Examples of information and data requirements during the reduction phase
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"},{slug:"intechopen-identified-as-one-of-the-most-significant-contributor-to-oa-book-growth-in-doab-20210809",title:"IntechOpen Identified as One of the Most Significant Contributors to OA Book Growth in DOAB"}]},book:{item:{type:"book",id:"5724",leadTitle:null,fullTitle:"Frailty and Sarcopenia - Onset, Development and Clinical Challenges",title:"Frailty and Sarcopenia",subtitle:"Onset, Development and Clinical Challenges",reviewType:"peer-reviewed",abstract:"Frailty is considered a multisystem impairment that makes an individual vulnerable to external or internal stressors. Sarcopenia, the age-dependent loss of muscle mass and function, is proposed as the biological substrate and the pathway whereby the consequences of physical frailty develop. These syndromes are associated with a negative impact in quality of life and can lead to the occurrence of disability, institutionalization, and even mortality. The book focuses upon all the related aspects of frailty and sarcopenia and the new advancements in the related treatments including complex issues and research. It includes high-quality chapters in all related aspects for the syndromes of sarcopenia and frailty, which adversely affect the function and overall effectiveness of the musculoskeletal system and interventions to promote rehabilitation.",isbn:"978-953-51-3484-8",printIsbn:"978-953-51-3483-1",pdfIsbn:"978-953-51-4691-9",doi:"10.5772/65153",price:119,priceEur:129,priceUsd:155,slug:"frailty-and-sarcopenia-onset-development-and-clinical-challenges",numberOfPages:254,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"3bddbdef3183cb7745a66525d1f93515",bookSignature:"Yannis Dionyssiotis",publishedDate:"August 30th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5724.jpg",numberOfDownloads:17860,numberOfWosCitations:25,numberOfCrossrefCitations:20,numberOfCrossrefCitationsByBook:3,numberOfDimensionsCitations:40,numberOfDimensionsCitationsByBook:3,hasAltmetrics:1,numberOfTotalCitations:85,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 6th 2016",dateEndSecondStepPublish:"November 8th 2016",dateEndThirdStepPublish:"February 4th 2017",dateEndFourthStepPublish:"March 28th 2017",dateEndFifthStepPublish:"May 30th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"76883",title:"PhD.",name:"Yannis",middleName:null,surname:"Dionyssiotis",slug:"yannis-dionyssiotis",fullName:"Yannis Dionyssiotis",profilePictureURL:"https://mts.intechopen.com/storage/users/76883/images/system/76883.jpg",biography:"Dr. Yannis Dionyssiotis specializes in Physical Medicine and Rehabilitation (PMR). He has clinical experience as Physiatrist in a variety of clinical settings as clinician, researcher, clinical instructor and consultant. He holds a PhD in Bone and Soft Tissue Changes in Spinal Cord Injury from National and Kapodistrian University of Athens. He also has senior European Board Certification in PMR, a Master Thesis in Aging and Chronic Diseases (Hellenic Open University / University of Thessaly), Facharztanerkennung in Germany (PMR) and is registered Physician in the UK. Dr. Dionyssiotis has professional presentations and publications in the areas of rehabilitation, spinal cord injury, multiple sclerosis and osteoporosis. He is the Co-Editor in Chief of Journal Frailty, Sarcopenia and Falls.",institutionString:"National and Kapodistrian University of Athens",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"Westpfalz Klinikum",institutionURL:null,country:{name:"Germany"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1150",title:"Orthopedics",slug:"orthopedics"}],chapters:[{id:"56116",title:"Epidemiology of Sarcopenia and Frailty",doi:"10.5772/intechopen.69771",slug:"epidemiology-of-sarcopenia-and-frailty",totalDownloads:2275,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:1,abstract:"Sarcopenia and frailty are common in older persons and pose particular challenges for health and social care systems especially in the context of global population ageing. Sarcopenia, the loss of skeletal muscle mass, strength and function with age is associated with adverse individual physical and metabolic changes contributing to morbidity and mortality. The health and socioeconomic implications of sarcopenia are also considerable. Sarcopenia is a core component of physical frailty that together impact negatively on an individual’s capability to live independently. Frailty is a biological syndrome of low reserve and resistance to stressors resulting from cumulative declines across multiple physiological systems that collectively predispose an individual to adverse outcomes. Frailty develops along a continuum from independence through to death as physiological reserves progressively diminish an individual’s capacity to recover from an acute insult or illness. Managing sarcopenia and frailty involves the multidisciplinary led completion of a comprehensive care plan that is patient centred, responsive to the needs of the patient and adaptable therefore enabling an individual to maintain their independence.",signatures:"Harnish P Patel, Esther Clift, Lucy Lewis and Cyrus Cooper",downloadPdfUrl:"/chapter/pdf-download/56116",previewPdfUrl:"/chapter/pdf-preview/56116",authors:[{id:"83886",title:"Dr.",name:"Harnish",surname:"Patel",slug:"harnish-patel",fullName:"Harnish Patel"},{id:"125686",title:"Prof.",name:"Cyrus",surname:"Cooper",slug:"cyrus-cooper",fullName:"Cyrus Cooper"},{id:"206190",title:"Mrs.",name:"Esther",surname:"Clift",slug:"esther-clift",fullName:"Esther Clift"},{id:"206191",title:"Mrs.",name:"Lucy",surname:"Lewis",slug:"lucy-lewis",fullName:"Lucy Lewis"}],corrections:null},{id:"55791",title:"Sarcopenia in the Context of Skeletal Muscle Function Deficit (SMFD)",doi:"10.5772/intechopen.68979",slug:"sarcopenia-in-the-context-of-skeletal-muscle-function-deficit-smfd-",totalDownloads:1307,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Evidence shows that not only changes in skeletal muscle mass but changes in strength and other factors underpinning muscle quality play a role in muscle function decline and impaired mobility associated with aging. Changes in both strength and quality may precede loss of muscle mass. Skeletal muscle function deficit (SMFD) is a terminology that embraces this evolving conceptualization of sarcopenia and age-related muscle dysfunctions. This chapter provides a discussion on sarcopenia in the context of SMFD, including operational definitions and methodological challenges associated with their establishment; integration of muscle quality into SMFD; efforts to identify diagnostic cutoff values for low muscle mass and weakness and their predictive validity to mobility disability; need for standardized muscle quality assessment; clinical and public health relevance and research opportunities. Changes in muscle composition, based on excessive levels of inter- and intramuscular or intramyocellular fat are striking features increasingly addressed in the literature, found to affect muscle metabolism and peak force generation. Methods to easily and rapidly assess muscle composition in multiple clinical settings and with minimal patient burden are needed. Further characterization of SMFD should emphasize integration of muscle quality and factors behind changes in quality, as well as associated clinical and research implications.",signatures:"Rosaly Correa-de-Araujo",downloadPdfUrl:"/chapter/pdf-download/55791",previewPdfUrl:"/chapter/pdf-preview/55791",authors:[{id:"196647",title:"M.D.",name:"Rosaly",surname:"Correa-De-Araujo",slug:"rosaly-correa-de-araujo",fullName:"Rosaly Correa-De-Araujo"}],corrections:null},{id:"55942",title:"From Sarcopenia to Frailty: The Pathophysiological Basis and Potential Target Molecules of Intervention",doi:"10.5772/intechopen.69639",slug:"from-sarcopenia-to-frailty-the-pathophysiological-basis-and-potential-target-molecules-of-interventi",totalDownloads:1530,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Skeletal muscle is not only an endocrine organ but also one of core components of muscloskeletal system. Sarcopenia refers to a decline in the skeletal muscle mass and function. The former involves the size and number of changes in two types of myofibers, lower satellite cell density, and regeneration ability. The latter shows a loss of muscle strength. Frailty is a geriatric syndrome with multisystem impairment associated with increased vulnerability to stressors. Sarcopenia increases the risk of frailty and may be one of the major causes of physical frailty phenotype. Sarcopenia is also potentially associated with cognitive frailty phenotype. Aging might be the common underlying pathophysiology of sarcopenia and frailty. Therefore, there are some potential target molecules in aging-related signaling pathways that might be associated with sarcopenia and frailty. Nevertheless, sarcopenia can mediate metabolism and promote accelerate systemic aging, frailty, and age-related diseases by myokines in an endocrine manner. Lifestyle interventions (resistance exercise and dietary restriction) of gerontoscience are effective in the prevention of sarcopenia. Some pharmacological agents are registered in different phases of clinical trials for sarcopenia intervention. Phytochemicals, mTOR inhibitors, metformin and acarbose, NAD precursors, and sirtuin activators demonstrated that multiple target antiaging effects might also have preventive and therapeutic perspectives on sarcopenia and frailty.",signatures:"Zhuowei Yu, Qingwei Ruan, Grazia D’Onofrio and Antonio Greco",downloadPdfUrl:"/chapter/pdf-download/55942",previewPdfUrl:"/chapter/pdf-preview/55942",authors:[{id:"195813",title:"Prof.",name:"Qingwei",surname:"Ruan",slug:"qingwei-ruan",fullName:"Qingwei Ruan"},{id:"204892",title:"Prof.",name:"Zhuowei",surname:"Yu",slug:"zhuowei-yu",fullName:"Zhuowei Yu"},{id:"204898",title:"Prof.",name:"Antonio",surname:"Greco",slug:"antonio-greco",fullName:"Antonio Greco"},{id:"272628",title:"Dr.",name:"Grazia",surname:"D'Onofrio",slug:"grazia-d'onofrio",fullName:"Grazia D'Onofrio"}],corrections:null},{id:"54902",title:"Sarcopenia and Malnutrition in the Elderly",doi:"10.5772/intechopen.68426",slug:"sarcopenia-and-malnutrition-in-the-elderly",totalDownloads:1571,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Sarcopenia and malnutrition are both commonly occurring conditions in elderly population. As understood today, sarcopenia is a syndrome characterised by progressive and generalised loss of skeletal muscle mass, physical performance and/or strength, whereas malnutrition has been defined as a condition of an imbalance of energy, protein and other nutrients that can cause measurable negative effects. In many populations, malnutrition and sarcopenia are present simultaneously, and they appear clinically through a combination of decreased body weight and nutrient intake, along with a decrease in muscle mass and function. Moreover, malnutrition is one of the key pathophysiological causes of sarcopenia. Both entities result in numerous and substantial negative outcomes to the patients and the healthcare system, including decreased quality of life and functionality and increased healthcare costs, hospitalisation rates, morbidity and mortality. Early identification of sarcopenia would be of great clinical relevance because the loss of muscle mass and strength with ageing can be largely reversed by proper exercise and nutritional intervention. Clinicians should integrate nutritional assessment with sarcopenia screening for optimal evaluation of these two interrelated issues to help improve clinical outcomes.",signatures:"Beatriz Lardiés-Sánchez and Alejandro Sanz-París",downloadPdfUrl:"/chapter/pdf-download/54902",previewPdfUrl:"/chapter/pdf-preview/54902",authors:[{id:"200965",title:"Dr.",name:"Beatriz",surname:"Lardiés-Sánchez",slug:"beatriz-lardies-sanchez",fullName:"Beatriz Lardiés-Sánchez"},{id:"200967",title:"Dr.",name:"Alejandro",surname:"Sanz-París",slug:"alejandro-sanz-paris",fullName:"Alejandro Sanz-París"}],corrections:null},{id:"55212",title:"Sarcopenic Dysphagia as a New Concept",doi:"10.5772/intechopen.68791",slug:"sarcopenic-dysphagia-as-a-new-concept",totalDownloads:2179,totalCrossrefCites:5,totalDimensionsCites:9,hasAltmetrics:1,abstract:"Dysphagia (swallowing difficulties) is a serious problem associated with malnutrition, dehydration, aspiration pneumonia, and death. Its well‐known causes include stroke, neuromuscular disease, and head and neck cancer, and these affect muscles and sensation during deglutition. In recent years, dysphagia due to sarcopenia (i.e. “sarcopenic dysphagia”) has been reported as a new concept. Sarcopenic dysphagia results from low swallowing and general skeletal muscle mass and strength. The characteristic changes in swallowing muscles occur primarily in oral and pharyngeal muscles along with other associated factors. With a rapidly aging population, the number of older adults with sarcopenic dysphagia is expected to increase. Therefore, it is necessary to investigate the pathophysiology and treatment strategies for sarcopenic dysphagia. In this chapter, we summarize previous studies related to sarcopenic dysphagia.",signatures:"Kotomi Sakai and Kunihiro Sakuma",downloadPdfUrl:"/chapter/pdf-download/55212",previewPdfUrl:"/chapter/pdf-preview/55212",authors:[{id:"195785",title:"Ph.D. Student",name:"Kotomi",surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai"},{id:"195829",title:"Prof.",name:"Kunihiro",surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma"}],corrections:null},{id:"56002",title:"Rehabilitation in Sarcopenic Elderly",doi:"10.5772/intechopen.69638",slug:"rehabilitation-in-sarcopenic-elderly",totalDownloads:1552,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Sarcopenia is a complex problem and an important emerging field in rehabilitation of the elderly. In 2010, the European working group on sarcopenia in older people (EWGSOP) described sarcopenia as a syndrome characterised by progressive and generalised loss of skeletal muscle mass and strength, associated with a risk of adverse outcomes such as physical disability, poor quality of life and death. This field of rehabilitation has been defined as ‘evaluative, diagnostic and therapeutic interventions whose purpose is to restore functional ability or enhance residual functional capability in elderly people with disabling impairments’. With growing numbers of frail older people, there is an increasing need for appropriate geriatric rehabilitation services. Definitely, sarcopenia needs a specific rehabilitation program to improve muscular mass and strength that must be integrated with a global approach with the aim to recover postural assessment, amplify sensory‐motor systems, in order to gain the necessary information for proper motor planning, to reduce risk of falls. Several physical agents in medicine permit to treat sarcopenia, like vibrations or electrical stimulation. The aim of this chapter is to give an overview about rehabilitative medicine for sarcopenia, highlighting the state of the art, presenting the most significative clinical researches and giving some inputs to set a rehabilitation protocol.",signatures:"Raoul Saggini, Simona Maria Carmignano, Lucia Cosenza, Tommaso\nPalermo and Rosa Grazia Bellomo",downloadPdfUrl:"/chapter/pdf-download/56002",previewPdfUrl:"/chapter/pdf-preview/56002",authors:[{id:"60231",title:"Prof.",name:"Raoul",surname:"Saggini",slug:"raoul-saggini",fullName:"Raoul Saggini"},{id:"174446",title:"Prof.",name:"Rosa Grazia",surname:"Bellomo",slug:"rosa-grazia-bellomo",fullName:"Rosa Grazia Bellomo"},{id:"206445",title:"Dr.",name:"Simona Maria",surname:"Carmignano",slug:"simona-maria-carmignano",fullName:"Simona Maria Carmignano"},{id:"206446",title:"Dr.",name:"Tommaso",surname:"Palermo",slug:"tommaso-palermo",fullName:"Tommaso Palermo"},{id:"381135",title:"Dr.",name:"Lucia",surname:"Cosenza",slug:"lucia-cosenza",fullName:"Lucia Cosenza"}],corrections:null},{id:"54255",title:"Understanding Cachexia, Sarcopenia, and Physical Exercise in Patients with Cancer",doi:"10.5772/67628",slug:"understanding-cachexia-sarcopenia-and-physical-exercise-in-patients-with-cancer",totalDownloads:1571,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Many patients with cancer experience muscle wasting and weakness. Muscle wasting in patients with cancer can be caused by cachexia and sarcopenia. Both cachexia and sarcopenia involve inflammation and oxidative stress. However, they differ in the underlying mechanisms that lead to muscle wasting. Cachexia involves the release of inflammatory cytokines due to cancer, while sarcopenia involves inflammation due to aging. Physical exercise has shown effectiveness for improving physical function, ability, and quality of life (QOL) in patients with cancer cachexia. On the other hand, no studies have investigated the relationship between physical exercise and sarcopenia in elderly patients with cancer. Previous studies showed effectiveness for improving physical function in elderly patients with cancer. In the future, more studies are required on physical exercise in sarcopenic elderly patients with cancer.",signatures:"Shinichiro Morishita, Atsuhiro Tsubaki and Jack B. Fu",downloadPdfUrl:"/chapter/pdf-download/54255",previewPdfUrl:"/chapter/pdf-preview/54255",authors:[{id:"139514",title:"Ph.D.",name:"Shinichiro",surname:"Morishita",slug:"shinichiro-morishita",fullName:"Shinichiro Morishita"},{id:"202889",title:"Dr.",name:"Atsuhiro",surname:"Tsubaki",slug:"atsuhiro-tsubaki",fullName:"Atsuhiro Tsubaki"},{id:"204354",title:"Dr.",name:"Jack B",surname:"Fu",slug:"jack-b-fu",fullName:"Jack B Fu"}],corrections:null},{id:"54670",title:"Pancreatic Cancer Cachexia: Current Concepts and Clinical Management",doi:"10.5772/68047",slug:"pancreatic-cancer-cachexia-current-concepts-and-clinical-management",totalDownloads:1031,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"There has been great progress over the last decade in understanding the pathophysiology of cachexia associated with pancreatic cancer. However, there is a large need to find better therapeutic options to successfully manage this complex and challenging condition. Patients with pancreatic cancer have some of the highest prevalence and often the most severe degrees of cachexia, which is described as a multifactorial metabolic syndrome that is associated with unintended weight loss of adipose tissue and skeletal muscle in the setting of anorexia. This chapter will review the current concepts surrounding pancreatic cancer cachexia, its clinical diagnosis, pathophysiology, and its known and proposed therapeutics. A multimodal approach utilizing nutritional support and pharmaceutical therapies is proposed to lead to the most successful management of pancreatic cancer cachexia.",signatures:"Michelle Guan, Arvind M. Shinde and Andrew E. Hendifar",downloadPdfUrl:"/chapter/pdf-download/54670",previewPdfUrl:"/chapter/pdf-preview/54670",authors:[{id:"200585",title:"Ms.",name:"Michelle",surname:"Guan",slug:"michelle-guan",fullName:"Michelle Guan"},{id:"200682",title:"Dr.",name:"Andrew E.",surname:"Hendifar",slug:"andrew-e.-hendifar",fullName:"Andrew E. Hendifar"},{id:"200820",title:"Dr.",name:"Arvind M.",surname:"Shinde",slug:"arvind-m.-shinde",fullName:"Arvind M. Shinde"}],corrections:null},{id:"56536",title:"Sarcopenia in Chronic Illness and Rehabilitative Approaches",doi:"10.5772/intechopen.70223",slug:"sarcopenia-in-chronic-illness-and-rehabilitative-approaches",totalDownloads:1785,totalCrossrefCites:4,totalDimensionsCites:5,hasAltmetrics:1,abstract:"Primary sarcopenia is considered to be age-related when no other cause is evident, other than aging itself. Secondary sarcopenia should be considered when one or more other causes are evident, such as multiple chronic conditions. Previous studies have reported that low muscle strength and impaired physical performance can be found in chronic diseases, including metabolic disease (diabetes, hypertension, and obesity), arthritis, osteoporosis, cancer, chronic kidney disease, chronic obstructive pulmonary disease, neuromuscular disease, and chronic infection. The development of preventive and therapeutic strategies against secondary sarcopenia and wasting disorders in general is an epidemiological need. The planning of a complex rehabilitation program in sarcopenia associated to chronic conditions, in the context of a comprehensive treatment, is made up of a nutritional support, exercise, correction of lifestyles, and the use of advanced physical energies. Therefore, for the purposes of the optimal management, it is essential to identify the pathogenesis and clinical characteristics that can affect the different rehabilitative treatment.",signatures:"Raoul Saggini, Simona Maria Carmignano, Lucia Cosenza, Tommaso\nPalermo and Rosa Grazia Bellomo",downloadPdfUrl:"/chapter/pdf-download/56536",previewPdfUrl:"/chapter/pdf-preview/56536",authors:[{id:"60231",title:"Prof.",name:"Raoul",surname:"Saggini",slug:"raoul-saggini",fullName:"Raoul Saggini"},{id:"211116",title:"Dr.",name:"Lucia",surname:"Cosenza",slug:"lucia-cosenza",fullName:"Lucia Cosenza"},{id:"382392",title:"Dr.",name:"Tommaso",surname:"Palermo",slug:"tommaso-palermo",fullName:"Tommaso Palermo"}],corrections:null},{id:"56150",title:"Frailty and Cardiovascular Disease",doi:"10.5772/intechopen.69877",slug:"frailty-and-cardiovascular-disease",totalDownloads:1506,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Cardiovascular disease (CVD) comprises a vast spectrum of disease states ranging from hypertension (HTN) to valvular heart disease (VHD). CVD is known to be the leading cause of morbidity, mortality, and health‐care expenditure throughout the world. According to the World Health Organization, coronary artery disease (CAD) and stroke, both subsets of CVD, are the world’s biggest killers, accounting for a combined 15 million deaths in 2015. These diseases have remained the leading causes of death globally in the last 15 years. In 2010, CAD alone was projected to cost the U.S. $108.9 billion including the cost of health‐care services, medications, and lost productivity. The presence of frailty significantly worsens outcomes for patients suffering from CAD. With just this one example of how frailty affects CVD, it is clear that understanding the impact of frailty upon patients afflicted with the spectrum of cardiovascular disease is integral for the care of this very significant patient population.",signatures:"Vinod Chainani, Russell Riehl, Geeta Chainani, Abir Abdo, Mauricio\nG. Cohen, Carlos Alfonso, Pedro Martinez‐Clark, Carl J. Lavie, John P.\nReilly and Nidal Abi‐Rafeh",downloadPdfUrl:"/chapter/pdf-download/56150",previewPdfUrl:"/chapter/pdf-preview/56150",authors:[{id:"198378",title:"Dr.",name:"Vinod",surname:"Chainani",slug:"vinod-chainani",fullName:"Vinod Chainani"},{id:"381513",title:"Dr.",name:"Russell",surname:"Riehl",slug:"russell-riehl",fullName:"Russell Riehl"},{id:"381514",title:"Dr.",name:"Geeta",surname:"Chainani",slug:"geeta-chainani",fullName:"Geeta Chainani"},{id:"381515",title:"Dr.",name:"Abir",surname:"Abdo",slug:"abir-abdo",fullName:"Abir Abdo"},{id:"381516",title:"Dr.",name:"Mauricio G.",surname:"Cohen",slug:"mauricio-g.-cohen",fullName:"Mauricio G. Cohen"},{id:"381517",title:"Dr.",name:"Carlos",surname:"Alfonso",slug:"carlos-alfonso",fullName:"Carlos Alfonso"},{id:"381518",title:"Dr.",name:"Pedro",surname:"Martinez‐Clark",slug:"pedro-martinezclark",fullName:"Pedro Martinez‐Clark"},{id:"381519",title:"Dr.",name:"Carl J.",surname:"Lavie",slug:"carl-j.-lavie",fullName:"Carl J. Lavie"},{id:"381520",title:"Dr.",name:"John P.",surname:"Reilly",slug:"john-p.-reilly",fullName:"John P. Reilly"},{id:"381521",title:"Dr.",name:"Nidal",surname:"Abi‐Rafeh",slug:"nidal-abirafeh",fullName:"Nidal Abi‐Rafeh"}],corrections:null},{id:"55691",title:"Allogeneic Mesenchymal Stem Cells as a Treatment for Aging Frailty",doi:"10.5772/intechopen.69194",slug:"allogeneic-mesenchymal-stem-cells-as-a-treatment-for-aging-frailty",totalDownloads:1554,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:"As life expectancy is projected to increase in the ensuing decades, individuals of older age continue to exceed the previous generation’s lifespan. Advancing age is associated with a reduction in physical and mental functional capacity, and chronic inflammation is a major factor contributing to this decline. A heightened inflammatory state can lead to exhaustion, weakness, weight loss, slow gate speed, and an overall decrease in activity level. These phenotypes define the onset of the disease process known as frailty. Frailty is a growing epidemic, which severely undermines a person’s ability to deal with outside stressors, and increases their rate of hospitalization, institutionalization, and mortality. Current interventions focus on preventative care by improving exercise capacity, strength, nutritional supplementation, diet, and mobility. However, a biological cure has heretofore remained elusive. Here, we introduce the novel therapeutic principle that mesenchymal stem cell (MSC) therapy may represent a safe, practical, and efficacious both the treatment and prevention of frailty in individuals of advancing age. To date, a phase I safety trial reveals an excellent safety profile and suggests that mesenchymal stem cells can ameliorate signs and symptoms of frailty. These early studies lay the groundwork for future large-scale clinical trials of this exciting and novel therapeutic concept that has the potential to expand health span in the aging population.",signatures:"Bryon A. Tompkins, Ana Marie Landin, Victoria Florea, Makoto\nNatsumeda, Angela C. Rieger, Wayne Balkan, Ivonne Hernandez\nSchulman and Joshua M. Hare",downloadPdfUrl:"/chapter/pdf-download/55691",previewPdfUrl:"/chapter/pdf-preview/55691",authors:[{id:"47873",title:"Dr.",name:"Ivonne",surname:"Schulman",slug:"ivonne-schulman",fullName:"Ivonne Schulman"},{id:"200961",title:"Dr.",name:"Joshua",surname:"Hare",slug:"joshua-hare",fullName:"Joshua Hare"},{id:"201911",title:"Ph.D.",name:"Wayne",surname:"Balkan",slug:"wayne-balkan",fullName:"Wayne Balkan"},{id:"201913",title:"Dr.",name:"Ana Marie",surname:"Landin",slug:"ana-marie-landin",fullName:"Ana Marie Landin"},{id:"202031",title:"Dr.",name:"Bryon",surname:"Tompkins",slug:"bryon-tompkins",fullName:"Bryon Tompkins"},{id:"205797",title:"Dr.",name:"Victoria",surname:"Florea",slug:"victoria-florea",fullName:"Victoria Florea"},{id:"205798",title:"Dr.",name:"Angela C.",surname:"Rieger",slug:"angela-c.-rieger",fullName:"Angela C. Rieger"},{id:"205799",title:"Dr.",name:"Makoto",surname:"Natsumeda",slug:"makoto-natsumeda",fullName:"Makoto Natsumeda"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:[{id:"65",label:"highly cited contributor"}]},relatedBooks:[{type:"book",id:"758",title:"Osteoporosis",subtitle:null,isOpenForSubmission:!1,hash:"b52e42df6cd850721e557bedd3a4a77b",slug:"osteoporosis",bookSignature:"Yannis Dionyssiotis",coverURL:"https://cdn.intechopen.com/books/images_new/758.jpg",editedByType:"Edited by",editors:[{id:"76883",title:"PhD.",name:"Yannis",surname:"Dionyssiotis",slug:"yannis-dionyssiotis",fullName:"Yannis Dionyssiotis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3805",title:"Topics in Paraplegia",subtitle:null,isOpenForSubmission:!1,hash:"e44be7b6bdc95169c2e6d3bee44a7ca8",slug:"topics-in-paraplegia",bookSignature:"Yannis Dionyssiotis",coverURL:"https://cdn.intechopen.com/books/images_new/3805.jpg",editedByType:"Edited by",editors:[{id:"76883",title:"PhD.",name:"Yannis",surname:"Dionyssiotis",slug:"yannis-dionyssiotis",fullName:"Yannis Dionyssiotis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4525",title:"Advances in Osteoporosis",subtitle:null,isOpenForSubmission:!1,hash:"3d99bb4399f999199ee2db9a250884ba",slug:"advances-in-osteoporosis",bookSignature:"Yannis Dionyssiotis",coverURL:"https://cdn.intechopen.com/books/images_new/4525.jpg",editedByType:"Edited by",editors:[{id:"76883",title:"PhD.",name:"Yannis",surname:"Dionyssiotis",slug:"yannis-dionyssiotis",fullName:"Yannis Dionyssiotis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6069",title:"Essentials of Spinal Cord Injury Medicine",subtitle:null,isOpenForSubmission:!1,hash:"f0a49e24ebfbb9ed7d02f7daab9b30f6",slug:"essentials-of-spinal-cord-injury-medicine",bookSignature:"Yannis Dionyssiotis",coverURL:"https://cdn.intechopen.com/books/images_new/6069.jpg",editedByType:"Edited by",editors:[{id:"76883",title:"PhD.",name:"Yannis",surname:"Dionyssiotis",slug:"yannis-dionyssiotis",fullName:"Yannis Dionyssiotis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"938",title:"Recent Advances in Arthroplasty",subtitle:null,isOpenForSubmission:!1,hash:"617e868a5450ec0c9d233121177ca61e",slug:"recent-advances-in-arthroplasty",bookSignature:"Samo K. Fokter",coverURL:"https://cdn.intechopen.com/books/images_new/938.jpg",editedByType:"Edited by",editors:[{id:"68181",title:"Dr.",name:"Samo",surname:"Fokter",slug:"samo-fokter",fullName:"Samo Fokter"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3394",title:"Arthroplasty",subtitle:"Update",isOpenForSubmission:!1,hash:"672aa53986638f5846f76ee8c8a1ea9e",slug:"arthroplasty-update",bookSignature:"Plamen Kinov",coverURL:"https://cdn.intechopen.com/books/images_new/3394.jpg",editedByType:"Edited by",editors:[{id:"64690",title:"Prof.",name:"Plamen",surname:"Kinov",slug:"plamen-kinov",fullName:"Plamen Kinov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5164",title:"Advanced Techniques in Bone Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"e99f852544eefac23fb5fe0697c2096d",slug:"advanced-techniques-in-bone-regeneration",bookSignature:"Alessandro Rozim Zorzi and Joao Batista de Miranda",coverURL:"https://cdn.intechopen.com/books/images_new/5164.jpg",editedByType:"Edited by",editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2088",title:"Recent Advances in Scoliosis",subtitle:null,isOpenForSubmission:!1,hash:"83cd4ebc741a8c3eb6dd08e5a6957181",slug:"recent-advances-in-scoliosis",bookSignature:"Theodoros B. Grivas",coverURL:"https://cdn.intechopen.com/books/images_new/2088.jpg",editedByType:"Edited by",editors:[{id:"35180",title:"Dr.",name:"Theodoros",surname:"Grivas",slug:"theodoros-grivas",fullName:"Theodoros Grivas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2012",title:"Recent Advances in Hip and Knee Arthroplasty",subtitle:null,isOpenForSubmission:!1,hash:"20ffb4ff9f89a7537b335291c94cda13",slug:"recent-advances-in-hip-and-knee-arthroplasty",bookSignature:"Samo K. Fokter",coverURL:"https://cdn.intechopen.com/books/images_new/2012.jpg",editedByType:"Edited by",editors:[{id:"68181",title:"Dr.",name:"Samo",surname:"Fokter",slug:"samo-fokter",fullName:"Samo Fokter"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"640",title:"Modern Arthroscopy",subtitle:null,isOpenForSubmission:!1,hash:"ad9afcdcfadbb0f3150016589356d633",slug:"modern-arthroscopy",bookSignature:"Jason L. Dragoo",coverURL:"https://cdn.intechopen.com/books/images_new/640.jpg",editedByType:"Edited by",editors:[{id:"77223",title:"Dr.",name:"Jason L.",surname:"Dragoo",slug:"jason-l.-dragoo",fullName:"Jason L. Dragoo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"72877",slug:"erratum-synthesis-techniques-and-applications-of-perovskite-materials",title:"Erratum - Synthesis Techniques and Applications of Perovskite Materials",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/72877.pdf",downloadPdfUrl:"/chapter/pdf-download/72877",previewPdfUrl:"/chapter/pdf-preview/72877",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/72877",risUrl:"/chapter/ris/72877",chapter:{id:"70923",slug:"synthesis-techniques-and-applications-of-perovskite-materials",signatures:"Dinesh Kumar, Ram Sagar Yadav, Monika, Akhilesh Kumar Singh and Shyam Bahadur Rai",dateSubmitted:"March 12th 2019",dateReviewed:"May 13th 2019",datePrePublished:null,datePublished:"June 10th 2020",book:{id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,fullTitle:"Perovskite Materials, Devices and Integration",slug:"perovskite-materials-devices-and-integration",publishedDate:"June 10th 2020",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"298428",title:"Dr.",name:"Ram Sagar",middleName:null,surname:"Yadav",fullName:"Ram Sagar Yadav",slug:"ram-sagar-yadav",email:"ramsagaryadav@gmail.com",position:null,institution:null},{id:"302651",title:"Dr.",name:"Dinesh",middleName:null,surname:"Kumar",fullName:"Dinesh Kumar",slug:"dinesh-kumar",email:"dineshiitbhu@gmail.com",position:null,institution:null},{id:"302652",title:"Ms.",name:"Monika",middleName:null,surname:"Kanwal",fullName:"Monika Kanwal",slug:"monika-kanwal",email:"monikavbspu@gmail.com",position:null,institution:null},{id:"302653",title:"Dr.",name:"Akhilesh Kumar",middleName:null,surname:"Singh",fullName:"Akhilesh Kumar Singh",slug:"akhilesh-kumar-singh",email:"aksingh.mst@iitbhu.ac.in",position:null,institution:null},{id:"302654",title:"Prof.",name:"Shyam Bahadur",middleName:null,surname:"Rai",fullName:"Shyam Bahadur Rai",slug:"shyam-bahadur-rai",email:"sbrai49@yahoo.co.in",position:null,institution:null}]}},chapter:{id:"70923",slug:"synthesis-techniques-and-applications-of-perovskite-materials",signatures:"Dinesh Kumar, Ram Sagar Yadav, Monika, Akhilesh Kumar Singh and Shyam Bahadur Rai",dateSubmitted:"March 12th 2019",dateReviewed:"May 13th 2019",datePrePublished:null,datePublished:"June 10th 2020",book:{id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,fullTitle:"Perovskite Materials, Devices and Integration",slug:"perovskite-materials-devices-and-integration",publishedDate:"June 10th 2020",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"298428",title:"Dr.",name:"Ram Sagar",middleName:null,surname:"Yadav",fullName:"Ram Sagar Yadav",slug:"ram-sagar-yadav",email:"ramsagaryadav@gmail.com",position:null,institution:null},{id:"302651",title:"Dr.",name:"Dinesh",middleName:null,surname:"Kumar",fullName:"Dinesh Kumar",slug:"dinesh-kumar",email:"dineshiitbhu@gmail.com",position:null,institution:null},{id:"302652",title:"Ms.",name:"Monika",middleName:null,surname:"Kanwal",fullName:"Monika Kanwal",slug:"monika-kanwal",email:"monikavbspu@gmail.com",position:null,institution:null},{id:"302653",title:"Dr.",name:"Akhilesh Kumar",middleName:null,surname:"Singh",fullName:"Akhilesh Kumar Singh",slug:"akhilesh-kumar-singh",email:"aksingh.mst@iitbhu.ac.in",position:null,institution:null},{id:"302654",title:"Prof.",name:"Shyam Bahadur",middleName:null,surname:"Rai",fullName:"Shyam Bahadur Rai",slug:"shyam-bahadur-rai",email:"sbrai49@yahoo.co.in",position:null,institution:null}]},book:{id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,fullTitle:"Perovskite Materials, Devices and Integration",slug:"perovskite-materials-devices-and-integration",publishedDate:"June 10th 2020",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11475",leadTitle:null,title:"Food Security Challenges and Approaches",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tFood is the basic necessity, which sustains active and health life style. Everybody should have an access towards adequate amount of food that can be ensured through food security. Therefore, the concept regarding the food security has utmost importance for developed and developing nations. It measures that every individual has access to the food that fulfils the food safety and quality standards. Food availability, access, utilization and stability are the pillars of the food security. These pillars are being affected due to various factors such as natural disasters, poor agricultural and post-harvest practices, climate change and poor manufacturing and marketing strategies. The role of all these factors will aim to fall in the scope of this book.
\r\n\tFood insecurity results in fear of hunger and starvation that ultimately affects one’s ability to work for sustainability and economic growth of the country. In addition to this, food insecurity results in various chronic diseases due to reduce immunity that ultimately, a burned on the county economy. Therefore, this book will intend to discuss in detail about the food insecurity challenges and their effect on the quality of life. This book will also aim to provide an overview about the new trends and future prospective that help to resolve the food security issues.
Disaster management planning is structured around the disaster management cycle model. The cycle consists of four stages – reduction, readiness, response and recovery. Remotely sensed data can provide a valuable source of information at each of these stages, helping to understand spatial phenomena, and providing scientists and authorities with objective data sources for decision making. The challenge with disaster management is that the inherent unpredictability and range of hazards does not allow for a single all-encompassing solution to be developed and explored. Instead, there are a multitude of different remote sensing platforms and sensors that can and should be employed for image acquisition. An extensive coverage of each, including optimal processing regimes for their data would be prohibitively long; instead this chapter aims to give some general examples of the use of remote sensing in disaster management, while directing the reader to more specific studies in the literature. The types of data required and information provision needs for each stage will be discussed including optical, thermal, and synthetic aperture radar as data sources over a variety of spatial and temporal scales.
\n\t\t\tRemote sensing can be used to assist risk reduction initiatives through identification of hazard zones associated with flood plains, coastal inundation and erosion, and active faults. It can also be used to verify hazard models by measuring the location and magnitude of actual events. Imagery is widely used by meteorologists for providing weather forecasting and warnings of potentially severe weather events, providing the public and emergency responders with information that can assist decision making around short term readiness. These images are commonly presented in print, television and on the internet, and they are well accepted by viewers around the world. Imagery of fires, volcanic eruptions and flooding are often used during the response phase for the visual impact that they provide. If people in potentially at-risk locations personalise the risk, they are more likely to take readiness actions such as making emergency plans for contact and evacuation or assembling emergency kits. Remote sensing images of similar communities experiencing hazards, or the progress of a hazard such as a fire front, can assist with this personalisation process. For agencies that respond to emergencies, remote sensing imagery provides a rapid method of assessing the magnitude of hazard impacts, areas most affected, and where key transport and other infrastructure links have been disrupted or destroyed. Remote sensing can also be used to provide an indication of the rate of recovery in an area post disaster based on indicators such as vegetation regrowth, debris removal, and reconstruction.
\n\t\t\tThere are few examples where remote sensing is incorporated seamlessly into all stages of the disaster management cycle for planning purposes. This requires a collaborative effort from emergency managers, policy planners and remote sensing technical staff that may not always be co-located, or even working for the same organisation. However, data is becoming more readily available, and some satellites and constellations are even targeting at least partially the disaster management / emergency response community in recognition of the value remotely sensed imagery can provide. If this current trend continues, integrating remote sensing and emergency management will become increasingly more commonplace.
\n\t\tThe traditional approach to hazard risk and disaster management has been one primarily focussed on response to events as they occur (Gregg & Houghton 2006), managing residual risk through warning systems and emergency management plans, and more recently attempting to reduce risk through changing the hazard process or impacts (Board on Natural Disasters 1999). Examples of attempts at hazard modification include: the use of stopbanks and levees to provide opportunities to build in areas vulnerable to flood hazard; building codes for strengthened buildings to allow development in earthquake prone locations; and building seawalls along coasts to reduce susceptibility to erosion and coastal inundation. These measures have allowed greater development in hazardous areas, and are typically designed for protection up to a certain magnitude of event, but there always exists the potential for design limits to be exceeded (Burby 1998). Because of reliance on technological solutions, risk is increasing in the developed world as infill and migration increases in “protected” areas (Mileti 1999). In less-developed nations, risk is also increasing, although the drivers differ. Reliance on decreasing natural resources, population increase, poverty, and political drivers push communities into hazardous areas traditionally left un-settled (Donner & Rodriguez 2008). The body of research into the evolution of hazards and disaster management now recognises that it is primarily social drivers that create vulnerability to hazards, and consequently increase the potential for disasters (Board on Natural Disasters 1999, Cutter & Finch 2008, Donner & Rodriguez 2008, Pertrow et al. 2006, Wisner et al. 2004). The overall focus of emergency management has shifted to consider disaster management planning as part of a broader system of planning for sustainable, resilient communities. Whether a hazardous event will become a disaster - an event that is beyond the capacity of responding agencies, resources, and community coping capacity (Quarantelli 1985), can be influenced by effective disaster management planning.
\n\t\t\tThis recognition of the importance of social drivers has brought about a change in how disaster planning is considered and undertaken. Many nations now plan using a variation of the Disaster Management Cycle, an integrated, four–phase planning system. Although the cycle can be considered as a continuum, traditionally the first phase of the cycle is considered to be reduction, followed by readiness, response, and recovery (Figure 1).
\n\t\t\tThe disaster management cycle
Reduction incorporates all measures and planning that reduce the likelihood of a disaster occurring. This is done through the process of risk identification and reduction; either by modifying the hazard process using traditional structural methods such as stopbanks or seawalls, or by modifying behaviours and the assets at risk (Gregg & Houghton 2006). Behaviour modification includes land use planning to: prevent development in hazardous areas; incorporate good access for response and evacuation; and foster interconnected and resilient communities (Burby 1998). In theory, land use planning can reduce all risk from disasters, but centuries of settlement in hazardous locations make this option unrealistic and impractical. Modifying assets at risk includes such methods as strengthening buildings and infrastructure and raising floor heights to reduce hazard impacts.
\n\t\t\tReadiness planning accepts that some residual risk is present for communities and that measures must be in place to ensure any response to hazards is efficient and reduces hazard impacts. Readiness planning includes: public education on hazards and their consequences, and how these consequences can be reduced; training of emergency planners and responders; installing monitoring and warning systems for hazards; exercising response plans; and fostering community resilience through increased uptake in home preparedness such as learning first aid, having an emergency kit and an evacuation plan (Ronan & Johnston 2005).
\n\t\t\tThe phase of disaster management that has traditionally received the most recognition, funding and planning effort is Response (Gregg & Houghton 2006). This fact is also reflected in the remote sensing community, with an overwhelming number of research papers dedicated to the use of imagery for disaster response, despite the fact that data often cannot be provided in the timeframe required to be of use for decision makers. The reality is that most nations do not have the capability to prevent disasters occurring; the best option for reducing the chance of a disaster is through reducing risk. However, response capability is important in any disaster as it involves the processes of coordinated effort to manage resources, including life essentials and personnel, for activities such as evacuation, relief, search and rescue and needs assessment (Quarantelli 1997).
\n\t\t\tRecovery, the fourth phase of the cycle has traditionally been focussed on restoration of lifeline utilities, and building reconstruction. There is now considerable research into holistic recovery processes, which recognise that for community recovery to be sustainable, the social, economic, built and natural environments must be considered (Norman 2004). The four environments are interlinked as communities rely on:
\n\t\t\tNatural environment for amenity (recreation, psychological wellbeing), and resources (to provide opportunities for construction and employment);
Built environment for lifeline utilities and structures to enable people to live, work and recreate;
Economic environment to provide goods, services and livelihoods; and
Social environment, to provide opportunities for political participation, community building, networking and psychological wellbeing.
The recovery phase of a disaster can be considered to have several steps, the initial restoration of lifeline essentials, and the longer term rebuilding of communities. The recovery phase is often considered to be an optimal time to include measures that will reduce the risk of future disasters (Becker et al. 2008).
\n\t\t\tThe four phases of the disaster management cycle are not discreet; they are interrelated and ideally integrated throughout the planning process. Decisions about risk reduction methods will affect the degree of readiness planning and response that will be required. Readiness levels of affected communities and responders can determine whether an event becomes a disaster, as can be seen in the failure to provide evacuation options for the 20% of the New Orleans population with no vehicle or resources to leave the city prior to hurricane Katrina’s landfall (Laska & Morrow 2006/7). The effectiveness of the response phase will play a significant role in how affected communities recover, both physically and psychologically. Lessons from the response phase can be incorporated into risk reduction and readiness planning. Finally, the recovery phase can include risk reduction measures to increase resilience and reduce future vulnerability.
\n\t\tIn order to successfully use remote sensing for disaster management, physical indicators of features or attributes within the disaster management cycle that are measureable in imagery need to be identified. At that point, selection of the most appropriate remotely sensed data set is possible by identifying the spatial, spectral, temporal, and radiometric requirements. The use of a framework for selecting appropriate remotely sensed data has been demonstrated for mapping and monitoring coastal and tropical wetlands, tropical rainforests, coastal ecosystems and coral reefs (Phinn 1998, Phinn et al. 2006). This is an approach that can be modified and applied under many different circumstances and for various environments. Here we look to apply aspects of the framework to disaster management. During the reduction, readiness and recovery phases, there may be sufficient time to develop and apply the framework as the cycle is progressing. However, as timeliness is a critical factor in the response phase, it is of most use to already have systems in place to aid with appropriate data selection so that crucial decisions need not be made under the severe time constraints that are necessitated by rapid response. Preparation may therefore involve developing a range of scenarios representing potential situations that require rapid response at a set location, and applying the principles of data selection and processing in advance. In this way, the decisions regarding remote sensing in the response phase can actually be made during the readiness phase instead. This should be done as a collaborative exercise between both remote sensing experts and emergency management agencies.
\n\t\t\tThe types of satellite and airborne sensors that can be used to support phases of the disaster management cycle are many and varied. It is most important to consider the spatial scale of the hazard, in addition to determining the most appropriate data type to address the problem. For example, geostationary satellites provide data over a large area, but with minimal spatial detail, and are appropriate for monitoring weather patterns (readiness) and volcanic ash and gas distribution (response). Conversely, very high spatial resolution data (e.g. aerial photography, Quickbird, Ikonos, Worldview) are appropriate for targeting relatively small areas where they can provide a great deal of detail. Examples of their use include baseline infrastructure mapping for scenario development and model validation (reduction and readiness), building damage (response), and observations of debris removal and reconstruction (recovery).
\n\t\t\tIn the disaster reduction phase, the focus for remote sensing is often on mapping landscape features such as land cover / land use, and the location of potentially hazardous features or processes to avoid when developing infrastructure (e.g. active faults, flood plains). During the readiness phase, the emphasis is on monitoring these features or processes, developing models for forecasting purposes, and using maps and model for training and education. In the response phase, the timely acquisition of data and provision of information to emergency services is critical. Much of the attention will be placed on identifying infrastructure that has been damaged or is likely to be at risk in the near future (e.g. housing in the path of a bush fire). Finally during the recovery phase, the focus will shift to long term monitoring of debris removal, vegetation regeneration, and reconstruction.
\n\t\t\tThere are a large number of applications for which optical remotely sensed imagery can be used to aid the disaster management cycle. Optical data can be of particular use to the disaster management community as it is generally simple to understand and interpret raw data, particularly when collected using standard true colour spectral bands (blue, green, and red). The characteristics of the sensor are important in selecting the most appropriate data type for use in individual situations. Consideration should be primarily given to the spatial and temporal resolution of the sensor. These factors will differ depending on the disaster management activity. For example, during the response phase, rapid acquisition of data following the event is crucial. During the recovery phase, the speed of acquisition is less important than repetition on a consistent basis. In the early stages of recovery, imagery may be useful on a monthly basis, though as time passes, an annual acquisition may suffice.
\n\t\t\t\tOptical data can be used for activities in all stages of the disaster management cycle, however the greatest potential contributions are for monitoring recovery, and helping to plan for reduction and readiness. The use of satellite optical data for immediate response at a local scale is currently hindered by the speed of data acquisition and delivery with polar orbiting satellites. For large events, a more regional synoptic view is possible using geostationary satellites; however the amount of detail able to be extracted from these images is reduced.
\n\t\t\t\tThe greatest limitation of optical sensors under many hazard or disaster scenarios is the inability to obtain imagery through clouds, smoke or haze. Events such as wildfires, volcanic eruptions, and tropical cyclones or other severe storms are characterised by cloud and smoke, which can effectively obscure damage on the ground both during and immediately subsequent to an event.
\n\t\t\tAs energy decreases with increasing wavelength, thermal wavelengths have comparatively low energy levels and consequently thermal image data have a lower spatial resolution than that capable of being achieved with optical imagery. As yet there are no very high spatial resolution thermal satellite sensors commercially available. Nonetheless, thermal imagery provides a valuable source of information about volcanic eruptions and the location of wildfires. Robust techniques for automatic extraction of anomalous high temperatures or ‘hotspots’ have been thoroughly tested and considered operational on a global scale using MODIS, AVHRR or GOES imagery (Wright et al. 2002, Wright et al. 2004). The University of Hawai’i and Geoscience Australia both apply automated hotspot detection algorithms for the detection of volcanic activity and bushfires respectively and serve the information in near real time via the internet. These algorithms have primarily been developed to detect features above the background or average temperature values, and to avoid large numbers of false alarms, they are not sensitive to merely warm features. They are also unable to differentiate between the types of heat source, so addition spatial information or manual interpretation may be required.
\n\t\t\t\tHigher spatial resolution thermal imagery for analysis at local scales can be obtained using ASTER or Landsat TM/ETM+, though neither of these sensors have the ability to provide imagery of rapidly changing thermal features, as their orbits only allow them an overpass frequency of approximately 16 days. Nevertheless, both sensors are useful for tracking longer term temperature fluctuations, such as the warming and cooling cycles of volcanic lakes (Joyce et al. 2008b, Oppenheimer 1993, Oppenheimer 1997, Trunk & Bernard 2008). The higher resolution imagery can also be of use in calibrating and validating data obtained from the likes of MODIS.
\n\t\t\t\tAs the temperature of an object increases, the wavelength of peak radiation decreases. Very hot features can therefore be seen in visible or shortwave infra red (SWIR) imagery and often become saturated in thermal infra red data if they are sufficiently large with respect to the pixel size. This relationship has been demonstrated using forest fire size and the temperature difference between a smouldering and flaming fire that could be of use in understanding different stages of fire development (Giglio et al. 2008). Unfortunately the SWIR bands on ASTER were declared non-functional in January 2009 after experiencing technical difficulties since May 2007. These five SWIR bands fall within a similar spectral range as Landsat TM/ETM+ band 7 that could be used as an alternative.
\n\t\t\tSynthetic Aperture Radar (SAR) is an active microwave sensor that is capable of acquiring data in harsh weather and lighting conditions not suitable for optical sensors, such as dense cloud or smoke coverage (Elachi 1987, Franceschetti & Lanari 1999, Hanssen 2001). Most modern SAR sensors are designed to acquire data of various ground resolution elements ranging from 100s of metres to 1-3 metres, but higher spatial resolution images usually have significantly smaller spatial coverage and are limited by satellite storage and processing capacities. The incidence angle of SAR sensors can be manipulated in order to image different areas without changing the satellite orbit, thus decreasing necessary revisit time.
\n\t\t\t\tBoth backscatter intensity and the phase of SAR images can be utilised. In most studies only the relative variability of backscatter intensity within the image is used but absolute values can be required for some multi-temporal studies. The precise interpretation of backscatter intensity can be complicated because of its dependence on the dielectric properties of the reflecting material, surface roughness, and sensor wavelength but at the same time the variety of useful information still can be easily observed (landslides, tsunami, flooding, and damage to infrastructure). Phase information of a single SAR image has no value but comparison of phases from two SAR images acquired at distinct times are utilised in SAR interferometry or InSAR. InSAR is capable of producing high resolution ground deformation maps with sub-centimetre accuracy (Rosen et al. 2000). These maps can then be used for studying the causes of deformation such as earthquakes or volcanic activity (Massonnet & Feigl 1998). Modern satellite SAR systems are capable of acquiring simultaneous data with more than one polarisation (e.g. Radarsat-2, ALOS PALSAR and TerraSAR-X). This information can be used in various studies utilising SAR polarimetry and POLInSAR techniques, such as land classification, detection of areas affected by fire or flooding (Cloude & Papathanassiou 1988, Pottier & Ferro-Famil 2008, van Zyl et al. 1990).
\n\t\t\t\tAt present, commonly used satellite SAR data is acquired in three wavebands: X (3.1 cm); C (5.6 cm); and L (23.6 cm). Waveband selection depends on the type of application, land-cover, time span, and availability. The analysis of backscatter intensity by determining thresholds associated with certain features can be performed in standard GIS or image processing software, such as ArcGIS or ERDAS Imagine, but InSAR, SAR polarimetry and POLInSAR processing require specialised software (or add-on modules to basic packages) and extensive processing experience. The price of the data greatly varies from a few dollars per image for purely scientific applications to a few thousand of dollars for commercial applications. Several recently launched commercial satellites are available to acquire data of any hazardous event with a very short delay and deliver the data rapidly to the user, though the cost of priority commissioned data is significantly greater than that of archived imagery (RADARSAT-2, TerraSAR-X and Cosmo-Skymed).
\n\t\t\tDisasters are social constructs in that social drivers such as migration (forced and voluntary), conflict, modification of natural buffer systems, reliance on shrinking resources, private property rights, urban intensification, artificial protection structures, and economic and political vulnerability are all contributors to people living in hazardous locations or at levels of vulnerability that make a disaster more likely. Remote sensing technology can assist with addressing some of these “disaster drivers”, through providing the data required to assist land use planners, emergency managers, and others tasked with disaster management. Reduction of risk, and therefore reduction in the probability of a disaster occurring, is an important part of the disaster management cycle. Remote sensing can be applied in disaster reduction initiatives through identification and understanding of hazards (Table 1). This knowledge is then applied to mitigation activities such as land use planning, engineering structures, building codes and hazard consequences modelling to determine methods for reducing vulnerability (Gregg & Houghton 2006). Note that the sensor examples given in Table 1 and subsequent tables are indicative of current or potential instrument use. Many alternative sensors with similar characteristics could also be used.
\n\t\t\t\tUnderstanding of hazards, their magnitude, frequency, duration, location, range and manifestation (e.g. heavy rainfall, tephra, strong winds) has long been accepted as essential to disaster management. Although it is primarily social factors that amplify a hazard event into a disaster (Quarantelli 1985, Wisner 2004), improved knowledge of hazards and their potential consequences is essential for decision making about modifying hazard characteristics, or modifying vulnerability of people and assets. Remote sensing can be used directly for hazard identification (e.g. flood plain modelling, slope stability and landslide susceptibility), but can also be used to derive hazard-independent information that can be used for disaster reduction (e.g. baseline building, infrastructure, and topographic mapping). An excellent example of the use of remote sensing for hazard identification is provided with LiDAR mapping of active fault location (Begg & Mouslpoulou 2009 in press). Traditionally fault location is conducted using stereo aerial photography interpretation followed by intensive field survey. However the horizontal and vertical resolution provided by airborne LiDAR imagery provides the capability for identifying fault traces and extracting elevation offsets with digital data in an objective manner. The identification of many previously unknown faults in northern New Zealand is shown in Figure 2.
\n\t\t\t\tType of information | \n\t\t\t\t\t\t\tData required | \n\t\t\t\t\t\t\tSensor example | \n\t\t\t\t\t\t\tApplication example | \n\t\t\t\t\t\t
Location of fault traces and rupture zones | \n\t\t\t\t\t\t\tHigh resolution DEM | \n\t\t\t\t\t\t\tAirborne LiDAR, SAR | \n\t\t\t\t\t\t\tUse for land use planning around active faults to reduce risk from future development in fault hazard locations | \n\t\t\t\t\t\t
Fault displacement | \n\t\t\t\t\t\t\tInterferometric SAR | \n\t\t\t\t\t\t\t1/2, ENVISAT ASAR, ALOS PALSAR | \n\t\t\t\t\t\t\tKnowledge of fault displacement rates are used in numerical models in order to forecast the magnitude of possible earthquakes | \n\t\t\t\t\t\t
Flood plain mapping | \n\t\t\t\t\t\t\tDEM | \n\t\t\t\t\t\t\tAirborne LiDAR, 1/2, ENVISAT ASAR, ALOS PALSAR | \n\t\t\t\t\t\t\tIdentification of flood plains can help inform changes in land use, and identify areas developing protective measures (e.g. stopbanks) | \n\t\t\t\t\t\t
Land cover / land use | \n\t\t\t\t\t\t\tOptical and polarimetric SAR | \n\t\t\t\t\t\t\tSPOT, ASTER RADARSAT-2 | \n\t\t\t\t\t\t\tUsed for catchment management planning to reduce flood and landslide risk | \n\t\t\t\t\t\t
Vegetation change | \n\t\t\t\t\t\t\tConsistent time series of data | \n\t\t\t\t\t\t\tSPOT, ASTER RADARSAT-2 | \n\t\t\t\t\t\t\tDetermine drought zones, inform fire hazard mapping | \n\t\t\t\t\t\t
Determining lahar and lava flow paths | \n\t\t\t\t\t\t\tDEM, high resolution optical imagery | \n\t\t\t\t\t\t\tSAR, Airborne LiDAR, , AVNIR-2, ASTER | \n\t\t\t\t\t\t\tHazard zonation, public awareness, determining location of safety shelters | \n\t\t\t\t\t\t
Locating potential and actual unstable slopes | \n\t\t\t\t\t\t\tDEM, Interferometric SAR, high resolution stereo optical imagery | \n\t\t\t\t\t\t\tAirborne LiDAR, 1/2, ENVISAT ASAR, ALOS PALSAR, aerial photography | \n\t\t\t\t\t\t\tHazard mapping for infrastructure planning | \n\t\t\t\t\t\t
Baseline infrastructure maps | \n\t\t\t\t\t\t\tVery high resolution optical imagery | \n\t\t\t\t\t\t\tAerial photography, Quickbird, Ikonos, Worldview | \n\t\t\t\t\t\t\tAssist with hazard mapping to identify key infrastructure at risk - the risk can then be addressed through mitigation or built in redundancy. Can also be used for later damage assessment post-disaster | \n\t\t\t\t\t\t
Baseline topographic data | \n\t\t\t\t\t\t\tModerate to high resolution optical imagery | \n\t\t\t\t\t\t\t, AVNIR-2, Aerial photography, Quickbird, Ikonos, Worldview | \n\t\t\t\t\t\t\tHazard modelling | \n\t\t\t\t\t\t
Examples of information and data requirements during the reduction phase
Identification of known and new active faults using high resolution airborne LiDAR data acquired in late 2006 (Begg & Mouslpoulou 2009 in press). Landsat ETM+ false colour composite (5,4,2) acquired in 2001 is inset for a contextual overview of the site. Of the active fault traces shown here, approximately 85% were unknown before undertaking this study. Also of note also is the discovery of a large inland area that is below sea level (elevation <0m) and is a potentially hazardous region for tsunami related inundation
Remotely sensed data acquisitions can be used to inform land use planning, a key tool that authorities and communities employ to avoid or mitigate hazard risk (Burby 1998). By identifying the location and characteristics of hazards, land use planning methods can be applied to address the risk these hazards pose. Planning methods include mapping hazard zones (location and range of hazard impact) and identifying the probability of occurrence. Hazard maps are applied to developed and green field (undeveloped) land and options for risk treatment determined. Treatment options can include measures such as setback zones (no development within the hazard zone, e.g. proximal to active faults or within coastal erosion or inundation zones), or special building codes (e.g. minimum floor heights above base flood level) can be introduced to reduce the risk to assets and people (Godschalk et al. 1998). Understanding of hazard information is one of a number of critical factors influencing individual and group decision making for risk management (Paton & Johnston 2001). Where hazard information is readily available to the public in a variety of forms, including maps, there is a greater likelihood of public support for risk reduction initiatives introduced through land use planning (Burby 2001).
\n\t\t\t\tOther methods for land use planning based on remote sensing data include identifying changes in land use on flood plains to assist with flood hazard modelling. In the city of London, Canada, Landsat images taken over a 25 year period have been used to determine the spread of urban development (Nirupama & Simonovic 2007). The consequent increase in impermeable surface cover facilitated more rapid runoff and less natural absorption of rainfall. When compared with flood hydrographs, the rate of land use change correlates with smaller rainfall events producing flooding. The benefits to future land use planning are that it can be determined how land use changes affect the flood hazard risk, and this will guide future development in a way that mitigates the effects of continued urban sprawl.
\n\t\t\t\tCollecting asset data via high resolution remote sensing allows for identification of infrastructure and buildings in hazardous locations, which can then be targeted for strengthening or re-location. Asset data is also essential for hazard consequence modelling, whereby hazard data is combined with asset data and fragility (vulnerability) information to determine potential losses. Building fragility to hazards is based on such factors as construction materials (earthquake, volcanic ash fall, tsunami), engineering design (tsunami, landslide, earthquake), building height (wind), floor areas (earthquake), proximity of other structures and vegetation (fire) and roof pitch angle (ash fall, snow), and floor height (flood, tsunami). Remote sensing methods for collecting building and infrastructure data require high to very high resolution satellite or airborne imagery and is often completed using manual digitizing or more recently, segmentation and object oriented classification. Optical imagery is often complemented by LiDAR data, which can not only aid in detecting building edges, but is also used for calculating building heights. Incorporation of remotely sensed data into a GIS is vital during this phase for recording spatial attributes and combining with other data sets.
\n\t\t\t\tRemote sensing technology can also be applied to measure the success of risk reduction initiatives. A common method for addressing flood risk is the construction of stopbanks to contain flood waters for an event of a given magnitude. Aerial reconnaissance during major flooding events can identify whether stopbanks are performing to design standard and identify areas of weakness, overtopping or failure. Monitoring of non-structural risk reduction initiates is also possible. To address coastal hazard erosion and inundation risk, many communities choose non-structural options such as beach renourishment and dune restoration. In Florida, airborne LiDAR captured over time has been applied to measure coastal erosion from hazards, alongside the success of non-structural beach restoration methods through determining changes to beach morphology (Shrestha et al. 2005). Another example of measuring the effects of risk reduction initiatives is analysing post-disaster images of rainfall induced landslides on land under different vegetation covers for large events. From analysis of aerial photographs (oblique and vertical) of an event in 2004 which impacted the lower North Island of New Zealand, it was determined that vegetation cover played an important role in reducing loss of productive soil, and reducing landslide hazard to assets (Hancox & Wright 2005).
\n\t\t\tReadiness planning and activities are undertaken in the realisation that residual risk from hazards has the potential to create emergencies, and in some cases, disasters for affected populations. Readiness is the identification and development of necessary systems, skills and resources before hazard events occur. The desired outcome of readiness planning and activities is that response to hazards is more coordinated and efficient, communities experience less trauma, and recovery times are reduced (Quarantelli 1997). Examples of readiness activities include public education, preparedness activities, trainng and exercising, evacuation planning, developing hazard monitoring and public alerting systems, and putting in place state, national and international plans and agreements for assistance and aid. Readiness activities and planning are undertaken at a number of levels to increase resilience and response capability for individuals, households, organisations, and states or nations. The provision of good hazard and asset information to assist these activities is essential and examples where remote sensing can assist this phase are given in Table 2. It is important in this phase to prepare an archive of and gain familiarity with the most up to date spatial information including (but not limited to) imagery, DEMs, and vector data. This information is required to assist with damage assessment during the response and recovery phases.
\n\t\t\t\tAt the individual and household level there are identified factors that contribute to whether people will take actions to prepare for disasters. Personalisation of risk is essential (Barnes 2002, Slovic et al. 2000), e.g. “Will it affect me?”, “Do I need to do something about it”, and “What can I do about it?”. Other factors include belief in the benefits of hazard mitigation (outcome expectancy) and their belief that what they personally can do will make a difference (reduce negative outcome expectancy) (Paton 2006). At a community level, participation in community affairs and projects, and individual’s ability to influence what happens in their community (empowerment) and the level of trust they have in different organisations (trust) have also be shown to be key predicators of resilience. Therefore, communication of risk in a meaningful way is an essential part of preparedness planning. Remotely sensed data such as LiDAR are used to produce high resolution hazard and risk maps, which are used by authorities to communicate information about location and range of hazards to their communities. If individuals believe that a hazard is likely to affect them detrimentally within an understandable and pertinent timeframe, they are more likely to take actions to prepare. These actions might include having emergency supplies in the home, an action plan for evacuation and emergency contact with other household members, first aid training or training as a civil defence volunteer. The principle of risk perception aiding preparedness applies to both static and dynamic hazards, e.g. fault trace or flood plain mapping vs. cyclone or bushfire progression. Remotely sensed images showing the progression of a bushfire front or the track of a cyclone are commonly used by the media to inform the public of where hazards are occurring and where they are likely to impact as they evolve. As community resilience research has shown, awareness of hazards is not the only factor in triggering actual preparedness actions; however it is one significant driver (Paton 2006, Paton & Johnston 2001, Ronan & Johnston 2005).
\n\t\t\t\tType of information | \n\t\t\t\t\t\t\tData required | \n\t\t\t\t\t\t\tSensor example | \n\t\t\t\t\t\t\tApplication example | \n\t\t\t\t\t\t
Severe weather warnings | \n\t\t\t\t\t\t\tRADAR, broadscale visible and infra red imagery | \n\t\t\t\t\t\t\tGOES, NOAA, Meteosat | \n\t\t\t\t\t\t\tProvide valuable advanced warning of severe events to the public and emergency planners via meteorologists | \n\t\t\t\t\t\t
Movement and ground deformation | \n\t\t\t\t\t\t\tInSAR and PS-InSAR | \n\t\t\t\t\t\t\t-1/2, ENVISAT ASAR, ALOS PALSAR | \n\t\t\t\t\t\t\tRate of movement for slow moving landslides. Often acceleration of deformation rates means that a large event is about to follow. Early detection of deformation in volcanic regions is used for forecasting of possible eruptions | \n\t\t\t\t\t\t
Soil moisture | \n\t\t\t\t\t\t\tLong wavelength SAR | \n\t\t\t\t\t\t\tSMAP | \n\t\t\t\t\t\t\tWater shortage leading to drought and agricultural productivity decline, ability of soils to retain water to indicate flood and landslide potential | \n\t\t\t\t\t\t
Ground temperature variability | \n\t\t\t\t\t\t\tThermal imagery, or SWIR in the case of very hot features | \n\t\t\t\t\t\t\tASTER, MODIS, AVHRR | \n\t\t\t\t\t\t\tMonitoring heating and cooling cycles of volcanoes to understand pre-eruptive characteristics for forecasting purposes | \n\t\t\t\t\t\t
Coastal and bathymetric mapping | \n\t\t\t\t\t\t\tSONAR, Laser depth ranging | \n\t\t\t\t\t\t\tLADS, Topex Poseidon / Jason | \n\t\t\t\t\t\t\tTsunami hazard modelling | \n\t\t\t\t\t\t
Display and advertisement of potential hazards | \n\t\t\t\t\t\t\tModerate to high resolution optical imagery, often overlaying a DEM | \n\t\t\t\t\t\t\tAerial photography, Quickbird, Ikonos - usually using black and white or true colour composites for ease of understanding | \n\t\t\t\t\t\t\tFor use in public education about hazards and risks to foster greater readiness of individuals, households and organisations Use in civil defence emergency management exercises to provide realistic scenarios that will assist with staff professional development and planning | \n\t\t\t\t\t\t
Detecting sea temperature or atmospheric pressure change in cyclone/hurricane/ typhoon generating latitudes | \n\t\t\t\t\t\t\tBroad scale thermal imagery, geostationary | \n\t\t\t\t\t\t\tMODIS, GOES, AVHRR | \n\t\t\t\t\t\t\tAdvance warning of severe weather approaching to commence | \n\t\t\t\t\t\t
Examples of information and data requirements during the readiness phase
At the institutional level, a strong focus is placed on the development of plans and relationships. A primary way to test the effectiveness of these preparedness plans and relationship functions is through civil defence emergency management exercises. In order for exercises to provide an effective learning experience for participants, realistic hazard scenarios must be developed. Remotely sensed data can assist this process through the creation of hazard maps, providing realism to exercise injects (new information about hazards or consequences as the exercise plays out).
\n\t\t\t\tAt local to national scales, obtaining an overall picture of the hazardscape; identifying at risk areas, and priority hazards for resources and planning is essential. Granger (2000) discusses the development of information infrastructure for disaster management in Pacific island nations, based on remotely sensed data, and GIS interpretation. For countries with limited budgets, collaboration to purchase remotely sensed data for disaster planning is beneficial because of cost savings, the opportunities for skill and process sharing, and the consistency of data for modelling (Granger 2000).
\n\t\t\t\tAs discussed previously, hazard modelling is important for risk reduction (section 4.1); it is also important for readiness, as for many hazards residual risk dictates that an effective emergency response will be the most practical solution for disaster management. For example, New Zealand has several active volcanoes; Mt Ruapehu is the largest of these. Ruapehu is a national park and has two commercial ski fields in operation on its slopes. Depending on the time of year, visitors to the mountain are engaged in a variety of recreational, educational and scientific activities. The greatest hazards associated with the volcano are eruptive events and lahar flow (Carrivick et al. 2009). The volcano has a crater lake at the summit which produces periodic large lahars during eruptions and tephra dam bursts. These lahars follow channels which are bridged by the main trunk railway line and State Highway 1, as well as passing through ski field and hiking areas. A lahar event in 1953, before bridges were raised and strengthened, destroyed the Tangiwai rail bridge, and a passenger train unable to stop was derailed resulting in the death of 151 people. While bridges have been modified to reduce risk, considerable readiness planning has also been undertaken to ensure that the events such as the 1953 disaster cannot happen again (Galley et al. 2004).
\n\t\t\t\tFollowing eruptions in 1995 and 1996 a large tephra dam formed on the crater rim allowing the lake to fill to higher than normal levels. The volcanic rocks of Crater Lake rim now had a weakness, a section of the rim comprised of weaker tephra, which would fail when lake levels reached a certain height. Extensive modelling of potential lahar flow paths and velocities was undertaken based on high resolution remotely sensed data (Carrivick et al. 2009). The path was verified using aerial photography, LiDAR, ASTER and PALSAR imagery after the event (Joyce et al. 2009b). The modelling provided the necessary hazard information for authorities to manage the risk through a suite of preparedness activities. A bund (levee) has been constructed to prevent lahar flow onto the main highway; and a comprehensive monitoring and alarm system was constructed to detect lahar break outs. An integrated response plan involving emergency managers, police, the fire service, road managers, railways operators, ski field staff, scientists and national park managers, was developed to stop all trains outside the hazard zone, close the highway, trigger warnings and response plans at the ski fields (move to ridges away from flow paths) (Leonard et al. 2005), and locate and evacuate any hikers or workers in hazard zones within the national park. The tephra dam burst early in 2007, and the response based on high quality modelling went as planned. The lahar was of considerable size but remained within expected channels and the only significant damage was to an unoccupied public toilet building at the Tangiwai memorial site.
\n\t\t\t\tLahar flows and eruptions remain an ongoing hazard at Ruapehu. To assist with preparedness for these hazards, remote sensing is part of the suite of monitoring systems employed to detect changes in volcanic activity. A combination of synthetic aperture radar, ASTER thermal imagery (Figure 3), and OMI UV/visible imagery is acquired on a routine basis for monitoring deformation, Crater Lake temperatures and gaseous emissions respectively.
\n\t\t\t\tThermal monitoring of Mt Ruapehu. (a) SPOT-5 image obtained 15 March 2008 demonstrates land cover for contextual purposes; (b) Average temperature image calculated from night-time ASTER thermal data between 3 September 2007 and 28 September 2008; and (c) Mt Ruapehu Crater lake subsets using ASTER night-time thermal data. Note the temperature scale change for illustrative purposes.
The use of remotely sensed data of a previous event can be used in this phase to constrain geophysical models and help provide realistic scenarios for future events. For example, InSAR can be used to examine the deformation effects of a single event (such as an earthquake) by acquiring only two images as close in time as possible, one before and one after the event. Using this technique, the PALSAR L-band sensor on board the ALOS satellite was successfully used to map co-seismic deformation of a magnitude 6.7 earthquake in the vicinity of George Sounds, off the coast of the lower South Island on 16th October 2007 (Petersen et al. 2009 in review). After processing two PALSAR images (22 July and 22 October 2007) displacements were apparent in the coastal region closest to the epicentre (Figure 4). Landslides were also experienced in the area (though not evidenced in this figure). The long wavelength L-band is of particular use in this region due to its ability to penetrate dense vegetation to retrieve the ground signal. The amount and location of deformation is used in modelling studies to estimate earthquake parameters in order to learn more about the tectonics of this remote region. As this is an uninhabited area of New Zealand, there was no observed infrastructure damage that may have otherwise necessitated acquisition of high resolution optical imagery for response or recovery purposes.
\n\t\t\t\tGround deformation following George Sounds earthquake in October 2007. Background image is a Landsat 7 ETM+ true colour composite scene
Monitoring longer term ground deformation effects such as that produced by ground water extraction, volcanic activity or slow moving landslides is conducted using multiple SAR images over a period of time. Using this technique it is possible to detect sub centimetre scale ground movement over large areas that could otherwise only be monitored or detected using networks of in-situ GPS. With this method, the C-band sensor on board the ENVISAT satellite was able to detect sub-centimetre deformation in the Auckland region (Figure 5). This figure was created using a stack of 117 images, spanning the period 17 July 2003 and 9 November 2007. InSAR is used in this manner for long term monitoring and produces a rate of change over time. It is believed that most of the observed InSAR signal shown here is caused by extraction of groundwater; however the link to volcanic activity has also been investigated (Samsonov et al. 2009 in review).
\n\t\t\tMonitoring uplift and subsidence in Auckland. Background image is a green band grey scale mosaic of SPOT-5 and Landsat 7 ETM+ imagery.
Response activities are primarily focussed on protecting life and property during disasters. Activities such as evacuations, search and rescue, sandbagging along riverbanks, evaluating building safety, establishing immediate emergency shelter, setting up command posts and other short-term tasks fall into the response phase. Remote sensing can be used here to provide immediate damage assessment if the data can be provided in a timely manner, and also to assist evacuation plans through the combination of observing weather patterns and hazard behaviour (e.g. fire front approaches, water level rises). Other examples of the use of remote sensing during the response phase are given in Table. 3. Ideally, recovery activities commence when the response phase begins, to ensure an integrated process for holistic recovery. This means that damage assessments undertaken via remote sensing during the response phase will also be integral to the recovery phase.
\n\t\t\tType of information | \n\t\t\t\t\t\tData required | \n\t\t\t\t\t\tSensor example | \n\t\t\t\t\t\tApplication example | \n\t\t\t\t\t
Inundation | \n\t\t\t\t\t\tSAR, optical | \n\t\t\t\t\t\tRadarsat, , ASTER Quickbird, Ikonos | \n\t\t\t\t\t\tDetermine magnitude, location and duration of impacts. Use SAR when cloud cover is still problematic | \n\t\t\t\t\t
Widespread storm or earthquake induced landslides | \n\t\t\t\t\t\tSAR, moderate - high resolution optical | \n\t\t\t\t\t\tRadarsat, , ASTER Quickbird, Ikonos | \n\t\t\t\t\t\tDetermine magnitude, location and duration of impacts. | \n\t\t\t\t\t
Volcanic ash and gases | \n\t\t\t\t\t\tShortwave infra red, thermal infrared | \n\t\t\t\t\t\tGOES, TOMS/ , MODIS | \n\t\t\t\t\t\tHighly temporally variable, so minimum of daily imagery required. Used for volcanic ash advisories and to warn airlines of hazardous flight paths | \n\t\t\t\t\t
Public information during events | \n\t\t\t\t\t\tHigh resolution optical imagery | \n\t\t\t\t\t\tQuickbird, Ikonos | \n\t\t\t\t\t\tAssist those at risk to personalise hazard threat | \n\t\t\t\t\t
Ship location | \n\t\t\t\t\t\tSAR | \n\t\t\t\t\t\tTerra SAR-X, Cosmo Sky-Med | \n\t\t\t\t\t\tLocating ships in the ocean during storm | \n\t\t\t\t\t
Co-seismic and post-seismic deformation | \n\t\t\t\t\t\tInSAR | \n\t\t\t\t\t\t-1/2, ENVISAT ASAR, ALOS PALSAR | \n\t\t\t\t\t\tConfirming magnitude of earthquake and forecasting possible aftershocks | \n\t\t\t\t\t
Examples of information and data requirements during the response phase
During the response phase, the temporal relevancy of remote sensing information is crucial to allow disaster managers to plan effective mitigation strategies on dynamic situations. In the case of wildfire events, it is critical to have current and timely intelligence on the fire location, fire-front, and fuel conditions. Near-real-time information allows the fire management team to plan fire attack appropriately, consequently saving resources, time and possibly lives. Concurrently, the information must be of sufficient spatial resolution to allow detailed tactical assessments and decisions to be made on the wildfire condition, and be spectrally-relevant to the phenomenon being observed or measured.
\n\t\t\tDespite the spectacular nature of imagery often captured during a disaster event, the use of remote sensing during the response phase has experienced mixed levels of success, particularly in the case of satellite platforms. Regional scale imagery of effects associated with the development of fire fronts (hot spot detection), volcanic eruptions (gas and ash emissions), or tropical cyclones (inundation) is generally successful where the area of impact is sufficiently large. For example, the wildfire management agencies in the United States currently utilize thermal-infrared (TIR) satellite data provided by MODIS to provide synoptic, 2-4 times-daily hot-spot detection of fire at continental scales (U.S. Forest Service 2009). The spatial resolution of MODIS is low / moderate (1000 meters), and is used to derive a regional estimate of fire distribution. Although the temporal frequency of the MODIS data is sufficient for regional fire assessment, its spatial resolution is insufficient for more localised events, or for assessing the specific on-ground impact. Conversely, polar orbiting satellites with appropriately high spatial resolution generally do not have the overpass frequency or data relay capability to provide imagery quickly enough to be of use for immediate response. The space science community is attempting to address this issue with the launch of satellite constellations such as Rapid Eye and the Disaster Monitoring Constellation (International collaboration between Algeria, China, Nigeria, Turkey and the UK). There are also avenues for collaboration between international organisations for data acquisition and provision in the event of disasters, such as the International Charter for Space Based Disasters (Ito 2005), and Sentinel Asia (Kaku et al. 2006). While potentially providing a considerable amount of data, neither of these tools can yet be used for immediate or first response due to the current time delay between requesting and receiving data. As such, research into airborne platforms has proven to be of greater utility for rapid data and information provision.
\n\t\t\tIn 2006, 2007 and 2008, the National Aeronautics and Space Administration (NASA) and the U.S. Forest Service collaborated to evaluate and demonstrate the use of long-duration, large Unmanned Airborne Systems (UAS), innovative sensing systems, real-time onboard processing, and data delivery and visualisation technologies to improve the delivery and usefulness of remote sensing data on wildfire events. The objectives were to demonstrate the capabilities of providing sensor-derived, GIS-compatible, geo-rectified, processed data on wildfire conditions to incident management teams within 15-minutes of acquisition from the sensors on the UAS. The characteristics of this system render it ideal for emergency response that is not just isolated to wildfire events.
\n\t\t\tDuring the 2006, 2007 and 2008 U.S. wildfire season, a series of missions were flown over wildfires in the western U.S. to demonstrate the integration of the above-mentioned technologies to provide near-real-time information to disaster managers. The missions were flown on the NASA
The use of the
a) Flight routes required to cover 11 major wildfires California over four days in October 2007; and (b) AMS-Wildfire 3-band graphic image overlay and fire hot-spot detects (yellow areas) of the Canyon Complex fire approaching Paradise, California. The data was acquired on 8 July 2008. The hot-spot detect data, showing the fire moving rapidly towards Paradise, assisted in the evacuation determination for residents in the vicinity. This north-viewing 3-D data is displayed on Google Earth background information.
One of the key factors to the success of this system is the provision of not only data, but information that can be ingested and utilised immediately by emergency managers to aid their decision making. Part of this speed of information delivery is attributed to the autonomous processing onboard the UAS to create geo-rectified image raster products (GeoTIFF) and hot-spot detection vector files (
Although the Western States UAS Fire Imaging Missions were focused on demonstrating remote sensing capabilities to wildfire management entities, they resulted in direct emergency support to national incidents in all three years. Those missions allowed a comprehensive assessment of the technologies and resulted in the adaptation and integration of various components into operational use. The key components to the “usefulness” of the data were the timeliness of the data (from acquisition to product delivery) and the simple format which the data was available for visualisation and decision-making. While these factors are important at all stages of the disaster management cycle, they become particularly critical during the response phase, where rapid decision making is most important. The provision of simple hotspot information also means that the emergency management team is not overwhelmed with too much data or too many visualisation options. The choice of using Google Earth as a “front-end” display of the data was a careful decision to provide information in a format and software system that was easily operated and readily available to the fire management community. Fire Incident Command team members do not have the time to “learn” new software capabilities or new tools while they are in the midst of a major wildfire management activity. Google Earth provided a user-friendly capability to allow quick data integration, zoom capabilities, 3-D visualisation and ease of use.
\n\t\t\tThe use of UAVs presents opportunities as well as risks. UAVs provide increased range and flight time and the ability to penetrate environments that might be too hazardous for piloted aircraft (Henson 2008). Mission and platform costs currently precludes immediate adaptation of UAS systems by disaster management agencies, but the disaster support missions we showcased are major steps forward in demonstrating UAS utility and sensor and processing capabilities available right now! These technologies need not be considered for use only with unmanned vehicles, but can be adopted for piloted aircraft, and hopefully for satellite platforms in the future. Autonomous onboard processing has been trialled with Hyperion for identifying hotspots associated with volcanic eruptions (Davies et al. 2006), though the challenge remains to progress these techniques to operational status.
\n\t\t\tThe use of remote sensing to aid or monitor disaster recovery is perhaps the least developed application of this technology. However, this is an area where the remote sensing community could contribute a great deal through the provision of objective time series analysis over large areas with both high and medium levels of spatial detail. In other specialisations, time series analysis of remotely sensed data is an established technique. Environmental applications such as deforestation and urban sprawl are common targets. In each case, the monitoring objective is clear. In disaster recovery, there are often some very clear indicators that can easily be measured and monitored with remote sensing imagery. Some of these indicators include construction and subsequent removal of medium and long-term emergency shelters; debris removal; commencement and completion of new construction or reconstruction (buildings, bridges, roads); vegetation regrowth; and reduction of siltation from waterways after flooding events (Table 4).
\n\t\t\t\tType of information | \n\t\t\t\t\t\t\tData required | \n\t\t\t\t\t\t\tSensor example | \n\t\t\t\t\t\t\tApplication example | \n\t\t\t\t\t\t
Rate of recovery e.g. debris removal, vegetation regrowth, reconstruction | \n\t\t\t\t\t\t\tModerate to very high resolution imagery in a continuous time series | \n\t\t\t\t\t\t\tAerial photography, Quickbird, Worldview, Ikonos | \n\t\t\t\t\t\t\tCompare the effectiveness of different recovery strategies; Determine if aid funding is being used appropriately; Wildlife habitat recovery (eg after fire); Identify "eresidual risk" - areas not recovered are more vulnerable to future events | \n\t\t\t\t\t\t
Infrastructure and facilities locations | \n\t\t\t\t\t\t\tVery high resolution imagery | \n\t\t\t\t\t\t\tAerial photography, Quickbird, Worldview, Ikonos | \n\t\t\t\t\t\t\tCreate new baseline maps | \n\t\t\t\t\t\t
Revised DEM | \n\t\t\t\t\t\t\tInSAR, LiDAR | \n\t\t\t\t\t\t\t-1/2, ENVISAT ASAR, ALOS PALSAR | \n\t\t\t\t\t\t\tNecessary after large earthquake or volcanic eruption if the local and regional elevation changes | \n\t\t\t\t\t\t
Status Quo | \n\t\t\t\t\t\t\tVery high resolution imagery | \n\t\t\t\t\t\t\tAerial photography, Quickbird, Worldview, Ikonos | \n\t\t\t\t\t\t\tPlan areas for funding allocation | \n\t\t\t\t\t\t
Examples of information and data requirements during the recovery phase
Using high spatial resolution the amount of housing reconstruction can at least be visually identified by the presence and absence of blue tarpaulins covering roofs following Hurricane Katrina (Hill et al. 2006). Conceivably an automated detection method could be developed to identify these quickly and repeatedly in a time series dataset. The authors also provide a list of other recovery related features observable over time with Quickbird data. In Figure 7, the progression of recovery in a small area of New Orleans can be seen with high resolution data. Notable features in the image acquired a week before the hurricane are a large car park, sporting fields, and residential housing (Figure 7a). The progression clearly shows inundation in this area (Figure 7b), and remaining sediment shortly after the water subsidence. By March 2006, temporary housing is evident in the location of the car park, and is still visible three years after the event, though the number of roofs covered in blue tarpaulins has decreased. An analysis of the relative rate of change is given in Figure 7k, demonstrating that impervious surfaces and lines of communication such as roads moved towards recovery quite quickly after the event, while mature vegetation takes somewhat longer. Some roofing damage and a swimming pool appear to remain in an unrepaired state three years after the event. The key here is that a time series of data is vital to determine if any change is occurring, and to further extract rates of change.
\n\t\t\t\tRecovery rates following a widespread landsliding event in northern New Zealand can also be seen from a series of SPOT-5 and ALOS AVNIR-2 imagery (Figure 8). Here the landsliding is apparent as bright scars in the colour infra red imagery acquired four months after the event (Figure 8b). One year later, recovery of many of the grassy slopes on the eastern portion of the image can be seen, while the landslides in the western region are also becoming overgrown (Figure 8c). This recovery becomes even more apparent in the series of NDVI images, which highlight the contrast between landslides (black) and surrounding vegetation (various shades of grey) (Figure 8d-f). In an area that was covered with many thousand landslides (Joyce et al. 2008a), satellite remote sensing is the only time and cost effective manner of data collection for understanding recovery in the area. Similar techniques could be used to look at native habitat regeneration following bushfires.
\n\t\t\t\tTime series of high resolution imagery in New Orleans (a) Before Hurricane Katrina; (b) Soon after the height of the storm; (c-j) Various time intervals following the recovery process; and (k) Interpreted rate of recovery. Images are © Digital Globe and Google Earth 2009.
Recovery of vegetation after a widespread landsliding event in northern New Zealand, July 2007. (a) SPOT-5 CIR obtained before the event; (b) SPOT-5 CIR obtained shortly after the event; (c) ALOS AVNIR-2 CIR imagery obtained one year later; and (d-e) NDVI images of the aforementioned data.
Analysis of time series imagery could also help to monitor the effectiveness of different recovery strategies. By extracting recovery rates from data acquired at appropriate time intervals, this assessment could help guide recovery plans for future events of a similar nature. This would also help identify areas of residual risk that require ongoing monitoring until the physical recovery process completed.
\n\t\t\tRemote sensing can be used to inform many aspects of the disaster management cycle. An exhaustive coverage of all potential applications would be impossible in a single book chapter, however we have shown several good examples from which inspiration can be sought for future use. It is important to consider all aspects of disaster management, rather than focussing on emergency response. By incorporating remote sensing into reduction and readiness activities, this can also educate both emergency management staff and the community about this type of information so that they are familiar with its use under a response and inherently pressured situation.
\n\t\t\tThe key elements to facilitate the usefulness of remote sensing data in support of the disaster management community are being able to provide the appropriate information in a spectrally, temporally, and spatially relevant context. Additionally, one must be aware of the information requirements of that disaster management community, and tailor the remote sensing information to meet those needs. That can only come through close collaborations between the disaster management community and the remote sensing / geospatial community.
\n\t\tAll SPOT 5 imagery used in this chapter is © CNES. This manuscript incorporates data which is © Japan Aerospace Exploration Agency ("JAXA") (2008). The data has been used in this manuscript with the permission of JAXA and the Commonwealth of Australia (Geoscience Australia) ("the Commonwealth"). JAXA and the Commonwealth have not evaluated the data as altered and incorporated within the manuscript, and therefore give no warranty regarding its accuracy, completeness, currency or suitability for any particular purpose. Environment Bay of Plenty provided the licence to use the LiDAR data. Thank you to Andy Gray for assistance with graphics and to Phil Glassey and David Johnston for chapter review.
\n\t\tIn Africa, smallholder agriculture is predominant and agricultural growth and poverty reduction are subjects closely associated with growth in smallholder agriculture for some time to come. An estimated 41 million smallholders [1] are the major source of food for nearly all rural and most urban dwellers in Africa. In Sub-Saharan Africa (SSA), most smallholders own less than two hectares holding of cultivable land and are challenged by the low productivity and production constraints in the middle of the unprecedented rising need for more food, feed, and raw material for industry. The SSA region alone has a quarter of the world’s arable land endowment but produces only 10% of world agricultural output [2]. Unlike smallholders in Asia who dominantly grow few crops such as rice and wheat, African farmers experience diverse farming systems and grow very diverse crops that include maize (
Farming systems | % of region | Principal livelihoods* | |
---|---|---|---|
Land area | Agric. population | ||
Irrigated | 1 | 2 | Rice, cotton, vegetables, rain-fed crops, cattle, poultry |
Tree Crop | 3 | 6 | Cocoa, coffee, oil palm, rubber, yams, maize |
Forest-Based | 11 | 7 | Cassava, maize, beans, cocoyams |
Rice-Tree Crop | 1 | 2 | Rice, banana, coffee, maize, cassava, legumes, livestock, off-farm work |
Highland Perennial | 1 | 8 | Banana, plantain, enset, coffee, cassava, sweet potato, beans, cereals |
Highland Temperate Mixed | 2 | 7 | Wheat barley, tef, peas, lentils, broad beans, rape, potatoes, |
Root Crop | 11 | 11 | Yams, cassava, legumes, off-farm work |
Cereal-Root Crop Mixed | 13 | 16 | Maize, sorghum, millet, cassava, yams, legumes, cattle |
Maize Mixed | 10 | 15 | Maize, tobacco, cotton, cattle, goats, poultry, |
Agro-Pastoral Millet/Sorghum | 8 | 8 | Sorghum, pearl millet, pulses. Sesame and livestock |
Sparse (Arid) | 17 | 1 | Irrigated maize, vegetables, date palms, cattle |
Major farming systems of sub-Saharan Africa.
Source: FAO and World Bank, Rome and Washington DC 2006. (Adapted to show more crop-based farming system).
Crop productivity in Africa specifically in the SSA region is below the world average (Figure 1) and the region constitutes the highest number of food-insecure population (35.5% of its population) of whom 21.3% are severely insecure [4] rendering the region increasingly dependent on imported food. Due to this and other factors about 39 countries of the SSA account for the largest number of food-insecure people: 424.5 million (40.5% of the region’s population) in the year 2020 [5]. It can also be seen that during the period 1961–2018, cereal yield in Africa has grown only one fold compared to a 2.5 fold increase in Asia, which had only 26.3% area increase compared to Africa with 1.2 fold increase (Figure 1). Therefore, whatever growth there has been in cereal production in Africa, it was largely due to land expansion in contrast to Asia. Food insecurity is forecasted to worsen due to climate change impacts and recurrent drought unless proper and quick measures are implemented [6]. The region will have a shortfall of nearly 90 million metric tons of cereals by the year 2025 if current agricultural practices remain unchanged. Productivity trends do not promise a better future for cereals and roots and tuber crops as can be seen from cereal performance during the period 1961–2018 average yield based on FAOSTAT data 2020 (Figure 2).
Change (percent increase) of cereal yield and land used for cereal production. (Data source: Computed from Food and Agriculture Organization (FAO) of the United Nations. 2019 Report).
Yield (t/ha) trends of cereal production in different regions of the world. (Data Source: Food and Agriculture Organization of the United Nations. 2019 Report).
However, more factors are known to involve in constraining smallholder farmers’ crops production and cause yield gaps. Low crop productivity is often related to biotic stresses such as those caused by insect pests, diseases, and weeds as well as the inherent low-yielding potential of varieties, and abiotic stresses caused by soil-related and climatic problems such as moisture stress and drought. The latter is a pronounced problem of vast marginal and drier agriculture areas of SSA. Crops grown in such marginal environments are exposed to frequent severe growing conditions. Each factor is responsible for substantial yield losses annually by smallholder farming. Furthermore, yield gains associated with high-yielding varieties if found much lower in SSA partly due to inadequate inputs, poor infrastructure, and market outlet including weak extension services. Thus, poor availability of improved technology packages (improved seeds, irrigation, fertilizers, and pesticides) makes it hard for millions of smallholder farmers to produce surplus and escape the subsistence type of life.
Successful mitigation of these biotic and abiotic constraints and institutional limitations affecting agricultural growth is a task that not only requires political will and sustained commitment by country governments in Africa, but also a stronger global collaborative effort to realize enhanced applications of modern technologies to complement and transform the conventional interventions efforts underway. Increased investments in agricultural R&D and fast-tracking the use of innovative technologies such as conventional as well as modern biotechnology and proven useful readily available biotechnology products is extremely needed to solve smallholder farmers’ crop productivity problems. As such agricultural biotechnology offers enormous opportunities through innovative ideas, techniques, and processes to drive innovative solutions highly relevant for the needs of smallholder farmers in Africa [7]. Medium to long-term benefits of using advanced techniques of biotechnology that include tissue culture, micropropagation, gene, and marker discovery, genomics, genetic engineering, genome-editing, bioinformatics, and others through enhancing crop breeding including indigenous crop species cannot be overemphasized [8]. This chapter focuses on the deployment of modern biotechnology such as genetic engineering tools and products as well as challenges facing adopting countries in developing Africa. It also presents case studies of agricultural biotechnology uses and progresses in six countries in SSA focusing on the use of safe biotechnology crops to solve key biotic and abiotic constraints faced by smallholder farmers in the respective countries.
The rapid advancements in the field of biotechnology offer promising alternatives to the approaches of crop improvement. Biotechnology complements and makes the conventional breeding efforts in crops efficient through precise identification and introgression of genes in a much shorter time period. The integration and development of biotechnology research in national research programs is now a prerequisite for current and most of the future science-based sustainable genetic improvement of crops for various purposes including, food and nutritional security, improving post-harvest and industrial qualities of cereals, horticultural and forage crops.
It is clear that smallholder farmers in African countries are currently not benefiting enough from modern biotechnology, which can be applied to transform their crop production and productivity and bring about livelihood improvements. Most national research programs in Africa have not yet acquired research and regulatory capacity and skills to integrate advanced science and cutting-edge technologies in their research portfolio to solve farmers’ production problems. Although progress is registered in biotechnology capacity building in some countries, it is far from adequate. Governments’ investment in agricultural research and development is generally low [9]. Crop productivity problems under smallholder farmers’ conditions are often caused by low-level use of improved technologies and damage to crops caused by biotic and abiotic stresses as described earlier. The biotic and abiotic stresses challenging crop productivity are being tackled by biotechnology globally and several crop varieties with novel traits have been successfully developed and commercialized in more than 25 countries around the world to solve particular production problems of farmers.
Food security and prosperity in Africa depend much on its agricultural performance. Ensuring sustainable development in agriculture is critically dependent on a sustainable technology supply and uptake. Despite the strong need for robust agricultural research, capable of tackling production constraints under challenging agricultural environments, African countries have not shown much progress in their national research capabilities to respond to food security issues and meet the overarching national strategic goals for sustainable development [9]. Strategic measures pursued to realize latecomer advantages in using modern biotechnology to enhance crop improvement and exploiting existing commercialized novel biotechnology products proven safe and impactful, is weak.
Reports show declining government R&D spending in the agricultural sector recently from 0.59% in 2000 to 0.39% in 2016 in the SSA [10]. Thirty-three of the 44 SSA countries have less than the minimum investment target of 1% AgGDP (Figure 3) recommended by the African Union and United Nations [11]. Thus, most national programs in Africa were not able to maintain up-to-date capacity in trained human resources and facilities to translate scientific research into useful products impacting agricultural growth. Conventional crop improvement programs are increasingly requiring support from biotechnology to effectively respond to changing market demands. Therefore, African government should play a key role to strengthen national programs and maintain strong regional and global collaborative partnerships and expedite knowledge and technology transfer. Allowing more regional integration can help to ensure smoother collaboration, transfer of suitable technologies, data and information, and allows improved access to products at an affordable price and quality [12].
Some SSA countries and their R&D investment share as a percent of AgGDP (except the top ranking the last three countries, all the others are selected only for representation of the rest). Source: Data sourced from ASTI [
Most African countries have not created the necessary incentives for high-end modern biotechnologies to get well integrated in the research and development profile of national programs and create opportunities for new products to get to market. Instead, they depend on other countries that have decided to invest and strengthen their R&D. They are not taking advantage of this to enable national programs to expedite adoption and use of better and diverse technologies through quick testing and approval processes. Biotech products are rapidly expanding to include not only farmers’ interest but getting more diversified targeting the interest of industry and consumers [13]. Therefore, a further declining trend of investment in agricultural R&D over the past 15–20 years in the developing countries with few countries in exception is alarming [14]. In countries with advanced economies where public financial outlay for R&D has lagged, the private sector has been investing heavily in genomic sciences and techniques that enable faster and more efficient delivery of improved crops to farmers, the value chain, and consumers, targeting business opportunities and crops with the greatest returns to investment [7]. However, many ‘orphan’ or underutilized indigenous crops in developing countries have been forgotten and their diversity is threatened [7]. It is highly challenging to rectify this imbalance between public and private research investment and ensure that crops including indigenous species are improved and conserved thus equally benefiting from modern biotechnology.
Against all odds and considerable skepticism in African countries even after three decades of the phenomenal growth of modern biotechnology and wider adoption of safe biotechnology crops globally, some countries have moved forward and strengthened capacity in biotechnology and related fields of biosafety, food safety, and intellectual property (IP) management to reap the benefits of integrating the advanced sciences. The recent progress in approvals of several biotechnology crops in Africa can reverse the delay in the near future [15, 16, 17, 18].
Rapid advancement is made in the field of biotechnology since the discovery of DNA and during subsequent advancements in molecular techniques and other “omics” technologies. This has ushered agriculture into a new era of technological frontiers to tap the latent potential of its biological resources in an unprecedented way, showing a new horizon of opportunities emerge to develop and modernize agriculture. Today, modern agricultural biotechnology encompasses a range of technologies including molecular breeding, fingerprinting, genomics, proteomics, genetic engineering, genome-editing, tissue culture and micropropagation techniques, and other advanced applications. This has empowered scientists, provided unlimited potential, to develop new strategies to harness genetic potentials for solving current and emerging crop production challenges. Therefore, biotechnology has provided a unique capacity to successfully fighting back the continuing battle against diseases, pests, and environmental stresses that are global threats to the survival of mankind. Genetic engineering, a part of modern biotechnology, involves the manipulation of the gene(s) of crop species by introducing, eliminating, or editing specific gene(s) through modern molecular techniques.
During the 1970s and 1980s, the public sector began supporting biotech research with lots of anticipations to advance the use of genetic engineering in agriculture soon to be taken over by the private sector. The first genetically modified (GM) plants were successfully developed as early as 1983 using antibiotic-resistant tobacco and petunia. In 1990, China started to commercialize GM tobacco for virus resistance followed by the Flavr Savr tomato in the United States. By 1995 and 1996, several transgenic crops were approved for large-scale use. Since the first commercial delivery in 1996, millions of smallholder farmers around the world have become beneficiaries of the multiple benefits from growing GM crops [19, 20].
Farmers are primary beneficiaries of the improved production and associated positive environmental, socio-economic, health impacts [21]. The rapid adoption and expansion of biotech crops reflect the substantial multiple benefits realized by farmers in industrial and developing countries. To date, of interest to farmers are several GM crops with enhanced input traits, such as disease (viral, fungal, bacterial) and insect resistance, herbicide tolerance, and resistance to environmental stresses such as drought, improved processing quality, improved product shelf life, and nutrient-enhanced crops available for commercial production.
Recent data [19] shows global acreage of only four biotech crops, corn, soybean, cotton, and canola has reached 190.4 million hectares in 2019 from 1.7 million hectares in 1996, which is on average 7.9 million hectares growth per year impacting crop production and productivity [22]. In recent years, the novel technique of genome-editing (GE) has been developed for targeted genome modification in plants with a high potential of increasing genetic diversity or correcting genetic defects. The simplicity and high efficiency of these tools have made it optimal for precise genome editing, heralding a new frontier in the—“Gene-revolution”—and in the development of modern biotechnology.
GM technology has been targeting some of the yield constraints and successful technologies have been commercialized in Africa for different crops such as insect resistance (maize, cotton, soybean, brinjal, cowpea), disease resistance (cassava, potato, sweet potato), better nutrition and quality (rice, potato, sorghum, banana). Some of these technologies are now successfully tested or grown in some countries of Africa (Table 2). Globally, by the end of 2019, a total of 71 countries (excluding EU countries) [19] issued regulatory approvals for GM crops, of these 11 were African countries. Total approval granted between 1992 and 2018 has reached 4349 from 70 countries (28 countries from EU) for food (2063), feed (1461), and environmental release or commercial cultivation (825) of GM plants [23]. In 2020 alone, 43 approvals were recorded for GM crops globally, involving 33 varieties from 12 countries, and eight of them are new varieties [22]. In 2019, four countries in Africa have given commercially approved for GM crops namely Ethiopia, (Bt cotton), Malawi (Bt cotton), Kenya (Bt cotton), and Nigeria (PBR cowpea) for the first time. Nigeria had additional approval for TELA maize in October 2021 and Kenya approved GM Cassava in June 2021. The TELA maize is built on the progress made from a decade of excellent breeding work under the WEMA project and working toward introducing the Bt- gene to WEMA, water-efficient varieties for drought tolerance [15, 16].
Country | GE crops researched, under testing, under approval process and/or approved | Commercialization (year) | |
---|---|---|---|
Burkina Faso | Cowpea (insect resistance to Rice (Resistance to | Cotton (2008) suspended from production in 2016* | |
Cameroon | Cotton (stacked insect resistance and herbicide tolerance) | ||
Egypt | Wheat, Potato, Maize | Commercial production suspended in 2012 | |
Ethiopia | Cotton (insect resistance); Enset ( | Bt cotton (2018) | |
Ghana | Rice (nitrogen use efficiency/water use efficiency and salt tolerance), cowpea (insect resistance to | ||
Kenya | Cotton (insect resistance), Maize (insect resistance, drought tolerance, and stack of insect resistance and drought tolerance), Cassava (brown streak disease-CBSD), Banana ( | Bt cotton (2019); Cassava Brown Streak Disease (CBSD) resistant Cassava (2020); Import ban on GM since 2012 | |
Malawi | Banana plantain (bunchy top resistance), Banana (bunchy top disease resistance), Cowpea (insect resistance), Cotton (insect resistance); | Bt cotton (2018) | |
Mauritius | Sugarcane | ||
Mozambique | Maize (and stack of insect resistance, drought tolerance), Cotton (insect resistance) | ||
Nigeria | Cotton (insect resistance), Maize (insect resistance, herbicide tolerance HT Soybeans, Cassava (delayed postharvest starch deterioration), Cassava (Tuber size increase)cowpea (insect resistance to | Cotton (2018) PBR Cowpea (2019) Bt Maize (2021) | |
South Africa | Cotton (insect resistance, herbicide tolerance multi-stack), Maize (insect resistance, drought tolerance, and stack of insect resistance and drought tolerance), Soybean (stacked trait with modified fatty acid composition); sugarcane (insect resistance); Wheat (insect resistance), Potato (insect resistance), Sugar beet, Tomato, Sweet potato, Cucurbits, Ornamental bulbs, Cassava; Apple, Strawberry, Apricot, Peach, Table grapes, Banana (data of traits for these crops has not been obtained). | Bt cotton (1997) Bt- Maize (1998) Bt- & Dt-Maize (2018?) Soybean (2001) | |
Sudan | Cotton (insect resistance) | Bt cotton (2012) | |
eSwatini | Cotton (insect resistance) | Bt cotton (2019) | |
Tanzania | Maize (drought tolerance; stacked for insect resistance and drought tolerance) | ||
Uganda | Banana (Xanthomonas wilt (BXW) resistance, Black Sigatoka resistance, Pro-vitamin A, Nematode and weevil resistance), Cassava (Cassava mosaic disease virus, Cassava whitefly resistance, Cassava mosaic disease virus, cassava brown streak disease virus resistance), Cotton (Bollworm resistance, herbicide tolerance), Maize (Insect resistance (stemborer), Drought tolerance, Drought tolerance and insect resistance (stacked genes), Rice (Nitrogen use efficiency, salt tolerance, water use efficiency), Sweet potato (Weevil resistance), Soyabean (Herbicide tolerance), Potato (Potato blight resistance). |
Genetically engineered (GE) crops researched, under testing, approval or commercialization in different countries of Africa.
Source: ISAAA (2018), ISAAA Biotech Updates (2020), ISAAA Biotech Update (2021).
Despite several crops under testing for a long period, only a few have been commercialized in Africa (Table 2) [24]. In the SSA, South Africa has taken the lead with an estimated 2.7 million hectares covered with GM crops. It grows three commodities, namely cotton (100% cover), maize (85%), and soybeans (95%) of the total acreage [25]. Nigeria follows with three approvals (Bt cotton, PBR Cowpea, and TELA Maize) since 2018 [17], whereas Sudan stands second in acreage (about 192,000 hectares) from Bt cotton production.
Yield and quality improvements and associated economic benefits of growing GM crops have been the driving factors for biotech crops’ rapid global expansion. A study conducted on GM crops and conventional hybrid (CH) maize yield differences across 106 locations and over 28 years in South Africa has shown a mean yield increase for GM over CH maize of more than 0.42 MT per hectare in addition to reducing yield risks [26]. Others reported [27] that GM technology adoption has reduced chemical pesticide use on average by 37%, increased crop yields by 22%, and increased farmer profits by 68%. According to the report, yield gains and pesticide reductions are larger for insect-resistant crops than for herbicide-tolerant crops, and yield and profit gains are higher in developing than in developed countries.
Since the first field trial of a GM product back in 1987, the world has seen massive progress in the adoption of biotechnology crops and products and an increasing number of laboratory and field trials for a variety of novel GM products. Of the total global acreage (190 million hectares) of GM crops in 2019, the share of African countries is close to 3.0 million hectares only with South Africa taking the lead with 2.7 million hectares for HR-soybeans, IR/DT- maize and Bt cotton, followed by Sudan for 192,000 hectares of Bt- cotton [21, 28]. Currently, however, 13 biotech crops containing 13 traits in 13 countries are under different stages of research and evaluation in Africa [21]. Crops such as cotton, maize, cowpea, rice, sorghum, potato, sweet potato, cassava, banana, and sugarcane are either at the stage of Confined Field Trials (CFT) or commercial production status [29]. Since 2018, four countries have entered commercial production for the first time in Africa namely, Nigeria (Bt cotton and PBR cowpea in 2018 and TELA maize in 2021), Kenya (Bt cotton in 2020 and virus resistant cassava in 2021), Ethiopia (Bt cotton in 2018), and Malawi (Bt cotton in 2018), after approval for the respective GM crops [19, 20]. Nigeria has made a move to become the first among African nations followed by Kenya that approved commercial use of GM food crops cowpea and maize.
Given global advancement in the use of GM crops, progress in Africa has been slower than expected [30, 31]. After three decades of global experience on the safety of GM crops and impressive impacts on the livelihood of millions of farmers, many countries still are postponing approvals of GM crops. Numerous health and environmental safety research reports have sufficiently confirmed the safety and desirable impacts of GM crops and their derived products [30, 31, 32, 33, 34]. Such scientific evidence have not challenged enough the lingering public perception and controversies around the risks of GM crops [35]. Instead, the overwhelming challenges faced by farmers make it difficult to believe these technologies can positively affect the situation of smallholder farmers [31]. However, scientists believe genetic engineering and genome-editing technologies will continue to impact the global economy with new momentum for more innovative technologies. Countries such as Ghana, Tanzania, Ethiopia, Mozambique, Uganda, and Malawi are in process of working on clarifying the biosafety context and developing a guideline for promoting genome-editing technologies in crop improvement [36].
The commercialization of already approved products is challenged by a wave of issues along the product commercialization chain. The national research capacity has been very critical to respond to farmers’ needs for new technologies through creating awareness to the public, advising policymakers, testing of technologies, approvals, and helping access to proven technologies by farmers. In the same way robust regulatory system is needed to respond to applications based on scientific and empirical evidence. Often this has been a challenge in most countries since sufficient safety data generated can only be accepted and reviewed again by the regulatory agency of adopting country. Private and public sector developers apply step-wise review and decision processes to critically monitor the development of new products and to ensure that only good events are commercialized. Therefore, the intellectual property, product stewardship, and commercialization strategy become key parts of the product life cycle.
The Excellence Through Stewardship (ETS) [37], a global industry coordinated organization, identifies the key steps in the biotechnology product life cycle which includes the following: (i) research and discovery; (ii) product development; (iii) seed or plant production; (iv) marketing and distribution; (v) crop production; (vi) crop utilization; and (vii) product discontinuation (Figure 4). Product Stewardship and commercialization are key cross-cutting components along the product life cycle for the industry to remain innovative and viable. Successful commercialization of a GM crops, therefore, requires a well-planned strategy with sufficient information and expertise in a wide range of professions spanning from research and discovery to market and consumer interest.
Biotechnology product life cycle (Excellence Through Stewardship, 2018). Source: Excellence through Stewardship (2018).
In other words, success in commercialization also depends on downstream activities: functional seed systems and extension systems, strong technology demonstration, presence of reliable financial and marketing services, and the like. These are often weak in developing countries including most parts of Africa. The blame on lack of political will, safety concern, or public acceptance for the delay in the adoption of deregulated products is often misleading. A recent assessment of stakeholders view on commercialization barriers of released biotech products shows socio-economic constraints, high cost of seed, weak certification of seed, weak private sector involvement, inadequate awareness of the technology, and best practices to be important [18, 24, 38, 39]. Thus, potentially a stronger public-private partnership in research, product development, and product commercialization in developing countries holds the key.
Rigorous risk assessment studies take years to complete only to satisfy the benefit of the doubt. In Africa, many consider GM crops are intended for use in industrialized countries and are hence inappropriate for agriculture in Africa. There is a poor understanding of the use and potential impact of the technologies on improving productivity. In some countries, GM crops are considered a threat to biodiversity due to fear of replacing local or conventional varieties and indigenous crop species and thereby making farmers dependent on private seed companies. Limited research, regulatory and monitoring capacities, and anticipated loss of export markets with trade-sensitive countries also add up to the challenges against wider commercialization of the biotech crops [38]. In countries that have overcome hurdles of the regulatory system, rolling of GM crop commercialization and access by growers depend much on what happens downstream the pathway beyond product development, regulatory approval, and registration.
Delayed decisions from regulatory agencies have a large, negative impact on the commercialization of new GM crop varieties around the world, but also in Africa [28]. While some delays can be sustained by some private sector developers, public sector developers are reliant on funding cycles and their projects are more quickly discontinued by indecision at regulatory agencies [40]. Regulators can strengthen decision-making by first reviewing the safety of new GM products and then linking the decision to national policy goals such as food security, sustainability, and the economic benefits to local farmers [41]. Linking regulatory decisions on GM plants to national policy goals, such as achieving the UN Sustainable Development Goals (SDGs), will help to clarify which products benefit the community, the environment, and bring about economic growth [18].
After going through national performance and verifications studies to satisfy national variety release and registration requirements [29], the product deployment is carried out by the technology owner, mostly a private company, through technology demonstration and demand-based seed supply. In this process, roles and stakeholder institutions change where the private sector, seed system, extension system, and other regulatory and financial institutions take over and function in subsequent steps. These transitions are not always clearly defined where the public sector is a major supplier of improved seed or where the seed sector is predominantly informal as in most African countries. Therefore, the commercialization of GM crops is overburdened with multiple issues of promoting new and approved products.
Weak seed systems and weak credit systems limit product access by farmers. A recent study on Bt-cotton hybrid seed access by farmers indicates that weak coordination among various stakeholders along the seed value chain is shown to exacerbate the problem of sustainable supply and wider utilization of the approved GM products [38, 39]. Lack of awareness of role players, inadequate demonstration of new technology to farmers as well as poor handling of the new technology by farmers, and poor extension schemes also contribute to the poor commercialization observed. Socio-economic constraints such as the high cost of hybrid seed, weak certification of seed, and inadequate awareness of technology and best practices (seed handling, agronomy, etc) can become important factors that can slow or block progress in some countries [38]. This also requires a stronger public-private partnership to advance the integration of modern biotechnology in the national R&D system.
Burkina Faso has signed the Cartagena Protocol on Biosafety in 2003. It has an active and functional regulatory system hosted by the National Biosafety Agency (NBA) (Agence Nationale de Biosécurité, ANB) currently exercising Biosafety laws, regulations, policies, and guidelines in the country. In addition, at a regional level, the Economic Community of West African States (ECOWAS) has put regional framework and rules on biosafety. The NBA is hosted by the Minister of Higher Education but has consultative bodies such us National Scientific committee of Biosafety (comité scientifique national de Biosécurité = CSNB), Scientific and Technique Council, National observatory of Biosafety regrouping members from various ministries and non-governmental organizations.
The NBA has approved different research activities on GM crops. From 2006 to 2015 about 32 permits for different GM cotton activities related to BollgardII, RRF (herbicide tolerance), and the stack of both were made for import, laboratory studies, CFT, commercialization, and seed production activities. From 2010 to 2021, there were six permits given for
Only the Bt cotton Burkina Faso had reached the stage of commercialization and utilization. However, the Bt cotton cultivation was discontinued in 2016 due to cotton fiber length issues associated with the marketing of Bt cotton. Currently, most of the research activities are carried out in the greenhouses, cages, and CFTs. In Burkina Faso, stakeholders support the use of GMO as a solution to food security and for human disease control such as Malaria. The ANB has been undertaking sensitization of various public entities and various stakeholders since 2009 on biosafety actions as described by the national legislation and the Cartagena Protocol.
Ethiopia signed the Convention on Biological Diversity (CBD) in 1993, Cartagena protocol in 2000 which was approved by Parliament in 2003. The country adopted a tighter regulatory framework based on the Precautionary Principle (equivalent to “No GMO”) ratified in 2009. The Biosafety bill was debated amended in 2016, known as ‘A Proclamation to Amend the Biosafety Proclamation 2009’. In 2017, the National Biosafety Advisory Committee was adopted and in 2018 the country issues its Biosafety Guidelines. The amended law permitted scientists and institutions to do research and education pertaining GMOs. This allowed to establish legal and regulatory systems and build technical capacity to support and manage GMO issues and approved after CFT of three Bt cotton varieties in 2016 under the procedure of “Special permit”, a provision in the Biosafety Law for research purposes. This was followed by 2 years of NPT across seven sites until 2018. The country approved two Bt cotton hybrids, JKCH-1050 and JKCH-1947 originally obtained from JK Agri Genetics Ltd., India for environmental release and variety registration. The accelerated commercial release demonstrated Ethiopia’s government commitment to support the cotton development to satisfy booming textile industries [29].
Ethiopia considered biotechnology as one of the priority areas in its National Science and Technology Policy formulated in 1993 [42]. Due to interest to tighten the non-GMO stand, the prohibitive regulatory system delayed its overall engagement in modern biotechnology, postponed the use of available products, and hampered the development of the local capacity building. After approval of two Bt cotton Bollgard I type varieties in 2018, demand for Bt cotton seed for 2021/22 estimated at 3250 kg was requested for 1300 hectares. Some level of cross-border Bt cotton seed also takes place with Sudan and around 3055 hectares around border areas are already covered with such imported Bt cotton seed.
In 2008, the Biosafety Authority and the NBAC granted a “Special Permit” approval for CFT of drought-tolerant (WEMA) and insect resistant (TELA) maize for testing from 2018 to 2023. The isogenic conventional lines were evaluated for 2years in different locations before the CFT. The two-year CFT was started in 2019 under a controlled drip irrigation system for drought-tolerant trait evaluation and has shown very promising results. The stacked maize environmental release for both insect resistance and drought tolerance is awaiting approval using existing provisions.
In 2013, Ethiopia deployed GM technology for its indigenous Enset crop (also called “false banana”) improvement in collaboration with the International Institute of Tropical Agriculture (IITA) for developing varieties with resistance to the deadly bacterial wilt disease caused by
Approved Bt cotton hybrid seed demand is increasing but the hybrid Bt cotton seeds are not locally available and need to be imported from the technology supplier. But due to the decline in exports during the COVID-19 Pandemic, the Bt cotton seed supply system has suffered from foreign exchange restrictions to purchase seeds. The absence of local seed companies investing in Bt cotton seed has been one of the key challenges facing Bt cotton commercialization in Ethiopia.
Stakeholders across the cottonseed system must assess the most feasible pathway to ensure easy access to quality seeds at a reasonable cost, especially to smallholder farmers. Supporting cotton production with appropriate extension services and training of farmers and other relevant stakeholders for best practices is required to scaling-up the use of Bt cotton in the country. Developing innovative partnerships with technology developers to enable local Bt cotton hybrid seeds production will help to achieve affordable and sustainable access to GM technology.
There is no clear data concerning the changes in the public acceptance of GM technologies in Ethiopia. However, the transition at policy and political levels is remarkable; from a stance of “GMO free” advocacy to one with pragmatic consideration to taking advantage of changes and prospects at the global level. The public perception is expected to evolve considerably due to growing global biotechnology importance in promoting food security in the wake of climate change. However, the recent movement following a report by the USDA that recognizes Ethiopia’s commitment to implementing the amended protocol and embarking on some GM crops, has sparked severe criticisms against GMOs development in the country [44]. There has been a steep rise in anti-GMO comments following the USDA announcement [45]. It requires to provide the right information to the public and creating the right and positive public perceptions to help the right policy measures and institutional function with respect to biotechnology products.
Kenya is among the first African countries that signed the Cartagena Protocol on Biosafety in 2002. It also set up a national biosafety regulatory authority followed by a Biosafety policy signed into law in 2010 [46]. The exercise of dealing with GM products has seen many challenges such as the one when the government through the Ministry of Health instituted a Moratorium on the import and trade of GMOs on November 21, 2012, an embargo that remains in force to this day [47].
To date, two crops have been approved for commercialization use in Kenya and these are the Bt cotton hybrid, which was commercialized in 2020, and the improved cassava variety for resistance to Cassava Brown Streak Disease (CBSD). The NBA approved the application for environmental release for GM cassava containing Event 4046 in 2021 [48]. The GM cassava has increased root quality and higher yields [49]. Kenya is the first country globally to consider a request for environmental release involving GM cassava crops. Many other crops are now at different stages of regulatory approval. In the year 2021, 36 applications have been submitted for various crops under review [48].
Kenya’s GMO regulatory framework is robust and active. It is designed for regulating contained use, import, export and transit, environmental release, and labeling [46]. The emerging research area of gene-editing technologies in food and agriculture presents the newest frontier in the area of legislation and regulations in Kenya [46]. The NBA board has undergone timely training to equip them with knowledge on the understanding of the regulatory process of genome-edited organisms and products in Kenya [46].
A strict and arduous regulatory approval framework remains one of the most important challenges to GMO adoption in Kenya [50]. So far, Bt cotton has been commercialized and the status of Bt-maize is at the NPT stage. Access to Bt cotton hybrid seeds, access to credit to purchase Bt cotton seeds, and lack of adequate monitoring data for Bt cotton is the weak side of the commercialization process.
Among the public institutions, Government Counties can play a role by forming cotton-producing clusters to support access to Bt cotton hybrid seed and inputs and access to the cotton market to encourage cotton-producing smallholders. This exercise on Bt cotton can also be helpful for similar efforts in the future for other new technologies [51].
Public perception of GMOs in Kenya has been mostly negative for a long time due to bad press and negative publicity about GM products [50]. Kenya had instituted a moratorium on GMO import and trade in 2012 based on a study by Séralini et al. [52] that has since been disapproved. The damage, however, had been done and slowed progress in GM acceptance and adoption in the country. For most of the public, GMOs were dangerous, and disposed the government to take a reactive action. The growing awareness on the benefits of GMO technology in the continent and in Kenya in particular, is seeing an upsurge in attitude change for the better [50].
Malawi has made significant progress in biotechnology and biosafety since the ratification of the Cartagena Protocol on Biosafety in 2009. The country has domesticated the protocol by developing a legal and institutional framework for biosafety. Malawi developed its Biosafety Act in 2002, Biosafety Regulations in 2007, and enacted Biotechnology and Biosafety Policy in 2008. The CFT and NPT Guidelines, Trial Manager Handbook, and Inspectors Handbook were prepared in 2007. Since 2009, three permits to conduct GM crop trials have been issued under the Biosafety Act and approved its first Bt cotton for commercialization in 2018. Other GM crops initiatives were transgenic Banana and Bt Cowpea both of which were terminated in 2019 due to lack of finance to support the research.
Malawi’s biosafety legal framework does not hinder the commercialization of approved technologies. Before varietal release of the Bt cotton hybrids, field demonstrations across key cotton-growing districts were done to help farmers with the potential of the technology (Bollgard II) and hybrid cotton varieties to help farmers build a positive perception about the benefits. However, the cost of Bollgard II hybrid cotton seeds was US$30 (MK 25,000) in 2021 became a concern. This means that for a hectare, farmers spend US$ 123.5 at a seeds rate of 4 kg/ha compared to US$ 1.2/kg for OPVs. The Bt cotton seed grown in Malawi are supplied from India and transport/import cost make seed prices higher and affects the adoption of the technology by smallholder farmers. Trainings on GM cotton seed multiplication for local farmers is underway to reduce cost on seed importation which is anticipated to result into affordable seed cost and improve its accessibility and adoption by smallholder farmers.
In Malawi issues such as biosafety concerns, public acceptance, political will, and support influence the adoption of GM crops. Public opinion has not been contradicting to the introduction of GM cotton possibly due to the absence of known negative impacts on human health and good publicity during the field demonstration trials. There is high political will as government is working to restore the cotton industry in the country. Regulatory decisions have been science-based and risk assessment is done on case-by-case basis which has built level of trust for the technology among farmers and the public.
Modern biotechnology regulation in Nigeria started in the early 1990s. The Convention on Biological Diversity (CBD), which Nigeria signed in 1992, identified GMOs or LMOs as a group of organisms produced by modern biotechnology that needed special attention because of their perceived adverse impacts on biodiversity and human health. Based on the Convention’s recommendation, Nigeria ratified its biosafety framework in 2002. Consequently, research practice began in modern biotechnology, along with it the biosafety legal regime became apparent. Subsequently, Biosafety Law was put in place in April 2015 giving birth to the National Biosafety Management Agency (NBMA) for the implementation of the Act which also became amended in 2019.
To keep abreast with advancements in modern biotechnology, Nigeria developed several guidelines including for GM Food, Feed Processing, GM Mosquito, GM Trees, Birds, Fish, and other animals. The country is the first in Africa to validate Genome editing guidelines during the last quarter of 2020. Several processing permits were granted for food and feed from GM maize, soybeans, and others.
Currently, Nigeria has several R&D activities at different levels: research, testing, pipeline, and commercialization. To date, NBMA has approved CFTs for the following crops: Bio-fortified cassava enhanced with pro-vitamin A, iron, and zinc; GM cassava resistant to cassava mosaic virus, Cassava brown streak disease virus, and enhanced with iron and zinc. Also, cassava was modified for higher starch; cowpea modified for resistance against maruca, HT soybeans; GM rice modified for nitrogen use efficiency, water use efficiency, and salt tolerance and GM maize for resistance to stem borer/fall armyworm and drought tolerance. The approval for commercial release has been for GM cotton (Bollgard II) to Bayer Agriculture Nig. Ltd./Mahyco Agriculture Private Ltd. in July 2018; cowpea modified for resistance to maruca insect pest and insect-resistant/drought-tolerant maize (TELA).
The most important regulatory constraints are related to finance and laboratory facilities. The challenge in product commercialization of GM crops, as experienced in cowpea, is meeting the seed demands of farmers. Whereas in the case of cotton, the cost of seeds is not affordable by smallholder farmers, concerted efforts are being made by various platforms such as the open forum on agricultural biotechnology (OFAB), in Africa, Nigeria Chapter in collaboration with extension agents to let farmers get the right information and advisory services on biotechnology products. Nigeria’s Biosafety Law requires mandatory labeling of products containing GM products or ingredients exceeding 4%, which restricts market access for GM products.
Access to improved seed is realized when the farmers can buy the seeds when they need them at an affordable price. Trust building is critical so that farmers as pragmatic as they are, have a positive attitude toward GM technology despite anti-GM campaigns and their misconceptions.
The Nigerian public has a mixed opinion about GM crops and their food products due to mixed information about the importance of biotech in promoting food security and the public concerns about its safety and health-related issues. A higher number of the public in Nigeria believe the country should domesticate the technology and build local capacity to develop GM crops [53]. For example, policymakers’ and scientists’ perception on GM technology was examined in Ghana and Nigeria using semi-structured interviews [54]. Results showed most respondents including policymakers believe the technology has great potential to solve agricultural problems. However, lack of trained personnel and weak institutional capacities present significant challenges to its wider utilization.
Sudan is a member of the Cartagena Protocol on Biosafety (CPB) since 2005. In 2010, a national biosafety law dealing with the application of modern biotechnology was issued and in 2012, Biosafety Council was formed. However, biosafety measures are only partially in place for the implementation of the Cartagena Protocol [55]. Despite such efforts by the government to develop the biosafety regulatory system, much remain to be done for the effective implementation of the protocol on biosafety [56]. The national biosafety law was amended to become “Miscellaneous Amendments Law” (Unification of Environment Councils) and officially gazetted in Sudan [57].
The first open-pollinated Bt cotton genotype (CN-C02) carrying Bt gene Cry 1A from which is a specific toxin against larvae of bollworm was introduced by China-aid Agricultural Technology Demonstration Center (CATDC) and released for commercial production under the name Seeni1 in 2012. The Seeni1 variety was fast adopted at a commercial scale from 19,300 hectares in 2012 to 61,300 hectares in 2013 [58]. In 2016, the area almost doubled to 120,630 hectares. Seeni1 occupied about 25% of the country’s total cotton cultivation area in 2012 and 97% in 2014 [59]. After the successful adoption of the first Bt cotton variety, Seeni1, another open-pollinated Bt cotton genotype from China (SCRC37) carrying the same gene of Seeni1 was released for commercial production and named Seeni2 in 2015. In the same year, two Indian Bt cotton hybrids; JKCH1947 (Hindi1) and JKCH1050 (Hindi2) carrying JKAL X-gene (Cry1Ac), were also released for commercial production [60]. The area under Hindi2 progressively increased from 7560 hectares to 33,600 hectares in 2021. The total Bt cotton cultivated area in Sudan since first commercial production in 2012 has grown to occupy about 98% of the total cotton area in 2021. In Sudan, cottonseeds represent a valuable oil and cake source. The major concern after the Bt cotton commercialization is the food safety of its byproducts; however, permissible levels for GMOs intended for direct use as food/feed needs approval from the national biosafety committee.
Recently transgenic cotton hybrid varieties carrying Cry1AC + Cry2A and glyphosate-tolerant trait (CP4 ESPS) were approved by the national biosafety technical committee in compliance with the national biosafety regulations for further testing. In Sudan, the establishment of national action plans for developing and promoting cotton exports and harmonizing its marketing policies are seen as crucial steps to restore Sudan’s position in the international cotton market.
In Sudan, Bt cotton is the only GM crop under commercial production since 2012. Additional new transgenic cotton varieties approved by the national biosafety committee are under testing and will enrich the Bt cotton variety options. The national seed industry of transgenic crops is not fully complying with the biosafety regulations due to the limited awareness of stakeholders involved in the seed industry. This has caused the sub-standard seed to be distributed by dealers.
Almost all Bt cotton seeds for open-pollinated variety are produced by the private seed sector under the governance of public institutions. The current situation of seed production could be improved with policy to guide and incentivize seed producers (public and private) for high-quality seed supply. The trend of seed demand growth in Sudan has been clear since Bt cotton adoption and requires comprehensive situation analysis to install a visionary seed production scheme.
On the other hand, not all smallholder farmers can access good quality seed because of limited financial support and a lack of farmers’ organizations to obtain agricultural credit. Enabling policies are required for smallholder cotton farmers to overcome this problem and related marketing challenges.
Sudanese public participation in GMOs use debates and its general awareness is limited. Either lack of understanding or misperception of the technology predominates. Public-wide formal and informal education on safety concerns (biosafety and food safety) and GMO utilization need to be strengthened. More engagement and participation of stakeholders along the cotton value chain would help to have a clear plan for promoting and sustainability utilizing the products of GM technology. Currently, the adoption of transgenic cotton in Sudan is farmer-driven and government intervention is highly beneficial to strengthen farmers’ associations for market access and improving the benefits of Bt cotton to local farmers.
For the past 15 years, Uganda has been steadily integrating biotechnology into national development processes and developing local capacity. The Uganda national biotechnology strategy identified biotechnology as a tool to address challenges in the agricultural sector [61, 62]. The government has been providing support to build human resources and research infrastructure capacity to strengthen research development and innovation in biotechnology and played a dominant role in Uganda. R&D using modern biotechnology tools in crop science was initiated in 2003 at the National Agricultural Biotechnology Center. Other institutions like Makerere University and the National Agricultural Research Organization’s (NARO) followed suit to join the effort. Several international and regional organizations also have been supporting national crop biotechnology R&D including USAID, Bill and Melinda Gates Foundation, ASARECA, CIMMYT, and Rockefeller Foundation. Through support from the government and development agencies, more than 10 research laboratories have been established for biotechnology research and development. The scientific community in Uganda has embraced biotechnology and is actively engaged in R&D using modern biotechnology and genetic engineering tools. There has been a growing application of tissue culture, molecular diagnostic tools, and the development of genetically engineered transgenic crops.
Uganda ratified the Cartagena Protocol on Biosafety in 2001 [63]. In 2008, the government of Uganda adopted the National Biotechnology and Biosafety Policy to provide a regulatory and institutional framework for the safe and sustainable application of biotechnology for national development. Uganda’s biosafety institutional framework includes national competent authority, national focal point, the national biosafety committee, monitoring and compliance mechanisms, and institutional biosafety committees.
The Uganda National Council for Science and Technology (UNCST) serves as the national competent authority and provides regulatory oversight for GMO research and development programs through the National Biosafety Committee (NBC). To support the NBC, biotechnology research institutions have established Institutional Biosafety Committees (IBC) to provide research biosafety stewardship and serve as a link between the research scientists and NBC. To provide a comprehensive biosafety regulatory framework for commercialization of GM crops, the Parliament of Uganda introduced the Genetic Engineering Regulatory Bill in November 2018 to be assented into an act. The Bill was seconded through stakeholder policy consultations to ensure establishment of an enabling national biosafety legislation.
The first field trial of GM crops was conducted in 2007 on genetically engineered bananas for resistant to Black Sigatoka disease. To date, the NBC has approved 17 field research trials involving several GM crops mentioned below for various crops and traits (Table 2) [64, 65, 66]. The detailed summary of GM crops and incorporated traits is also partly presented in Table 2.
Like other breeding product pipelines, GM products require on-farm agronomic and agroecological tests under the guidance of approved biosafety guidelines. In Uganda, scientists are unable to proceed with product testing on farmer’s fields to ascertain GM product performance due to a lack of national biosafety legislation and regulations. Crops such as banana (research, CFT and multilocation trials), Cassava (CFT, multi-locational trials), Cotton (CFT, multi-location trials), Maize (CFT and multi-location trials), Rice (CFT Research), Sweet potato (Greenhouse), Soybean (Greenhouse), Potato (CFT- Multilocation trials) have not been tested on farmers fields. Research on these crops has been conducted through joint collaborations involving local and international institutions such as NARO, IITA, AATF, Queensland University of Technology (QUT), Leeds University, Donald Danforth Plant Science Center (DDPSC), Bayer, International Potato Center (CIP), Makerere University, and Michigan State University.
Biotechnologies can help African country’s efforts toward achieving social and economic development and contributing to the United National (UN) Sustainable Development Goals (SDGs) through improving agricultural productivity and increasing resilience to climate change impacts. As highlighted in the six case studies, countries in Africa are at various stages of biotechnology R&D and regulatory capacities. With the recent positive decisions made by the governments of several countries in Africa, the future holds prospects for the commercialization of GM products. Research, regulatory, and outreach capacity in modern biotechnology is seen as fundamental to the promotion of advanced science and technology in research programs including GMO and genome-editing research and development.
Identifying policy and regulatory gaps and adjusting to meet current and future needs would always be required to promote agricultural biotechnology for sustainable development in biotech and non-biotech countries. Proactively working toward building awareness of stakeholders and right public perception and relentless effort to capacitate policymakers would help to maintain the current efforts in improving political dynamics toward modern biotechnology and avoid sliding back to the old rhetoric led by postmodernist anti-GMO and anti-technology activism.
Since it took several years of negative publicity to entrench distrust among the public, it can only be undone with unyielding and consistent communication and outreach espousing, especially positive benefits to smallholder farmers and consumers and farmers as champions. Therefore, strong voices are necessary to champion the adoption of GMOs and genome-editing technologies in countries in Africa. Misinformation and disinformation, and competing interests inevitably complicate how modern biotechnology is viewed and its benefits are harnessed in Africa for smallholder farmers. The science communication should be amplified with messaging centering around a farmer and consumer benefits and contributions to UN Sustainable Development Goals (SDGs).
The transitions from product development to deployment and commercialization are often difficult in developing countries. Multiple institutions from the public and private sector including the farming communities are involved to operate. This needs to be well aligned and coordinated institutional functions are needed to ensure sustainable access and deployment of new technologies/products by smallholder farmers while keeping product integrity, quality, and excellence through stewardship. Experience shows the importance of careful handling and management of new technology with simultaneous preparation for the local seed systems to ensure that new products are consistently available and affordable by smallholder farmers. Alternative technologies are needed for widening the scope of adoption through a healthy market and avoiding negative perceptions to impinge on efficiency and competitiveness.
Farmers are willing to adopt impactful technologies that can enhance agricultural productivity and their livelihoods. However, closer consultation and understanding of their challenges is critical to foster and sustain repeated adoption of GM crops by farmers to convey a realistic understanding of the production and marketing challenges and receive necessary policy support. A clear monitoring strategy is needed for field management of GM crops and their sustainable use and impacts as well as co-existence in the farming systems of adopting countries.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17528}],offset:12,limit:12,total:132501},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"10"},books:[{type:"book",id:"11490",title:"Advances in Plate Tectonics",subtitle:null,isOpenForSubmission:!0,hash:"412f2e209ff259650a5a1c7df151e3a7",slug:null,bookSignature:"Dr. Gaurav D. Chauhan, Dr. Subhash Bhandari and Dr. M. G. Thakkar",coverURL:"https://cdn.intechopen.com/books/images_new/11490.jpg",editedByType:null,editors:[{id:"239938",title:"Dr.",name:"Gaurav",surname:"Chauhan",slug:"gaurav-chauhan",fullName:"Gaurav Chauhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11487",title:"Floods - Understanding Existing and Emerging Risk Drivers in a Climate Change Context",subtitle:null,isOpenForSubmission:!0,hash:"c829bdd1a2a84b4b2c31ce5eaab865e2",slug:null,bookSignature:"Dr. Tiago Miguel Ferreira and Associate Prof. Haiyun Shi",coverURL:"https://cdn.intechopen.com/books/images_new/11487.jpg",editedByType:null,editors:[{id:"450075",title:"Dr.",name:"Tiago Miguel",surname:"Ferreira",slug:"tiago-miguel-ferreira",fullName:"Tiago Miguel Ferreira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11488",title:"GIS and Spatial Analysis",subtitle:null,isOpenForSubmission:!0,hash:"fbb625cf1556787cd00be17e7137a5dc",slug:null,bookSignature:"Ph.D. Jorge Rocha, MSc. Eduardo Gomes, Dr. Inês Boavida-Portugal and Dr. Cláudia M. Viana",coverURL:"https://cdn.intechopen.com/books/images_new/11488.jpg",editedByType:null,editors:[{id:"145918",title:"Ph.D.",name:"Jorge",surname:"Rocha",slug:"jorge-rocha",fullName:"Jorge Rocha"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11491",title:"Current Perspectives on Applied Geomorphology",subtitle:null,isOpenForSubmission:!0,hash:"f9f0fe8910dc02818cad71316650d297",slug:null,bookSignature:"Prof. António Vieira",coverURL:"https://cdn.intechopen.com/books/images_new/11491.jpg",editedByType:null,editors:[{id:"103627",title:"Prof.",name:"António",surname:"Vieira",slug:"antonio-vieira",fullName:"António Vieira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11833",title:"Ozone Research - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"1e789b57319be85ed0a32e569967d822",slug:null,bookSignature:"Associate Prof. Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/11833.jpg",editedByType:null,editors:[{id:"190012",title:"Associate Prof.",name:"Taner",surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11486",title:"Climate Change - Recent Observations",subtitle:null,isOpenForSubmission:!0,hash:"741543ff220f5cf688efbf12d3e2f536",slug:null,bookSignature:"Assistant Prof. Terence Epule Epule",coverURL:"https://cdn.intechopen.com/books/images_new/11486.jpg",editedByType:null,editors:[{id:"348146",title:"Assistant Prof.",name:"Terence Epule",surname:"Epule",slug:"terence-epule-epule",fullName:"Terence Epule Epule"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",subtitle:null,isOpenForSubmission:!0,hash:"f1043cf6b1daae7a7b527e1d162ca4a8",slug:null,bookSignature:"Dr. Carmine Massarelli and Dr. Claudia Campanale",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",editedByType:null,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11840",title:"Arid Environment - Perspectives, Challenges and Management",subtitle:null,isOpenForSubmission:!0,hash:"4c2e03f295fbc697350f0bf3bf89a14f",slug:null,bookSignature:"Associate Prof. Murat Eyvaz, Dr. Ahmed Albahnasawi, M.Sc. Ercan Gürbulak and MSc. Mesut Tekbaş",coverURL:"https://cdn.intechopen.com/books/images_new/11840.jpg",editedByType:null,editors:[{id:"170083",title:"Associate Prof.",name:"Murat",surname:"Eyvaz",slug:"murat-eyvaz",fullName:"Murat Eyvaz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11847",title:"Gas Reservoirs",subtitle:null,isOpenForSubmission:!0,hash:"c1265f50efcf19c17e039c277f57e1a7",slug:null,bookSignature:"Dr. Ali Ismet Kanlı",coverURL:"https://cdn.intechopen.com/books/images_new/11847.jpg",editedByType:null,editors:[{id:"243975",title:"Dr.",name:"Ali Ismet",surname:"Kanlı",slug:"ali-ismet-kanli",fullName:"Ali Ismet Kanlı"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11489",title:"Satellite Systems - Applied Geodesy and Earth Observation",subtitle:null,isOpenForSubmission:!0,hash:"7c21d1a8ed9ad6be081d2e74d977d2bc",slug:null,bookSignature:"Dr. Bihter Erol",coverURL:"https://cdn.intechopen.com/books/images_new/11489.jpg",editedByType:null,editors:[{id:"75478",title:"Dr.",name:"Bihter",surname:"Erol",slug:"bihter-erol",fullName:"Bihter Erol"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11492",title:"Space Exploration - Advances in Research",subtitle:null,isOpenForSubmission:!0,hash:"2204ff2e64bffb84a4bf1b74bb38bfa1",slug:null,bookSignature:"Dr. Hector Pérez-de-Tejada",coverURL:"https://cdn.intechopen.com/books/images_new/11492.jpg",editedByType:null,editors:[{id:"345070",title:"Dr.",name:"Hector",surname:"Pérez-de-Tejada",slug:"hector-perez-de-tejada",fullName:"Hector Pérez-de-Tejada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11844",title:"Quartz - From Mineral Deposits to Industry",subtitle:null,isOpenForSubmission:!0,hash:"02ae4594c55841890c13fee4aea6574c",slug:null,bookSignature:"Dr. Carlos Leal Gomes",coverURL:"https://cdn.intechopen.com/books/images_new/11844.jpg",editedByType:null,editors:[{id:"461236",title:"Dr.",name:"Carlos",surname:"Leal Gomes",slug:"carlos-leal-gomes",fullName:"Carlos Leal Gomes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:15},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1089",title:"Preventive Oncology",slug:"preventive-oncology",parent:{id:"190",title:"Oncology",slug:"medicine-oncology"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:44,numberOfWosCitations:41,numberOfCrossrefCitations:14,numberOfDimensionsCitations:55,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1089",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1822",title:"Cancer Prevention",subtitle:"From Mechanisms to Translational Benefits",isOpenForSubmission:!1,hash:"3055d5ee62e305b4342112c97ade7442",slug:"cancer-prevention-from-mechanisms-to-translational-benefits",bookSignature:"Alexandros Georgakilas",coverURL:"https://cdn.intechopen.com/books/images_new/1822.jpg",editedByType:"Edited by",editors:[{id:"53981",title:"Dr.",name:"Alexandros G.",middleName:null,surname:"Georgakilas",slug:"alexandros-g.-georgakilas",fullName:"Alexandros G. Georgakilas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"35598",doi:"10.5772/30464",title:"The Therapeutic Potential of Pomegranate and Its Products for Prevention of Cancer",slug:"the-therapeutic-potential-of-pomegranate-and-its-products-for-prevention-of-cancer",totalDownloads:10525,totalCrossrefCites:4,totalDimensionsCites:15,abstract:null,book:{id:"1822",slug:"cancer-prevention-from-mechanisms-to-translational-benefits",title:"Cancer Prevention",fullTitle:"Cancer Prevention - From Mechanisms to Translational Benefits"},signatures:"Arzu Akpinar-Bayizit, Tulay Ozcan and Lutfiye Yilmaz-Ersan",authors:[{id:"82677",title:"Dr.",name:"Arzu",middleName:null,surname:"Akpinar-Bayizit",slug:"arzu-akpinar-bayizit",fullName:"Arzu Akpinar-Bayizit"},{id:"93411",title:"Dr.",name:"Tulay",middleName:null,surname:"Ozcan",slug:"tulay-ozcan",fullName:"Tulay Ozcan"},{id:"93413",title:"Dr.",name:"Lutfiye",middleName:null,surname:"Yilmaz-Ersan",slug:"lutfiye-yilmaz-ersan",fullName:"Lutfiye Yilmaz-Ersan"}]},{id:"35586",doi:"10.5772/28692",title:"Targeting Tumor Microenvironments for Cancer Prevention and Therapy",slug:"targeting-tumor-microenvironments-for-cancer-prevention-and-therapy",totalDownloads:3079,totalCrossrefCites:0,totalDimensionsCites:8,abstract:null,book:{id:"1822",slug:"cancer-prevention-from-mechanisms-to-translational-benefits",title:"Cancer Prevention",fullTitle:"Cancer Prevention - From Mechanisms to Translational Benefits"},signatures:"Li V. Yang, Reid D. Castellone and Lixue Dong",authors:[{id:"75019",title:"Dr.",name:"Li",middleName:null,surname:"Yang",slug:"li-yang",fullName:"Li Yang"},{id:"105059",title:"MSc.",name:"Reid",middleName:null,surname:"Castellone",slug:"reid-castellone",fullName:"Reid Castellone"},{id:"105061",title:"MSc.",name:"Lixue",middleName:null,surname:"Dong",slug:"lixue-dong",fullName:"Lixue Dong"}]},{id:"35595",doi:"10.5772/32142",title:"Chemopreventive Activity of Mediterranean Medicinal Plants",slug:"chemopreventive-activity-of-mediterranean-medicinal-plants",totalDownloads:2240,totalCrossrefCites:4,totalDimensionsCites:7,abstract:null,book:{id:"1822",slug:"cancer-prevention-from-mechanisms-to-translational-benefits",title:"Cancer Prevention",fullTitle:"Cancer Prevention - From Mechanisms to Translational Benefits"},signatures:"A.C. Kaliora and A.M. Kountouri",authors:[{id:"90328",title:"Dr.",name:"Andriana",middleName:null,surname:"Kaliora",slug:"andriana-kaliora",fullName:"Andriana Kaliora"},{id:"96463",title:"Dr.",name:"Aggeliki",middleName:null,surname:"Kountouri",slug:"aggeliki-kountouri",fullName:"Aggeliki Kountouri"}]},{id:"35594",doi:"10.5772/31593",title:"Cervical Cancer Screening and Prevention for HIV-Infected Women in the Developing World",slug:"preventing-cervical-cancer-in-women-living-with-hiv",totalDownloads:2374,totalCrossrefCites:4,totalDimensionsCites:6,abstract:null,book:{id:"1822",slug:"cancer-prevention-from-mechanisms-to-translational-benefits",title:"Cancer Prevention",fullTitle:"Cancer Prevention - From Mechanisms to Translational Benefits"},signatures:"Jean Anderson, Enriquito Lu, Harshad Sanghvi, Sharon Kibwana and Anjanique Lu",authors:[{id:"87848",title:"Dr.",name:"Harshadkumar",middleName:null,surname:"Sanghvi",slug:"harshadkumar-sanghvi",fullName:"Harshadkumar Sanghvi"},{id:"87935",title:"Prof.",name:"Jean",middleName:null,surname:"Anderson",slug:"jean-anderson",fullName:"Jean Anderson"},{id:"87937",title:"Dr.",name:"Enriquito",middleName:null,surname:"Lu",slug:"enriquito-lu",fullName:"Enriquito Lu"},{id:"126803",title:"Ms.",name:"Sharon",middleName:null,surname:"Kibwana",slug:"sharon-kibwana",fullName:"Sharon Kibwana"},{id:"126804",title:"Ms.",name:"Anjanique M",middleName:null,surname:"Lu",slug:"anjanique-m-lu",fullName:"Anjanique M Lu"}]},{id:"35601",doi:"10.5772/33404",title:"Creating a Sustainable Cancer Workforce: Focus on Disparities and Cultural Competence",slug:"creating-a-sustainable-cancer-workforce-focus-on-disparities-and-cultural-competence",totalDownloads:1860,totalCrossrefCites:0,totalDimensionsCites:5,abstract:null,book:{id:"1822",slug:"cancer-prevention-from-mechanisms-to-translational-benefits",title:"Cancer Prevention",fullTitle:"Cancer Prevention - From Mechanisms to Translational Benefits"},signatures:"Maureen Y. Lichtveld, Lovell Jones, Alison Smith, Armin Weinberg, Roy Weiner and Farah A. Arosemena",authors:[{id:"95298",title:"Dr.",name:"Maureen",middleName:null,surname:"Lichtveld",slug:"maureen-lichtveld",fullName:"Maureen Lichtveld"},{id:"96523",title:"Ms.",name:"Farah",middleName:null,surname:"Arosemena",slug:"farah-arosemena",fullName:"Farah Arosemena"},{id:"127950",title:"Dr.",name:"Lovell",middleName:null,surname:"Jones",slug:"lovell-jones",fullName:"Lovell Jones"},{id:"130246",title:"BSc.",name:"Alison",middleName:null,surname:"Smith",slug:"alison-smith",fullName:"Alison Smith"},{id:"130247",title:"Dr.",name:"Armin",middleName:null,surname:"Weinberg",slug:"armin-weinberg",fullName:"Armin Weinberg"},{id:"130248",title:"Dr.",name:"Roy",middleName:null,surname:"Weiner",slug:"roy-weiner",fullName:"Roy Weiner"}]}],mostDownloadedChaptersLast30Days:[{id:"35586",title:"Targeting Tumor Microenvironments for Cancer Prevention and Therapy",slug:"targeting-tumor-microenvironments-for-cancer-prevention-and-therapy",totalDownloads:3079,totalCrossrefCites:0,totalDimensionsCites:8,abstract:null,book:{id:"1822",slug:"cancer-prevention-from-mechanisms-to-translational-benefits",title:"Cancer Prevention",fullTitle:"Cancer Prevention - From Mechanisms to Translational Benefits"},signatures:"Li V. Yang, Reid D. Castellone and Lixue Dong",authors:[{id:"75019",title:"Dr.",name:"Li",middleName:null,surname:"Yang",slug:"li-yang",fullName:"Li Yang"},{id:"105059",title:"MSc.",name:"Reid",middleName:null,surname:"Castellone",slug:"reid-castellone",fullName:"Reid Castellone"},{id:"105061",title:"MSc.",name:"Lixue",middleName:null,surname:"Dong",slug:"lixue-dong",fullName:"Lixue Dong"}]},{id:"35593",title:"Colorectal Cancer and the Preventive Effects of Food Components",slug:"colorectal-cancer-preventive-effects-of-food-components",totalDownloads:1981,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"1822",slug:"cancer-prevention-from-mechanisms-to-translational-benefits",title:"Cancer Prevention",fullTitle:"Cancer Prevention - From Mechanisms to Translational Benefits"},signatures:"Sayori Wada",authors:[{id:"87102",title:"Dr.",name:"Sayori",middleName:null,surname:"Wada",slug:"sayori-wada",fullName:"Sayori Wada"}]},{id:"35598",title:"The Therapeutic Potential of Pomegranate and Its Products for Prevention of Cancer",slug:"the-therapeutic-potential-of-pomegranate-and-its-products-for-prevention-of-cancer",totalDownloads:10525,totalCrossrefCites:4,totalDimensionsCites:15,abstract:null,book:{id:"1822",slug:"cancer-prevention-from-mechanisms-to-translational-benefits",title:"Cancer Prevention",fullTitle:"Cancer Prevention - From Mechanisms to Translational Benefits"},signatures:"Arzu Akpinar-Bayizit, Tulay Ozcan and Lutfiye Yilmaz-Ersan",authors:[{id:"82677",title:"Dr.",name:"Arzu",middleName:null,surname:"Akpinar-Bayizit",slug:"arzu-akpinar-bayizit",fullName:"Arzu Akpinar-Bayizit"},{id:"93411",title:"Dr.",name:"Tulay",middleName:null,surname:"Ozcan",slug:"tulay-ozcan",fullName:"Tulay Ozcan"},{id:"93413",title:"Dr.",name:"Lutfiye",middleName:null,surname:"Yilmaz-Ersan",slug:"lutfiye-yilmaz-ersan",fullName:"Lutfiye Yilmaz-Ersan"}]},{id:"35588",title:"Staying a Step Ahead of Cancer",slug:"staying-a-step-ahead-of-cancer",totalDownloads:2088,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1822",slug:"cancer-prevention-from-mechanisms-to-translational-benefits",title:"Cancer Prevention",fullTitle:"Cancer Prevention - From Mechanisms to Translational Benefits"},signatures:"Somaira Nowsheen, Alexandros G. Georgakilas and Eddy S. Yang",authors:[{id:"53981",title:"Dr.",name:"Alexandros G.",middleName:null,surname:"Georgakilas",slug:"alexandros-g.-georgakilas",fullName:"Alexandros G. Georgakilas"},{id:"105800",title:"Ms.",name:"Somaira",middleName:null,surname:"Nowsheen",slug:"somaira-nowsheen",fullName:"Somaira Nowsheen"},{id:"149029",title:"Dr.",name:"Eddy S.",middleName:"S",surname:"Yang",slug:"eddy-s.-yang",fullName:"Eddy S. Yang"}]},{id:"35596",title:"Dietary Manipulation for Therapeutic Effect in Prostate Cancer",slug:"dietary-manipulation-for-therapeutic-effect-in-prostate-cancer",totalDownloads:2454,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1822",slug:"cancer-prevention-from-mechanisms-to-translational-benefits",title:"Cancer Prevention",fullTitle:"Cancer Prevention - From Mechanisms to Translational Benefits"},signatures:"Carol A Gano, Kieran Scott, Joseph Bucci, Heather Greenfield, Qihan Dong and Paul L de Souza",authors:[{id:"92136",title:"Prof.",name:"Paul",middleName:null,surname:"De Souza",slug:"paul-de-souza",fullName:"Paul De Souza"},{id:"94180",title:"Ms.",name:"Carol",middleName:null,surname:"Gano",slug:"carol-gano",fullName:"Carol Gano"}]}],onlineFirstChaptersFilter:{topicId:"1089",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:25,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"80187",title:"Potential Utilization of Insect Meal as Livestock Feed",doi:"10.5772/intechopen.101766",signatures:"Sipho Moyo and Busani Moyo",slug:"potential-utilization-of-insect-meal-as-livestock-feed",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:160,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:48,paginationItems:[{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81188",title:"Structure- and Design-Based Difficulties in Recombinant Protein Purification in Bacterial Expression",doi:"10.5772/intechopen.103958",signatures:"Kubra Acikalin Coskun, Nazlıcan Yurekli, Elif Cansu Abay, Merve Tutar, Mervenur Al and Yusuf Tutar",slug:"structure-and-design-based-difficulties-in-recombinant-protein-purification-in-bacterial-expression",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yusuf",surname:"Tutar"},{name:"Nazlican",surname:"Yurekli"},{name:"Merve",surname:"Tutar"},{name:"Mervenur",surname:"Al"},{name:"Elif Cansu",surname:"Abay"},{name:"Kubra",surname:"Acikalin Coskun"}],book:{title:"Protein Detection",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",subseries:{id:"18",title:"Proteomics"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:8,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"17",type:"subseries",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11413,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",slug:"yanfei-(jacob)-qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},onlineFirstChapters:{paginationCount:3,paginationItems:[{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81188",title:"Structure- and Design-Based Difficulties in Recombinant Protein Purification in Bacterial Expression",doi:"10.5772/intechopen.103958",signatures:"Kubra Acikalin Coskun, Nazlıcan Yurekli, Elif Cansu Abay, Merve Tutar, Mervenur Al and Yusuf Tutar",slug:"structure-and-design-based-difficulties-in-recombinant-protein-purification-in-bacterial-expression",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yusuf",surname:"Tutar"},{name:"Nazlican",surname:"Yurekli"},{name:"Merve",surname:"Tutar"},{name:"Mervenur",surname:"Al"},{name:"Elif Cansu",surname:"Abay"},{name:"Kubra",surname:"Acikalin Coskun"}],book:{title:"Protein Detection",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"79353",title:"Protein Detection in Clinical Diagnosis and Management of Prevalent Neurodegenerative Diseases and Metabolic Disorders",doi:"10.5772/intechopen.101051",signatures:"Ohanube A.K. Goodluck, Obeta M. Uchejeso and Ikeagwulonu R. Chinaza",slug:"protein-detection-in-clinical-diagnosis-and-management-of-prevalent-neurodegenerative-diseases-and-m",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Protein Detection",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",subseries:{id:"18",title:"Proteomics"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:null,institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:null,institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:286,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/150582",hash:"",query:{},params:{id:"150582"},fullPath:"/profiles/150582",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()