Use of microorganisms for bioaccumulation of metal ions.
Water plays an important role in the world economy. Majority (71%) of the Earth’s surface is covered by water, but fresh water constitutes a miniscule fraction (3%) of the total. Water fit for human consumption is obtained from the fresh water bodies. Approximately, 70% of the fresh water goes to agriculture. This natural resource is becoming scarce at many places and its unavailability is a major social and economic concern [1]. Though access to safe drinking water has improved over the last few decades, it is estimated that five million deaths per year are caused due to consumption of polluted drinking water or drought. In many developing countries, 90% of all wastewater still goes untreated into the fresh water bodies making it unfit for human consumption, which either leads to scarcity or affects the human population [2]. The concern to protect fresh water bodies for a healthy population is a challenge in recent times.
\nIndustrialization to a larger degree is responsible for the contamination of environment especially water where lakes and rivers are overwhelmed with a large number of toxic substances. Heavy metals are reaching hazardous levels when compared with the other toxic substances [3]. Heavy metals are a unique group of naturally occurring compounds. Their continuous release leads to overconsumption and accumulation. As a result, people around the globe are exposed to adverse consequences of these heavy metals. Many industries (fertilizers, metallurgy, leather, aerospace, photography, mining, electroplating, pesticide, surface finishing, iron and steel, energy and fuel production, electrolysis, metal surface treating, electro-osmosis, and appliance manufacturing) discharge waste containing heavy metals either directly or indirectly into the water resources [4]. Toxic heavy metals, which are of concern, are chromium (Cr), lead (Pb), zinc (Zn), arsenic (As), copper (Cu), nickel (Ni), cobalt (Co), cadmium (Cd), mercury (Hg), and so on. As these metals are not biodegradable, they tend to accumulate in the living organisms and lead to various diseases and disorders which ultimately threaten human life. They can cause ill health, even when present in the range of parts per billion (ppb) [5]. Biosorption has emerged as an attractive option over conventional methods for the removal of heavy metal ions from effluents discharged from various industries which ultimately reach and pollute fresh water bodies. This chapter reports the toxicity of heavy metals, the advantages of biosorption, various biosorbents used for the removal of metal ions, effect of immobilization and modifications of biosorbents, various factors affecting the process of biosorption, different bioreactors used in biosorption, and the application of biosorption for the removal of metal ions from various wastewaters like industrial effluents and contaminated water resources. The recent advances, current status, and future of the process are discussed.
\nThe pathway of exposure for heavy metals is mainly through inhalation, dermal contact, and ingestion. The individual metal exhibits its own specific signs of toxicity [6]. The severity of health effects is dependent on time and dose, the type of heavy metal, and its chemical form. The nature of effect may be toxic, mutagenic, neurotoxic, teratogenic, or carcinogenic [6]. Many studies reported that heavy metals affect cell organelles and interact with cell components causing cell damage and apoptosis. Even at a low level of exposure, they induce multiple organ damage. Intoxication of heavy metals also leads to damage to the major systems in the body and may lead to an increased risk in developing cancers [7]. Metal ion pollution is highly persistent, and most of them are nonbiodegradable. The presence of various heavy metals such as chromium (Cr), lead (Pb), zinc (Zn), arsenic (As), copper (Cu), nickel (Ni), cobalt (Co), cadmium (Cd), and mercury (Hg) causes disturbances in circulatory, gastrointestinal, and nervous systems. They also affect various organs and lead to blindness, deafness, brain damage, loss of fertility, cancer, and many other severe health problems that ultimately cause death of the individual [7, 8, 9].
\nHeavy metals like nickel, copper, zinc, cadmium, chromium, lead, and mercury are major pollutants that affect the fresh water reservoirs due to the discharge of large amounts of metal-contaminated wastewater from industries. Because of their persistent, non-biodegradable, and toxic nature, they accumulate in the environment such as in the food chain and cause serious health disorders. Over the last few decades, many conventional treatment methods have been used for the removal of heavy metals from contaminated wastewaters. The commonly used methods include chemical precipitation, ultra-filtration, ion exchange, reverse osmosis, electro winning, and phytoremediation, and they are introduced briefly [10, 11, 12, 13, 14].
\nBesides these conventional methods, techniques like coagulation/flocculation [21], electrocoagulation [22], electro-floatation [23], and electro-deposition [24] have been used for the removal of heavy metals from contaminated water resources. However, all the above-mentioned technologies are associated with various disadvantages like incomplete metal removal, generation of sludge, high reagent and energy requirements, and aggregation of metal precipitates and fouling of the membranes.
\nIn view of the disadvantages associated with conventional methods for metal removal, there is a need for alternative, cost-effective technologies. In recent years, biosorption/bioaccumulation processes have been considered as novel, economic, efficient, and eco-friendly alternative treatment technologies for the removal of heavy metals from contaminated wastewaters generated from various industries.
\nBioaccumulation is a metabolism-mediated active process in which the metal ions accumulate the biosorbent intracellularly in the living cells. The process occurs in two steps: the first step is the adsorption of metal ions onto cells, which is quick and identical to biosorption, and the later step is slower which includes the transport of metal species inside the cells by active transport [25]. Unlike biosorption, it is an irreversible, complex process which depends on the metabolism of the cells. The process of bioaccumulation occurs by cultivating the biomass of a microorganism in the vicinity of the metal to be accumulated. Since the solution contains the growth medium, the organism begins its metabolic processes and activates the intracellular transport systems for the accumulation of the sorbate. However, the major limitation of the process is that the nutritive medium for growth of the microorganism contains organic carbon sources [26, 27]. Bioaccumulation is an active process which requires a living biosorbent and is mediated by the metabolism of the microorganism used. The process operates by cultivating the microbe in the presence of a metal ion which has to be removed. Part of the biosorbate accumulates inside the cell which enables the biomass to increase and bind greater amounts of metal ions. The organisms which are capable of resisting high loads of metal ions are best suited for accumulating metal species. They do not possess any mechanisms for hindering the accumulation of metal ions in large quantities [28]. They may possess special mechanisms for synthesizing special intracellular binding regions rich in thiol groups as a response to metal ions in their surviving environment. It was found that morphology and physiology of the cell changes upon increase in concentration of the metal ion to be accumulated [29]. Efficient bioaccumulation can be achieved by selecting the microbes that are screened from polluted environments [30].
Biosorbent type | \nMetal ion | \nUptake capacitya (mg/g) | \nReference | \n
---|---|---|---|
Cu (II) | \n20 | \n[29] | \n|
Pb (II) | \n172.25 | \n[33] | \n|
Cu (II) | \n93.65 | \n||
Cr (VI) | \n34.5 | \n[34] | \n|
32 | \n|||
Cr (III) & (VI) | \n11.3, 3.3 | \n[35] | \n|
Zn (II), Cd (II), Cu (II) | \n22.1, 0.75, 0.2 | \n[36] | \n|
Zn (II), Cd (II), Cu (II) | \n24.3, 0.37, 0.95 | \n||
Zn (II), Cd (II), Cu (II) | \n71.5, 0.83, 0.25 | \n
Use of microorganisms for bioaccumulation of metal ions.
Since the process of bioaccumulation is achieved with the living organisms, the uptake capacity was determined with the wet weight of the biosorbent.
Hypothesis of different mechanisms of biosorption. M+: heavy metal ions, C: chelating agents, BE: molecules with exchangeable ions, BM: molecules with metal ions, Tp: transport protein.
Biosorption can be defined as a simple metabolically passive physicochemical process involved in the binding of metals ions (biosorbate) to the surface of the biosorbent which is of biological origin [25]. Biological removal includes the use of microorganisms, plant-derived materials, agriculture or industrial wastes, biopolymers, and so on. It is a reversible rapid process involved in binding of ions onto the functional groups present on the surface of the biosorbent in aqueous solutions by means of various interactions rather than oxidation through aerobic or anaerobic metabolism [37]. The advantages of this process include are simple operation, no additional nutrient requirement, low quantity of sludge generation, low operational cost, high efficiency, regeneration of biosorbent, and no increase in the chemical oxygen demand (COD) of water, which are otherwise the major limitations for most of the conventional techniques [27]. Biosorption can remove contaminants even in dilute concentrations and has special relevance with respect to heavy metal removal owing to toxicity at ppb levels. Microorganisms (live and dead) and other industrial and agriculture byproducts can be used as biosorbents for the process of biosorption.
\nThe first stage in biosorption is that biosorbent should be suspended in the solution containing the biosorbate (metal ions). After incubation for a particular time interval, equilibrium is attained. At this stage, the metal-enriched biosorbent would be separated [27]. The process of biosorption is advantageous because it is reversible, does not require nutrients, a single-stage process, of quick range, has no danger of toxic effects and cellular growth, allows intermediate equilibrium concentration of metal ions, and is not controlled by metabolism [26].
\nBiosorption capacity (mg/g) of the biosorbent can be defined as the amount of biosorbate (metal ions) biosorbed per unit weight of the biosorbent and can be expressed by using the following mass balance equation:
\nThe percent biosorption (R%) known as biosorption efficiency for the metal was evaluated from the following equation:
\nwhere qe is the amount of adsorbed metal ions of the adsorbent (mg g−1), Ci is the initial concentration of metal ion in the solution (mg L−1), Ce is the equilibrium concentration of metal ion in the solution (mg L−1), V is the volume of the medium (L), and m is the amount of the biomass used in the adsorption process (g).
\nThe mechanism of biosorption is a complex process which involves the binding of sorbate onto the biosorbent. Many natural materials can be used as biosorbents which involve the binding of metal ions by physical (electrostatic interaction or van der Waals forces) or chemical (displacement of either bound metal cations (ion exchange) or protons) binding, chelation, reduction, precipitation, and complexation (refer Figure 1). Biosorbents contain chemical/functional groups like amine, amide, imidazole, thioether, sulfonate, carbonyl, sulfhydryl, carboxyl, phosphodiester, phenolic, imine, and phosphate groups that can attract and sequester metal ions. The key factors controlling and characterizing these mechanisms are [38, 39]:
the chemical, stereochemical, and coordination characteristics of metal ions like molecular weight, ionic radius, and oxidation state of the targeted metal species;
properties of the biosorbent, that is, the structure and nature (in case of microorganism—living/non-living);
type of the binding site (biological ligand)
the process parameters like pH, temperature, concentration of sorbate and sorbent, and other competing metal ions; and
availability of the binding sites.
The combined effects of the above parameters influence the metal speciation (the formation of new forms of metal as a result of biosorption).
\nIt is defined as the formation of a complex by the association of two or more species. Mononuclear (monodentate) complexes are formed between the metal ion and the ligands in which the metal atom occupies the central position. Polynuclear (multidenate) complex is formed by more than one metal ion in the center and the metal atom may carry a positive, negative, or neutral charge depending on the number of binding ligands involved. The complex formation to the monodentate ligand is more preferable than multidentate because the latter contains multiple ligands which may lead to multiple species binding. The metal ion interacts with the ligands by covalent bonds. The attenuated total reflection infrared spectral (ATR-IR) analysis of
It refers to the process in which a chelating agent binds to the metal ion at more than one place at a time in order to form a ring structure and the complex is known as chelate. Mostly polydentate ligands participate in the reaction to form stable structures by multiple bonding. An increase in binding sites of the ligand increases the stability of the structure. Chelates are more stable than complexes because of multiple binding with the metal ion in more than one place. Rice straw was used as a potential biosorbent for the removal of Cd (II) from the effluent. The biosorbed Cd (II) chelates with the functional groups such as C=C, C–O, and O–H and carboxylic acids which are present on the surface of the biosorbent [44]. A similar mechanism of biosorption was reported in the removal of Cr (III) and Cu (II) by carboxyl and hydroxyl groups present on the surface of soybean meal waste [45].
\nThe metal atom in the complex is bound to its immediate neighbors by a coordinate covalent bond by accepting a lone pair of electrons from the non-metal atom. The non-metal atom is known as the donor (coordinating atom) and the metal atom which accepts the electron pair is known as the acceptor. Compounds having such types of bonds in their structure are known as coordinate compounds. Some examples of coordinating groups are =O, –NH2, –NH, –N=, –OH, –S–, –O–R, and =NOH.
\nIon exchange is an important concept in biosorption which involves the exchange of binary metal ions during biosorption with the counter-ions present on the surface of the biosorbent. Most of the purification process works on the mechanism of ion exchange. Ion exchange can take place either by cation or anion exchange. Carboxyl groups can be a good example of cation exchangers while amino/imidazole groups represent anion exchangers. The process of biosorption of Cr (III), Cd (II), and Cu (II) by
The metal ions form precipitates with the functional groups present on the surface of the microbial cells and remain intact or penetrate into the microbial cell. Most cases involve the formation of insoluble inorganic metal precipitates. Organic metal precipitates may be formed when microbial cells are used. Most of the extracellular polymeric substances excreted by the microbes are involved in the formation of organic precipitates. Precipitation of Cu (II) onto
In this process, the metal interacts with the functional groups like carboxyl, gets reduced, and leads to the growth of crystals. Elements like gold and palladium have been obtained by the process of reduction. The metal gets reduced once it binds to the biosorbent at discrete places. Removal of toxic hexavalent chromium can be done by the process of reduction. Many organisms remove Cr (VI) by reduction to Cr (III) by biosorption from the aqueous solution [50, 51, 52].
\nThe mechanism of biosorption can be studied using different techniques. The acidic and basic properties of the functional groups that are present on the material surface and ion exchange properties can be determined by Boehm method or potentiometric titration [53]. Fourier transform infrared spectrometry (FTIR) offers important information about the functional groups that are present on the surface of biosorbents like carboxyl, amino, amide, hydroxyl, sulfate, carbonyl, ether, ester, and the nature of the bond that are involved in biosorption [54]. Scanning electron microscope (SEM) is a powerful technique for qualitative evaluation of the structure and morphological changes of the biosorbent before and after metal biosorption. Energy dispersive X-ray (EDX) technique provides valuable information about the availability of various elements on the surface of the biosorbent. X-ray photoelectron spectroscopy (XPS) is a quantitative spectroscopic technique for analyzing the surface chemistry of the biosorbent, that is, electronic state and empirical formula of the elements present and oxidative state of the biosorbed metal ion [55].
\nIdentification of biosorbents for the process of biosorption is a major challenge. It is desirable to develop/obtain biosorbents with the capacity to bind/uptake metal ions with greater affinities [56]. A wide variety of materials available in nature can be used as biosorbents for the removal of metals from contaminated water resources. Any kind of plant, animal, and microbial biomass and their derivatives; plant, industrial and agriculture wastes; and byproducts discharged from various industries can be employed as biosorbents. It is important to select a biosorbent from the large spectrum of available materials. The desired characteristics of an ideal biosorbent are [56]:
high affinity for metals (biosorption capacity)
low economic values (low cost)
availability in large quantities
easy desorption of the adsorbed metal ions and possible multiple reuse of the biosorbent
The use of different materials as biosorbents is explained in detail:
\nLow-cost materials from different industries have been used for the treatment of wastewater. Many industries, especially food industries, dispose large quantities of waste and byproducts. The cost for disposal is sometimes challenging. Using these zero-cost industrial wastes as effective biosorbents for treating wastewater effluents can solve the dual problem (waste disposal and effluent treatment) [57]. Waste byproducts produced from different industries, that is, steel, aluminum, paper, fertilizer, food, mining, and pharmaceuticals, can be used as biosorbents. It is estimated that the use of biosorbents from industrial waste will grow at an annual rate of 5% [58]. Table 2 summarizes the type and source of the biosorbent, type of biosorbate targeted, and maximum biosorption capacity/biosorption efficiency of various industrial biosorbents.
\nType of biosorbent | \nSource of biosorbent | \nBiosorbate | \nBiosorption capacity/efficiency (mg/g or %) | \nIsotherm model | \nFunctional groups involved | \nMechanism | \nReference | \n
---|---|---|---|---|---|---|---|
Tea industry waste | \nLocal tea factory | \nCr (VI) | \n54.65 mg/ga* | \nLangmuir | \n-OH, -SO3, C-O, -CN | \n\n | [59] | \n
Sugar industry waste (bagasse) | \nFood canning processes | \nCd (II), Fe (II) | \n96.4%, 93.8%a* | \n\n | \n | \n | [60] | \n
Peach and apricot stones | \nJuice and jam industry | \nPb (II) | \n97.64%, 93%a* | \nLangmuir | \n\n | \n | [61] | \n
Antibiotic waste | \nAntibiotic production complex | \nCationic dye (Basic blue 41) | \n111 mg/ga* | \nFreundlich | \n\n | Ion exchange or complexation | \n[62] | \n
Sludge | \nPaper mill | \nNi (II), Cu (II), Pb (II), Cd (II) | \n13.7, 13.9, 14.1, 14.8 mg/ga* | \nFreundlich | \n\n | Ion exchange and physic-chemical adsorption | \n[63] | \n
Waste green sands | \nIron foundry industry | \nZn (II) | \n10.0 mg/ga* | \nFreundlich | \n\n | \n | [64] | \n
Fly ash | \nCement industry | \nPb | \n22 mg/ga* | \n\n | \n | Precipitation | \n[65] | \n
Use of industrial byproducts for biosorption of metal ions.
Indicates the dry weight of the biosorbent, *Indicates batch biosorption experiments at laboratory scale.
A great deal of interest in the removal of pollutants from wastewaters has focused on the use of agricultural waste/byproducts as biosorbents. Agricultural wastes especially those with high percentage of cellulose and lignin contains polar functional groups like amino, carbonyl, alcoholic, phenolic, and ether groups having high potential for metal binding [66]. These groups donate a lone pair of electrons and form complexes with metal ions in the solution [67]. Due to their unique chemical composition (the presence of hemicellulose, lipids, lignin, water hydrocarbons, simple sugars, and starch having a variety of functional groups) and availability, the use of agro-wastes seems to be a viable option for heavy metal remediation. Grapefruit peel was reported to biosorb cadmium and nickel with a biosorption capacity of 42.09 and 46.13 mg/g from aqueous solutions. Equilibrium data showed the better fit with the Freundlich isotherm model with the ion exchange mechanism. FTIR analysis showed that the carboxyl and hydroxyl groups are mainly involved in the biosorption of metal ions [68]. The bark powder of
Type of biosorbent | \nBiosorbate | \nBiosorption capacity/efficiency (mg/g or %) | \nIsotherm model | \nFunctional groups involved | \nMechanism | \nReference | \n
---|---|---|---|---|---|---|
Rice husk | \nNi (II) | \n51.8%a* | \nLangmuir and Freundlich | \n–OH, C=O, C–H | \n\n | [70] | \n
Cabbage, cauliflower waste | \nPb (II) | \n60.57, 47.63 mg/ga* | \nLangmuir | \n-OH, C=O | \nchemisorption | \n[71] | \n
Sugarcane bagasse | \nNi (II) | \n2 mg/ga* | \nLangmuir | \n\n | Ion exchange | \n[72] | \n
Papaya wood | \nCd (II), Cu (II), Zn (II) | \n97.8%, 94.9%, 66.8%a* | \nLangmuir | \n\n | \n | [73] | \n
Green coconut shell (powder) | \nCr (III), Cr (VI), Cd (II), | \n90%, 86%, 99%a* | \nFreundlich | \n\n | Ion exchange | \n[74] | \n
Wheat shell | \nCu | \n99%a* | \nLangmuir | \n\n | \n | [75] | \n
Peanut hull | \nCu | \n12 mg/ga* | \nLangmuir | \n\n | Ion exchange | \n[76] | \n
Barley straws | \nCu, Pb | \n4.64, 23.20 mg/ga* | \nLangmuir | \n\n | Chemisorption and ion exchange | \n[77] | \n
Neem bark | \nPb | \n86.7%a* | \nFreundlich | \nO–H, C–O, N–H, C–N, C–O, S–O | \nIon exchange | \n[78] | \n
Iris peat | \nCu (II), Ni (II) | \n17.6, 14.5 mg/ga* | \nLangmuir | \n\n | \n | [79] | \n
Date pit | \nCu (II),Cd (II) | \n35.9, 39.5 mg/ga* | \nFreundlich | \n–C=C, –C=N | \nHydrogen bonding and electrostatic attraction | \n[80] | \n
Cassava peelings | \nCu (II), Cd (II) | \n127.3, 119.6 mg/ga* | \nLangmuir | \n\n | Ion exchange | \n[81] | \n
Use of agricultural wastes for biosorption of metal ions.
Indicates the dry weight of the biosorbent, *Indicates batch biosorption experiments at laboratory scale.
Microorganisms capable of tolerating unfavorable conditions evolved their use as biosorbents in the removal of metal ions from wastewaters. They include bacteria, yeast, algae, and fungi. Experiments focused on the use of dead and or living microorganisms offer options for the type of remediation to perform [82]. However, the use of dead microbial biomass for the binding of metal ions has been preferred over living biomass because of the absence of the requirement of nutrients and monitoring BOD and COD in effluents. Hence, the use of dead biomass is economical [83]. These biosorbents can effectively sequester metal ions in the solution and decrease the concentration from the ppm to ppb level efficiently; therefore, they are considered as ideal candidates for the treatment of complex wastewaters with high volume and low concentration of metal ions [84]. A large quantity of materials of microbial origin has been investigated as biosorbents for the removal of metal ions extensively [85]. Reports do not include the use biomass of any pathogens for water treatment. Most of the microbial groups are composed of a large number of functional groups which indicate their potential as biosorbents. Some studies which identified the functional groups involved in the biosorption of metal ions are given in Table 4.
\nThe use of algae as a biosorbent has received focus due to the scarce requirement of nutrients, high sorption capacity, plentiful availability, high surface area to volume ratio, less volume of sludge to be disposed, and the potential for metal regeneration and recovery. They are considered as both economic and ecofriendly solutions for wastewater treatment [92]. Different groups of algae differ in the composition of the cell wall. The cell wall of brown algae mainly contains three components: cellulose (structural support), alginic acid (a polymer of mannuronic and guluronic acid with its corresponding salts), and sulfated polysaccharide with high contents of carboxyl groups that are involved in the process of the biosorption of metals. Red algae have received attention for biosorption due to the presence of sulfated polysaccharide made of galactans (having high contents of hydroxyl and carboxyl groups). Green algae contain cellulose with a high percentage of protein bound to polysaccharides which contain many functional groups like amino, sulfate, hydroxyl, and carboxyl [93]. Hence several authors focused on the removal of metal ions using algal biomass from contaminated water resources. It has been reported that algae can biosorb about 15.3–84.6% which is higher compared to the other microbial biosorbents [94]. The biosorption capacity of green algal species,
Biosorbent | \nBiosorbate | \nFunctional groups | \nReference | \n
---|---|---|---|
Cu (II) | \nAmino, carboxyl, phosphate | \n[86] | \n|
Pb (II) | \n–COO, –C–O, –NH, –C=O, –OH | \n[87] | \n|
As (III) | \nCarboxyl, hydroxyl, amide | \n[88] | \n|
Cd (II) | \nCarboxyl, amino, hydroxyl | \n[89] | \n|
Ni (II) | \nCarboxyl, phosphate, amide, hydroxide, thiol | \n[90] | \n|
Au (III) | \nAmino, carboxyl, hydroxyl | \n[91] | \n
Functional groups of microbial biomass involved in biosorption of metals.
Biosorbent type | \nMetal ion | \nBiosorption capacity/efficiency (mg/g or %) | \nIsotherm model | \nFunctional groups involved | \nMechanism | \nReference | \n
---|---|---|---|---|---|---|
Cr (VI) | \n32.63 mg/ga* | \nFreundlich | \n\n | Ion exchange | \n[97] | \n|
Cd (II) | \n35.72 mg/ga* | \nLangmuir | \nAmido, hydroxyl, C=O, C–O | \nchemisorption | \n[98] | \n|
Cu (II) | \n90.6%a* | \n\n | \n | \n | [99] | \n|
Ni | \n40.9 mg/ga* | \nLangmuir and Freundlich | \n–OH, –CH, C=O, –CN, =C–N | \n\n | [90] | \n|
Ar (III) | \n57.48 mg/ga* | \nLangmuir | \nCarboxyl, hydroxyl, amide | \nIon exchange | \n[88] | \n|
Cu | \n67.93 mg/ga* | \n\n | \n | \n | [100] | \n|
Cr (VI) | \n33.8 mg/ga* | \nLangmuir | \n–NH, C=O, C–O, –S=O | \nIon exchange and complexation | \n[101] | \n|
42.6 mg/ga* | \n||||||
Pb (II), Cu (II), Cd (II) | \n50, 32.5, 46.2 mg/ga* | \nFreundlich | \n\n | \n | [102] | \n|
Pb (II), Cu (II) | \n46.51, 14.71 mg/ga* | \nLangmuir | \n\n | Physical adsorption or ion exchange | \n[95] | \n|
Zn (II) | \n91.5 mg/g* | \n\n | \n | \n | [37] | \n|
Pb (II) | \n140 mg/ga* | \nLangmuir | \nCarboxyl, amino, amide, hydroxyl | \n\n | [103] | \n|
Cr (VI) | \n60%a* | \n\n | Amino and carboxyl | \nChemisorption and Ion exchange | \n[51] | \n
Algal biomass used for biosorption of metals.
Indicates the dry weight of the biosorbent, *Indicates batch biosorption experiments at laboratory scale.
THE cell surface structure plays a vital role in biosorption. The cell wall of bacteria is primarily made up of peptidoglycan. Different species of bacteria can be classified based on cell wall composition. Two major types of bacteria are present. Gram-positive bacteria contain thick peptidoglycans bridged by amino acids. The teichoic acids present in the cell wall are linked with the lipids of the cytoplasmic membrane by forming lipoteichioc acids which are responsible for strong bonding with the membrane. The presence of phospodiester bonds between the teichoic acid monomers gives an overall negative charge and hence are involved in the biosorption of divalent cations (metal ions). Gram-negative bacteria have a thin cell wall containing a less amount of peptidoglycan. However, the presence of an additional outer layer composed of phospholipids and lipopolysaccharides confers an overall negative charge facilitating metal binding [104]. Most bacteria develop many resistance mechanisms and efficient systems for the removal of metal ions for their survival. Some bacteria produce slime or a capsule-like layer on the surface of cell wall. These are mostly composed of polysaccharides which are charged and help to detoxify metal ions from wastewaters [105]. Because of their high surface to volume ratio and high content of potential active sorption sites, bacteria make excellent biosorbents for sequestering metal ions form industrial effluents.
Biosorbent type | \nMetal ion | \nBiosorption capacity/efficiency (mg/g or %) | \nIsotherm model | \nFunctional groups involved | \nMechanism | \nReference | \n
---|---|---|---|---|---|---|
Zn (II) | \n66.6 mg/ga* | \nLangmuir and Freundlich | \nAmino, carboxyl, hydroxyl, carbonyl | \nPhysic-chemical adsorption and ion exchange | \n[108] | \n|
Pb (II) | \n28.06 mg/ga* | \nLangmuir | \n\n | \n | [109] | \n|
Cu (II) | \n140.9 mg/ga* | \nLangmuir | \n–NH2, –OH, –C=O | \nchemisorption | \n[110] | \n|
Fe (II), Zn (II) | \n100%, 90%a* | \n\n | Carboxyl and hydroxyl | \n\n | [111] | \n|
Cr (II) | \n39.9 mg/g* | \n\n | \n | \n | [112] | \n|
Ni (II) | \n15.7%a* | \nLangmuir | \n\n | \n | [113] | \n|
Cu (II), Pb (II) | \n27.3, 210.1 mg/g* | \nLangmuir | \n\n | \n | [114] | \n|
Ni (II) | \n6.9 mg/gb* | \nRedlich-Peterson | \nC–H | \nIon exchange | \n[115] | \n|
Zn | \n17.7 mg/ga* | \n\n | \n | \n | [116] | \n|
Cu (II) | \n32.64 mg/ga* | \nLangmuir | \n\n | \n | [117] | \n|
Cr (VI), Fe (II), Cu (II) | \n95%, 52%, 32%b* | \n\n | \n | \n | [118] | \n|
Cd (II), Co (II) | \n135.3, 167.5 mg/ga* | \nLangmuir | \n\n | \n | [119] | \n
Bacterial biomass used for biosorption of metals.
Indicates the dry weight of the biosorbent; bIndicates the wet weight of the biosorbent; *Indicates batch biosorption experiments at laboratory scale.
Fungi are also considered as economic and ecofriendly biosorbents because of characteristic features, that is, easy to grow, high yield of biomass, and ease of modification (chemically and genetically) [120]. The cell wall of fungi shows excellent binding properties because of distinguishing features like chitin, lipids, polyphosphates, and proteins among different species of fungi [121]. The cell wall of fungi is rich in polysaccharides and glycoproteins which contain various metal-binding groups like amines, phosphates, carboxyls, and hydroxyls. The fungal organisms are used in a wide variety of fermentation processes. Hence, they can be easily produced at the industrial level for biosorption of metal ions from a large volume of contaminated water resources. Besides, the biomass can be easily and cheaply obtained from inexpensive growth media or even as byproducts from many fermentation industries. Further, fungi are less sensitive to the variations in nutrients and other process parameters like pH, temperature, and aeration [122]. Because of their filamentous nature, they are easy to separate by means of simple techniques like filtration.
\nYeasts are unicellular. Most of the yeast biomass either biosorb a wide range of metals or strictly are specific to a single metal ion.
Biosorbent type | \nMetal ion | \nBiosorption capacity Biosorption capacity/efficiency (mg/g or %) | \nIsotherm model | \nFunctional groups involved | \nMechanism | \nReference | \n
---|---|---|---|---|---|---|
As (III), Hg (II), Cd (II), Pb (II) | \n26.4, 54.8, 102.7, 213.2 mg/ga* | \n\n | \n | \n | [126] | \n|
Ni | \n82.5 mg/ga* | \n\n | \n | \n | [127] | \n|
Cu (II) | \n9.53 mg/gb* | \n\n | \n | \n | [128] | \n|
As (III), Hg (II), Cd (II), Pb (II) | \n35.6, 70.4, 110.4, 252.8 mg/ga* | \nLangmuir | \n\n | \n | [129] | \n|
Cd (II), Zn (II), Pb (II) | \n52.50, 65.60, 76.90 mg/ga* | \nRedlich-peterson and Langmuir | \n\n | Chemical ion exchange | \n[130] | \n|
Pb (II), Ni (II), Cr (VI) | \n270.3, 46.3, 32.6 mg/ga* | \nLangmuir | \n\n | Physical adsorption | \n[131] | \n|
Cr (VI) | \n18.9 mg/ga* | \nLangmuir | \nC–O, N–H, C–H | \nPhysic-chemical adsorption | \n[132] | \n|
Cr (VI) | \n20.71%b* | \n\n | –COOH, –NH2 | \n\n | [133] | \n|
Cu (II) | \n180 mg/ga* | \nFreundlich | \n\n | \n | [134] | \n|
Ni (II), Pb (II) | \n55.9, 53.6 mg/gb* | \n\n | \n | Ion exchange | \n[135] | \n|
Cu (II), Ni (II), Zn (II), Cr (VI) | \n8.06, 20.4, 3.22, 10.75 mg/ga* | \nLangmuir | \n–COOH, –NH2 | \nIon exchange, surface complexation and electrostatic interaction | \n[121] | \n|
Ni (II) | \n212.5 mg/ga* | \nLangmuir | \nCarboxyl, hydroxyl, amine | \nPhysico-chemical interaction | \n[136] | \n
Fungal biomass used for biosorption of metals.
Indicates the dry weight of the biosorbent; bIndicates the wet weight of the biosorbent; *Indicates batch biosorption experiments at laboratory scale.
Since the process of biosorption relies on the number and availability of functional groups on the surface of the biosorbent, modification by changing the surface characteristics can greatly influence the capacity of biosorbent used for the removal of metal ions [137]. Microbial-derived biosorbents are amenable for modification in order to increase the available binding sites and enhance the biosorption capacity leaving low residual metal concentration. A number of methods have been employed for surface modification of microbial biomass. The physical methods of pretreatment include heating, autoclaving, freeze drying, thawing, and lyophilization. Various chemical methods used for the pretreatment include acid or alkali treatment, washing with detergents, treatment with organic chemicals such as formaldehyde, sodium hydroxide, dimethyl sulfoxide, and cross-linking with organic solvents [3]. Physical- or chemical-treated microbial biomass show altered properties of metal biosorption compared to the original biomass. If the biomass is large in size, they are grounded into fine granules and are treated further for efficient biosorption [8]. The characteristic feature of pretreatment is to modify the surface groups either by removing or masking or by exposing the greater number of binding sites [3]. It is also observed that the longer duration of pretreatment can further enhance the biosorption capacity.
Type of biosorbent | \nType of treatment | \nMetal ions | \nBiosorption capacity/efficiency (mg/g or %) | \nIsotherm model | \nFunctional groups involved | \nMechanism | \nReference | \n
---|---|---|---|---|---|---|---|
Ethanol | \nCd (II), Pb (II) | \n15.63 and 17.5 mg/ga* | \nLangmuir | \n\n | \n | [140] | \n|
Supercritical CO2, autoclaving | \nNi (II) | \n98.54%, 99.2%a* | \n\n | Carboxyl, phosphate amino, hydroxyl | \n\n | [141] | \n|
Heat, NaOH, detergent Gulteraldehyde | \nPb (II), Cu (II) Ni | \n127%, 106%, 95%, 162% 72%a* | \n\n | \n | \n | [142] | \n|
0.5 N NaOH | \nPb (II). Cd (II), Ni (II), Zn (II) | \n66%, 76%, 189%, 120%a* | \n\n | \n | \n | [143] | \n|
Acid and alkali | \nCr | \n100%a* | \nLangmuir and Freundlich | \nAmino, carboxyl, phosphate, hydroxyl, carbonyl | \nPhysical adsorption, ion exchange, complexation, electrostatic attraction | \n[144] | \n|
0.5 N NaOH | \nPb (II), Ni (II) | \n80%, 60%a* | \n\n | \n | \n | [145] | \n|
DMSO | \nPb (II) | \n30.6 mg/ga* | \nRedlich- Peterson | \nN–H, C–H, C=O, COO– | \nIon exchange | \n[146] | \n|
Alkali | \nCr (III), Ni (II), Zn (II) | \n27.2, 19.2, 24.5 mg/ga* | \n\n | Amino, carboxyl, hydroxyl | \n\n | [147] | \n|
Acetic acid | \nCr, Ni | \n84.60%, 83.10%a* | \n\n | \n | \n | [148] | \n
Use of chemically modified (treated) biosorbents for the biosorption of metals.
Indicates the dry weight of the biosorbent, *Indicates batch biosorption experiments at laboratory scale.
A major consideration for any biosorption is the separation of solid and liquid phases. Centrifugation and filtration are the routinely used techniques but not recommended at the industrial level. A continuous system with the biosorbent attached to a suitable bed is advantageous [149]. The use of free microbial cells as a biosorbent in continuous system is associated with many disadvantages such as the difficulty in separation of biomass, loss of biosorbent after regeneration, low strength, and little rigidity [150]. Microbial biomass can be immobilized by using a biopolymeric or polymeric matrix. The technique of immobilization is a key element that improves the performance of the biosorbent by increasing the capacity, improving mechanical strength and resistance to chemicals, and facilitating easy separation of biomass from a solution containing pollutants [151]. The process of immobilization is well suited for non-destructive recovery. Immobilization of the biosorbent into suitable particles can be done by using techniques like entrapment (in a strong but permeable matrix) or encapsulation (within a membrane-like structure) [152]. A number of matrices have been employed for immobilization including sodium or calcium alginate, polyacrylamide, silica, polysulfone, and polyurethane. It is very important to use a suitable immobilization matrix since it determines the mechanical strength and chemical resistance of the biosorbent particle targeted for biosorption while the matrix should be cheap and feasible to operate [153]. The use of an immobilized biosorbent is also associated with some disadvantages like increase in the cost of the biosorbent and an adverse effect on the mass transfer kinetics. This is because immobilization reduces the number of binding sites that are accessible to metal ions as majority of the sites are embedded within the bead [154]. The live and heat-inactivated
Immobilized matrix | \nType of biosorbent | \nMetal biosorbed | \nIsotherm model | \nFunctional groups involved | \nMechanism | \nReference | \n
---|---|---|---|---|---|---|
Silica | \nCr, Cu, Zn, Cd | \n\n | \n | \n | [156] | \n|
Ni (II) | \nLangmuir | \nC–O, –C–S | \n\n | [157] | \n||
Polyurethane | \nPb (II), Cu (II), Cd(II) | \n\n | \n | \n | [158] | \n|
Reactive yellow 2 | \nRedlich-peterson | \n\n | Chemisorption | \n[159] | \n||
Polyacrylamide | \nU | \nFreundlich | \n\n | \n | [160] | \n|
Au | \nLangmuir | \n\n | \n | [161] | \n||
Calcium alginate | \nPb (II) | \nFreundlich | \n\n | \n | [162] | \n|
Cd (II) | \nLangmuir and Freundlich | \n\n | \n | [163] | \n||
Sepiolite | \nFe (II, III) | \n\n | \n | \n | [164] | \n
Various immobilization matrixes used with biomass for biosorption of metals.
In order to keep the process costs down and for recovery of valuable metal ions after the biosorption, it is crucial for regeneration of the biosorbent [152]. The primary objective of desorption is to retain the adsorption capacity of the biosorbent. The process of desorption should be such that the metal can be recovered in the concentrated form (in case of metals of economic value), and the biosorbent needs be restored to the original state with undiminished biosorption capacity for reuse [8]. Hence an appropriate eluent for desorption should meet the following requirements [112]
low cost;
environment friendly;
non-damaging to the biomass; and
ensure intact metal-binding capacity.
The possible eluents are dilute mineral acids (HCl, H2SO4 and HNO3), organic acids (citric, acetic and lactic acids), and complexing agents (EDTA, thiosulphate, etc.) for the recovery of the biosorbent and metal recovery. Desorption efficiency can be determined by the S/L ratio, that is, solid to liquid ratio. The solid represents the biosorbent and liquid represents the eluent (volume) applied. For complete elution and to make the process economical, high S/L values are desirable [3]. Although, desorption is considered advantageous, in some instances, a loss in the capacity of the biosorbent to retain the desired metal ion has been reported. The metal Cr (VI) was desorbed almost completely from the
Type of biosorbent | \nType of eluent | \nMetal ion | \n% of desorption | \nIsotherm model | \nFunctional groups involved | \nMechanism | \nNumber of cycles | \nReference | \n
---|---|---|---|---|---|---|---|---|
0.1 M HNO3 | \nCr, Cd, Cu | \n98 | \nLangmuir | \nCarboxyl, phosphate, hydroxyl, amine | \nIon exchange | \n\n | [46] | \n|
0.1 N NaOH | \nCr | \n90% | \nFreundlich | \nCarboxyl, amide, phosphate, hydroxide | \nChemisorption | \n\n | [166] | \n|
0.1 N HNO3, 0.1 N NaOH | \nCu (II) | \n80% | \n\n | \n | \n | \n | [167] | \n|
0.01 mol/L HCl, HNO3 | \nCd (II), Pb (II) | \n100%, 57% | \nLangmuir | \n\n | \n | Four | \n[168] | \n|
0.1 M H2SO4 | \nZn | \n99% | \nFreundlich | \n\n | \n | Five | \n[169] | \n|
0.5 N H2SO4 | \nCr | \n\n | \n | \n | Redox reaction | \n\n | [50] | \n|
0.1 M HCl | \nNi (II), Mn (II) | \n92.8%, 90% | \nFreundlich | \n\n | Physical adsorption | \nThree | \n[170] | \n|
HNO3 | \nPb (II), Cd (II), Ni (II), Zn (II) | \n90% | \n\n | \n | \n | Five | \n[171] | \n
Use of different eluents for desorption of metal ions.
Various factors influence the biosorption process namely, biomass concentration, initial metal concentration, and operational factors like pH, temperature, concentration of the initial metal ion, and concentration of the biosorbent.
\nThe pH of the solution is an important factor since it influences the metal chemical speciation, solubility, and the total charge of the biosorbent [82]. At low pH (acidic pH), the hydronium ions are closely associated with the active ligands of the biosorbent and therefore, there exists a competition between the protons and metal ions for the binding sites [172]. At higher pH, there exists lower number of H+ ions, and the number of active sites of the functional groups is free and exposed (negative charge) which results in increased biosorption by attracting positive charged metal ions. At higher pH, the metal might begin to precipitate and form hydroxides and as a consequence hinder the biosorption process [108]. The increase in pH from 1 to 4 increased the biosorption of Cr (VI) from wastewaters by
Temperature deals with the thermodynamics of the process and kinetic energy of the metal ions [82]. The temperature can have a positive or negative effect on biosorption at certain intervals. An increase or decrease in temperature causes a change in the biosorption capacity of the biosorbent. High/increasing temperature enhances the biosorptive removal of biosorbates but it is associated with the limitation of structural damage to the biosorbent [38]. Hence, optimum temperature for efficient biosorption has to be chosen for the maximum binding of metal ions. In this context, a maximum biosorption of 86% for cadmium ions was achieved with
The mass transfer resistance between the liquid and solid phases can be overcome by the initial concentration of metal ion [175]. The biosorption capacity (quantity of biosorbed metal ions per unit weight of the biosorbent) of the biosorbent increases initially with the increase in metal ion concentration and then reaches a saturation value. However, the biosorption efficiency of the biosorbent decreases with increase in metal ion concentration. The higher biosorption efficiency at low metal concentration is due to the complete interaction of ions with the available binding which sites results in higher rates of efficiency. At higher concentrations, the number of metal ions remaining unbound in the solution is high due to the saturation of available binding sites [176]. The effect of different initial concentration (25–500 mg/L) of Cd ions on the biosorption of
Biosorbents provide the binding sites for metal biosorption, and hence its dosage strongly affects the biosorption process [179]. The increase of the biosorbent dose at a given initial metal concentration increases the biosorption of metal ions due to greater surface area which in turn increases the number of available binding sites [179]. At lower concentrations of the biosorbent, the amount of metal biosorbed per unit weight of the biosorbent is high. Conversely, at high concentration of the biosorbent, the quantity of metal ion biosorbed per unit weight decreases. This is because of lower adsorbate to binding site ratio due to the insufficient amount of solute present for complete distribution onto the available binding sites and possible interaction between binding sites. The biosorption of Cd and Pb ions by
The time required to attain maximum biosorption depends on the type of biosorbent, metal ion, and their combination. The rate of biosorption is rapid initially (within an hour) with almost 90% of the metal binding because all the active sites are vacant and available for metal ion biosorption. But with increase in time the rate of biosorption decreases due to increase in percentage saturation by metal ions remaining in the solution [182]. Most of the Cd and Zn ions are biosorbed onto
The increase in agitation speed increases the biosorption capacity of the biosorbent by minimizing its mass transfer resistance. While the added turbulence enhances the sorption of the metal ions [184], it may also lead to the destruction of the physical nature of the biosorbent. A moderate speed ensures the best homogeneity for the suspension with a high capacity of biosorption. High agitation speeds result in the occurrence of vortex phenomenon which results in the loss of the homogenous nature of the suspension. Excessive turbulence may also reduce the time of interaction between the biosorbate and biosorbent, thus decreasing the extent of biosorption [183]. The optimum speed of agitation for the biosorption of Cd and Zn by
Sorption isotherms explain the equilibrium relationships between biosorbent and biosorbate and the mass of the biosorbed component per unit mass of biosorbent and the concentration of biosorbate in the medium under a given set of conditions (temperature and concentration). It also determines the equilibrium distribution of metal ions and how selective retention takes place when two or more biosorbent components are present [185]. The term “isotherm” can be defined as a curve explaining the retention of a substance on a solid at various concentrations [82]. The determination of equilibrium parameters is the basic requirement for designing a good biosorption system. For determination of the best-fitting sorption isotherm, linear regression is frequently used. In order to predict the isotherm parameters, the method of least squares is applied.
\nThe biosorption capacities of different biosorbents for different pollutants can be best explained by biosorption equilibrium isotherms. Several isotherm models are available to describe the mechanism of the biosorption process and the equilibrium biosorption distribution. Some of the isotherms used in biosorption studies are Langmuir, Freundlich, and Temkin isotherms. However, the biosortion process may show better fit with a specific isotherm.
\nBiosorption isotherm data of Pb (II) and Cu (II) ions onto green algal species,
Various types of bioreactors have been investigated for application at the industrial level. A bioreactor is a system used for the production of microorganisms or desired metabolites employing defined and controllable factors. The typical categories of bioreactors used for the biosorption are stirred tank bioreactors (STRs), air lift bioreactors (ALRs), fluidized bed bioreactors (FBRs), and fixed bed bioreactors (FXRs). These reactors can be operated either in batches or in continuous modes or both (fixed bed and stirred tank bioreactors). Factors (pH, temperature, mixing and agitation, and nutrient availability) affecting the process of biosorption in the bioreactor have to be optimized and controlled by using cooling jackets (temperature), baffles/agitators (mixing), feed lines (supplies nutrients), and acid/base addition (pH) [188].
\nIt is designed with the biosorbent fixed onto a bed and a container having the bed within. During biosorption, the water contaminated with heavy metals is passed through the column. The biosorbents biosorb the metal ions until the maximal capacity is reached. The biosorbent is then regenerated for the release of heavy metals. In order to ensure continuous working conditions, the presence of two columns is employed. Biosorption is performed on one column while the regeneration of spent biosorbent on the other by rinsing with a suitable chemical reagent. Most of the biosorption processes have used fixed bed bioreactors. Its advantages include simplicity in construction and operation and possibility to carry out process in a countercurrent flow (a current flowing in opposite direction) [189]. However, it is necessary to examine the pressure drop and the effect of column dimensions when operated in a continuous mode [190].
\nThese two reactors almost work on the same principle of separation and can be operated in the batch mode. The reactor contains liquid, gaseous, and solid phases. The solid phase is a biosorbent on solid particles used for the retention of metals. The reactor operates with the idea that the gas allows the liquid containing the metal species to be removed to rise. The liquid then flows upward through the middle of the reactor and comes back down through the edges resembling a fountain [191]. In this the liquid is in continuous movement and moves the entire volume of the column. The metal species then adhere to the biosorbent. Once the biosorbent is harvested, the target molecule is separated. Since the particles are in continuous movement, it is preferred and also reduces the clogging effect of the biosorbent. Fluidized reactors are associated with the low mass transfer [38].
\nLiquid phase can be separated from the solid phase by a membrane system. Though the process is simple, the cost of operation is high due to high energy requirements [192].
\nThe efficiency in the removal of metal ions largely depends on the type of bioreactor, type of biosorbent, and operating conditions. Recent studies evaluated the efficiency of different biosorbents in the removal of metal ions by using various types of bioreactors (Table 11).
\nType of reactor | \nBiosorbent | \nMetal species | \nBiosorption efficiency | \nReference | \n
---|---|---|---|---|
FBRs | \nCd (II), Cr (VI) | \n67.17%, 49.25%a* | \n[191] | \n|
Sand grains | \nCu (II), Pb (II), Ni (II) | \n96%, 93%, 98%a* | \n[193] | \n|
ALRs | \nCr (VI) | \n94.3%b* | \n[194] | \n|
Cr (VI) | \n43.5%a# | \n[195] | \n||
STRs | \nCr (VI) | \n70.5%a# | \n[196] | \n|
Cr (VI) | \n60%b* | \n[194] | \n||
PBCs | \nCu (II) | \n83.96%a# | \n[197] | \n|
Cu (II), Co (II), Ni (II) | \n56.3%, 46.1%, 46.5%a# | \n[198] | \n||
Sewage sludge | \nCr (VI), Ni (II) | \n90%a# | \n[199] | \n|
Pb (II), Cd, (II), Hg (II) | \n80%, 90%, 90%a# | \n[200] | \n
Use of different bioreactors for biosorption of metal ions.
Indicates the dry weight of the biosorbent; bIndicates the wet weight of the biosorbent; *Indicates batch biosorption experiments at laboratory scale; and #Indicates continuous biosorption experiments.
Many researchers have attempted pilot-scale studies to make the technology of biosorption available at the industrial scale. A small pilot plant with a three-zone contact settling was developed in a single vessel using anaerobically digested sludge as the biosorbent for the removal of Cu (II) ions. The efficient metal removal (similar to the batch experiments) of 90 mg/g of the biosorbent was observed [201]. Flotation is a separation process that can effectively separate the metal-loaded biosorbent suspended in the aqueous solution. The technique of biosorptive flotation was applied for the removal of nickel, copper, and zinc ions from the aqueous solutions using grape stalks as the sorbent. Two feed solutions containing different metal concentrations were prepared. The dilute metal solution was applied followed by the concentrated metal solution in the counter-current mode in order to improve the performance of the biosorbent. The experiments were conducted in 10 L columns and satisfactory metal removal was observed (Cu—95%; Zn—98%; Ni—70%; Ca—82%). The biosorbent after regeneration by using an aqueous mixture of sodium sulfate and sodium citrate can be used for the second cycle [202]. A two-step operation for biosorption and sedimentation was operated in a 200 L pilot plant for the removal of pollutants using biomass of
Most biosorbents sequester metal ions by using cell-surface moieties. However, they lack the property of specificity and affinity for metals. By using the available genetic engineering technologies specific tailoring can be done to the microbial biosorbents with required selectivity and affinity for metal ions [204]. Genetic engineering technology involves altering the genetic material of the organism in order to develop an efficient strain for the removal of metal ions against the wide range of contaminants present in the wastewater [205]. One such emerging strategy which has received increased attention in recent times is the use of metal-binding proteins such as metallothioneins and phytochelatins. For example,
Metal ion | \nInitial concentration (ppm) | \nBiosorption efficiency % | \nGenetically engineered bacteria | \nExpressed gene of interest | \nReference | \n
---|---|---|---|---|---|
Hg | \n7.4 | \n96 | \nHg2+ transporter | \n[206] | \n|
As | \n0.05 | \n100 | \nMetalloregulatory protein ArsR | \n[207] | \n|
Ni | \n10 uM | \n15 μmol | \nnixA gene | \n[208] | \n|
Cr | \n10 | \n48–93.8% | \npEBZ141(Cr resistance genes) | \n[209] | \n|
Hg | \n\n | 77.58 mg/g | \npSUTP+pGPMT | \n[210] | \n
Use of genetically engineered microorganisms for biosorption of metal ions.
Biosorbent | \nSource | \n
---|---|
AlgaSORB | \n|
B.V.SORBEX | \nBiomass from various sources | \n
AMT-Bioclaim | \n|
Bio-Fix | \nDifferent biomass | \n
Rahco | \nDifferent biomass | \n
MetaGeneR | \nDifferent biomass | \n
AquaSorb | \nActivated carbons | \n
P.O.L. Sorb | \nSphagnum Peat Moss | \n
MSR | \n|
Commercial biosorbents.
Efforts have been devoted to apply the process of biosorption as a waste treatment method. Instead of aqueous metal solutions, the experiments involved the effluents collected from various polluted sources. Various studies have reported high removal efficiencies.
\nThe electroplating waste containing Cu (II), (6 mg/L) along with other ions (Zn, Cr (VI), Na, Ca, K), was treated with different agro-waste/natural biosorbents at the optimum conditions (pH −6.0, determined by batch experiments). Removal efficiency for Cu ranged from 77 to 95%. Other metals in the effluents were also removed to various extents [211].
\nIndustrial effluent samples were collected from El-Fayoum for chemical production company outfalls in Egypt to decontaminate Co (II), Cd (II), Cr (III), and Pb (II) by using four red seaweeds namely
In related study, the efficacy of sugarcane bagasse (the immobilized and native form) for the removal of chromium from wastewater collected from the local tanning plant (Kasur, Pakistan) was evaluated. At a biosorbent dose of 0.1 g and pH of 2.0, the biosorption efficiency was found to be 411 mg/g of biomass which is equivalent to 73% of total chromium present in the wastewater. This highest efficiency was observed with the immobilized form of the biomass when compared with the other forms (native and chemically treated). At the batch level, the maximum uptake was 80.6 and 41.5% in batch mode for Cr (VI) and Cr (III) [213].
\nThe removal efficiency with real effluents can be affected due to the presence of other components like other metals, organic matter, anions, and so on which can compete for the binding sites. The fungal biosorbent
The potential of seaweed (
However, the removal efficiency attained with real effluents may be comparable with single or simulated synthetic metal solutions.
\nGooseberry fruit (
In another study, wastewater having heavy metals and textile dyes was collected from the local metal, and the textile processing industry in Turkey was treated with
The effluent discharged from the battery industries located in the Northern region of Kolkata was treated by
Modification to the process conditions with real wastewaters may be necessary to achieve removal efficiencies comparable to those obtained with mono-metal solutions.
\nA
Neem sawdust was employed as the biosorbent in a column bioreactor for the removal of Cr (VI) at 94 mg/L from 1.5 L of raw tannery wastewater collected from a common effluent treatment plant in India. The results revealed that the biosorbent of 20 g was sufficient for the removal of chromium with the removal efficiency of 99%. Batch experiments were conducted at 2 g/L dosage at initial concentrations of 150 mg/L in 100 ml shake flasks [219].
\nIn spite of the advantages over other conventional techniques, there is a glaring lack of adoption of biosorption as a waste treatment technology. Few commercial ventures offering biosorption as a treatment have emerged. A few commercial biosorbents are available, as shown in Table 13. There is a dearth of field trials for a seemingly promising decade-old technology.
\nVolesky and Naja reported that the lack of commercialization was due to non-technical reasons—due to lack of partners. Computer models based on pilot tests can reduce the scope of field tests. Data and cases of application can attract investors, consultants, distributors, and clients [220].
\nThe BV Biosorbex Inc. is a Canadian company, started by Professor Bohumil Volesky of McGill University, Montreal, Canada, involved in commercializing biosorption. Its services include the biosorption-based removal of heavy metals from industry waters using reactors carrying novel biosorbents as granules offered at the 1/10th the cost of ion exchange resins. The biosorbents may be made from industrial waste, algal biomass, and specialized biomass. The biosorbents are reported to function between pH 4–10 and 5–75°C with efficiencies of >99.9% at 10–50 ppb concentrations of heavy metal and organic matter (<5000 mg/L). The company can conduct lab-scale studies, consultancy, design process, and operate waste treatment plants. Pilot biosorption systems may involve column, fluidized bed, or mixed tank reactors. The company plans to capture 15% of market of ion exchange resin (http://www.bvsorbex.net/invest.htm).
\nAlgaSorb by Biorecovery Inc. has algal biomass immobilized in silica gel. In a pilot study two columns in series with different biosorbents of algae were used to remove mercury from groundwater. Algasorb 624 with high Hg retention but high leakage was used followed by AlgaSorb 620 having the opposite characteristics. Sodium thiosulphate (0.1 M) followed by deionized water (10 bed volumes) was used for regeneration. The study was successful for varying levels of mercury and in the presence of Ca, Mg, and organic matter [221]. Immobilization protects algae against decomposition by microbes. Also, a hard material suitable for packing into columns is obtained. A portable effluent treatment equipment has two columns operating in series or parallel at flow rates of 1 gallon/min and has 0.25ft3 of AlgaSorb in each column. Equipment for operating at higher flow rates has been designed. Both metal cations and oxyanions can be bound while Ca, Mg, Na, and K ions do not interfere to a significant extent [222].
\nBioclaim by Vistatech Partnership Pvt. Ltd. developed
US Bureau of Mines devised bio-fix beads by immobilizing biomass in porous polysulfone beads. Immobilized
A three column-circuit (lead, scavenger and elution) was used to remove metals from wastewater from taconite operation. Several metals (Ni, Co, Cu, Zn) were removed (98%) with 20 min residence time and 40–50BV of solution at low temperatures of water (1–3°C) or air (<=0°C). The metals were precipitated by treating the elute with MgO and evaporating to obtain residue.
\nEmploying a similar setup, 90–95% of removal was obtained for Zn, Fe, and Mn. However, the presence of suspended solids interfered with the operational efficiency.
\nIn a low maintenance circuit, beads filled in bags made of Polymax B material were placed in troughs or in buckets in the flow of wastewater discharge. Over a 11-month period, Fe concentration of wastewater from an abandoned silver mine was reduced to below 1 ppm level from 20 to 60 ppm levels. This involved 2300 L of beads placed in troughs. Both bucket and trough circuits were used to treat discharge for abandoned mine containing Cd, Cu, Fe, Pb, and Zn. Drinking water standards were (85–89% removal) met with either system at flow rates of 0.3–0.5 L/min with weekly replacement of 50% of beads. Operating cost with bio-fix beads compared well with lime precipitation treatment for similar wastewaters [223].
\nBIOS process by the Noranda technology center utilized a bed of sawdust, algae and sphagnum moss near seepage. The metal-saturated biomass is later disposed of (as tailings or sent to smelter) or washed for recovery of metals. The bed contained bark (20 years old), wood pulp, and sawdust. Total void volume was 7 L. A Plexiglas reactor was used in 30 L capacity to treat acid mine drainage (AMD). Over a 7-day residence time at room temperature, pH was not effected but Cu (100%) and Zn (65%) were removed.Better metal removal (95–100% for Al, Cu, Zn, Fe) was achieved for a 14-day residence time. The pH did not increase and stabilized at 3 over 12 bed volumes. At lower temperature of 100C (as compared to 200C), the removal of metal (except for Cu) ions was reduced. The process compared well with lime organic mixture (LOM) and the anoxic lime stone drain (ALD) methods and was better compared to the Biotrench method in terms of metal removal [224].
\nLater, different combinations of treatments (LOM/BIOS/ALD, BIOS/ALD and LOM/ALD) were executed to treat AMD. The volume of the initial reactor was 30 L except in the case of LOM/ALD (20 L). The downstream reactors were of 4 L. With LOM/BIOS/ALD, As, Cd and Cu were removed beyond detection. Fe and Zn were also reduced by 93 and 50%, respectively. The pH was increased to 6.3. With the BIOS/ALD system, pH increased to 6.3 and As, Cd, and Cu were removed beyond detection. Metal Al was reduced to 0.7 ppm while Fe and Zn were removed at 99 and 38% efficiency. BOD and COD were negligible. There was no influence of low temperature. The LOM/ALD was referred as the best treatment, achieving the removal of all metals including Zn (99%) and Mn (68%), not attained with other combinations, along with negligible BOD and COD [225].
\nAquaSorb is a granular, powdered, and extruded activated carbon used primarily for the treatment of water, waste liquid streams and the recovery and recirculation of process liquors. The source of carbon which is activated for water treatment is from coconut shell, coal, and wood raw material by chemical or steam activation. Specially designed AquaSorb for the use in liquid phase adsorption systems in the range of granular, ground, and extruded (pelletized) form can be supplied by Jacobi Carbons. It can be applied as home water filters for the dechlorination of water, in order to reduce chloramines and produce water with good taste, more pure and palatable than the normal municipal water (https://www.wateronline.com/doc/aquasorb-activated-carbon-0001).
\nThe highest grade of Sphagnum Peat Moss is used for the development of P.O.L. Sorb which acts as a superb adsorbent for solutions due to the inherent capillary action of the activated peat which provides powerful wicking action that encapsulates oils, solvents, heavy metals, pesticides, herbicides, and so on which are in contact. It is manufactured by The ARK Enterprises, Inc. The raw material of POL Sorb is leafy, stem free, and least an abundant part of the peat in its natural or partial biodegraded state (http://www.arkent.com/POL%20Sorb%20Flyer.pdf).
\nMSR is a biosorbent produced by immobilizing the inactivated cells of
One advantage of biosorption is the removal of residual or minute concentrations of contaminants. Conventional water treatments may not completely remove contaminants. Hence, biosorption may be integrated downstream of other conventional water treatments. This is especially relevant in the case of pollutants like heavy metals whose effects are felt even at ppb levels.
\nThe efficiency for the removal of specific metals is hindered by the presence of other contaminants. This may be important during the recovery of specific metals of economic value. In this regard, biosorption may be applied to wastes and effluents before it enters the sewage or natural discharge streams like rivers, seas and so on.
\nHowever, with the aim of treating effluent/remediating water resources of all/most contaminants, it may be an advantage to have all pollutants (metal or contaminants) removed simultaneously using a non-specific/non-selective biosorbent and reducing the number of operations/steps. Multiple biosorbents of different specificities/selectivities can also be used.
\nThe strains or biomass used as the biosorbent should be of safe origin especially for water treated for human or animal consumption. Hence, pathogens and toxin-producing organisms need to be avoided. In this regard biomass from food-grade microorganisms like lactic acid bacteria and (wine/beer yeast) and agro-waste is of significance.
\nRegeneration and immobilization of biomass in order to reduce the cost of biomass involve the use of hazardous solvents which can lead to pollution. Hence, the use of harmless chemicals may be explored.
\nThe existing waste can be classified as solid (degradable and non-degradable) and liquid in nature. A lot of solid non-biodegradable wastes (plastic) can be recycled to form chemically and mechanically robust and inert matrices to hold the biosorbent. Degradable wastes or biomass (agricultural/domestic/industrial) can be employed as biosorbents. A compatible biosorbent-matrix combination can then be employed to treat liquid discharge/effluents. This can make the waste treatment economical and sustainable while addressing the problems of solid and liquid effluents simultaneously.
\nNature provides a diversity of biomass varying in binding specificity, efficiency, and ruggedness. This diversity can be tailored to site-specific waste treatment needs by applying the advanced techniques of recombinant DNA technology, synthetic biology and so on. Strains can be modified to express single/multiple metal-binding proteins on the cell surface. Chimeric proteins with multiple metal-binding domains having suitable binding and regeneration conditions can be engineered and expressed. Binding and regeneration conditions for the biosorbents can also be manipulated. Strains tolerant to harsh waste environments, and/or able to accumulate the toxic metals can be developed. However, laws regulating the dispersal or release/containment of genetically modified organisms will need to be considered. Techniques like genome shuffling are considered natural and can be employed for the modification of microorganisms. Confusion exists on the Crispr–Cas9 technology if it can be considered a genetic modification. Also, biosorption processes involving dead biomass may be a convincing argument against such regulations.
\nNanotechnology is a cutting-edge technology involving the development of novel materials through the manipulation at nanoscale. The use of biomass has been explored to produce nanometal particles of silver, Cu, gold and so on. This novel use of biosorption linking the wastewater treatment to synthesis/the recovery of metals/nanometals from wastewater makes economic sense for capital investment.
\nThe development of novel efficient biosorbents (nanocellulose, nanocomposites like pectin/TiO2, nano Fe3O4/
Biosorbents carrying metals can be included into feeds or fertilizers as metals bound to organic ligands have greater bioavailability. Also, they can enhance the shelf life of the feed involved.
\nHowever, biomass may also bind hazardous chemicals (like dyes) when used with industrial effluents. The use of such biomass into feeds is not recommended.
\nBiosorption is beneficial over conventional techniques. The potential has been demonstrated at laboratory and pilot scales even with actual effluent/discharges. But there is a dearth of examples in the real scenario at organized levels like municipalities/cities/pollution treatment centers/industries. Few commercial ventures have been made. This might be because of the diversity of pollutants and their chemical and biological waste background. A set of promising biosorbents/processes may need to be optimized or standardized for specific effluent types. The cost and feasibility in terms of large-scale applications may be evaluated.
\nRoutine adoption at municipal and industrial levels requires success stories at field studies. Better metal removal efficiencies at lower costs and labor when compared to other conventional treatments can convince the industry/state to adopt biosorption. However, there is a lack of field experiments. Executing field studies needs great coordination, capital, manpower, and infrastructure.
\nState intervention is needed to assist the scientific community to not only fund and coordinate such large studies in terms of manpower/infrastructure but to also access the industry(s) concerned. The general indifference of the industry toward waste treatment may be an issue.
\nThe state can act as bridge for informing and facilitating the availability of biomass from different sources to different polluting units. Such efforts will create a mutually sustainable waste treatment scenario. For example, the disposal of agro-waste from the rural setup to polluting units in order to treat effluents is a win-win for both parties.
\nAn environment encouraging start-ups based on biosorption technology needs to be created.
\nStringent norms and scrutiny against effluent discharge can convince the industry to view waste treatment as a necessary investment rather than an avoidable overhead cost. Under this scenario start-ups like Biosorbex, investing in eco-friendly waste treatment technologies, can flourish.
\nEfforts may be devoted to also apply biosorption at domestic (household) or community levels rather than awaiting the installation of large centralized water treatment setups.
\nTechniques like response surface methodology, artificial neural networking, boosted regression tree, and genetic algorithm may be used for process optimization. Modeling should be done in solutions with multiple metals and organic matter simulating the real wastewater conditions. Pilot and field studies should be conducted comparing biosorption with the conventional techniques. The use of computer-based simulations or modeling can reduce the number of field trials.
\nThe challenges encountering biosorption are similar to those faced by membrane filtration technology before achieving relevance and popularity as today. This includes the cost and stability of the biosorbent (membrane), the decrease in binding sites (fouling), and poor understanding and general reluctance to adopt new technologies etc. Hence, given its eco-friendly nature and other merits, it will find its place as a routine water treatment process.
\nThe high speed engine concept was born in the early 1900s, which produced shaft work and designed to drive a variety of vehicles, including ships and locomotives, until further introduction of jet engine on 1930s. The history of pulse detonation engines concept can be traced back to German engineer Hoffmann, H. [1]. In 1941, they tested a prototype engine using acetylene-oxygen and benzene-oxygen mixtures. Earlier in between 1952 and 1956, Nicholls et al. [2] at the University of Michigan have independently come up with the idea of using intermittent detonation for propulsion system and built the first PDE, which utilized detonation of hydrogen-air mixture to produce thrust. When crude oil prices increased significantly in the mid-1980s Eidelman et al. reinitiated research on PDE to overcome these scarcities. Krzycki [3] experimentally studied the propane-air pulse detonation engine which is operating at 25–50 Hz at naval ordnance test station at China Lake, California on 1962. From this analysis it was observed that minimum thrust is produce at minimum operating frequency. Lynch et al. [4] performed CFD studies on PDREs and air breathing PDEs on 1990. Their analyses forecasted that PDEs would be incorporated with space transport vehicles by the early 2000s. Earlier starting in 1990s, experimental study of single and multi-pulse detonation engine combustor were conducted by Bussing et al. [5] at Adroit systems Inc., a company that was bought up by Pratt and Whitney on 2001. They tested pulse detonation engine using different fuels including hydrogen and ethylene. Most of the PDE research centers are found in Canada, US, Russia, China. There are very less number of PDE research centre in India, so researcher are focusing on pulse detonation research area as it is excited for future propulsion technology [6].
Propulsion applications of detonation can be classified into three categories: standing detonation, pulse detonation and rotating detonation [7, 8, 9]. The basic pulse detonation engine has a very simple structure. It consists of a constant area tube. The deflagration to detonation transition is controlled by supplying fuel and oxidizer in detonation tube. The ignition system and nozzle are used for accelerating the flow, which is to be used for propulsion. A practical pulse detonation engine may also have one or more devices to bring about deflagration to detonation transition such device are Shchelkin spiral and blockage [10]. The PDE consists of two or more combustion chamber, which is joined to common plenum chamber. The conditions are applied for accelerating the flow before entering the detonation tube with different nozzle. The can-annular four chambered PDE is can illustrated for propulsion system. In multi-chambered design, each chamber can be at different stage in the cycle, thus creating a smoother flow through the nozzle [11]. The ejector enhances the deflagration to detonation transition in detonation tube with an array setting in exit section of pulse detonation rocket engine. Another feature of the ejector design is that the detonation waves from the combustors can be used to enhance the propulsive performance, which provides additional thrust enhancement [12].
Detonation is a supersonic mode of combustion process. In combustion process detonation waves are much more energetic process than conventional deflagration combustion and it produces a very strong wave coupled with a chemical reaction zone, propagating at supersonic speed. A detonation wave compresses combustion mixture, increasing the combustion product pressure, density of species mass fraction. It is a subsonic combustion process and fuel air reaction propagates at relatively low speed and reasonably low pressure from a trailing reaction zone. The propagation of deflagration mode of combustion consists of diffusion of unburned gases ahead of flame front and burnt gases behind the combustion flame. Deflagration produces small decrease in pressure and can be modeled as a constant pressure process [13]. One of the primary attributes deflagration flame travels at a speed, which is significantly lower than that the speed of sound (Ma < 1). So it can be identify by subsonic combustion process. Detonation combustion is a constant volume combustion process. The strength of leading shock depends on the detonation wave propagation velocity. A simple planar model for the supersonic detonation shock wave is used for Chapman-Jouguet detonation model analysis [14]. This is a rapid exothermic reaction and instantaneously changes the local pressure and temperature. The ignition of fuel-air mixture can produce deflagration flame and later on transition to detonation wave. The different combustor geometry can accelerate the deflagration flame and transition to detonation wave. Several researchers have been studied on PDE with research gape and scope of future research work [15, 16, 17]. The applications of RDE chamber are jet engines, such as turbojet or gas turbine, ramjet or rocket. Continuous detonation wave engine is used for supersonic and hypersonic propulsion applications. The framework of French Research and Development and scientific research also consider these for space applications. However incoming reacting air-mixture is greater than the C-J velocity of fuel-air mixture. Such engine is scramjet engine with an oblique detonation wave at inlet to combustor called the oblique detonation wave engine [18]. Chapman [19] explained on 1889 that the minimum speed of burnt gas is equal to speed of sound in gas mixture. Later on Jouguet on 1905 [20] applied Hugoniot’s method to explain the detonation velocity. The explosive mixture can get supported with two modes of combustion. When the flame propagates at slow velocity relative to unburnt gases, it is define as deflagration mode. In detonation mode wave propagates at about 2000 m/s accompanied by an overpressure rise is near about 20 bars [21, 22, 23]. They independently developed the basic thermodynamic model behind detonation. Principle operation of standing detonation engine is relatively simple. Fuel is injected into supersonic flow and detonation wave is stabilized inside the engine by wedge or other means and products are expanding inside nozzle. The combustion wave velocity can be propagates at higher the C-J detonation velocity within the Mach number of 5. The principle of rotating detonation engine (RDE) is based on the formation of detonation in a disk type combustion chamber. The shape of combustion chamber is toroidal or ring-like shape [24, 25]. The detonation wave parameters are depending on critical detonation tube diameter and minimum detonation tube diameter. The minimum and critical diameters are important parameters for evaluation of performance of PDE. The detonation will successfully propagate in a tube when the diameter must be larger than λ/3, where λ is the cell size. For square and rectangular ducts, the width and height of the duct must be larger than λ [26]. A review of the gas dynamics and chemistry of real detonation is discovered by Fickett and Davis [27]. They found out initiation of detonation wave, which follows by a series of percentage of fuel-oxidizer mixture in combustion chamber. The detonation wave in a confined tube causes the reaction of fuel-air mixtures, which creates turbulence; as a result “an explosion in an explosion” is takes placed. The two strong shock waves are created in the opposite direction, the forward shock waves are known as retonation. A self-propagating C-J detonation wave is formed at steady state retonation process. The pre-detonation wave velocity is 1000 m/s while the characteristic C-J detonation speed is over 2000 m/s. A large explosion occurs at onset of detonation, resulting in an over-driven detonation wave that decays to the C-J velocity. The wall roughness controls the wave propagation by inducing large-amplitude unsteady and turbulent flow, complex wave interaction processes and high temperature behind shock reflections. These effects represent ways that the flow can generate large-scale turbulence for flame folding and large temperature fluctuations causing detonation initiation [28].
A pulse detonation engine uses repetitive cycle of detonation waves to combust fuel-oxidizer mixture for producing thrust. PDE operates by propagating detonation wave through a tube filled with a combustible mixture and generates propulsive thrust. This process results are near about constant volume combustion process, which produces high pressures from the leading shock wave. Pulse detonation engine consists of valve less combustor with straight tube, which is closed at one end and open at other end. The pulse detonation engine combustion cycle consist of four basic thermodynamics process. The first process is filling time (
The PDE can run by any fuel, liquid or gaseous, like natural gas, propane, bio-gas, hydrogen, kerosene, jet fuels and octane etc. From an engineering stand point fuel can be selected for based on heating value, detonability, ignition time, energy release, adiabatic flame temperature and sensivity with air [30]. Povinelli and Yungster [31] studied the thermodynamic cycle of hydrogen-air mixture at static conditions in pulse detonation combustor. The specific thrust, fuel consumptions and impulse of detonation combustion are analyzed by using CFD analysis with finite rate chemistry. Alam et al. [32] studied on Brayton, Humphery and ideal thermodynamics cycle analysis in pulse detonation combustor. They found Humphery cycle efficiency can be increases with higher value of compression ratio. The thermodynamics cycle efficiency of air breathing pulse detonation engine is studied by Wu et al. [33]. They found that chocked convergent-divergent nozzle is required to improve the efficiency. Vutthivithayarak et al. [34] discussed the Humphrey and F. J. (Fickett-Jacobs) cycles in PDE. These cycles are illustrated with hydrogen-air combustion for generic heat release.
The two-step chemical kinetics model of detonation combustion has been studied by Fomin [35]. This kinetics model has been used for stoichiometric, lean and rich mixture for combustion. This model is also followed by Le Chatelier’s principle and 2nd law of thermodynamics. The pulse detonation combustor has lower entropy change and self-pressure gain compared to isobaric combustion process for same operating conditions [36]. Mehdi Safari et al. [37] studied on entropy generation with species transport equation for detonation combustion by large eddy simulation. Detonation initiation in hydrogen-air depends on mixture sensivity and geometrical parameters. Qi et al. [38] investigated the thermodynamics characteristics of methane-air detonation in pressure gain combustor. They compared the entropy change in detonation combustion process with gas turbine cycle. They found that cycle efficiency enhance rate up to 11.89%. Lu et al. [39] studied on DDT in a channels with obstacles using chemical diffusive model (CDM) integrated with reactive Navier stokes equation. They found that CDM reduces the ignition time of detonation wave. Wu et al. [40] studied on atomization of liquid fuel detonation combustion. They found that nozzle can effectively atomize fuel-air mixtures under high pressure condition. Maciel and Marques [41] studied on hydrogen fuelled single cycle pulse detonation engine in Ansys Fluent. When OH* kinetics added to the reaction set, they found cellular structure of detonation wave front in reaction zone. Ivanov et al. [42] studied on hydrogen-oxygen flame acceleration and transition from DDT in a channel using reactive Navier-Stokes equations. They found that steady detonation wave front is form in wider detonation channels of 10 mm and closed to C-J detonation propagation speed. Srihari et al. [43] studied on stoichiometric ethylene-air mixture of detonation combustion with one-step overall reaction model. They found that chemical reaction models have capable to predict the detonation wave velocity with reasonable accuracy.
Ma et al. [44] studied on temporal variation of activation energy release rate of iso-octane vapor-air mixture in an obstacle-filled detonation tube. Their result shows that the activation energy influences the flame propagation parameters and deflagration-to-detonation transition process. Hutchins and Metghalchi [45] studied on exergy analysis of pulse detonation engine. They found that during deflagration to detonation transition period exergy loss is more. Bellini and Lu [46] studied on exergy analysis of fuel-air mixture at high frequency source within the detonation chamber. They found that combustion product accelerates inside the combustor in presence of Shchelkin spiral. The exergy analysis of pulse detonation power device designed for power production using gaseous fuel methane (CH4) and propane (C3H8) is analysis by Bellini and Lu [47]. The exergetic efficiency was analyzed for different cycle frequency corresponding to detonation tube length. Rouboa et al. [48] studied on exergy loss of hydrogen-air detonation during shock. They also observed exergy destruction increase with augmentation of hydrogen concentration in reacting mixture. Petela [49] studied on exergy analysis of gaseous fuel-air detonation. They observed that exergy gives a quantitative theoretical useful work that is obtained from different energy form combustion process and it is a function of system and environment. Som and Datta [50] and Som and Sharma [51] studied on theoretical model of energy and exergy balance in a spray combustion process. They found that exergy destruction in this combustion process can be reduced through proper control of chemical reactions.
The numerical investigations have been done in Ansys fluent platform. The Figure 1 shows that the ejector effects on unsteady detonation combustion wave phenomena in pulse detonation combustor. The time dependent detonation wave contour plots clearly shows that 0.033 seconds is required to reach the fully developed detonation wave [52]. They also found that ejector plays the vital role for vortex formation of reacting mixture in PDE combustor. They also observed that leading vortex rings are found in shrouded ejector taper angle of +4°. The Figure 2shows the mass fraction contour analysis of NOx pollutant number of hydrogen-air and kerosene-air detonation [53]. Lesser the fuel mass fraction higher the exergetic efficiency was found in pulse detonation combustor. The Figure 3 shows the deflagration and detonation control volume for exergy analysis [54]. Alam et al. [55, 56] numerically studied on hydrogen-air detonation in pulse detonation combustor. Later on they also studied detonation combustion using alternative fuels, i.e. octane (C8H18), hexane (C6H14), pentane (C5H12)-air combustion in PDE combustor. They observed combustion efficiency of pentane-air mixture is higher than that of other fuels. Alam et al. [57] studied the combustion wave propagation in obstructed detonation tube. Their simulation results were carried out for stoichiometric mixture of kerosene-air and butane-air mixture at atmospheric conditions. They found that mixing of butane-air combustion process is better than kerosene-air mixture. Furthermore, the stoichiometric ethane-air (C2H6-air) and ethylene-air (C2H4-air) fuel mixture at atmospheric pressure conditions has been studied by Alam et al. [58]. The effect of blockage ratio of 0.4, 0.5, 0.6 and 0.7 in channel for detonation wave acceleration are shown in Figure 4. The contour plot analysis shows the shock wave initiation and propagation time period in detonation tube is reduced by smaller blockage ratio of 0.5 [59]. Tripathi et al. [60] computationally studied on effect of obstacle on flame propagation velocity. Alam et al. [61] studies on flame acceleration in pulse detonation engine with changing the obstacle clearance. They found that combustor pressure is reduced as increase the obstacle clearance. P. Debnath and Pandey [62] studied on deflagration to detonation transition in PDE combustor with Schelkin spiral effect inside the detonation tube. They found that Schelkin spiral accelerate the flame propagation. Alam et al. [63] numerically studied on flame propagation in obstructed pulse detonation combustor with hydrogen-air mixture. They found that performance is increase up to 4.46% and this value increase for
Effect of shrouded ejectors on vortex ring formation of detonation wave [
The mass fraction contour analysis of NOx pollutant number of (a) hydrogen-air and (b) kerosene-air combustion [
Deflagration and detonation zone define by C-J velocity for exergy analysis [
Effect of blockage ratio on detonation wave propagation [
The propulsive thrust variation for PDE combustor with C-D nozzle, C-nozzle, D-nozzle and without nozzle at different Mach number [
The above literature survey represents that there is more research is needed in pulse detonation combustor for shortest possible pulse time of deflagration to detonation transition. The future proposed research can be analyzed by changing the design of PDE combustor and operating conditions. The series of numerical simulations and optimization can be performed desire research objectives of pulse detonation engine. From the CFD and calorimetric analysis the smaller blockage ratio of 0.5 is found better to reduce detonation wave run up distance. The ejector enhance the shortest possible time of 0.033 s, which is required for fully developed detonation wave. More possible pulse time can be reduced by ejector geometry modification. Lesser the hydrogen fuel mass fraction of 0.25 higher the exergetic efficiency of 67.55% is obtained from detonation combustion process. Once the computational model is validated, further simulation can be carried out with accuracy. There are several detonation tube geometry is steal in debate for acoustics atomization and evaporative characteristics of liquid fuel detonation wave.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5944},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17700}],offset:12,limit:12,total:133952},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",src:"R-SLS"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11641",title:"Updates on Fermentation",subtitle:null,isOpenForSubmission:!0,hash:"a40ca422d610cac17d09b0df36469351",slug:null,bookSignature:"Dr. Raúl Ferrer-Gallego",coverURL:"https://cdn.intechopen.com/books/images_new/11641.jpg",editedByType:null,editors:[{id:"353129",title:"Dr.",name:"Raúl",surname:"Ferrer-Gallego",slug:"raul-ferrer-gallego",fullName:"Raúl Ferrer-Gallego"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",subtitle:null,isOpenForSubmission:!0,hash:"3d72ae651ee2a04b2368bf798a3183ca",slug:null,bookSignature:"Prof. Elisa Pieragostini",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",editedByType:null,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11524",title:"Fuzzy Control Systems",subtitle:null,isOpenForSubmission:!0,hash:"84908e027f884ec3fcbaea42eb69b698",slug:null,bookSignature:"Dr. Hayri Baytan Ozmen",coverURL:"https://cdn.intechopen.com/books/images_new/11524.jpg",editedByType:null,editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11703",title:"Fluorescence Imaging - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"728ff3bfc75ad2c9a39c338b52ae1893",slug:null,bookSignature:"Dr. Raffaello Papadakis",coverURL:"https://cdn.intechopen.com/books/images_new/11703.jpg",editedByType:null,editors:[{id:"251885",title:"Dr.",name:"Raffaello",surname:"Papadakis",slug:"raffaello-papadakis",fullName:"Raffaello Papadakis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11729",title:"Circumcision - Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"d4761c03b5694edec9f7fc48092549ce",slug:null,bookSignature:"Dr. Ahmad Zaghal and Dr. Ali El Safadi",coverURL:"https://cdn.intechopen.com/books/images_new/11729.jpg",editedByType:null,editors:[{id:"240621",title:"Dr.",name:"Ahmad",surname:"Zaghal",slug:"ahmad-zaghal",fullName:"Ahmad Zaghal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11833",title:"Ozone Research - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"1e789b57319be85ed0a32e569967d822",slug:null,bookSignature:"Associate Prof. Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/11833.jpg",editedByType:null,editors:[{id:"190012",title:"Associate Prof.",name:"Taner",surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:16},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:120},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:424},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4420},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"690",title:"Biomimetics",slug:"biomimetics",parent:{id:"112",title:"Biomedical Engineering",slug:"engineering-biomedical-engineering"},numberOfBooks:7,numberOfSeries:0,numberOfAuthorsAndEditors:250,numberOfWosCitations:656,numberOfCrossrefCitations:211,numberOfDimensionsCitations:646,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"690",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10372",title:"Biomimetics",subtitle:null,isOpenForSubmission:!1,hash:"c3ba2d125e3efed68850d7f3b96dfc2d",slug:"biomimetics",bookSignature:"Maki K. Habib and César Martín-Gómez",coverURL:"https://cdn.intechopen.com/books/images_new/10372.jpg",editedByType:"Edited by",editors:[{id:"80821",title:"Dr.",name:"Maki K.",middleName:null,surname:"Habib",slug:"maki-k.-habib",fullName:"Maki K. Habib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6875",title:"Bio-Inspired Technology",subtitle:null,isOpenForSubmission:!1,hash:"074fba986c7ba872f1af99c4fb65337e",slug:"bio-inspired-technology",bookSignature:"Ruby Srivastava",coverURL:"https://cdn.intechopen.com/books/images_new/6875.jpg",editedByType:"Edited by",editors:[{id:"185788",title:"Dr.",name:"Ruby",middleName:null,surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5902",title:"Interdisciplinary Expansions in Engineering and Design With the Power of Biomimicry",subtitle:null,isOpenForSubmission:!1,hash:"074a748d02254c7c5643be52cb70be68",slug:"interdisciplinary-expansions-in-engineering-and-design-with-the-power-of-biomimicry",bookSignature:"Gulden Kokturk and Tutku Didem Akyol Altun",coverURL:"https://cdn.intechopen.com/books/images_new/5902.jpg",editedByType:"Edited by",editors:[{id:"95921",title:"Dr.",name:"Gulden",middleName:null,surname:"Kokturk",slug:"gulden-kokturk",fullName:"Gulden Kokturk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"251",title:"On Biomimetics",subtitle:null,isOpenForSubmission:!1,hash:"b41b2ea8322b21ee4f4423498d3a196e",slug:"on-biomimetics",bookSignature:"Assoc. Lilyana D. Pramatarova",coverURL:"https://cdn.intechopen.com/books/images_new/251.jpg",editedByType:"Edited by",editors:[{id:"48534",title:"Dr.",name:"Lilyana",middleName:"Dimitrova",surname:"Pramatarova",slug:"lilyana-pramatarova",fullName:"Lilyana Pramatarova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"42",title:"Advances in Biomimetics",subtitle:null,isOpenForSubmission:!1,hash:"65af8330f495764de3acf1bf959143b5",slug:"advances-in-biomimetics",bookSignature:"Anne George",coverURL:"https://cdn.intechopen.com/books/images_new/42.jpg",editedByType:"Edited by",editors:[{id:"21288",title:"Prof.",name:"Anne",middleName:null,surname:"George",slug:"anne-george",fullName:"Anne George"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1806",title:"Biomimetic Based Applications",subtitle:null,isOpenForSubmission:!1,hash:"6a088e82c9518ba8fca91ac303d66f9b",slug:"biomimetic-based-applications",bookSignature:"Anne George",coverURL:"https://cdn.intechopen.com/books/images_new/1806.jpg",editedByType:"Edited by",editors:[{id:"21288",title:"Prof.",name:"Anne",middleName:null,surname:"George",slug:"anne-george",fullName:"Anne George"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3587",title:"Biomimetics",subtitle:"Learning from Nature",isOpenForSubmission:!1,hash:"0ab0daea3f9b4d2228b70d2a47e8d362",slug:"biomimetics-learning-from-nature",bookSignature:"Amitava Mukherjee",coverURL:"https://cdn.intechopen.com/books/images_new/3587.jpg",editedByType:"Edited by",editors:[{id:"5759",title:"Prof.",name:"Amitava",middleName:null,surname:"Mukherjee",slug:"amitava-mukherjee",fullName:"Amitava Mukherjee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"10040",doi:"10.5772/8787",title:"Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications",slug:"biomimetic-porous-titanium-scaffolds-for-orthopedic-and-dental-applications",totalDownloads:6848,totalCrossrefCites:42,totalDimensionsCites:90,abstract:null,book:{id:"3587",slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Alireza Nouri, Peter D. Hodgson and Cui'e Wen",authors:null},{id:"10029",doi:"10.5772/8776",title:"Biomimetic Synthesis of Nanoparticles: Science, Technology & Applicability",slug:"biomimetic-synthesis-of-nanoparticles-science-technology-amp-applicability",totalDownloads:22597,totalCrossrefCites:18,totalDimensionsCites:74,abstract:null,book:{id:"3587",slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Prathna T.C., Lazar Mathew, N. Chandrasekaran, Ashok M. Raichur and Amitava Mukherjee",authors:null},{id:"15691",doi:"10.5772/14383",title:"Biomimetic Topography: Bioinspired Cell Culture Substrates and Scaffolds",slug:"biomimetic-topography-bioinspired-cell-culture-substrates-and-scaffolds",totalDownloads:3925,totalCrossrefCites:5,totalDimensionsCites:22,abstract:null,book:{id:"42",slug:"advances-in-biomimetics",title:"Advances in Biomimetics",fullTitle:"Advances in Biomimetics"},signatures:"Lin Wang and Rebecca L. Carrier",authors:[{id:"17652",title:"Dr.",name:"Rebecca",middleName:null,surname:"Carrier",slug:"rebecca-carrier",fullName:"Rebecca Carrier"},{id:"18787",title:"Miss",name:"Lin",middleName:null,surname:"Wang",slug:"lin-wang",fullName:"Lin Wang"}]},{id:"10038",doi:"10.5772/8785",title:"Photosynthetic Energy Conversion: Hydrogen Photoproduction by Natural and Biomimetic Means",slug:"photosynthetic-energy-conversion-hydrogen-photoproduction-by-natural-and-biomimetic-means",totalDownloads:4707,totalCrossrefCites:1,totalDimensionsCites:19,abstract:"The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical fuels. Many fuel forms such as coal, oil and gas have been intensively used and are becoming limited. Hydrogen could become an important clean fuel for the future. Among different technologies for hydrogen production, oxygenic natural and artificial photosynthesis using direct photochemistry in synthetic complexes have a great potential to produce hydrogen as both use clean and cheap sources - water and solar energy. Photosynthetic organisms capture sunlight very efficiently and convert it into organic molecules. Artificial photosynthesis is one way to produce hydrogen from water using sunlight by employing biomimetic complexes. However, splitting of water into protons and oxygen is energetically demanding and chemically difficult. In oxygenic photosynthetic microorganisms water is splitted into electrons and protons during primary photosynthetic processes. The electrons and protons are redirected through the photosynthetic electron transport chain to the hydrogen-producing enzymes-hydrogenase or nitrogenase. By these enzymes, e- and H+ recombine and form gaseous hydrogen. Biohydrogen activity of hydrogenase can be very high but it is extremely sensitive to photosynthetic O2. At the moment, the efficiency of biohydrogen production is low. However, theoretical expectations suggest that the rates of photon conversion efficiency for H2 bioproduction can be high enough (> 10%). Our review examines the main pathways of H2 photoproduction using photosynthetic organisms and biomimetic photosynthetic systems and focuses on developing new technologies based on the effective principles of photosynthesis.",book:{id:"3587",slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Suleyman I. Allakhverdiev, Vladimir D. Kreslavski, Velmurugan Thavasi, Sergei K. Zharmukhamedov, Vyacheslav V. Klimov, Seeram Ramakrishna, Hiroshi Nishihara, Mamoru Mimuro, Robert Carpentier and Toshi Nagata",authors:null},{id:"15766",doi:"10.5772/14400",title:"Antimicrobial Biomimetics",slug:"antimicrobial-biomimetics",totalDownloads:7190,totalCrossrefCites:1,totalDimensionsCites:17,abstract:null,book:{id:"1806",slug:"biomimetic-based-applications",title:"Biomimetic Based Applications",fullTitle:"Biomimetic Based Applications"},signatures:"Ana Maria Carmona-Ribeiro, Lilian Barbassa and Letícia Dias de Melo",authors:[{id:"5978",title:"Prof.",name:"Ana Maria",middleName:null,surname:"Carmona-Ribeiro",slug:"ana-maria-carmona-ribeiro",fullName:"Ana Maria Carmona-Ribeiro"},{id:"17696",title:"Miss",name:"Lilian",middleName:null,surname:"Barbassa",slug:"lilian-barbassa",fullName:"Lilian Barbassa"},{id:"17697",title:"Miss",name:"Letícia",middleName:null,surname:"Melo",slug:"leticia-melo",fullName:"Letícia Melo"},{id:"123449",title:"Prof.",name:"Ana Maria",middleName:null,surname:"Carmona-Ribeiro",slug:"ana-maria-carmona-ribeiro",fullName:"Ana Maria Carmona-Ribeiro"}]}],mostDownloadedChaptersLast30Days:[{id:"10042",title:"Superhydrophobicity, Learn from the Lotus Leaf",slug:"superhydrophobicity-learn-from-the-lotus-leaf",totalDownloads:19960,totalCrossrefCites:4,totalDimensionsCites:11,abstract:null,book:{id:"3587",slug:"biomimetics-learning-from-nature",title:"Biomimetics",fullTitle:"Biomimetics Learning from Nature"},signatures:"Mengnan Qu, Jinmei He and Junyan Zhang",authors:null},{id:"66055",title:"Introductory Chapter: DNA as Nanowires",slug:"introductory-chapter-dna-as-nanowires",totalDownloads:1184,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"6875",slug:"bio-inspired-technology",title:"Bio-Inspired Technology",fullTitle:"Bio-Inspired Technology"},signatures:"Ruby Srivastava",authors:[{id:"185788",title:"Dr.",name:"Ruby",middleName:null,surname:"Srivastava",slug:"ruby-srivastava",fullName:"Ruby Srivastava"}]},{id:"73011",title:"Brain-Inspired Spiking Neural Networks",slug:"brain-inspired-spiking-neural-networks",totalDownloads:966,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Brain is a very efficient computing system. It performs very complex tasks while occupying about 2 liters of volume and consuming very little energy. The computation tasks are performed by special cells in the brain called neurons. They compute using electrical pulses and exchange information between them through chemicals called neurotransmitters. With this as inspiration, there are several compute models which exist today trying to exploit the inherent efficiencies demonstrated by nature. The compute models representing spiking neural networks (SNNs) are biologically plausible, hence are used to study and understand the workings of brain and nervous system. More importantly, they are used to solve a wide variety of problems in the field of artificial intelligence (AI). They are uniquely suited to model temporal and spatio-temporal data paradigms. This chapter explores the fundamental concepts of SNNs, few of the popular neuron models, how the information is represented, learning methodologies, and state of the art platforms for implementing and evaluating SNNs along with a discussion on their applications and broader role in the field of AI and data networks.",book:{id:"10372",slug:"biomimetics",title:"Biomimetics",fullTitle:"Biomimetics"},signatures:"Khadeer Ahmed",authors:[{id:"320026",title:"Dr.",name:"Khadeer",middleName:null,surname:"Ahmed",slug:"khadeer-ahmed",fullName:"Khadeer Ahmed"}]},{id:"65418",title:"Opening the “Black Box” of Silicon Chip Design in Neuromorphic Computing",slug:"opening-the-black-box-of-silicon-chip-design-in-neuromorphic-computing",totalDownloads:1591,totalCrossrefCites:4,totalDimensionsCites:4,abstract:"Neuromorphic computing, a bio-inspired computing architecture that transfers neuroscience to silicon chip, has potential to achieve the same level of computation and energy efficiency as mammalian brains. Meanwhile, three-dimensional (3D) integrated circuit (IC) design with non-volatile memory crossbar array uniquely unveils its intrinsic vector-matrix computation with parallel computing capability in neuromorphic computing designs. In this chapter, the state-of-the-art research trend on electronic circuit designs of neuromorphic computing will be introduced. Furthermore, a practical bio-inspired spiking neural network with delay-feedback topology will be discussed. In the endeavor to imitate how human beings process information, our fabricated spiking neural network chip has capability to process analog signal directly, resulting in high energy efficiency with small hardware implementation cost. Mimicking the neurological structure of mammalian brains, the potential of 3D-IC implementation technique with memristive synapses is investigated. Finally, applications on the chaotic time series prediction and the video frame recognition will be demonstrated.",book:{id:"6875",slug:"bio-inspired-technology",title:"Bio-Inspired Technology",fullTitle:"Bio-Inspired Technology"},signatures:"Kangjun Bai and Yang Yi",authors:[{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi"},{id:"245542",title:"Mr.",name:"Kangjun",middleName:null,surname:"Bai",slug:"kangjun-bai",fullName:"Kangjun Bai"}]},{id:"58622",title:"Bio-inspired Adaptable Facade Control Reflecting User's Behavior",slug:"bio-inspired-adaptable-facade-control-reflecting-user-s-behavior",totalDownloads:1619,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"The purpose of this research is to develop the process of methodology in designing adaptable façade. This study focuses on the processes of façade operation control for each resident’s unit according to the user’s lifestyle. This study aims to develop the design methods that are applicable to the adaptable facade, which is inspired by the design inspiration of the biomimicry. The ideal façade to increase comfort in internal space is an adaptable façade that can constantly respond to changes in the environments. This chapter attempts in active adoption of adaptable facade that makes it possible to respond to changing requirements and environments, eventually enabling the creation of customized services for users. This chapter explores the processes of designing an adaptable façade controlled by three rules inspired by the behaviors of flocks of birds. This chapter shows how adopted bird intelligence can produce various façade controls. Also, this chapter demonstrates biomimetic façade control that has been implemented by behavior-based design. Through this demonstration, this chapter identifies the potentials of biomimetic design in facade using rules of bird flocking as source of design inspiration. This study concludes that a behavior-based approach provides flexibly responding façade to environments increasing users’ quality of life.",book:{id:"5902",slug:"interdisciplinary-expansions-in-engineering-and-design-with-the-power-of-biomimicry",title:"Interdisciplinary Expansions in Engineering and Design With the Power of Biomimicry",fullTitle:"Interdisciplinary Expansions in Engineering and Design With the Power of Biomimicry"},signatures:"Hyunsoo Lee and Nayeon Kim",authors:[{id:"220502",title:"Prof.",name:"Hyunsoo",middleName:null,surname:"Lee",slug:"hyunsoo-lee",fullName:"Hyunsoo Lee"},{id:"220507",title:"Ms.",name:"Nayeon",middleName:null,surname:"Kim",slug:"nayeon-kim",fullName:"Nayeon Kim"}]}],onlineFirstChaptersFilter:{topicId:"690",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:315,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,annualVolume:11403,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,annualVolume:11404,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,annualVolume:11405,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11451",title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",hash:"8c918a1973786c7059752b28601f1329",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 4th 2022",isOpenForSubmission:!0,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11453",title:"Biomimetics - Bridging the Gap",coverURL:"https://cdn.intechopen.com/books/images_new/11453.jpg",hash:"173e62fa4d7bf5508cec3bdd8e3cb32d",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 16th 2022",isOpenForSubmission:!0,editors:[{id:"222709",title:"Prof.",name:"Ziyad S.",surname:"Haidar",slug:"ziyad-s.-haidar",fullName:"Ziyad S. Haidar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11983",title:"Biomedical Signal and Image Processing - Advanced Imaging Technology and Application",coverURL:"https://cdn.intechopen.com/books/images_new/11983.jpg",hash:"81ebecb28b5cad564075e6f5b2dc7355",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 29th 2022",isOpenForSubmission:!0,editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11984",title:"Current Advances in Nanomedicine",coverURL:"https://cdn.intechopen.com/books/images_new/11984.jpg",hash:"3d98881cc9e323438670710d3aaaf71d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 6th 2022",isOpenForSubmission:!0,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11452",title:"Cryopreservation - Applications and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",hash:"a6c3fd4384ff7deeab32fc82722c60e0",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 12th 2022",isOpenForSubmission:!0,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:1,group:"subseries"},{caption:"Education",value:89,count:4,group:"subseries"}],publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:2},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:699,paginationItems:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Associate Prof.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/15648_n.jpg",biography:"Dr. Mohd Aftab Siddiqui is currently working as Assistant Professor in the Faculty of Pharmacy, Integral University, Lucknow for the last 6 years. He has completed his Doctor in Philosophy (Pharmacology) in 2020 from Integral University, Lucknow. He completed his Bachelor in Pharmacy in 2013 and Master in Pharmacy (Pharmacology) in 2015 from Integral University, Lucknow. He is the gold medalist in Bachelor and Master degree. He qualified GPAT -2013, GPAT -2014, and GPAT 2015. His area of research is Pharmacological screening of herbal drugs/ natural products in liver and cardiac diseases. He has guided many M. Pharm. research projects. He has many national and international publications.",institutionString:"Integral University",institution:null},{id:"333824",title:"Dr.",name:"Ahmad Farouk",middleName:null,surname:"Musa",slug:"ahmad-farouk-musa",fullName:"Ahmad Farouk Musa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333824/images/22684_n.jpg",biography:"Dato’ Dr Ahmad Farouk Musa\nMD, MMED (Surgery) (Mal), Fellowship in Cardiothoracic Surgery (Monash Health, Aust), Graduate Certificate in Higher Education (Aust), Academy of Medicine (Mal)\n\n\n\nDato’ Dr Ahmad Farouk Musa obtained his Doctor of Medicine from USM in 1992. He then obtained his Master of Medicine in Surgery from the same university in the year 2000 before subspecialising in Cardiothoracic Surgery at Institut Jantung Negara (IJN), Kuala Lumpur from 2002 until 2005. He then completed his Fellowship in Cardiothoracic Surgery at Monash Health, Melbourne, Australia in 2008. He has served in the Malaysian army as a Medical Officer with the rank of Captain upon completing his Internship before joining USM as a trainee lecturer. He is now serving as an academic and researcher at Monash University Malaysia. He is a life-member of the Malaysian Association of Thoracic & Cardiovascular Surgery (MATCVS) and a committee member of the MATCVS Database. He is also a life-member of the College of Surgeons, Academy of Medicine of Malaysia; a life-member of Malaysian Medical Association (MMA), and a life-member of Islamic Medical Association of Malaysia (IMAM). Recently he was appointed as an Interim Chairperson of Examination & Assessment Subcommittee of the UiTM-IJN Cardiothoracic Surgery Postgraduate Program. As an academic, he has published numerous research papers and book chapters. He has also been appointed to review many scientific manuscripts by established journals such as the British Medical Journal (BMJ). He has presented his research works at numerous local and international conferences such as the European Association for Cardiothoracic Surgery (EACTS) and the European Society of Cardiovascular Surgery (ESCVS), to name a few. He has also won many awards for his research presentations at meetings and conferences like the prestigious International Invention, Innovation & Technology Exhibition (ITEX); Design, Research and Innovation Exhibition, the National Conference on Medical Sciences and the Annual Scientific Meetings of the Malaysian Association for Thoracic and Cardiovascular Surgery. He was awarded the Darjah Setia Pangkuan Negeri (DSPN) by the Governor of Penang in July, 2015.",institutionString:null,institution:{name:"Monash University Malaysia",country:{name:"Malaysia"}}},{id:"30568",title:"Prof.",name:"Madhu",middleName:null,surname:"Khullar",slug:"madhu-khullar",fullName:"Madhu Khullar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/30568/images/system/30568.jpg",biography:"Dr. Madhu Khullar is a Professor of Experimental Medicine and Biotechnology at the Post Graduate Institute of Medical Education and Research, Chandigarh, India. She completed her Post Doctorate in hypertension research at the Henry Ford Hospital, Detroit, USA in 1985. She is an editor and reviewer of several international journals, and a fellow and member of several cardiovascular research societies. Dr. Khullar has a keen research interest in genetics of hypertension, and is currently studying pharmacogenetics of hypertension.",institutionString:"Post Graduate Institute of Medical Education and Research",institution:{name:"Post Graduate Institute of Medical Education and Research",country:{name:"India"}}},{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",biography:"Xianquan Zhan received his MD and Ph.D. in Preventive Medicine at West China University of Medical Sciences. He received his post-doctoral training in oncology and cancer proteomics at the Central South University, China, and the University of Tennessee Health Science Center (UTHSC), USA. He worked at UTHSC and the Cleveland Clinic in 2001–2012 and achieved the rank of associate professor at UTHSC. Currently, he is a full professor at Central South University and Shandong First Medical University, and an advisor to MS/PhD students and postdoctoral fellows. He is also a fellow of the Royal Society of Medicine and European Association for Predictive Preventive Personalized Medicine (EPMA), a national representative of EPMA, and a member of the American Society of Clinical Oncology (ASCO) and the American Association for the Advancement of Sciences (AAAS). He is also the editor in chief of International Journal of Chronic Diseases & Therapy, an associate editor of EPMA Journal, Frontiers in Endocrinology, and BMC Medical Genomics, and a guest editor of Mass Spectrometry Reviews, Frontiers in Endocrinology, EPMA Journal, and Oxidative Medicine and Cellular Longevity. He has published more than 148 articles, 28 book chapters, 6 books, and 2 US patents in the field of clinical proteomics and biomarkers.",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",country:{name:"China"}}},{id:"297507",title:"Dr.",name:"Charles",middleName:"Elias",surname:"Assmann",slug:"charles-assmann",fullName:"Charles Assmann",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/297507/images/system/297507.jpg",biography:"Charles Elias Assmann is a biologist from Federal University of Santa Maria (UFSM, Brazil), who spent some time abroad at the Ludwig-Maximilians-Universität München (LMU, Germany). He has Masters Degree in Biochemistry (UFSM), and is currently a PhD student at Biochemistry at the Department of Biochemistry and Molecular Biology of the UFSM. His areas of expertise include: Biochemistry, Molecular Biology, Enzymology, Genetics and Toxicology. He is currently working on the following subjects: Aluminium toxicity, Neuroinflammation, Oxidative stress and Purinergic system. Since 2011 he has presented more than 80 abstracts in scientific proceedings of national and international meetings. Since 2014, he has published more than 20 peer reviewed papers (including 4 reviews, 3 in Portuguese) and 2 book chapters. He has also been a reviewer of international journals and ad hoc reviewer of scientific committees from Brazilian Universities.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",country:{name:"Brazil"}}},{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",biography:"Dr. Margarete Dulce Bagatini is an associate professor at the Federal University of Fronteira Sul/Brazil. She has a degree in Pharmacy and a PhD in Biological Sciences: Toxicological Biochemistry. She is a member of the UFFS Research Advisory Committee\nand a member of the Biovitta Research Institute. She is currently:\nthe leader of the research group: Biological and Clinical Studies\nin Human Pathologies, professor of postgraduate program in\nBiochemistry at UFSC and postgraduate program in Science and Food Technology at\nUFFS. She has experience in the area of pharmacy and clinical analysis, acting mainly\non the following topics: oxidative stress, the purinergic system and human pathologies, being a reviewer of several international journals and books.",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",country:{name:"Brazil"}}}]}},subseries:{item:{id:"38",type:"subseries",title:"Pollution",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment",scope:"
\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11966,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,series:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713"},editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",slug:"meng-chuan-ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",slug:"olga-anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},onlineFirstChapters:{paginationCount:4,paginationItems:[{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82013",title:"Streamlining Laboratory Tests for HIV Detection",doi:"10.5772/intechopen.105096",signatures:"Ramakrishna Prakash and Mysore Krishnamurthy Yashaswini",slug:"streamlining-laboratory-tests-for-hiv-detection",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},publishedBooks:{paginationCount:3,paginationItems:[{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:315,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"40",title:"Ecosystems and Biodiversity",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"