History of worldwide magnesium plants before 2000s.
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"1704",leadTitle:null,fullTitle:"Future Aeronautical Communications",title:"Future Aeronautical Communications",subtitle:null,reviewType:"peer-reviewed",abstract:"There are well-founded concerns that current air transportation systems will not be able to cope with their expected growth. Current processes, procedures and technologies in aeronautical communications do not provide the flexibility needed to meet the growing demands. Aeronautical communications is seen as a major bottleneck stressing capacity limits in air transportation. Ongoing research projects are developing the fundamental methods, concepts and technologies for future aeronautical communications that are required to enable higher capacities in air transportation.\nThe aim of this book is to edit the ensemble of newest contributions and research results in the field of future aeronautical communications. The book gives the readers the opportunity to deepen and broaden their knowledge of this field. Today's and tomorrow's problems / methods in the field of aeronautical communications are treated: current trends are identified; IPv6 aeronautical network aspect are covered; challenges for the satellite component are illustrated; AeroMACS and LDACS as future data links are investigated and visions for aeronautical communications are formulated.",isbn:null,printIsbn:"978-953-307-625-6",pdfIsbn:"978-953-51-6061-8",doi:"10.5772/2147",price:139,priceEur:155,priceUsd:179,slug:"future-aeronautical-communications",numberOfPages:394,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"0b8e37964820587b229361f22d299b29",bookSignature:"Simon Plass",publishedDate:"September 26th 2011",coverURL:"https://cdn.intechopen.com/books/images_new/1704.jpg",numberOfDownloads:59805,numberOfWosCitations:34,numberOfCrossrefCitations:42,numberOfCrossrefCitationsByBook:5,numberOfDimensionsCitations:75,numberOfDimensionsCitationsByBook:5,hasAltmetrics:1,numberOfTotalCitations:151,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 17th 2011",dateEndSecondStepPublish:"February 17th 2011",dateEndThirdStepPublish:"May 20th 2011",dateEndFourthStepPublish:"June 21st 2011",dateEndFifthStepPublish:"October 21st 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"72892",title:"Dr.",name:"Simon",middleName:null,surname:"Plass",slug:"simon-plass",fullName:"Simon Plass",profilePictureURL:"https://mts.intechopen.com/storage/users/72892/images/system/72892.jpg",biography:"Dr. Simon Plass received the Dr.Ing. degree (Ph.D.) in electrical engineering from the University of Ulm, Germany in 2008. Since 2003, Simon has been with the Institute of Communications and Navigation at the German Aerospace Center (DLR), Oberpaffenhofen, Germany. He is General Co-Chair of the biannual International Workshop on Multi-Carrier Systems & Solutions (MC-SS). In 2010, Simon obtained the Project Management Professional (PMP®) credential. Currently, he is DLR's project manager for the European Research Project SANDRA which integrates data links and antennas for a seamless aeronautical networking. He is responsible for the overall network design, the validation and demonstration activities by test-bed and flight trials, and SANDRA dissemination actions. He authored and co-authored more than 60 technical and scientific papers.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"German Aerospace Center",institutionURL:null,country:{name:"Germany"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"683",title:"Aeronautics",slug:"aeronautics"}],chapters:[{id:"20425",title:"SESAR and SANDRA: A Co-Operative Approach for Future Aeronautical Communications",doi:"10.5772/28975",slug:"sesar-and-sandra-a-co-operative-approach-for-future-aeronautical-communications",totalDownloads:2799,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Angeloluca Barba and Federica Battisti",downloadPdfUrl:"/chapter/pdf-download/20425",previewPdfUrl:"/chapter/pdf-preview/20425",authors:[{id:"73770",title:"Dr.",name:"Federica",surname:"Battisti",slug:"federica-battisti",fullName:"Federica Battisti"},{id:"76057",title:"MSc.",name:"Angeloluca",surname:"Barba",slug:"angeloluca-barba",fullName:"Angeloluca Barba"}],corrections:null},{id:"20426",title:"Handling Transition from Legacy Aircraft Communication Services to New Ones – A Communication Service Provider's View",doi:"10.5772/30318",slug:"handling-transition-from-legacy-aircraft-communication-services-to-new-ones-a-communication-service-",totalDownloads:4968,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Frederic Durand and Luc Longpre",downloadPdfUrl:"/chapter/pdf-download/20426",previewPdfUrl:"/chapter/pdf-preview/20426",authors:[{id:"81923",title:"Mr.",name:"Frederic",surname:"Durand",slug:"frederic-durand",fullName:"Frederic Durand"},{id:"120168",title:"Mr.",name:"Luc",surname:"Longpre",slug:"luc-longpre",fullName:"Luc Longpre"}],corrections:null},{id:"20427",title:"SOA-Based Aeronautical Service Integration",doi:"10.5772/29307",slug:"soa-based-aeronautical-service-integration",totalDownloads:3848,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Yifang Liu, Yongqiang Cheng, Yim Fun Hu, Prashant Pillai and Vincenzo Esposito",downloadPdfUrl:"/chapter/pdf-download/20427",previewPdfUrl:"/chapter/pdf-preview/20427",authors:[{id:"28051",title:"Dr.",name:"Yongqiang",surname:"Cheng",slug:"yongqiang-cheng",fullName:"Yongqiang Cheng"},{id:"40504",title:"Prof.",name:"Yim Fun",surname:"Hu",slug:"yim-fun-hu",fullName:"Yim Fun Hu"},{id:"77229",title:"Dr.",name:"Prashant",surname:"Pillai",slug:"prashant-pillai",fullName:"Prashant Pillai"},{id:"77247",title:"Ms.",name:"Yifang",surname:"Liu",slug:"yifang-liu",fullName:"Yifang Liu"},{id:"80246",title:"Mr.",name:"Vincenzo",surname:"Esposito",slug:"vincenzo-esposito",fullName:"Vincenzo Esposito"}],corrections:null},{id:"20428",title:"Transport Protocol for Future Aeronautics",doi:"10.5772/28455",slug:"transport-protocol-for-future-aeronautics",totalDownloads:2525,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Muhammad Muhammad and Matteo Berioli",downloadPdfUrl:"/chapter/pdf-download/20428",previewPdfUrl:"/chapter/pdf-preview/20428",authors:[{id:"73939",title:"MSc.",name:"Muhammad",surname:"Muhammad",slug:"muhammad-muhammad",fullName:"Muhammad Muhammad"},{id:"105454",title:"Dr.",name:"Matteo",surname:"Berioli",slug:"matteo-berioli",fullName:"Matteo Berioli"}],corrections:null},{id:"20429",title:"Security Concepts in IPv6 Based Aeronautical Communications",doi:"10.5772/30089",slug:"security-concepts-in-ipv6-based-aeronautical-communications",totalDownloads:3002,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Tommaso Pecorella, Romano Fantacci, Luigia Micciullo, Antonietta Stango, Neeli Prasad, Piotr Pacyna, Norbert Rapacz and Tomasz Chmielecki",downloadPdfUrl:"/chapter/pdf-download/20429",previewPdfUrl:"/chapter/pdf-preview/20429",authors:[{id:"14672",title:"Prof.",name:"Romano",surname:"Fantacci",slug:"romano-fantacci",fullName:"Romano Fantacci"},{id:"80789",title:"Dr.",name:"Tommaso",surname:"Pecorella",slug:"tommaso-pecorella",fullName:"Tommaso Pecorella"},{id:"81615",title:"Prof.",name:"Piotr",surname:"Pacyna",slug:"piotr-pacyna",fullName:"Piotr Pacyna"},{id:"81617",title:"Dr.",name:"Norbert",surname:"Rapacz",slug:"norbert-rapacz",fullName:"Norbert Rapacz"},{id:"81620",title:"MSc",name:"Antonietta",surname:"Stango",slug:"antonietta-stango",fullName:"Antonietta Stango"},{id:"81710",title:"Prof.",name:"Neeli R.",surname:"Prasad",slug:"neeli-r.-prasad",fullName:"Neeli R. Prasad"},{id:"107437",title:"MSc.",name:"Luigia",surname:"Micciullo",slug:"luigia-micciullo",fullName:"Luigia Micciullo"},{id:"107438",title:"MSc.",name:"Tomasz",surname:"Chmielecki",slug:"tomasz-chmielecki",fullName:"Tomasz Chmielecki"}],corrections:null},{id:"20430",title:"Quality of Service Management and Interoperability",doi:"10.5772/30267",slug:"quality-of-service-management-and-interoperability",totalDownloads:2569,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Christian Kissling and Tomaso de Cola",downloadPdfUrl:"/chapter/pdf-download/20430",previewPdfUrl:"/chapter/pdf-preview/20430",authors:[{id:"81682",title:"Mr.",name:"Christian",surname:"Kissling",slug:"christian-kissling",fullName:"Christian Kissling"},{id:"135950",title:"Mr.",name:"Tomaso",surname:"De Cola",slug:"tomaso-de-cola",fullName:"Tomaso De Cola"}],corrections:null},{id:"20431",title:"Interoperability Among Heterogeneous Networks for Future Aeronautical Communications",doi:"10.5772/29304",slug:"interoperability-among-heterogeneous-networks-for-future-aeronautical-communications",totalDownloads:3005,totalCrossrefCites:5,totalDimensionsCites:5,hasAltmetrics:1,abstract:null,signatures:"Kai Xu, Prashant Pillai, Yim Fun Hu and Muhammad Ali",downloadPdfUrl:"/chapter/pdf-download/20431",previewPdfUrl:"/chapter/pdf-preview/20431",authors:[{id:"40504",title:"Prof.",name:"Yim Fun",surname:"Hu",slug:"yim-fun-hu",fullName:"Yim Fun Hu"},{id:"77229",title:"Dr.",name:"Prashant",surname:"Pillai",slug:"prashant-pillai",fullName:"Prashant Pillai"},{id:"136809",title:"Dr.",name:"Muhammad",surname:"Ali",slug:"muhammad-ali",fullName:"Muhammad Ali"}],corrections:null},{id:"20432",title:"Design Aspects of a Testbed for an IPv6-Based Future Network for Aeronautical Safety and Non-Safety Communication",doi:"10.5772/28161",slug:"design-aspects-of-a-testbed-for-an-ipv6-based-future-network-for-aeronautical-safety-and-non-safety-",totalDownloads:2941,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Oliver Lücke and Eriza Hafid Fazli",downloadPdfUrl:"/chapter/pdf-download/20432",previewPdfUrl:"/chapter/pdf-preview/20432",authors:[{id:"72914",title:"Dr.",name:"Oliver",surname:"Lücke",slug:"oliver-lucke",fullName:"Oliver Lücke"},{id:"72918",title:"Mr.",name:"Eriza Hafid",surname:"Fazli",slug:"eriza-hafid-fazli",fullName:"Eriza Hafid Fazli"}],corrections:null},{id:"20433",title:"The Role of Satellite Systems in Future Aeronautical Communications",doi:"10.5772/36150",slug:"the-role-of-satellite-systems-in-future-aeronautical-communications",totalDownloads:6483,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Nicolas Van Wambeke and Mathieu Gineste",downloadPdfUrl:"/chapter/pdf-download/20433",previewPdfUrl:"/chapter/pdf-preview/20433",authors:[{id:"107266",title:"Dr.",name:"Nicolas",surname:"Van Wambeke",slug:"nicolas-van-wambeke",fullName:"Nicolas Van Wambeke"},{id:"107710",title:"Dr.",name:"Mathieu",surname:"Gineste",slug:"mathieu-gineste",fullName:"Mathieu Gineste"}],corrections:null},{id:"20434",title:"Development of a Broadband and Squint-Free Ku-Band Phased Array Antenna System for Airborne Satellite Communications",doi:"10.5772/28399",slug:"development-of-a-broadband-and-squint-free-ku-band-phased-array-antenna-system-for-airborne-satellit",totalDownloads:3149,totalCrossrefCites:6,totalDimensionsCites:16,hasAltmetrics:0,abstract:null,signatures:"David Marpaung, Chris Roeloffzen, Willem Beeker, Bertrand Noharet, Jaco Verpoorte and Rens Baggen",downloadPdfUrl:"/chapter/pdf-download/20434",previewPdfUrl:"/chapter/pdf-preview/20434",authors:[{id:"73750",title:"Dr.",name:"David",surname:"Marpaung",slug:"david-marpaung",fullName:"David Marpaung"},{id:"76460",title:"Dr.",name:"Chris",surname:"Roeloffzen",slug:"chris-roeloffzen",fullName:"Chris Roeloffzen"},{id:"76461",title:"MSc.",name:"Jaco",surname:"Verpoorte",slug:"jaco-verpoorte",fullName:"Jaco Verpoorte"},{id:"76462",title:"Dr.",name:"Arne",surname:"Leinse",slug:"arne-leinse",fullName:"Arne Leinse"},{id:"107848",title:"Dr.",name:"Bertrand",surname:"Noharet",slug:"bertrand-noharet",fullName:"Bertrand Noharet"},{id:"107851",title:"MSc.",name:"Rens",surname:"Baggen",slug:"rens-baggen",fullName:"Rens Baggen"},{id:"110563",title:"Dr.",name:"Willem",surname:"Beeker",slug:"willem-beeker",fullName:"Willem Beeker"}],corrections:null},{id:"20435",title:"Future Aeronautical Communications: The Data Link Component",doi:"10.5772/29899",slug:"future-aeronautical-communications-the-data-link-component",totalDownloads:3766,totalCrossrefCites:4,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"Nikos Fistas",downloadPdfUrl:"/chapter/pdf-download/20435",previewPdfUrl:"/chapter/pdf-preview/20435",authors:[{id:"79818",title:"Dr.",name:"Nikos",surname:"Fistas",slug:"nikos-fistas",fullName:"Nikos Fistas"}],corrections:null},{id:"20436",title:"Aeronautical Mobile Airport Communications System (AeroMACS)",doi:"10.5772/30292",slug:"aeronautical-mobile-airport-communications-system-aeromacs-",totalDownloads:5081,totalCrossrefCites:0,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"James M. Budinger and Edward Hall",downloadPdfUrl:"/chapter/pdf-download/20436",previewPdfUrl:"/chapter/pdf-preview/20436",authors:[{id:"81813",title:"Mr.",name:"James",surname:"Budinger",slug:"james-budinger",fullName:"James Budinger"},{id:"81829",title:"Mr",name:"Edward",surname:"Hall",slug:"edward-hall",fullName:"Edward Hall"}],corrections:null},{id:"20437",title:"Utilizing IEEE 802.16 for Aeronautical Communications",doi:"10.5772/29943",slug:"utilizing-ieee-802-16-for-aeronautical-communications",totalDownloads:2158,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Max Ehammer, Thomas Gräupl and Elias Pschernig",downloadPdfUrl:"/chapter/pdf-download/20437",previewPdfUrl:"/chapter/pdf-preview/20437",authors:[{id:"73933",title:"Dr.",name:"Thomas",surname:"Gräupl",slug:"thomas-graupl",fullName:"Thomas Gräupl"},{id:"80020",title:"MSc.",name:"Max",surname:"Ehammer",slug:"max-ehammer",fullName:"Max Ehammer"},{id:"136758",title:"Prof.",name:"Elias",surname:"Pschernig",slug:"elias-pschernig",fullName:"Elias Pschernig"}],corrections:null},{id:"20438",title:"The LDACS1 Link Layer Design",doi:"10.5772/28453",slug:"the-ldacs1-link-layer-design",totalDownloads:2652,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:1,abstract:null,signatures:"Thomas Gräupl and Max Ehammer",downloadPdfUrl:"/chapter/pdf-download/20438",previewPdfUrl:"/chapter/pdf-preview/20438",authors:[{id:"73933",title:"Dr.",name:"Thomas",surname:"Gräupl",slug:"thomas-graupl",fullName:"Thomas Gräupl"},{id:"80020",title:"MSc.",name:"Max",surname:"Ehammer",slug:"max-ehammer",fullName:"Max Ehammer"}],corrections:null},{id:"20439",title:"The LDACS1 Physical Layer Design",doi:"10.5772/29700",slug:"the-ldacs1-physical-layer-design",totalDownloads:3068,totalCrossrefCites:7,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Snjezana Gligorevic, Ulrich Epple and Michael Schnell",downloadPdfUrl:"/chapter/pdf-download/20439",previewPdfUrl:"/chapter/pdf-preview/20439",authors:[{id:"79016",title:"Dr.",name:"Snjezana",surname:"Gligorevic",slug:"snjezana-gligorevic",fullName:"Snjezana Gligorevic"},{id:"107718",title:"Mr.",name:"Ulrich",surname:"Epple",slug:"ulrich-epple",fullName:"Ulrich Epple"},{id:"113592",title:"Dr.",name:"Michael",surname:"Schnell",slug:"michael-schnell",fullName:"Michael Schnell"}],corrections:null},{id:"20440",title:"IFAR – The International Forum for Aviation Research",doi:"10.5772/30382",slug:"ifar-the-international-forum-for-aviation-research",totalDownloads:2198,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Richard Degenhardt, Joachim Szodruch and Simon Plass",downloadPdfUrl:"/chapter/pdf-download/20440",previewPdfUrl:"/chapter/pdf-preview/20440",authors:[{id:"72892",title:"Dr.",name:"Simon",surname:"Plass",slug:"simon-plass",fullName:"Simon Plass"},{id:"82285",title:"Prof.",name:"Joachim",surname:"Szodruch",slug:"joachim-szodruch",fullName:"Joachim Szodruch"},{id:"82289",title:"Prof.",name:"Richard",surname:"Degenhardt",slug:"richard-degenhardt",fullName:"Richard Degenhardt"}],corrections:null},{id:"20441",title:"The Airborne Internet",doi:"10.5772/29680",slug:"the-airborne-internet",totalDownloads:5593,totalCrossrefCites:9,totalDimensionsCites:11,hasAltmetrics:0,abstract:null,signatures:"Daniel Medina and Felix Hoffmann",downloadPdfUrl:"/chapter/pdf-download/20441",previewPdfUrl:"/chapter/pdf-preview/20441",authors:[{id:"78888",title:"Mr.",name:"Daniel",surname:"Medina",slug:"daniel-medina",fullName:"Daniel Medina"},{id:"80299",title:"Mr.",name:"Felix",surname:"Hoffmann",slug:"felix-hoffmann",fullName:"Felix Hoffmann"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1992",title:"Recent Advances in Aircraft Technology",subtitle:null,isOpenForSubmission:!1,hash:"67fa903d68a094013f66d01b38882107",slug:"recent-advances-in-aircraft-technology",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/1992.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"623",title:"Global Navigation Satellite Systems",subtitle:"Signal, Theory and Applications",isOpenForSubmission:!1,hash:"cf4b30bc55fec41acdfe8c1203e1de62",slug:"global-navigation-satellite-systems-signal-theory-and-applications",bookSignature:"Shuanggen Jin",coverURL:"https://cdn.intechopen.com/books/images_new/623.jpg",editedByType:"Edited by",editors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"215",title:"Aeronautics and Astronautics",subtitle:null,isOpenForSubmission:!1,hash:"311199eb39821f7f12a19ca1efc3fd7f",slug:"aeronautics-and-astronautics",bookSignature:"Max Mulder",coverURL:"https://cdn.intechopen.com/books/images_new/215.jpg",editedByType:"Edited by",editors:[{id:"10586",title:"Prof.",name:"Max",surname:"Mulder",slug:"max-mulder",fullName:"Max Mulder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"54",title:"Advances in Flight Control Systems",subtitle:null,isOpenForSubmission:!1,hash:"186a12a4766d19cae77a730fa648982a",slug:"advances-in-flight-control-systems",bookSignature:"Agneta Balint",coverURL:"https://cdn.intechopen.com/books/images_new/54.jpg",editedByType:"Edited by",editors:[{id:"18768",title:"Dr.",name:"Maria Agneta",surname:"Balint",slug:"maria-agneta-balint",fullName:"Maria Agneta Balint"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"614",title:"Automatic Flight Control Systems",subtitle:"Latest Developments",isOpenForSubmission:!1,hash:"7e37ca326991ca149dd8f812475df8de",slug:"automatic-flight-control-systems-latest-developments",bookSignature:"Thomas Lombaerts",coverURL:"https://cdn.intechopen.com/books/images_new/614.jpg",editedByType:"Edited by",editors:[{id:"19892",title:"Dr.",name:"Thomas",surname:"Lombaerts",slug:"thomas-lombaerts",fullName:"Thomas Lombaerts"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4476",title:"Satellite Positioning",subtitle:"Methods, Models and Applications",isOpenForSubmission:!1,hash:"0f1cb6a7a18e2391d2308b6ac1d423b0",slug:"satellite-positioning-methods-models-and-applications",bookSignature:"Shuanggen Jin",coverURL:"https://cdn.intechopen.com/books/images_new/4476.jpg",editedByType:"Edited by",editors:[{id:"113652",title:"Prof.",name:"Shuanggen",surname:"Jin",slug:"shuanggen-jin",fullName:"Shuanggen Jin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"315",title:"Advances in Satellite Communications",subtitle:null,isOpenForSubmission:!1,hash:"97497fa8021416773088969c2c9219cb",slug:"advances-in-satellite-communications",bookSignature:"Masoumeh Karimi and Yuri Labrador",coverURL:"https://cdn.intechopen.com/books/images_new/315.jpg",editedByType:"Edited by",editors:[{id:"13481",title:"Dr.",name:"Masoumeh",surname:"Karimi",slug:"masoumeh-karimi",fullName:"Masoumeh Karimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1994",title:"Advances in Spacecraft Systems and Orbit Determination",subtitle:null,isOpenForSubmission:!1,hash:"005b6f7fa0ad6e582e7b37bee4ce88be",slug:"advances-in-spacecraft-systems-and-orbit-determination",bookSignature:"Rushi Ghadawala",coverURL:"https://cdn.intechopen.com/books/images_new/1994.jpg",editedByType:"Edited by",editors:[{id:"103175",title:"Dr.",name:"Rushi",surname:"Ghadawala",slug:"rushi-ghadawala",fullName:"Rushi Ghadawala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6150",title:"Flight Physics",subtitle:"Models, Techniques and Technologies",isOpenForSubmission:!1,hash:"fa5828a4ee518adf719c68c1e533f3b7",slug:"flight-physics-models-techniques-and-technologies",bookSignature:"Konstantin Volkov",coverURL:"https://cdn.intechopen.com/books/images_new/6150.jpg",editedByType:"Edited by",editors:[{id:"118184",title:"Dr.",name:"Konstantin",surname:"Volkov",slug:"konstantin-volkov",fullName:"Konstantin Volkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5136",title:"Recent Progress in Some Aircraft Technologies",subtitle:null,isOpenForSubmission:!1,hash:"6855bfb94011b56313a07020fa05ead6",slug:"recent-progress-in-some-aircraft-technologies",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/5136.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64730",slug:"erratum-spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",title:"Erratum - Spectrum Decision Framework to Support Cognitive Radio Based IoT in 5G",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64730.pdf",downloadPdfUrl:"/chapter/pdf-download/64730",previewPdfUrl:"/chapter/pdf-preview/64730",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64730",risUrl:"/chapter/ris/64730",chapter:{id:"63606",slug:"spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",signatures:"Ahmad Naeem Akhtar, Fahim Arif and Adil Masood Siddique",dateSubmitted:"February 8th 2018",dateReviewed:"August 18th 2018",datePrePublished:null,datePublished:null,book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"244896",title:"Dr.",name:"Ahmad Naeem",middleName:null,surname:"Akhtar",fullName:"Ahmad Naeem Akhtar",slug:"ahmad-naeem-akhtar",email:"ahmadnaeem.akhtar@mcs.edu.pk",position:null,institution:null}]}},chapter:{id:"63606",slug:"spectrum-decision-framework-to-support-cognitive-radio-based-iot-in-5g",signatures:"Ahmad Naeem Akhtar, Fahim Arif and Adil Masood Siddique",dateSubmitted:"February 8th 2018",dateReviewed:"August 18th 2018",datePrePublished:null,datePublished:null,book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"244896",title:"Dr.",name:"Ahmad Naeem",middleName:null,surname:"Akhtar",fullName:"Ahmad Naeem Akhtar",slug:"ahmad-naeem-akhtar",email:"ahmadnaeem.akhtar@mcs.edu.pk",position:null,institution:null}]},book:{id:"7291",title:"Cognitive Radio in 4G/5G Wireless Communication Systems",subtitle:null,fullTitle:"Cognitive Radio in 4G/5G Wireless Communication Systems",slug:"cognitive-radio-in-4g-5g-wireless-communication-systems",publishedDate:"December 5th 2018",bookSignature:"Shahriar Shirvani Moghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/7291.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"185038",title:"Dr.",name:"Shahriar",middleName:null,surname:"Shirvani Moghaddam",slug:"shahriar-shirvani-moghaddam",fullName:"Shahriar Shirvani Moghaddam"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12019",leadTitle:null,title:"Chaos Theory - Recent Advances, New Perspectives and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe book is devoted to the recent research in the chaos theory covering the Mathematical Description of Chaos Phenomena, Chaotic Dynamical Systems, Chaos and Fractals, Chaos in the Classical and Quantum Mechanics, Advances of Chaos, and Application in the Pure Sciences and Technologies. The first topic covers the approaches to describing the chaos phenomena in terms of generalized differential equations; the second one describes the different approaches applied to the study of the non-classical dynamical systems. The topic Chaos and Fractals illustrates the application of the cellular automata, non-classical differential equations, and surprising attractors; the appearance of new physical phenomena are discussed in the Chaos in the Classical and Quantum Mechanics. The topic Advances of Chaos describes the novel results in the pure and applied science based on the chaotic background. The application in the Pure Sciences and Technologies covers the achievements based on the characteristics of the chaos fundamentals. Since huge progress on chaos theory predetermines its application in the many areas of pure and applied science, the proposed book will be demanded by many scientists and industrial engineers, as well as post-graduate students and beyond.
",isbn:"978-1-83768-123-5",printIsbn:"978-1-83768-122-8",pdfIsbn:"978-1-83768-124-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"38f0946fe1dd3314939e670799f88426",bookSignature:"Dr. Mykhaylo I. Andriychuk",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12019.jpg",keywords:"Deterministic Laws, Chaotic Dynamical Systems, Chaotic Mixing, Bifurcation of Vector Fields, Fractal Patterns, Fractal Mapping, Entropy, Non-linear Transformations, Chaos and Fuzzy Systems, Euler Method, Nonlinear Chaotic Maps, Application",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 19th 2022",dateEndSecondStepPublish:"June 16th 2022",dateEndThirdStepPublish:"August 15th 2022",dateEndFourthStepPublish:"November 3rd 2022",dateEndFifthStepPublish:"January 2nd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"16 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"IEEE senior member and known researcher in the antenna synthesis according to the desired amplitude characteristics, numerical methods for solving the non-linear integral equations, and asymptotic scattering theory.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"57755",title:"Dr.",name:"Mykhaylo",middleName:"I.",surname:"Andriychuk",slug:"mykhaylo-andriychuk",fullName:"Mykhaylo Andriychuk",profilePictureURL:"https://mts.intechopen.com/storage/users/57755/images/system/57755.jpg",biography:"Prof. Andriychuk obtained the M.Sc. degree in computational mathematics from the Lviv National University, the Ph.D. degree in application of computational techniques from the Kyiv National University, and the D.Sc. degree in mathematical modelling from the Lviv Polytechnic National University in 1976, 1987, and 2015, respectively. He has been employed by the Pidstryhach Institute for Applied Problems of Mechanics and Mathematics (IAPMM), Ukraine for more than 40 years. Currently, he is the Head of Department of the Numerical Methods in Mathematical Physics at the IAPMM. His professional performance includes more than 160 papers in the scientific journals and international conference proceedings, which concern to the diffraction and antenna synthesis theory, optimization methods and nonlinear integral and matrix equations. He is author of two monographs in antenna theory. Dr. Andriychuk is IEEE Member since 1995, and IEEE Senior Member since 2003.",institutionString:"Pidstryhach Institute for Applied Problems of Mechanics and Mathematics",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Pidstryhach Institute for Applied Problems of Mechanics and Mathematics",institutionURL:null,country:{name:"Ukraine"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466997",firstName:"Patricia",lastName:"Kerep",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/466997/images/21565_n.jpg",email:"patricia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully"}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"11659",title:"Air Traffic Trajectories Segmentation Based on Time-Series Sensor Data",doi:"10.5772/9956",slug:"air-traffic-trajectories-segmentation-based-on-time-series-sensor-data",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/11659.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/11659",previewPdfUrl:"/chapter/pdf-preview/11659",totalDownloads:2209,totalViews:102,totalCrossrefCites:0,totalDimensionsCites:2,totalAltmetricsMentions:0,impactScore:1,impactScorePercentile:53,impactScoreQuartile:3,hasAltmetrics:0,dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"August 16th 2010",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/11659",risUrl:"/chapter/ris/11659",book:{id:"2971",slug:"sensor-fusion-and-its-applications"},signatures:"Jose Guerrero, Jesus Garcia and Jose Manuel Molina",authors:null,sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"2971",type:"book",title:"Sensor Fusion and its Applications",subtitle:null,fullTitle:"Sensor Fusion and its Applications",slug:"sensor-fusion-and-its-applications",publishedDate:"August 16th 2010",bookSignature:"Ciza Thomas",coverURL:"https://cdn.intechopen.com/books/images_new/2971.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-101-5",pdfIsbn:"978-953-51-5948-3",reviewType:"peer-reviewed",numberOfWosCitations:44,isAvailableForWebshopOrdering:!0,editors:[{id:"11060",title:"Dr.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"543"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"11658",type:"chapter",title:"State Optimal Estimation for Nonstandard Multi-Sensor Information Fusion System",slug:"state-optimal-estimation-for-nonstandard-multi-sensor-information-fusion-system",totalDownloads:1844,totalCrossrefCites:0,signatures:"Jiong Qi Wang",reviewType:"peer-reviewed",authors:[null]},{id:"11659",type:"chapter",title:"Air Traffic Trajectories Segmentation Based on Time-Series Sensor Data",slug:"air-traffic-trajectories-segmentation-based-on-time-series-sensor-data",totalDownloads:2209,totalCrossrefCites:0,signatures:"Jose Guerrero, Jesus Garcia and Jose Manuel Molina",reviewType:"peer-reviewed",authors:[null]},{id:"11802",type:"chapter",title:"Distributed Compressed Sensing of Sensor Data",slug:"distributed-compressed-sensing-of-sensor-data",totalDownloads:1906,totalCrossrefCites:0,signatures:"Vasanth Iyer and Dhananjay Singh",reviewType:"peer-reviewed",authors:[null]},{id:"11661",type:"chapter",title:"Adaptive Kalman Filter for Navigation Sensor Fusion",slug:"adaptive-kalman-filter-for-navigation-sensor-fusion",totalDownloads:5947,totalCrossrefCites:10,signatures:"Dah-Jing Jwo, Fong-Chi Chung and Tsu-Pin Weng",reviewType:"peer-reviewed",authors:[null]},{id:"11662",type:"chapter",title:"Fusion of Images Recorded with Variable Illumination",slug:"fusion-of-images-recorded-with-variable-illumination",totalDownloads:2227,totalCrossrefCites:0,signatures:"Fernando Puente Leon, Luis Nachtigall and Ana Perez Grassi",reviewType:"peer-reviewed",authors:[null]},{id:"11663",type:"chapter",title:"Camera and Laser Robust Integration in Engineering and Architecture Applications",slug:"camera-and-laser-robust-integration-in-engineering-and-architecture-applications",totalDownloads:2181,totalCrossrefCites:4,signatures:"Diego Gonzalez-Aguilera, Pablo Rodriguez-Gonzalvez and Javier Gomez-Lahoz",reviewType:"peer-reviewed",authors:[null]},{id:"11664",type:"chapter",title:"Spatial Voting with Data Modeling",slug:"spatial-voting-with-data-modeling",totalDownloads:1957,totalCrossrefCites:0,signatures:"Holger Jaenisch",reviewType:"peer-reviewed",authors:[null]},{id:"11666",type:"chapter",title:"Hidden Markov Model as a Framework for Situational Awareness",slug:"hidden-markov-model-as-a-framework-for-situational-awareness",totalDownloads:2443,totalCrossrefCites:0,signatures:"Thyagaraju Damarla",reviewType:"peer-reviewed",authors:[null]},{id:"11668",type:"chapter",title:"Multisensorial Active Perception for Indoor Environment Modeling",slug:"multisensorial-active-perception-for-indoor-environment-modeling-",totalDownloads:1750,totalCrossrefCites:0,signatures:"Luz Abril Torres-Méndez",reviewType:"peer-reviewed",authors:[null]},{id:"11669",type:"chapter",title:"Mathematical Basis of Sensor Fusion in Intrusion Detection Systems",slug:"mathematical-basis-of-sensor-fusion-in-intrusion-detection-systems",totalDownloads:2331,totalCrossrefCites:0,signatures:"Ciza Thomas",reviewType:"peer-reviewed",authors:[null]},{id:"11670",type:"chapter",title:"Sensor Fusion for Position Estimation in Networked Systems",slug:"sensor-fusion-for-position-estimation-in-networked-systems",totalDownloads:1547,totalCrossrefCites:1,signatures:"Luca Carlone, Giuseppe Calafiore and Mingzhu Wei",reviewType:"peer-reviewed",authors:[null]},{id:"11671",type:"chapter",title:"M2SIR: A Multimodal Sequential Importance Resampling Algorithm for Particle Filters",slug:"m2sir-a-multimodal-sequential-importance-resampling-algorithm-for-particle-filters",totalDownloads:1499,totalCrossrefCites:0,signatures:"Yann Goyat, Thierry Chateau and Laurent Trassoudaine",reviewType:"peer-reviewed",authors:[null]},{id:"11672",type:"chapter",title:"On Passive Emitter Tracking in Sensor Networks",slug:"on-passive-emitter-tracking-in-sensor-networks",totalDownloads:3557,totalCrossrefCites:3,signatures:"Regina Kaune, Darko Musicki and Wolfgang Koch",reviewType:"peer-reviewed",authors:[null]},{id:"11673",type:"chapter",title:"Fuzzy-Pattern-Classifier Based Sensor Fusion for Machine Conditioning",slug:"fuzzy-pattern-classifier-based-sensor-fusion-for-machine-conditioning",totalDownloads:1966,totalCrossrefCites:3,signatures:"Volker Lohweg and Uwe Mönks",reviewType:"peer-reviewed",authors:[null]},{id:"11675",type:"chapter",title:"Corner Feature Extraction: Techniques for Landmark Based Navigation Systems",slug:"corner-feature-extraction-techniques-for-landmark-based-navigation-systems",totalDownloads:3817,totalCrossrefCites:2,signatures:"Molaletsa Namoshe, Oudetse Matsebe and Nkgatho Tlale",reviewType:"peer-reviewed",authors:[null]},{id:"11677",type:"chapter",title:"Sensor Data Fusion for Road Obstacle Detection",slug:"sensor-data-fusion-for-road-obstacle-detection",totalDownloads:2365,totalCrossrefCites:2,signatures:"Raphael Labayrade, Mathias Perrollaz, Dominique Gruyer and Didier Aubert",reviewType:"peer-reviewed",authors:[null]},{id:"11678",type:"chapter",title:"Biometrics Sensor Fusion",slug:"biometrics-sensor-fusion",totalDownloads:2822,totalCrossrefCites:0,signatures:"Dakshina Kisku, Ajita Rattani, Phalguni Gupta, Massimo Tistarelli and Jamuna Kanta Sing",reviewType:"peer-reviewed",authors:[null]},{id:"11679",type:"chapter",title:"Fusion of Odometry and Visual Datas to Localization a Mobile Robot Using Extended Kalman Filter",slug:"fusion-of-odometry-and-visual-datas-to-localization-a-mobile-robot-using-extended-kalman-filter",totalDownloads:2028,totalCrossrefCites:0,signatures:"Andre Santana, Anderson Souza, Pablo Alsina and Adelardo Medeiros",reviewType:"peer-reviewed",authors:[null]},{id:"11680",type:"chapter",title:"Probabilistic Mapping by Fusion of Range-Finders Sensors and Odometry",slug:"probabilistic-mapping-by-fusion-of-range-finders-sensors-and-odometry-",totalDownloads:1455,totalCrossrefCites:0,signatures:"Anderson Souza, Andre Santana, Adelardo Medeiros and Luiz Gonçalves",reviewType:"peer-reviewed",authors:[null]},{id:"11681",type:"chapter",title:"Sensor Fusion for Electromagnetic Stress Measurement and Material Characterisation",slug:"sensor-fusion-for-electromagnetic-stress-measurement-and-material-characterisation",totalDownloads:2924,totalCrossrefCites:0,signatures:"John Wilson, Gui Tian, Maxim Morozov and Abd Qubaa",reviewType:"peer-reviewed",authors:[null]},{id:"11682",type:"chapter",title:"Iterative Multiscale Fusion and Night Vision Colorization of Multispectral Images",slug:"iterative-multiscale-fusion-and-night-vision-colorization-of-multispectral-images",totalDownloads:1935,totalCrossrefCites:0,signatures:"Yufeng Zheng",reviewType:"peer-reviewed",authors:[null]},{id:"11685",type:"chapter",title:"Super-Resolution Reconstruction by Image Fusion and Application to Surveillance Videos Captured by Small Unmanned Aircraft Systems",slug:"super-resolution-reconstruction-by-image-fusion-and-application-to-surveillance-videos-captured-by-s",totalDownloads:2970,totalCrossrefCites:0,signatures:"Qiang He and Richard Schultz",reviewType:"peer-reviewed",authors:[null]}]},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"36273",title:"Introduction to Infrared Spectroscopy",slug:"introduction-to-infrared-spectroscopy",signatures:"Theophile Theophanides",authors:[{id:"37194",title:"Dr.",name:"Theophile",middleName:null,surname:"Theophanides",fullName:"Theophile Theophanides",slug:"theophile-theophanides"}]},{id:"36166",title:"Using Infrared Spectroscopy to Identify New Amorphous Phases - A Case Study of Carbonato Complex Formed by Mechanochemical Processing",slug:"using-infrared-spectroscopy-to-identify-new-amorphous-phases-a-case-study-of-carbonato-complexes-fo",signatures:"Tadej Rojac, Primož Šegedin and Marija Kosec",authors:[{id:"25116",title:"Prof.",name:"Marija",middleName:null,surname:"Kosec",fullName:"Marija Kosec",slug:"marija-kosec"},{id:"105876",title:"Dr.",name:"Tadej",middleName:null,surname:"Rojac",fullName:"Tadej Rojac",slug:"tadej-rojac"},{id:"111754",title:"Prof.",name:"Primoz",middleName:null,surname:"Segedin",fullName:"Primoz Segedin",slug:"primoz-segedin"}]},{id:"36167",title:"Application of Infrared Spectroscopy to Analysis of Chitosan/Clay Nanocomposites",slug:"application-of-infrared-spectroscopy-to-analysis-of-chitosan-clay-nanocomposites",signatures:"Suédina M.L. Silva, Carla R.C. Braga, Marcus V.L. Fook, Claudia M.O. Raposo, Laura H. Carvalho and Eduardo L. Canedo",authors:[{id:"104808",title:"Prof.",name:"Suedina Maria",middleName:"De Lima",surname:"Silva",fullName:"Suedina Maria Silva",slug:"suedina-maria-silva"},{id:"111910",title:"Prof.",name:"Carla",middleName:"Lima",surname:"R. C. Braga",fullName:"Carla R. C. Braga",slug:"carla-r.-c.-braga"},{id:"142933",title:"Prof.",name:"Marcus Vinícius",middleName:null,surname:"Lia Fook",fullName:"Marcus Vinícius Lia Fook",slug:"marcus-vinicius-lia-fook"},{id:"142934",title:"Prof.",name:"Claudia Maria",middleName:null,surname:"De Oliveira Raposo",fullName:"Claudia Maria De Oliveira Raposo",slug:"claudia-maria-de-oliveira-raposo"},{id:"142936",title:"Prof.",name:"Laura",middleName:null,surname:"Hecker De Carvalho",fullName:"Laura Hecker De Carvalho",slug:"laura-hecker-de-carvalho"},{id:"142939",title:"Dr.",name:"Eduardo Luis",middleName:null,surname:"Canedo",fullName:"Eduardo Luis Canedo",slug:"eduardo-luis-canedo"}]},{id:"36168",title:"Structural and Optical Behavior of Vanadate-Tellurate Glasses Containing PbO or Sm2O3",slug:"structural-and-optical-behavior-of-vanadate-tellurate-glasses",signatures:"E. Culea, S. Rada, M. Culea and M. Rada",authors:[{id:"114650",title:"Dr",name:"Eugen",middleName:null,surname:"Culea",fullName:"Eugen Culea",slug:"eugen-culea"},{id:"114653",title:"Dr.",name:"Simona",middleName:null,surname:"Rada",fullName:"Simona Rada",slug:"simona-rada"}]},{id:"36169",title:"Water in Rocks and Minerals - Species, Distributions, and Temperature Dependences",slug:"water-in-rocks-and-minerals-species-distributions-and-temperature-dependences",signatures:"Jun-ichi Fukuda",authors:[{id:"105384",title:"Dr.",name:"Jun-Ichi",middleName:null,surname:"Fukuda",fullName:"Jun-Ichi Fukuda",slug:"jun-ichi-fukuda"}]},{id:"36170",title:"Attenuated Total Reflection - Infrared Spectroscopy Applied to the Study of Mineral - Aqueous Electrolyte Solution Interfaces: A General Overview and a Case Study",slug:"attenuated-total-reflection-infrared-spectroscopy-applied-to-the-study-of-mineral-aqueous-el",signatures:"Grégory Lefèvre, Tajana Preočanin and Johannes Lützenkirchen",authors:[{id:"108416",title:"Dr.",name:"Johannes",middleName:null,surname:"Lützenkirchen",fullName:"Johannes Lützenkirchen",slug:"johannes-lutzenkirchen"},{id:"111675",title:"Dr.",name:"Gregory",middleName:null,surname:"Lefevre",fullName:"Gregory Lefevre",slug:"gregory-lefevre"},{id:"111676",title:"Prof.",name:"Tajana",middleName:null,surname:"Preocanin",fullName:"Tajana Preocanin",slug:"tajana-preocanin"}]},{id:"36171",title:"Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy",slug:"research-of-calcium-phosphates-using-fourier-transformation-infrared-spectroscopy",signatures:"Liga Berzina-Cimdina and Natalija Borodajenko",authors:[{id:"110522",title:"Prof.",name:"Liga",middleName:null,surname:"Berzina-Cimdina",fullName:"Liga Berzina-Cimdina",slug:"liga-berzina-cimdina"},{id:"112181",title:"MSc.",name:"Natalija",middleName:null,surname:"Borodajenko",fullName:"Natalija Borodajenko",slug:"natalija-borodajenko"}]},{id:"36172",title:"FTIR Spectroscopy of Adsorbed Probe Molecules for Analyzing the Surface Properties of Supported Pt (Pd) Catalysts",slug:"ftir-spectroscopy-of-adsorbed-probe-molecules-for-analyzing-the-surface-properties-of-supported-pt-p",signatures:"Olga B. Belskaya, Irina G. Danilova, Maxim O. Kazakov, Roman M. Mironenko, Alexander V. Lavrenov and Vladimir A. Likholobov",authors:[{id:"107715",title:"Dr.",name:"Olga",middleName:null,surname:"Belskaya",fullName:"Olga Belskaya",slug:"olga-belskaya"},{id:"140198",title:"Dr.",name:"Irina",middleName:null,surname:"Danilova",fullName:"Irina Danilova",slug:"irina-danilova"},{id:"140200",title:"Dr.",name:"Maxim",middleName:null,surname:"Kazakov",fullName:"Maxim Kazakov",slug:"maxim-kazakov"},{id:"140202",title:"Mr.",name:"Roman",middleName:"Mikhailovich",surname:"Mironenko",fullName:"Roman Mironenko",slug:"roman-mironenko"},{id:"140203",title:"Dr.",name:"Alexander",middleName:null,surname:"Lavrenov",fullName:"Alexander Lavrenov",slug:"alexander-lavrenov"},{id:"140204",title:"Prof.",name:"Vladimir",middleName:null,surname:"Likholobov",fullName:"Vladimir Likholobov",slug:"vladimir-likholobov"}]},{id:"36173",title:"Hydrothermal Treatment of Hokkaido Peat - An Application of FTIR and 13C NMR Spectroscopy on Examining of Artificial Coalification Process and Development",slug:"hydrothermal-treatment-of-hokkaido-peat-an-application-of-ftir-and-13c-nmr-spectroscopy-on-examinin",signatures:"Anggoro Tri Mursito and Tsuyoshi Hirajima",authors:[{id:"104786",title:"Dr.",name:"Anggoro Tri",middleName:null,surname:"Mursito",fullName:"Anggoro Tri Mursito",slug:"anggoro-tri-mursito"},{id:"110978",title:"Prof.",name:"Tsuyoshi",middleName:null,surname:"Hirajima",fullName:"Tsuyoshi Hirajima",slug:"tsuyoshi-hirajima"}]},{id:"36174",title:"FTIR - An Essential Characterization Technique for Polymeric Materials",slug:"ftir-an-essential-characterization-technique-for-polymeric-materials",signatures:"Vladimir A. Escobar Barrios, José R. Rangel Méndez, Nancy V. Pérez Aguilar, Guillermo Andrade Espinosa and José L. Dávila Rodríguez",authors:[{id:"12709",title:"Dr.",name:"Jose Rene",middleName:null,surname:"Rangel-Mendez",fullName:"Jose Rene Rangel-Mendez",slug:"jose-rene-rangel-mendez"},{id:"12711",title:"Dr.",name:"Vladimir Alonso",middleName:null,surname:"Escobar Barrios",fullName:"Vladimir Alonso Escobar Barrios",slug:"vladimir-alonso-escobar-barrios"},{id:"112164",title:"Dr",name:"Guillermo",middleName:null,surname:"Andrade-Espinosa",fullName:"Guillermo Andrade-Espinosa",slug:"guillermo-andrade-espinosa"},{id:"112165",title:"Dr.",name:"José Luis",middleName:null,surname:"Dávila-Rodríguez",fullName:"José Luis Dávila-Rodríguez",slug:"jose-luis-davila-rodriguez"},{id:"112167",title:"Dr.",name:"Nancy Verónica",middleName:null,surname:"Pérez-Aguilar",fullName:"Nancy Verónica Pérez-Aguilar",slug:"nancy-veronica-perez-aguilar"}]},{id:"36175",title:"Preparation and Characterization of PVDF/PMMA/Graphene Polymer Blend Nanocomposites by Using ATR-FTIR Technique",slug:"preparation-and-characterization-of-pvdf-pmma-graphene-polymer-blend-nanocomposites-by-using-ft-ir-t",signatures:"Somayeh Mohamadi",authors:[{id:"108556",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohamadi",fullName:"Somayeh Mohamadi",slug:"somayeh-mohamadi"}]},{id:"36176",title:"Reflectance IR Spectroscopy",slug:"fundamental-of-reflectance-ir-spectroscopy",signatures:"Zahra Monsef Khoshhesab",authors:[{id:"111629",title:"Dr.",name:"Zahra",middleName:null,surname:"Monsef Khoshhesab",fullName:"Zahra Monsef Khoshhesab",slug:"zahra-monsef-khoshhesab"}]},{id:"36177",title:"Evaluation of Graft Copolymerization of Acrylic Monomers Onto Natural Polymers by Means Infrared Spectroscopy",slug:"evaluation-of-graft-copolymerization-of-acrylic-monomers-onto-natural-polymers-by-means-infrared-spe",signatures:"José Luis Rivera-Armenta, Cynthia Graciela Flores-Hernández, Ruth Zurisadai Del Angel-Aldana, Ana María Mendoza-Martínez, Carlos Velasco-Santos and Ana Laura Martínez-Hernández",authors:[{id:"37761",title:"Prof.",name:"Ana Laura",middleName:null,surname:"Martinez-Hernandez",fullName:"Ana Laura Martinez-Hernandez",slug:"ana-laura-martinez-hernandez"},{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",fullName:"Jose Luis Rivera Armenta",slug:"jose-luis-rivera-armenta"},{id:"108894",title:"MSc.",name:"Cynthia Graciela",middleName:null,surname:"Flores-Hernández",fullName:"Cynthia Graciela Flores-Hernández",slug:"cynthia-graciela-flores-hernandez"},{id:"108896",title:"MSc.",name:"Ruth Zurisadai",middleName:null,surname:"Del Angel Aldana",fullName:"Ruth Zurisadai Del Angel Aldana",slug:"ruth-zurisadai-del-angel-aldana"},{id:"108898",title:"Dr.",name:"Carlos",middleName:null,surname:"Velasco-Santos",fullName:"Carlos Velasco-Santos",slug:"carlos-velasco-santos"},{id:"108905",title:"Dr.",name:"Ana Maria",middleName:null,surname:"Mendoza-Martínez",fullName:"Ana Maria Mendoza-Martínez",slug:"ana-maria-mendoza-martinez"}]},{id:"36178",title:"Applications of FTIR on Epoxy Resins - Identification, Monitoring the Curing Process, Phase Separation and Water Uptake",slug:"applications-of-ftir-on-epoxy-resins-identification-monitoring-the-curing-process-phase-separatio",signatures:"María González González, Juan Carlos Cabanelas and Juan Baselga",authors:[{id:"107857",title:"Prof.",name:"Juan",middleName:null,surname:"Baselga",fullName:"Juan Baselga",slug:"juan-baselga"},{id:"138113",title:"Dr.",name:"María",middleName:null,surname:"González",fullName:"María González",slug:"maria-gonzalez"},{id:"138114",title:"Dr.",name:"Juan C.",middleName:null,surname:"Cabanelas",fullName:"Juan C. Cabanelas",slug:"juan-c.-cabanelas"}]},{id:"36179",title:"Use of FTIR Analysis to Control the Self-Healing Functionality of Epoxy Resins",slug:"use-of-ft-ir-analysis-to-control-the-self-healing-functionality-of-epoxy-resins",signatures:"Liberata Guadagno and Marialuigia Raimondo",authors:[{id:"106836",title:"Prof.",name:"Liberata",middleName:null,surname:"Guadagno",fullName:"Liberata Guadagno",slug:"liberata-guadagno"}]},{id:"36180",title:"Infrared Analysis of Electrostatic Layer-By-Layer Polymer Membranes Having Characteristics of Heavy Metal Ion Desalination",slug:"infrared-analysis-of-electrostatic-layer-by-layer-polymer-membranes-having-characteristics-of-heavy",signatures:"Weimin Zhou, Huitan Fu and Takaomi Kobayashi",authors:[{id:"110384",title:"Dr.",name:"Takaomi",middleName:null,surname:"Kobayashi",fullName:"Takaomi Kobayashi",slug:"takaomi-kobayashi"}]},{id:"36181",title:"Infrared Spectroscopy as a Tool to Monitor Radiation Curing",slug:"infrared-spectroscopy-as-a-tool-to-monitor-radiation-curing",signatures:"Marco Sangermano, Patrick Meier and Spiros Tzavalas",authors:[{id:"112286",title:"Dr.",name:"Spiros",middleName:null,surname:"Tzavalas",fullName:"Spiros Tzavalas",slug:"spiros-tzavalas"},{id:"114382",title:"Prof.",name:"Marco",middleName:null,surname:"Sangermano",fullName:"Marco Sangermano",slug:"marco-sangermano"},{id:"114384",title:"Dr",name:"Patrick",middleName:null,surname:"Meier",fullName:"Patrick Meier",slug:"patrick-meier"}]},{id:"36182",title:"Characterization of Compositional Gradient Structure of Polymeric Materials by FTIR Technology",slug:"characterization-of-compositional-gradient-structure-of-polymeric-materials-by-ft-ir-technology",signatures:"Alata Hexig and Bayar Hexig",authors:[{id:"20867",title:"Dr.",name:"Bayar",middleName:null,surname:"Hexig",fullName:"Bayar Hexig",slug:"bayar-hexig"},{id:"111986",title:"Dr.",name:"Alata",middleName:null,surname:"Hexig",fullName:"Alata Hexig",slug:"alata-hexig"}]},{id:"36183",title:"Fourier Transform Infrared Spectroscopy - Useful Analytical Tool for Non-Destructive Analysis",slug:"fourier-trasform-infrared-spectroscopy-useful-analytical-tool-for-non-destructive-analysis",signatures:"Simona-Carmen Litescu, Eugenia D. Teodor, Georgiana-Ileana Truica, Andreia Tache and Gabriel-Lucian Radu",authors:[{id:"24425",title:"Dr.",name:"Simona Carmen",middleName:null,surname:"Litescu",fullName:"Simona Carmen Litescu",slug:"simona-carmen-litescu"},{id:"24429",title:"Prof.",name:"Gabriel-Lucian",middleName:null,surname:"Radu",fullName:"Gabriel-Lucian Radu",slug:"gabriel-lucian-radu"},{id:"108318",title:"Dr.",name:"Eugenia D.",middleName:null,surname:"Teodor",fullName:"Eugenia D. Teodor",slug:"eugenia-d.-teodor"},{id:"108323",title:"Dr.",name:"Georgiana-Ileana",middleName:null,surname:"Badea",fullName:"Georgiana-Ileana Badea",slug:"georgiana-ileana-badea"},{id:"136337",title:"Ms.",name:"Andreia",middleName:null,surname:"Tache",fullName:"Andreia Tache",slug:"andreia-tache"}]},{id:"36184",title:"Infrared Spectroscopy in the Analysis of Building and Construction Materials",slug:"infrared-spectroscopy-of-cementitious-materials",signatures:"Lucia Fernández-Carrasco, D. Torrens-Martín, L.M. Morales and Sagrario Martínez-Ramírez",authors:[{id:"107401",title:"Dr.",name:"Lucia J",middleName:null,surname:"Fernández",fullName:"Lucia J Fernández",slug:"lucia-j-fernandez"}]},{id:"36185",title:"Infrared Spectroscopy Techniques in the Characterization of SOFC Functional Ceramics",slug:"infrared-spectroscopy-techniques-in-the-characterization-of-sofc-functional-ceramics",signatures:"Daniel A. Macedo, Moisés R. Cesário, Graziele L. Souza, Beatriz Cela, Carlos A. Paskocimas, Antonio E. Martinelli, Dulce M. A. Melo and Rubens M. Nascimento",authors:[{id:"102015",title:"MSc.",name:"Daniel",middleName:null,surname:"Macedo",fullName:"Daniel Macedo",slug:"daniel-macedo"},{id:"112309",title:"MSc",name:"Moisés",middleName:"Romolos",surname:"Cesário",fullName:"Moisés Cesário",slug:"moises-cesario"},{id:"112310",title:"Ms.",name:"Graziele",middleName:null,surname:"Souza",fullName:"Graziele Souza",slug:"graziele-souza"},{id:"112311",title:"MSc.",name:"Beatriz",middleName:null,surname:"Cela",fullName:"Beatriz Cela",slug:"beatriz-cela"},{id:"112312",title:"Prof.",name:"Carlos",middleName:null,surname:"Paskocimas",fullName:"Carlos Paskocimas",slug:"carlos-paskocimas"},{id:"112314",title:"Prof.",name:"Antonio",middleName:null,surname:"Martinelli",fullName:"Antonio Martinelli",slug:"antonio-martinelli"},{id:"112315",title:"Prof.",name:"Dulce",middleName:null,surname:"Melo",fullName:"Dulce Melo",slug:"dulce-melo"},{id:"112316",title:"Dr.",name:"Rubens",middleName:"Maribondo Do",surname:"Nascimento",fullName:"Rubens Nascimento",slug:"rubens-nascimento"}]},{id:"36186",title:"Infrared Spectroscopy of Functionalized Magnetic Nanoparticles",slug:"infrared-spectroscopy-of-functionalized-magnetic-nanoparticles",signatures:"Perla E. García Casillas, Claudia A. Rodriguez Gonzalez and Carlos A. Martínez Pérez",authors:[{id:"104636",title:"Dr.",name:"Perla E.",middleName:null,surname:"García Casillas",fullName:"Perla E. García Casillas",slug:"perla-e.-garcia-casillas"},{id:"112440",title:"Dr.",name:"Carlos A.",middleName:null,surname:"Martínez Pérez",fullName:"Carlos A. Martínez Pérez",slug:"carlos-a.-martinez-perez"},{id:"112441",title:"Dr.",name:"Claudia A.",middleName:null,surname:"Rodriguez Gonzalez",fullName:"Claudia A. Rodriguez Gonzalez",slug:"claudia-a.-rodriguez-gonzalez"}]},{id:"36187",title:"Determination of Adsorption Characteristics of Volatile Organic Compounds Using Gas Phase FTIR Spectroscopy Flow Analysis",slug:"determination-of-adsorption-characteristics-of-volatile-organic-compounds-using-gas-phase-ftir-spect",signatures:"Tarik Chafik",authors:[{id:"107310",title:"Prof.",name:"Tarik",middleName:null,surname:"Chafik",fullName:"Tarik Chafik",slug:"tarik-chafik"}]},{id:"36188",title:"Identification of Rocket Motor Characteristics from Infrared Emission Spectra",slug:"identification-of-rocket-motor-characteristics-from-infrared-emission-spectra",signatures:"N. Hamp, J.H. Knoetze, C. Aldrich and C. Marais",authors:[{id:"112229",title:"Prof.",name:"Chris",middleName:null,surname:"Aldrich",fullName:"Chris Aldrich",slug:"chris-aldrich"},{id:"112232",title:"Prof.",name:"Hansie",middleName:null,surname:"Knoetze",fullName:"Hansie Knoetze",slug:"hansie-knoetze"},{id:"135327",title:"Ms.",name:"Corne",middleName:null,surname:"Marais",fullName:"Corne Marais",slug:"corne-marais"}]},{id:"36189",title:"Optical Technologies for Determination of Pesticide Residue",slug:"optical-technology-for-determination-of-pesticide-residue",signatures:"Yankun Peng, Yongyu Li and Jingjing Chen",authors:[{id:"113343",title:"Prof.",name:"Yankun",middleName:null,surname:"Peng",fullName:"Yankun Peng",slug:"yankun-peng"},{id:"116636",title:"Dr.",name:"Yongyu",middleName:null,surname:"Li",fullName:"Yongyu Li",slug:"yongyu-li"},{id:"116637",title:"Dr.",name:"Jingjing",middleName:null,surname:"Chen",fullName:"Jingjing Chen",slug:"jingjing-chen"}]},{id:"36190",title:"High Resolution Far Infrared Spectra of the Semiconductor Alloys Obtained Using the Synchrotron Radiation as Source",slug:"high-resolution-spectra-of-semiconductor-s-alloys-obtained-using-the-far-infrared-synchrotron-radi",signatures:"E.M. Sheregii",authors:[{id:"102655",title:"Prof.",name:"Eugen",middleName:null,surname:"Sheregii",fullName:"Eugen Sheregii",slug:"eugen-sheregii"}]},{id:"36191",title:"Effective Reaction Monitoring of Intermediates by ATR-IR Spectroscopy Utilizing Fibre Optic Probes",slug:"effective-reaction-monitoring-of-intermediates-by-atr-ir-spectroscopy-utilizing-fibre-optic-probes",signatures:"Daniel Lumpi and Christian Braunshier",authors:[{id:"109019",title:"Dr.",name:"Christian",middleName:null,surname:"Braunshier",fullName:"Christian Braunshier",slug:"christian-braunshier"},{id:"111798",title:"MSc.",name:"Daniel",middleName:null,surname:"Lumpi",fullName:"Daniel Lumpi",slug:"daniel-lumpi"}]}]}],publishedBooks:[{type:"book",id:"2971",title:"Sensor Fusion and its Applications",subtitle:null,isOpenForSubmission:!1,hash:"df4df451f3bf5c1708f80e25624cd869",slug:"sensor-fusion-and-its-applications",bookSignature:"Ciza Thomas",coverURL:"https://cdn.intechopen.com/books/images_new/2971.jpg",editedByType:"Edited by",editors:[{id:"11060",title:"Dr.",name:"Ciza",surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7435",title:"Computer Graphics and Imaging",subtitle:null,isOpenForSubmission:!1,hash:"889abc91038189c977749c2175bbc8e2",slug:"computer-graphics-and-imaging",bookSignature:"Branislav Sobota",coverURL:"https://cdn.intechopen.com/books/images_new/7435.jpg",editedByType:"Edited by",editors:[{id:"109378",title:"Dr.",name:"Branislav",surname:"Sobota",slug:"branislav-sobota",fullName:"Branislav Sobota"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9971",title:"Data Science, Data Visualization, and Digital Twins",subtitle:null,isOpenForSubmission:!1,hash:"353b70c06c03295318688a64535d6d85",slug:"data-science-data-visualization-and-digital-twins",bookSignature:"Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/9971.jpg",editedByType:"Edited by",editors:[{id:"273838",title:"Dr.",name:"Sara",surname:"Shirowzhan",slug:"sara-shirowzhan",fullName:"Sara Shirowzhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"81125",title:"Magnesium Alloys for Sustainable Weight-Saving Approach: A Brief Market Overview, New Trends, and Perspectives",doi:"10.5772/intechopen.102777",slug:"magnesium-alloys-for-sustainable-weight-saving-approach-a-brief-market-overview-new-trends-and-persp",body:'The need for weight-saving in the automotive and mass transportation sector, like trains and civil airplanes, has historically pushed the usage of magnesium, which, for shared knowledge, is the metallic material at the lowest density, nearly to dense polymers. But, much more effectively, magnesium alloys are characterized by very high specific strength. A long tradition and past knowledge of the magnesium industry accumulated from the 1970s till its Golden Age in the early 1980s. In those years, you could buy primary magnesium at its lowest price on the marketplace, and many bet that the turn against rival aluminum was just around the corner. However, the forecast high growth rate of the magnesium market has not succeeded yet.
Today, you can hear about big worries about magnesium:
It could be an unsafe material, susceptible to easy burning and explosion.
It has a high cost and poor availability on the market.
It has a high carbon footprint in the extractive, refining, and casting processes.
You could also add to the list a poor knowledge of the wrought alloys and their deformation processes and concerns about their poor corrosion and creep resistance. Those barriers prevented magnesium from competing with its main rival in weight-saving strategies in the transport sector, the aluminum metal. In the following, we try to give readers a more detailed view, considering that we have to know what we were in the past to get a keen comprehension of today’s concerns.
Most concerns about the magnesium market do not depend on geographical lack of raw material. Still, trade issues, production base, and export policies made primary production in Europe not competitive. The last primary production plant in Europe shut down in 2001 since European-based smelters could not compete with low-cost Chinese production. As a result, the availability of primary material is a genuine concern, as European demand depends mainly on China’s imports. Therefore, one main drawback for broader use in the automotive industry is the lack of a solid supply base with stable prices over a medium-term period combined with competitive magnesium production outside China. The last primary production plant in Europe shut down in 2001 since European-based smelters could not compete with low-cost Chinese production. As a result, the availability of primary material is a genuine concern, as European demand depends mainly on China’s imports. Therefore, one main drawback for broader use in the automotive industry is the lack of a solid supply base with stable prices over a medium-term period combined with competitive magnesium production outside China. But few people know which milestones were in the history of the magnesium market. Why did magnesium growth not meet reasonable expectations? Why did the material price increase and fluctuate after prolonged stability at the lowest price level targeted in the 1980s, the years of maximum Western production? What shaped today’s market structure based on perilous dependency on Chinese producers? In the following, we’ll try to give you a compass to never get lost in such a multifaced and complex market.
During First World War, Americans noticed the importance of magnesium for its strategic pyrotechnics application. Magnesium was the base of flares incorporated in rocket devices that, fired into the air, descended with a parachute, lighting the enemy’s corridor for several minutes. During the Interwar period, 1919–1939, the interest in strategic magnesium for national armaments industries rose worldwide (Table 1). The rise in the magnesium demand was pushed by lightweight structural applications. Alliances were surprised by the German Luftwaffe supremacy of the burning European skies. German airplanes were faster and capable of carrying unexpected bomb shipments. By studying some German planes that crashed, the British discovered that they contained a large percentage of magnesium alloys, the “Elektron metal” as the Germans called it. The weight-saving in German aircraft was the key to such a significant advantage in the European skies. Magnesium was instantly proclaimed as a strategic metal for the second time. The U.S. Government allocated all of the U.S. nation’s total production (at that time produced by Dow Chemical) to national defense. At the beginning of the Second World War, the production of magnesium was 33,500 tons, whereas 5 years later, magnesium production reached a peak of 426,000 tons [1].
Starting year | Process | Sources | Company | Region | Type |
---|---|---|---|---|---|
1895 | I.G. Farbenindustrie | Seawater/brine | I.G. Farbenindustrie | Germany | Electrolytic |
1915 | Dow process | Seawater/brine | Dow Chemical | Midland, Michigan (USA) | Electrolytic |
1920 | Dow process | Fluoride material and magnesium oxide | American Magnesium Corporation (Alcoa) | California (USA) | Electrolytic |
1920 | Dow process | Seawater/brine | De Norske Saltverker AS | Bergen, Norway | Electrolytic |
1931 | I.G. Farbenindustrie’s technology | Dolomite/FeSi | National AluminiumMagnesium Institute (VAMI) USSR | Leningrad | |
1933 | I.G. Farbenindustrie’s technology | Dolomite/FeSi | Riken Metal Manufacturing Co. | Ube (Japan) | Thermal |
1935 | I.G. Farbenindustrie’s technology | Dolomite/FeSi | Government plant | Zaporozhye and Solikamsk (USSR) | Electrolytic |
1936 | I.G. Farbenindustrie’s technology | Dolomite/FeSi | Magnesium Electron Company (MEL) | United Kingdom | Electrolytic |
1941 | Dow process | Seawater | Dow | Freeport, Texas (USA) | Electrolytic |
1945 | I.G. Farbenindustrie’s technology | Brucite Mg (OH)2 | Aluminum Company of Canada (Alcan) | Arvida (Quebec) | Electrolytic |
1951 | I.G. Farbenindustrie’s technology | Seawater | Norsk Hydro | Porsgrunn, Norway | Electrolytic |
1959 | Pidgeon | Dolomite/FeSi | Alabama Metallurgical Corp. | Selma, Alabama (USA) | Thermal |
1960 | Pidgeon | Dolomite/FeSi | Furukawa Magnesium Corp. | Oyama (Japan) | Thermal |
1964 | Magnetherm | Dolomite/FeSi | Pechiney | Marignac (France) | Thermal |
1964 | Pidgeon | Dolomite/FeSi | Ube Kosan | Ube (Japan) | Thermal |
1969 | Modified IG I.G. Farbenindustrie’s technology | Brine | National Lead Industries (From 1980, facility operated by Amax Inc.; from 1989, facility operated by Magnesium Corp. of America. MagCorp) | Great Salt Lake, Utah (USA) | Electrolytic |
1970 | Modified IG I.G. Farbenindustrie’s technology | Dolomite/FeSi | AM Magnesium | Texas (USA) | Electrolytic |
1972 | Dow process | seawater | Dow Chemical | Texas (USA) | Electrolytic |
1974 | Amati-Ravelli | Dolomite/FeSi | Magnesium do Brasil | Ceara (Brasil) | Thermal |
1975 | Magnetherm | Dolomite/FeSi | Alcoa’s Northwest Alloys | Washington (USA) | Thermal |
1992 | Norsk Hydro | Magnesite | Norsk Hydro | Quebec (Canada) | Electrolytic |
1993 | VAMI/ UTI Technology (Russian) | Brine | Dead Sea magnesium | Israel | Electrolytic |
1994 | Alcan | Asbestos | Noranda | Canada | Electrolytic |
1997 | Alcan | Magnesite | Queensland Metals Corporation Limited | Australia | Electrolytic |
History of worldwide magnesium plants before 2000s.
Americans developed their own wrought and cast magnesium alloys. Enormous quantities of magnesium were put on military aircraft to curb the weight of liquid and air-cooled engines, wheels, oil tanks, frame structures, instrument housings, gyro frames, and many others. The jet-propelled prototype “Flying Wing” airplane was an aircraft bomber, designed for high speed and maneuverability, made primarily of magnesium (Figure 1a). It never entered service in favor of the B-36 bomber (Figure 1b) that used a total of 3800 kg of magnesium in castings, forgings, and sheets for airframe parts ad fuselage skin. At the same time, for civilian scope, commercial truck vehicle, body, and motor engine parts, benefited as well from the light-weighting that was made possible by magnesium. Magnesium alloys were extensively used in the airframe skin of the large airplane Convair XC-99 built by the U.S. Air force that remained in activity from the 1940s to 1950s. By 1948, the military aircraft Lockheed F-80C “Shooting Star” was the first American project for constructing a combat-ready jet fighter capable of exceeding 500 mph in level flight. One F-80C (47-171) constructed magnesium throughout, redesignated NF-80C-LO, is today visible at the United States Air Force Museum, Ohio (Figure 2).
(a) The “Flying Wing” airplane and (b) the B-36 bomber airplane.
The Lockheed F-80C is constructed of magnesium throughout, today visible at the United States Air Force Museum, Ohio.
However, following the end of the Second World War, military applications of magnesium lost their strategic importance. The magnesium extractive industry contracted to register a new peak demand in the early ‘50s because of the Korean War.
The production peak registered during Second World War drawn by U.S. national production was not surpassed until the ‘70s. Widespread post-war applications of magnesium would be expected in automobiles and civil aircraft to reduce engine weight and dynamic masses. Still, magnesium demand finally decreased till the ‘70s, not being sustained by aggressive market growth strategies. Magnesium soon revealed losing in front of the prominence of aluminum alloys. The significant factor restricting the growth of magnesium after wartimes can be researched—as a comparison—looking to a good lesson taught by the rival aluminum industry. The primary aluminum industry had a long tradition of cooperation. A group of pioneers in the European aluminum industry set up an “Aluminum Association” way back in 1901, just 15 years after the modern electrolysis smelting process patents of Charles Martin Hall and Paul Héroult. It was created to promote the widespread use of aluminum (at that time, aluminum was a pioneering material for few applications) to provide economic governance to the nascent aluminum market [2]. The Aluminum Association shared information on markets, feedback from customers on applications, on the quality of the metal. All those information was necessary to align demand requirements and supply features and to encourage the private sector’s investments. It was an observatory to analyze the market trends to make the use of aluminum alloys easier. Moreover, the Aluminum Association directed specific actions toward pricing policy based on stable selling prices to promote demand growth. This stability consolidated a nonspeculative market, and it allowed to plan a gradual and programmable extension of the productive capacities of big plants.
These efforts were not completely replicated in the nascent magnesium market to sustain post-war demand. It is true that a prominent American producer, the Dow company, broadened civilian markets by the ‘1950s. Precisely, the date 1954 was when the Dow company started the mass production of Samsonite Ultralite luggage bag, 20% lighter than other luggage bags, entering in operativity a mammoth large-scale magnesium sheet mill. At that time, several advancements in magnesium alloys were made. New coatings (anodic, electroless-Ni, and Cr-plating) were produced in the 1950s to protect the magnesium alloys from corrosion; viable ceramic and porcelain coatings for magnesium were developed, processes for cladding magnesium sheet and plate alloys with other magnesium alloys and aluminum.
At Dow company, people frequently told that Dow’s metallurgists within the 1960s probably had alloyed magnesium with any possible element with good wettability like Li, Al, Si, Ca, Mn, Cu, Zn, Sr, Y, Zr, Ag, and Rare Earth [3]. Researchers soon focused on the overall properties of a fabricated Mg-alloy component as a result of microstructure [4] finally realized by alloy chemistry and processing parameters to promote beneficial solid solution distribution, dispersoids, intermetallic precipitation by heat treatments, grain refining.
Corrosion behavior of Mg alloys developed was enormously improved by limiting impurities Fe, Ni, and Cu that largely influence corrosion resistance of Mg because of the formation (and dispersion) of micro-galvanic cells. New Mg-RE, Mg-Th, and Mg-Th-Zr high-temperature alloys were developed at the beginning of the ‘60s for use at temperatures of 200–350°C but were limited to their high costs to jet aircraft and military missiles. Following the first hot chamber die-casting process developed at Dow Chemical Company [5], further die-casting techniques were improved and widely used to make engine-driven tools (chain saws, post hole diggers, etc.). Researchers and metallurgy laboratories at magnesium companies provided many answers to questions about phase equilibria, alloying effects, and the relationship of structure and properties for their potential customers (casters, forgers, extruders). During the 1960s in Europe, 20,000–25,000 tons, supplied mainly by Norwegian Norsk Hydro, were being used in the Volkswagen Beetle’s air-cooled engine and gearbox. Those components were installed above and behind the rear wheels, and this required the German engineers to produce a drive system as light as possible so that the front wheels gripped the road adequately. The 1960s were also the Cold War years, and several magnesium sheets were used in the lightweight intercontinental ballistic missiles. A machined magnesium-lithium alloy LA 141 was chosen for its high stiffness, low weight, and sound vibration damping characteristics for manufacturing the chassis of the Launch Vehicle Digital Computer (LVDC) that provided the autopilot for the Saturn V, the liquid-fueled rocket developed under the Apollo program for human exploration of the Moon. High-temperature magnesium-thorium alloys in sheet and extrusion form constituted a large part of the large conical structure of the Retro-Rocket Modules of the Gemini spacecraft (the white-painted portions in Figure 3, just near the black-painted cone).
The Gemini spacecraft with the centered, white-painted portion in magnesium alloy.
However, it was symbolic of what president Roger Wheeler said at the 23rd Annual Meeting of the Magnesium Association (still, International Magnesium Association) in 1966. He said that the magnesium industry had failed in the previous 15 years to take its place as a fundamental industrial commodity metal in the U.S. [6]. At that time, magnesium consumption was one order less than forecast one decade earlier. The Magnesium Association recognized that the future of magnesium growth in North America could depend on the automotive market, and automotive engineers needed to lose their concerns about magnesium, following the example of Germans [7]. In Germany, likewise the air-cooled Volkswagen Beetle die-cast engines, in 1967 Porsche developed the 166 kg crankcase for their six-cylinder 911 series (Figure 4a), following visionary forecast in the post-wartime (Figure 4b).
(a) The Porsche 166 kg crankcase for the six-cylinder 911 series; (b) the November 1944 issue of Light Metal Age presented an image of “Tomorrow’s light metal car.” In the associated article, the writers talk about the use of aluminum and magnesium in the sleek-lined, spaced-aged cars of the future.
By the 1970s, developments were extended to new composite magnesium-based materials, new high-temperature magnesium alloys, new fluxing methods, squeeze casting, recycling methods, and new anodizing processes for magnesium [8]. They were good news for the magnesium industry, but, in reality, in the middle 1970s, world demand for magnesium was about not more than 2% of the aluminum. Economic uncertainties by the oil crisis caused the rapid decrease in sales of the Beetle caused German automakers to curtail magnesium consumption [9]. Despite aluminum pricing that remained steady, the rising magnesium price made aluminum much more competitive. Whether during the late 1970s and beginning 1980s, the need for cutting fuel cost of automobiles could represent an opportunity for the magnesium industry, desulphurization and deoxidation of steel were (unfortunately) still considered the most favorable growth market for magnesium [10]. Magnesium for aluminum alloying was expanding market sector as it consumed almost half of the magnesium production, and it was expected to grow at about 5% per year, while some other markets such as desulphurization and die casting were expected to grow more rapidly [10]. Many efforts were made by researchers to develop high-performance alloys for automotive applications to curb as much weight as possible from massive engine blocks, including advanced rapidly solidified magnesium alloys [11] and magnesium alloy composites [12].
Over the second half of the 1980s and early 1990s years, the period was a time of great ferment for magnesium potentialities in the automotive sector [8]. The dominant technology for magnesium production was still electrolysis with giant plants, and the leading producer countries were the United States, Canada, and Norway. Die casting consumption with different magnesium die-cast components in automobile sectors drove the significant annual growth rate of North America—thus more or less the total world magnesium demand at that time. General Motors die-casted in a single-shot, a large part an instrument panel beam for the GMC Savana and Chevrolet Express van. It was a 12 kg part 4 mm thick, which provided 32% mass saving compared to the steel design with improved crashworthiness and high vibration damping. It was less costly thanks to a few parts assemblies, 25 parts in the magnesium design compared to the 67-parts in the steel-made product [13]. To shape much more complex parts made of magnesium, in 1991, the Dow Company registered the Patent for a method and apparatus for the injection molding of magnesium metal, a process based on the foundation of the fundamental discoveries on semi-solid metals by Flemings and his students at Massachusetts Institute of Technology, MIT [14].
During that golden age for magnesium, the US Dow Company increased its almost monopolistic control of the magnesium market thanks to the economy of scale of its giant and old electrolytic plants powered by low-cost power sources available in Texas. In 1991 Dow could produce 109,000 tons per year, namely around 35% of the world’s entire output. But the cost of making magnesium in Texas began to rise gradually as the time of cheap natural gas ended. With almost 20 kW-h of electricity to produce a kilogram of magnesium, a lot of power was available, but all that power had been contracted for by the big aluminum producers like Alcoa, Kaiser, and Reynolds [3]. The old Dow plant became soon antiquated, and to stay in business at a competitive level, the most significant World producer would have had to build a new efficient plant, as planned at the Great Salt Lake, a project that never started. Factors leading to Dow’s success, and that driven till the early 1990s all magnesium market, have been: early entry, cost efficiency, and strategic deterrence behavior [3]. The biggest world’s magnesium producer started to hand over its 60 years of harvests by the early 1970s when Dow began to reap the benefits of its magnesium business rather than investing beyond its old plants in Texas. Dow company switched from a “limit pricing” strategy originally designed to deter entry to a “skim pricing” type of strategy that ultimately sacrificed the firm’s viability as a magnesium producer [15].
Unlike Dow, other dominant firms have opted to expand tactically in related industries (e.g., DuPont in titanium dioxide and Alcoa in aluminum before 1945). One potential explanation is that Dow’s cost advantage was not sustainable. Dow’s production process benefited from years of incremental improvements but was not fundamentally different from the technology potentially available to others [15]. The Dow big electrolytic plants worked at an efficient scale in the decades after wartime characterized by modest demand for magnesium, and there were substantially no further opportunities for new efficient-scale plants until the U.S. But a radical change, as depicted, started with an automotive interest in magnesium at the beginning of the 1990s. Magnesium would switch its position in the marketplace from a specialty material with one dominant producer with considerable knowledge accumulated in 60 years into a commodity product with a competitive global market [15].
The rest of the story is like what happened to dominant Western countries firms in similar markets for commodity products. As the Cold War ended around 1990 and as the Chinese economic reform entered its Second Stage (the establishment of the Socialist Market Economy), individual Chinese enterprises were allowed to exist and to be protected by the law of the People’s Republic of China. The primary market forces began to shift very rapidly in Western countries. In China, a multiplicity of low-investment production plants with the Pidgeon process were building at the minor technology scale. Hundreds of those plants based on a very high labor-intensive process were set up and ramped up very rapidly, in a few months, producing per capita just a few hundred metric tons per year. There was no Chinese knowledge at that time about magnesium alloying and alloys applications; those plants needed just to sell primary magnesium to the Western countries at almost their marginal cost. This new situation created confusion in the not-stabilized marketplace [3]. However, it is a fact that the Pidgeon process produced a significant amount of World War II magnesium. Those Pidgeon plants during wartime could not compete with the electrolytic process.
On the contrary, in the 1990s, when small Chinese plants started to supply 4% of the world’s magnesium, Chinese labor cost was very low. In that period, Chinese-made magnesium was sold at about 0.72 USD/lb. while Dow’s production cost was not less than 1.08 USD/lb. That magnesium price had been starting to crush the marketplace, a problem that never ended till that time. By far, the principal use of magnesium, almost 50%, that year was recorded in alloying the large numbers in the aluminum beverage cans sector, in which magnesium was (and is) used as a strengthening agent instead of in structural alloys for engineering applications.
Very soon, China, with its low prices, supplied 50% of World magnesium demand (Figure 5), becoming the world’s largest supplier of primary magnesium. Between 2000 and 2010, magnesium production in China tripled, mainly due to the high costs of the process in the USA, Canada, France, and Norway. Most of the big magnesium plants in those countries were closed due to lower competitiveness. Despite the establishment of duties that could reduce imports, U.S. producers of magnesium began to exit the market. In 1998, Dow Chemical decided to leave the magnesium business, contracting a licensing deal for its technology to Samaj, a Pima Mining’s subsidiary, for the South Australian magnesium project. Northwest Alloys Inc. closed its plant in Washington by 2001. Renco Metals Inc., the Magnesium Corporation of America parent, filed for chapter 11 bankruptcy in August 2001. In the same year, Norsk Hydro ended magnesium production in Norway, and after 6 years, in 2007, it ended its operation at Becancour, Canada. Noranda, which operated in Quebec the Magnolia electrolytic magnesium plant relied on serpentine tails from nearby asbestos mines, closed the smelter in 2003.
Evolution of magnesium production per region (1990–2017) [
By 2015, more than 80% of the world’s magnesium production took place in China, followed by Russia, Israel, and Kazakhstan, with only a few percent market share. In 2021, due to curbs in domestic power consumption, Chinese production of magnesium had been halted or curtailed to such an extent that deliveries to Europe have drastically dropped since 20 September 2021. In the second half of 2021, in the world’s main magnesium production hubs, Shaanxi and Shanxi Provinces, 25 magnesium plants would have to shut down. Five other plants had to cut production by 50% amid China’s power curbing rollout. With an 87% global share in magnesium production, the Chinese supply shortfall has already resulted in record prices, reaching the never recorded price of 6 Eur per kg and a worldwide global distortion in the supply chain.
The dependency on Chinese producers has created magnesium users worldwide a deadly embrace. Fluctuant prices over the 2000s depend on Chinese supplies. From the end of 2007 to the end of the first quarter of 2008, the average U.S. spot Western price increased significantly, as in China and Europe. Several factors contributed to these price escalations. In the United States, a decline in imports from Russia and Canada, two of the leading import sources, caused a supply shortage on the spot market. In China, increased prices for ferrosilicon, power, and transportation were causes for the rapid price increase [1]. In addition, environmental crackdowns by the Government of China may have led to shutdowns at some smaller and highly pollutant Pidgeon plants. In the United States, the Platts Metals Week U.S. spot Western price range reached a peak of USD 3.50 to USD 3.70, while in China, the magnesium price range reached a high of USD 5950 to USD 6250 per metric ton. The increased production cost of Chinese magnesium is firmly attributed to higher prices for raw material (main ferrosilicon), decreased production due to stricter environmental regulations at smelters and coal mines, increased labor costs, and an increase in coal power cost. Table 2 represents the cost-shares breakdown of primary magnesium and significant differences between the old Western big electrolytic plant and the small Pidgeon plants powered by coal, primary actors of national magnesium production expansion in the first decade of the 2000s.
Electrolytic reduction (Western) (%) | Thermal reduction (China Pidgeon, coal-powered) (%) | |
---|---|---|
Materials | 6 | 50 |
Capital | 37 | 20 |
Energy | 18 | 8 |
Labour | 16 | 5 |
Other | 24 | 17 |
Total | 100 | 100 |
Cost shares breakdown of primary magnesium and significant differences existing among the old Western big electrolytic plant and the small Pidgeon plants.
Though the raw material cost is essential, price stability is a much more relevant factor. For this reason, several projects are currently being developed to increase primary magnesium production capacity worldwide. In Nevada, United States, one company has obtained permission to build a pilot plant to test magnesium production from a dolomite deposit. In Quebec, Canada, a company started the construction of a secondary magnesium smelter. A company in Australia with a 3000 ton per year plant is going to be completed; it will recover magnesium from coal fly ash [17].
Now, let us go a bit in-depth about price concerns.
On the one hand, manufacturers are under the constant pressure of product costs that must be affordable; on the other hand, they cannot easily justify the use of bright material characterized by a (historical) uncertainty of supply over a medium-term period. Figure 6 shows the price history of magnesium metal (US Market spot price) relative to magnesium and aluminum [USGS Bulletins]. On that source, it is crucial to notice that the ratio between magnesium and (primary) aluminum price has been over the ratio of 1.6, which is generally considered the affordable price ratio for magnesium versus aluminum, usually calculated by the inverse ratio densities of the two materials.
Yearly average U.S. market spot price for aluminum and magnesium [
On the other hand, it would be more appropriate to consider the switching cost for each kg of steel that you would substitute with the alternative light metal for the same function. Table 3 represents a viability study on the structural application of light metal alloy for manufacturing the automobile outdoor body panel that shall guarantee equal (or higher) stiffness and denting capability. To evaluate whether it is technically convenient to replace galvanized mild steel with lighter aluminum and magnesium metal alloys for stamping an outer door panel of a road vehicle, we need to know for alternative lightweight scenarios the substitution factors that are defined as the mass ratio between the lightweight (aluminum and magnesium) and the baseline (steel) component. The mass is obtained by multiplying the material density by the volume of the panel. Otherwise, the outer door panel volume is obtained by the front area of the panel that is usually fixed due to geometry constraints (e.g., the perimetral geometry defined by screen and center pillars) and the thickness of the panel sheet cold drawn. Furthermore, it is a multiple constraints problem: it is a strength-limited design problem with constraints in terms of the same (or higher) dent resistance and same (or higher) flexural stiffness of the panel. Under these circumstances, substitution factors for an aluminum alloy AA 5083 sheet cold drawn ranges 0.5–0.6, for a magnesium alloy AZ31D twin rolled cast sheet warm stamped ranges 0.4–0.5 (refer again to Table 3).
Baseline | Lightweight solutions | ||
---|---|---|---|
AISI 1045 steel | Aluminum 6061 | AZ31D twin rolled cast sheet, warm formed | |
Density [g/cm3] | 7.8 | 2.7 | 1.8 |
Yield strength (minimum) [N/mm2] | 350.0 | 250.0 | 135.0 |
Elastic modulus | 210.0 | 70.0 | 45.0 |
thickness for bending load parity and stiffness [mm] | 0.8 | 1.2 | 1.3 |
Strength-to-weight ratio (kNm/kg) | 44.9 | 91.2 | 75.0 |
Minimum thickness to achieve bending load parity with galvanized steel [mm] | — | 1.2 | 1.3 |
Minimum thickness to achieve stiffness parity to galvanized steel [mm] | — | 0.9 | 1.3 |
Panel mass [kg] | 15.9 | 8.1 | 6.2 |
Substitution factor (SF) | 1.0 | 0.5 | 0.4 |
Weight saved in percentage with lightweight solution | 0% | 49% | 61% |
Current production cost (Eur/kg) | 0.9 | 3.3 | 6.5 |
Elastic module [GPa] | 210.0 | 70.0 | 45.0 |
Switching cost per each kg steel substituted with an alternative metal for the same function, equivalent stiffness, and load (denting) capability, calculated as (price of 1 kg material) × SF: [Eur] | 0.9 | 1.7 | 2.5 |
Material unitary cost for steel parity, calculated as (unitary steel price)/SF: [Eur/kg] | 0.9 | 1.8 | 2.3 |
Feasibility study about the affordability of lightweight solutions with aluminum and magnesium alloy for an outdoor body panel for the automobile; comparison with baseline steel scenario.
Thus, by calculating the material substitution factor for each light metal considered, we would evaluate how much is the switching cost of each kg of steel when it is substituted with 0.6 kg aluminum alloy or with 0.4 kg magnesium alloy. Table 3 shows the switching costs per kg of steel in the case of both aluminum and magnesium solutions. Much more interesting is the line indicating the “steel parity” unitary material price (Euro/kg) for the outdoor panel: it represents how much it should be the unitary price for an alternative material to manufacture the body panel at the exact cost of the baseline case, the steel made pan.
Hence, the big question: is the steel parity cost the unique parameter to consider if magnesium is attractive as light material?
Nowadays, the transportation sector impacts around 25% of direct CO2 emissions from fossil fuel combustion. Among the variety of transportation means, road vehicles, particularly passenger cars and freight vehicles such as heavy trucks, busses, and two-wheelers, are estimated by the International Energy Agency (IEA), accounting for nearly three-quarters of transport CO2 emissions. Although CO2 emissions from aviation and shipping have been increasing in the last decade, the road share of total transport sector emissions has fluctuated around 75% of total transport emissions for two decades. If several efforts and advancements have been made in road-vehicle electrification, otherwise larger (and heavier) vehicles are still preferred by lots of consumers. The worldwide market share of SUVs has increased in the last two decades, and in 2019, before the pandemic crisis, it represented nearly half of the global light-duty vehicle market in several countries. Growing demand for the urban transport of goods is rising, adversely affecting air quality, noise, safety, and liveability in the city. The automotive sector has been putting efforts for reversing CO2 emissions growth by several strategies; one of those strategies focuses on energy efficiency countermeasures that would be implemented in the form of:
managing/rationalizing travel habits to reduce the frequency and/or distance switching from high-energy-intensity modes (e.g., private car and or air) to most efficient methods (i.e., train for traveling long distances plus rented new efficient vehicles on local base).
deploying energy-efficient technologies for vehicles and fuels.
more stringent requirements on vehicle efficiency, namely, power consumption per km.
The latter strategy is thought a valuable approach for accompanying market migration from heavy vehicles powered by combustion engines fueled by gasoline toward cleaner electrified cars that could be likely powered by near-zero-emission electricity. During vehicle operation, the fuel consumption rate can be approximated as the sum of a linear function of the vehicle mass and—as a second contribution—the loss in aerodynamic drag; both of them through coefficients that depends on several vehicle characteristics. Strategies approaching weight reduction are actually most effective during transient driving cycles; instead, during constant speed traveling, the vehicles’ fuel efficiency mostly depends on aerodynamic drag forces. Global average fuel consumption of new cars has been too slowly decreased, less than 2% per year, setting around 7 L gasoline equivalent per 100 km (Lge/100 km). To get on track with 2030 targeted 4.5 Lge/100 km, expected standards will become significantly more stringent to achieve efficiency goals. In 2021 the European Commission proposed new CO2 emissions targets for 2030 and 2035 that require CO2 emissions reductions of half actual emissions for cars and vans.
Despite wide literature on life cycle assessment of on-road vehicles considers fossil fuel-powered vehicles, a similar approach is being deployed in the case of electric motor-powered vehicles (considering the energy efficiency of kWh per km traveled) or hydrogen-gas fueled road vehicles (considering hydrogen gas supplied to fuel cell unit per km traveled). Precisely for fully electric cars, the weight of full-electric vehicles is a sum of the mass of the vehicle’s architecture and the mass of battery packs. Thus, its common sense considering that the travel range represents for the consumers the independence from the plug-in commences with battery size. That’s the Achille’s heel of plugged-in vehicles for fossil-fueled vehicle buyers. On the one hand, travel range increases with battery capacity, but on the other hand, larger battery capacity means a heavier vehicle to travel.
While vehicle downsizing improvements in fuel efficiency could be achieved, it appears in contrast with buyers’ needs; thus, reducing size for reducing mass could not target a competitive strategy for automakers.
For this reason, a weight-saving strategy primarily implemented by extensive use of lightweight materials—better to say, by higher specific strength—is, therefore, most promising for pursuing consumers’ satisfaction. Meanwhile, environmental aspects are successfully addressed, as they cannot be deferrable. It has been estimated that a 10% of vehicle weight curbing increases the vehicle’s fuel efficiency by nearly 7%. But the ability to introduce new lightweight materials into vehicles is not a simple remove-and-replace process. Concerns about the impact of material changes on manufacturing lines, supplying network reliability, material cost stability, secure material availability in the marketplace are the main drivers in the material-shift decision process as they all could be more important for automakers than the percentage of weight saved. The potentiality of any lightweight scenarios steered by material replacement rates is based on the actual capability of lighter but weaker materials to safely replace heavier but stronger ferrous alloys, like steels and cast irons. As shown in Table 3, the weight-saving potentialities of lighter material depends on the specific substitution factor for the specific function, and it’s a fact that the materials substitution factor strongly depends on: the physical properties of the material (e.g., its density and its elastic module as key-factor impacting on stiffness-limited design), the shaped part mechanical properties that are strongly dependent on the shaping process employed (e.g., fatigue limit obtained by cold pressure die-casting operations is different from fatigue limit obtained with low-pressurized die-casting), the geometrical constraints fixed by design (e.g., limited space of fixed boundaries to frame architecture).
As it is usual for any comparative analysis, we need a baseline and parameter to use in the calculation of data output to compare. The fuel consumption reduction coefficient is conventionally used as a measure of fuel-mass correlation. It provides the saving in specific consumption achieved through a 100 kg weight-saving. Recent literature set in the range 0.3–0.5 L/(100 km × 100 kg), varying with modeling assumptions, such as vehicle class, car model, driving cycle, the fuel consumption reduction coefficient for internal combustion engine vehicles [19], and values in the range of 0.47–1.17 kWh/(100 km × 100 kg) for electric vehicles [20].
But there is always a “but”; light-weighting is not a stand-alone measure whether its motivation is pollution curbs [21]. The extractive metallurgy (mining and refining) of nonferrous structural metals that are highly reactive toward oxygen like aluminum, titanium, and magnesium is complicated due to their low grade. The high complexity of the ore extraction and the energy-intensive pyrometallurgical or hydrometallurgical processes employed for pure metal refining are critical stages for the potential release of gas, liquid, and solid emissions (i.e., direct pollutant emissions) and for a large amount of CO2 emissions correlated to lots of energy consumed (i.e., indirect pollutant emissions). In the next sections, we’ll go into details, but for the moment, we can summarize by this way:
light nonferrous alloys are the cleaner solution in their usage phase in the transport sector because they can target a consistent weight curb capable of reducing direct emissions at the tailpipe of fossil-fueled vehicles. For internal combustion engine vehicles with average tailpipe emissions near 120 gCO2/km, assuming 2.4 KgCO2 emitted al tailpipe per liter gasoline burned, it can be calculated to reduce by 100 kg onboard vehicle mass, nearly 1.2 kgCO2 is the pollution cut per 100 km traveled.
The direct CO2 curb obtained in the usage phase could be reduced (sometimes nullified) by the sum of pollution (direct and indirect) emitted during the extractive phase, the refining process, and the manufacturing of the lighter products. For example, on average, the greenhouse gases emitted as equivalent CO2 per kg of product manufactured can vary from 2.0 to 2.5 kgCO2eq per each kg of steel made products and 12.0–16.0 kgCO2eq per each kg of aluminum products.
Therefore, a broad vision must encompass the net CO2 emissions over the road vehicle lifespan.
A qualitative scheme representing the green ability of light alloys against heavier metal, such as steel, is depicted in Figure 7. The baseline case (1) represents a reference, for example, a body panel made of galvanized plain carbon steel. For the steel-made product, the total CO2 emitted over the product’s lifespan is the sum of the CO2 (direct and indirect) emitted during the manufacturing stage and the usage phase (traveling). By replacing steel-made products with lighter metal alloy (2), we shall consider more pollutant emissions in the fabricating stage. For this reason, the break-even point T1 versus the baseline scenario (1) could be targeted at the T1 traveled distance. The beneficial effect of weight saving is visible by the gray shaded area from T1 to the expected vehicle lifespan representing the net CO2 curb by lightweight solution. Case (3) represents the use of much lighter material (due to the reduced slope of the line), but with higher CO2 emitted in the manufacturing stage as per the higher linear coefficient of the line (3). In this second scenario, the break-even point switches to the higher T2 mileage. The difference between the two shaded areas represents the net CO2 cut for alternative weight-saving scenarios (2) and (3) compared to the baseline scenario (1).
Three qualitative scenarios for addressing the environmental impact of automotive body panels over the product lifespan.
We refer again to Table 3. On average, you may consider 0.5 the aluminum substitution factor applicable in structural engineering applications, thus 100 kg of steel (that accounts for around 230 kgCO2 for the manufacturing stage) would be potentially replaced by approximately 50 kg of aluminum, which accounts for about 700 kgCO2eq emitted in the manufacturing phase. On the other hand, referring to the schematic representation in Figure 7, aluminum onboard would potentially save 50 kg. Now you can account for nearly 0.2 gramCO2, the pollution cut per kg of weight saved and per each km traveled. Putting onboard an internal combustion engine-powered vehicle 50 kg aluminum to replace steel, we would cut around 5.95 gCO2 per km traveled.
Now, we can proceed with a further step.
The net CO2 emissions from the aluminum-steel switch account for around 470 kgCO2eq emitted in the “cradle-to-gate” phase (including extractive, refining, alloying, and manufacturing stages). Aluminum bodies shall travel onboard around 78,000 km to achieve the break-even point, namely the traveling distance necessary to offset the 470 kgCO2 extra emissions over the steel-made bodies (the baseline scenario). The environmental sustainability of the lighter solution is therefore strongly influenced by the environmental impact of the raw material fabrication phase, mostly the extractive stage. For that reason, intensive use of recycled patterns to limit the use of primary (virgin) metal for such energy-intensive lightweight alloys is the key to excellent sustainable use of light alloys on-road vehicles. And what about magnesium products? Former data about the carbon footprint of magnesium production have indicated an extensive range of 37–47 kgCO2eq/kg of magnesium [22]. With such numbers, many still consider magnesium from a technical point of view an exciting opportunity to implement lightweight strategies but an unsound option for a cross-cutting greening approach. It would be effortless to calculate whether 37 kgCO2eq is the carbon footprint per kg of magnesium to put onboard for replacing 1.6 kg of steel, the CO2 emitted for the manufacturing phase could be “absorbed”, traveling for a lot, above 200,000 km. What are the reasons for such a high carbon footprint of magnesium metallurgy? And shall we consider those numbers still valid today? We’ll try to get an answer to those questions in the following sections.
There are two primary sources of direct and indirect pollutant emissions in the magnesium industry. The first source is correlated to high reactivity with the oxygen of magnesium when molten. In the air, molten magnesium is coated with an oxide layer, which, in contrast to the aluminum oxide layer, cannot protect highly reactive magnesium from oxygen. It is true that molten aluminum, too, is highly reactive with oxygen. However, the alumina layer that instantaneously forms on liquid metal in oxygen is dense and not permeable to further oxygen. The magnesium oxide layer formed during melting is characterized by low density. The Pilling–Bedworth number (PBR) explains the high-temperature oxidation behavior of different metals and their oxides [23] by the ratio between the molar volume of oxide and the molar volume of metal. This volume change is responsible for varying types of surface stress in the oxide layer.
For PBR <1, tensile stress on the oxide layer promotes the layer to crack: that’s what happens in molten magnesium metal. When the PBR is equal to 1 (the better situation with PBR above 1), it represents a safe condition. Sound compressive stresses develop in the thin dense, and stable oxide layer, protecting the molten metal from the outer atmosphere. This happens for iron, aluminum, titanium, and other metals. Unfortunately, this does not apply to magnesium. Emley [24] found that up to 450°C, magnesium forms a protective magnesium oxide layer, but it becomes porous and non-protective over 450°C. The high reactivity with oxygen causes magnesium to easily ignite and endangers the workers and the production line.
The time to ignition depends on the magnesium alloy composition [23, 25]. The real big problem of flame ignition in magnesium is that the oxidation reaction is highly exothermic. Magnesium oxide, white powder, creates a net release of energy in the form of heat. Magnesium ignited burns with flame at more than 2000°C; thus, no crucible can resist if the flame is not extinguished. Furthermore, magnesium atoms are also capable of reducing water to the highly flammable hydrogen gas by the reaction Mg(s) + 2H2O → Mg (OH)2(s) + H2(g); meanwhile, hydrogen gas could be easily ignited by the excess heat given by the magnesium reduction reaction. Magnesium metal can also react with carbon dioxide when present in the atmosphere to promote and sustain magnesium oxide formation accordingly with the following: Mg(s) + CO2 → 2MgO(s) + C(s). For this reason, conventional carbon dioxide fire extinguishers cannot be used for extinguishing magnesium fires (required Class D dry chemical fire extinguisher or covering the fire with sand to remove air source).
This hazardous behavior of magnesium metal is therefore historically correlated to conditions that lead to flame ignition of molten magnesium or magnesium in the form of powder, ribbon, thin strips, and foils, namely those fine structure forms that can be quickly heated up just by relatively low heating source, for example by friction. The highly exothermic oxidation reaction could bring explosive hazards in the presence of moisture when flame ignition is not adequately managed by specific knowledge and expertise. For these reasons, particularly in the presence of molten magnesium (for example, during cast shaping), fluorine-based compounds, such as SF6, for protection of molten magnesium have been used since the 1930s [26]. Before introducing SF6, magnesium was protected with alkali metal halide fluxes, sulfur dioxide (SO2), or even elemental sulfur. The decomposition and following reaction between the fluorine and liquid magnesium keeps separate highly reactive molten magnesium from oxygen. On the one hand, these reactions are thought capable of creating on the molten metal surface an elastic, nonporous protective film containing MgO and MgF2 with a Pilling-Bedworth ratio larger than 1 [27]. On the other hand, significant impact is ascribable to the use of SF6 as a cover gas. The SF6 environmental impact has been calculated to be 22,800 kg CO2eq/kg of SF6 used (in other words, 22,800 times greater than 1 kg of CO2 emitted). Usually, 1 kg of SF6 is required as cover gas per ton of melting magnesium, resulting in a 22,800 kg CO2 equivalent per kilogram of melt magnesium. In Europe, SF6 is banned, while in the United States, its use is optional for the industry.
To present date, banded SF6 has been substituted by less impacting hydrofluorocarbons such as HFC-134a, however, considered a greenhouse gas but much less impacting. A much lower impact is for sulfur dioxide, but it presents limits for its toxicity and its corrosive properties. Usually, a specific blend of them is used. Recently the Novec 612 fluid—registered by the 3 M Company— promises a meager global warming potential (GWP, expressed as kgCO2eq/kg product) of 1, equivalent to CO2. Furthermore, to limit the intense use of protective substances, an old approach recently proposed consists of adding unique alloying elements to improve the ignition resistance of magnesium alloys. In the past, Emley [24] claimed that additions of small amounts of Be, Al, and Ca enhanced the oxidation resistance of solid Mg alloy near the melting point. Such magnesium alloys could be melted in the air if the oxide skin on the ingot was not broken. Sakamoto et al. [28] verified the oxide film on the Mg-Ca consists of a CaO surface thin layer, and just below this layer, a mixture of MgO-CaO exists. To date, the main reason for this protective effect from Ca-O is not clarified. One prominent hypothesis embraces the PBR rule. The higher thermodynamic stability of Ca-O added oxide layer and the kinetics of the diffusion and reaction of Mg ion at and through the oxide layer formed by a mixture of MgO and CaO. When the oxide layer consists of a combination of MgO and CaO, the large volume of CaO might compensate for the shrinkage due to MgO formation. Phenomena involved in retarding flame ignition in Mg alloys systems when alloyed with Ca, Be, and Y has been studied for years but not wholly clarified today.
To summarize, reasonable and sustainable practices are available today in the marketplace to safely treat magnesium and significantly reduce the pollutant emissions in handling molten magnesium in foundries.
But the second source of pollution for the magnesium industry, much more relevant and challenging to control, depends on the vast amount of energy necessary for the magnesium extractive and refining phase, namely the primary magnesium fabrication. There are only a few processes available for the primary magnesium fabrication as they are based on sources of the raw materials by which magnesium can be extracted: raw materials ores (such as dolomite, magnesite, hydroxide mineral brucite, halide mineral carnallite) and brine, which is a mainly a highly concentrated water solution of common salts like hydrated magnesium chloride, magnesium sulfate and magnesium bromide, whose preferred reservoirs are the higher concentrated seawater such as the Great Salt Lake and the Dead Sea. By the way, magnesium raw material sources are considered practically inexhaustible, as magnesium is the 4th abundant metal in the Hearth crust, following iron, aluminum, and silicon. Moreover, inexhaustibility is properly true for seawater reservoirs of magnesium chloride salts. Depending on the type of magnesium source employed, we can distinguish two prominent process patterns to produce magnesium metal: (a) the electrolysis of fused anhydrous magnesium chloride obtained by various refining upstream processes (e.g., dehydration of magnesium chloride brines or chlorination of magnesium oxide) and (b) the thermal reduction of magnesium oxide by ferrosilicon derived from carbonate ores. Today’s electrolytic processes are mainly based on the oldest and original Dow process employing seawater as a primary magnesium source.
The Dow process was developed in the first decade of the twentieth century, as the USA started an extensive magnesium production for military scopes. Electrolytic cells are vessels equipped with multiple steel cathodes and graphite anodes partially submerged in the dehydrated molten salt electrolyte. They generally operate to temperatures from 680 to 750°C to develop the basic reaction: MgCl2 → Mg (liquid metal) + Cl2 (gas). While the Dow process was starting and ramping up US national production, Germans continued investigating carbo-chlorination of magnesite to produce liquid anhydrous magnesium chloride. During those years, when the second peak of magnesium demand rose, Canadian scientist Lloyd Montgomery Pidgeon developed the thermal process for reducing magnesium oxide with silicon in externally heated retorts. Silicon is generally obtained by ferrosilicon ores, and it is produced in an arc furnace, mixed with calcined dolomite, and then briquetted. The briquettes are placed in a retort and heated to extract magnesium vapors condensed at the cold end of the retort with a relatively small diameter. The process is a batch process. It requires metal to be removed from the condensers, slag to be evacuated as a solid, and finally, it is possible to recharge the retort. Thus, the Pidgeon process has reduced the productivity of magnesium per day compared to big electrolytic cells plants. We would simplify the basic reaction as: 2CaO + 2MgO + Si → 2Mg + Ca2SiO4. It is an endothermic reaction, and a large amount of heat must be applied to initiate it and continue.
Therefore, the Pidgeon main environmental problem is the combustible used for firing furnace; oil or gas are commonly used for the scope. Former literature ascribed to oil firing the high environmental impact of polluting emissions, ranging from 37 to 47 kgCO2eq/kg of Mg extracted [22].
Another thermal process, the Bolzano process, like the Pidgeon process, employs the dolomite-ferrosilicon briquettes. Briquettes are stacked on a unique charge support system through which internal electric heating is conducted to the charge. In that case, most carbon emissions are drawn by the indirect carbon emissions of the energy mix used. Depending on the electricity carbon footprint on a local base, the Bolzano process ranges from 13 to 33 kgCO2eq/kg of Mg depending on the local electricity share produced by hydropower [29].
In brief, we can summarize. On the one hand, the Pidgeon process advantage consists of low investments to recoup, fewer constraints on the minimum size to be profitable, short time for facility construction, equipment installation, and plant ramp-up, flexible production. On the other hand, it suffers from low productivity, high labor requirement, and high energy consumption.
But to reply to the big question: Are the environmental concerns about magnesium extractive processes still valid today? It is necessary to ponder data from the most recent life cycle assessment studies committed to an in-depth investigation of magnesium green ability. In 2013, the International Magnesium Association (IMA) published the study “Life Cycle Assessment (LCA) of Magnesium Components in Vehicle Construction” which analyzed the entire life cycle of magnesium components for transport applications [30]. The study addressed primary magnesium production, alloying, component production, use phase, and the end-of-life of magnesium components, particularly for passenger vehicles comparing differences in emissions among Pidgeon process employed in small factories during the first decade of the 2000s with the most recent Pidgeon process practiced in larger plants. The worst numbers in former LCA studies before 2011 addressed massive emissions from small Pidgeon process plants developed in China from the 1990s to 2011. Pollution emissions from small plants significantly decreased following the imposed shutdown of several high pollutant firms, including small magnesium plants, ordered by the Chinese Government 1 month before starting the Beijing Olympic Games to improve air quality. Small factories in the primary magnesium business would have targeted more stringent environmental prescriptions before they could resume production, but several small factories had not restarted production. Survived small plants restarted, at higher operating costs, improving the energy Efficiency with substitution of coal by gaseous fuels, with more efficient re-use of waste heat, and installing additional air treatment equipment.
Therefore, the 2013 LCA analysis published by the International Magnesium Association downscaled the overall average emissions from the Pidgeon process under the improvements mentioned above to 28 kg CO2eq, including all upstream processes [30]. It is worth noticing the magnesium production plant located in Brazil uses a silicothermic process, a modified type of the Bolzano Process. It targeted an excellent result of 10.1 kgCO2eq/kg magnesium.
Alternatively to the Pidgeon process, the big electrolytic plants could have a meager environmental impact, depending on the primary energy source. The Dead Sea Magnesium plant, which produces magnesium from the Dead Sea evaporite deposits in Israel, uses natural gas as an energy supply. The global warming potential of this process is accounted for 17.8 kg CO2eq/kg Mg [30]. As in this electrolysis plant, two main by-products are produced, liquefied chlorine (Cl2) and KCl-rich salt. They can have a wide range of potential uses; thus, they are used as raw materials for other sectors. Credits for their re-use, therefore, contribute to decreasing the global warming potential to 14.0 kg CO2eq/kg magnesium [30].
Since 2017 a new electrolysis plant with a capacity of 100,000 metric tons per annum has been operating in China by the Qinghai Salt Lake Magnesium Co. (QSLM). The QSLM electrolytic magnesium smelter is located at Golmud in Qinghai Province. This process produces pure magnesium from magnesium chloride (MgCl2) brine, an adjacent potash production waste product. The smelter produces low CO2 embedded magnesium metal thanks to energy power used for the complex supplied from regional hydro facilities (75%), solar (9%), and wind, as well as a local thermal power station. With support from the Qinghai Provincial Government and the national Government in Beijing, QSLM has plans to expand the production of pure magnesium alloys from current levels to 150,000 mtpa soon and then to 450,000 mtpa. Adjacent to the electrolytic magnesium smelter, Magontec has constructed a new primary magnesium alloy cast house facility with an output capacity of 60,000 metric tons per annum that will take pure liquid magnesium from the adjacent smelter. Magontec’s plant benefits the QSLM’s energy supply of 75% hydro and nearly 10% solar. The overall greenhouse gas emissions of the electrolysis amount to 8.5 kg CO2eq/kg magnesium. Apart from pure magnesium, the electrolysis of magnesium chloride produces gaseous chlorine. The amount of chlorine produced cannot finally be predicted at this stage of the project, but a chlorine yield of around 2.5 kg per kg of magnesium can be assumed. This by-product is used as feedstock for the nearby PVC plant. Producing 2.5 kg of chlorine usually leads to greenhouse gas emissions of about 3.2 kg CO2eq [30]. Thus, crediting these emissions, which the magnesium electrolysis has saved, leads to overall emissions of 5.3 kg CO2eq/kg of magnesium ingot [30]. The Qinghai plant has not reached its total capacity but is still ramp-up.
It is a fact that government policies of the country in which plants operate play an essential role in the environmental impact of magnesium. The national electricity mix used for plant operations, disposal, and recycling routes and the grade of technical solution development drastically reduce electrolytic routes’ effects. Under the updated LCA data, the following Table 4 recalculates the GWP for the body panel case study (refer to Table 3). GWP for the three options refers to average updated data published in [30]. Finally, since GWP are expressed per unit mass of material used, it is necessary to consider the actual usage of light material for the specific application. Table 4 estimates the kgCO2eq emitted by aluminum and magnesium solution for substituting each kg of steel in the inner door panel for the same function, at equivalent (or higher) stiffness, and equivalent (or higher) denting capability. The calculation method follows:
Baseline | Lightweight solutions | ||
---|---|---|---|
AISI 1045 steel | Aluminum 6061 | AZ31D twin rolled cast sheet, warm formed | |
Substitution factor (SF) | 1.0 | 0.5 | 0.4 |
KgCO2eq emitted for substituting 1 kg of steel with alternative metals for same function, equivalent stiffness, and load (denting) capability (kgCO2eq emitted per kg of material) × SF [kgCO2eq] | 2.3 | 4.91 | 2.02 |
10.83 | |||
Steel parity GWP calculated as (GWP_steel)/(SF): [kgCO2eq/kg] | 2.3 | 4.7 | 3.7 |
Recalculated GWP data for comparative scenarios in manufacturing a lightweight outdoor body panel with light metal alloys.
The last line of Table 2 shows the recalculated GWP for aluminum and magnesium light solutions to the “steel parity” calculated as:
The (2) represents the GWP of metal alloys give parity to body panel made of steel at equal (or higher, as for magnesium solution) stiffness and load capability.
Recycling metals is critical to their overall sustainability. Magnesium retains most of the necessary physical integrity when recycled if it is not contaminated. Remelting and forming of ingots are the main energy requirement for recycling, but generally, secondary production of magnesium ingots requires substantially less energy than primary production [32]. Otherwise, this process’s greenhouse gas emission mainly depends on the selected cover gas; generally, a cumulative 3.6 kgCO2eq/kg of secondary magnesium produced could be released [33].
Today the recycling of magnesium is technologically feasible. Currently, the primary source of magnesium alloy scrap comes from the magnesium die-casting industry (the most common method of fabricating new magnesium alloys parts). Die casting foundries can manage the amount of process scrap in three different ways:
The scrap can be sold on the open market and downgraded for recycling in other sectors, such as steel desulphurization.
The scraps can be recycled internally or externally within a closed-loop system; this could optimize the demand for primary raw material saving up 50% primary magnesium in casting automotive parts, rising to 85% for electronic die-cast products. Among factors that influence the number of recycled scraps and recycling ratio optimization we should consider: the amount of material lost in the melting cycle, the number of different components that are cast, the percentage of cast parts that must be rejected during production, the end quality of process scrap, and the recycling operation efficiency all affect the amount of process scrap, and primary magnesium utilized [34].
Remelting of magnesium chips from machining of die castings, considering that, due to high magnesium susceptibility to oxidize and fine forms of chips, chips remelting could produce further dross quantity. For this reason, preliminary treatments are required to eliminate possible lubricants (e.g., aqueous washing treatment, steam treatment). The second treatment in liquid acid pickling solution (deoxidizer) specific for magnesium alloys helps to reduce oxide contamination.
Recent studies [35] successfully validated the no-melting route for recycling magnesium chips by hot forging and extrusion as it is done for aluminum chips.
On the other hand, the processing of end-of-life vehicles is today still not easily practicable and needs technological improvement. Shredded magnesium can be contaminated with iron, nickel, and copper from coatings and fasteners, all of which are detrimental to the corrosion resistance of the metal. Although the low-value markets mentioned above (aluminum alloys and steel desulphurization) can absorb low-quality post-consumer magnesium, options for separating it from other metals are necessary for magnesium structural alloys applications. The main viable option is melting magnesium in contact with molten salt to remove oxides from the liquid metal. This process is today not fully capable of separating magnesium from other metals. Another possibility is metal vapor distillation: due to higher vapor pressure and low boiling point of magnesium compared to aluminum and many other metals.
On the other hand, a too high magnesium-aluminum chemical affinity results in poor separation. A much more viable route is collecting and separating magnesium from the high-quality scraps made of aluminum-magnesium alloys: the beverage can stock (e.g., the aluminum 3xxx series alloys employed for the body, the aluminum 5xxxs series used for edge), and the aluminum 5xxxs series today preferred for body panels of automobiles. To separate magnesium, chlorine gas bubbling through the liquid alloyed metal can remove magnesium by reaction, but such a hydrometallurgy process requires large amounts of chlorine and energy. Further recent advancements in magnesium separation from aluminum alloy scraps focus on electrorefining. It is a process in which metals are purified in an electrolytic cell where the anode is the impure metal, and the cathode is a very pure sample of the metal [36]. To summarize, an efficient recycling route for magnesium by automotive scraps is still an issue. Broad approaches based on the design for corrosion-free assembling and easy disassembling of magnesium parts in the multi-material structure are on track.
One significant value that manufacturers usually give to magnesium is its excellent die-castability resources, compared with aluminum. It is mainly due to very low viscosity in the molten state and reduced (or absent) die-soldering phenomena with steel mold-die that broadly extend mold-dies lifespan. The high castability is one metallurgy factor that allows die-casters to realize large, thin-walled, and complex casting shapes. It is due to a less costly manufacturing process that would replace steel-made components by assembling numerous steel stamped pieces or heavily reinforced plastic members [37]. As magnesium alloys can be cast with thinner walls than aluminum, the lower elastic modulus of magnesium alloys can be compensated using located ribs of thin wall thickness that allow restoring stiffness at required values. Secondly, the lower latent heat for solidification of magnesium compared to aluminum leads to considerably shorter casting cycle times, compensating for the lower heat conductivity of magnesium. For a comprehensive overview of die-casting processes and recent advancements, you may refer to [38], here in the following, shortly resumed. Two main casting processes are available for magnesium, the pressure-assisted cold, and hot-chamber injection, with an alternative represented by low-pressure die casting. In pressurized injection casting processes, high pressure is exerted after the liquid metal injection to compensate for metal shrinkage and remove as much possible air entrapped during the shot sleeve movement that accelerated to pressurize liquid metal into the die. The metal solidifies at high cooling rates (higher for the cold chamber than the hot chamber), leaving a fine-grained material (more satisfactory for the cold-chamber process) with secondary dendrite arm spacing in the range of 5–10 μm. As it is usual for any metal, particularly for magnesium alloys, grain refinement is one primary strengthening mechanism capable of saving good ductility and though properties, generally lower for the common magnesium-aluminum alloys containing more than 3–4% of aluminum. If, on one hand, aluminum promotes a strengthening mechanism based on a solid solution, on the other hand, an excess of aluminum (it is limited up to 9%) produces an almost continuous secondary phase of aluminum enriched—the magnesium aluminide, Mg17Al12. The magnesium aluminide decreases local plastic resources at the alpha-solution grain boundaries, where magnesium aluminide precipitates.
The long tradition of magnesium automotive part die-casting is proper for magnesium manufacturers, as shown in Figure 8, where an example of Meridien’s timeline for automobile products is summarized. Magnesium die-casting is evolving in Mercedes-Benz automatic transmission cases, from the first seven-speed automatic transmission case developed in 2003 (Figure 9) to the current eight-speed transmission case, still manufactured by magnesium alloy.
Meridian product development timeline (courtesy of IMA).
The 2003 case of the 7G-TRONIC, the world’s first seven-speed automatic transmission.
Figure 10a shows the recent magnesium die-cast liftgate inner for the 2017 Chrysler Pacifica Mini-Van realized by Meridian Company with Fiat-Chrysler Automobiles. The liftgate assembly consists of:
Magnesium alloy die-cast internal structure, around 80% of the liftgate at the nominal.
Wall stock of 2.3 mm, 20% with localized ribbing and thick patches.
Aluminum wiper bracket.
Two-piece aluminum outer skin.
(a) Diecast liftgate inner by Meridien (courtesy of IMA), 1450 mm wide, 1210 mm in height, the mass of 6.9 kg, (b) Strut bar Audi A8 (courtesy of IMA).
An AM60B alloy has been used due to elongation, strength, castability, and energy-absorbing properties. The magnesium casting allows replacing seven steel stampings, including reinforcements in hinge & latch areas, two plastic pieces, joining technologies. In the final assembly, a powder coat was applied to all structures to prevent galvanic corrosion problems. Figure 10b shows the new die-cast strut bar of Strut bar for Audi A8 realized by Stihl Magnesium. In Figure 11, several magnesium-made parts have been recently put onboard vehicles.
Recent die cast parts from magnesium industry [courtesy of GF Casting Solutions]: (a) Porsche Control Box Cover, made of MgAl4RE4 alloy, 2.6 kg weight, realized by multistage process (casting, stamping, machining), then assembled; (b) E-vehicle upper door frame alloy made of AM 50 alloy, 2.9 kg weight, realized by multistage process (casting, punching, machining, e-coating); (c) Ranger Rover Front End & Cross Car beam made of AM60 alloy, 6.0 kg weight realized by the multistage process then assembled (casting, machining, stamping); (d) Daimler SLK 2 seat back frame, AM 50 alloy by die-casting, 2.6 kg weight (courtesy of GF Casting Solution AG).
Magnesium part manufacturers deploy a long-tradition cumulated in warm and hot deformation processes (Figure 12). Opposite to the common thought about magnesium deformation resources, wrought magnesium alloys are suitable for sheet forming contributing to weight-saving projects in the automotive sector. Indeed, significant drawbacks in magnesium alloys’ sheet forming and deformation processes exist, especially compared to aluminum alloys. Due to its hexagonal structure, to activate enough slip systems for assuring sufficient plasticity, magnesium alloys must be formed above 200°C. Furthermore, the different heat transfer capability compared to aluminum is an issue to consider for optimizing pre and re-heating temperatures in the hot-deformation multistage processes. Extrusion of magnesium alloys is usually carried out in multiple steps, starting with a pre-extrusion of large billets into smaller diameter billets. After the preliminary stage, the billet can be re-heated and subsequently extruded into the final shape. Generally, the pressure per unit volume material extruded is higher than in aluminum alloys. Thus, extrusion speed shall be carefully controlled and optimized for specific magnesium alloy to avoid local melting and local oxidation phenomena, particularly critical for hollow sections extrusion process by porthole dies, as typically employed for aluminum alloys. These aspects are firm limits for semi-finishing and net-shape forming processes, prominently for affordability.
The Chevrolet Corvette SS Race Car, 1957, made of magnesium-formed panels.
But on the other hand, warm deep drawing is also possible for magnesium alloys, as for aluminum alloys; in the range of 100–180°C thin sheet of 0.5 mm approximately can be drawn, with precise temperature control and at a lower speed [39]. The recent application of magnesium sheets we can find in the literature illustrates the successful use of a novel Mg-Zn-Ca-Zr alloy in sheet form produced by twin-roll casting. This alloy has been used to manufacture a Volkswagen Passat decklid magnesium-made that saved half 6 kg of the original 12 kg steel weight [40]. Large magnesium components can also be produced by die casting (see Figure 13).
(a) The Porsche window frame realized by AM50 magnesium alloy with multi process stages (casting, laser cutting, machining), finally coated and joined; (b) The Aston Martin cover door made AM50 with multi-stage process (Casting, Stamping, Flattening) [courtesy of GF Casting Solutions AG].
Net-shape semi-solid forming has attracted automakers with alternate attention since the middle 1990s. The net-shape semi-solid forming is possible for magnesium alloys thanks to its thixotropic state realized when vigorously sheared in a semi-solid state. Shearing reduces the viscosity of the slurry mass to a similar value of the liquid metal, providing similar (sometimes better) castability of the liquid form. Still, the semi-solid state allows shaping with lower latent heat in the mass; this creates advantages for shorter casting cycles than die-casting (depending on chosen semisolid process) lower metal shrinkage to compensate, and consequently near-net shaping. The industrial application of semi-solid net-shaping in the magnesium industry commenced in the early 1980s with the Dow Chemical Company. Dow Chemical patented the Thixomolding technology based on the architecture of plastic injection molding machinery for injecting magnesium alloys in the semi-solid state into a mold die.
Further advantages of injection molding of magnesium alloys are that this technology’s highly complex shaping capability allows for more innovative design concepts and a multi-body-material concept design. Direct assembly of different parts during injection molding in a molded-in technique, thanks to inserting aluminum parts directly in the tool. As a semi-solid process, less energy is consumed by the Thixomolding apparatus; the power energy is estimated to be on the order of 12–24% lower than the total energy required by a conventional casting process. An additional benefit is that the Thixomolding product cycle employs inert gas, usually argon, to protect magnesium feedstock from oxidation once introduced in the hopper in particulate and solid forms (pellets or chips) [41]. However, it is worth noticing that current die-casting processes align with the environmental sustainability of the Thixomolding process thanks to much more environmentally friendly cover gases mixtures today used instead of the banded SF6. With relevant advantages of the Thixomolding process in net-shaping part of high complexity in a single shot, two are the most drawbacks acknowledged by part manufacturers. The high price and the limited number of suppliers of chip or pellet forms of magnesium alloys, namely the material feedstock of Thixomolding machinery, and the maximum clamping force exerted during the metal injection into mold dies. Clamping forces of 2700–6500 kN generally allow the production of thin flat surfaces (0.8 mm, not possible by high pressure die-casting) such as that for tablet terminals, notebook computers, electronics, sports goods. Instead, the interest of the automotive sector is to even thicker and wider structural components with a weight of over 2 kg. This would require more giant machines with increased clamping forces over 8000 kN [41].
The historical and current primary market for structural applications of magnesium alloys is high-pressure die-cast parts. We find those components in the automobile’s powertrain, chassis, or body areas. Depending on the type of structural part to shape, key technical features that need to target are the safe-at-break behavior avoiding fast-fracture failure modes, sufficient toughness (i.e., minimum impact energy to rupture and fracture toughness), specific strength, corrosion resistance, high-temperature resistance, or creep resistance (for powertrain applications). From the manufacturing point of view, the requirements addressed shall target affordable production cost, which merges fixed and variable costs, derived from the accounting of investment costs (machinery and tools, energy, labor, etc.) and operating costs (raw material cost, trimming, machining, coating costs, etc.) to recoup.
Specifically, in automotive assemblies, corrosion concerns are crucial. Today high purity versions of magnesium alloys show corrosion properties comparable to aluminum die casting alloys, but galvanic corrosion problems persist when magnesium parts have to be assembled with different materials. Therefore, advancements in coating techniques are the basis for safely combining magnesium parts with other materials. High ductility magnesium alloys are of interest to the automotive sector. Advancements in alloying are crucial for the correct choice of the structural ability of magnesium material. The higher creep resistance of Mg-Al-Si, the AS series, acknowledged by Germans during WII, is allowed by Si addition which forms fine and hard Mg2Si particles along the grain boundaries to help retard grain boundary sliding. The remarkable grain-refining ability of zirconium in the Mg-Zn-Zr series alloys allows high strength and ductility for use either at elevated temperatures or for energy-absorbing applications, however at a higher cost due to Zr. The ZE series achieved further mechanical properties in the die-cast part with Mg-Rare Earth-Zn-Zr casting alloys. RE elements (La, Ce, etc.) are added as they are active during aging treatment by promoting high-temperature stable precipitates with a strengthening effect. The costly Magnesium-Yttrium casting alloys, the WE series, containing approximately 4–5 wt.% Y, exhibit high strength with good creep resistance at temperatures up to 300°C and superior corrosion resistance (comparable to some aluminum-based casting alloys). Furthermore, the WE43 and the Elektron 21, a proprietary magnesium-based casting alloy containing neodymium, gadolinium, and zinc developed by Magnesium Elektron (today part of Luxfer MEL Technology), passed stringent flammability tests of Federal Aviation Administration FAA-FAR 25.853 Part 25, Appendix F, Part 2 Modified Seat Cushion Test. Both alloys did not burn when melted, or they are self-extinguished.
More cost-efficient production routes for sheet products are believed to create new opportunities for the automotive market segment. Considerable efforts have been directed at innovative developments of global efforts in expanding the manufacturing capabilities of magnesium sheets through the twin-roll casting process route, offering many benefits, including a reduction in the number of processing steps and energy savings [42].
Finally, last but not least, die-casting and semisolid process design strategies are similar to those employed for injection molding of structural plastics. But, in general, plastic designs require thicker sections than magnesium die-castings. Both materials allow complex shapes with ribs to enhance stiffness (Figure 14), but magnesium die-castings need more minor material for these features than plastics. As a result, magnesium die-castings can be designed more efficiently (less volume, less weight, more significant feature variation) and offer a higher degree of definition than comparable plastic designs, superior mechanical properties, and the capability to integrate several functional design features, material recyclability. The latter feature is not of minor importance, being automakers sensitive to recyclability resources of material used for car manufacturing. Although the material price-based approach leads to the obvious choice of plastics, complex and large parts could present unforeseen internal costs to the product line, negatively impacting final product marketability. A whole approach cost also considers the impact on a company’s internal costs structure and the value-added needs of the next customer in the product chain, up to and including the end-user. In a total system cost strategy, the benefits of using magnesium tend to outweigh the lowest material price strategy. This is typical for products like instrument panel structures. The benefits of higher stiffness, elongation, toughness, and design flexibility allow the magnesium part to readily integrate many features in a one-piece to be fully assembled and quickly installed into the vehicle with weight-saving up to 50% compared to plastic designs.
Magnesium AM 50 die cast front center console for Audi A8, high stiffness, no machining and all connection and fixing points are intergrated (courtesy of GF Casting Solutions).
An interesting overlap of cast magnesium’s mechanical and physical properties with reinforced plastics, primarily strength, and density, would drive the material switch. In the interior design of automotive vehicles today, large bodies are made of non-fully recyclable plastics. Thus, other potentialities for magnesium die-casting and injection molding could be redesigning today’s plastic structural components with recyclable and more robust magnesium metal.
In this chapter, we tried to resume the magnesium for lightweight approach over the past, till today. Hopefully, but not exhaustively, this was tentative to answer where the magnesium industry is going. We must not forget the past, learning lessons that are still valid today. However, we must consider some new factors, mainly based on the magnesium trade, were unknown in the past century or during the golden Age of magnesium peak demand. It is a fact that when going through magnesium history, several articles projected an optimistic future for magnesium.
Forecasting the future of magnesium, especially in current pandemic times, is difficult. Nevertheless, one aspect appears clear by going through past and recent magnesium history: magnesium had survived continuous fluctuating demand; meanwhile, price volatility registered over time depended on the current (nonstructured and programmed) supply capacity over time and trade issues.
Several concerns about magnesium’s potential applications are today derived from false myths. Eighty years ago, Germans and (after) Americans employed magnesium for aircraft weight-saving, but today it is wrongly thought there are few proofs of its capabilities in realizing lightweight bodies. What is clear from the lesson learned in the past (and today) is that it is necessary to dramatically increase the primary magnesium supply with modern low impacting big plants. Looking at recent history, we are probably on the right track. As learned from the past, prices are not volatile once the supply is stable, and the magnesium’s demand (driven by automakers primarily) rises.
The authors appreciated the input and feedback by members of the International Magnesium Association (IMA) founded in 1943 with the mission of promoting the use of magnesium in material selection and to encourage innovative applications.
IntechOpen has always supported new and evolving ideas in scholarly publishing. We understand the community we serve, but to provide an even better service for our IntechOpen Authors and Academic Editors, we have partnered with leading companies and associations in the scientific field and beyond.
",metaTitle:"Partnerships",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/partnerships",contentRaw:'[{"type":"htmlEditorComponent","content":"\\n"}]'},components:[{type:"htmlEditorComponent",content:'
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2458},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11881",title:"Ventricular Assist Devices - Advances and Applications in Heart Failure",subtitle:null,isOpenForSubmission:!0,hash:"4c5136113dda974a93f03ba12724b31b",slug:null,bookSignature:"Associate Prof. Enkhsaikhan Purevjav, Dr. Hugo R. Martinez, Dr. Mohammed Absi, Dr. Jeffrey Allen Towbin and Dr. Umar Boston",coverURL:"https://cdn.intechopen.com/books/images_new/11881.jpg",editedByType:null,editors:[{id:"231585",title:"Associate Prof.",name:"Enkhsaikhan",surname:"Purevjav",slug:"enkhsaikhan-purevjav",fullName:"Enkhsaikhan Purevjav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"645b037b086ec8c36af614326dce9804",slug:null,bookSignature:"Dr. Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg",editedByType:null,editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11922",title:"Watermarking - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9843dc1d810407088ed9eef10768a64b",slug:null,bookSignature:"Prof. Joceli Mayer",coverURL:"https://cdn.intechopen.com/books/images_new/11922.jpg",editedByType:null,editors:[{id:"110638",title:"Prof.",name:"Joceli",surname:"Mayer",slug:"joceli-mayer",fullName:"Joceli Mayer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11762",title:"Characteristics and Applications of Boron",subtitle:null,isOpenForSubmission:!0,hash:"611776f7f3cc9951a8956d2e3d535a8e",slug:null,bookSignature:"Associate Prof. Chatchawal Wongchoosuk",coverURL:"https://cdn.intechopen.com/books/images_new/11762.jpg",editedByType:null,editors:[{id:"34521",title:"Associate Prof.",name:"Chatchawal",surname:"Wongchoosuk",slug:"chatchawal-wongchoosuk",fullName:"Chatchawal Wongchoosuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11910",title:"Frontiers in Voltammetry",subtitle:null,isOpenForSubmission:!0,hash:"fc53a7599a61ed04a0672a7bca81e9c2",slug:null,bookSignature:"Dr. Rajendrachari Shashanka, Dr. Kiran Kenchappa Somashekharappa, Dr. Sharath Peramenahalli Chikkegouda and Dr. Shamanth Vasanth",coverURL:"https://cdn.intechopen.com/books/images_new/11910.jpg",editedByType:null,editors:[{id:"246025",title:"Dr.",name:"Shashanka",surname:"Rajendrachari",slug:"shashanka-rajendrachari",fullName:"Shashanka Rajendrachari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:417},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"214",title:"Neurogastronomy",slug:"neurogastronomy",parent:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:76,numberOfWosCitations:75,numberOfCrossrefCitations:40,numberOfDimensionsCitations:104,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"214",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5485",title:"The Amygdala",subtitle:"Where Emotions Shape Perception, Learning and Memories",isOpenForSubmission:!1,hash:"5f5b1c2a89185e92e721290beabdc2e8",slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",bookSignature:"Barbara Ferry",coverURL:"https://cdn.intechopen.com/books/images_new/5485.jpg",editedByType:"Edited by",editors:[{id:"139945",title:"Dr.",name:"Barbara",middleName:null,surname:"Ferry",slug:"barbara-ferry",fullName:"Barbara Ferry"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1592",title:"Neuroscience",subtitle:"Dealing With Frontiers",isOpenForSubmission:!1,hash:"438fef28742bb47d3a4c39e053551c6c",slug:"neuroscience-dealing-with-frontiers",bookSignature:"Carlos M. Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/1592.jpg",editedByType:"Edited by",editors:[{id:"35182",title:"Dr.",name:"Carlos M.",middleName:null,surname:"Contreras",slug:"carlos-m.-contreras",fullName:"Carlos M. Contreras"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"32399",doi:"10.5772/36092",title:"Brain Energy Metabolism in Health and Disease",slug:"brain-energy-metabolism-in-health-and-disease",totalDownloads:9132,totalCrossrefCites:1,totalDimensionsCites:10,abstract:null,book:{id:"1592",slug:"neuroscience-dealing-with-frontiers",title:"Neuroscience",fullTitle:"Neuroscience - Dealing With Frontiers"},signatures:"Felipe A. Beltrán, Aníbal I. Acuña, María Paz Miró and Maite A. Castro",authors:[{id:"107041",title:"Dr.",name:"Maite A",middleName:null,surname:"Castro",slug:"maite-a-castro",fullName:"Maite A Castro"},{id:"109692",title:"Mr.",name:"Felipe A",middleName:null,surname:"Beltran",slug:"felipe-a-beltran",fullName:"Felipe A Beltran"},{id:"109695",title:"Mr.",name:"Aníbal",middleName:"I.",surname:"Acuña",slug:"anibal-acuna",fullName:"Aníbal Acuña"},{id:"109696",title:"Ms.",name:"Maria Paz",middleName:null,surname:"Miro",slug:"maria-paz-miro",fullName:"Maria Paz Miro"}]},{id:"54565",doi:"10.5772/67828",title:"The Role of the Amygdala in Regulating the Hypothalamic-Pituitary-Adrenal Axis",slug:"the-role-of-the-amygdala-in-regulating-the-hypothalamic-pituitary-adrenal-axis",totalDownloads:3554,totalCrossrefCites:6,totalDimensionsCites:9,abstract:"We investigated the regulatory role of the amygdala upon the function of the hypothalamic-pituitary-adrenal (HPA) axis as measured by median eminence corticotrophin releasing hormone (CRH) content and serum levels of adrenocorticotrophic hormone (ACTH) and corticosterone. Our findings showed that (1) lesions of the central amygdala inhibited the HPA axis responses to a variety of stressful stimuli. (2) Depletion of norepinephrine or serotonin in the amygdala and hypothalamus and local injections of norepinephrine and serotonin receptor antagonists into the central amygdala inhibited the HPA axis responses to neural stress. Norepinephrine and serotonin agonists injected into the amygdala caused an increase in HPA axis activity. The activation of the amygdala facilitated the in vivo release of serotonin from the paraventricular nucleus following electrical stimulation of the brainstem raphe nuclei. (3) Electrical stimulation of the amygdala impaired the glucocorticoid negative feedback action following neural stressful stimuli probably via a decrease in hippocampal corticosteroid receptors.",book:{id:"5485",slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Joseph Weidenfeld and Haim Ovadia",authors:[{id:"190851",title:"Ph.D.",name:"Haim",middleName:null,surname:"Ovadia",slug:"haim-ovadia",fullName:"Haim Ovadia"},{id:"192823",title:"Prof.",name:"Joseph",middleName:null,surname:"Weidenfeld",slug:"joseph-weidenfeld",fullName:"Joseph Weidenfeld"}]},{id:"32393",doi:"10.5772/34852",title:"The Neurochemical Anatomy of Trigeminal Primary Afferent Neurons",slug:"the-neurochemical-anatomy-of-trigeminal-primary-afferent-neurons",totalDownloads:4712,totalCrossrefCites:0,totalDimensionsCites:9,abstract:null,book:{id:"1592",slug:"neuroscience-dealing-with-frontiers",title:"Neuroscience",fullTitle:"Neuroscience - Dealing With Frontiers"},signatures:"Nikolai E. Lazarov",authors:[{id:"101891",title:"Prof.",name:"Nikolai",middleName:null,surname:"Lazarov",slug:"nikolai-lazarov",fullName:"Nikolai Lazarov"}]},{id:"54301",doi:"10.5772/67585",title:"Revisiting the Role of the Amygdala in Posttraumatic Stress Disorder",slug:"revisiting-the-role-of-the-amygdala-in-posttraumatic-stress-disorder",totalDownloads:2172,totalCrossrefCites:2,totalDimensionsCites:8,abstract:"Over the past 20 years, the reactivity of amygdala to emotive stimuli has been explored by emerging neuroimaging techniques in an effort to understand the role of amygdala in the pathophysiology of posttraumatic stress disorder (PTSD). A fear neurocircuitry model, whereby the amygdala is hyperactive due to poor top-down control from the anterior cingulate and ventromedial prefrontal cortices, has been supported by numerous experimental studies and meta-analyses. However, this model has not always been upheld by experimental data and clinical observations. In particular, many neuroimaging studies find that the amygdala fails to activate in response to negative stimuli in individuals with PTSD. Several technical and design issues may explain disparate results regarding amygdala reactivity in PTSD. However, biological and symptom-based factors emerge as possible mediators of amygdala function in PTSD, leading to the conclusion that symptoms of emotional disengagement and dissociation are associated with amygdala hyporeactivity, and symptoms of hypervigilance/hyperarousal and problems with fear conditioning and extinction are reflected by amygdala hyperactivity. Therefore, treatment of PTSD should take into account the nature of amygdala dysfunction in the individual to optimize treatment outcomes.",book:{id:"5485",slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Gina L. Forster, Raluca M. Simons and Lee A. Baugh",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"195109",title:"Dr.",name:"Raluca",middleName:null,surname:"Simons",slug:"raluca-simons",fullName:"Raluca Simons"},{id:"195110",title:"Dr.",name:"Lee",middleName:null,surname:"Baugh",slug:"lee-baugh",fullName:"Lee Baugh"}]},{id:"55211",doi:"10.5772/intechopen.68618",title:"The Amygdala and Anxiety",slug:"the-amygdala-and-anxiety",totalDownloads:2984,totalCrossrefCites:4,totalDimensionsCites:8,abstract:"The amygdala has a central role in anxiety responses to stressful and arousing situations. Pharmacological and lesion studies of the basolateral, central, and medial subdivisions of the amygdala have shown that their activation induces anxiogenic effects, while their inactivation produces anxiolytic effects. Many neurotransmitters and stress mediators acting at these amygdalar nuclei can modulate the behavioral expression of anxiety. These mediators may be released from different brain regions in response to different types of stressors. The amygdala is in close relationship with several brain regions within the brain circuitry that orchestrates the expression of anxiety. Recent developments in optogenetics have begun to unveil details on how these areas interact.",book:{id:"5485",slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Sergio Linsambarth, Rodrigo Moraga-Amaro, Daisy Quintana-\nDonoso, Sebastian Rojas and Jimmy Stehberg",authors:[{id:"144923",title:"Dr.",name:"Jimmy",middleName:null,surname:"Stehberg",slug:"jimmy-stehberg",fullName:"Jimmy Stehberg"},{id:"194182",title:"Ph.D. Student",name:"Rodrigo",middleName:null,surname:"Moraga-Amaro",slug:"rodrigo-moraga-amaro",fullName:"Rodrigo Moraga-Amaro"},{id:"194183",title:"M.Sc.",name:"Sergio",middleName:null,surname:"Linsambarth",slug:"sergio-linsambarth",fullName:"Sergio Linsambarth"}]}],mostDownloadedChaptersLast30Days:[{id:"54675",title:"The Key Role of the Amygdala in Stress",slug:"the-key-role-of-the-amygdala-in-stress",totalDownloads:2940,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Several data highlighted that stress exposure is strongly associated with several psychiatric disorders. The amygdala, an area of the brain that contributes to emotional processing, has a pivotal role in psychiatric disorders and it has been demonstrated to be highly responsive to stressful events. Here we will review evidences indicating how the amygdala changes its functionality following exposure to stress and how this contributes to the onset of anxiety disorders.",book:{id:"5485",slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Diego Andolina and Antonella Borreca",authors:[{id:"190318",title:"Dr.",name:"Diego",middleName:null,surname:"Andolina",slug:"diego-andolina",fullName:"Diego Andolina"},{id:"192832",title:"Dr.",name:"Antonella",middleName:null,surname:"Borreca",slug:"antonella-borreca",fullName:"Antonella Borreca"}]},{id:"55211",title:"The Amygdala and Anxiety",slug:"the-amygdala-and-anxiety",totalDownloads:2985,totalCrossrefCites:4,totalDimensionsCites:8,abstract:"The amygdala has a central role in anxiety responses to stressful and arousing situations. Pharmacological and lesion studies of the basolateral, central, and medial subdivisions of the amygdala have shown that their activation induces anxiogenic effects, while their inactivation produces anxiolytic effects. Many neurotransmitters and stress mediators acting at these amygdalar nuclei can modulate the behavioral expression of anxiety. These mediators may be released from different brain regions in response to different types of stressors. The amygdala is in close relationship with several brain regions within the brain circuitry that orchestrates the expression of anxiety. Recent developments in optogenetics have begun to unveil details on how these areas interact.",book:{id:"5485",slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Sergio Linsambarth, Rodrigo Moraga-Amaro, Daisy Quintana-\nDonoso, Sebastian Rojas and Jimmy Stehberg",authors:[{id:"144923",title:"Dr.",name:"Jimmy",middleName:null,surname:"Stehberg",slug:"jimmy-stehberg",fullName:"Jimmy Stehberg"},{id:"194182",title:"Ph.D. Student",name:"Rodrigo",middleName:null,surname:"Moraga-Amaro",slug:"rodrigo-moraga-amaro",fullName:"Rodrigo Moraga-Amaro"},{id:"194183",title:"M.Sc.",name:"Sergio",middleName:null,surname:"Linsambarth",slug:"sergio-linsambarth",fullName:"Sergio Linsambarth"}]},{id:"32387",title:"The Mystery of P2X7 Ionotropic Receptor: From a Small Conductance Channel to a Large Conductance Channel",slug:"the-mystery-of-p2x7-receptor-from-a-small-channel-to-a-big-pore",totalDownloads:2420,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1592",slug:"neuroscience-dealing-with-frontiers",title:"Neuroscience",fullTitle:"Neuroscience - Dealing With Frontiers"},signatures:"R.X. Faria, L.G.B. Ferreira and L.A. Alves",authors:[{id:"76663",title:"Prof.",name:"Luiz A.",middleName:null,surname:"Alves",slug:"luiz-a.-alves",fullName:"Luiz A. Alves"},{id:"76674",title:"Mr.",name:"Leonardo",middleName:null,surname:"Braga",slug:"leonardo-braga",fullName:"Leonardo Braga"},{id:"79615",title:"Dr.",name:"Robson",middleName:null,surname:"Faria",slug:"robson-faria",fullName:"Robson Faria"}]},{id:"32399",title:"Brain Energy Metabolism in Health and Disease",slug:"brain-energy-metabolism-in-health-and-disease",totalDownloads:9134,totalCrossrefCites:1,totalDimensionsCites:10,abstract:null,book:{id:"1592",slug:"neuroscience-dealing-with-frontiers",title:"Neuroscience",fullTitle:"Neuroscience - Dealing With Frontiers"},signatures:"Felipe A. Beltrán, Aníbal I. Acuña, María Paz Miró and Maite A. Castro",authors:[{id:"107041",title:"Dr.",name:"Maite A",middleName:null,surname:"Castro",slug:"maite-a-castro",fullName:"Maite A Castro"},{id:"109692",title:"Mr.",name:"Felipe A",middleName:null,surname:"Beltran",slug:"felipe-a-beltran",fullName:"Felipe A Beltran"},{id:"109695",title:"Mr.",name:"Aníbal",middleName:"I.",surname:"Acuña",slug:"anibal-acuna",fullName:"Aníbal Acuña"},{id:"109696",title:"Ms.",name:"Maria Paz",middleName:null,surname:"Miro",slug:"maria-paz-miro",fullName:"Maria Paz Miro"}]},{id:"54509",title:"The Contribution of the Amygdala to Reward-Related Learning and Extinction",slug:"the-contribution-of-the-amygdala-to-reward-related-learning-and-extinction",totalDownloads:1742,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"There has been substantial research into the role of the amygdala in fear conditioning and extinction of conditioned fear. The role of the amygdala in appetitive conditioning is relatively less explored. Here, we will review research into the role of the amygdala in reward‐related learning. Research to date suggests that the basolateral and central amygdala are responsible for learning about distinct aspects of a reinforcing event. For example, the basolateral amygdala is essential for distinguishing and choosing between specific rewards based on the specific‐sensory properties of those rewards as well as updating the relative value of specific rewarding events. In contrast, the central amygdala is involved in encoding reinforcement more generally and for regulating motivational influences on responding. We will also review what is known about the role of the amygdala in extinction of reward‐related behaviours and highlight areas for future research.",book:{id:"5485",slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Rose Chesworth and Laura Corbit",authors:[{id:"193670",title:"Dr.",name:"Laura",middleName:null,surname:"Corbit",slug:"laura-corbit",fullName:"Laura Corbit"},{id:"194020",title:"Dr.",name:"Rose",middleName:null,surname:"Chesworth",slug:"rose-chesworth",fullName:"Rose Chesworth"}]}],onlineFirstChaptersFilter:{topicId:"214",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:54,paginationItems:[{id:"81595",title:"Prosthetic Concepts in Dental Implantology",doi:"10.5772/intechopen.104725",signatures:"Ivica Pelivan",slug:"prosthetic-concepts-in-dental-implantology",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80500",title:"Novel Dental Implants with Herbal Composites: A Review",doi:"10.5772/intechopen.101489",signatures:"Gopathy Sridevi and Seshadri Srividya",slug:"novel-dental-implants-with-herbal-composites-a-review",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78320",title:"Implant-Retained Maxillary and Mandibular Overdentures - A Solution for Completely Edentulous Patients",doi:"10.5772/intechopen.99575",signatures:"Dubravka Knezović Zlatarić, Robert Ćelić and Hrvoje Pezo",slug:"implant-retained-maxillary-and-mandibular-overdentures-a-solution-for-completely-edentulous-patients",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:84,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:82,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},subseriesFiltersForOFChapters:[{caption:"Oral Health",value:1,count:20,group:"subseries"},{caption:"Prosthodontics and Implant Dentistry",value:2,count:34,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"92",type:"subseries",title:"Health and Wellbeing",keywords:"Ecology, Ecological, Nature, Health, Wellbeing, Health production",scope:"
\r\n\tSustainable approaches to health and wellbeing in our COVID 19 recovery needs to focus on ecological approaches that prioritize our relationships with each other, and include engagement with nature, the arts and our heritage. This will ensure that we discover ways to live in our world that allows us and other beings to flourish. We can no longer rely on medicalized approaches to health that wait for people to become ill before attempting to treat them. We need to live in harmony with nature and rediscover the beauty and balance in our everyday lives and surroundings, which contribute to our well-being and that of all other creatures on the planet. This topic will provide insights and knowledge into how to achieve this change in health care that is based on ecologically sustainable practices.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",hasOnlineFirst:!1,hasPublishedBooks:!1,annualVolume:11976,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:[{id:"169536",title:"Dr.",name:"David",middleName:null,surname:"Claborn",slug:"david-claborn",fullName:"David Claborn",profilePictureURL:"https://mts.intechopen.com/storage/users/169536/images/system/169536.jpeg",institutionString:null,institution:{name:"Missouri State University",institutionURL:null,country:{name:"United States of America"}}},{id:"248594",title:"Ph.D.",name:"Jasneth",middleName:null,surname:"Mullings",slug:"jasneth-mullings",fullName:"Jasneth Mullings",profilePictureURL:"https://mts.intechopen.com/storage/users/248594/images/system/248594.jpeg",institutionString:"The University Of The West Indies - Mona Campus, Jamaica",institution:null},{id:"331299",title:"Prof.",name:"Pei-Shan",middleName:null,surname:"Liao",slug:"pei-shan-liao",fullName:"Pei-Shan Liao",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000032Fh2FQAS/Profile_Picture_2022-03-18T09:39:41.jpg",institutionString:"Research Center for Humanities and Social Sciences, Academia Sinica, Taiwan",institution:null}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}}]},publishedBooks:{paginationCount:6,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Biochemistry",id:"11"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/153396",hash:"",query:{},params:{id:"153396"},fullPath:"/profiles/153396",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()