stomatology Clinic) from Hospital São Lucas of the Pontifical Catholic University of Rio Grande do Sul (HSL-PUCRS, Porto Alegre, RS). She held a postdoctoral internship at the Federal University from Jequitinhonha and Mucuri Valleys (UFVJM, Diamantina, MG). She is currently a member of the Brazilian Society for Dental Research (SBPqO) and the Brazilian Society of Stomatology and Pathology (SOBEP). Dr. Marinho's experience in Dentistry mainly covers the following subjects: oral diagnosis, oral radiology; oral medicine; lesions and oral infections; oral pathology, laser therapy and epidemiological studies.",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,series:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218"},editorialBoard:[{id:"267724",title:"Dr.",name:"Febronia",middleName:null,surname:"Kahabuka",slug:"febronia-kahabuka",fullName:"Febronia Kahabuka",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZpJQAW/Profile_Picture_2022-06-27T12:00:42.JPG",institutionString:null,institution:null}]},onlineFirstChapters:{paginationCount:7,paginationItems:[{id:"82405",title:"Does Board Structure Matter in CSR Spending of Commercial Banks? Empirical Evidence from an Emerging Economy",doi:"10.5772/intechopen.105589",signatures:"Bishnu Kumar Adhikary and Ranjan Kumar Mitra",slug:"does-board-structure-matter-in-csr-spending-of-commercial-banks-empirical-evidence-from-an-emerging-",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82395",title:"Toward a Better Understanding of Green Human Resource Management’s Impact on Green Competitive Advantage: A Conceptual Model",doi:"10.5772/intechopen.105528",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"toward-a-better-understanding-of-green-human-resource-management-s-impact-on-green-competitive-advan",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82269",title:"CSR Reporting and Blockchain Technology",doi:"10.5772/intechopen.105512",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Piyachart Phiromswad",slug:"csr-reporting-and-blockchain-technology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82270",title:"From Corporate Social Opportunity to Corporate Social Responsibility",doi:"10.5772/intechopen.105445",signatures:"Brian Bolton",slug:"from-corporate-social-opportunity-to-corporate-social-responsibility",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82339",title:"Green Human Resource Management: An Exploratory Study from Moroccan ISO 14001 Certified Companies",doi:"10.5772/intechopen.105565",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"green-human-resource-management-an-exploratory-study-from-moroccan-iso-14001-certified-companies",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82194",title:"CSR and Female Directors: A Review and Future Research Agenda",doi:"10.5772/intechopen.105112",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Sirimon Treepongkaruna",slug:"csr-and-female-directors-a-review-and-future-research-agenda",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Biochemistry",id:"11"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/155169",hash:"",query:{},params:{id:"155169"},fullPath:"/profiles/155169",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()