Contamination sources, uses, and adverse health effects of some heavy metals
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"9482",leadTitle:null,fullTitle:"Essential Oils - Bioactive Compounds, New Perspectives and Applications",title:"Essential Oils",subtitle:"Bioactive Compounds, New Perspectives and Applications",reviewType:"peer-reviewed",abstract:"Essential oils have been used for centuries by communities all over the world in various areas and for various purposes. These include uses in medicine, flavoring, perfumery, cosmetics, insecticides, fungicides, and bactericides, among others. They are natural and biodegradable substances, generally nontoxic or with low toxicity to humans and other animals. Therefore, constant research in these areas represents an alternative for new and more efficient drugs with less side effects as well as obtaining new products and supplies. This book provides a comprehensive overview of the diverse applications of essential oils in a variety of human activities with a focus on the most important evidence-based developments in the various fields of knowledge.",isbn:"978-1-83962-698-2",printIsbn:"978-1-83962-697-5",pdfIsbn:"978-1-83962-699-9",doi:"10.5772/intechopen.87266",price:119,priceEur:129,priceUsd:155,slug:"essential-oils-bioactive-compounds-new-perspectives-and-applications",numberOfPages:222,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"16d29ce9f4f9ea78b5d3789c8fd79b0c",bookSignature:"Mozaniel Santana de Oliveira, Wanessa Almeida da Costa and Sebastião Gomes Silva",publishedDate:"September 9th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9482.jpg",numberOfDownloads:8550,numberOfWosCitations:29,numberOfCrossrefCitations:24,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:53,numberOfDimensionsCitationsByBook:3,hasAltmetrics:1,numberOfTotalCitations:106,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 15th 2019",dateEndSecondStepPublish:"November 5th 2019",dateEndThirdStepPublish:"January 4th 2020",dateEndFourthStepPublish:"March 24th 2020",dateEndFifthStepPublish:"May 23rd 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",biography:"Mozaniel Santana de Oliveira graduated in Chemistry from the Federal University of Pará, Brazil. He obtained both a master’s and Ph.D. in Food Science and Technology from the same university. He has 12 years of professional experience. From 2010 to 2014, he worked on the chemistry of natural products at the Empresa Brasileira de Pesquisa Agropecuária (Embrapa), and from 2014 to 2018, he worked in the Postgraduate Program in Food Science and Technology at the Federal University of Pará, specifically with essential oils. Since 2020, he has been a researcher for the Institutional Training Program - PCI, at the institution Museu Paraense Emilio Goeldi, linked to the Ministério da Ciência, Tecnologia e Inovações of Brazil (MCTI), with studies focused on extraction, characterization chemistry, and applications of essential oils in several industrial segments, among them the food industry. Specifically, Dr. Oliveira has experience in engineering, food science and technology, pharmacology and drug discovery, medicinal chemistry, ethnopharmacology and ethnobotany, phytochemistry, methods of extraction of bioactive compounds, biotechnology of natural products, and allelopathy to find new natural herbicides to control invasive plants. He also has experience in the area of essential oil extraction using supercritical technology and conventional methods. Since 2020, he has supervised and co-supervised master’s and Ph.D. students in several graduate programs. Dr. Oliveira serves as a reviewer for thirty-one international scientific journals and is the academic editor of the journals Evidence-based Complementary and Alternative Medicine, Journal of Food Quality, Molecules, and Open Chemistry.",institutionString:"Museu Paraense Emílio Goeldi",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"287338",title:"Dr.",name:"Sebastião",middleName:"Gomes",surname:"Silva",slug:"sebastiao-silva",fullName:"Sebastião Silva",profilePictureURL:"https://mts.intechopen.com/storage/users/287338/images/10100_n.png",biography:"Dr. Sebastião Gomes Silva holds a Master’s degree in Organic\nChemistry from the Federal University of Pará and PhD in Organic Chemistry, also from the Federal University of Pará, Brazil.\nHe is currently a Class II professor of the state education network\nof the Pará state, Brazil, and External Collaborating Professor of\nthe Rural Education Course at the Abaetetuba Campus-UFPA.\nHe works in the Chemistry area, with emphasis on Chemistry of\nNatural Products, mainly in the following themes: extraction of essential oils with\nsupercritical fluids, hydrodistillation, simultaneous distillation and extraction,\nanalysis by gas chromatography/mass spectrometer, and search for of essential oil\napplications in industries.",institutionString:"Federal University of Pará",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Federal University of Para",institutionURL:null,country:{name:"Brazil"}}},coeditorTwo:{id:"195289",title:"MSc.",name:"Wanessa",middleName:null,surname:"Almeida Da Costa",slug:"wanessa-almeida-da-costa",fullName:"Wanessa Almeida Da Costa",profilePictureURL:"https://mts.intechopen.com/storage/users/195289/images/10099_n.png",biography:"Dr. Wanessa Almeida da Costa has a PhD in Natural Resources\nEngineering from the Federal University of Pará (UFPA), Brazil.\nShe also holds a MEng in Chemical Engineering also from the\nFederal University of Pará, Brazil. Currently, Dr. Wanessa Costa\nis part of the technical and administrative staff at UFPA, working as a laboratory technician (Chemical Area) at the Faculty of\nChemical Engineering. She has experience in Process Simulation,\nChemistry, and Food Science and Technology, working mainly in the areas of supercritical extraction; extraction of bioactive compounds of plant origin; applications\nin allelopathy, and transesterification processes in supercritical medium.",institutionString:"Federal University of Pará",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Federal University of Para",institutionURL:null,country:{name:"Brazil"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"371",title:"Phytochemistry",slug:"agricultural-and-biological-sciences-plant-biology-phytochemistry"}],chapters:[{id:"71354",title:"Algae Essential Oils: Chemistry, Ecology, and Biological Activities",doi:"10.5772/intechopen.91672",slug:"algae-essential-oils-chemistry-ecology-and-biological-activities",totalDownloads:848,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:0,abstract:"This chapter focuses on the essential oils and volatile fractions of seaweed. It includes an introduction to the essentials and volatile fractions and the main chemical classes found. This part is completed by a presentation of the fundamental aspects of biodiversity and the chemodiversity of the marine environment followed by the taxonomy and systematics of marine macroalgae. The heart of this chapter concerns the chemistry of volatile products extracted from marine algae. It reports the specificities of the marine natural products chemistry in comparison to that of terrestrial organisms. The description of volatile compounds in seaweed is divided into two parts, the first reports the common compounds identified in main volatile fractions and the second cover the specific volatile components. These include C11 hydrocarbons, sulfur compounds, and halogenated hydrocarbons. These latter are playing a very important role in communication and chemical defense. The last part includes aspects of chemical ecology and biological activities of volatile products.",signatures:"Mohamed El Hattab",downloadPdfUrl:"/chapter/pdf-download/71354",previewPdfUrl:"/chapter/pdf-preview/71354",authors:[{id:"314411",title:"Prof.",name:"Mohamed",surname:"El Hattab",slug:"mohamed-el-hattab",fullName:"Mohamed El Hattab"}],corrections:null},{id:"71959",title:"Essential Oils",doi:"10.5772/intechopen.92216",slug:"essential-oils",totalDownloads:731,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Modern science has tended to use several natural substances that have little or no side effects in daily use or to treat many diseases. Among these materials are essential oils that represent one of the secondary metabolic products of many plants such as Terpenes and Terpenoids, Alkaloids, and the Phenolic compounds, which are extracted by special methods from different parts of the plants. Several applications were using the essential oils such as in the nutrition, cosmetic manufacture, and alternatives to synthetic medication that uses to treatment several infections and diseases as disinfection, as an anti-inflammatory, mouthwashes, as well as in cleaning and calm mood and pesticides. This review describes essential oils, methods of their extraction, and ways of utilization and their application.",signatures:"Lubna Abdul Muttalib Al-Shalah, Nada Khazal Kadhim Hindi and Israa Harjan Mohsen",downloadPdfUrl:"/chapter/pdf-download/71959",previewPdfUrl:"/chapter/pdf-preview/71959",authors:[{id:"307845",title:"Dr.",name:"Nada",surname:"Khazal Kadhim Hindi",slug:"nada-khazal-kadhim-hindi",fullName:"Nada Khazal Kadhim Hindi"}],corrections:null},{id:"71260",title:"Safety Profile of Essential Oils",doi:"10.5772/intechopen.91363",slug:"safety-profile-of-essential-oils",totalDownloads:860,totalCrossrefCites:6,totalDimensionsCites:10,hasAltmetrics:1,abstract:"Essential oils are complex mixtures of terpenes and phenylpropanoid compounds, present in multiple species of aromatic plants. They are extensively used in food and cosmetic industries in order to give flavor to food and drinks or as natural fragrances. Moreover, several compounds present in essential oils are important for the pharmaceutical industry due to their antioxidant, antimicrobial, anxiolytic or spasmolytic effects. Although many essential oils are generally recognized as safe, a series of adverse reactions have been reported after their use either by internal or external routes. The aim of this chapter is to increase the awareness of healthcare professionals concerning possible safety issues of essential oils. Common adverse effects of essential oils like sensitization and dermatitis but also more severe phenomena like neurotoxicity will be presented in detail, concerning their epidemiology, mechanism and clinical significance. A thorough understanding of the safety profile of essential oils is necessary for healthcare and food industry professionals in order to maximize their beneficial effects while minimizing the risk for the users.",signatures:"Oliviu Vostinaru, Simona Codruta Heghes and Lorena Filip",downloadPdfUrl:"/chapter/pdf-download/71260",previewPdfUrl:"/chapter/pdf-preview/71260",authors:[{id:"198574",title:"Dr.",name:"Oliviu",surname:"Vostinaru",slug:"oliviu-vostinaru",fullName:"Oliviu Vostinaru"},{id:"317806",title:"Dr.",name:"Simona Codruta",surname:"Heghes",slug:"simona-codruta-heghes",fullName:"Simona Codruta Heghes"},{id:"317807",title:"Dr.",name:"Lorena",surname:"Filip",slug:"lorena-filip",fullName:"Lorena Filip"}],corrections:null},{id:"72202",title:"Essential Oils’ Potential in Breast Cancer Treatment: An Overview",doi:"10.5772/intechopen.91781",slug:"essential-oils-potential-in-breast-cancer-treatment-an-overview",totalDownloads:944,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Essential oils are widely used in the pharmaceutical industry for their antimicrobial, antiviral, antifungal, antiparasitic, and insecticidal properties. Their anticancer activity has been increasingly explored as the natural constituents of essential oils play an important role in cancer prevention and treatment. The chemical composition of essential oils includes monoterpenes, sesquiterpenes, oxygenated monoterpenes, phenolic sesquiterpenes, and others. Several mechanisms of action such as antioxidant, antimutagenic, antiproliferative, enhancement of immune functions, modulation of multidrug resistance, and synergistic mechanism of volatile constituents are responsible for their chemotherapeutic properties. This review focuses on the activity of essential oils and their chemical composition in regard to breast cancer.",signatures:"Isadora de Fátima Braga Magalhães, Carla Junqueira Moraga Tellis, Kátia da Silva Calabrese, Ana Lucia Abreu-Silva and Fernando Almeida-Souza",downloadPdfUrl:"/chapter/pdf-download/72202",previewPdfUrl:"/chapter/pdf-preview/72202",authors:[{id:"223173",title:"Dr.",name:"Ana Lucia",surname:"Abreu-Silva",slug:"ana-lucia-abreu-silva",fullName:"Ana Lucia Abreu-Silva"},{id:"287290",title:"Dr.",name:"Fernando",surname:"Almeida-Souza",slug:"fernando-almeida-souza",fullName:"Fernando Almeida-Souza"},{id:"318732",title:"MSc.",name:"Isadora",surname:"De Fátima Braga Magalhães",slug:"isadora-de-fatima-braga-magalhaes",fullName:"Isadora De Fátima Braga Magalhães"},{id:"318733",title:"Dr.",name:"Carla Junqueira",surname:"Moraga Tellis",slug:"carla-junqueira-moraga-tellis",fullName:"Carla Junqueira Moraga Tellis"},{id:"318734",title:"Dr.",name:"Kátia",surname:"Da Silva Calabrese",slug:"katia-da-silva-calabrese",fullName:"Kátia Da Silva Calabrese"}],corrections:null},{id:"72167",title:"Terpenoids as Important Bioactive Constituents of Essential Oils",doi:"10.5772/intechopen.91426",slug:"terpenoids-as-important-bioactive-constituents-of-essential-oils",totalDownloads:1345,totalCrossrefCites:6,totalDimensionsCites:16,hasAltmetrics:0,abstract:"Plant and plant-derived natural products have a long and significant history in traditional medicine all over the world. Many studies in the recent past years focused on the benefic properties of essential oils (EOs) and their major components, terpenes and terpenoids (that are mostly monoterpenes and sesquiterpenes), and their biological properties. This chapter focuses on terpenoids as important bioactive constituents of EOs. It describes their uses, importance, extraction processes, and classification. The chapter provides an in-depth overview of the latest findings/research about terpenoids in EOs. It contains a well-prepared background, introduction, classification, chemical tests, bioactivities, as well as the characterization of terpenoids. It also discusses the bioactivities of EOs and that of terpenoids, with regard to their synergetic and/or their antagonistic effects.",signatures:"Fongang Fotsing Yannick Stephane and Bankeu Kezetas Jean Jules",downloadPdfUrl:"/chapter/pdf-download/72167",previewPdfUrl:"/chapter/pdf-preview/72167",authors:[{id:"224515",title:"Dr.",name:"Fongang Fotsing",surname:"Yannick Stéphane",slug:"fongang-fotsing-yannick-stephane",fullName:"Fongang Fotsing Yannick Stéphane"},{id:"227816",title:"Dr.",name:"Bankeu Kezetas",surname:"Jean Jules",slug:"bankeu-kezetas-jean-jules",fullName:"Bankeu Kezetas Jean Jules"}],corrections:null},{id:"72122",title:"Aromatherapy as Complementary Medicine",doi:"10.5772/intechopen.92021",slug:"aromatherapy-as-complementary-medicine",totalDownloads:746,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Aromatherapy is the practice of using the natural oils extracted from bark, flowers, stems, roots, leaves, or other parts of a plant to enhance psychological and physical well-being. It is a type of complementary medicine that uses volatile oils and other aromatic compounds with the aim of changing a person’s mind and mood. Volatile oils are hydrophobic in nature. Essential oils are extracted by different methods as steam distillation. Some evidence exists that volatile oils may have therapeutic potential. Volatile oils are often absorbed through the skin, where they travel through the bloodstream and might promote whole-body healing. Essential oils are showing a spread of applications, including pain treatments, enhancement of mood, and increased cognitive function. Essential oils are available in a large number, each with its own healing properties.",signatures:"Amira Ahmed Kamal El-din El-Anssary",downloadPdfUrl:"/chapter/pdf-download/72122",previewPdfUrl:"/chapter/pdf-preview/72122",authors:[{id:"221140",title:"Dr.",name:"Amira",surname:"El-Anssary",slug:"amira-el-anssary",fullName:"Amira El-Anssary"}],corrections:null},{id:"71872",title:"Volatile Compounds, Chemical Composition and Biological Activities of Apis mellifera Bee Propolis",doi:"10.5772/intechopen.92130",slug:"volatile-compounds-chemical-composition-and-biological-activities-of-em-apis-mellifera-em-bee-propol",totalDownloads:548,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Propolis is a wax-like resin collected by bees from tree shoots and/or other botanical sources that is used as glue to seal cracks or open spaces in the hive. Its color varies from green to brown and reddish, depending on its botanical origin. Among the substances that can be found in propolis, low molecular weight compounds, such as monoterpenes and sesquiterpenes are the most common. Several biological activities are attributed to these classes of substances, such as antifungal, antibacterial, and others. The objective of this work was to evaluate the chemical composition of volatile compounds present in propolis samples and to analyze their correlation with biological activities.",signatures:"Jorddy Neves Cruz, Adriane Gomes da Silva, Wanessa Almeida da Costa, Ely Simone Cajueiro Gurgel, Willison Eduardo Oliveira Campos, Renan Campos e Silva, Marcos Ene Chaves Oliveira, Antônio Pedro da Silva Souza Filho, Daniel Santiago Pereira, Sebastião Gomes Silva, Eloisa Helena de Aguiar Andrade and Mozaniel Santana de Oliveira",downloadPdfUrl:"/chapter/pdf-download/71872",previewPdfUrl:"/chapter/pdf-preview/71872",authors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"},{id:"195289",title:"MSc.",name:"Wanessa",surname:"Almeida Da Costa",slug:"wanessa-almeida-da-costa",fullName:"Wanessa Almeida Da Costa"},{id:"241345",title:"Dr.",name:"Antonio Pedro Da Silva",surname:"Souza Filho",slug:"antonio-pedro-da-silva-souza-filho",fullName:"Antonio Pedro Da Silva Souza Filho"},{id:"270636",title:"M.Sc.",name:"Jorddy Neves",surname:"Cruz",slug:"jorddy-neves-cruz",fullName:"Jorddy Neves Cruz"},{id:"282410",title:"Dr.",name:"Sebastião",surname:"Silva",slug:"sebastiao-silva",fullName:"Sebastião Silva"},{id:"282414",title:"Dr.",name:"Daniel Santiago",surname:"Pereira",slug:"daniel-santiago-pereira",fullName:"Daniel Santiago Pereira"},{id:"314348",title:"Dr.",name:"Adriane",surname:"Gomes Da Silva",slug:"adriane-gomes-da-silva",fullName:"Adriane Gomes Da Silva"},{id:"314367",title:"Dr.",name:"Willison",surname:"Eduardo Oliveira Campos",slug:"willison-eduardo-oliveira-campos",fullName:"Willison Eduardo Oliveira Campos"},{id:"314368",title:"Dr.",name:"Ely",surname:"Simone Cajueiro Gurgel",slug:"ely-simone-cajueiro-gurgel",fullName:"Ely Simone Cajueiro Gurgel"},{id:"314369",title:"Dr.",name:"Eloisa",surname:"Helena De Aguiar Andrade",slug:"eloisa-helena-de-aguiar-andrade",fullName:"Eloisa Helena De Aguiar Andrade"},{id:"314370",title:"Dr.",name:"Marcos",surname:"Ene Chaves Oliveira",slug:"marcos-ene-chaves-oliveira",fullName:"Marcos Ene Chaves Oliveira"}],corrections:null},{id:"72345",title:"Chemical Composition and Antibacterial Activity of the Essential Oil of Mesosphaerum suaveolens (Lamiaceae)",doi:"10.5772/intechopen.92704",slug:"chemical-composition-and-antibacterial-activity-of-the-essential-oil-of-em-mesosphaerum-suaveolens-e",totalDownloads:483,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Mesosphaerum suaveolens (Lamiaceae) is a medicinal plant commonly used in Brazil for the treatment of diseases related to the digestive tract and respiratory diseases, so we hypothesized that the essential oil of this species may have antibacterial activity. Thus, we aimed to evaluate the in vitro antibacterial and modulatory activity of the essential oil of M. suaveolens as well as to characterize its chemical composition. The identification of the constituents was performed by gas chromatography-flame ionization detector (GC-FID) and the antibacterial and modulating activity by the plate microdilution method. We found the oil had sesquiterpene β-caryophyllene as the major component. This compound may account for the antibacterial activity against Staphylococcus aureus strains, since the essential oil had a MIC of 64 μg/mL for the standard strain and 256 μg/mL for the multiresistant strain, demonstrated that the oil does not exhibit drug modulating activity. Thus, M. suaveolens oil has bioactive compounds which can be used in the preparation of drugs.",signatures:"José Weverton Almeida Bezerra, Felicidade Caroline Rodrigues, Ma Aparecida Barbosa Ferreira Gonçalo, Marcos Aurélio Figuereido dos Santos, Gledson Ferreira Macedo, Janete de Souza Bezerra, Priscilla Augusta de Sousa Fernandes, Emanoel Messias Pereira Fernando, Carlos Henrique Silva de Oliveira, Viviane Bezerra da Silva, Isabella Hevily Silva Torquato, Niwiarakelly da Silva Monte, Luciano Temoteo dos Santos and Henrique Douglas Melo Coutinho",downloadPdfUrl:"/chapter/pdf-download/72345",previewPdfUrl:"/chapter/pdf-preview/72345",authors:[{id:"314028",title:"Prof.",name:"José Weverton Almeida",surname:"Bezerra",slug:"jose-weverton-almeida-bezerra",fullName:"José Weverton Almeida Bezerra"},{id:"314029",title:"Prof.",name:"Felicidade Caroline",surname:"Rodrigues",slug:"felicidade-caroline-rodrigues",fullName:"Felicidade Caroline Rodrigues"},{id:"314033",title:"Prof.",name:"Janete De Souza",surname:"Bezerra",slug:"janete-de-souza-bezerra",fullName:"Janete De Souza Bezerra"},{id:"320914",title:"Prof.",name:"Ma Aparecida Barbosa Ferreira",surname:"Gonçalo",slug:"ma-aparecida-barbosa-ferreira-goncalo",fullName:"Ma Aparecida Barbosa Ferreira Gonçalo"},{id:"320915",title:"Prof.",name:"Marcos Aurélio Figuereido Dos",surname:"Santos",slug:"marcos-aurelio-figuereido-dos-santos",fullName:"Marcos Aurélio Figuereido Dos Santos"},{id:"320916",title:"Prof.",name:"Gledson Ferreira",surname:"Macedo",slug:"gledson-ferreira-macedo",fullName:"Gledson Ferreira Macedo"},{id:"320917",title:"Prof.",name:"Priscilla Augusta De Sousa",surname:"Fernandes",slug:"priscilla-augusta-de-sousa-fernandes",fullName:"Priscilla Augusta De Sousa Fernandes"},{id:"320918",title:"Prof.",name:"Emanoel Messias Pereira",surname:"Fernando",slug:"emanoel-messias-pereira-fernando",fullName:"Emanoel Messias Pereira Fernando"},{id:"320919",title:"Prof.",name:"Carlos Henrique Silva De",surname:"Oliveira",slug:"carlos-henrique-silva-de-oliveira",fullName:"Carlos Henrique Silva De Oliveira"},{id:"320920",title:"Prof.",name:"Viviane Bezerra Da",surname:"Silva",slug:"viviane-bezerra-da-silva",fullName:"Viviane Bezerra Da Silva"},{id:"320921",title:"Prof.",name:"Isabella Hevily Silva",surname:"Torquato",slug:"isabella-hevily-silva-torquato",fullName:"Isabella Hevily Silva Torquato"},{id:"320922",title:"Prof.",name:"Niwiarakelly Da Silva",surname:"Monte",slug:"niwiarakelly-da-silva-monte",fullName:"Niwiarakelly Da Silva Monte"},{id:"320923",title:"Prof.",name:"Luciano Temoteo Dos",surname:"Santos",slug:"luciano-temoteo-dos-santos",fullName:"Luciano Temoteo Dos Santos"},{id:"320924",title:"Dr.",name:"Henrique Douglas Melo",surname:"Coutinho",slug:"henrique-douglas-melo-coutinho",fullName:"Henrique Douglas Melo Coutinho"}],corrections:null},{id:"72267",title:"Essential Oil as Antimicrobial Agents: Efficacy, Stability, and Safety Issues for Food Application",doi:"10.5772/intechopen.92305",slug:"essential-oil-as-antimicrobial-agents-efficacy-stability-and-safety-issues-for-food-application",totalDownloads:1282,totalCrossrefCites:10,totalDimensionsCites:18,hasAltmetrics:0,abstract:"The use of natural antimicrobial compounds in food has gained much attention by the consumers and the food industry. This is primarily due to two major factors. First, the misuse and mishandling of antibiotics has resulted in the dramatic rise of a group of microorganisms including foodborne pathogens that are not only antibiotic resistant but also more tolerant to several food processing and preservation methods. In addition, increasing consumers’ awareness of the potential negative impact of synthetic preservatives on health versus the benefits of natural additives has generated interest among researchers in the development and use of natural products in foods. Essential oils are volatile, natural, complex compounds characterized by a strong odor and are formed by aromatic plants as secondary metabolites. The bioactivity properties of essential oils are generally determined by the major compounds present in them. They have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, medicinal, and antioxidant applications. The biological activity of the oils can be compared with the activity of synthetically produced pharmacological preparations. Thus, essential oils are promising natural extracts that need further evaluation for possible application as supplement, preservatives, or antioxidants in food or pharmaceutical industries.",signatures:"Hamdy A. Shaaban",downloadPdfUrl:"/chapter/pdf-download/72267",previewPdfUrl:"/chapter/pdf-preview/72267",authors:[{id:"314303",title:"Prof.",name:"Hamdy A.",surname:"Shaaban",slug:"hamdy-a.-shaaban",fullName:"Hamdy A. Shaaban"}],corrections:null},{id:"72424",title:"Roles of Terpenoids in Essential Oils and Its Potential as Natural Weed Killers: Recent Developments",doi:"10.5772/intechopen.91322",slug:"roles-of-terpenoids-in-essential-oils-and-its-potential-as-natural-weed-killers-recent-developments",totalDownloads:763,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"Weed control through the use of conventional chemical compounds presented by synthetic herbicides is a widely used and successful method to control weed by reducing the negative impact of weed and increase agricultural production gradually. However, although the losses in agricultural production arising from weed competition are decreased through the use of synthetic herbicides, the negative impacts of these compounds on the environment and human health have raised awareness and created grave concern of a number of parties to safeguard the environment and humans. The adverse effect of synthetic herbicides can still occur even if such herbicides are applied at the recommended rates. Control weed naturally presented by allelochemical compounds provides an attractive, alternative and safe way to control weed synthetic herbicides. Previous works indicated that terpenoids as the most important group of allelochemicals have shown to exhibit a good phytotoxic effect against a wide range of weed species by suppressing germination and reducing growth. This review was a highlight to detect the desirable phytotoxic effects of some terpenoid compounds as a major content in essential oils on various weed species and the possible uses as natural weed killers.",signatures:"Ahmed Abdulwahid Ali Almarie",downloadPdfUrl:"/chapter/pdf-download/72424",previewPdfUrl:"/chapter/pdf-preview/72424",authors:[{id:"314236",title:"Dr.",name:"Ahmed",surname:"Almarie",slug:"ahmed-almarie",fullName:"Ahmed Almarie"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3244",title:"Soybean",subtitle:"Bio-Active Compounds",isOpenForSubmission:!1,hash:"b21aa6107fce439bd06d53fbe0bc3c9e",slug:"soybean-bio-active-compounds",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/3244.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6385",title:"Potential of Essential Oils",subtitle:null,isOpenForSubmission:!1,hash:"3dc02ec3b9f324b4b571867aa4ee7f15",slug:"potential-of-essential-oils",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/6385.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7688",title:"Plant Physiological Aspects of Phenolic Compounds",subtitle:null,isOpenForSubmission:!1,hash:"16f7407afbf69173f4fa419b4338a6c8",slug:"plant-physiological-aspects-of-phenolic-compounds",bookSignature:"Marcos Soto-Hernández, Rosario García-Mateos and Mariana Palma-Tenango",coverURL:"https://cdn.intechopen.com/books/images_new/7688.jpg",editedByType:"Edited by",editors:[{id:"65790",title:"Prof.",name:"Marcos",surname:"Soto-Hernández",slug:"marcos-soto-hernandez",fullName:"Marcos Soto-Hernández"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7018",title:"Progress in Carotenoid Research",subtitle:null,isOpenForSubmission:!1,hash:"14ba5fb24fd6a28556e5b496fc87e9c8",slug:"progress-in-carotenoid-research",bookSignature:"Leila Queiroz Zepka, Eduardo Jacob-Lopes and Veridiana Vera De Rosso",coverURL:"https://cdn.intechopen.com/books/images_new/7018.jpg",editedByType:"Edited by",editors:[{id:"261969",title:"Dr.",name:"Leila",surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6794",title:"Phytochemicals",subtitle:"Source of Antioxidants and Role in Disease Prevention",isOpenForSubmission:!1,hash:"de750b7a7b62ae27896c73a630c39cb3",slug:"phytochemicals-source-of-antioxidants-and-role-in-disease-prevention",bookSignature:"Toshiki Asao and Md Asaduzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/6794.jpg",editedByType:"Edited by",editors:[{id:"106510",title:"Dr.",name:"Toshiki",surname:"Asao",slug:"toshiki-asao",fullName:"Toshiki Asao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6530",title:"Terpenes and Terpenoids",subtitle:null,isOpenForSubmission:!1,hash:"104f235908f326361a3ab16891949b70",slug:"terpenes-and-terpenoids",bookSignature:"Shagufta Perveen and Areej Al-Taweel",coverURL:"https://cdn.intechopen.com/books/images_new/6530.jpg",editedByType:"Edited by",editors:[{id:"192992",title:"Prof.",name:"Shagufta",surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8077",title:"Phytochemicals in Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8db73d87975ed16ea4758f1aecb5bf27",slug:"phytochemicals-in-human-health",bookSignature:"Venketeshwer Rao, Dennis Mans and Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/8077.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8753",title:"Tannins",subtitle:"Structural Properties, Biological Properties and Current Knowledge",isOpenForSubmission:!1,hash:"d18f8d68a470cabaa124ad01ea455859",slug:"tannins-structural-properties-biological-properties-and-current-knowledge",bookSignature:"Alfredo Aires",coverURL:"https://cdn.intechopen.com/books/images_new/8753.jpg",editedByType:"Edited by",editors:[{id:"175895",title:"Dr.",name:"Alfredo",surname:"Aires",slug:"alfredo-aires",fullName:"Alfredo Aires"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",isOpenForSubmission:!1,hash:"6c33178a5c7d2b276d2c6af4255def64",slug:"flavonoids-a-coloring-model-for-cheering-up-life",bookSignature:"Farid A. Badria and Anthony Ananga",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"76873",slug:"corrigendum-satellite-control-system-part-i-architecture-and-main-components",title:"Corrigendum: Satellite Control System: Part I - Architecture and Main Components",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/76873.pdf\r\n",downloadPdfUrl:"/chapter/pdf-download/76873",previewPdfUrl:"/chapter/pdf-preview/76873",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/76873",risUrl:"/chapter/ris/76873",chapter:{id:"72485",slug:"satellite-control-system-part-i-architecture-and-main-components",signatures:"Yuri V. Kim",dateSubmitted:"February 17th 2020",dateReviewed:"April 16th 2020",datePrePublished:"June 15th 2020",datePublished:"April 14th 2021",book:{id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",fullTitle:"Satellite Systems - Design, Modeling, Simulation and Analysis",slug:"satellite-systems-design-modeling-simulation-and-analysis",publishedDate:"April 14th 2021",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"316140",title:"Dr.",name:"Yuri",middleName:null,surname:"Kim",fullName:"Yuri Kim",slug:"yuri-kim",email:"yurikim@hotmail.ca",position:null,institution:{name:"Canadian Space Agency",institutionURL:null,country:{name:"Canada"}}}]}},chapter:{id:"72485",slug:"satellite-control-system-part-i-architecture-and-main-components",signatures:"Yuri V. Kim",dateSubmitted:"February 17th 2020",dateReviewed:"April 16th 2020",datePrePublished:"June 15th 2020",datePublished:"April 14th 2021",book:{id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",fullTitle:"Satellite Systems - Design, Modeling, Simulation and Analysis",slug:"satellite-systems-design-modeling-simulation-and-analysis",publishedDate:"April 14th 2021",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"316140",title:"Dr.",name:"Yuri",middleName:null,surname:"Kim",fullName:"Yuri Kim",slug:"yuri-kim",email:"yurikim@hotmail.ca",position:null,institution:{name:"Canadian Space Agency",institutionURL:null,country:{name:"Canada"}}}]},book:{id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",fullTitle:"Satellite Systems - Design, Modeling, Simulation and Analysis",slug:"satellite-systems-design-modeling-simulation-and-analysis",publishedDate:"April 14th 2021",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11529",leadTitle:null,title:"Product Design - A Manufacturing Perspective",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tProduct design is an ambitious journey of developing functional components meeting the requirements of the customer by innovative thinking. Understanding the end-user demands, needs, behaviors, and habits is an important key to a successful product design. Moreover, this journey ends happily and efficiently only when the creative design ideas are combined with the opportunities given by new design tools, new materials, and new manufacturing routes. Without considering the aforementioned aspects, product design would not be complete and fully exploited to its real potential. The essential link between product design and manufacturing is critical and desired to produce creative designs in the right quantities and qualities with the right price, finally meeting the end-user specifications.
\r\n\r\n\tThus, this book welcomes original research and review studies aiming at various aspects of product design with a manufacturing perspective to explore the design strategies, manufacturing limits, and post-manufacturing phases of material enhancement and inspection.
",isbn:"978-1-80356-555-2",printIsbn:"978-1-80356-554-5",pdfIsbn:"978-1-80356-556-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"b6f9e61bc85962bbae25e2aa2e1bb22e",bookSignature:"Ph.D. Evren Yasa and Dr. Ozgur Poyraz",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11529.jpg",keywords:"Design Freedom, Additive Manufacturing Design, Manufacturing Limits, Metal AM, Processes and Practices, Concurrent Engineering, Material Selection, Testing, Requirement Definition, Conceptual Design, Preliminary Design, Prototyping",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 10th 2022",dateEndSecondStepPublish:"May 10th 2022",dateEndThirdStepPublish:"July 9th 2022",dateEndFourthStepPublish:"September 27th 2022",dateEndFifthStepPublish:"November 26th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"An enthusiastic and curious researcher in the field of Advanced Manufacturing processes, Dr. Evren Yasa worked as a senior engineer at TEI Engine Industries and is now an independent expert in laser-based manufacturing on behalf of the European Commission in Horizon 2020 projects. For her Ph.D. focused on Additive Manufacturing from the Catholic University of Leuven she was selected as a Highly commended winner of the Emerald Outstanding Doctoral Research Award.",coeditorOneBiosketch:"Dr. Özgür Poyraz completed his Ph.D. at The Eskişehir Osmangazi University focusing on modeling the powder bed additive manufacturing of nickel-based superalloys, while also gaining expertise in industrialization and innovation at TEI Engine Industries manufacturing aero-engine components. Open to technological advances in Machining and Additive Manufacturing, he is an author and referee in international journals, books, and conferences.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"219594",title:"Ph.D.",name:"Evren",middleName:null,surname:"Yasa",slug:"evren-yasa",fullName:"Evren Yasa",profilePictureURL:"https://mts.intechopen.com/storage/users/219594/images/system/219594.jpg",biography:'Dr. Evren Yasa graduated with her degree in Mechanical Engineering from the Istanbul Technical University and completed her master\'s degree at the University of British Columbia on volumetric error modeling and compensation. She received her Ph.D. degree with the thesis on "Combined Process of Selective Laser Melting and Selective Laser Erosion/Laser Re-melting" at the Catholic University of Leuven, for which she was awarded the "Emerald Outstanding Doctoral Study-Highly commended" award. After her Ph.D. study, she worked as a senior engineer at TEI, a GE-joint venture company specializing in manufacturing aero-engine parts, where she led Additive Manufacturing projects. Later, she joined Eskisehir Osmangazi University as an assistant professor. Moreover, she has been working as an independent expert in laser-based manufacturing on behalf of the European Commission in Horizon 2020 projects.',institutionString:"Eskişehir Osmangazi University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Eskişehir Osmangazi University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"444333",title:"Dr.",name:"Ozgur",middleName:null,surname:"Poyraz",slug:"ozgur-poyraz",fullName:"Ozgur Poyraz",profilePictureURL:"https://mts.intechopen.com/storage/users/444333/images/system/444333.jpg",biography:"Dr. Özgür Poyraz, who received his undergraduate and graduate degrees with an emphasis on manufacturing technologies at Yıldız Technical University, Mechanical Engineering Department, completed the last year of his master education at Vienna Technical University in 2008 where he met Additive Manufacturing. The researcher, who continued his activities in the industry parallel with his academic education, worked in TEI Engine Industries (a joint venture of General Electric Aviation), in different projects including additive manufacturing of aero-engine components. He worked as a research and application engineer on process modeling and simulation of aviation components in Technicut Sheffield for a year. He completed his Ph.D. degree at The Eskişehir Osmangazi University, Mechanical Engineering Department in the Construction and Manufacturing Program, focusing on modeling the powder bed additive manufacturing of nickel-based superalloys in his thesis. As of the summer of 2020, he started work as an Assistant Professor in the Mechanical Engineering Department at The Eskişehir Technical University. Özgür Poyraz is an author and referee in international journals, books, and conferences. His research interests include additive manufacturing, machining, measurement technologies, process modeling, CAD / CAM / CAE, and reverse engineering.",institutionString:"Eskisehir Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Eskisehir Technical University",institutionURL:null,country:{name:"Turkey"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"455410",firstName:"Dajana",lastName:"Jusic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/455410/images/20500_n.jpeg",email:"dajana.j@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"9288",title:"Design and Manufacturing",subtitle:null,isOpenForSubmission:!1,hash:"29172b8e746a303c2c48f39292fd4c10",slug:"design-and-manufacturing",bookSignature:"Evren Yasa, Mohsen Mhadhbi and Eleonora Santecchia",coverURL:"https://cdn.intechopen.com/books/images_new/9288.jpg",editedByType:"Edited by",editors:[{id:"219594",title:"Ph.D.",name:"Evren",surname:"Yasa",slug:"evren-yasa",fullName:"Evren Yasa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48803",title:"Bioremediation of Polluted Waters Using Microorganisms",doi:"10.5772/60770",slug:"bioremediation-of-polluted-waters-using-microorganisms",body:'Environmental contamination by heavy metals from anthropogenic and industrial activities has caused considerable irreparable damage to aquatic ecosystems. Sources include the mining and smelting of ores, effluent from storage batteries and automobile exhaust, and the manufacturing and inadequate use of fertilizers, pesticides, and many others. The metals and metalloids that contaminate waters and are most commonly found in the environment include lead, chromium, mercury, uranium, selenium, zinc, arsenic, cadmium, silver, gold, and nickel. These metals are the subject of concern due to their high toxicity. Apart from being hazardous to human health, they also have an adverse effect on the fauna and flora, and they are not biodegradable in nature. Thus, there is a need to seek new approaches in developing treatments to minimize or even eliminate metals present in the environment.
Several different physicochemical and biological processes are commonly employed to remove heavy metals from industrial wastewaters before their discharge into the environment [1]. Conventional physicochemical methods such as electrochemical treatment, ion exchange, precipitation, osmosis, evaporation, and sorption are not cost-effective, and some of them are not environmentally friendly [2, 3]. On the other hand, bioremediation processes show promising results for the removal of metals, even when present in very low concentrations where physicochemical removal methods fail to operate. Furthermore, this is an eco-compatible and economically feasible option. The bioremediation strategy is based on the high metal binding capacity of biological agents, which can remove heavy metals from contaminated sites with high efficiency. In this regard, microorganisms can be considered as a biological tool for metal removal because they can be used to concentrate, remove, and recover heavy metals from contaminated aquatic environments [4]. Several studies have been conducted using microorganisms for the uptake of heavy metals in polluted waters as an alternative strategy to conventional treatments [5–7]. Bioremediation by microorganisms is very useful due to the action of microorganisms on pollutants even when they are present in very dilute solutions, and they can also adapt to extreme conditions. Although the mechanisms associated with metal biosorption by microorganisms are still not well understood, studies show that they play an important role in the uptake of metals and that this action involves accumulation or resistance.
In this chapter, previously published research data on the potential of the microorganisms that have been used for the bioremediation of metals is discussed. In-depth descriptive information on the bioremediation process uses various microorganisms, including algae and bacteria, and the mechanisms of action, bioremediation efficiency, and current applications are provided together with suggestions to overcome the limitations associated with their large-scale and more efficient application. Future prospects for the potential use of genetic engineering techniques to develop prominent recombinant novel microorganism variants that are more efficient and improvements in the operation conditions of bioremediation technologies will also be discussed and explored.
The term “heavy metal” generally refers to metallic elements with an atomic weight higher than that of Fe (55.8 g mol–1) or density greater than 5.0 g cm–3, and these metals are naturally present in the environment. However, some metals with an atomic weight lower than that of Fe, for example, Cr, and others which are considering metalloids, such as As and Se, are also commonly referred to as heavy metals [8]. Heavy metals can play a role as micronutrients, such as Cu, Fe, Mn, Mo, Zn, and Ni, but they can also be toxic to humans, e.g., Hg, Pb, Cd, Cu, Ni, and Co [9], depending on the exposure levels.
Contamination by heavy metals causes many deleterious effects, which affect not only fauna and flora but also human health [10, 11]. Heavy metal ions have a strong electrostatic attraction and high binding affinities with the same sites that essential metal ions normally bind to in various cellular structures, causing destabilization of the structures and biomolecules (cell wall enzymes, DNA and RNA), thus inducing replication defects and consequent mutagenesis, hereditary genetic disorders, and cancer [12]. Heavy metals are notable contaminants because they are toxic, nonbiodegradable in the environment, and easily accumulated in living organisms [13]. The contamination of waters with heavy metals occurs through natural and anthropogenic activities, mainly related to industrialization. Table 1 shows the natural and anthropogenic sources of some of the most widespread study heavy metals as environmental pollutants, together with a brief list of their adverse health effects and their applications [14]. Although studies on bioremediation generally consider the total amount of metal present in the environment, the toxicity of these metals is dependent on their chemical form. The wide range of chemical forms in which heavy metals can be present in the environment includes cationic/anionic species and complexes (hydroxylated or complexed to Cl), and their oxidation state varies depending on the medium pH and composition.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|
Natural | \n\t\t\tAnthropogenic | \n\t\t|||
Cd | \n\t\t\tZn and Pb minerals, phosphate rocks | \n\t\t\tMining waste, electroplating, battery plants | \n\t\t\tAutomobile exhaust | \n\t\t\tRespiratory, cardiovascular, renal effects | \n\t\t
Cr | \n\t\t\tChromite mineral | \n\t\t\tElectroplating, metal alloys, industrial sewage, anticorrosive products | \n\t\t\tPesticides, detergents | \n\t\t\tMental disturbance, cancer, ulcer, hypokerotosis | \n\t\t
Cu | \n\t\t\tSulfides, oxides carbonates | \n\t\t\tElectroplating, metal alloys, domestic and industrial waste, mining waste, pesticides | \n\t\t\tMost uses are based on electrical conductor properties | \n\t\t\tAnemia and other toxicity effects induced indirectly through interaction with other nutrients | \n\t\t
Pb | \n\t\t\tGalena mineral | \n\t\t\tBattery plants, pipelines, coal, gasoline, pigments | \n\t\t\tBatteries, alloys | \n\t\t\tNeurotoxic | \n\t\t
Ni | \n\t\t\tSoils | \n\t\t\tMetal alloys, battery plants, industrial waste, production of vegetable oils | \n\t\t\tBatteries, electronics, catalysts | \n\t\t\tSkin allergies, lung fibrosis, diseases of the cardiovascular system | \n\t\t
Zn | \n\t\t\tMinerals (sulfides, oxides, silicates) | \n\t\t\tMetal alloys, pigments, electroplating, industrial waste, pipelines | \n\t\t\tFertilizers, plastics, pigments | \n\t\t\tAbdominal pain, nausea, vomiting and diarrhea, gastric irritation, headache, irritability, lethargy, anemia | \n\t\t
Contamination sources, uses, and adverse health effects of some heavy metals
Heavy metals contaminated in soil can accumulate and persist for long periods of time and may be harmful to vital processes involved in microbial nutrient cycling [15]. The toxicity and mobility of heavy metals are strongly dependent on their chemical form and specific binding properties. Changes in the environmental conditions in soils, such as acidification and variations in the redox potential, can cause the mobilization of heavy metals from the solid phase to the liquid phase, thereby allowing the potential contamination to the plants grown in these soils [16]. In water bodies, a heavy metal in relatively high concentrations affects the biota due to its toxicity, or it can be bioaccumulated, which increases its effect further along the food chain. The progressive increase in the concentration of a contaminant such as a metal, as it advances in the food chain, is known as biomagnification. This occurs due to the need for a large number of organisms from lower trophic levels to feed a member of a higher trophic level and thus contaminants that cannot be metabolized but are fat soluble can accumulate in the fatty tissues of living organisms.
Various studies have been conducted to minimize or eliminate the heavy metals present in the environment. Conventional processes include precipitation, reverse osmosis, adsorption onto activated carbon or alumina, and redox processes [17]. However, these technologies are considered to be inefficient because of expensive cost [12]. In bioremediation by microorganisms typically employing one type of organism or a consortium of microorganisms, high toxic chemicals are converted into less toxic chemicals by biological means [18]. The technology makes use of the metabolic potential of microorganisms to clean up contaminated environments [19] and has been proposed as an attractive alternative owing to its lower cost and higher efficiency [20] compared with other physicochemical methodologies [12]. Microorganisms can decompose or transform hazardous substances into less toxic metabolites or degrade them to nontoxic end products. Microorganisms can also survive in contaminated habitats because they are metabolically able to exploit contaminants as potential energy sources [11].
In bioremediation, microorganisms with biological activity, including algae, bacteria, fungi, and yeast, can be used in their naturally occurring forms.
The number of publications on the use of microorganisms for the removal of heavy metals in contaminated environments has been increasing steadily over the past 10 years. Figure 1 shows the main types of microorganisms used in these processes, based on a search for papers reporting microorganisms and bioremediation studies, indexed in the ISI Web of Science for the period of 2004 to 2014. It can be observed in Figure 1 that the microorganisms that have been most commonly used are bacteria and fungi, although yeast and algae are also frequently applied.
Types of microorganisms used in bioremediation processes.
Figure 2 gives some indication of which metals are used in bioremediation processes employing microorganisms, and chromium, copper, cadmium, and lead together account for 70% of applications, although nickel and zinc are also used. Other metals that are used to a lesser extent include arsenic and mercury.
Metals used in bioremediation process employing microorganisms.
Typically, bioremediation is based on the cometabolism action of one organism or a consortium of microorganisms [18]. In this process, the transformation of contaminants presents a little efficiency or no benefit to the cell, and therefore this process is described as nonbeneficial biotransformation [21, 22]. Several studies have shown that many organisms (prokaryotes and eukaryotes) have a natural capacity to biosorb toxic heavy metal ions [23]. Examples of microorganisms studied and strategically used in bioremediation treatments for heavy metals include the following: (1) bacteria:
Prokaryotes (bacteria and archaeans) are distinguished from eukaryotes (protists, plants, fungi, and animals). The cellular structure of eukaryotes is characterized by the presence of a nucleus and other membrane-enclosed organelles. Also, the ribosomes in prokaryotes are smaller (70S) than in eukaryotes (80S) [38]. The way in which microorganisms interact with heavy metal ions is partially dependent on whether they are eukaryotes or prokaryotes, wherein eukaryotes are more sensitive to metal toxicity than prokaryotes [12]. The possible modes of interaction are (a) active extrusion of metal, (b) intracellular chelation (in eukaryotes) by various metal-binding peptides, and (c) transformation into other chemical species with reduced toxicity. For bioremediation to be effective, microorganisms must enzymatically attack the pollutants and convert them to harmless products [39]. Bacteria and higher organisms have developed mechanisms associated with resistance to toxic metals and rendering them innocuous [20]. Several microbes, including aerobes, anaerobes, and fungi, are involved in the enzymatic degradation process. Most of bioremediation systems are run under aerobic conditions, but anaerobic conditions make it possible microbial organisms to degrade otherwise recalcitrant molecules [39].
Because several different types of pollutants can be present at a contaminated site, various types of microorganisms are required for effective remediation. Some types of microorganism are able to degrade petroleum hydrocarbons and use them as a source of carbon and energy. However, the choice of the organisms employed is variable, depending on the chemical nature of the polluting agents, and needs to be selected carefully as they only survive in the presence of a limited range of chemical contaminants. The efficiency of the degradation process is related to the potential of the particular microorganism to introduce molecular oxygen into the hydrocarbon and to generate the intermediates that subsequently enter the general energy-yielding metabolic pathway of the cell. Some bacteria search the contaminant and move toward it because they flexibly exhibit the potential as a chemotactic response [40].
Numerous microorganisms can utilize oil as a source of food, and many of them produce potent surface-active compounds that can emulsify oil in water and facilitate its removal [21]. Bacteria that can degrade petroleum products include species of
The application of biotechnology to the treatment of heavy metals is a relatively new subject. A better understanding of the processes through which microorganisms capture heavy metals, particularly the metabolism and detoxification pathways, has been accumulated. It can help the solution with maximum efficiency in dealing with environmental problems associated with heavy metal contamination [41]. The changes arising from the biotechnological approach include bioleaching, bioextraction, biosorption, bioencapsulation, and bioremediation [42]. In this regard, genetic engineering is a fundamental approach to modulate the metabolic pathways of these microorganisms and to inhibit the toxic the action of the metals by the modulated activity. The modified microorganisms can change the inorganic form into the organic form by some reactions, for instance, by transforming the metals through oxidation–reduction reductions, thus increasing the solubility.
Besides the increase of the solubility by microorganisms modifying microorganisms to increase their resistance through factors involving the solubility of heavy metals, their interaction with other factors (e.g., complexation reactions, changes in pH, sorption, precipitation, bioaccumulation, and encapsulation) can result in increased solubility or render the heavy metals inert in the environment [18]. Genetic engineering can be applied to modify the microorganisms and achieve interesting features such as accelerated growth, tolerance to extreme environmental conditions and pH variations, and low cost cultivation. Recent studies have demonstrated the ability of certain fungi (e.g.,
Many papers on bioremediation with wild or genetic modified microorganisms have been published over the years. Figure 3 shows the data obtained from a search of the web covering a period of 20 years (1995–2014), which deal with the development of methodologies for the decontamination of environments containing various heavy metals.
Scientific publications on bioremediation using microorganisms.
With the recent advances in genetic engineering, it is now relatively easy to construct genetically engineered microorganisms (GEMs) through reshuffling the genes, promoters, etc., and this can enhance their performance
Engineered strains of
Recent studies show that certain GEMs have increased ability to metabolize specific chemicals such as hydrocarbons and pesticides [12, 23].
Genetic engineering techniques and studies on the metabolic potential of microorganisms have allowed the design of genetically modified microorganisms capable of degrading specific contaminants. This approach offers an opportunity to create an artificial combination of genes that do not exist together in nature. The most commonly used techniques include engineering with single genes or operons, pathway construction, and alternation of the sequences of existing genes [22]. Genetic and biochemical techniques, such as PCR,
The first two genetically modified bacterial strains were
Figure 4 shows the major groups of microorganisms commonly used for the bioremediation of metals, which include bacteria, microalgae, fungi, and yeast.
Microorganisms employed in the bioremediation and processes/mechanisms involved in the case of dead and living biomass.
Bioremediation can be separated into two categories, biosorption and bioaccumulation. Biosorption is a passive adsorption mechanism that is fast and reversible [6, 49]. The metals are retained by means of physicochemical interaction (e.g., ion exchange, adsorption, complexation, precipitation, and crystallization) between the metal and the functional groups present on the cell surface [6, 47–50]. Several factors can affect the biosorption of metals, such as pH, ionic strength, biomass concentration, temperature, particle size, and presence of other ions in the solution [48]. Both living and dead biomass can occur for biosorption because it is independent of cell metabolism. On the other hand, bioaccumulation includes both intra- and extracellular processes where passive uptake plays only a limited and not very well-defined role [6]. Therefore, living biomass can only occur for bioaccumulation.
Table 2 shows a comparison of the main parameters associated with biosorption and bioaccumulation processes. In general, the biosorption process needs inexpensive cost because the biomass can be obtained from industrial waste, and it can be regenerated and reused in many cycles. Bioaccumulation, on the other hand, needs expensive cost because the process occurs in the presence of living cells in which reuse is limited. Also, important factors to be considered include selectivity of metals and the potential for regeneration. The selectivity in biosorption is generally low because the bind only occurs by physicochemical interaction. It can be increased through modification of the biomass. Nevertheless, processes involving bioaccumulation generally perform better than those involving biosorption.
The structure of the cell wall of a microorganism contains various macromolecules, such as polysaccharides and proteins, with a high number of charged functional groups, including carboxyl, imidazole, sulfydryl, thioether, phenol, carbonyl, amide, ester sulfate, amino, and hydroxyl groups [51–53]. The positively charged metal present in the solution gravitates toward these functional groups and adsorption occurs. The form in which microorganisms are cultivated can influence the cell wall composition, and this can be exploited to improve the adsorption capacity of the microorganisms [6]. Bacteria can remove heavy metals from wastewater via functional groups, such as ketones, aldehydes, and carboxyl groups present in their cell walls and thereby produce less chemical sludge [54]. Both gram-positive and gram-negative bacteria are used for the uptake of metals. Green, red, and brown algae are also used as biosorbents. Some functional presents in bacteria such as uronic acid of carboxyl groups and sulfate groups, xylans, galactans, and alginic acid are capable of performing ion exchange. The advantage of using algae as biosorbents is that they generally do not produce toxic substances, unlike other microorganisms such as bacteria or fungi [55].
Fungi and yeasts also used for the adsorption. The most advantage of fungi is highly variable, ranging in size from mushrooms to microscopic molds. They are easy to grow and produce a substantial biomass. The cell walls of fungi are rich in polysaccharides and glycoproteins, which contain, for instance, amine, imidazole, phosphate, sulfate, sulfhydryl, and hydroxyl groups [56, 57]. However, the cell walls of yeasts contain a microfibrillar structure composed of more than 90% polysaccharides. The main groups present in these walls are amine, hydroxide, carboxyl, sulfate, and phosphate groups [58].
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Cost | \n\t\t\tUsually low. Biomass can be obtained from industrial waste. Cost associated mostly with transportation and production of biosorbent. | \n\t\t\tUsually high. The process occurs in the presence of living cells that have to be supported. | \n\t\t
pH | \n\t\t\tThe solution pH strongly affects the sorption capacity of heavy metals. However, the process can occur within a wide pH range. | \n\t\t\tSignificant change in pH can strongly affect living cells. | \n\t\t
Selectivity | \n\t\t\tPoor. However, this can be increased by modification/biomass transformation. | \n\t\t\tBetter than in the case of biosorption. | \n\t\t
Rate of removal | \n\t\t\tMost mechanisms occur at a fast rate. | \n\t\t\tSlower rate than in the case of biosorption because intercelluar accumulation takes a long time. | \n\t\t
Regeneration and reuse | \n\t\t\tBiosorbents can be regenerated and reused in many cycles. | \n\t\t\tReuse is limited due to intercellular accumulation. | \n\t\t
Recovery of metals | \n\t\t\tWith an adequate eluent the recovery of heavy metals is possible. | \n\t\t\tEven if possible, biomass cannot be used for other purposes. | \n\t\t
Energy demand | \n\t\t\tUsually low. | \n\t\t\tEnergy is required for cell growth. | \n\t\t
Comparison of biosorption and bioaccumulation processes [51].
Most heavy metals cannot be biodegraded and they tend to accumulate in the microorganism [59]. Several factors influence metal accumulation, such as the degree of exposure, metal concentration, temperature, and salinity, and therefore it is difficult to obtain detailed information on how the accumulation occurs in the bioremediation [60]. The process of accumulation is complex and varied according the pathway of metabolism is regulated by the metal concentration [61]. Mechanisms of metal ion uptake based on surface binding and metals ions entering the cell membrane have been proposed [62–65].
The pathway via which the metal binds to a specific site of the biomass is of great importance in relation to the efficiency of a bioremediation process. For example, the ingestion of sediments by microorganisms is considered a principal route of exposure to metals, although free metal ions in sediment pore waters are generally considered to be the most bioavailable form of metals. Thus, metal accumulation is affected by the feeding behavior of microorganisms [61]. After the ingestion of heavy metals, a process of metal excretion and/or detoxify begins to avoid potential toxic effects. However, microorganisms will not suffer the toxic effects of the presence of metals when they are stored in detoxified forms [61]. Moreover, the metal–biomass interaction is dependent on the type of metal that can bind to oxygen-containing or S- and N-containing ligands. Although this may be a simple overview of the mechanisms involved, it can act as a starting point for proposing new approaches related to the efficiency of metal uptake by microorganisms [50].
Otherwise, microorganisms can synthesize metal binding proteins, such as MTs or PCs, and the proteins are strongly related to the capacity of metal adsorption, accumulation, and resistance [50]. In particular, metalloproteins are a large group of these proteins, which play an important role mainly in regulating the amount of metals within the cells.
Metal binding proteins present outside of cell membrane attract metal ions exist in solution and assist the transport to cytosol, where metallochaperones (specialized protein chelators) transfer metals to the appropriate receptor protein. The binding sites of the metal binding proteins have been improved to other protein, such as heterologous metalloproteins by using genetic technique. Some researchers developed heterologous metalloproteins with higher affinity and metal-binding capacity and/or specificity and selectivity, which was expressed in bacteria to improve their capacity to adsorb metals [50]. The technique changing the proteins on the cell surface, into heterogeneous one by using recombinant DNA has emerged as a novel approach to enhance the capacity of adsorption. Both bacteria and yeasts have been investigated for this purpose. A wide diversity of metal-binding proteins, such as glutathione (GSH), GSH-related phytochelatins (PCs), cysteine-rich metallothioneins (MTs), and synthetic phytochelatins (ECn), have been used to enhance the bioaccumulation of heavy metals [66]. For example, the recombinant bacterial strain cloned mercury operon, which coded the regulatory gene (MerR) and other genes involved in the transport, was constructed. The strain showed high resistant to mercury by the detoxification of mercury ions within the cell [66].
The expression of metal-binding proteins or peptides in microorganisms to enhance heavy metal accumulation and/or tolerance has great potential. Several different peptides and proteins have been explored [20, 50]. Different resistance mechanisms can be activated, for example, the production of peptides of the family of metal binding proteins, such as MTs or phytochelatins (PCs); the regulation of the intracellular concentration of metals, with the expression of transporters of proteins of ligand–metal complexes from the cytoplasm to the inside of vacuoles; and the efflux of metal ions by ion channels present in the cell wall. The genes to show the tolerance toward toxicity of metals are often encoded on the transposons or plasmids, which facilitate their dispersion from cell to cell [12]. The tolerance is caused by either the activity bacterial metal resistance result from either the active efflux pumping of the toxic metal out of the cell or enzymatic detoxification (generally via redox chemistry) where a toxic ion is converted into a less toxic or less available metal ion.
Several metal-binding peptides have been studied with the aim of increasing Cd resistance or accumulation by
Hexavalent chromium is mobile, highly toxic, and considered as a priority environmental pollutant. Chromate reductases found in chromium-resistant bacteria have the potential for use in bioremediation process because they are known to catalyze the reduction of Cr(VI) to Cr(III) [67]. The enzymatic reduction of Cr(VI) to Cr(III) involves the transfer of electrons from electron donors, like NAD(P)H, to Cr(VI) with the simultaneous generation of reactive oxygen species (ROS) [67]. Microorganisms that have the ability to reduce Cr(VI) are referred as chromium-reducing bacteria (CRB). Gram-positive CRB shows to have significant tolerance to the toxicity of Cr(VI) even at high concentrations, whereas gram-negative bacteria are much more sensitive to Cr(VI) [67]. Some genes responsible for resistance to Cr(VI) have been determined in bacteria. For example, the chrR gene located on the chromosome of
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Algae | \n\t\t\t\n\t\t\t\t | \n\t\t\tPb, Ni Pb, Cu, Cd, Zn | \n\t\t\t68 69 | \n\t\t
\n\t\t\t\t | \n\t\t\tU | \n\t\t\t70 | \n\t\t|
\n\t\t\t\t | \n\t\t\tPb | \n\t\t\t33 | \n\t\t|
\n\t\t\t\t | \n\t\t\tCr Pb Cd | \n\t\t\t71 68 72 | \n\t\t|
\n\t\t\t\t | \n\t\t\tV, As | \n\t\t\t73 | \n\t\t|
\n\t\t\t\t | \n\t\t\tPb, Cu | \n\t\t\t34 | \n\t\t|
\n\t\t\t\t | \n\t\t\tCr, Cu, Fe, Mn, Zn | \n\t\t\t35 | \n\t\t|
Bacteria | \n\t\t\t\n\t\t\t\t | \n\t\t\tCr | \n\t\t\t28 | \n\t\t
\n\t\t\t\t | \n\t\t\tCd, Pb | \n\t\t\t26 | \n\t\t|
\n\t\t\t\t | \n\t\t\tCu | \n\t\t\t27 | \n\t\t|
\n\t\t\t\t | \n\t\t\tCd, Zn, Cu | \n\t\t\t25 | \n\t\t|
\n\t\t\t\t | \n\t\t\tAs | \n\t\t\t29 | \n\t\t|
\n\t\t\t\t | \n\t\t\tAu | \n\t\t\t74 | \n\t\t|
Fungi | \n\t\t\t\n\t\t\t\t | \n\t\t\tCd, Zn | \n\t\t\t75 | \n\t\t
\n\t\t\t\t | \n\t\t\tPb | \n\t\t\t32 | \n\t\t|
\n\t\t\t\t | \n\t\t\tCr, Ni, Cu | \n\t\t\t31 | \n\t\t|
\n\t\t\t\t | \n\t\t\tCd, Cu, Fe | \n\t\t\t77 | \n\t\t|
\n\t\t\t\t | \n\t\t\tNi, Co, Mo, V, Mn, Fe, W, Zn | \n\t\t\t78 | \n\t\t|
\n\t\t\t\t | \n\t\t\tAr | \n\t\t\t76 | \n\t\t|
\n\t\t\t\t | \n\t\t\tCr | \n\t\t\t30 | \n\t\t|
Yeast | \n\t\t\t\n\t\t\t\t | \n\t\t\tCd, Cr, Cu, Ni, Zn | \n\t\t\t79 | \n\t\t
\n\t\t\t\t | \n\t\t\tCd | \n\t\t\t37 | \n\t\t|
\n\t\t\t\t | \n\t\t\tCu | \n\t\t\t79 | \n\t\t|
\n\t\t\t\t | \n\t\t\tCr, Ni, Cu, Zn | \n\t\t\t36 | \n\t\t|
\n\t\t\t\t | \n\t\t\tPb | \n\t\t\t80 | \n\t\t
Sorption potential of certain microorganisms to remove heavy metals.
Natural and anthropogenic activities generate large quantities of aqueous effluents containing toxic metals. Many studies have been conducted in recent decades aimed at lowering metal concentrations derived from natural resources. In addition, considerable effort has been made to develop efficient and cost-effective technologies and apply them to industrial wastewater treatment. The potential for microorganisms to remove metals from solutions through passive and active mechanisms has been shown to be an interesting approach to metal uptake in polluted waters, and the efficiency of such processes is dependent on the experimental conditions, the target pollutant and various other factors.
The application of this type of bioremediation process in large scale remains, however, a challenge, and a preventive approach to metal pollution problems is therefore encouraged. Further investigations aimed at the identification of the mechanisms involved the characterization of biosorbents, and advances in genetic engineering are required.
Many microorganisms can break down metals naturally, but this is not a sufficient solution on a global scale. Therefore, as a means to resolve this problem, engineered microorganisms can be developed with the help of genetic engineering. A better understanding of the way in which both eukaryotes and prokaryotes metabolize heavy metals and the detoxification pathways will help future researchers to deal with this type of environmental problem with maximum efficiency. The choice of the most promising type of biomass must be made, taking into account its cost and availability, and this is necessary on an industrial scale. The microorganisms should be easy to obtain and to cultivate. For example, industrial-scale application would not be of interest if the microorganism is difficult to cultivate, a rare species or a species in danger of extinction.
Although some progress has been made in the recognition of the importance of microorganisms for the decontamination of polluted waters, some important points still need to be addressed. However, a new challenge has emerged for science. Thus, further studies need to focus on the development of new clean environmentally acceptable technologies with commercial feasibility.
BTX | \n\t\t\tBenzene, toluene, and | \n\t\t
CAPES | \n\t\t\tCoordination of Improvement of Higher Education Personnel | \n\t\t
CNPq | \n\t\t\tNational Council for Scientific and Technological Development | \n\t\t
DNA | \n\t\t\tDeoxyribonucleic acid | \n\t\t
ECn | \n\t\t\tSynthetic phytochelatins | \n\t\t
FAPEG | \n\t\t\tResearch Foundation of the State of Goiás | \n\t\t
FAPEMIG | \n\t\t\tResearch Foundation of the State of Minas Gerais | \n\t\t
GEM | \n\t\t\tGenetically engineered microorganisms | \n\t\t
GMMs | \n\t\t\tGenetically modified microorganisms | \n\t\t
GSH | \n\t\t\tGlutathione | \n\t\t
MTs | \n\t\t\tMetallothioneins | \n\t\t
NRRL B-5472 | \n\t\t\t\n\t\t\t\t | \n\t\t
NRRL B-5473 | \n\t\t\t\n\t\t\t\t | \n\t\t
PCR | \n\t\t\tPolymerase chain reaction | \n\t\t
PCs | \n\t\t\tPhytochelatins | \n\t\t
RNA | \n\t\t\tRibonucleic acid | \n\t\t
The authors are grateful for financial support from the Brazilian governmental agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the MG state government agency Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and the GO state government agency Fundação de Amparo á Pesquisa do Estado de Goiás (FAPEG).
Recently, the agricultural domain is facing numerous challenges related to the need to permanently increase productivity, climate change management, crop health monitoring, and irrigation water management, as well as fertilization optimization. To address these constraints, IoT technology is opening up new promising technological paths and pushing the future of agriculture to the next level. Indeed, many advantages are offered by IoT systems for intelligent farming, such as a panoply of sensor networks to optimize irrigation and agricultural inputs management, as well as improvement of the agricultural engine guidance and maintenance. Agricultural sensors implemented in the fields are estimated to reach 12 million by 2023, this revolution of smart devices will provide many remote facilities to manage seeds, irrigation, fertilizers, and early disease detection by collecting real-time data about the field and the environment. We mean by intelligent farming the integration of smartness in the farming processes, not only for the land management but also in the other chain links notably logistics and supply chain, transportation [1, 2, 3, 4], as well as storage. The need for automation in the agricultural domain to overcome the constraints imposed by classical methods of farming became more essential than before. Furthermore, the availability of water in a sufficient quantity and quality has been recently become alarming because of the climate change phenomenon. Consequently, many technological, economical, and social policies have to be implemented according to many recent studies that focused on water management topics [5]. Thanks to the smart and low-cost dedicated sensors, irrigation tasks will be precise and the productivity will be rapidly increased, without ignoring the important contribution in hydrological resources preservation. Traceability of the food supply chain (FSC) is an important key factor to ensure the quality and safety of food transportation and identification in a regulatory manner, as well as protect perishable food against waste. Dairy farming is another farming process that has taken benefits from the integration of information and communication technology in the farming industry, it helps farmers to adopt more accurate practices in dairy management [6] to monitor the heat of oestrus to improve reproduction, as well as the animal health check and monitoring [7].
Highly intelligent farming or high intelligent farming are two concepts that refer to the use of high tech in farming processes to enhance the efficiency of daily work. In fact, using technological innovation in farming is not new, but the rise of some disciplines, such as IoT, fog computing, satellites, drones, smartphones, and Blockchain, are things that will push smart agriculture and precise farming industries to a high level in the coming years. We believe that implementing ICT in the farming world will enable farmers to better understand and interact with their farms by collecting data about changing variables and giving commands according to the situations. All of these technologies will give the ability to the farms to make a big transition from being simple physical environments to highly intelligent and abstract worlds.
Despite the existence of several studies and surveys that introduce the issue of integrating ICT in farming processes, we find that these surveys either focused only on one farming process or do not investigate deep enough this integration. Moreover, investigation of Blockchain technology, its benefits for the farming industry, and its required research to build sustainable development, need to be elaborated. To fill these literature gaps, we propose this survey as one of the most mature studies of its kind that presents a systematic and developed state-of-the-art for integrating ICT in the farming world.
The remainder of this work is further structured as follows: The research methodology is presented in Section 2. Then, the general review of IoT-based systems’ requirements is discussed in Section 3. Next, Section 4 provides the components of an intelligent farming IoT model. After that, the open challenges resulting from IoT-fog computing integration are discussed in Section 5. The applications of Blockchain in intelligent farming and the discussion part are then presented in Section 6. The conclusion and summary are provided in Section 7.
This survey extensively studies the knowledge related to the intelligent farming domain. It inventories and summarizes the integration of ICT in the IF field. The potential of this survey regarding the other works is to evaluate the implementation of Blockchain in the IF topic.
The references related to our research area are collected and filtered, 104 references have been retained based on the following four criteria: (1) High priority was given to recent studies, which means that most of the selected papers were published between 2017 and 2021, and some of them are in press. (2) The timeliness and novelty of the study in the intelligent farming field is another criterion that has been given more priority. (3) The significance to the field and the potential impact on the course of future work in the area of smart farming, were also criteria that have been taken into account while selecting the examined papers. (4) Since the potential of our survey is the evaluation of the applications and benefits of Blockchain technology for the farming industry, we have given more importance to the studies that have explored Blockchain technology within farming environments. A variety of questions that are addressed in this survey can be summarized as follows—(Q1) what type of ICT systems and frameworks are used in the implementation of IF solutions? The answer to this question gives a general study of relevant technologies and protocols adopted in IoT systems as well as fog/edge computing platforms. These technologies represent the basis of many implementations in many fields including intelligent farming, (Q2) is there an IoT model structure that can be adopted to build IF solutions? To answer this question, a five-layer model for intelligent farming is presented, (Q3) how Blockchain technology can be used in the IF domain, and what impact might this have on IF practices improvement? The answer to this question leads us to introduce the most recent novelty of Blockchain usage in the IF domain, as well as the challenges and the needed researches to enrich this debate.
Starting from the examined papers, we have identified several state-of-the-arts, surveys, and reviews, each type of those papers discussed the use of ICT in intelligent farming based on specific ICT disciplines. Some previous surveys focused on the hardware used to implement IF applications, and others covered the integration of IoT with fog/edge technologies to optimize some metrics. Some points are common between our work and others, such as the description of the hardware and protocols adopted in IF systems, and the implementations of IF applications in cloud/fog computing environments. In this work we studied the Blockchain discipline related to the farming domain, this point has not been obviously covered by the other surveys. Table 1 summarizes the comparison between this survey and the other previous works.
Source | Hardware and protocols | Cloud computing | Fog computing | Blockchain |
---|---|---|---|---|
Ratnaparkhi et al. [8] | 🗸 | |||
Tahsien et al. [9] | 🗸 | |||
Hajjaji et al. [10] | 🗸 | 🗸 | ||
Farooq et al. [11] | 🗸 | 🗸 | 🗸 | |
Mekala et al. [12] | 🗸 | 🗸 | ||
Cisternas et al. [13] | ||||
Lova Raju et al. [14] | 🗸 | 🗸 | ||
Shi et al. [15] | 🗸 | 🗸 | 🗸 | |
Muangprathub et al. [16] | 🗸 | 🗸 | ||
Bacco et al. [17] | 🗸 | 🗸 | ||
This survey | 🗸 | 🗸 | 🗸 | 🗸 |
Comparison between this survey and other previous surveys.
In most cases, precision agriculture data are communicated wirelessly between sensors, or between IoT devices and the core using several kinds of communication protocols, these protocols define the rules and the different formats of the communicated data. The secret behind the success of IoT systems is the development of communication protocols [18, 19], such as RFID (Radio Frequency Identification), NFC (Near Field Communication), IEEE 802.11 Wi-Fi, IEEE 802.16 Wi-Max (Worldwide Interoperability for Microwave Access), IEEE 802.15.4 LR-WPAN (Low-Rate Wireless Personal Area Networks), 4G and 5G cellular networks, IEEE 802.15.1 Bluetooth, ZigBee, ANT/ANT+ networks, DASH7, Enocea...).
Unlike the fog computing paradigm, the traditional cloud computing approach is characterized by centralization, high latency, and more network failures. These characteristics among others make cloud computing unsuitable for IoT applications where time and mobility are crucial factors. In the IoT context, fog computing is a new computing approach that helps to distribute the load of processing and make it so close to the sensing layer. One of the solutions that were proposed to accelerate the processing and compensate for the resource limitation of IoT devices is computation offloading. This concept allows devices to fully/partially offload their computation tasks to resource-rich cloud infrastructures [20]. But this solution bypasses only the cloud computing limitations and does not propose a real solution to resolve them. A group of researchers [21] discussed the usefulness of another concept called computation onloading. This concept is based on bringing cloud services to the edge of the network to satisfy the requirements of IoT devices in terms of bandwidth and latency.
Many contributions are proposed to improve the shared characteristics between cloud and fog computing, notably the generated latency between requesting the task execution and receiving the response, the energy consumed during the task processing, the resource management strategy that defines the provided quality of service, the security issue directly linked to the privacy of generated data, the mobility support to ensure the best quality of service to the end devices, the interoperability between smart things, the scalability related to the exponential increase of the number of IoT devices, and finally the bandwidth needed to transmit data from the network of smart objects to the processing center.
The latency generated by the cloud is significantly important, this is an issue for new IoT mobile applications that need real-time responses to their requests. To enhance this characteristic through the fog/edge computing model, Yang et al. [22] developed an offline heuristic algorithm, SearchAdjust, to minimize the average latency for Multiuser Computation Partition Problem (MCPP). In the same context, Yousefpour et al. [23] developed and evaluated a policy to reduce the service delay for IoT devices based on offloading and sharing load approach. In another work, Molina et al. [24] proposed a strategy of uplink/downlink, and edge computational resources allocation in a multi-user scenario to achieve latency and energy efficiency in task processing. Ren et al. [25] investigated the collaboration between cloud computing and edge computing, where the tasks of mobile devices can be partially processed at the edge node and the cloud server. A joint communication and computation resource allocation problem is formulated to minimize the weighted-sum latency of all mobile devices.
Regarding the energy consumption issue, most of the processing tasks are carried out in the cloud computing data centers that increase the quantity of energy needed for query transmission and execution. This consumption is minimized in the fog/edge computing model because the majority of computing tasks are distributed over several end devices or offloaded to the edge mini data centers. In this context, Xiang et al. [26] proposed a policy to efficiently optimize energy in LTE (Evolution Long Term)/Wi-Fi link selection and transmission scheduling, as well as developed an approximate dynamic programming algorithm to reduce energy consumption in the MCC (Mobile Cloud Computing). Ge et al. [27] proposed a game-theoretic strategy to reduce the overall energy dissipation of both mobile devices and cloud servers considering the offloading technique in the MCC system. Chen et al. [28] adopted a game-theoretic approach to propose a multi-user offloading solution for mobile-edge cloud computing, their proposed solution aims to achieve energy efficiency in a multi-channel wireless interference environment.
In the classical cloud computing approach, the efficiency of resources management is less compared to the fog/edge computing approach, this is due to the existence of more sophisticated algorithms that proved their efficiency in resources allocation. In this window, Mostafa et al. [29] proposed an automated fog selection and allocation scheme of task requests by IoT devices. In another work, Jana et al. [30] proposed a QoS (Quality of Service)—aware resource management technique for the efficient management of resources. Souza et al. [31] developed a scheme that combines fog computing and cloud resource allocation. Aazam et al. [32] proposed a user characteristic-based resource management for fog, which performs efficient and fair management of resources for IoT deployments. Delegating data protection to the cloud layer without implementing mechanisms to protect data at the end device level is an inefficient strategy. The best way is to ensure end-to-end data protection, the fog/edge computing model is mainly concerned by this issue compared to the cloud computing approach that focuses on data protection at the cloud level. Das Manik [33] proposed a security protocol for IoT applications based on Elliptic Curve Cryptography (ECC). Hernández-Ramos et al. [34] proposed a new mechanism of lightweight authentication and authorization to be embedded in a smart object based on DCapBAC (Distributed Capability-Based Access Control). Zhang et al. [35] suggested using Ciphertext-policy attribute-based encryption (CP-ABE), which is a recognized cryptographic technique to ensure data confidentiality and provide firm access control.
The majority of IoT devices used in smart cities or smart environments are geographically distributed, mobility of IoT devices and applications should, therefore, be supported by the adopted computing approach. As a result, many works are proposed to enhance the mobility of end devices in the fog/edge model since this characteristic is less present in the traditional cloud computing model. For this purpose, Chaisiri et al. [36] proposed a mobility-aware offloading priority design, it aims to precisely anticipate users’ mobility profiles and channels. In the same context, Prasad et al. [37] proposed an approach for mobility management along with traffic control to offer better users’ QoE (Quality of Experience) with latency-tolerant tasks. Ning et al. [38] constructed a three-layer VFC (Vehicle Fog Computing) model to enable distributed traffic management and minimize the response time of citywide events collected and reported by vehicles.
Interoperability is another important difference between the fog/edge computing model and the cloud computing approach regarding provided smart services. The interoperability requires that all interfaces of cloud-based or fog/edge-based systems are wholly understood. Despite that cloud computing offers more interoperability for some distributed applications, it is difficult to cover smart things applications due to the big heterogeneity of manufacturers and systems. Contrary to cloud computing, fog/edge computing is more open to the end devices and tends to ameliorate the interoperability issue in an IoT system. Starting from this requirement, Jayaraman et al. [39] proposed an OpenIoT platform used for the digital agriculture use case (Phenonet), the OpenIoT enables semantic interoperability. Desai et al. [40] proposed a semantic web permit architecture to afford interoperability among smart things. Ullah et al. [41] proposed a semantic interoperability model for big-data in IoT (SIMB-IoT) to deliver semantic interoperability among heterogeneous IoT devices in the health care domain.
In the traditional cloud computing model, the number of smart supported devices and applications increases at a slow rate oppositely to what happens in fog/edge computing systems. Scalability is an essential feature that defines how resources provisioning is performed and what components can be scaled, notably the storage capacity, the number of fog/edge nodes, the connectivity solutions, and the internal hardware or software of fog/edge nodes. Tseng and Lin [42] designed a mechanism to dynamically scale in/out the serving instances of the middle nodes to make the whole IoT/ M2M (Machine to Machine) platform more scalable using an industrial IoT (IIoT) scenario. Vilalta et al. [43] proposed a new fog computing infrastructure named TelcoFog that can be installed at the edge of the mobile network of the telecom operator to provide several services, such as NFV (Network Function Virtualization) and MEC for IoT applications, the benefits of the proposed infrastructure are dynamic deployment, scalability, and low latency. Gupta et al. [44] proposed a highly distributed service-oriented middleware called SDFog (Software-Defined Fog) based on cloud and fog capabilities as well as SDN (Software-Defined Networking) and NFV to satisfy the required high level of scalability and QoS.
The bandwidth needed to transmit the data collected is closely tied to the generated latency, the biggest amount of data requires more bandwidth to be transmitted to the cloud data centers, which means more latency in the transmission process. Optimizing the bandwidth in a fog/edge environment directly minimizes the delay resulting from the transmission process because the processing resources are located close to the end devices. In this context, Ito et al. [45] proposed a bandwidth allocation scheme based on collectible information. Gia et al. [46] introduced the processing of ECG (electrocardiogram) features using fog nodes, their results disclosed that fog helps to achieve more efficiency in bandwidth and low latency in the data processing. Bhardwaj et al. [21] argued the utility of “onloading” cloud services to the edge of the network to address the bandwidth and latency challenges of IoT networks.
Before deciding to integrate IoT infrastructure in a given smart farming business model, it is first mandatory to understand the components of the IoT model, because this is the best way to analyze business technology compromises, and better define the requirements of the farming process system. Figure 1 illustrates the five layers comprising of the smart farming IoT model, each layer is explained in greater detail below.
The five layers of a smart farming IoT model.
This component is located in the bottom layer of the IoT model, it can also be called the data collection and actuation layer, it is considered as the link between the farm physical world and virtual data management and decision making. Functionally, this layer is responsible for sensing capabilities to gather data about the physical farming variables that we want to measure, as well as take actions to change the environment depending on the scenario of the made decision. In this layer, it is recommended to take into account the hardware characteristics, such as size, cost, useful lifetime, reliability, performances, as well as the scenario of use. Physical sensors existed for a long time before even the emergence of IoT devices, the only difference is that their uses have become more sophisticated and they have been used more ubiquitously. The intelligent farming sensors can be manufactured separately or embedded in a specific one board and dedicated to a particular application. The common applications of sensors are to measure temperature, humidity, geographical position, light and sound sense, and much more.
The farming actuators are the translators of the decision to comprehensive and useful energy capable to change the environment from one condition to another, such as guiding an agricultural engine, changing the temperature, making a movement, or enabling/disabling a pump. Operationally speaking, actuators can take three forms—pneumatic using air pressure, electrical using electrical energy, and hydraulic based on the power of liquids.
This layer represents the point of connection between the physical world and the fog-cloud environment, it defines how an object can be smart by doing local analytics, take simple decisions, or control other devices. This layer enables the “software-defined hardware infrastructure (SDHI)” or “resource desegregation” [47] concept, which is one of the software-defined environment taxonomy. This concept is of great interest today because it considers physical hardware as a modular component offering more flexibility, agility, automation, and optimization in cloud resource allocation. It provides a new pool of resources-based vision and strategy to efficiently manage available hardware resources to serve multiple applications, this offers more programmability to the infrastructure. It exists in literature more similar concepts like virtualization technique [48, 49], Virtual Network Function (VNF) [50, 51], Software-defined cloud (SDCloud) [52, 53]. This layer is important and critical at the same time. Important because it can be used to minimize the hardware complexity, in other words, instead of being stuck in a fixed hardware architecture which is complex and expensive to build in most of the time, it is possible to design generic hardware like Field Programmable Gate Arrays (FPGA) and program it for various scenarios. And critical because it is the only gate through which the data flows from the physical world to cloud or fog environments, thus the definition of an OS (Operating System) that manages the hardware and the running applications is considered a critical task.
In some contexts, this layer is called connectivity, it defines the manner of how data are sent and received between the cloud and the smart devices. The connectivity function has resulted from the combination of two essential elements—protocols and physical hardware used to transmit the signals. In the beginning, RFID is used by the objects to communicate with each other [54] without human intervention. With the emergence of 5G cellular network, a great opportunity is offered to accelerate the IoT systems’ development, particularly with the emergence of the MTC (Machine Type Communication) concept, which is also called machine to machine communication, it refers to automated data communications among devices. According to the 3GPP (3rd Generation Partnership Project), it exists two modes of communications in MTC applications—the first mode can occur between an MTC device and a server, and the second can happen between a network of MTC devices [55]. Choosing the communication mode and protocol is a critical task for IoT project owners. This modeling step defines not only the communication with the cloud but also determines how IoT objects communicate with each other. Many communication technologies can be used, for instance, Bluetooth, ZigBee, Wi-Fi, and optical wireless communication for small coverage areas [56, 57]. Sigfox [58] and LoRa, LoRaWan (Long Range Wide Area Network) [59] have been conceived for a wide coverage area. Moreover, 5G is adopted to enhance all traditional mobile communication performances, and respond to multiple connectivity requirements of IoT applications, such as introducing low latency and reliability.
The heterogeneity in communication protocols as well as the complexity of manufacturers’ models lead us to think about solutions to ensure the interoperability between IoT platforms and services. Consequently, the IoT middleware concept is immerged and many solutions have been proposed. The propositions can be classified into three big families [60]: Actor-based IoT middleware, cloud-based IoT middleware, and service-based IoT middleware. The first proposition of the actor-based middleware project offers an easy deployment in the distributed environments since it uses actor or agent concept, this middleware plays the role of a bridge between IoT devices and cloud services, it first works presciently to correctly receive data from each IoT device. It next sends the collected data to the cloud using HTTP (Hypertext Transfer Protocol) over TCP/IP protocol. The second family enables the terminology of the cloud of things (CoT) that was introduced by Yuriyama et al. [61], it is an enabler that lets us exploit and manage wireless sensors homogeneously without worrying about the manufacturer’s physical complexities. CoT uses cloud capabilities in terms of elasticity of resource provisioning as well as automation, scalability, and cost-effectiveness. Considering this family of IoT middleware, the access of IoT devices to the cloud resources is ensured by the Application Programming Interface (API) of the cloud service provider or through the product vendor’s application, as shown in Figure 2(a).
Cloud-based and service-based IoT middleware.
The last family of IoT middlewares refers generally to the open-source platform named OpenIoT project, the objective behind proposing the SaaS (Sensing as-a-Service) solution is to find an adequate way to extract data from virtual cloud sensors without worrying about the physical architecture of the sensor that was behind the collected data. The architecture of the service-based IoT middleware is given in Figure 2(b).
The most common criteria that is recommended to put in mind while choosing the adequate IoT middleware are stability regarding the application, the deployment mode (open source or commercial), the payment model (by the number of device/messages or using pay as you use mode), the level of security needed (depends on the criticality of the application and the managed data), the hardware compatibility (some commercial IoT Middlewares support the integration of some kind of hardware devices like Arduino and Raspberry), the protocol that the application requires (since it exists multiple types of communication protocols, some of them are open and others are proprietary), and either the middleware platform supports the required analytics or not (it depends on the nature of data that the application need which can be in real-time or historic).
IoT applications produce periodically what we call big data and send them to the backbone to be managed. The challenge for an IoT project manager is to consider many critical factors to conceive the right cloud architecture. This layer should take into account the essential 5 V of big data from the beginning, the 5 V as mentioned in Ref. [62] includes volume, variety, velocity, veracity, and value. The designed cloud architectures for IoT applications take many models depending on the project manager’s perspective.
The model can be SaaS (Software as a Service), the customer in this case, does not have any knowledge about the platform architecture, the client only has a web interface or an API to interact with the provider platform, this model, in general, requires additional fees and the client still stuck in “Vendor lock-in,” this means that more complexity and costs will be charged by the client if for any reason, decides to switch to another service provider.
The second model is PaaS (Platform as a Service), the client in this case has multiple choices of software bricks that can be used on-demand to build IoT applications without worrying about server management. This model provides many bricks for IoT solutions such as device management, storage, connectivity with other IoT fleets, collection, and transmission, as well as some machine learning options for decision-making support. The advantage of this model is the great ability offered by the vendor to the client to customize the IoT applications based on the offered software catalogs. But unfortunately, this can have some additional hidden costs.
The third kind of model is licensed or on-premise. Here, the vendor only makes support available to the client. The client buys software packages and the license, then installs them in his own managed infrastructure. All the maintenance tasks are under the client’s responsibility. The open-source solutions are identical to the licensed model, the only difference is that the software packages are freely available, the solution maintenance is ensured by a community of volunteer developers. In some cases, the maintenance is performed by an enterprise and proposes the solution as a free package, while providing a paid version with other options. The tailor-made feature is another option adopted by many customers, it consists of engaging an external integrator to entirely conceive the IoT solution. In this case, the source code is owned by the application owner, he can use it subsequently to achieve the project evolutivity.
This layer is the most closer to the customer, it is generally used to ensure user-machine interaction, it defines how data is presented to the end-user depending on the user’s requirements. In most cases, this layer is a web-based application. Some users require desktop, mobile, or wearable applications. Practically, the application layer is hosted somewhere in the provider’s cloud to ensure the AAA (Anytime, Anywhere, Application) capability. The most important thing that the IoT solution designer should understand is what the final users attend from the solution, and how this job can be done.
Fog computing provides required resources at the edge of the network to deliver real-time services for demanding applications (e.g, video streaming, gaming, video analytics, and robot-fog interactions [63]). When it comes to IoT data processing on a large scale, we can distinguish between three processing concepts [64], as illustrated in Figure 3.
Available modes of processing for IoT applications.
The serverless function also called Function as a service (FaaS), refers to the simplest processing model where data are present in the input of a black box, the results of processing are then gathered in the output without any session stat. The second processing concept is called batch processing, here, data are processed in small parts and often simultaneously, this type of processing is considered in situations when a large amount of data need to be processed, input data are accessed in batches form, or data need complex processing. The last processing mode is called stream processing, it refers to on-the-fly processing where data are processed online and the results are delivered instantly, this mode of processing is appropriate in case of real-time results are needed. Since IoT applications are diversified and data are generated and sent continuously to fog computing nodes, each processing mode can be adopted for a specific scenario.
It was expected that a huge number of IoT devices will be online shortly, meaning that the amount of generated data will be also colossal. Resource management policy is a determining factor in evaluating the quality of service delivered to IoT devices and applications. This policy depends on many factors such as the nature of the application requiring the resource. If the application allows delay of processing, all its requests are forwarded to the cloud resources to be executed there. But if the application is time-sensitive, all its requests are served by fog computing nodes.
Geo-distribution is one of the primary characteristics of smart devices. An object is most of the time moving from one geographical area to another, this mobility generates delay and packet loss [57]. Fog computing has to provide necessary mechanisms and resources to facilitate fog users’ access at anytime, anywhere, and without any delay or loss, given that devices are highly distributed, handover is a critical mechanism among others that should be taken into account while conceiving and implementing fog computing architecture.
Most IoT devices have resource limitations in terms of communication, storage, and computation. As a direct result, the connected object needs a powerful infrastructure that can provide these requirements within a milliseconds scale. Cloud computing is known for its big latency, which makes it unsuitable for time-sensitive applications. On the other hand, the fog computing challenge is to provide necessary resources at the edge of the network to process data and serve IoT devices’ requests within milliseconds to a few seconds scale. Fog computing serves also the central cloud by sending reports for data visualization purposes [65].
Recently, IoT-generated data may represent the secret of an individual or an industry, indeed, they need to be protected in the transit phase and in-rest. The fog computing paradigm must ensure confidentiality-integrity and availability of data through efficient cryptographic algorithms. The security mechanisms offered by fog have to be light and less resource-consuming to be more adapted to the limited properties of end devices. In another hand, collected data are analyzed and treated locally in fog data centers instead of sending them through the internet to the cloud datacenter, this point helps a lot in data security reinforcement.
The exponential rise of IoT-generated data demands a reliable platform that can manage this huge amount of data. The temporary loss of connection is not an issue in the case of cloud computing scenarios. Whereas, a short loss of connection can lead to disastrous consequences for an autonomous vehicle system or an application impacting citizens’ safety.
This is another big challenge for fog computing, especially after the emergence of software-defined environments such as SDN (Software-Defined Networking), SDHI (Software-Defined Hardware Infrastructures), VNF (Virtual Network Function), virtualization, SDC (Software-Defined Computing), SDI (Software-Defined Infrastructures), SDS (Software-Defined Storage), and others. Implementation of such techniques in fog networking requires a radical change in fog computing infrastructure design. It is not simple as it looks, but once it is done, all the other benefits especially latency minimization are achieved.
By definition, the IoT objects collect and transmit data using wireless connections; fog computing also supports wireless D2D (Device to Device) connectivity, whereby the networks of devices can decrease significantly their energy consumption since a big amount of requests are executed in fog nodes. From another perspective, fog computing contributes to decrease cloud computing energy consumption because most of the IoT requests are onloaded to the border of the network.
This feature is widely required in fog computing infrastructure. The fog data centers need to support the load balancing, agility, and elasticity of runtime, these variables contribute to efficiently control the variation in fog computing workload. This challenge is strongly linked to geo-distribution, since it has been often required for the fog data center to be efficiently geo-distributed, in that way each fog datacenter serves IoT devices existing in its coverage area. The need for scalability is triggered by the instant and high demand for the workload that can be created by IoT devices.
It is obvious that IoT devices are limited in resources point of view, so onloading tasks to the fog layers reduce the computational complexity of IoT devices [66]. From another perspective, the fog/edge computing approach reduces network architecture complexity, as well as decreases the number of points of failures in IoT systems. Integrating ML capability in the fog layer minimizes the complexity of the decision-making process.
IoT architecture is becoming more heterogeneous day after day. A relevant definition of fog computing given by Yi et al. [67] mentioned that “
We mean by Blockchain a digital and distributed ledger that protects the history of any digital asset from any alteration or unauthorized modification, this protection results from the use of hashing, cryptographic techniques, public-private key functions, distributed databases, and processing, as well as consensus algorithms. Blockchain is historically conceived in the creation of Bitcoin [68] by “
The following sub-sections discuss the possible solutions on how Blockchain technology can be used in digital farming and smart agriculture. Each section discusses some of the most relevant platforms adopted in Blockchain use cases upon which IoT-based intelligent farming applications are based. After consulting this sub-section, the reader will discover an obvious complementarity between the use cases, it is up to the implementer of the Blockchain-based application to decide either to combine many use cases in one system or to focus on one use case in its contribution. Figure 4 illustrates the possible seven use cases of Blockchain in IF.
The possible use cases of Blockchain in intelligent farming.
It is difficult for the traditional vision of networks to provide the requirements of IoT-based IF systems notably latency, bandwidth, security, and reliability. A Blockchain-based security architecture proposed to monitor the integrity of IoT collected data by checking and preventing unhallowed alteration that can be caused by DDoS (Distributed Denial of Service) attacks on delivered data [72]. The Blockchain-based solutions for improvement of IoT security in green agriculture cover many areas [73] such as public key infrastructure support [74], machine learning-based systems [75], access control improvement [76, 77], reputation and trust use case [78, 79], amelioration of authentication and identification of IoT objects thanks to the bubble of trust system [80]. The bubble of trust is analogically a private VLAN (Virtual Local Area Network) of sensors, communication between sensors in the same bubble is fully private and secured because it must be validated by the Blockchain network, furthermore, no communication out of this bubble is authorized. Figure 5 shows a proposed scenario on how can Blockchain be applied to secure transactions in an IoT system. When the positioning system collects the location of the smart tractor, a transaction is occurred and is inserted in a new block, the generated block is sent to the other miners for checking the solution used in the mining process. Once the mining solution is validated, the block is addressed to the Blockchain nodes for validation, and stored in the Blockchain once it is verified. This process is fully decentralized and uses cryptography techniques and hashing.
A proposed scenario of a Blockchain-based IoT security optimization application.
Farmers are the weak link in the agri-food production chain, the price they got for their products does not reflect their real provided efforts due to the existence of multiple middle layers of buyers. This issue happens because they lack marketing opportunities, thus their products are not properly marketed, so they do not get the deserved price from the buyers. Thanks to Blockchain technology, farmers can reach more buyers and marketplaces than expected and can fairly discuss the right price of their goods. A decentralized farming approach named KHET is proposed by Paul et al. [81] to slightly reduce this issue, KHET platform enables farmers, companies, and buyers to communicate with each other, and make commitments based on the smart contract without any intermediary. With such a platform, farmers can finance their farming projects without requesting a loan from the bank. Figure 6 illustrates a proposed model of how can farmers make deals fairly with retailers using Blockchain technology. The farmer and the retailers must be registered in the public Blockchain system, each one is identified with a unique identifier, which is its digital wallet address. The deals are made on a dedicated agricultural platform which is channeled with the Blockchain system using a dedicated API, the role of the API is to retrieve and verify farmers’ and retailers’ addresses. The farmers are now able to check and discuss the prices of their products freely and fairly with all interested stakeholders and without a middle-man. If the farmer and the retailer accept the conditions, the smart contract is established and the amount of money can also be transferred from the retailer’s digital wallet to the farmer’s digital wallet using the digital money platform.
A proposed model of agricultural fair pricing application based on Blockchain technology.
To help farmers in their multiple investments and increase productivity, a new governmental subsidies distribution system should be adopted. The classical methods of distributing aids to farmers lack transparency due to information centralization and lack of coordination between agricultural stakeholders. With Blockchain, a decentralized ledger can be built to ensure agricultural information sharing in a secured manner. The digital ledger can be made publically available, thus farmers can see if subsidies go it should be, as well as how much each farmer receives as aid. In this context, Abraham and Santosh Kumar [82] proposed a Blockchain-based system to ensure transparency and reliability of the information in the subsidies system. The scenario proposed in Figure 7 provides a solution to deal with the problem of farmers’ identity management in a multi-collaborators environment, each farmer is identified by a chain code which is a smart contract installed on the peers of the private system of the AD (Agricultural Department), each AD uses a certificate to authenticate the transaction in the public Blockchain system and keep a private validated ledger. When the farmer sends a transaction, it is accepted or refused depending on the rules and the policy described in the chain code. Agricultural departments are interfaced with the Blockchain system to share the information securely with each other using the unique identity of the farmer. When a transaction occurs between one or more AD, it must be validated by the transaction verification system, which is composed of the other agricultural collaborators. According to this scenario, farmers’ information is transparent and reliable for all the agricultural collaborators, Thus, subsidies go to the one who deserves them.
A proposed scenario of single farmer identity management using Blockchain in a multi-collaborators environment.
Smart contract occurs when it is self-managed without middle parties which increases automation and decentralization of the tamper-proof of data, Ethereum Blockchain [83] and Hyperledger Fabric represent an example of platforms that support this kind of technology. They allow developers to implement their Blockchain layer and applications, such as smart contracts, in a decentralized way. The Blockchain-based IF use case enables the final consumers and the partners to have full knowledge about the agricultural product that they want to buy or to retail. The integration of the smart contract with IoT by Umamaheswari et al. [84] helps to build trust between farmers and consumers by providing information about the origin and the environment in which the product is grown and stored, as well as the ability to track the transaction path. Moreover, the implementation of smart contract in the agricultural process improves the CIA (Confidentiality, Integrity, Availability) of data storing method and enable the public to get a trustable license based on the comparison between the products’ stored information in the data private chain and those publically available [85]. Data sharing in the IF environment is one of the major challenges of the distributed and scalable IoT systems, this issue is managed by Ur Rahman et al. [86] through a data-sharing smart contract system with access control capability. The smart contract application is present in models proposed in Figures 6-10.
Farmers work hard and wait for the post-harvest stage, it is difficult for a farmer to imagine any damage in quantity or quality of his produce. Massive quantities of agricultural products are wasted before it reaches the retailer. This big wastage can be avoided by monitoring some environmental parameters in the storage area. Humidity, temperature, and CO2 concentration are some variables that can be tracked using IoT and sensors. Public ledgers using Blockchain allow to share information about the product storage operation between all the chain stakeholders, so big visibility about the product’s history is provided to all interested collaborators. Moreover, combining IoT and sensors to gather information about the inventory, and public ledgers to implement strategies to monitor this information can be a perfect way to manage inventories and logistics flows. Vendor-managed inventories (VMI) is a popular Blockchain-based collaborative inventory management policy, VMI might be founded on the smart contract between manufacturers, vendors, and buyers [87], consequently, each one of those collaborators can build its supply chain strategy and inventory policy management [88]. The proposed architecture in Figure 8 illustrates a Blockchain-based system for product inventory management. Farming, manufacturing, and supply chain processes are authenticated using smart contracts and share the products’ data in the Blockchain system publically available for consumers. All the transactions occurring between the consumer and the other stakeholders are managed and protected by the smart contract, the verified transaction are stored securely in the Blockchain. The consumer can check the information related to the products before ordering them, or track their safety on the farm, in the factory, or during the delivery process.
A proposed scenario of overseeing farm inventory using Blockchain.
Demonstrating the quality of a product in a producer-consumer relationship is the critical weakness of community-supported agriculture [89]. Without transparency and mechanisms of tracking and monitoring in the production process, consumers are unsure about the safety of the goods they buy and receive. The traceability frameworks based on Blockchain technology in the supply chain is an important key feature not only to ensure the security of the on-chain or off-chain encrypted and stored data, but also to overcome the big latency that can be generated when querying databases [90] either by the public community or by the relevant partners. Combining IoT, RFID, and QR (Quick Response) code with Blockchain helps to build powerful supply chain systems to track agricultural food from farmer to retailer and make product information accessible to all users [91]. Figure 9 shows a proposed model for a supply chain enhancement use case. The food information is shared in all the supply chain phases. IoT and sensors collect data related to the environment where the crop is grown, the manufacturing conditions, the shipment and logistic flow, and the retailing environment. The consumer through his mobile application generates a transaction (new command of a product) and checks the product’s shared details. On the other hand, the supplier can make his offer, the smart contract is for protecting the valid transaction between consumer and supplier, as well as storing the new transactions in the Blockchain system.
A proposed model of supply chain enhancement using Blockchain technology.
Modern farming requires the modernization of all its processes including FMS (Farming Management Software), traditional FMS are based on a classical client-server based-approach, this method does not satisfy the growing demand on inputs-outputs as well as enough security level for data protection. With Blockchain technology, more sophisticated and secured systems for supply chain management, smart greenhouse, and livestock are provided, so that farmers and analysts who care about data integrity and uncertainty will not worry anymore about intentional or accidental alterations that can be caused by one of the information flow manipulators. It is expected that the FMS market growth will reach $4.22 Billion by 2025 [92], thanks to the widespread of Blockchain solutions and the wide usage of IoT, sensors, as well as artificial intelligence in the farm management workflow. The model proposed in Figure 10 explains an FMS use case. A secured and decentralized management of the farm’s processes is achieved, the principal role of the smart contract is to authenticate all the decentralized processes and ensure the integrity of the transactions that can be occurred between them. The data gathered in each decentralized process are shared with the public consumers through the public Blockchain system, the consumer can check the origin, the expiry date, and other information related to the warehousing with a simple scan of the QR code of the product. If the consumer is satisfied, he/she can supply orders to the farmers, and the smart contract is established. The farm distributed processes and the consumers’ orders are managed using the FMS decentralized consol.
A proposed Blockchain-based FMS scenario.
An overview of the published literature on the actual status of ICT usage in digital farming, particularly IoT-fog/edge/cloud computing, and Blockchain technologies reveals that most growers are interested in understanding the optimum conditions in open-field and closed-field crop production that results in reducing inputs, and at the same time maximized crop yield and quality. Our previous studies and survey show that some of the trending research topics in this context include (1) development of digital twin models that receives live data from various wireless sensors for improving efficiency of crop production systems [93], (2) adaptation of multi-robot platforms for wireless and IoT data collection [94], (3) health assessment, stress identification, and early disease detection using UAV remote sensing [95], (4) development of soil-test kits that can be mounted on mobile-robots for spontaneous determination of macronutrients in soil [96], (5) yield prediction and yield estimation using model-based and AI algorithms [97, 98, 99], (6) evaluation of crop growth environment prior to the actual cultivation for preventing yield loss (i.e., predictive models that can be leveraged as a part of digital twin) [100], (7) development of virtual orchard models using photogrammetry [101], (8) smart irrigation with solar powered IoT controlled actuators [102], (9) reducing time losses of machinery and increasing their field efficiency by using fleet management software [103], and (10) robotic weeding and harvesting [104, 105]. The success of such systems in our point of view is intimately linked to some important factors like the accuracy and complexity of ML/DL algorithms used to make IF decisions, as well as the availability of enough datasets to train and validate the ML/DL algorithms. From a Blockchain point of view, the horizontal and vertical scalability of IoT systems introduces more complexity in data sharing models within IF systems. The success of Bitcoin, as a result of Blockchain, is proven but the mutual collaboration between Blockchain contributors requires more maturity. Moreover, more efforts and works have to be provided to sensitize the public, the community of regulators, and the contributors about the need to invest in Blockchain development, without forgetting to address the scalability challenge (technologically speaking, it has a direct impact on the number of transactions). Furthermore, farmers in IF ecosystems need to make payments and receive subsidies from the government using cryptocurrency, transactions in this situation are susceptible to be targeted with selfish mining [106]. Blockchain is an open system, any miner can join the chain, and selfish miners can outperform honest miners and then can threaten the security of the transaction. It is a fact that Blockchain frameworks and updates for coding are publicly available, but they often lack the needed level of validation and verification against bugs, security breaches, and errors [107], so new researches and efforts are required in this direction.
Another important needed research is how to achieve interoperability between the Blockchain projects namely cross-chain, or between Blockchain and the exiting data models. The required interoperability in Blockchain enables users to take the full benefits of distributed Blockchain in terms of sharing information smoothly. As the main purpose of Blockchain is to fight against the centralization aspect, a big concern should be given to show how to build a strategy to share agricultural data (known crops diseases and solutions, best practices to increase yield) between farmers’ decentralized ecosystems. The environmental impact of these technologies is always ignored or never addressed. Since sensors and electromagnetic fields generated by gateways are directly interacting with animals, soil, and vegetation, a serious study should be made to evaluate the degree of impact that the waste material of such technologies can have on the environment.
The efficiency and effectiveness of agriculture are driven by machine learning and deep learning techniques, these two mechanisms enable machines to learn and analyze data without even being programmed. ML/DL has emerged simultaneously with the Big data discipline to detect relationships, analyze patterns, and make predictions in farming activities. An example of applying a supervised machine learning algorithm with multiple distance detection sensors for autonomous navigation of a field agent robot is proposed by the SunBot project and shown in Figure 11. This robot is used for health assessment inside berry orchards and to collect data for supporting digital agriculture. Since traditional approaches and methods for farming management do not allow to increase productivity, farms nowadays need to be partially or fully automated using IoT systems to collect data, and ML/DL to make data inspections and drive the decision-making tasks. ML/DL technology helps farmers and scientists to select the appropriate species that respond to specific requirements in terms of diseases resistance, adaptation for specific aquatic or soil conditions, this classification task was quite tedious for farmers or scientists, but with ML/DL, a huge quantity of unorganized data is gathered and analyzed automatically to finally choose which genome is suitable for breeding. In some cases, such as plant health monitoring, it is needed to compare plants according to their colors, leaf morphology, and shapes, in that case, ML/DL can be the solution to perform the fast and accurate classification. In this context, Thaiyalnayaki et al. [108] used SVM to classify soybean diseases, and [109] performed plant leaf diseases classification based on visible symptoms.
Application of machine learning as a knowledge-based control approach for assisted navigation of a four-wheel steering field robot agent. Source: SunBot.de.
Soil management is another farming process that has benefited from ML/DL and IoT technologies, the buried sensors collect real-time data about the underground ecosystems such as temperature and moisture, and transfer them to ML/DL algorithms to estimate the quantity of water needed for irrigation, or evaluate the quantity of nutrients required for optimal growth of crops. Superficial sensors play a major role in measuring temperature, humidity, pressure, evaporation, and evapotranspiration, these climatological and hydrological parameters among others can be used by ML/DL algorithms to estimate exactly how much water is needed to irrigate a given surface area without any wastage. To avoid wastage related to weather forecast uncertainty, Chen et al. [110] used a short-term weather forecasts method to propose an optimal irrigation strategy. Another important role of ML/DL in intelligent farming is the accurate yield prediction in quantity and quality, this prediction can be useful in crop monitoring tasks and market price forecasting. From this vision, many popular ML/DL algorithms are compared in Ref. [111] in terms of three crops yield prediction, they reported good prediction skills of the SVM ML algorithm compared to the other tested ML/DL methods. Traditional methods to control crops diseases widely spread pesticides in all the field, this treatment method leads to wastage and does not ensure the required level of efficiency, as well as harming of environment. Modern farms use computer vision techniques to accurately detect where to apply pesticides, when to apply, how much is needed, and use drones to apply pesticides with high precision. Consequently, more financial benefits are won by the farmer with no environmental side effects. Weeds density detection and treatment are examples of computer vision use case that was applied by [112] to control the area of treatment.
Like crops management monitoring, there is livestock management monitoring, the use of IoT and ML/DL in this farming activity enables farmers to predict the productivity of meets and eggs based on actual or past data. For example, a drone can make a scan of the field and count the number and the position of the cattle. A computer vision system with smart cameras can monitor the mental condition of cows to detect their preferred time of milking or the quantity of feeds they want, as well as the amount of nutrients in their milk using sensors. The visible symptoms detected through computer vision techniques are used to measure animal welfare by monitoring the health conditions of animals, and predicting if a member of the cattle is sick or wants to eat or to drink.
Connectivity, as we said earlier, is an important component in IoT smart systems, this component is a challenging issue in rural environments where cellular network coverage may be absent, or only 2G networks are available, in this kind of cellular network, a limited number of devices can be supported that leads to a lack or reduced performance in data transfer. Nowadays, 3G/4G cellular networks are enough to build usual and smart farming applications. However, to unlock the potentials of IoT systems, two promising connectivity solutions, according to McKinsey Global Institute [113], are expected to be developed, these technologies are being referred to as “advanced” and “frontier.” An example includes IoT-based collision avoidance sensors for autonomous electrical mowers that are capable of transmitting their distance measurement via WiFi and LoRa. While the main communication between different electrical control units (ECU) for such system still relies on CANBUS and the detected distances can be logged on an onboard SD card (Figure 12), but the use of IoT-based ECUs that are independent of GPS and WiFi, provide the operator with LoRa messages for real-time monitoring of the mower status. This approach also makes possible simple switch control of the device in remote areas where WiFi and mobile coverage is not available. The architecture of this system is shown in Figure 12.
Perception system with IoT-based LPWAN sensors for collision avoidance of a robotic mower. Source: SunBot.de.
The advanced connectivity represents the next generation of already existing infrastructures, we mention here the upgrade that is occurring by providers of 4G technology toward 5G, this upgrade offers more improvement in speed, bandwidth, and latency, and the number of supported devices will be increased as well. For now, the evolution of wired connectivity, such as optical fibers, can offer the best performances in terms of latency, bandwidth, and speed especially in the core of the network, or in environments where mobility is not a crucial factor. Not Far from wireless networks, the Wi-Fi Alliance has certified the new standard 802.11ax known as Wi-Fi 6/6Extended, this new connectivity solution offers for devices a wide range of frequency and improved gain of speed that was estimated to achieve 40%, the theoretical speed of the network was estimated to reach 10 Gb/s, the Wi-Fi 6E offers 11 Gb/s as a theoretical speed with larger spectrum channels. These advantages enable IF devices to be connected seamlessly and smoothly, and the number of supported devices will be improved as well. The revolution in connectivity solutions has also been made by short-range technologies (Bluetooth, Wi-Fi, RFID) and low power wide area networks (LPWAN, LoRa, LoRaWan, NB-IoT), these technologies are usually used for tagging, tracking, or identification. These technologies have become more sophisticated and adapted for seamless connectivity in intelligent farming. The frontier connectivity is mostly designed for high mobility systems that need high speed, reliability, security, and minimal latency. Low earth orbit (LEO) and 5G networks are two options that will be developed to satisfy all IoT requirements. LEO constellations provide seamless connectivity services for IoT-based IF systems installed in distributed rural areas, or in zones where the terrestrial network is not available, so satellite coverage is needed. The other option of frontier connectivity is the 5G cellular networks, which promises to combine all the advantages of wired fiber in the air to be more adapted to IoT systems and wireless sensor networks.
In remote areas, it is more adapted to use wireless devices as they allow to cover wider areas, but the energy consumed by these devices and their limited source of energy creates a big challenge that needs to be addressed. Figure 13 shows multiple solar-powered LoRa sensors that have been deployed in different berry orchards in the state of Brandenburg in Germany for IoT monitoring of agricultural parameters (i.e., air and soil temperature, relative humidity, soil moisture, leaf wetness, light condition, and dew-point temperature). The wider area the IF system covers, the more power is consumed, some solutions are proposed to solve this issue, such as photovoltaic panels and the choice of low power consumption sensors. For instance, if BLE or low power consumption devices are used, the coverage area will be reduced because energy consumption will also be reduced, but if a wider communication range is needed, Wi-Fi connectivity can be adopted but energy consumption will be high. Technologies like LPWAN, LoRa, and LoRaWan adopt more efficient energetic strategies and a high communication range. Another connectivity limitation is the wireless signal quality. In remote areas where geographical issues are encountered, the wireless signal may have an attenuation problem because of multiple environmental obstacles or electromagnetic noises that can be introduced. The propagation of wireless signals can also be an issue that can be mitigated by installing signal repeaters or designing more efficient topologies such as mesh. The IoT and WSN systems management is another solution to reduce the connectivity limitations of intelligent farming systems, some of the management best practices are: (1) Designing an optimal size of the sensor network, here the number of sensors and the number of intermediary nodes to reach the gateway are to be considered because this factor impacts the communication range and the latency of data transmission. (2) The calibration of all WSN nodes whether sensors or gateways, this maintenance action improves the lifetime of the battery, especially in devices that operate in a wide range [114]. (3) Using optimized transmission protocols, many protocols are identified in the literature as efficient solutions to optimize transmission tasks, either to save the energy of the battery, to optimize the routing strategy, or to increase the coverage area.
Implementation of multiple solar-powered LoRa sensors in different berry orchards for IoT monitoring of field parameters. Source: SunBot.de.
Other issues that are encountered when designing an IoT-based intelligent farming system are related to interoperability [115], technological development, data heterogeneity management, scalability and flexibility of the system, fault tolerance, complexity of the system and the harsh environment, energetic issue, and the need for professionals to implement and manage the system. The interoperability issue takes four different formats, it can be technical, organizational, semantic, or synthetical, all of these four components are interdependent, but the most common issue is the technical one, this is occurred due to the hardware and software differences between manufacturers, these differences imply heterogeneity in protocols and connectivity standards, so when implementing the IF system, the farmer finds himself in front of many incompatible technical choices that he should manage particularly if there is an already existing system that it has to be taken into account. The integration issue can go beyond hardware compatibility to software conflicts that can create a new challenge of integrating new IoT points with the existing management software or vice-versa. The velocity of technological development is another issue of IoT implementation in IF, the hardware and the software related to IoT systems are evolving rapidly, which leads to the continuous emergence of new efficient frameworks, the upgrade process can be expensive in terms of infrastructure or maintenance. The scalability and flexibility of the IF system measure the level of opening, centralization, ease of integration with other existing systems and platforms, and ability to scale the system in terms of the number of nodes and storage, this issue represents an example of organizational interoperability. We rarely find all the implemented components of the IoT system from the same manufacturer, this technological heterogeneity and the lack of a global standard that unifies the format of data managed by each technology is challenging for the farmer. Some efforts in this context have been made by the Agricultural Industry Electronics Foundation (AEF) to propose the ISOBUS database (actual version is ISO 11783-1:2017) as an attempt to fill the heterogeneity in data format for agricultural machinery, this issue represents an example of semantic interoperability. The fault-tolerance measures the robustness of the designed IF system. When implementing the IoT-based IF system, the farmer is invited to manage all the hardware faults and system errors that can be occurred, the fewer harmful events the system generates, the more reliability the system has. However, farmers need to have particular skills for better management of these damaging events. As we discussed before, the power strategy in IF systems represents a big issue that makes energetic barriers in front of IoT systems implementation and needs to be taken into account. Because the farming system is composed of multiple heterogeneous hardware and software components, the management and the integration tasks could be more or less difficult depending on the level of complexity generated by the adopted topology, the interoperability between the elements of the system, and the opening degree of the adopted technology. In fact, the complexity is not an issue for the farmer only, but the manufacturers also should consider it while designing their products. The reliability and efficiency of the IF system are greatly impacted by the environment where it is deployed, geographical and climatological characteristics such as high temperature, wind speed, heavy rain, and dusty environments can destroy the sensors or can make them totally out of service [116]. Thus, choosing the hardware that resists environmental damages is considered a big responsibility that should be considered when implementing the IoT-based IF system. Figure 14 shows a modular IoT solution with multiple LoRa sensors and gateways that have been custom-built for the SunBot project to withstand harsh field conditions and overcome the issues with WiFi instability. Each sensor is benefitting from multiple transmitters to reduce the probability of signal loss, and multiple gateways to ensure data uploads to the private cloud.
Redundant LoRa sensors with modular accessories and multiple transmitters and gateways to overcome uncertainties and connectivity issues in actual field conditions. Source: SunBot.de.
The interactions between the human and virtual world are increasingly developing day after day, thanks to the widespread connectivity solutions and the ubiquity of connected objects that rapidly become smart. ML/DL also is one of the promising topics that gain recently the big attention of the research community since it capitalizes the efforts made in IoT data management fields and the evolution of Fog/cloud computing paradigms. In this survey, we discussed the IoT-based systems’ requirements and shed light on the components of an intelligent farming IoT model as well as the open challenges resulting from the integration of IoT systems and fog computing technology. We talked later about Blockchain technology, its applications to improve the intelligence and the security of the farming field. From another hand, we discussed the needed researches to apply Blockchain more accurately in the farming domain. This paper is closed with a discussion about the main limitations that the implementation of IoT in intelligent farming is facing. In summary, the significant results of this survey can be summarized in the three following points—(1) this survey investigates the implementation of ICT in farming environments to solve many current serious issues related to management methods. IoT-based applications combined with machine learning are complete solutions to efficiently improve crop yields without wasting too much resources. The second result concerns Blockchain technology that can be integrated with IoT-based farming systems to provide efficient security solutions and build trust between farmers each other, or between farmers and consumers. Furthermore, we enable the reader to discover the seven significant applications of Blockchain in the intelligent farming field to improve security in IoT systems, fair pricing, agricultural subsidies oversight, the smart contract to securely manage the relationships between all the farming stakeholders, farm inventory overseeing, amelioration of supply chain and farm management software. This study also summarizes the open challenges resulting from the integration of IoT with fog/edge mining that creates many research problematics as well as makes the implementation of such solutions in the farming world very challenging tasks. (2) Many previous papers addressed the issue of implementing ICT in farming processes, but this work particularly elaborated the transition from cloud computing to fog/edge computing to serve IoT applications and added the integration of Blockchain in the farming field, its benefits, challenges, and applications. Finally, some recommended researches are needed to concretize the implementation of the proposed Blockchain models and propose another model for each farming activity. From another hand, the development of Blockchain technology requires serious investment efforts to provide a complete legal arsenal for better and safe implementation. (3) Although Blockchain technology is designed to build trust, its implementation in the intelligent farming workflow is still confronting many barriers related to the lack of trust [117] notably regulatory uncertainty (with 48%), lack of trust among users (45%), separate Blockchain systems not working together (41%), inability to scale (21%), intellectual property concerns (30%), and audit-compliance concerns (20%).
IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. We uphold a flexible Copyright Policy, guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Monograph",metaDescription:"IntechOpen aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.",metaKeywords:null,canonicalURL:"/page/publication-agreement-monograph",contentRaw:'[{"type":"htmlEditorComponent","content":"When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\\n\\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\\n\\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\\n\\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\\n\\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\\n\\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\\n\\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\\n\\nAUTHOR'S DUTIES
\\n\\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\\n\\nThe Author agrees to:
\\n\\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\\n\\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\\n\\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\\n\\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\\n\\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\nAUTHOR'S WARRANTY
\\n\\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\\n\\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\\n\\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\\n\\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\nTERMINATION
\\n\\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\\n\\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\\n\\nIntechOpen’s DUTIES AND RIGHTS
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\\n\\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\\n\\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\\n\\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\nMISCELLANEOUS
\\n\\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\\n\\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\\n\\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\\n\\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\\n\\nPolicy last updated: 2018-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'When submitting a manuscript, the Author is required to accept the Terms and Conditions set out in our Publication Agreement – Monographs/Compacts as follows:
\n\nCORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\nSubject to the following Article, the Author grants to IntechOpen, during the full term of copyright, and any extensions or renewals of that term, the following:
\n\nThe foregoing licenses shall survive the expiry or termination of this Publication Agreement for any reason.
\n\nThe Author, on his or her own behalf and on behalf of any of the Co-Authors, reserves the following rights in the Work but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Work as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Author, and any Co-Author, confirms that they are, and will remain, a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Work and all versions of it created during IntechOpen's editing process, including all published versions, is retained by the Author and any Co-Authors.
\n\nSubject to the license granted above, the Author and Co-Authors retain patent, trademark and other intellectual property rights to the Work.
\n\nAll rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the specific approval of the Author or Co-Authors.
\n\nThe Author, on his/her own behalf and on behalf of the Co-Authors, will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Work as a consequence of IntechOpen's changes to the Work arising from the translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits as determined by IntechOpen.
\n\nAUTHOR'S DUTIES
\n\nWhen distributing or re-publishing the Work, the Author agrees to credit the Monograph/Compacts as the source of first publication, as well as IntechOpen. The Author guarantees that Co-Authors will also credit the Monograph/Compacts as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Work.
\n\nThe Author agrees to:
\n\nThe Author will be held responsible for the payment of the agreed Open Access Publishing Fee before the completion of the project (Monograph/Compacts publication).
\n\nAll payments shall be due 30 days from the date of issue of the invoice. The Author or whoever is paying on behalf of the Author and Co-Authors will bear all banking and similar charges incurred.
\n\nThe Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Work worldwide for the full term of the above licenses, and shall provide to IntechOpen, at its request, the original copies of such consents for inspection or the photocopies of such consents.
\n\nThe Author shall obtain written informed consent for publication from those who might recognize themselves or be identified by others, for example from case reports or photographs.
\n\nThe Author shall respect confidentiality during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Author and Co-Authors are confidential and are intended only for the recipients. The contents of any communication may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\nAUTHOR'S WARRANTY
\n\nThe Author and Co-Authors confirm and warrant that the Work does not and will not breach any applicable law or the rights of any third party and, specifically, that the Work contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy.
\n\nThe Author and Co-Authors confirm that: (i) the Work is their original work and is not copied wholly or substantially from any other work or material or any other source; (ii) the Work has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) Authors and any applicable Co-Authors are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) Authors and any applicable Co-Authors have not assigned, and will not during the term of this Publication Agreement purport to assign, any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Author and Co-Authors also confirm and warrant that: (i) he/she has the power to enter into this Publication Agreement on his or her own behalf and on behalf of each Co-Author; and (ii) has the necessary rights and/or title in and to the Work to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licences in this Publication Agreement. If the Work was prepared jointly by the Author and Co-Authors, the Author confirms that: (i) all Co-Authors agree to the submission, license and publication of the Work on the terms of this Publication Agreement; and (ii) the Author has the authority to enter into this biding Publication Agreement on behalf of each Co-Author. The Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each Co-Author.
\n\nThe Author agrees to indemnify IntechOpen harmless against all liabilities, costs, expenses, damages and losses, as well as all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of, or in connection with, any breach of the agreed confirmations and warranties. This indemnity shall not apply in a situation in which a claim results from IntechOpen's negligence or willful misconduct.
\n\nNothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\nTERMINATION
\n\nIntechOpen has the right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Author and/or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Author and/or any Co-Author (being a private individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Author and/or any Co-Author (as a corporate entity) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for, or enters into, any compromise or arrangement with any of its creditors.
\n\nIn the event of termination, IntechOpen will notify the Author of the decision in writing.
\n\nIntechOpen’s DUTIES AND RIGHTS
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen, at its discretion, agrees to publish the Work attributing it to the Author and Co-Authors.
\n\nUnless prevented from doing so by events beyond its reasonable control, IntechOpen agrees to provide publishing services which include: managing editing (editorial and publishing process coordination, Author assistance); publishing software technology; language copyediting; typesetting; online publishing; hosting and web management; and abstracting and indexing services.
\n\nIntechOpen agrees to offer free online access to readers and use reasonable efforts to promote the Publication to relevant audiences.
\n\nIntechOpen is granted the authority to enforce the rights from this Publication Agreement on behalf of the Author and Co-Authors against third parties, for example in cases of plagiarism or copyright infringements. In respect of any such infringement or suspected infringement of the copyright in the Work, IntechOpen shall have absolute discretion in addressing any such infringement that is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\nIntechOpen has the right to include/use the Author and Co-Authors names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Work and has the right to contact the Author and Co-Authors until the Work is publicly available on any platform owned and/or operated by IntechOpen.
\n\nMISCELLANEOUS
\n\nFurther Assurance: The Author shall ensure that any relevant third party, including any Co-Author, shall execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\nThird Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\nEntire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by, or on behalf of, the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (known as the "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of any fraudulent pre-contract misrepresentation or concealment.
\n\nWaiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\nVariation: No variation of this Publication Agreement shall have effect unless it is in writing and signed by the parties, or their duly authorized representatives.
\n\nSeverance: If any provision, or part-provision, of this Publication Agreement is, or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted. Any modification to, or deletion of, a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\nNo partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Author or any Co-Author, nor authorize any party to make or enter into any commitments for, or on behalf of, any other party.
\n\nGoverning law: This Publication Agreement and any dispute or claim, including non-contractual disputes or claims arising out of, or in connection with it, or its subject matter or formation, shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of, or in connection with, this Publication Agreement, including any non-contractual disputes or claims.
\n\nPolicy last updated: 2018-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134178},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11794",title:"Coconut Cultivation",subtitle:null,isOpenForSubmission:!0,hash:"48e1cb42a4162f64cae3a2e777472f21",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11794.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium difficile",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11818",title:"Uveitis",subtitle:null,isOpenForSubmission:!0,hash:"f8c178e6f45ba7b500281005b5d5b67a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11818.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:30},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:14},{group:"topic",caption:"Computer and Information Science",value:9,count:8},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:9},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:83},{group:"topic",caption:"Neuroscience",value:18,count:5},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:24},{group:"topic",caption:"Technology",value:24,count:1}],offset:24,limit:12,total:249},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"607",title:"Mathematical Modeling",slug:"numerical-analysis-and-scientific-computing-mathematical-modeling",parent:{id:"95",title:"Numerical Analysis and Scientific Computing",slug:"numerical-analysis-and-scientific-computing"},numberOfBooks:29,numberOfSeries:0,numberOfAuthorsAndEditors:523,numberOfWosCitations:1302,numberOfCrossrefCitations:708,numberOfDimensionsCitations:1377,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"607",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9923",title:"Modeling and Simulation in Engineering",subtitle:"Selected Problems",isOpenForSubmission:!1,hash:"4b0bacd0e1184b17d25ee58e03fadb6a",slug:"modeling-and-simulation-in-engineering-selected-problems",bookSignature:"Jan Valdman and Leszek Marcinkowski",coverURL:"https://cdn.intechopen.com/books/images_new/9923.jpg",editedByType:"Edited by",editors:[{id:"177759",title:"Associate Prof.",name:"Jan",middleName:null,surname:"Valdman",slug:"jan-valdman",fullName:"Jan Valdman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9427",title:"Model Predictive Control mit MATLAB und Simulink",subtitle:"Model Predictive Control with MATLAB and Simulink",isOpenForSubmission:!1,hash:"775a1f5811434d743c90027f431e9d7d",slug:"model-predictive-control-mit-matlab-und-simulink-model-predictive-control-with-matlab-and-simulink",bookSignature:"Rainer Dittmar",coverURL:"https://cdn.intechopen.com/books/images_new/9427.jpg",editedByType:"Authored by",editors:[{id:"309024",title:"Dr.",name:"Rainer",middleName:null,surname:"Dittmar",slug:"rainer-dittmar",fullName:"Rainer Dittmar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"6438",title:"Recent Trends in Computational Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4dce85cd03f275d548d4b8881fcc0ce0",slug:"recent-trends-in-computational-science-and-engineering",bookSignature:"M. Serdar Çelebi",coverURL:"https://cdn.intechopen.com/books/images_new/6438.jpg",editedByType:"Edited by",editors:[{id:"218460",title:"Prof.",name:"Serdar",middleName:"Mustafa",surname:"Celebi",slug:"serdar-celebi",fullName:"Serdar Celebi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6223",title:"Chaos Theory",subtitle:null,isOpenForSubmission:!1,hash:"fac2355e6108735e443616453ae50a11",slug:"chaos-theory",bookSignature:"Kais A. Mohamedamen Al Naimee",coverURL:"https://cdn.intechopen.com/books/images_new/6223.jpg",editedByType:"Edited by",editors:[{id:"45521",title:"Prof.",name:"Kais A. M.",middleName:null,surname:"Al Naimee",slug:"kais-a.-m.-al-naimee",fullName:"Kais A. M. Al Naimee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5373",title:"Perusal of the Finite Element Method",subtitle:null,isOpenForSubmission:!1,hash:"1bb9070e200d056e410778cf3f36c263",slug:"perusal-of-the-finite-element-method",bookSignature:"Radostina Petrova",coverURL:"https://cdn.intechopen.com/books/images_new/5373.jpg",editedByType:"Edited by",editors:[{id:"118470",title:"PhD.",name:"Radostina",middleName:"Vasileva",surname:"Petrova",slug:"radostina-petrova",fullName:"Radostina Petrova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5149",title:"Empirical Modeling and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"e644de90262c3f61a092a0bd4a8b683a",slug:"empirical-modeling-and-its-applications",bookSignature:"Mamun Habib",coverURL:"https://cdn.intechopen.com/books/images_new/5149.jpg",editedByType:"Edited by",editors:[{id:"12501",title:"Prof.",name:"Dr. Md. Mamun",middleName:null,surname:"Habib",slug:"dr.-md.-mamun-habib",fullName:"Dr. Md. Mamun Habib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5141",title:"Applications from Engineering with MATLAB Concepts",subtitle:null,isOpenForSubmission:!1,hash:"bdc44a3ab8aa8a9b5d9a2b62b6e09c67",slug:"applications-from-engineering-with-matlab-concepts",bookSignature:"Jan Valdman",coverURL:"https://cdn.intechopen.com/books/images_new/5141.jpg",editedByType:"Edited by",editors:[{id:"177759",title:"Associate Prof.",name:"Jan",middleName:null,surname:"Valdman",slug:"jan-valdman",fullName:"Jan Valdman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4730",title:"Wavelet Transform and Some of Its Real-World Applications",subtitle:null,isOpenForSubmission:!1,hash:"4adb45be00eb4a384e30c1e3b4d944e3",slug:"wavelet-transform-and-some-of-its-real-world-applications",bookSignature:"Dumitru Baleanu",coverURL:"https://cdn.intechopen.com/books/images_new/4730.jpg",editedByType:"Edited by",editors:[{id:"105623",title:"Dr.",name:"Dumitru",middleName:null,surname:"Baleanu",slug:"dumitru-baleanu",fullName:"Dumitru Baleanu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2172",title:"Simulated Annealing",subtitle:"Single and Multiple Objective Problems",isOpenForSubmission:!1,hash:"141d2ebbebeea6a78dc4a795e6a09a43",slug:"simulated-annealing-single-and-multiple-objective-problems",bookSignature:"Marcos de Sales Guerra Tsuzuki",coverURL:"https://cdn.intechopen.com/books/images_new/2172.jpg",editedByType:"Edited by",editors:[{id:"146384",title:"Dr.",name:"Marcos Sales Guerra",middleName:null,surname:"Tsuzuki",slug:"marcos-sales-guerra-tsuzuki",fullName:"Marcos Sales Guerra Tsuzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2269",title:"Fourier Transform",subtitle:"Applications",isOpenForSubmission:!1,hash:"eef6992c6b1a91e721958aad15dd33c7",slug:"fourier-transform-applications",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2269.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",middleName:"Mohammed",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1867",title:"Numerical Modelling",subtitle:null,isOpenForSubmission:!1,hash:"2599b8ac8189b5b84556e825e9030422",slug:"numerical-modelling",bookSignature:"Peep Miidla",coverURL:"https://cdn.intechopen.com/books/images_new/1867.jpg",editedByType:"Edited by",editors:[{id:"53706",title:"Dr.",name:"Peep",middleName:null,surname:"Miidla",slug:"peep-miidla",fullName:"Peep Miidla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:29,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"20889",doi:"10.5772/25097",title:"A Unifying Statistical Model for Atmospheric Optical Scintillation",slug:"a-unifying-statistical-model-for-atmospheric-optical-scintillation",totalDownloads:3694,totalCrossrefCites:150,totalDimensionsCites:202,abstract:null,book:{id:"1362",slug:"numerical-simulations-of-physical-and-engineering-processes",title:"Numerical Simulations of Physical and Engineering Processes",fullTitle:"Numerical Simulations of Physical and Engineering Processes"},signatures:"Antonio Jurado-Navas, José María Garrido-Balsells, José Francisco Paris and Antonio Puerta-Notario",authors:[{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas"},{id:"60012",title:"Dr.",name:"José María",middleName:null,surname:"Garrido-Balsells",slug:"jose-maria-garrido-balsells",fullName:"José María Garrido-Balsells"},{id:"60014",title:"Prof.",name:"Antonio",middleName:null,surname:"Puerta-Notario",slug:"antonio-puerta-notario",fullName:"Antonio Puerta-Notario"},{id:"61792",title:"Prof.",name:"José Francisco",middleName:null,surname:"Paris",slug:"jose-francisco-paris",fullName:"José Francisco Paris"}]},{id:"6932",doi:"10.5772/7220",title:"Adaptive Neuro-Fuzzy Systems",slug:"adaptive-neuro-fuzzy-systems",totalDownloads:7032,totalCrossrefCites:61,totalDimensionsCites:81,abstract:null,book:{id:"3746",slug:"fuzzy-systems",title:"Fuzzy Systems",fullTitle:"Fuzzy Systems"},signatures:"Azar, Ahmad Taher",authors:null},{id:"30443",doi:"10.5772/38267",title:"Robust Principal Component Analysis for Background Subtraction: Systematic Evaluation and Comparative Analysis",slug:"robust-principal-component-analysis-for-background-subtraction-systematic-evaluation-and-comparative",totalDownloads:4928,totalCrossrefCites:42,totalDimensionsCites:56,abstract:null,book:{id:"1917",slug:"principal-component-analysis",title:"Principal Component Analysis",fullTitle:"Principal Component Analysis"},signatures:"Charles Guyon, Thierry Bouwmans and El-hadi Zahzah",authors:[{id:"116308",title:"Dr.",name:"Thierry",middleName:null,surname:"Bouwmans",slug:"thierry-bouwmans",fullName:"Thierry Bouwmans"},{id:"117835",title:"Mr.",name:"Charles",middleName:null,surname:"Guyon",slug:"charles-guyon",fullName:"Charles Guyon"},{id:"138159",title:"Dr.",name:"El-Hadi",middleName:null,surname:"Zahzah",slug:"el-hadi-zahzah",fullName:"El-Hadi Zahzah"}]},{id:"52266",doi:"10.5772/64892",title:"Problems of Hierarchical Modelling and hp-Adaptive Finite Element Analysis in Elasticity, Dielectricity and Piezoelectricity",slug:"problems-of-hierarchical-modelling-and-hp-adaptive-finite-element-analysis-in-elasticity-dielectrici",totalDownloads:1620,totalCrossrefCites:5,totalDimensionsCites:50,abstract:"In this chapter, we consider theoretical and implementation difficulties in application of the hierarchical modelling and hp-adaptive finite element approach to elasticity, dielectricity and piezoelectricity. The main feature of the applied methodology is its generalizing character which is reflected by application of the same or analogous algorithms to three mentioned physical problems, including multi-physics problem of piezoelectricity, simple and complex physical description as well as simple and complex geometries. In contrast to the most common approaches dealing with a single physical phenomenon, described by a single physical model, within a single geometrical part, this chapter presents the ideas which brake and overcome such a simplicity. This presented chapter generalizes author’s hitherto accomplishments, in hierarchical models and hp-approximations of linear elasticity, onto dielectricity and piezoelectricity. The same refers to error estimation and adaptivity control. In this context, the main similarities and differences of three physical problems are of interest in this work.",book:{id:"5373",slug:"perusal-of-the-finite-element-method",title:"Perusal of the Finite Element Method",fullTitle:"Perusal of the Finite Element Method"},signatures:"Grzegorz Zboiński",authors:[{id:"186284",title:"Prof.",name:"Grzegorz",middleName:null,surname:"Zboinski",slug:"grzegorz-zboinski",fullName:"Grzegorz Zboinski"}]},{id:"30012",doi:"10.5772/38538",title:"PCA – A Powerful Method for Analyze Ecological Niches",slug:"pca-a-powerful-method-to-analyze-the-ecological-niche-",totalDownloads:4751,totalCrossrefCites:18,totalDimensionsCites:50,abstract:null,book:{id:"2310",slug:"principal-component-analysis-multidisciplinary-applications",title:"Principal Component Analysis",fullTitle:"Principal Component Analysis - Multidisciplinary Applications"},signatures:"Franc Janžekovič and Tone Novak",authors:[{id:"117831",title:"Prof.",name:"Novak",middleName:null,surname:"Tone",slug:"novak-tone",fullName:"Novak Tone"},{id:"117840",title:"Prof.",name:"Janžekovič",middleName:null,surname:"Franc",slug:"janzekovic-franc",fullName:"Janžekovič Franc"}]}],mostDownloadedChaptersLast30Days:[{id:"51312",title:"Digital Image Processing with MATLAB",slug:"digital-image-processing-with-matlab",totalDownloads:6868,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"The chapter relates to the Image Processing Toolbox in MATLAB. We learn about its general information and some examples will be solved using it. After finishing this chapter, you can use MATLAB Image Processing Toolbox and write script for processing of images.",book:{id:"5141",slug:"applications-from-engineering-with-matlab-concepts",title:"Applications from Engineering with MATLAB Concepts",fullTitle:"Applications from Engineering with MATLAB Concepts"},signatures:"Mahmut Sinecen",authors:[{id:"178216",title:"Dr.",name:"Mahmut",middleName:null,surname:"Sinecen",slug:"mahmut-sinecen",fullName:"Mahmut Sinecen"}]},{id:"36434",title:"Hilbert Transform and Applications",slug:"hilbert-transform-and-applications",totalDownloads:34636,totalCrossrefCites:9,totalDimensionsCites:16,abstract:null,book:{id:"2269",slug:"fourier-transform-applications",title:"Fourier Transform",fullTitle:"Fourier Transform Applications"},signatures:"Yi-Wen Liu",authors:[{id:"114081",title:"Prof.",name:"Yi-Wen",middleName:null,surname:"Liu",slug:"yi-wen-liu",fullName:"Yi-Wen Liu"}]},{id:"52382",title:"Finite Elements Method in Implant Prosthetics",slug:"finite-elements-method-in-implant-prosthetics",totalDownloads:1551,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"This chapter is devoted to the study of behavior of functional loadings for implant prosthetics rehabilitation by finite elements method (FEM). It presents a numerical calculation of stress, displacement, and strain in implant and surrounding bone, which is used to assess risk factors from a biomechanical point. The masticatory forces are simulated by axial and/or non-axial loads, and they are responsible for the biomechanical response of the bone-tissue-implant-crown system. This chapter represents an analysis of this response in view of highlighting the factors involved in implant stability and success. The safety factor for different loading cases is calculated as well. A good agreement with other study results and clinical studies is obtained.",book:{id:"5373",slug:"perusal-of-the-finite-element-method",title:"Perusal of the Finite Element Method",fullTitle:"Perusal of the Finite Element Method"},signatures:"Iulia Roateşi",authors:[{id:"187359",title:"Associate Prof.",name:"Iulia",middleName:null,surname:"Roatesi",slug:"iulia-roatesi",fullName:"Iulia Roatesi"}]},{id:"66501",title:"Reactive Distillation: Modeling, Simulation, and Optimization",slug:"reactive-distillation-modeling-simulation-and-optimization",totalDownloads:2594,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Chemical process industries deal with production which further utilizes reaction followed by separation of the reaction mixtures. Reactive distillation is a new technique of combination of both reaction and separation in a single unit beneficial for equilibrium-limited reactions and also cost-effective. This makes it a highly complex process because many parameters involved in both reaction and separation are interactive in nature. In this chapter, modeling, simulation, and optimization of reactive distillation are presented. Methyl acetate production via reactive distillation is chosen as a case study. The results are compared for both experimental and simulation studies. The synthesis of methyl acetate was carried out in a packed RDC by catalytic esterification using acetic acid and methanol as reactants in a pilot-scale experimental setup. A strong acidic ion exchange catalyst, Amberlyst-15, was used to enhance the rate of heterogeneous esterification reaction. The result obtained was observed with change in various variables including the reflux ratio (RR), distillate-to-feed (D/F) ratio, and bottom-to-feed (B/F) ratio with respect to product composition. The optimization and sensitivity analysis was carried out using Aspen Plus process simulation software.",book:{id:"8256",slug:"distillation-modelling-simulation-and-optimization",title:"Distillation",fullTitle:"Distillation - Modelling, Simulation and Optimization"},signatures:"Vandana Sakhre",authors:[{id:"216887",title:"Dr.",name:"Vandana",middleName:null,surname:"Sakhre",slug:"vandana-sakhre",fullName:"Vandana Sakhre"}]},{id:"71973",title:"Semiconductor Device Modeling and Simulation for Electronic Circuit Design",slug:"semiconductor-device-modeling-and-simulation-for-electronic-circuit-design",totalDownloads:1034,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"This chapter covers different methods of semiconductor device modeling for electronic circuit simulation. It presents a discussion on physics-based analytical modeling approach to predict device operation at specific conditions such as applied bias (e.g., voltages and currents); environment (e.g., temperature, noise); and physical characteristics (e.g., geometry, doping levels). However, formulation of device model involves trade-off between accuracy and computational speed and for most practical operation such as for SPICE-based circuit simulator, empirical modeling approach is often preferred. Thus, this chapter also covers empirical modeling approaches to predict device operation by implementing mathematically fitted equations. In addition, it includes numerical device modeling approaches, which involve numerical device simulation using different types of commercial computer-based tools. Numerical models are used as virtual environment for device optimization under different conditions and the results can be used to validate the simulation models for other operating conditions.",book:{id:"9923",slug:"modeling-and-simulation-in-engineering-selected-problems",title:"Modeling and Simulation in Engineering",fullTitle:"Modeling and Simulation in Engineering - Selected Problems"},signatures:"Samira Shamsir, Md Sakib Hasan, Omiya Hassan, Partha Sarathi Paul, Md Razuan Hossain and Syed K. Islam",authors:null}],onlineFirstChaptersFilter:{topicId:"607",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11478",title:"Recent Advances in the Study of Dyslexia",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",hash:"26764a18c6b776698823e0e1c3022d2f",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 30th 2022",isOpenForSubmission:!0,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:2},{group:"subseries",caption:"Cell Physiology",value:11,count:8}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:739,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null},{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. from Integral University, Lucknow, India, with his work titled ‘Development and evaluation of silymarin nanoformulation for hepatic carcinoma’. Currently, he is an Assistant Professor of Pharmaceutics, at the Faculty of Pharmacy, Integral University. He has been teaching PharmD, BPharm, and MPharm students and conducting research in the novel drug delivery domain. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than twenty-four original journal articles, two edited books, four book chapters, and several scientific articles to his credit. He is a member of the American Association for Cancer Research, the International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"333824",title:"Dr.",name:"Ahmad Farouk",middleName:null,surname:"Musa",slug:"ahmad-farouk-musa",fullName:"Ahmad Farouk Musa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333824/images/22684_n.jpg",biography:"Dato’ Dr Ahmad Farouk Musa\nMD, MMED (Surgery) (Mal), Fellowship in Cardiothoracic Surgery (Monash Health, Aust), Graduate Certificate in Higher Education (Aust), Academy of Medicine (Mal)\n\n\n\nDato’ Dr Ahmad Farouk Musa obtained his Doctor of Medicine from USM in 1992. He then obtained his Master of Medicine in Surgery from the same university in the year 2000 before subspecialising in Cardiothoracic Surgery at Institut Jantung Negara (IJN), Kuala Lumpur from 2002 until 2005. He then completed his Fellowship in Cardiothoracic Surgery at Monash Health, Melbourne, Australia in 2008. He has served in the Malaysian army as a Medical Officer with the rank of Captain upon completing his Internship before joining USM as a trainee lecturer. He is now serving as an academic and researcher at Monash University Malaysia. He is a life-member of the Malaysian Association of Thoracic & Cardiovascular Surgery (MATCVS) and a committee member of the MATCVS Database. He is also a life-member of the College of Surgeons, Academy of Medicine of Malaysia; a life-member of Malaysian Medical Association (MMA), and a life-member of Islamic Medical Association of Malaysia (IMAM). Recently he was appointed as an Interim Chairperson of Examination & Assessment Subcommittee of the UiTM-IJN Cardiothoracic Surgery Postgraduate Program. As an academic, he has published numerous research papers and book chapters. He has also been appointed to review many scientific manuscripts by established journals such as the British Medical Journal (BMJ). He has presented his research works at numerous local and international conferences such as the European Association for Cardiothoracic Surgery (EACTS) and the European Society of Cardiovascular Surgery (ESCVS), to name a few. He has also won many awards for his research presentations at meetings and conferences like the prestigious International Invention, Innovation & Technology Exhibition (ITEX); Design, Research and Innovation Exhibition, the National Conference on Medical Sciences and the Annual Scientific Meetings of the Malaysian Association for Thoracic and Cardiovascular Surgery. He was awarded the Darjah Setia Pangkuan Negeri (DSPN) by the Governor of Penang in July, 2015.",institutionString:null,institution:{name:"Monash University Malaysia",country:{name:"Malaysia"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}}]}},subseries:{item:{id:"28",type:"subseries",title:"Animal Reproductive Biology and Technology",keywords:"Animal Reproduction, Artificial Insemination, Embryos, Cryopreservation, Conservation, Breeding, Epigenetics",scope:"The advances of knowledge on animal reproductive biology and technologies revolutionized livestock production. Artificial insemination, for example, was the first technology applied on a large scale, initially in dairy cattle and afterward applied to other species. Nowadays, embryo production and transfer are used commercially along with other technologies to modulate epigenetic regulation. Gene editing is also emerging as an innovative tool. This topic will discuss the potential use of these techniques, novel strategies, and lines of research in progress in the fields mentioned above.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11417,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"90066",title:"Dr.",name:"Alexandre",middleName:"Rodrigues",surname:"Silva",slug:"alexandre-silva",fullName:"Alexandre Silva",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRt8pQAC/Profile_Picture_1622531020756",institutionString:null,institution:{name:"Universidade Federal Rural do Semi-Árido",institutionURL:null,country:{name:"Brazil"}}},{id:"176987",title:"Ph.D.",name:"María-José",middleName:"Carrascosa",surname:"Argente",slug:"maria-jose-argente",fullName:"María-José Argente",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9vOQAS/Profile_Picture_1630330499537",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"321396",title:"Prof.",name:"Muhammad Subhan",middleName:null,surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/321396/images/system/321396.jpg",institutionString:null,institution:{name:"University of Agriculture",institutionURL:null,country:{name:"Pakistan"}}},{id:"183723",title:"Dr.",name:"Xiaojun",middleName:null,surname:"Liu",slug:"xiaojun-liu",fullName:"Xiaojun Liu",profilePictureURL:"https://mts.intechopen.com/storage/users/183723/images/system/183723.jpg",institutionString:null,institution:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80168",title:"Benzimidazole: Pharmacological Profile",doi:"10.5772/intechopen.102091",signatures:"Mahender Thatikayala, Anil Kumar Garige and Hemalatha Gadegoni",slug:"benzimidazole-pharmacological-profile",totalDownloads:83,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80130",title:"Exploring the Versatility of Benzimidazole Scaffolds as Medicinal Agents: A Brief Update",doi:"10.5772/intechopen.101942",signatures:"Gopakumar Kavya and Akhil Sivan",slug:"exploring-the-versatility-of-benzimidazole-scaffolds-as-medicinal-agents-a-brief-update",totalDownloads:62,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79964",title:"The Anticancer Profile of Benzimidazolium Salts and Their Metal Complexes",doi:"10.5772/intechopen.101729",signatures:"Imran Ahmad Khan, Noor ul Amin Mohsin, Sana Aslam and Matloob Ahmad",slug:"the-anticancer-profile-of-benzimidazolium-salts-and-their-metal-complexes",totalDownloads:95,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79835",title:"Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside",doi:"10.5772/intechopen.101702",signatures:"Kashif Haider and Mohammad Shahar Yar",slug:"advances-of-benzimidazole-derivatives-as-anticancer-agents-bench-to-bedside",totalDownloads:128,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{title:"Infectious Diseases",id:"6"},selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/151986",hash:"",query:{},params:{id:"151986"},fullPath:"/profiles/151986",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()