\r\n\tIt is a relatively simple process and a standard tool in any industry. Because of the versatility of the titration techniques, nearly all aspects of society depend on various forms of titration to analyze key chemical compounds.
\r\n\tThe aims of this book is to provide the reader with an up-to-date coverage of experimental and theoretical aspects related to titration techniques used in environmental, pharmaceutical, biomedical and food sciences.
Sickle cell disease (SCD) is one of the most prevalent hemoglobinopathies worldwide. It has been hypothesized that this disease originated millions of years ago, in the sub-Saharan countries in mid-western Africa, eastern Asia, and some regions of India [1]. The distribution of the disease correlates with the malaria-endemic regions because it confers a protective effect against infection by the plasmodium [1-3].
Many biochemical and immunological mechanisms have been investigated to explain the protection conferred by hemoglobin S (HbS) against malaria. Infected sickle erythrocytes are known to be phagocytized faster than normal erythrocytes, thereby reducing parasitemia [4]; however, despite the many studies of the complex mechanisms involved, their relevance in vivo remains unclear [5].
According to the World Health Organization, about 5% of the world population carried a gene mutation for a hemoglobinopathy in 2011, particularly those mutations causing SCD and thalassemia. Today, SCD is not restricted to Africa and parts of India, but is found in the America and Europe, mainly as a result of migration and racial intermingling. In the United States, the disease afflicts approximately 1:500 Afro-American and 1:4000 Hispanic-American neonates [6].
The Brazilian National Program of Neonatal Screening estimates that around 2 million individuals carry the HbS trait in that country and 25,000–50,000 individuals are homozygous for HbS. About 3,500 children are thought to be born with SCD every year and 200,000 are heterozygous for the HbS gene [7-8].
Sickle cell disease is characterized by a point mutation in the sixth codon of the β-globin gene. The replacement of a thymine residue with an adenine (GTG to GAG) results in the substitution of glutamic acid for valine in the β-chain of hemoglobin, thus producing an anomalous hemoglobin (βs-globin). After several cycles of deoxygenation and oxygenation, the HbS molecule polymerizes. This process is facilitated during the deoxygenation state of hemoglobin S (HbS) by hydrophobic interactions between the β subunits of the hemoglobin tetramer. The polymers thus formed can damage the erythrocyte structure, leading to sickle-shaped erythrocytes [9].
The polymerization of HbS represents the primary event in the molecular pathogenesis of the disease, and this process is dependent on several factors, including the concentrations of HbS and oxygen, the presence of high levels of normal hemoglobin, pH, temperature, and ionic strength [10]. HbS polymerization is responsible for: a) altering the structure and flexibility of the erythrocytes; b) promoting erythrocyte dehydration; and c) physical and oxidative stress [11, 12]. All of these events contribute to the hemolysis of the erythrocytes. The heme group present in the hemoglobin is then released into the circulation and can capture the nitric oxide (NO) molecules present in the vascular endothelium, generating a “vasoconstriction effect” in the patient [13]. Low levels of NO contribute to the vasculopathy and hypercoagulability characteristic of the disease, and have been related to its clinical manifestations, including pulmonary hypertension, leg ulcers, priapism, and cerebrovascular disease [14, 15].
NO is an important mediator of cell functions, with various effects, including vasodilatation, the inhibition of platelet aggregation, and the reduced expression of adhesive molecules (Figure 1). This mediator also stimulates the expression of the gamma globin gene and consequently increases the production of fetal hemoglobin (HbF). This mechanism seems to involve soluble guanylyl cyclase (sGC), which increases the expression of γ-globin in erythroleukemic cells and primary erythroblasts [16, 17].
Effects of nitric oxide on the vascular endothelium, inflammatory cells, and platelets.
Another manifestation of SCD is vaso-occlusion (Figure 2), which is the major cause of morbidity in patients with SCD, causing tissue infarct, painful crises, acute thoracic syndrome, and nephropathy. The interactions of the sickle erythrocytes, leucocytes, neutrophils, and platelets with the vascular endothelium increase, leading to the formation of heterocellular aggregates, which are responsible for vaso-occlusion [18]. Mechanistically, the interaction between the erythrocytes and the endothelium involves α4β1 integrin, expressed on the erythrocyte surface, and fibronectin, vascular cell adhesion protein 1 (VCAM-1), intracellular adhesion molecule 1 (ICAM-1), and E-selectin, expressed on the endothelial cell surface [19]. Other ligands, including thrombospondin, von Willebrand factor, immunoglobulins, and fibrinogen, also seem to contribute to this adherence [20].
This vaso-occlusion is aggravated by ischemic cycles, which cause oxidative and inflammatory stress and increase the production of proinflammatory cytokines [21, 22].
Pathophysiology of sickle cell disease.
Inflammation is another central feature of the vasculopathy of SCD (Figure 2). The adhesion and activation of leucocytes increase the production of proinflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-8, which contribute to chronic inflammation and vaso-occlusive crises [23, 24]. SCD patients show increased levels of proinflammatory cytokines, including TNF-α [25], and high levels of TNF-α can increase the chemotactic proprieties of cells and amplify inflammation. This cytokine is also responsible for: a) increasing neutrophil adherence to the vascular endothelium; b) stimulating the production of free radicals; c) stimulating the synthesis of other inflammatory mediators, such as IL-1β and prostaglandin E2 (PGE2); and d) modulating coagulation and anticoagulation functions [26, 27]. Therefore, the increased plasma levels of TNF-α in SCD patients contribute to their vaso-occlusive crises and inflammatory episodes [25, 28-29].
Despite current advances in medical technology, there is still no specific treatment for SCD. The drugs available can only reduce the symptoms and increase the patient’s quality of life. The complexity of SCD is an obstacle to the scientific development of new selective and effective therapies. This is coupled with the lack of interest within the pharmaceutical industry in searching for new drugs for this disease, another major impediment to the discovery of new treatments [30, 31]. Here, we discuss the main strategies and current advances in the search for new drugs with which to treat SCD.
Several strategies and therapies can be explored for the treatment of SCD. Among these, we include: a) the induction of HbF synthesis; b) the inhibition of erythrocyte dehydration; c) the inhibition of cellular adhesion; d) vasodilators; e) adenosine agonists; f) hemoglobin modifiers; g) Rho-kinase inhibition; and h) chelating agents (Figure 3). All of these strategies are discussed below.
Therapeutic strategies for the treatment of SCD.
The induction of HbF synthesis is a promising strategy for the treatment of SCD [32, 33]. The elevated levels of HbS and low levels of HbF in patients with SCD are related to the clinical severity of the disease and the early mortality of the patients. This effect is related to high levels of HbS polymerization and its increased adherence to the vascular endothelium, which aggravate the vaso-occlusive process [34, 35]. Agents that increase HbF levels include hydroxyurea (HU), decitabine, azacitidine, NO donors, butyric acid and its derivatives, erythropoietin, and thalidomide and its derivatives.
Hydroxyurea
Hydroxyurea (Figure 4) is a chemotherapeutic agent and selective inhibitor of ribonucleoside diphosphate reductase, an enzyme that converts ribonucleoside diphosphates to deoxyribonucleoside diphosphates. Therefore, HU inhibits the G1/S phase transition of the cell cycle [36]. Currently, it is the only drug approved by the U.S. Food and Drug Administration (FDA) for the treatment of SCD.
Chemical structure of hydroxyurea.
HU reduces the number of vaso-occlusive crises, episodes of acute thoracic syndrome, and urgent requirement for blood transfusion [37]. One nine-year clinical study demonstrated a reduction of 40% in the number of fatalities among patients treated with this drug [38].
The beneficial effects of HU in SCD are related to the increase of HbF levels. Some data suggest that the mechanism whereby HU increases the levels of HbF involves its biotransformation of NO, which activates the soluble guanylate cyclase (sGC) on erythroid cells [17, 39]. The activation of sGC increases the expression of γ-globin in erythroleukemic cells and primary human erythroblasts [16]. Other effects of HU include the reduction of leukocytes, reticulocytes, and platelets, and a reduction in the adhesiveness of erythrocytes and leukocytes to the vascular endothelium [40]. However, HU has several adverse effects, such as myelotoxicity, cutaneous hyperpigmentation, and ulcerative lesions on lower limbs [41].
Despite these adverse effects, the benefits of HU use are supported by evidence of its efficacy in reducing morbidity and mortality. However, importantly, about one third of patients do not respond to HU treatment [42]. In this context it is important to introduce new drugs that recapitulate the beneficial effects of HU without its potential toxicity.
NO donors
Nitric oxide is a gas, synthetized from L-arginine by a family of enzymes called nitric oxide synthases [43], which have multiple regulatory functions in organisms, as transcription factor activators, in glycolysis and mitochondrial electron transport, hormone release, penile erection, and platelet and neutrophil adhesion, among others [44].
NO is the main endothelium-derived relaxant, with a central role in homeostasis and the inhibition of platelet aggregation [45]. It is also considered an epigenetic molecule because it bonds with the sulfhydryl groups of cysteine residues, generating S-nitrosyl groups, which can modify gene expression [46, 47]. The most important example of the modification of gene expression by NO involves the activity of histone deacetylase (HDAC2), in which cysteine residues 262 and 274 are S-nitrosylated, causing the enzyme to dissociate from the chromatin, resulting in acetylation of the H3 and H4 histones [48].
Representation of the NO effect on HDAC2 S-nitrosylation.
Decitabine and azacitidine
Decitabine (5-aza-2′-deoxycytidine) (Figure 6) is a potent inducer of HbF synthesis, acting through the hypomethylation of the promoter of the γ-globin gene [49]. One clinical study conducted with a small group of patients showed that decitabine increases HbF production, even in patients unresponsive to HU [50]. In animal models, decitabine does not induce carcinogenesis and, curiously, has shown protective activity against cancer [51].
Azacitidine (5-azacytidine) (Figure 6) has also been shown to act as an inducer of HbF. However, serious adverse effects in humans and animals have restricted its use in the treatment of SCD, including carcinogenicity, neutropenia, thrombocytopenia, and leukopenia [52, 53].
Chemical structure of decitabine and its analogue, azacitidine.
Butyric acid and its derivatives
The butyrates (Figure 7) are short-chain fatty acids that inhibit the histone deacetylases, resulting in the induction of γ-globin gene expression and the synthesis of HbF [54]. The butyrates have been shown to produce a sustained increase in the HbF concentrations of SCD patients, but their short half-lives and low bioavailability have limited their use clinically. Therefore, new derivatives of butyric acid, with superior bioavailability and increased half-lives, are under investigation in animal models [33, 55].
Chemical structures of some butyric acid derivatives.
Erythropoietin
Recombinant human erythropoietin also increases HbF levels in vivo and in vivo with few adverse effects. This combination has shown good results, with a better tolerance profile than either agent alone, mainly in patients who are only weakly responsive to HU [56].
Thalidomide and its derivatives
Thalidomide (Figure 8), originally used as a hypnotic/sedative and antiemetic agent, was withdrawn from the market in the 1960s because of its teratogenic effects [57]. However, it has proven useful in the treatment of other diseases, such as leprosy and multiple myeloma, based on its anti-inflammatory and immunomodulatory effects [58].
Thalidomide increases the production of reactive oxygen species (ROS) and induces γ-globin mRNA expression in a dose-dependent manner, via p38 MAPK signaling and histone H4 acetylation [59]. High levels of ROS act as signals that mediate the phosphorylation of tyrosine kinases, such as p38 MAPK, thereby regulating the expression of γ-globin [60].
Lenalidomide and pomalidomide (Figure 8) are thalidomide analogues with immunomodulatory effects related, in part, to the inhibition of TNF-α [61]. Moutouh-de Parseval et al. (2008) have shown that pomalidomide and lenalidomide induce HbF synthesis and modulate erythrocyte differentiation, and these effects were improved when the authors combined the treatment with HU. The combination of HU with pomalidomide was more effective that its combination with lenalidomide [62]. In vivo studies of these two agents in transgenic animals have shown increased HbF expression, without any myelosuppressive effect, at levels similar to those in the HU-treated controls [63].
Chemical structures of thalidomide, pomalidomide and lenalidomide.
Inhibition of erythrocyte dehydration
HbS polymerization is dependent on the intracellular concentration of HbS, which is directly related to the hydration state of the cell. Therefore, strategies that prevent cellular dehydration should be explored for the treatment of SCD. The inhibition of potassium–chloride cotransport, in which potassium causes the movement of chloride ions and water, produces an osmotic imbalance and causes dehydration, with further polymerization of HbS [64]. The calcium-activated potassium channel known as the Gardos channel is also present on sickle erythrocytes and could be inhibited to promote an adequate osmotic balance [65]. Examples of compounds that inhibit this channel include magnesium, clotrimazole, and senicapoc.
Magnesium
It has been reported that increased levels of intracellular Mg2+ inhibit the efflux of potassium from the erythrocyte, preventing its dehydration [66]. Preliminary studies in transgenic animals with SCD have shown that magnesium supplementation can substantially reduce the cotransport of KCl, and therefore reduce the mean corpuscular volume and the reticulocytes number [67]. Magnesium pidolate combined with HU was tested for six months in a clinical study (phase I) involving children. The results showed that magnesium pidolate reduces KCl cotransport activity. However, the authors found no changes in other hematological parameters [68].
Clotrimazole
The antifungal drug clotrimazole (Figure 9) inhibits the Gardos channel in erythrocytes, but this drug is known for its adverse effects during long-term therapy [67].Despite its toxicity, clotrimazole was used as a prototype molecule for molecular modification, which has generated compounds such as NS3623 and xlink652, which inhibit the Gardos channel. These compounds prevented hemolysis and sickle cell formation in vivo, in a transgenic mouse model [69, 70].
ICA-17043 (Senicapoc)
Preclinical studies using the compound ICA-17043 (Figure 9) have shown that it reduces the activity of the Gardos channel, thus reducing the hemoglobin concentration and hemolysis. However, despite these beneficial effects, no reduction in the frequency of vaso-occlusion episodes was observed [71].
Chemical structures of erythrocyte dehydration inhibitors.
Inhibition of cellular adhesion
The adhesion of sickle cells to the vascular endothelium involves various mediators, including integrin α4β1, CD36, and ICAM-4, which are responsible for the cellular interaction with the endothelium directly through E-selectin, P-selectin, integrins, and VCAM-1, or indirectly through molecules such as thrombospondin and von Willebrand factor [72, 73]. Several compounds have demonstrated a capacity to inhibit cellular adhesion, including rivipansel, heparin, eptifibatide, prasugrel, and propranolol.
Rivipansel (Figure 10), a synthetic glycomimetic molecule, is a pan-selectin inhibitor that acts on E-, P-, and L-selectin. It has been shown to restore blood flow during vaso-occlusion, increasing the survival rates in treated animals. An in vivo study indicated that this drug is a potent inhibitor of neutrophil adhesion through its interaction with E-selectin and ICAM-1 [74].
Heparin potentially interferes with the adhesion of sickle cells to the vascular endothelium through P-selectin. Clinical trials of low-molecular-weight heparin reported a reduction in the duration and severity of acute vaso-occlusive episodes [55, 73].
Chemical structure of rivipansel (GMI-1070).
Another drug under investigation for the treatment of SCD is eptifibatide. Phase I clinical trials of eptifibatide, a synthetic cyclic peptide antagonist of glycoprotein IIb/IIIa (or integrin αIIbβ3), have reported reductions in platelet activation and inflammatory markers [75].
Vasodilators
Vasodilation is a desirable effect in the prevention of vaso-occlusive processes. NO is a vasodilator synthesized from L-arginine by endothelial cells and is responsible for maintaining vascular tonus [13]. It has been demonstrated that therapies that increase the bioavailability of NO may be beneficial to SCD patients, because 50% of patients showed endothelial dysfunction attributable to low endothelial levels of NO [76].
NO is a soluble gas with a short half-life, used for pulmonary hypertension in newborn children. Its first use in SCD was reported by Atz and Wessel (1997), for the treatment of acute thoracic syndrome. NO inhalation reduces vascular pressure and resistance, and improves oxygenation in SCD patients [77]..
NO donors containing the organic nitrate ester subunit and furoxan derivatives have been evaluated as potential compounds with which to treat SCD. Santos et al (2011 and 2012) synthetized new hybrid compounds containing the thalidomide subunit, an organic nitrate ester, and furoxan derivatives, as NO donors (Figure 11). All the molecules have shown NO-donor ability, with anti-inflammatory and analgesic effects. The compounds also induced gamma globin expression and HbF synthesis in vivo [78, 79].
Furoxan derivatives with NO-donor ability.
Arginine supplementation can also increase NO levels, especially in patients suffering vaso-occlusive events [80]. Arginine also reduces the pulmonary arterial pressure in patients with pulmonary hypertension [81].
Sildenafil is a phosphodiesterase-5 inhibitor used to treat erectile dysfunction and pulmonary arterial hypertension [82]. Several studies have demonstrated that this drug reduces the activation of platelet-dependent glycoprotein IIb/IIIa in patients with SCD and pulmonary hypertension [83]. Sildenafil also increases the signalization of cGMP signaling which could be useful in the treatment of SCD patients with pulmonary hypertension [84, 85].
Statins efficiently prevent blood vessel damage via many mechanisms, including by increasing endothelial NO. These drugs also reduce vascular inflammation and restore endothelial relaxation in coronary diseases and stroke. Some studies have reported that lovastatin reduces the expression of platelet activation factor on the vascular endothelium [86].
Adenosine agonists
Adenosine is an endogenous purine nucleoside, whose signaling is responsible for promoting vasodilation, reducing inflammation, and protecting tissues during periods of hypoxia and cellular stress [87]. In SCD patients, the tissue damage generated by ischemia–reperfusion may reduce the plasma levels of adenosine [88].
Some studies have suggested that receptors A2A and A2B are related to the pathogenesis of SCD. ATL146e is an A2A adenosine agonist that reduces the activation of leukocytes, platelets, and invariant natural killer T cells (iNKT cells), inflammation, and pulmonary injury in transgenic animals with SCD [89]. Regadenoson (Figure 12) is a selective agonist of the A2a adenosine receptor. During clinical trials (phase I), this compound reduced the activation of iNKT cells, with no toxic effects [90].
Chemical structure of regadenoson.
It has been reported that the activation of the adenosine A2B receptor may increase the deleterious effects of SCD, promoting priapism and the sickling of erythrocytes [91]. Antagonists such as MS-1706 can reverse priapism [92]. Therefore, the adenosine signaling pathway is a promising target for the treatment of SCD. A double therapy with an A2A agonist and an A2B antagonist could have beneficial effects in patients, reducing inflammation, sickling, and priapism. However, more studies are required to understand the beneficial effects of these compounds in the treatment of SCD.
Hemoglobin modifiers
The hemoglobin modifiers are classified as either covalent or noncovalent. Although noncovalent modifiers have shown interesting activities, their use is still limited [93]. The modification of hemoglobin by covalent modifiers reduces erythrocyte sickling by two possible mechanisms: by increasing HbS solubility and/or by increasing its affinity for oxygen [94].
Isothiocyanates have been described as potential modifiers of HbS solubility, delaying its polymerization, specifically because they bind to the β subunit of HbS, which is responsible for the hydrophobic interactions that result in its polymerization [95].
Aldehyde compounds have the capacity to form adducts (Schiff bases) with the N-terminal amines on the amino acids in the HbS chain. Safo et al (2004) demonstrated that heterocyclic aldehydes, such as furfural, 5-methylfurfural, 5-ethylfurfural, and 5-hydroxymethylfurfural, increase the affinity of HbS for oxygen, thereby inhibiting sickling [96]. However, the low oral bioavailability of these drugs, the high doses required for a significant effect, and their dose-dependent toxicity limit their therapeutic use.
Rho-kinase (ROCK) inhibitors
The Rho-kinase protein (ROCK), identified as a Rho-GTPase effector, is involved in various cell processes, including contractility, chemotaxis, adhesion, and migration. This protein facilitates the infiltration of inflammatory cells, both in vitro and in vivo [97].
ROCK inhibition is beneficial in cardiovascular, neurological, and oncological diseases. The in vivo activities of these inhibitors include: a) the regulation of the arterial blood pressure; b) increased vascular resistance; c) the regression of atherosclerotic coronary lesions; d) the prevention of diabetes development; e) neurological repair; f) reduced formation of β-myeloid aggregates; and g) the inhibition of tumor growth, progression, and metastasis [98-105].
Rho-kinase inhibitors are also potential agents for the treatment of SCD. An in vitro study showed that Rho-kinase inhibitors, such as Y-27632 (Figure 13), reduced the activation of human endothelial cells and the adhesion of eosinophils in SCD patients. Fasudil (Figure 13) is a Rho-kinase inhibitor that is approved in Japan for the treatment and prevention of intracranial aneurysm and that has shown good results in preventing pulmonary complications in animals with SCD. The activities of fasudil include: a) the inhibition of eosinophil and chemokine recruitment, which promotes the progression of the pulmonary inflammatory response [106]; b) the reduction of proinflammatory cytokines levels, such as IL-6, IL1-β, and TNF-α, thus reducing inflammation [107]; and c) the reduction of the expression of adhesive molecules, such as ICAM-1, and therefore coagulation [108].
A comparison of HU and hydroxyfasudil demonstrated the superior activity of the ROCK inhibitor in reducing vaso-occlusion and inflammation. Therefore, this class of drug has been suggested as an alternative SCD treatment [109].
Chemical structures of Rho-kinase inhibitors.
Chelating agents
Iron-chelation therapies have been used to control iron overload in patients who have received several blood transfusions to reduce disease complications [110]. Iron overload can affect organs such as the liver, heart, and endocrine system, leading to tissue damage and even death [111].
Deferoxamine is a hexadentate chelating agent, introduced into the therapeutic context in 1963. It is still one of the drugs most frequently used to treat iron overload in hemoglobin disorders, such as SCD and thalassemia. Deferoxamine has a high molecular weight and a high affinity for Fe3+, and the ratio between the drug and iron is 1:1. Because this drug has low oral/gastrointestinal absorption, it is administered via a subcutaneous or intravenous route [112].
Chemical structure of deferasirox.
Deferasirox was approved by the FDA in November 2005 as an oral chelating agent. It is a trivalent molecule with great affinity for the iron atom. The chelating ratio is two drug molecules to each iron atom (Figure 14) [113]. The prolonged chelating effect produces a progressive reduction in free plasma iron. Its oral route of administration is the great advantage of this drug, but the treatment is expensive [114].
Sickle cell disease is one of the most prevalent hemoglobinopathies worldwide. Despite its importance, therapeutic resources are scarce and usually only control the main symptoms of the disease. The lack of interest by pharmaceutical companies in developing new drugs for SCD and the limited research undertaken in this area ensure that this disease still severely affects patients. The only drug currently available to treat SCD is HU, but its serious adverse effects limit its use. Moreover, around 1/3 of patients do not respond to HU treatment.
Therefore, research is urgently required to find new drugs for SCD. In this chapter, we have discussed the currently available treatments and their limitations, and have presented and discussed new approaches. Among these, the adenosine agonists/antagonists and ROCK inhibitors seem the most promising strategies, and therefore warrant further investigation.
This study was supported by Fundacão de Amparo à Pesquisa do Estado de São Paulo (FAPESP ref. Process: 2012/50359-2 and 2014/06755-6), PADC-FCF -UNESP.
The urbanization process is quickening in the recent past due to speedy economic development and population growth in megalopolises considerably leads to the upsurge of resource demand, especially energy. Energy demand is gradually rising due to global warming and ecological degradation to overcome Technologists/academic scientists who are considering potential substitute energies that can desperately exchange the traditional sources for example solar, wind, and tidal energies, etc. [1, 2, 3, 4]. Numerous kinds of energy harvesting methods were developed for accumulating energies which are thermoelectric, electromagnetic devices piezoelectric, photoelectric, electrostatic, and triboelectric devices [5, 6]. On the other hand, more robust, eco-friendly, economically viable, miniature and easy to handle, and highly reproducible energy harvesting systems with advanced technologies are desirable to satisfy the tight requirement of manufacturing demand. The energy produced from mechanical devices is a common renewable energy resource that is achieved using various modes such as humanoid motion, including the body’s pulsation, and rotation, etc. [7, 8]. Freshly, triboelectric nanogenerators (TEGs) have received worldwide attention for the collecting of feasible green energy from ambient resources. Classical TEGs were designed and established based on a combination of synthetic polymers for contact and separation electrification, and electrostatic induction for generating mechanical energy [9, 10]. The appropriate choice of triboelectric paired polymers and their coherent design can upsurge the rate of energy collection and conversion efficiency [11, 12]. The oppositely charged material surfaces when they contact each other at regular intervals, consequently, the ions or electrons should be motivated to flow over the external load and, create a continuous voltage, and currents, respectively. Whiteside et al. and others have studied the ion-transfer technique by integrating ionic functional groups on the solid surface such as polystyrene (PS), glass, and silicone to produce ionic electrets on the active surface [13, 14, 15, 16, 17, 18, 19]. Microspheres with internal cross-linking’s that contain mobile ions and counter ions which transfer some of them in the air through another material upon contact [20].
Generally, TENGs produced energy by contact electrification through the coupling effect of two oppositely charged materials. While contact electrification, the dissimilar materials becomes charged after contacting each other and generate opposites triboelectric charge from the surface of two dissimilar materials with different electron affinities. When the external mechanical motion is driven, the materials were separated resulted in the potential difference between the two opposite electrodes on the backside of the resource materials. To continue the electrostatic equilibrium, the free electrons from the electrodes were flown in the external circuit to balance the induced potential difference, consequently, the mechanical energy converted into electrical energy.
Depending on the different construction strategies of potential electrodes which show four different modes of TENGs have been constructed, as explained as follows.
The mechanistic approach of vertical contact-separation mode is described typically by an example. The simplest construction of TENG includes two metal electrodes, and dielectric surface, in which two Aluminum layers work as a top electrode and bottom electrode attached to a dielectric film, respectively [21, 22]. When the mechanical system is vertically functions, the top electrode and dielectric film will be contacted each other, and therefore, the dielectric layer and electrode become positively charged, and negatively charged, respectively, owing to the triboelectrification. Once they were separated by a small detachment, the potential difference among the two electrodes could be convinced, which drive electrons to flow from the posterior-electrode to the top-electrode, subsequent in a pulse current with an external circuit coupled. If the two electrodes are brought into exchange again, the electrons will be flown back, and the current will be upturned, Figure 1a.
The four basic triboelectric nanogenerator styles: (a) vertical contact- departure style, (b) in-plane contact-descending style, (c) single electrode style, and (d) free-standing triboelectric-layer style.
The basic construction of TENG in lateral sliding mode is the same as vertical contact-separation mode, but the difference is the top electrode will be moved over the bottom surface electrode as shown in Figure 1b. Next, the top electrode, and dielectric surface are fully overlap, and intimate interaction with each other, prominent to the oppositely charged surfaces. With the top electrode descending outward, the contact surface-area is gradually decreased until the wide-ranging departure of two surfaces. The departed surface will create a potential difference across the two TENG electrodes that generate a current movement from the upper electrode to the lower electrode. When the electrode moves backward, then there is reversed current flow to equilibrium the potential variance [23, 24]. The four fundamental methods of triboelectric nanogenerators: (a) vertical contact departure style, (b) in-plane contact-descending style, (c) single-electrode style, and (d) free standing triboelectric layer style.
The single-electrode mode TENG shows a bottom electrode is connected with the ground and the top surface is connected to the upper surface to get charged then the triboelectric effect is triggered as shown in Figure 1c. While approaching and leaving the top surface, the generated electric field is distributed through charged surfaces when they change. Then, the change in potential difference occurs between the bottom electrode and the ground. Subsequently, electrons can exchange between them to maintain the potential change [25, 26].
Figure 1d shows the moving electrode surface which is a dielectric layer, and the two electrodes were positioned in the similar horizontal direction. The distance between the two symmetric electrodes is lesser than the length of the dielectric layer. The state of the dielectric layer and electrode are the same as in the lateral-sliding mode. Once the movement starts, simultaneously, the dielectric layer and bottom electrodes are charged oppositely as mentioned earlier. During movement the dielectric layer is sliding forward and backward, the potential difference is triggered between the two electrodes owing to the change of the affected area, and drives the electron exchanges between them [27, 28].
The construction and the functioning principle of the contact and separation Bno-Spi (or) Wcf-Pani.ES TENGs were discussed [20, 21]. A methodical understanding of Bno-Spi (or) Wcf-Pani.ES TENGs are designated in diverse studies. Here, the building of the typical TENG models are depicted in Figure 2. First, the SO3H.Bno-Spi-TENG was developed by attributing the SO3H.Bno-Spi membrane with the sizes of 2 cm x 2 cm = 4 cm2 on an Aluminum (Al) conductor. Next, the SO3H.Bno-Spi-Al conductor was glued to soft sponge to reduce the reflecting strength during experiment. First, a load cell was linked to the top of the Al conductor. Secondly, the Al conductor was placed on the PTFE (or) PVDF film with similar dimensions along with soft sponge and a linear oscillator connected to a DC motor with an eccentric arrangement steadily fluctuated on a linear slider. The extreme swinging amplitude is 4 cm. The higher portion of the Bno-Spi (or) wCF-PANI.ES films (load cell, and Al) was then postponed by a cantilever style shaft of light that is connected to the linear slider. The cautious setting of the complete arrangement lead to in a slender contact between the upper and lower films while the slider oscillation is consistent. The similar protocol was followed for the all designated TENGs such as SO3Li. Bno-Spi-Al, SO3H.TEA.Bno-Spi-Al, and wCF-PANI.ES-Al TENGs.
Schematic illustration of a dual demonstrative Bno-Spi-TENGs aimed at robust contact electrification through vertical contact and separation style.
In this study, for the first time, we motivated to use, a Bno-Spi-TENG as a real ion, and electron-transfer route with a counter electronegative Polytetrafluoroethylene (PTFE) surface for the contact-separation electrification process [29, 30]. The anticipated novel Bno-Spi-TENG shown superior characteristics which have a special π-π stacked layer-on-layer oligomer morphology with an alternate hydrophobic and hydrophilic network with representative regular nano-channels that are comprising with -SO3H or SO3Li ionic electrets for active ions transfer, and inter-connected merged aromatic sextets with imides bridges for electrons transfer, respectively. The robust coordination can empower the Bno-Spi-TENG to endure the time-honored electrostatic potential on the contact surface which displays an inequality between the number of protons (cations), and electron on the targeted surface. Moreover, Bno-Spi film displays an ions hopping mechanism at hydrophilic -SO3H or SO3Li centers through ion charge electrets, and at the same time, the hydrophobic π-π stacking network can prompt the triboelectric open-circuit voltage Voc, and short circuit currents Jsc, individually. The induced charges on the Bno-Spi surface are comparative to its surface area and are close to the theoretical limit levied by the dielectric breakdown by air [30]. However, a noteworthy claim was shown to enhance the triboelectric polarity by fluctuating their surface morphologies, chemical construction, and interpenetration of ionic groups within the polymer network. The projected novel polymeric Bno-Spi-TENGs might show robust chemical steadiness, stretchable modulus, and strength to improve the triboelectric current [31]. The electric out-puts through altered frequencies of contact-separation manner have shown the increased Voc and Jsc of 75 V, and 1 μA at 6 Hz, Figure 2.
In this study, for the first time, we motivated to use, a Bno-Spi-TENG is an effective ion and electron-transfer root with a counter electronegative PTFE film for the contact-separation electrification process [29, 30]. The anticipated novel Bno-Spi-TENG shown superior characteristics which have a superior π-π stacked layer-on-layer oligomeric morphology with an alternate hydrophobic and hydrophilic network with representative regular nano-channels that are comprising with -SO3H, or SO3Li ionic electrets for active ions transfer, and inter-connected merged aromatic sextets with imides bridges for electrons transfer, respectively. The vigorous arrangement could allow the Bno-Spi-TENG to bear the enduring electrostatic potential on the contact surface which shows an imbalance between the numbers of electrons. For the first time, we have examined the mechanism of contact electrification procedure in two methods among the Bno-Spi films (i.e. SO3H.Bno-Spi, SO3Li.Bno-Spi, and SO3H.TEA.Bno-Spi) as a positive layer, and PTFE as a negative TENG layer. At this point, the projected Bno-Spi-TENGs have been fabricated with interchanged hydrophilic, and hydrophobic nano-channels for the generation of high-throughput Voc, and Isc [32].
The mechanistic approach of sulfonic acid (SO3H) group was attached to the backbone of Bno, during the triboelectric process, when they interact with an adjacent fluorocarbon (-CF2) of PTFE polymer chain has comprised the splitting of the -SO3H, or -SO3Li into positive H+ protons or Li+ ions, and negative SO3− ions. Consequently, the H+ protons or Li+ ions attract momentarily on the C–F to form a temporary chemical bond by the transition state of [C+---F----- H+ or Li+---SO3−----C] to transfer the charges through an ionic mechanism between two surfaces. In certain, the charge-transfer application was approved in three steps, Figure 3 [33, 34, 35, 36]. In the Step 1, the Bno-Spi, and PTFE surfaces have generated initial charges on their surfaces where the ions from -SO3H or -SO3Li of the Bno-Spi, and CF2 groups on PTFE. The Bno-Spi can produce the temporary charge-transfers through ion transfer mechanism at hydrophilic sites through nano-channels, and electron transfer at the hydrophobic nano-channels. In Step-2, when the PTFE was brought into contact, the H+ protons or Li+ ions were at hydrophilic nano-channels, and π-electrons at hydrophobic nano-channels of SO3H.Bno-Spi- or SO3Li.Bno-Spi was induced by electrostatic field effect. Thus, the projected Bno-Spi-TENG was produced electric charges through ions, and electrons from both surfaces. In Step-3, during transporting of H+ protons or Li+ ions from the Bno-Spi surfaces into PTFE wherein transition state, and forms a momentary ion bridge. In the four, while detaching of electrodes, the generated electric TENG charges were excited through π-π bonds in aromatic ring systems through hydrophobic nano-channels were moved into Bno-Spi-TENGs, and the net negative charges are remain the same on PTFE surface. This TENG process is continued during the contact and separation process [20].
The mechanistic approach of Bno-Spi-TENGs through chemical reaction pathways for the ions and electrons transfer at the hydrophilic and hydrophobic nano-channels, respectively, by contact-separation mode TENG.
The SO3H.Bno-Spi-TENG, SO3Li.Bno-Spi-TENG, and SO3H.TEA-Bno-Spi-TENGs have shown the Voc and Jsc of 75 V, and 1 μA, 43 V, and 0.6 μA, and 9 V, and 0.13 μA at applied frequency of 6 Hz, correspondingly. The Voc, and Jsc of SO3H.Bno-Spi-TENGs have shown upto 733%, and 669% concerning SO3H.TEA-Bno-Spi-TENGs since the movement of H+ ions remains very high on the device surface. Therefore, the maximum instantaneous power of SO3H.Bno-Spi-TENGs, SO3Li.Bno-Spi-TENGs, and SO3H.TEA-Bno-Spi-TENGs were reached to 71.4 μW, 18.07 μW, and 10.89 μW at 20 MΩ conforming to the power density of 17.85 μW/cm2 (0.1785 W/m2), 4.515 μW/cm2 (0.0045 W/m2), and 2.72 μW/cm2 (0.0272 W/m2), correspondingly. The numerical characterization of the output performance has presented from SO3H.Bno-Spi-TENG is 8 folds higher than SO3H.TEA-Bno-Spi-TENG, and 1.8 folds higher than that of SO3Li.Bno-Spi-TENG since the ion sizes were enlarged from H+ > Li+ > SO3H.TEA. It was strongly recommended that the competence of the SO3H.Bno-Spi-TENGs is significantly larger over the corresponding SO3H.TEA-Bno-Spi-TENGs and SO3Li.Bno-Spi-TENGs (Figure 4) [36, 37, 38, 39].
(a), (c), and (e) open circuit voltages Voc and (b), (d), and (f) short-circuit currents Jsc of Bno-Spi-TENG, SO3H.Bno-Spi-TENG, SO3Li.Bno-Spi-TENG, and SO3H.TEA.Bno-Spi-TENG in contradiction of PTFE film at 3 Hz, 4 Hz, 5 Hz, and 6 Hz, respectively. Inset: An enlarged view of the signals when the Bno-Spi-TENGs were interacts with PTFE surface.
In this study, we established a self-effacing and movable self-powered contact-separation approach that includes coil-aided Wcf-Pani.Es-TENG such as positive interaction superficial surface, and PVDF membrane as a negative triboelectric electrode. The established Wcf-Pani.Es-TENG presented special appearances such as inner π-π stacking’s network, and amidic connections together with quaternary anilinium ions that are linking between each monomer of aniline blocks. The width, and resistivity of the Wcf-Pani.Es deposition are 0.65 μm, and 0.324 Ω which are determined by four-point probe method [21]. Owing to this morphology, the Wcf-Pani.Es is showed a huge superficial zone which is increasing the output presentation of the TENG. The established innovative Wcf-Pani.Es-TENG is revealed a short circuit current (Isc) of ~180 μA, and the open-circuit voltage (Voc) of 95 V, Figure 5 [40, 41, 42, 43, 44, 45].
Schematic illustration of electric impulse coil-aided contact separation style TENG. Stage 1. Chemical alteration of Wcf-Pani.Es film (a) woven carbon fiber mat (Wcf); b) chemically oxidized woven carbon fiber mat (Wcf-COOH); c) construction of Wcf-Pani.Es composite through electrostatic connections with aniline monomer, and in-situ oxidative polymerization using (NH4)2.S2O8. Stage 2. a) the actual archetypal of coil-aided TENG, (inset nanoporous PVDF membrane (upper) and variable Wcf-Pani.Es nano-pillared composite (lower) and their inset SEM pictures. b) Voc, and c) Isc.
Figure 6 showed the mechanistic approach between Pani.Es and PVDF where the electric charges were reorganized when the electrification happens. During the triboelectrification process, the formation of H+ protons from Pani.Es, and adjacent F- ions from PVDF interact to induce opposite charges. Successively, when they are in full contact mode, the H+ ions are attracted temporarily on the C-F to form a transition bond of PVDF---F-----H+ ---Pani.Es to transmit the charges through an ionic passage or temporary chelation between the two films [46]. The charge-transfer mechanism is carried out in four steps. Step 1, it represents the Wcf-Pani.Es, and PVDF membrane are display an early charges on their surfaces through NH+ and F− positioned on the Wcf-Pani.Es and PVDF, respectively. Step 2, when the PVDF membrane was carried into interaction, the H+ protons of Wcf-Pani.Es are induced by the electrostatic field effect. Therefore, the electric charges by H+ protons and F− ions can generate in both films. Step 3, shows the transferring of H+ protons is occur from the Wcf-Pani.Es surface into PVDF during the transition state, and form a temporary ion bridge between them. Step 4, during the separation process, the two oppositely charged surfaces induced a potential variance, and to minimize these differences, the flow of electrons emerged between two electrodes. For the validation of the automatic investigations, we achieved a measureable analysis of the out-put presentation of Wcf-Pani.Es [47, 48, 49].
The mechanism pathway of ions that are prompted between negative PVDF, and wCF-PANI.ES surfaces when they contact separated each other.
Initially, we inspected the performance of the Wcf, Wcf-TENG, and Wcf-COOH-TENG in contradiction of PVDF membrane through the contact-separation style technique at numerous applied regularities of 1 Hz, 3 Hz, and 5 Hz, correspondingly, is depicted in Figure 7. Figure 7a and b showed the Voc, and Isc of Wcf-TENG were at −2.5 V to 2.7 V, and 170 nA to −171 nA, −2.3 V to +3.1 V, and 225 nA to −221 nA, and 2.4 V to −3.7 V, and 326 nA to −328 nA at 1 Hz, 3 Hz, and 5 Hz, correspondingly, upon regular contact and separation of electrodes. Subsequently, the examination remained discovered the Voc, and Isc of Wcf-COOH-TENG have shown 3.7 V to −4.1 V, and 0.2 μA to −0.6 μA, 4.6 V to −6.4 V and 0.5 μA to −1.3 μA, and 6.4 V to −9.5 V and 2.2 μA to −2.2 μA at 1 Hz, 3 Hz, and 5 Hz, correspondingly, as depicted in Figure 7c, and Figure 7d. The Voc, and Isc of Wcf-Pani.Es-TENG showed of 15 V to −15 V, and 19.7 μA to −26.3 μA, 25.5 V to −37.5 V, and 34 μA to −56 μA, and 39.7 V to −55.3 V, and 70 μA to −119 μA at 1 Hz, 3 Hz and 5 Hz, correspondingly, Figure 7e, and Figure 7f [21, 50].
The Voc, and Isc in different input circumstances in open circuit arrangements. The Voc, and Isc of (a, b) Wcf-TENG, (c, d) Wcf-COOH-TENG, and (e, f) Wcf-Pani.Es-TENG.
To develop novel technologies for the harvesting of energy, TENG is an alternative mode of technology by collecting trillions of electrons combining. These electrons are collectively obtained from various smart materials that contain high characteristic features such as flexibility, thinness and durability, long self-life, high power density, and reproducibility to harvest clean energy. Besides, TENGs can be used to transform physical characteristics such as pressure contact mode, sliding mode, and single electrode mode of features for the accumulation of energies at sub-molecular levels. Based on our novel technologies, the self-powered energy systems have given the higher out-put performance of voltage and currents. The proposed Bno-Spi-TENG and Wcf-Pani.Es-TENG are highly durable and can be used with a lower speed of contact separation modes to generate the desired amount of voltage and Isc. The systematic method created on the ionic electrets mechanism on the superficial electric potential of the polymeric surface has been maintained the generation of Voc and Isc from our developed novel TENGs. The established Bno-Spi-TENGs have been transported together ions, and electrons through ion, and electron transfer device when they communicated each other through PTFE. The H+ protons or Li+ ions attract temporarily on the C–F of PTFE surface to form a transition state of [C+----F---- H+ or Li+−---SO3----C] bond to transfer the charges through ionic mechanism between two active TENG films. In particular, the rate of transmission of H+ protons, and Li+ ions from the SO3H.Bno-Spi-TENG, and SO3Li.Bno-Spi-TENG surfaces have achieved huge voltage, and currents owing to the presence of the SO3H and SO3Li ionic clusters involved to hydrophilic nanochannels, and effective electron transfer arisen at the hydrophobic nanochannels. Also, Wcf-Pani.Es-TENG showed extraordinarily vigorous, and reliable energy gathering presentations owing to mechanically strong material assets of woven carbon fibers chemically changed by the Pani nano-flakes using a simple chemical process, this Wcf-Pani.Es-TENG has shown a great potential for self-powered TENGs even under numerous strict surroundings, and in distinct medical applications without harmful effects.
There is no funding support for this book chapter.
The authors declare no conflict of interest.
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Chapters",metaDescription:"IN TECH aims to guarantee that original material is published while at the same time giving significant freedom to our authors. For that matter, we uphold a flexible copyright policy meaning that there is no transfer of copyright to the publisher and authors retain exclusive copyright to their work.\n\nWhen submitting a manuscript the Corresponding Author is required to accept the terms and conditions set forth in our Publication Agreement as follows:",metaKeywords:null,canonicalURL:"/page/publication-agreement-chapters",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\\n\\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\\n\\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\\n\\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\\n\\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\\n\\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\\n\\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n\\nLast updated: 2020-11-27
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:"
The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Book Chapter:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Chapter who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author.
\n\nCo-Author: All other Authors of the Chapter besides the Corresponding Author.
\n\nIntechOpen: IntechOpen Ltd., the Publisher of the Book.
\n\nBook: The publication as a collection of chapters compiled by IntechOpen including the Chapter. Chapter: The original literary work created by Corresponding Author and any Co-Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Chapter but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Chapter as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world.
\n\nThe Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Chapter and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Chapter.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co-Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Chapter as a consequence of IntechOpen's changes to the Chapter arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Chapter, the Corresponding Author agrees to credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Book in which the Chapter has been published as the source of first publication, as well as IntechOpen, when they are distributing or re-publishing the Chapter.
\n\n3.2 When submitting the Chapter, the Corresponding Author agrees to:
\n\nThe Corresponding Author will be held responsible for the payment of the Open Access Publishing Fees.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Chapter worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Chapter does not and will not breach any applicable law or the rights of any third party and, specifically, that the Chapter contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Chapter is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Chapter has not been formally published in any other peer-reviewed journal or in a book or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication Agreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Chapter to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Chapter was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Chapter on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co-Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Chapter attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Chapter and has the right to contact the Corresponding Author and any Co-Author until the Chapter is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Chapter, IntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n\nLast updated: 2020-11-27
\n\n\n\n
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117096},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:63},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"232",title:"Cognition",slug:"cognition",parent:{title:"Psychology",slug:"psychology"},numberOfBooks:1,numberOfAuthorsAndEditors:15,numberOfWosCitations:34,numberOfCrossrefCitations:13,numberOfDimensionsCitations:62,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"cognition",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"654",title:"Current Topics in Children's Learning and Cognition",subtitle:null,isOpenForSubmission:!1,hash:"f13789933cabc5a8c001e94889c305cb",slug:"current-topics-in-children-s-learning-and-cognition",bookSignature:"Heidi Kloos, Bradley J. Morris and Joseph L. Amaral",coverURL:"https://cdn.intechopen.com/books/images_new/654.jpg",editedByType:"Edited by",editors:[{id:"97625",title:"Dr.",name:"Heidi",middleName:null,surname:"Kloos",slug:"heidi-kloos",fullName:"Heidi Kloos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"40977",doi:"10.5772/53885",title:"The Emergence of Scientific Reasoning",slug:"the-emergence-of-scientific-reasoning",totalDownloads:3827,totalCrossrefCites:4,totalDimensionsCites:40,book:{slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Bradley J. Morris, Steve Croker, Amy M. Masnick and Corinne Zimmerman",authors:[{id:"154336",title:"Prof.",name:"Bradley",middleName:null,surname:"Morris",slug:"bradley-morris",fullName:"Bradley Morris"},{id:"154337",title:"Prof.",name:"Steve",middleName:null,surname:"Croker",slug:"steve-croker",fullName:"Steve Croker"},{id:"154338",title:"Prof.",name:"Amy",middleName:null,surname:"Masnick",slug:"amy-masnick",fullName:"Amy Masnick"},{id:"154339",title:"Prof.",name:"Corinne",middleName:null,surname:"Zimmerman",slug:"corinne-zimmerman",fullName:"Corinne Zimmerman"}]},{id:"40978",doi:"10.5772/53935",title:"Using the Dynamics of a Person-Context System to Describe Children’s Understanding of Air Pressure",slug:"using-the-dynamics-of-a-person-context-system-to-describe-children-s-understanding-of-air-pressure",totalDownloads:2382,totalCrossrefCites:5,totalDimensionsCites:11,book:{slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Steffie Van der Steen, Henderien Steenbeek and Paul Van Geert",authors:[{id:"154359",title:"M.Sc.",name:"Steffie",middleName:null,surname:"Van Der Steen (Ed.M.)",slug:"steffie-van-der-steen-(ed.m.)",fullName:"Steffie Van Der Steen (Ed.M.)"}]},{id:"40973",doi:"10.5772/54119",title:"Preschoolers Learning Science: Myth or Reality?",slug:"preschoolers-learning-science-myth-or-reality-",totalDownloads:3539,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Heidi Kloos, Heather Baker, Eleanor Luken, Rhonda Brown, David Pfeiffer and Victoria Carr",authors:[{id:"97625",title:"Dr.",name:"Heidi",middleName:null,surname:"Kloos",slug:"heidi-kloos",fullName:"Heidi Kloos"}]}],mostDownloadedChaptersLast30Days:[{id:"40977",title:"The Emergence of Scientific Reasoning",slug:"the-emergence-of-scientific-reasoning",totalDownloads:3827,totalCrossrefCites:4,totalDimensionsCites:40,book:{slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Bradley J. Morris, Steve Croker, Amy M. Masnick and Corinne Zimmerman",authors:[{id:"154336",title:"Prof.",name:"Bradley",middleName:null,surname:"Morris",slug:"bradley-morris",fullName:"Bradley Morris"},{id:"154337",title:"Prof.",name:"Steve",middleName:null,surname:"Croker",slug:"steve-croker",fullName:"Steve Croker"},{id:"154338",title:"Prof.",name:"Amy",middleName:null,surname:"Masnick",slug:"amy-masnick",fullName:"Amy Masnick"},{id:"154339",title:"Prof.",name:"Corinne",middleName:null,surname:"Zimmerman",slug:"corinne-zimmerman",fullName:"Corinne Zimmerman"}]},{id:"40979",title:"Beyond the Black-and-White of Autism: How Cognitive Performance Varies with Context",slug:"beyond-the-black-and-white-of-autism-how-cognitive-performance-varies-with-context",totalDownloads:3960,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Joseph L. Amaral, Susan Collins, Kevin T. Bohache and Heidi Kloos",authors:[{id:"153876",title:"Mr.",name:"Joseph",middleName:null,surname:"Amaral",slug:"joseph-amaral",fullName:"Joseph Amaral"}]},{id:"40973",title:"Preschoolers Learning Science: Myth or Reality?",slug:"preschoolers-learning-science-myth-or-reality-",totalDownloads:3539,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Heidi Kloos, Heather Baker, Eleanor Luken, Rhonda Brown, David Pfeiffer and Victoria Carr",authors:[{id:"97625",title:"Dr.",name:"Heidi",middleName:null,surname:"Kloos",slug:"heidi-kloos",fullName:"Heidi Kloos"}]},{id:"40980",title:"Cognition and the Child Witness: Understanding the Impact of Cognitive Development in Forensic Contexts",slug:"cognition-and-the-child-witness-understanding-the-impact-of-cognitive-development-in-forensic-contex",totalDownloads:5780,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Daisy A. Segovia and Angela M. Crossman",authors:[{id:"167186",title:"Ms.",name:"Daisy",middleName:null,surname:"Segovia",slug:"daisy-segovia",fullName:"Daisy Segovia"},{id:"167187",title:"Dr.",name:"Angela",middleName:null,surname:"Crossman",slug:"angela-crossman",fullName:"Angela Crossman"}]},{id:"40974",title:"Learning in Cognitive Niches",slug:"learning-in-cognitive-niches",totalDownloads:1870,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Ana Flávia Lopes Magela Gerhardt",authors:[{id:"96431",title:"Dr.",name:"Ana Flávia",middleName:"Lopes Magela",surname:"Gerhardt",slug:"ana-flavia-gerhardt",fullName:"Ana Flávia Gerhardt"}]},{id:"40978",title:"Using the Dynamics of a Person-Context System to Describe Children’s Understanding of Air Pressure",slug:"using-the-dynamics-of-a-person-context-system-to-describe-children-s-understanding-of-air-pressure",totalDownloads:2382,totalCrossrefCites:5,totalDimensionsCites:11,book:{slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Steffie Van der Steen, Henderien Steenbeek and Paul Van Geert",authors:[{id:"154359",title:"M.Sc.",name:"Steffie",middleName:null,surname:"Van Der Steen (Ed.M.)",slug:"steffie-van-der-steen-(ed.m.)",fullName:"Steffie Van Der Steen (Ed.M.)"}]},{id:"40976",title:"Psychological Fitness in Young Adult Video Game Players",slug:"psychological-fitness-in-young-adult-video-game-players",totalDownloads:2872,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Mieczyslaw Pokorski, Lukasz Borecki and Urszula Jernajczyk",authors:[{id:"90430",title:"Prof.",name:"Mieczyslaw",middleName:null,surname:"Pokorski",slug:"mieczyslaw-pokorski",fullName:"Mieczyslaw Pokorski"},{id:"90493",title:"MSc.",name:"Lukasz",middleName:null,surname:"Borecki",slug:"lukasz-borecki",fullName:"Lukasz Borecki"},{id:"155082",title:"Dr.",name:"Urszula",middleName:null,surname:"Jernajczyk",slug:"urszula-jernajczyk",fullName:"Urszula Jernajczyk"}]},{id:"40975",title:"The Impact of Moving Away from Home on Undergraduate Metacognitive Development",slug:"the-impact-of-moving-away-from-home-on-undergraduate-metacognitive-development",totalDownloads:2943,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"current-topics-in-children-s-learning-and-cognition",title:"Current Topics in Children's Learning and Cognition",fullTitle:"Current Topics in Children's Learning and Cognition"},signatures:"Kevin Downing",authors:[{id:"97312",title:"Dr.",name:"Kevin",middleName:null,surname:"Downing",slug:"kevin-downing",fullName:"Kevin Downing"}]}],onlineFirstChaptersFilter:{topicSlug:"cognition",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/150545/cristian-teodorescu",hash:"",query:{},params:{id:"150545",slug:"cristian-teodorescu"},fullPath:"/profiles/150545/cristian-teodorescu",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()