Magnetic scaffolds divided by composition, production, and MNPs embedded. Redrafted from [5].
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-partners-with-ehs-for-digital-advertising-representation-20210416",title:"IntechOpen Partners with EHS for Digital Advertising Representation"},{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"}]},book:{item:{type:"book",id:"7441",leadTitle:null,fullTitle:"Micromachining",title:"Micromachining",subtitle:null,reviewType:"peer-reviewed",abstract:"To present their work in the field of micromachining, researchers from distant parts of the world have joined their efforts and contributed their ideas according to their interest and engagement. Their articles will give you the opportunity to understand the concepts of micromachining of advanced materials. Surface texturing using pico- and femto-second laser micromachining is presented, as well as the silicon-based micromachining process for flexible electronics. You can learn about the CMOS compatible wet bulk micromachining process for MEMS applications and the physical process and plasma parameters in a radio frequency hybrid plasma system for thin-film production with ion assistance. Last but not least, study on the specific coefficient in the micromachining process and multiscale simulation of influence of surface defects on nanoindentation using quasi-continuum method provides us with an insight in modelling and the simulation of micromachining processes. The editors hope that this book will allow both professionals and readers not involved in the immediate field to understand and enjoy the topic.",isbn:"978-1-78923-810-5",printIsbn:"978-1-78923-809-9",pdfIsbn:"978-1-83962-780-4",doi:"10.5772/intechopen.75346",price:119,priceEur:129,priceUsd:155,slug:"micromachining",numberOfPages:172,isOpenForSubmission:!1,isInWos:1,hash:"2084b93f70df82e634ec776962e871fd",bookSignature:"Zdravko Stanimirović and Ivanka Stanimirović",publishedDate:"November 20th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7441.jpg",numberOfDownloads:4170,numberOfWosCitations:8,numberOfCrossrefCitations:9,numberOfDimensionsCitations:14,hasAltmetrics:0,numberOfTotalCitations:31,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 3rd 2018",dateEndSecondStepPublish:"October 22nd 2018",dateEndThirdStepPublish:"December 21st 2018",dateEndFourthStepPublish:"March 11th 2019",dateEndFifthStepPublish:"May 10th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"3421",title:"Dr.",name:"Zdravko",middleName:null,surname:"Stanimirović",slug:"zdravko-stanimirovic",fullName:"Zdravko Stanimirović",profilePictureURL:"https://mts.intechopen.com/storage/users/3421/images/system/3421.jpeg",biography:"Dr. Zdravko Stanimirović has been active in research and development work for more than 20 years. He received his M.S. and Ph.D. degrees in electrical engineering from the Faculty of Electrical Engineering, University of Belgrade, the Republic of Serbia in 1999 and 2007, respectively. Dr. Z. Stanimirović is currently an associate research professor at Telecommunications and Electronics Institute IRITEL a. d. Beograd. He has predominantly worked in the field of thick-film technology, particularly modeling of low-frequency noise in thick-resistive films. Over the years he has published more than 70 scientific manuscripts including 6 book chapters and participated in several scientific projects funded by Ministry of Education, Science and Technological Development of the Republic of Serbia. Dr. Z. Stanimirović is the recipient of the IEEE Transactions on Components & Packaging Technologies best paper award. His current research interests include Micro/Nano Electro-Mechanical Systems and micro- and nano-scale sensors.",institutionString:"Institute for Telecommunications and Electronics IRITEL",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"3420",title:"Dr.",name:"Ivanka",middleName:null,surname:"Stanimirović",slug:"ivanka-stanimirovic",fullName:"Ivanka Stanimirović",profilePictureURL:"https://mts.intechopen.com/storage/users/3420/images/system/3420.jpeg",biography:"Dr. Ivanka Stanimirović has been involved in research and development work for the last 23 years. Currently, she is an associate research professor at Institute for Telecommunications and Electronics IRITEL a.d. Beograd. Dr. I. Stanimirović earned her M.S. and Ph.D. degrees in electrical engineering from the Faculty of Electrical Engineering, University of Belgrade, Republic of Serbia in 1999 and 2007, respectively. She has predominantly worked on various aspects of thick-film technology, especially low-frequency noise investigations in thick-resistive films. Over the years she has worked on several scientific projects funded by Ministry of Education, Science and Technological Development of Republic of Serbia and published more than 70 scientific manuscripts including 6 book chapters. She is the recipient of the IEEE Transactions on Components & Packaging Technologies best paper award. Her current research interests include micro- and nanoscale sensors and reliability issues in Micro/Nano Electro Mechanical Systems.",institutionString:"Institute for Telecommunications and Electronics IRITEL",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"1",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1404",title:"Manufacturing Engineering",slug:"industrial-engineering-and-management-manufacturing-engineering"}],chapters:[{id:"69703",title:"Micromachining of Advanced Materials",doi:"10.5772/intechopen.89432",slug:"micromachining-of-advanced-materials",totalDownloads:537,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Wayne N.P. Hung and Mike Corliss",downloadPdfUrl:"/chapter/pdf-download/69703",previewPdfUrl:"/chapter/pdf-preview/69703",authors:[{id:"281595",title:"Dr.",name:"Wayne",surname:"Hung",slug:"wayne-hung",fullName:"Wayne Hung"},{id:"310090",title:"Mr.",name:"Mike",surname:"Corliss",slug:"mike-corliss",fullName:"Mike Corliss"}],corrections:null},{id:"65209",title:"Pico- and Femtosecond Laser Micromachining for Surface Texturing",doi:"10.5772/intechopen.83741",slug:"pico-and-femtosecond-laser-micromachining-for-surface-texturing",totalDownloads:1247,totalCrossrefCites:7,totalDimensionsCites:12,signatures:"Tatsuhiko Aizawa and Tadahiko Inohara",downloadPdfUrl:"/chapter/pdf-download/65209",previewPdfUrl:"/chapter/pdf-preview/65209",authors:[{id:"251217",title:"Prof.",name:"Tatsuhiko",surname:"Aizawa",slug:"tatsuhiko-aizawa",fullName:"Tatsuhiko Aizawa"},{id:"289331",title:"Mr.",name:"Tadahiko",surname:"Inohara",slug:"tadahiko-inohara",fullName:"Tadahiko Inohara"}],corrections:null},{id:"65065",title:"Silicon-Based Micromachining Process for Flexible Electronics",doi:"10.5772/intechopen.83347",slug:"silicon-based-micromachining-process-for-flexible-electronics",totalDownloads:825,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Jiye Yang and Tao Wu",downloadPdfUrl:"/chapter/pdf-download/65065",previewPdfUrl:"/chapter/pdf-preview/65065",authors:[{id:"275067",title:"Prof.",name:"Tao",surname:"Wu",slug:"tao-wu",fullName:"Tao Wu"}],corrections:null},{id:"68335",title:"CMOS Compatible Wet Bulk Micromachining for MEMS Applications",doi:"10.5772/intechopen.88487",slug:"cmos-compatible-wet-bulk-micromachining-for-mems-applications",totalDownloads:395,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"S. Santosh Kumar and Ravindra Mukhiya",downloadPdfUrl:"/chapter/pdf-download/68335",previewPdfUrl:"/chapter/pdf-preview/68335",authors:[{id:"280699",title:"Dr.",name:"S Santosh",surname:"Kumar",slug:"s-santosh-kumar",fullName:"S Santosh Kumar"},{id:"282545",title:"Dr.",name:"Ravindra",surname:"Mukhiya",slug:"ravindra-mukhiya",fullName:"Ravindra Mukhiya"}],corrections:null},{id:"65029",title:"Physical Processes and Plasma Parameters in a Radio-Frequency Hybrid Plasma System for Thin-Film Production with Ion Assistance",doi:"10.5772/intechopen.82870",slug:"physical-processes-and-plasma-parameters-in-a-radio-frequency-hybrid-plasma-system-for-thin-film-pro",totalDownloads:436,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Elena Kralkina, Andrey Alexandrov, Polina Nekludova, Aleksandr Nikonov, Vladimir Pavlov, Konstantin Vavilin, Vadim Odinokov and Vadim Sologub",downloadPdfUrl:"/chapter/pdf-download/65029",previewPdfUrl:"/chapter/pdf-preview/65029",authors:[{id:"235769",title:"Prof.",name:"Elena",surname:"Kralkina",slug:"elena-kralkina",fullName:"Elena Kralkina"},{id:"286645",title:"Prof.",name:"Andrey",surname:"Alexandrov",slug:"andrey-alexandrov",fullName:"Andrey Alexandrov"},{id:"286646",title:"Dr.",name:"Polina",surname:"Nekludova",slug:"polina-nekludova",fullName:"Polina Nekludova"},{id:"286647",title:"Mr.",name:"Aleksandr",surname:"Nikonov",slug:"aleksandr-nikonov",fullName:"Aleksandr Nikonov"},{id:"286648",title:"Dr.",name:"Vladimir",surname:"Pavlov",slug:"vladimir-pavlov",fullName:"Vladimir Pavlov"},{id:"286649",title:"Dr.",name:"Konstantin",surname:"Vavilin",slug:"konstantin-vavilin",fullName:"Konstantin Vavilin"},{id:"286650",title:"Mr.",name:"Vadim",surname:"Sologub",slug:"vadim-sologub",fullName:"Vadim Sologub"},{id:"286651",title:"Prof.",name:"Vadim",surname:"Odinokov",slug:"vadim-odinokov",fullName:"Vadim Odinokov"}],corrections:null},{id:"64763",title:"Study on Specific Coefficient in Micromachining Process",doi:"10.5772/intechopen.82472",slug:"study-on-specific-coefficient-in-micromachining-process",totalDownloads:294,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Sung-Hua Wu",downloadPdfUrl:"/chapter/pdf-download/64763",previewPdfUrl:"/chapter/pdf-preview/64763",authors:[{id:"279813",title:"Prof.",name:"Sung-Hua",surname:"Wu",slug:"sung-hua-wu",fullName:"Sung-Hua Wu"}],corrections:null},{id:"65671",title:"Multiscale Simulation of Surface Defect Influence in Nanoindentation by a Quasi-Continuum Method",doi:"10.5772/intechopen.84240",slug:"multiscale-simulation-of-surface-defect-influence-in-nanoindentation-by-a-quasi-continuum-method",totalDownloads:440,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Zhongli Zhang, Yushan Ni, Jinming Zhang, Can Wang and Xuedi Ren",downloadPdfUrl:"/chapter/pdf-download/65671",previewPdfUrl:"/chapter/pdf-preview/65671",authors:[{id:"276367",title:"Ph.D. Student",name:"Zhongli",surname:"Zhang",slug:"zhongli-zhang",fullName:"Zhongli Zhang"},{id:"281408",title:"Prof.",name:"Yushan",surname:"Ni",slug:"yushan-ni",fullName:"Yushan Ni"},{id:"281414",title:"Mr.",name:"Jinming",surname:"Zhang",slug:"jinming-zhang",fullName:"Jinming Zhang"},{id:"281415",title:"Mrs.",name:"Can",surname:"Wang",slug:"can-wang",fullName:"Can Wang"},{id:"281416",title:"Prof.",name:"Xuedi",surname:"Ren",slug:"xuedi-ren",fullName:"Xuedi Ren"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5830",title:"Extrusion of Metals, Polymers, and Food Products",subtitle:null,isOpenForSubmission:!1,hash:"a69184f72a3f46dd5e4db6313f248509",slug:"extrusion-of-metals-polymers-and-food-products",bookSignature:"Sayyad Zahid Qamar",coverURL:"https://cdn.intechopen.com/books/images_new/5830.jpg",editedByType:"Edited by",editors:[{id:"21687",title:"Dr.",name:"Sayyad Zahid",surname:"Qamar",slug:"sayyad-zahid-qamar",fullName:"Sayyad Zahid Qamar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73132",slug:"corrigendum-to-soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-ch",title:"Corrigendum to: Soil Erosion Influencing Factors in the Semiarid Area of Northern Shaanxi Province, China",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73132.pdf",downloadPdfUrl:"/chapter/pdf-download/73132",previewPdfUrl:"/chapter/pdf-preview/73132",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73132",risUrl:"/chapter/ris/73132",chapter:{id:"72647",slug:"soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-china",signatures:"Ning Ai, Qingke Zhu, Guangquan Liu and Tianxing Wei",dateSubmitted:"February 25th 2020",dateReviewed:"May 22nd 2020",datePrePublished:"June 29th 2020",datePublished:"March 24th 2021",book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"319114",title:"Ph.D.",name:"Ning",middleName:null,surname:"Ai",fullName:"Ning Ai",slug:"ning-ai",email:"aining_office@126.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},{id:"319299",title:"Prof.",name:"Tianxing",middleName:null,surname:"Wei",fullName:"Tianxing Wei",slug:"tianxing-wei",email:"weitianxing925@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319300",title:"Prof.",name:"Qingke",middleName:null,surname:"Zhu",fullName:"Qingke Zhu",slug:"qingke-zhu",email:"xiangmub@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319301",title:"Prof.",name:"Guangquan",middleName:null,surname:"Liu",fullName:"Guangquan Liu",slug:"guangquan-liu",email:"gqliu@iwhr.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}}]}},chapter:{id:"72647",slug:"soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-china",signatures:"Ning Ai, Qingke Zhu, Guangquan Liu and Tianxing Wei",dateSubmitted:"February 25th 2020",dateReviewed:"May 22nd 2020",datePrePublished:"June 29th 2020",datePublished:"March 24th 2021",book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"319114",title:"Ph.D.",name:"Ning",middleName:null,surname:"Ai",fullName:"Ning Ai",slug:"ning-ai",email:"aining_office@126.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},{id:"319299",title:"Prof.",name:"Tianxing",middleName:null,surname:"Wei",fullName:"Tianxing Wei",slug:"tianxing-wei",email:"weitianxing925@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319300",title:"Prof.",name:"Qingke",middleName:null,surname:"Zhu",fullName:"Qingke Zhu",slug:"qingke-zhu",email:"xiangmub@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319301",title:"Prof.",name:"Guangquan",middleName:null,surname:"Liu",fullName:"Guangquan Liu",slug:"guangquan-liu",email:"gqliu@iwhr.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}}]},book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8661",leadTitle:null,title:"Statistical Machine Learning",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tStatistical machine learning merges statistics with machine learning which falls in the field of computer science, systems science and optimization. Much of the agenda in statistical machine learning is driven by applied problems in science and technology, where data streams are increasingly large-scale, dynamical and heterogeneous, and where mathematical and algorithmic creativity are required to bring statistical methodology to bear. Fields such as bioinformatics, artificial intelligence, signal processing, communications, networking, and information are all intervened here.
\r\n\tStatistical machine learning specifically poses some of the most challenging theoretical problems in modern statistics, the crucial among them being the general problem of understanding the link between inference and computation. This book intends to provide the reader with a comprehensive overview of linear method for regression, non linear method for regression, deep learning, unsupervised learning, artificial neural network, and support vector machine (SVM).
Nanotechnologies aim to ease and to satisfy the needs of regenerative medicine1 by providing multifunctional, theranostic, and stimuli-responsive biomaterials [1, 2]. In particular, stimuli-responsive biomaterials such as magneto-responsive biomaterials are devices capable of reacting to an external magnetic field spatiotemporally in a specific way [3]. This powerful class of biomaterials is a promising candidate as active and therapeutic scaffolds for advanced drug delivery and tissue regeneration applications [3, 4].
Multifunctional magnetic-responsive materials can be manufactured by modifying or functionalizing traditional materials employed in tissue engineering or by incorporating magnetic nanoparticles (MNPs) in the biocompatible matrix [4, 5]. Table 1 reports examples of several magnetic biomaterials synthesized in the literature [6]. An approach to create a magnetic biomaterial is the impregnation of a polymer or ceramic (e.g.,
Type of scaffold | Synthesis technique | M | Type of MNPs | r |
---|---|---|---|---|
HA/collagen | Impregnation | 0.35–15 | Fe | 200 |
HA/collagen | Impregnation | 0.50 | 10–50 | |
HA/PLA | Electrospinning | 0.05 | 5 | |
Impregnation | 0.6–1.2 | Fe | 250 | |
Chitosan/PVA membrane | Electrospinning | 0.7–3.2 | Fe | n.s. |
Calcium silicate/chitosan | Mixture | 6–10 | SrFe | 500 |
PMMA | Mixture | n.s. | Fe | 10 |
Silicate | Mixture | n.s. | n.s. | |
Fe-doped HA | Chemical substitution | 4 | HA-Fe | 10–14 |
Fe-hardystonite | Chemical doping | 0.1–1.2 | Fe | 20–60 |
Bredigite | Milling | 7–25 | Ca | 120 |
HA | Impregnation | 12–20 | Fe | 200 |
HA | Impregnation | 1–2.5 | 8 | |
HA | Impregnation | n.s. | 5 | |
Chitosan | In situ precipitation | 4 | n.s | |
3D Bioplotting | 0.2–0.3 | Fe | 25–30 | |
PLGA | Electrospinning | 2–10 | Fe | 8.47 |
Magnetic scaffolds divided by composition, production, and MNPs embedded. Redrafted from [5].
In alternative, a stable, repeatable, and controllable manufacturing technique of magnetic-responsive biomaterial is the chemical doping of or substitution with F
Given these methods, the magnetic biomaterial can be processed to develop a tissue-guiding structure or a tissue scaffold, i.e., a device intended to be implanted in an injured site for supporting and withstanding the cell adhesion, proliferation, and differentiation, in order to restore tissue continuity and functioning [10]. Magnetic scaffolds (MagS) have been proposed for the following three main applications, as presented in Figure 1 [1, 2, 3, 4, 5, 6, 7, 8, 9]:
To provide a controlled
To develop a smart and reliable
To generate therapeutic heat and perform local
Magnetic scaffolds are obtained by the combination of biomaterials and MNPs. They are multifunctional and theranostic nanocomposites. The potential biomedical applications of MagS are shown.
The mechanical stimulation of injured tissues using magneto-responsive scaffolds found application in bone tissue engineering, where static magnetic field (SMF) or low-frequency magnetic field is used to elicit osteoprogenitor cells [1, 2, 3, 4].
The rationale of employing magnetic scaffolds as part of a MDD system is the need to have an “attraction platform” to target and control the attraction of magnetic liposomes or MNPs bio-conjugated with growth factors (GFs) [6, 11]. Indeed, recently several magnetic carriers of biomolecules capable of acting on cell function were developed. However, using an external SMF their delivery to deep tissue and to the site of damage is complicated, and the MNPs tend to distribute where the magnetic force is maximum, i.e., at the body surface, where the field is applied [12]. Having a MagS implanted in the injured tissue allows to attract the MNPs and the GFs while controlling their spatial distribution [13].
Finally, if the external magnetic stimulus is a radio-frequency (RF) magnetic field, the population of MNPs embedded in the biomaterial dissipates a huge amount of heat. The deposited power can be exploited as therapeutic heat, enabling to use the magnetic scaffold as a thermo-seed able to perform HT treatment against cancer cells [14].
To date, magnetic scaffolds have been synthesized and characterized in terms of chemical and physical properties while proving experimentally their powerful and promising potential in regenerative medicine and oncology [1, 2, 3, 4]. However, to translate the use of these nanostructured biomaterials in the clinical practice, several limitations have to be overcome, and further investigations are required to predict their behavior [4]. The potential use of magnetic scaffolds as tissue substitutes needs the combined work of material scientists, biomedical engineers, and biologists. In particular, since in the literature there is a clear lack of mathematical and numerical models, which relate the physical properties of these nanocomposite biomaterials with the magnetic drug delivery or the hyperthermia, in this chapter, two mathematical models for their use as hyperthermia agent and as a tool for magnetic drug delivery are provided.
Section 2 briefly reviews the use of MagS as magneto-responsive biomaterials for the stimulation of tissues, in particular bone tissues. In Section 3 the nonlinear chemico-physical properties of magnetic scaffolds are presented, described, and used to introduce a recent in silico model for the planning of bone tumor hyperthermia [14]. Finally, in Section 4 the use of MagS as tool for active magnetic drug delivery is discussed. Furthermore, a mathematical model able of providing insights into the parameters of influence of the phenomenon is presented and analyzed [13]. The complete description of magnetic scaffolds favors the assessment of their effectiveness and their potential clinical impact.
Magnetic scaffolds have been tested both in vitro and in vivo, using animal models, demonstrating that they can transduce an external magnetic signal in mechanical stimulation to the cells attached to the biomaterial surface (Figure 1) [1, 2, 3, 4]. MagS have been investigated for bone, cartilage, cardiovascular and neuronal regeneration, and repair [2]. The most studied tissue is bone. The injury of skeletal tissue by traumas and diseases, such as osteoporosis, or by a tumor resection calls for the need of a bone substitute or scaffold to guide cell adhesion, proliferation, and differentiation [15]. Moreover, the bone tissue requires a continuous mechanical stimulation. Therefore, the magneto-responsive biomaterials in Table 1 can deliver a direct mechanical stimulation if exposed to SMF, to low-frequency magnetic field (strengths from to 18
To understand the magnetization dynamic and the power losses of magnetic scaffolds, it is necessary to introduce the physical and mathematic descriptions of the response to a RF magnetic field of the MNPs embedded in it. If a population of magnetic nanoparticles in a solution is exposed to a harmonic RF magnetic field, they start to dissipate power due to the hysteresis loss but also to the magnetic dipole and to the Brownian relaxations [16]:
where
The term
where
where M
The term
The time required to the magnetic dipole moment to align with the direction of the external magnetic field is called the Néel relaxation time,
The pre-exponential factor
where K
In a FF, the nanoparticles are allowed to rotate and move according to Brownian motion in the viscous medium where they are dispersed. When subject to a time-varying magnetic field, the particles rotate to orient with the direction of the external energy source, thus contributing to the relaxation process. The Brownian relaxation time can be evaluated as [16]:
being
With Eqs. (1) to (9), it is possible to describe the frequency response and the power dissipation of a population of MNPs dispersed in a solution. This set of equations constitutes the theoretical basis for the understanding of magnetic scaffold behavior. However, since MagS are solid nanocomposites, the behavior of their magnetic phase is rather diverse than a FF. In the following, the experimental findings related to material characterizations and a new mathematical framework to account for their response are provided.
Hyperthermia (HT) is a thermotherapy which aims at increasing the temperature of a target tissue between 41 and 46 C for about 60 min. For biological tissues, especially neoplasms and cancers, these temperatures are sufficient to damage the DNA of cells, altering its replication and also the repair pathways while determining cytotoxicity and activating the response of the host immune system [18, 19]. The rather chaotic vascular architecture of tumors is the reason of the thermo-sensibility of these pathologic tissues. The aforementioned biological effects can lead to the death of cancer cells, but, in the clinical practice, HT is exploited as a coadjuvant therapy combined with chemotherapy or/and radiotherapy rather than as a standalone therapy [19]. The hyperthermia can be induced using different types of energies, such as ultrasounds or electromagnetic (EM) field [14]. Currently different therapeutic modalities are available for HT induced by EM field. In particular, it is thoroughly investigated the local and in situ treatments using nanoparticles or magnetic scaffolds by exposing the target are with an external magnetic field.
Several magnetic scaffolds from Table 1 demonstrated to be capable of noticeable temperature increases when exposed to magnetic field working at the frequencies from 100 kHz to 1 MHz and with amplitude ranging from 8 to 25 kAm
These composite nanomaterials are identified as optimal candidates for local bone tumor hyperthermia [1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14]. However, their therapeutic potential must be investigated in a critique way. The understanding and the modeling of the heat dissipation of the MNPs embedded in the biomaterial are essential to allow an effective treatment planning.
The physical explanation of the relevant and significant temperature increases measured for MagS is not trivial. Moving from the theory explained in Section 3.1, the resonant Debye model cannot be applied to a system in which highly concentrated MNPs are fixed and embedded in a solid matrix and lattice or constrained in a highly viscous medium [13]. Indeed, the long-range interactions between the magnetic nanoparticles become relevant [20]. The following index
where the cubic power of the particle diameter,
Therefore, in MagS the only relaxation time is the Néel one.
The influence of long-range interactions between particles, the modified distribution of anisotropy energy, and the different Néel relaxation dynamic are the factors that contribute to enhance the power dissipation of magnetic scaffolds, and all of them can help to explain the hyperthermia behavior of MagS, such as for the magnetic hydroxyapatite and the Fe-doped PCL scaffolds [7]. Relying on the magnetic susceptibility spectra of MNPs in agarose gel measured by Hergt et al. [21], a Cole-Cole model for magnetic scaffolds [13]:
Equation (12) can fit the susceptibility data, with a 1.5% relative error, as shown in Figure 2, whereas the Debye model cannot (Eq. (2)). In Eq. (12)
Results of the fitting of the magnetic susceptibility spectra of MNPs embedded in agarose: a) real part (in-phase) and b) imaginary (out-of-phase) components are presented [
With Eqs. (1)–(8), but using Eq. (12) instead of Eq. (2), it is possible to evaluate and estimate the power losses of magnetic scaffolds. At this point it should be noted that the magnetic susceptibility
Temperature variation of the pre-exponential term
Given the potential of magnetic scaffolds to be used as local heat source for setting the hyperthermia treatment of cancers, the most studied biological and clinical target of the nanosystems under investigation are bone cancers. Indeed, in clinical practice, currently available techniques such as chemotherapy, radiotherapy, and osteotomies presented a 15% probability of tumor recurrence, and therefore the hyperthermia treatment was proposed as adjuvant therapy [23]. Furthermore, since the surgical intervention causes a bone damage which calls for a graft or bone substitutes, magnetic scaffolds as theranostic, multifunctional, and magnetic-responsive biomaterials can be employed and can express their clinical potential [14].
Bone tumors are neoplasms mostly affecting subjects with age between 10 and 25 years old, causing impairment and pain, thus ruining the quality of life [24]. Malignant bone cancers such as osteosarcoma (OST) and fibrosarcomas (FIB) are known to affect long bone extremities [24]. OST and FIB are two different forms of bone cancer. The OST is big, aggressive and highly vascularized, whereas FIB is a poorly vascularized neoplasm. The survival rate for patients affected by OST and FIB may vary from 28–40% [14, 23, 24]. To overcome these clinical issues, oncologist investigated the use of immunotherapy or smart nanocarriers of drugs, but local hyperthermia stands out as a very promising therapy [14]. The rationale is to implant a MagS after the bone tumor resection or reduction and then perform a local and in situ hyperthermia treatment by applying an external RF magnetic field. The residual cancer cells would be killed or increase their sensibility to drugs or radiations. Finally, the scaffolds would serve as supporting architecture for healthy cells, favoring tissue repair [14].
With the knowledge of the mechanism of power dissipation of MNPs embedded in a scaffold, recently a numerical scenario, with layered geometry, was proposed to investigate using finite element methods (FEM) the effectiveness of magnetic scaffolds in treating the residual bone cells of OST and FIB tumors [14].
As shown in Figure 4, imagining a surgical intervention of a bone cancer in distal femur, a spherical magnetic scaffold, with radius r
Simplified layered geometry for modeling the hyperthermia treatment of bone tumors using magnetic scaffolds. The MagS with radius r
With respect to the geometry in Figure 4, the HT treatment using MagS is carried out applying an external RF magnetic field with strength H
where
The EM problem is solved employing the
Material or tissue | Re[ | |
---|---|---|
Magnetic hydroxyapatite | 12.5 | 2.1 |
2.20 | 10 | |
Fracture gap–inflamed | 3580 | 0.545 |
Fracture gap–ischemic | 1321 | 0.196 |
Bone tumors: OST and FIB | 8000 | 0.280 |
Bone | 192 | 0.0214 |
Electromagnetic properties of scaffolds and tissues [14].
The power deposited by the MagS and conducted to the tissues in the system of Figure 4 modifies the temperature (
where
Eq. (14) was implemented in COMSOL using the
Material or tissue | k, Wm | C | Q | |
---|---|---|---|---|
Magnetic hydroxyapatite | 1.33 | 700 | — | — |
0.488 | 3359.2 | — | — | |
Fracture gap–inflamed | 0.558 | 2450 | 5262.5 | |
Fracture gap–ischemic | 0.558 | 2450 | 5262.5 | |
Bone tumors: OST and FIB | 0.32 | 1313 | 57,240 | 2.42 |
Bone | 0.32 | 1313 | 286.2 | 0.262 |
Heat transfer properties of scaffolds and tissues [14].
The solution of Eq. (14) is a new temperature field. As previously discussed, the different system temperature determines a change in the magnetic and heat dissipation properties of the scaffolds. Also the dielectric and thermal properties of tissues vary with temperature [14]. To account for the influence of these variations on the outcome of HT treatment, the solution of Eq. (14) should be used to evaluate the EM power solving Eq. (13) for the next time step; then the next temperature distribution can be calculated considering the changed physical properties. This solution scheme is justified by the rather different dynamic of the EM and thermal fields [14].
In the temperature range 37
The dielectric properties are assumed to increase linearly with c = 3% C
In this condition the strength, frequency, and envelope of the external RF magnetic field required to treat both osteosarcoma and fibrosarcoma cells were investigated.
The temperature pattern resulting from the exposure to the homogeneous RF field is uniform and radial, as shown in Figure 5a. This is a consequence of the homogeneous distribution of the MNPs in the biomaterials [7, 14]. After 60 min of treatment, it can be noticed that the temperature in the healthy bone can reach 47
(a) 2D temperature distribution after 60 min of treatment using a RF magnetic field of 30 mT and working at 293 kHz. A OST with r
Magnetic scaffolds were conceived as a multifunctional platform for tissue engineering applications (see Figure 1) [1, 2, 3, 4, 5]. As presented in the Introduction, they are a platform for magnetically targeted drug delivery of growth factors to control and enhance tissue healing, such as in the case of bone tissue [1, 11]. The bio-nanotechnology research developed magnetic carriers of biomolecules such as VEGF or TGF-
Considering the geometry of Figure 4, the analysis domain is limited to the scaffold and the fracture gap, neglecting the bone tumor and assuming that only healthy bone is present, in a way similar to [13]. The MagS and the gap have a radius of 5 mm. An external uniform and static magnetic flux density field of strength B
where all symbols have the previous definition. As presented in Table 1, the magnetization response of the scaffolds varies from a minimum of 0.4 emu
Due to the presence of the magnetic material, the magnetic field flux lines concentrate in the prosthetic implant, implying that the norm of the gradient of magnetic density field between the MagS and the diamagnetic tissues is relevant [6]. In the literature, it is reported that if the magnetic density field gradients are higher than 1.3 Tm
where M
where r
After having solved Eq. (17) and calculated Eqs. (18) and (19), the spatiotemporal distribution of the concentration of MNPs (C
D
The magnetic field distribution (Eq. (17)) is derived by solving numerically the magnetostatic problem for the geometry depicted in Figure 4 using the
Now, we assume that the MDD system is constituted by an active GF with concentration C
Given C
Similar to Eq. (20), Eq. (22) is subject to Dirichlet and Neumann boundary conditions, i.e., the diffusive flux of cell population should be null at the scaffold surface, and the cell concentration at host bone is set to a constant value of C
With this set of equations, it is possible to model the role of magnetic scaffolds as part of a MDD system studying the influence on the cellular migration and the scaffold colonization, providing valuable insight into the use of MagS as a tool in tissue engineering.
The magnetic scaffolds exposed to the static magnetic flux density field B
(a) Normalized magnetic field distribution (
This chapter presented an innovative family of nanocomposite magnetic biomaterials and their biomedical applications. Mixing magnetic nanoparticles with traditional biomaterials, e.g., polymer or ceramics, or chemically doping them allows the manufacturing of a magnetic-responsive biomaterial with multifunctional properties. The so-called magnetic scaffolds have been studied for their ability to transduce an external magnetic signal into mechanical and biological outcome, thus proving to be a powerful platform for cell and tissue stimulation [1, 2, 3, 4]. Exploiting the ability of the MNPs embedded in the biomaterial to dissipate power when exposed to a radio-frequency magnetic field makes MagS a valid candidate to perform local hyperthermia treatment on residual cancer cells. In this chapter the physical properties and the magnetic susceptibility of these novel composite nanosystems are investigated. Then an in silico model to study the feasibility of employing MagS in the treatment of bone cancers, such as osteosarcomas and fibrosarcomas, is presented [14]. The results indicate that further research on the nanomaterial is required to develop an effective and tailored magnetic scaffold. Finally, the potential of MagS to serve as an in vivo attraction site to enhance the magnetic drug delivery of growth factors is faced. To predict the final concentration pattern, a mathematical model which relates the nonlinear magnetic problem and the mass transport issue is presented. Furthermore, the link between these two aspects and the biological influence on cellular migration is challenged [13]. The results indicate that MagS are able to attract MNPs and exert an indirect action on MSCs in a way dependent on the geometrical and material properties.
The authors would like to sincerely thank Prof. G. Mazzarella for the helpful discussions and suggestions to this work.
The authors declare no conflict of interest.
bone morphogenetic protein-2
dynamic light scattering
extracellular matrix
fibrosarcoma
finite element method
ferrofluid
growth factor
magnetic scaffold
magnetic drug delivery
magnetic field
magnetic hydroxyapatite
mesenchymal stem cell
magnetic nanoparticle
osteosarcoma
poly-caprolactone
radio frequency
static magnetic field
tricalcium phosphate
transmission electron microscope
vascular endothelial growth factor
In order to enhance road safety as well as to satisfy increasingly stringent government regulations in western countries, automobile makers are confronted with incorporating a range of diverse technologies for driver assistance to their new model. These technologies help drivers to avoid accidents, both at high speeds and for backward movement for parking. This system can be placed into the category of advanced driver-assistance systems (ADAS). Besides increasing safety, ADAS [1] applications are concerned with to enhancing comfort, convenience, and energy efficiency. It is emerging as new driving technology supported with Adaptive Cruise Control, Automatic Emergency Brake, blind spot monitoring, lane change assistance, and forward collision warnings etc. It is an important platform to integrate these multiple applications by using data from radar, lidar, and ultra sound sensors etc. The vehicle engine related to hardware such as actuators, engine, brake, steering get the commands from the above sensors to enable the ADAS to take desired actions with respect to alerting the driver for detection of hazardous object or location or stopping the vehicle if necessary. For example, the recognition of black spot warning, lane change assistance and forward collision warning are extremely becoming useful in the ADAS.
During the gradual emergence of Connected and Automated vehicle (CAV), driver behavior modeling (DBM) coupled with simulation system modeling appears to be an instrumental in predicting driving maneuvers, driver intent, vehicle and driver state, and environmental factors, to improve transportation safety and the driving experience as a whole. These models can play an effective role by incorporating its desired safety-proof output into Advanced Driver Assistance System (ADAS. To cite an example, it could be said with confidence that the information generated from all types of sensors in an ADAS driven vehicle with accurate lane changing prediction models could prevent road accidents by alerting the driver ahead of time of potential danger. It is increasingly felt that DBM developed by incorporating personal driving incentives and preferences, with contextual factors such as weather and lighting, is still required to be refined, calibrated and validated to make it robust so that it turns into more better personalized and generic models. In regard to the modeling of personalized navigation and travel systems, earlier studies in this area have mainly considered ideal knowledge and information of the road network and environment, which does not seem to be very realistic. More researches are required to be conducted to address this real life challenges to make ADAS more acceptable to society.
There are an increasing evidences from the various literatures that a single vehicle making inferences based on sensed measurement of the driver, the vehicle, and its environment is mostly focused for DBM where there is any hardly attempt made to develop DBM in the traffic environment in the presence of vehicle to vehicle (V2V), and vehicle to infrastructure (V2I) scenario- communications system. It would be interesting to develop DBM with respect to connected and automated vehicle (CAV) to leverage information from multiple vehicles so that more global behavioral models can be developed.. This would be useful to apply the output of the CAV modeling in the design of ADAS driven vehicle to create a safety proof driving-scenario for diverse applications.
There are a number of sensors which are increasingly being used. These are namely cameras, medium and long-range radar, ultrasonic, and LIDAR.. Data generated from these sensors go through fusion process to authenticate the data so as to enable the computer software perform the necessary tasks to activate the driver assistance system to take correct decisions. These decisions are related to parking assistance, automatic emergency breaking, pedestrian detection, surrounding view, and even drowsiness of the driver. The functional components such as various types of sensors collecting data from immediate surrounding environment are related to ADAS architecture that helps to perform necessary tasks as shown in the Figure 1. The forward collision-avoidance ECU module is located in the windshield, supported with the blind spot ultrasonic sensors and related ADAS processor may be located in the side mirrors or other location areas.
Functional components and various types of sensors. Source:
The
Architecture of ADAS, source: Ref [
Architecture of forward collision avoidance & blind spot avoidance. Source: Ian Riches, strategy analytics.
Architecture of ADAS -Parking Avoidance & Blind. Source:
Hardware architecture of ADAS and autonomous driving, includes automotive Ethernet, TSN, Ethernet switch and gateway, and domain controller while Software architecture of ADAS and autonomous driving, including AUTOSAR Classic and Adaptive, ROS 2.0 and QNX.
Advanced driver assistance systems (ADAS) need a number of integrated sensors to accurately determine situational assessment and action implementation. In ADAS technologies [5, 6, 7] sensors such as video, radar, LIDAR, ultrasonic and infrared (IR) sensors are being increasingly utilized. Sensor fusion with advanced algorithms and computing power, connectivity and data transmission, contextual awareness and processing, and virtual sensors is extremely important for success of ADAS.
There are six levels of vehicle automation as shown in Figure 5 defined by the Society of Automotive Engineers (SAE) [8] with a span from Level 0, which has no automation, to Level 5, which involve fully autonomous vehicles. As automation expands, driver assistance and ADAS plays an increasingly important role.
Various levels of ADAS, source:
As of today, no car manufacturer has achieved level 3 or higher in production, although several have produced demonstration vehicles. The legislature of some countries is working on a possible admission of “Level 3” vehicles, which is expected to be available in 2020/21. Driver assistance systems enabling autonomous driving from level 3 onwards will require at least three types of sensor systems: camera, radar, and LIDAR systems. As can be seen in Figure 5, several of each type of sensor operates at various locations on the vehicle. The development of the LIDAR system is still posing the bigger and most dynamic challenge in technical and commercial terms.
There are a number of sub systems associated in performing various tasks of ADAS. A vehicle’s movement detected by the ADAS can be seen in the main system inside the vehicle when the driver is present. This system interacts with the environment. There are different functions of the system as can be clearly distinguished in Figure 6. The following distinctive features of fusion are mentioned as under:
Information has to be gathered;
Information needs to be evaluated;
A safety measure need to be taken;
Fusion of data at ECU received from various types of sensors housed in ADAS, Source: Ref No: [
These functions are synonymous to as Sense (1), Think(2), and Act(3). Only the Sense sensors are reviewed and only the systems in which the driver is inside the loop. Figure 6 shows the process of ‘multi sensor processing’, starting with the sensor data acquisition. Next, the sensors processing, divided into several tasks, as ‘Calibration, ‘Feature Extraction’, ‘Object Detection’, etc., begins to analyze the sensors data and, in the end, serves the application with a more or less detailed model of the environment [4].
Fusion of data received from complementary and independent sources place the data into a single description. Data association and data assimilation are two important components to be addressed for data fusion as a part of the process that matches sensor data with the description of the environment that requires synchronization of the sensor data and the associated object state (e.g., position and velocity).
It is extremely important to know which sensors are required for autonomous driving from Levels 1 to 5. As already mentioned, there are three main groups of sensor systems camera-, radar-, and LIDAR-based systems. Although, for parking, ultrasonic sensors are available today and are widespread, they are of minor importance for autonomous driving. Camera and radar systems are in the Level 1 and 2 vehicles today and are prerequisite for all further levels of automation.
This advanced Camera (digital HDR CMOS cameras) with large dynamic range is well suited to poor light conditions and primary differences are due to its brightness.
A large number of digital interfaces are available with camera for automobiles along with digital signal processor and internal memory capacity. The camera generates processed video images for evaluation using software algorithm. It also help images transformed in to signals to merge with other sensor signals such as other as radar and lidar etc. Due to the inherent intelligence of the camera, all the signals are processed in the fusion mode to enable the ADAS to take correct decision. The camera used as sensor [9] is required to go through the quality management (ISO/TS/16949 in the automobile industry and are suited for adaptability which is quick and flexible. Current digital camera system is continuously receiving raw data that is then processed and forwarded to the display unit for image display. This procedure is shown in Figure 7.
Video data transfer to head unit of camera through Ethernet, source:
Besides this, the
The
In both systems a camera plays an important role in identifying radiation of objects. It may be mentioned that NIR technology offer an extra illumination by IR-headlights while the FIR systems is not characterized with special headlights. The primary difference between the two is picking up the extra-radiated objects by the NIR systems while FIR only accepts only the regular radiation of objects.
Table 1 presents transmission of data rate from sensors [10].Figure 8 shows the functioning of Lidar.
Sensor | Data rate required to transmit raw data |
---|---|
1Gb/sec to 24Gb/sec | |
5Gb/sec to 120Gb/sec | |
2 Mb/sec to 10Gb/sec |
Data rate required for transmission of data.
Principle of the functioning of LIDAR. Source:
For purpose of measuring distance and creation of three-dimensional images of the environment, LIDAR system [11] is fitted and integrated ever more frequently into vehicles and mobile machines. A pulsed laser beam assesses the signal‘s transit time from the object back to the detector as shown in Figure 8. A highly sensitive technique using Avalanche Photodiodes along with internal amplification measure the light pulses in the nanosecond range across wider bandwidths. Lidar optical system requires the high spatial resolutions. Therefore sensor has the capability to develop APD arrays comprising with multiple sensor elements. The APD arrays from sensor addresses the effect of temperature due to its high voltage. Their highly accurate amplification offers excellent APD signal quality. The modules can be adapted to as per the specific application. Development boards with digital output signal and Low Voltage Differentiating Signal (LVDS) is interfaced. With the help of Lidar and Radar System, the object of the road can easily be identified. But in addition to these, there is a necessity for a camera for classification and detection of an object in a correct way. With the development of point density cloud from the reflections from radar and lidar, the distance and closing speed of the object can easily be measured. It may be mentioned that due to lower resolutions from these sensors as compared to camera, the detection of the objects are not easily made. To optimize the detection at varying ranges with lower resolution, a number of units are installed from a medium-range unit for emergency brake assist to long-range radar for adaptive cruise control although LIDAR & radar, functions in a similar way at longer ranges with lower point-density.
RADAR is meant to define its full form “Radio Detection And Ranging.”. By this sensor, the object is detected with the identification of localization of objects using radio waves with a frequency range from 24 to 77 GHz. It is noteworthy to mention that the higher measurement of accuracy with respect to distance and speed along with precise angular resolution depends on high intensity of radio wave frequency. Generally the frequency over 24 GHz is used for the smaller antenna size with the lower interference problem. The examples of various types of frequency band [12] used for different sensors are as under:
Short-range radio applications include:
Blind Spot Detection (Blind Spot Monitoring)
The lane and the lane-change assistant
Rear end radar for collision warning or collision avoidance
Park Assist
Brake Assist
Emergency braking,
Automatic distance control
Radar configurations can be broadly categorized into three categories namely short-range radar with a maximum distance of about 30 meters, medium range radar with about 60 meters and long- range radar with about 250 meters. It may be mentioned that the use of Short Range Radar is increasingly seen with the detection of blind spot, rear and forward mitigation, parking assist etc. On the other, there are a number of detection system namely forward collision warnings, cross traffic alert, stop & go etc. operated by Medium Range Radar. So far there is no specific distinction made between SRR and MRR by the industry. It is seen now a days that ultrasonic sensors and highly automated driving are gradually replaced by the SRR. We do not have as such specific definitions and distinctions between the SSR and MDR as formulated by the industries. As far as the placement of sensors in the vehicles, the forward looking sensor for long range detection is generally placed in the front of the vehicle.
For a ‘cocoon’ radar system, extra sensors are placed on each side mid-body. Ideally, these radar sensors work on the 79-GHz frequency band with a 4-GHZ bandwidth. It may be mentioned that, global frequency specifications so far allow only 1 GHZ bandwidth at 77 GHz. Now a days a radar MMIC (monolithic microwave integrated circuit) comprises of three transmission channels (TX) and four-receiver channel (RX) to be monolithically integrated. Whether it creates a sense to integrate base band processing in the monolithic microwave integrated circuit (MMIC) or whether it is better to concentrate on a raw data radar sensor, it is a matter of debate.
The difference is that the output of the baseband processor provides so called pre-targets. In this case, data is pre-processed such as unverified information on speed, distance, signal strength, horizontal angle, and vertical angle for each detected object. The raw data radar sensor presents unfiltered raw data, to the ECU for processing. Figure 9 demonstrates the architecture of such a raw data radar sensor. The radar sensor used as partitioned simplifies the data fusion of the video and radar data, and LIDAR data since the same communication interface can be used A prerequisite for the development of MWICs (Millimeter Wave Integrated Circuit) is dedicated high-frequency (HF) technologies to realize the frequencies (24 GHz or 77 GHz) and the corresponding output power. Table 2 presents
Radar architecture for processing of raw data. Source: (
Property | Present in systems | Comment |
---|---|---|
Frequency: 76–77 GHz Range: 1 to 200 m Search Area: 12° Speed measurement precision: < 0.2 km/h |
| Long range, Pulse Doppler, Active sensor, |
Angular Precision: < 0.3° | ||
Frequency: 24.125 Ghz Distance range: 10 m Velocity range: 60 m/s Field of view:
Dimensions: 90 x 40 x 15 mm |
| Short range |
Frequency: 24 GHz |
| Forward looking, long Range |
Frequency: 24 GHz Frequency: 5.8 GHz |
| Side looking, short range Side looking, short Range |
F = 76.5 GHz Resolution = 100 cm Bandwidth = 100–500 MHz Range = 7–150 m | Long range, Pulse Doppler, Active sensor, | |
Radar |
| Active sensor, |
Frequency: 24 GHz UWD (Ultra Wide Band) Resolution = 3 cm Bandwidth = 5 GHz Range: 0.3–30 m |
| Short range, Active sensor, |
Transmission Power = −41.3 dBm/ MHz | ||
Infrared Radar |
| Near InfraRed (NIR), Far Infra Red (FIR), |
Summary table of the properties of a radar sensor in certain ADAS, source: Ref. [12].
Multiple transmitters and receivers are generally are in-built to determine range, angle, and velocity of objects in their field of view. As various sensors are concerned, it consists of ultra-short-range- radar (USRR), short-range-radar (SRR), medium-range-radar (MRR), and long-range-radar (LRR) sensors or systems.
The primary philosophy of working with the ultrasonic technology is to transmit short bursts of sound waves that return back after hitting objects for which the measurement are to be taken in terms of time required to bounce back with speed of approximately 346 m/s which is the speed of the sound. For detection of short distance range obstacle, Ultrasonic sensors are increasing being used in the automobile industries which is generally characterized by with a sound pressure kHz and detection covering range of one to three meters supported by horizontal beam width of maximum100°and60°vertical. The ultrasonic and radar technology complements each other to determine the higher degree of accuracy,
Ultrasonic sensing is generally meant for short-distance applications at low speeds, such as park assist, self-parking, and blind-spot detection. For maximum coverage, an automotive ultrasonic system typically performs with multiple sensors placed in the wing mirror and front and rear bumpers. Ultrasonic sensing is a more cost-effective approach than cameras, which have poor close- distance detection. Though infrared sensing is cheaper than ultrasonic, it’s less accurate and cannot function properly in direct sunlight. Objects closer to the transmitter generate a stronger echo than an object with more distantly located. In order to avoid false positives, the system neglects all inputs that are less than that of the noise. The important parameters related to the specifications of ultrasonic sensor are the frequency, sensitivity, and directivity. The system is further characterized by the tunable transformer that is required to excite the transducer.
A tuning capacitor built into the system is concerned with matching the resonant frequency between the transducer and transformer. The speed of sound in air is affected by air temperature, humidity, and wind. If multiple sensors are applied, they must be placed in sufficient space so that the sensor signals do not interfere. Figure 10 shows the features of ultrasonic system (Table 3).
This ultrasonic system features a PGA450 analog front end (source: Author/PGA450-Q1 PDF).
Property | Present in systems | Comment |
---|---|---|
F = 40 kHz Distance range: 0 to 3 |
| In adverse weather conditions |
meter Distance accuracy: | ||
10 cm Angular range: | ||
120° Angular accuracy: | ||
+/− 5° | ||
Response time: 60 ms |
Summary table of the properties of an ultrasonic sensor in certain ADAS, source: https://www.embedded.com/how-smart-sensors-enhance-adas-designs/
It is realized that in order to make the ADAS commercially viable, three aspects on designing, testing and validating are of great importance and challenge to researchers/ scientists and manufacturer. The processing and sharing of information requiring a huge computation effort, within its fusion system in real time situation is a complex and difficult task in view of the computational load and the time-constraints placed on the system.
The inertial navigation systems identify, measures position, orientation, and velocity measurements. The sensor of RT-Ranges [13] is responsible for creating a real-time network, which is capable of tracking multiple targets, calculating distance, time to collision, and other relative measurements. Targets include primarily road vehicles, vulnerable road users (VRUs) such as cyclists or pedestrians. Euro NCAP (The
Various system of ADAS associated with various sensors is presented in the Table 4. A number of sensors developed during the process of development of ADAS are briefly discussed below.
During night vision, one is more concerned with the proper visibility where the camera plays an important role. Therefore the camera for this purpose is designed with the use of near or far infrared to improve the perception of the driver in dark conditions. The improved sight vision created by the above near or far- infrared camera is displayed in the monitors of the vehicle. Human Machine interface though poses an issue for correctly showing the road-side picture for timely intervention plays an important role to the driver to enhance the safety to the driver so that the driver is not distracted. Table 5
Various sensors related to their applications. Source: Automotive ADAS Systems, ST Developers Conference, Sep, 12, 2019, Santa Clara Convention Centre, Mission City Ballroom, Santa Clara, CA.
Sensor | Property | Comment | |
---|---|---|---|
Infrared camera | |||
(CMOS) | = 7–14 μm | ||
Both systems are mono-camera, | mono-camera, |
Available sensor and properties in night vision systems, source: [12].
Lane departure warning mechanism works on the principles of certain thresholds with respect to distance, time to lane crossing. It is based on the decision made out from the data fusion analysis supported with computer software algorithm to warn the driver that he or she is about commit mistake in departing traffic lane. For example, sensors such as acoustic, optic means continuously generate and analyze the data along with the video image processing data created by the vehicle cameras results in the detection of warning to the vehicle. In order to make the warning system effective, the carriage way would have to be laid with Good visible lane markings system. These influence the complexity of the system on the roadside. This system aims to prevent involuntary lane departure, which constitutes a relevant cause of road accidents. With real-time measurement and positional accuracy which is generally at less than 2 cm, the system captures the data that the sensor performs the task of lane departure action as shown in Figure 11. This warns the Lane Departure Warning system if the vehicle suddenly decides to change the lane without proper indication. The camera used for the lane detection system is low cost generally mounted on the windscreen near the rear view. The position of this location of the camera helps continuously capture the image of solid lane line marking of the road towards the front side of driving. it also works along with the front (adaptive cruise control and, ii) forward collision warning), side (lane departure warning), and iii) rear side (blind spot detection).
How it works: Windshield camera tracks lane markings. So
There are multiple collision warning systems (12) mentioned on the Table 6.
Sensor | Property | Comment | |
---|---|---|---|
Infrared camera | |||
(CMOS) | = 7–14 μm | ||
Both systems are mono-camera, | mono-camera, |
Available sensor and properties in night vision systems.
The finest example of the application of near field collision warning is the detection of blind spot, which takes very close proximity of the presence of vehicle. Lidar, radar or vision based sensors are generally used. It may also be acoustical, haptical or optical also. In many cases, the frequency of this kind sensor is found to be 24 GHz. To test and develop blind-spot detection systems, it is necessary to accurately measure the position and trajectory of targets relative to the vehicle under test (VUT). The system may require the following protocol accuracy:
Relative accuracy 2 cm
Heading accuracy 0.1°
Free post-processing software
Ability to track multiple objects in real-time
Perfectly suited to open-road testing
To evaluate blind-spot detection systems, an RT inertial navigation system and RT- Range S [7] are installed in the vehicle under test. This powerful system is designed to work in conjunction with GNSS-aided inertial navigation products. Automobiles can be equipped with GNSS receivers, which display moving maps and information about location, speed, direction, and nearby streets and points of interest. The manner in which sensor works is based the measurement of real-time distance between the sensor and the identified object. It may include any type of vehicle, blind corner of a junction, pedestrian and bicycle etc.
For real-time testing, range measurements from the RT-Range S Hunter can be used as output via Ethernet or CAN (Controller Area Network) which is a communication hardware that allows communication between parts of a system without the intermediary of a central computer. Or data can be logged internally and analyzed back at base where it can be post-processed and exported in CSV file format ((“Comma Separated Values”) which is often used to exchange data between differently similar applications).
Warning system developed by EATON-VORAD in the USA for trucks and busses [13] as the first step towards the
This system addresses a side looking short-range radar that operates at 24 GHz. This sensor identifies and detects side obstacles that are signaled with a proper display. As a further option, the system can also be linked to engine control with a view to controlling speed. This function is called “Smart Cruise”. More recently, the side obstacle detection System has been introduced also on Volvo cars based on camera sensor and image processing.
This system communicates with the driver about speed limits and informed the recommended speed at curves. There are a number of relevant information generated from digital maps, image processing or communication system between the interactions of vehicles and road infrastructure. That is the reason that updated real time data is important to the driver generated from the above which helps in recognizing the speed limit of the road where the vehicle is traveling. It may be mentioned that the details of the road features such exact location of traffic marking, position of street light etc. are available in the form of digital map in ADAS that helps in identifying and recognizing the speed limit.
This system was introduced firstly inside Japan, and then in Europe for the car market. ACC systems are based on a front looking sensor designed with laser radar, (LIDAR) or microwave radar with a maximum detection range of around 100 m. The microwave radar sensor operates in the 76–77 GHz bands that have been reserved for application of automotive obstacle detection. Based on front vehicle information, mainly distance and speed, the ACC system regulates own vehicle speed by acting on engine control and braking system. The ACC is an extension of the standard Cruise.
Control system, with the extra capability to adapt the speed of the vehicle to the speed of the preceding one. This function was firstly introduced in Japan on 1995 based on LIDAR technology.
Europe experienced the emergence of lidar and microwave technology in the following years which led the introduction of these technologies in the Mercedes car during the year 1999. It is noteworthy to mention that the automatic cruise control system (ACC) was seen fitted with truck manufactured by Mercedes automobile industry. Presently around twenty automobile manufacturers are producing this type car and truck.
It is based on a high performance GNSS/INS for dynamic applications developed on the convenience of a conventional cruise control system by automatically changing speed to match the vehicular flow in front. It’s important to determine precisely when and how the system intervenes, how well it acquires and then it tracks the targets and how it performs in a number of different real-world scenarios [6]. Measurements such as target bearing, distance, relative velocity and time-to-collision are key to the evaluation of these systems. Sensors with RT and RT range for ACC offers the following characteristics:
Relative accuracy 2 cm
Heading accuracy 0.1°
Real-time birds eye view showing measurements
Ability to track multiple objects in real-time
Perfectly suited to open-road testing
In order to get accurate vehicle-to-vehicle measurements, an RT inertial navigation system and RT-Range S [7] are installed in the vehicle under test (VUT) and any target vehicles. An RT inertial navigation takes into account a number of parameters for operation. These include position with respect to latitude, longitude, altitude distance and its coordinate position. Besides the position of these, velocity, acceleration, orientation, angular rates and acceleration and slip angle are also taken into account. RT-XLAN Wi-Fi radios then send real-time information from target vehicles back to the VUT where the RT-Range S calculates, logs and outputs real- time measurements about the relative position of the target vehicles. The measurements being the output include the position of both the Hunter and target vehicles, orientation and velocity. The current status of the ACC hardware can also be logged with the data via a CAN bus interface, which is a robust vehicle bus standard designed to allow microcontrollers and devices to communicate with each other in applications without a host computer. It can also be or later synchronized with the measurements via a GPS time stamp. Moreover, from some manufacturers, ACC is given in combination with lane warning system.
It will have frequency allocation for 24 GHz sensors. The properties of various sensors associated with the functioning this ACC are presented in Table 7 as under:
Sensor | Property |
---|---|
LIDAR | Wavelength l: 850 nm |
Radar | Frequency: 76–77 GHz Range: 1 to 200 m Resolution: 100 cm Search Area: 12° Speed measurement precision: < 0.2 km/h Angular Precision: < 0.3° Frequency: 24.125 Ghz Distance range: 10 m Velocity range: 60 m/s Field of view:
|
Available sensors with their properties in ACC (source: Ref No. [12]).
Adaptive cruise control (ACC) permits a driver to travel with the flow in traffic. In this situation, a radar sensor monitors the situation in front of the vehicle. As the road is observed to be clear, ACC operates with the desired speed. If the radar sensor finds a slower vehicle ahead of it, ACC automatically maintains and adjusts the speed a preset distance. In the Stop & Go version, the system results in slowing the car down in a traffic jam, or even comes to a halt it completely. If the car has an automatic transmission, Stop & Go also restarts the engine once traffic gets moving again after a brief pause.
In this system the driver continues to receive support from this sensor with respect longitudinal control for the formation of queue. During the stop & go of the vehicle facing the front side, longitudinal control is carried out by the system for detecting the near side objects.
The function of a lane keeping assistant system includes the lane detection and the feedback to the driver if he is leaving a defined trajectory within the lane. Lane departure warning systems merely alert the driver when the car is leaving its lane, while lane-keeping assist actually works to keep the car from moving out of the lane. An active steering wheel can help the driver with a force feedback to keep on this trajectory. The lane is detected by a video image processing system. Additionally to the lane departure warning aspects especially regarding the infrastructure, the HMI becomes more important.
The driver gets all assistance through his touch with steering and other devices for taking decisions for the vehicular movement linking with the controller that also helps to lane keeping assistance to adhere to lane driving.
The Protocol accuracy requirements [12] for this are as under:
Axes to be in ISO 8855:1991 orientation
Longitudinal speed to 0.1 km/h
Update rate at least100 Hz
Time is required as a synchronization DGPS (Differential GPS)
Position to 0.03 m
Yaw velocity to 0.1°/s
Acceleration to 0.1 m/s2
Vehicle edge to lane edge measurements
For the LSS (Lane support System) LKA tests, the key measurements are the distance between the outer-edge bulge of the front tires and the inside edge of the lane markings when any intervention is triggered..
If a hazard occurs far away in front of the vehicle, so that the driver cannot see it, this system will warn him. By the means of communication, it is possible, to transfer this information over long distances. A usable frequency has to be allocated. Local Hazard Warning [14, 15] is a system that uses short-range communication between cars, and between a car and its surroundings, to give drivers early warning of safety hazards. For example, a car equipped with Local Hazard Warning might issue a warning to other vehicles if it had broken down in the middle of a carriageway or had been involved in a collision. Similarly, emergency vehicles equipped with such a system might send a signal to nearby vehicles to warn them of their presence, or temporary roadwork barriers could issue for such warnings. As well as transmitting such warnings, cars equipped with Local Hazard Warning can also receive these signals and use them to alert the driver to the danger [16].
The automatic parking is a function that helps the driver entering into a parking slot in a parallel maneuver by automatically acting on the steering wheel and engine control. The sensors measure [12] the object with following accuracy:
Relative accuracy 2 cm
Heading accuracy 0.1°
Real-time birds eye view showing measurements
Ability to track multiple objects in real-time
The vehicle is fitted with a GNSS-aided inertial navigation system (GNSS/INS). In most cases (because of the low speeds involved), a dual-antenna model is fitted to maintain the best headway accuracy at all times. The properties of various sensors [12] are presented in Table 8.
Sensor | Property | Comment |
---|---|---|
Laser | Beam deflection: horizontal Range: 0–80 m Range: 0–35 m @ Rr = 5% Resolution: 20 mm Accuracy: ± 50 mm Frequency: 10–40 Hz Cycle time: 25–100 ms Vertical opening angle: ~ 3,5° Horizontalangularfield:+ − 120° Lateral resolution: 0,25° - 1° | |
Radar | Frequency: 24.125 Ghz | Short range |
Distance range: 10 m Velocity range: 60 m/s Field of view:
| ||
Dimensions: 90 x 40 x 15 mm |
Various sensors available for automatic parking and their properties.
Pre Crash Safety Systems identify an imminent crash and deploy safety devices such as seat belt pretensions.
Pre Crash Safety Systems identify an imminent crash and deploy safety devices such as seat belt pretensions. In order to reduce the damages of an accident, this system has been designed that is capable of applying brake automatically after identification of imminent occurrence of collision. As discussed earlier, various sensors such as Lidar, Camera etc. play an important role in identifying the hindrance for an imminent collision. This feature is primarily designed to address the problem of safety, which integrates the sensitivity of seatbelt. If one happens to wear the seat belt during the occurrence of road accident, the chances of being injured is quite less. Most of the seat belts now available in the car are very sensitive, as the vehicle will not move if car users or someone does not wear seat belt.
The driver will be warned if a potential collision is detected with e.g. another car or obstacle. This warning can be, for example acoustic, visual. The functional limits of these systems have to be clearly pointed out.
In city environments, collision between vehicles and pedestrians or cyclists often result in serious injuries as there is a little time for either party to react. Protocol accuracy requirements [12] for this kind of collision are the following.
Update rate at least 100 Hz
Lateral path error
Time is required as a synchronization DGPS
Position to 0.03 m
VUT (Vehicle under test) Speed to 0.1 km/h
Yaw velocity to 0.1°/s
Acceleration to 0.1 m/s2
Polygon perimeter shapes
In an intersection situation especially in cities, a driver has to fulfill several tasks in parallel. In order to assist the driver in such situations, it is necessary to support certain tasks like approaching a stop sign/traffic light or right of way of crossing traffic. The complexity of the possible intersection scenarios leads to the high risk probabilities of causing accidents. As any intersections are designed to address a number of turning movements of automobile traffic coupled with the non-motorized and pedestrian traffic, the detection and recognition are not as simple as on a straight section of a road. Due to these complexities, the safety of the road intersection would have to be taken into all possible scenarios to make hazard free zone.
Although there are many demonstration seen on advanced vehicles up to Level 3 or more, so far automobile manufacturers have not been able to commercialize to the high level automated vehicle which requires detailed and comprehensive legislation in the countries.. International Standard Organization is presently working on the standards for this automated vehicle. A number of fundamentals aspects of ADAS that are a part of the complex process of the system have been discussed. ADAS with level-2 are becoming increasingly available in the market in western countries with implication of increase in its cost. It may be mentioned that the manufacturers of ADAS driven vehicles have not been able to make any significant impact on the sale of this type of vehicle. It may be mentioned that there is not significant negative values experienced so far. The R&D into ADAS is increasingly being accelerated to enhance safety.
Though the ADAS driven vehicle is yet to find its place in the market in spite of apprehension raised by many sections of people on the safety related issues, it would be important to appreciate when it turns into Cooperative Road Vehicle Highways System reducing the probability of accident to almost zero level.
The European Community (16) is leading by investing significantly in R&D into ADAS in Europe. Many countries such as France, the Netherlands and the UK are increasingly taking an active role by participating in research activities and promoting successful implementation. The most important issues of ADAS have two key factors: i) a high level of usability and ii) a low financial risk to the manufacturer. It seems for the time being, ADAS user benefits are not clear yet and financial risks still exists.
As far as legal aspects are concerned, the relation between ADAS and product liability is very important. The product liability for ADA systems will address specific additional requirements, in particular taking into account the interaction of the drivers/users with the product in view of the current legal framework. The Code of Practice is being developed by the European car manufacturers by addressing these requirements. Presently the ADASE II technology roadmap for ADAS confirmed the expectation that ADAS will have potential benefits on safety, throughput and comfort, ranging from positive to very positive. Related technology development, R&D is still required to improve the performance of ADAS to cover wider ranges of traffic scenarios and to bring down costs. Political motivations and intervention may be needed to advise to the different decision makers to accelerate and facilitate (or regulate) the market the introduction of ADAS.
Therefore the government should come forward along with the concerned stake holders like road operators, car manufactures, users etc. by jointly setting up proper conducive environment in order to promote the advances of ADAS. The ADAS driven vehicles should be commercially viable in the market by addressing concerned legal issues in the society.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5822},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15938}],offset:12,limit:12,total:119319},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"300"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:10},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:26},{group:"topic",caption:"Environmental Sciences",value:12,count:3},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:49},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5330},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"797",title:"Design Engineering",slug:"industrial-engineering-and-management-design-engineering",parent:{title:"Industrial Engineering and Management",slug:"industrial-engineering-and-management"},numberOfBooks:5,numberOfAuthorsAndEditors:128,numberOfWosCitations:141,numberOfCrossrefCitations:98,numberOfDimensionsCitations:192,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"industrial-engineering-and-management-design-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9174",title:"Product Design",subtitle:null,isOpenForSubmission:!1,hash:"3510bacbbf4d365e97510bf962652de1",slug:"product-design",bookSignature:"Cătălin Alexandru, Codruta Jaliu and Mihai Comşit",coverURL:"https://cdn.intechopen.com/books/images_new/9174.jpg",editedByType:"Edited by",editors:[{id:"2767",title:"Prof.",name:"Catalin",middleName:null,surname:"Alexandru",slug:"catalin-alexandru",fullName:"Catalin Alexandru"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3116",title:"Advances in Industrial Design Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9cb2d954a2f9ea36c3d0f915a7fcd8ad",slug:"advances-in-industrial-design-engineering",bookSignature:"Denis A. Coelho",coverURL:"https://cdn.intechopen.com/books/images_new/3116.jpg",editedByType:"Edited by",editors:[{id:"38427",title:"Prof.",name:"Denis",middleName:null,surname:"Coelho",slug:"denis-coelho",fullName:"Denis Coelho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1802",title:"Manufacturing System",subtitle:null,isOpenForSubmission:!1,hash:"4db5cd5587e7ab1fe6e34507c103ee13",slug:"manufacturing-system",bookSignature:"Faieza Abdul Aziz",coverURL:"https://cdn.intechopen.com/books/images_new/1802.jpg",editedByType:"Edited by",editors:[{id:"109136",title:"Associate Prof.",name:"Faieza",middleName:null,surname:"Abdul Aziz",slug:"faieza-abdul-aziz",fullName:"Faieza Abdul Aziz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1991",title:"Infrastructure Design, Signalling and Security in Railway",subtitle:null,isOpenForSubmission:!1,hash:"2151ad71a0cc7423ed852ab93d8c70f8",slug:"infrastructure-design-signalling-and-security-in-railway",bookSignature:"Xavier Perpinya",coverURL:"https://cdn.intechopen.com/books/images_new/1991.jpg",editedByType:"Edited by",editors:[{id:"111217",title:"Dr.",name:"Xavier",middleName:null,surname:"Perpinya",slug:"xavier-perpinya",fullName:"Xavier Perpinya"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"323",title:"Industrial Design",subtitle:"New Frontiers",isOpenForSubmission:!1,hash:"6712ef0cc1fdf610d17e8aa70170f773",slug:"industrial-design-new-frontiers",bookSignature:"Denis A. Coelho",coverURL:"https://cdn.intechopen.com/books/images_new/323.jpg",editedByType:"Edited by",editors:[{id:"38427",title:"Prof.",name:"Denis",middleName:null,surname:"Coelho",slug:"denis-coelho",fullName:"Denis Coelho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"43375",doi:"10.5772/55274",title:"Product Sound Design: Intentional and Consequential Sounds",slug:"product-sound-design-intentional-and-consequential-sounds",totalDownloads:2943,totalCrossrefCites:15,totalDimensionsCites:25,book:{slug:"advances-in-industrial-design-engineering",title:"Advances in Industrial Design Engineering",fullTitle:"Advances in Industrial Design Engineering"},signatures:"Lau Langeveld, René van Egmond, Reinier Jansen and Elif Özcan",authors:[{id:"39586",title:"MSc.",name:"Lau",middleName:null,surname:"Langeveld",slug:"lau-langeveld",fullName:"Lau Langeveld"},{id:"156849",title:"MSc.",name:"Reinier",middleName:null,surname:"Jansen",slug:"reinier-jansen",fullName:"Reinier Jansen"},{id:"156854",title:"Dr.",name:"Rene",middleName:null,surname:"Van Egmond",slug:"rene-van-egmond",fullName:"Rene Van Egmond"},{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}]},{id:"34792",doi:"10.5772/35864",title:"Gaming Simulations for Railways: Lessons Learned from Modeling Six Games for the Dutch Infrastructure Management",slug:"gaming-simulations-for-railways-lessons-learned-from-modeling-six-games-for-the-dutch-infrastructure",totalDownloads:1899,totalCrossrefCites:15,totalDimensionsCites:19,book:{slug:"infrastructure-design-signalling-and-security-in-railway",title:"Infrastructure Design, Signalling and Security in Railway",fullTitle:"Infrastructure Design, Signalling and Security in Railway"},signatures:"Sebastiaan Meijer",authors:[{id:"106139",title:"Dr.",name:"Sebastiaan",middleName:null,surname:"Meijer",slug:"sebastiaan-meijer",fullName:"Sebastiaan Meijer"}]},{id:"36413",doi:"10.5772/35991",title:"Environmental Burden Analyzer for Machine Tool Operations and Its Application",slug:"environmental-burden-analyzer-for-machine-tool-operations-and-its-application",totalDownloads:2247,totalCrossrefCites:3,totalDimensionsCites:15,book:{slug:"manufacturing-system",title:"Manufacturing System",fullTitle:"Manufacturing System"},signatures:"Hirohisa Narita",authors:[{id:"106662",title:"Dr.",name:"Hirohisa",middleName:null,surname:"Narita",slug:"hirohisa-narita",fullName:"Hirohisa Narita"}]}],mostDownloadedChaptersLast30Days:[{id:"43375",title:"Product Sound Design: Intentional and Consequential Sounds",slug:"product-sound-design-intentional-and-consequential-sounds",totalDownloads:2946,totalCrossrefCites:15,totalDimensionsCites:25,book:{slug:"advances-in-industrial-design-engineering",title:"Advances in Industrial Design Engineering",fullTitle:"Advances in Industrial Design Engineering"},signatures:"Lau Langeveld, René van Egmond, Reinier Jansen and Elif Özcan",authors:[{id:"39586",title:"MSc.",name:"Lau",middleName:null,surname:"Langeveld",slug:"lau-langeveld",fullName:"Lau Langeveld"},{id:"156849",title:"MSc.",name:"Reinier",middleName:null,surname:"Jansen",slug:"reinier-jansen",fullName:"Reinier Jansen"},{id:"156854",title:"Dr.",name:"Rene",middleName:null,surname:"Van Egmond",slug:"rene-van-egmond",fullName:"Rene Van Egmond"},{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}]},{id:"43362",title:"Design Thinking in Conceptual Design Processes: A Comparison Between Industrial and Engineering Design Students",slug:"design-thinking-in-conceptual-design-processes-a-comparison-between-industrial-and-engineering-desig",totalDownloads:2988,totalCrossrefCites:2,totalDimensionsCites:0,book:{slug:"advances-in-industrial-design-engineering",title:"Advances in Industrial Design Engineering",fullTitle:"Advances in Industrial Design Engineering"},signatures:"Hao Jiang and Ching-Chiuan Yen",authors:[{id:"38998",title:"Dr.",name:"Hao",middleName:null,surname:"Jiang",slug:"hao-jiang",fullName:"Hao Jiang"},{id:"154802",title:"Associate Prof.",name:"Ching-Chiuan",middleName:null,surname:"Yen",slug:"ching-chiuan-yen",fullName:"Ching-Chiuan Yen"}]},{id:"43458",title:"Visual and Material Culture in the Context of Industrial Design: The Contemporary Nigerian Experience",slug:"visual-and-material-culture-in-the-context-of-industrial-design-the-contemporary-nigerian-experience",totalDownloads:3777,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"advances-in-industrial-design-engineering",title:"Advances in Industrial Design Engineering",fullTitle:"Advances in Industrial Design Engineering"},signatures:"I.B. Kashim",authors:[{id:"39941",title:"Dr.",name:"Isah Bolaji",middleName:null,surname:"Kashim",slug:"isah-bolaji-kashim",fullName:"Isah Bolaji Kashim"}]},{id:"43577",title:"The Design of Product Instructions",slug:"the-design-of-product-instructions",totalDownloads:2459,totalCrossrefCites:3,totalDimensionsCites:1,book:{slug:"advances-in-industrial-design-engineering",title:"Advances in Industrial Design Engineering",fullTitle:"Advances in Industrial Design Engineering"},signatures:"Dian Li, Tom Cassidy and David Bromilow",authors:[{id:"39208",title:"Prof.",name:"Tom",middleName:null,surname:"Cassidy",slug:"tom-cassidy",fullName:"Tom Cassidy"}]},{id:"43555",title:"Sustainable Product Innovation: The Importance of the Front- End Stage in the Innovation Process",slug:"sustainable-product-innovation-the-importance-of-the-front-end-stage-in-the-innovation-process",totalDownloads:3974,totalCrossrefCites:6,totalDimensionsCites:15,book:{slug:"advances-in-industrial-design-engineering",title:"Advances in Industrial Design Engineering",fullTitle:"Advances in Industrial Design Engineering"},signatures:"Kristel Dewulf",authors:[{id:"154290",title:"M.Sc.",name:"Kristel",middleName:null,surname:"Dewulf",slug:"kristel-dewulf",fullName:"Kristel Dewulf"}]},{id:"34782",title:"The Role of Light Railway in Sugarcane Transport in Egypt",slug:"the-role-of-light-railway-in-cane-transport-in-egypt-",totalDownloads:3176,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"infrastructure-design-signalling-and-security-in-railway",title:"Infrastructure Design, Signalling and Security in Railway",fullTitle:"Infrastructure Design, Signalling and Security in Railway"},signatures:"Hassan A. Abdel-Mawla",authors:[{id:"110356",title:"Prof.",name:"Hassan",middleName:null,surname:"Abdel-Mawla",slug:"hassan-abdel-mawla",fullName:"Hassan Abdel-Mawla"}]},{id:"34791",title:"Cellular Automaton Modeling of Passenger Transport Systems",slug:"cellular-automaton-modeling-of-passenger-transport-system-and-applications",totalDownloads:1759,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"infrastructure-design-signalling-and-security-in-railway",title:"Infrastructure Design, Signalling and Security in Railway",fullTitle:"Infrastructure Design, Signalling and Security in Railway"},signatures:"Akiyasu Tomoeda",authors:[{id:"105626",title:"Dr.",name:"Akiyasu",middleName:null,surname:"Tomoeda",slug:"akiyasu-tomoeda",fullName:"Akiyasu Tomoeda"}]},{id:"43556",title:"Measuring Design Simplicity",slug:"measuring-design-simplicity",totalDownloads:1812,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-industrial-design-engineering",title:"Advances in Industrial Design Engineering",fullTitle:"Advances in Industrial Design Engineering"},signatures:"Carlos A.M. Duarte",authors:[{id:"154479",title:"Ph.D.",name:"Carlos",middleName:"A. M.",surname:"Duarte",slug:"carlos-duarte",fullName:"Carlos Duarte"}]},{id:"22851",title:"Designing Disruptive Innovative Systems, Products and Services: RTD Process",slug:"designing-disruptive-innovative-systems-products-and-services-rtd-process",totalDownloads:2331,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"industrial-design-new-frontiers",title:"Industrial Design",fullTitle:"Industrial Design - New Frontiers"},signatures:"Caroline Hummels and Joep Frens",authors:[{id:"48290",title:"Dr.",name:"Caroline",middleName:null,surname:"Hummels",slug:"caroline-hummels",fullName:"Caroline Hummels"},{id:"61124",title:"Dr.",name:"Joep",middleName:null,surname:"Frens",slug:"joep-frens",fullName:"Joep Frens"}]},{id:"36412",title:"Hybrid Manufacturing System Design and Development",slug:"hybrid-manufacturing-system-design-and-development",totalDownloads:2628,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"manufacturing-system",title:"Manufacturing System",fullTitle:"Manufacturing System"},signatures:"Jacquelyn K. S. Nagel and Frank W. Liou",authors:[{id:"101869",title:"Prof.",name:"Frank",middleName:null,surname:"Liou",slug:"frank-liou",fullName:"Frank Liou"},{id:"105106",title:"Dr.",name:"Jacquelyn",middleName:"Kay",surname:"Nagel",slug:"jacquelyn-nagel",fullName:"Jacquelyn Nagel"}]}],onlineFirstChaptersFilter:{topicSlug:"industrial-engineering-and-management-design-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/154759/yuriy-garbovskiy",hash:"",query:{},params:{id:"154759",slug:"yuriy-garbovskiy"},fullPath:"/profiles/154759/yuriy-garbovskiy",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()