Results of the behavior, parasitemia, serology and histology in the murine model, infected with inoculum of four strains of Trypanosoma cruzi, isolated from triatomas captured in different geographical areas.
\r\n\t
",isbn:"978-1-83962-547-3",printIsbn:"978-1-83962-546-6",pdfIsbn:"978-1-83962-548-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",bookSignature:" John P. Tiefenbacher",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",keywords:"Managing Urbanization, Managing Development, Managing Resource Use, Drought Management, Flood Management, Water Quality Monitoring, Air Quality Monitoring, Ecological Monitoring, Modeling Extreme Natural Events, Ecological Restoration, Restoring Environmental Flows, Environmental Management Perspectives",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 12th 2021",dateEndSecondStepPublish:"February 9th 2021",dateEndThirdStepPublish:"April 10th 2021",dateEndFourthStepPublish:"June 29th 2021",dateEndFifthStepPublish:"August 28th 2021",remainingDaysToSecondStep:"20 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A geospatial scholar working at the interface of natural and human systems, collaborating internationally on innovative studies about hazards and environmental challenges. Dr. Tiefenbacher has published more than 200 papers on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher",profilePictureURL:"https://mts.intechopen.com/storage/users/73876/images/system/73876.jfif",biography:"Dr. John P. Tiefenbacher (Ph.D., Rutgers, 1992) is a professor of Geography at Texas State University. His research has focused on various aspects of hazards and environmental management. Dr. Tiefenbacher has published on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine. More recently his work pertains to spatial adaptation to climate change, spatial responses in wine growing regions to climate change, the geographies of viticulture and wine, artificial intelligence and machine learning to predict patterns of natural processes and hazards, historical ethnic enclaves in American cities and regions, and environmental adaptations of 19th century European immigrants to North America's landscapes.",institutionString:"Texas State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Texas State University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"62165",title:"The Mouse Model as a Tool for Histological, Immunological and Parasitological Studies of Trypanosoma cruzi Infection",doi:"10.5772/intechopen.77168",slug:"the-mouse-model-as-a-tool-for-histological-immunological-and-parasitological-studies-of-trypanosoma-",body:'In 1909, the Brazilian doctor and researcher Carlos Ribeiro Justiniano das Chagas discovered the etiological agent of the later called Chagas disease in the triatomine insect (family Reduviidae), a flagellate protozoan of the genus Trypanosoma and subgenus Schizotrypanum and designated the specie adding “cruzi” in honor of his teacher and mentor Oswaldo Cruz, hence the name Trypanosoma (Schizotrypanum) cruzi. Later, in 1926, another doctor of Argentine origin, Salvador Mazza described the magnitude of the endemy in Argentina, Bolivia and Paraguay, identifying the hemoflagellate parasite in blood samples, demonstrating in this way, the existence of the trypanosomatida infection, which was given the name of American Trypanosomiasis, since the vectors of Trypanosoma cruzi had been found only in America [1].
Chagas disease is a chronic debilitating affectation which impairs the health and the quality of life of infected people all around the world. The estimated number of infected people in the world arose from 30 million in 1990 to 6–8 million in 2010. In the past 20 years, the annual incidence decreased from 700,000 to 28,000 and the burden of Chagas disease decreased between 1990 and 2006 from 2.8 million disability-adjusted life to less than half a million [2]. Chagas disease is in close relation to the socioeconomic status of the population migration between Latin America and the rest of the world, and it currently represents one of the most important public health concerns [3]. The initiatives of the Americas have allowed achieving significant reductions in the number of acute cases and the presence of domiciliary Triatominae vectors in all endemic areas.
Trypanosoma cruzi belongs to the order of the kinetoplastid diseases, a group of parasites that has one or two flagella from a monophyletic group that diverged early from the branch common to all eukaryotic organisms. The morphological feature that distinguishes them is a prominent and paraflagellar structure known as kinetoplast, which corresponds to a condensation of DNA (DNAk), located on the inside of a single mitochondrion, which is branched across the cell. Within the family Trypanosomatidae, the Trypanosoma genus is most important because it includes a number of human diseases vectors such as T. cruzi, T. brucei gambiense and T. brucei rhodesiense, causal agents of Chagas and Sleeping sickness disease, respectively. Depending on the behavior of the parasite within the vector, the trypanosome genus has been divided into two groups. The first one called stercoraria, includes the trypanosomes that develop in the digestive tract of the vector, with the release of the infective forms in the stool (T. cruzi and T. lewisi). The second group called Salivaria includes trypanosomes that are initially developed in the digestive tube then passing through the epithelium and reaching the salivary glands, from where the infective forms are inoculated mechanically by bite or sting of the vector (T. brucei, T. congolense and T. rangeli) [4].
T. cruzi displays a digenetic life cycle alternating its multicellular life between the vertebrate host and its invertebrate vector. The cycle starts in the invertebrate arthropod when the insect sucks the blood of an animal carrying trypomastigotes in its blood, which gets to the stomach and are transformed into esferomastigotes and the replicative form epimastigotes. Subsequently, parasites migrate to the intestine where they multiply and eventually are transformed into the infective forms metacyclic trypomastigote, staying in the rectal ampulla until they are excreted with feces and urine. In this point, the life cycle continues in humans where the highly infective metacyclic forms aim to penetrate the skin or mucous membranes; although unable to pass through intact skin, they enter the body through skin or mucous membrane abrasions infecting macrophages, fibroblasts, smooth muscle and striated cells, Schwann cells, glial cells and neurons, excepting eosinophil and neutrophil cells. Once parasites have penetrated the cell, proliferation occurs and the trypomastigotes are released in the interior of a parasitophorous vacuole giving rise to amastigotes forms. The life cycle restarts with the insect feeding from an infected animal (Figure 1).
Digenetic biological cycle of Trypanosoma cruzi. Adapted by Federico-Mayer Rodolfo† and modified by de Diego-Cabrera José Antonio. Faculty of Medicine. Autonomous University of Madrid [5]. Spain, 1984 [5].
We can distinguish three cycles of vector transmission in T. cruzi. The primitive or wild cycle is zoonotic in nature. The protozoan parasite circulates between the insect vectors and the wild reservoirs (mammals of small and medium size). More than a hundred wild reservoirs of T. cruzi among marsupials, xenarthrans, bats, carnivores, lagomorphs, rodents and nonhuman primates have been described [6].
The domestic cycle comprises the infection of humans and the consequent Chagas disease. The domestic cycle is defined by factors in the anthroponotic foci, making people one of the last natural reservoirs of T. cruzi. Finally, the peridomestic cycle, comprising peridomestic mammals (rodents, marsupials, cats and dogs), which are in close contact with humans and their residences that have been built invading the habitat of wild triatomas that are attracted by the food and the lights of the houses.
Depending on the eco-epidemiological conditions of the place, both circles can overlap becoming an intradomiciliary cycle, especially when mankind invades the natural habitat of these vectors and builds houses fearing the entrance of reduvids (Figure 2).
Exchanges between wild, peridomestic and domestic cycles of T. cruzi transmission. Adapted from Coura and Pinto Dias [6].
On the other hand, the infection transmission by blood transfusion has become a serious complication in nonendemic countries, due to the migration of infected individuals from endemic regions [7]. This route is considered the second most important route of transmission in endemic areas [8]. T. cruzi resists processes of cryopreservation and thawing and can survive up to 18 days in total blood stored at 4°C. The vertical transmission is also known as a natal or congenital transmission, including prenatal, perinatal and postnatal care. This mechanism of transmission has a variable incidence between 0.1% and 18% according to geographical region [9], and has been regarded as the third in order of importance, next to vector-borne and transfusion transmission. An infected mother can transmit the parasite circulating in her blood during the second half of gestation. Among infected newborns, only 10–30% present symptoms [10].
The infection is not detected until adulthood in the course of the latent or indeterminate phase [11]. Spontaneous abortions have been reported, premature birth, intrauterine growth retardation, stillbirths and various clinical forms that can go from low birth weight, hepatomegaly, splenomegaly, acute respiratory symptoms, anemia, digestive disorders, Cardiac and Central Nervous System (CNS). The donation of organs has increased the number of infected people in urban areas. It has been informed about the transmission of infection to seronegative heart, bone marrow, liver, pancreas and kidney transplant recipients with variable transmission rates that reach 35% [12]. Patients infected with T. cruzi that should receive a transplant also represent a particular challenge, with risk of reactivation of the disease because of the immunosuppression after transplantation. The raw meat from infected rats and rabbit can be induced by the consumption of foods contaminated with triatomines or its feces, or by the ingestion of raw meat from infected mammalian hosts [13]. It must be confirmed by the detection of the parasites in a direct microscopic examination of a blood sample or other biological fluids of the patient. Many cases of numerous outbreaks of acute Chagas Disease are attributed to oral transmission; it has been detected in the Amazon region, due to the consumption of drinks or food contaminated with feces of infected triatomines [14]. It is also important to take into account the laboratory accidents that arise when research animals are handled mainly by postgraduate students, even though they occur in a smaller proportion [15].
The disease presents three phases: the acute, chronic asymptomatic (intermediate or dormant) and the chronic symptomatic. The incubation period in the acute phase is 4–10 days and of shorter duration when the route of transmission is blood transfusion. This stage is generally asymptomatic, or it can occur with systemic manifestations that are common to other diseases such as fever, edema, lymphadenopathy, hepatomegaly and splenomegaly. It is accompanied by anorexia, fatigue, myalgia, headache and, occasionally, arthralgia. In some cases, there are signs of inoculation or entrance door, chagomas, lesions that are more frequent in the face and limbs of a forunculoid aspect, pink or violet and indurated borders. A typical sign in children is the bipalpebral edema (sign of Roman-Mazza). In this phase, the trypomastigotes are easily detected in the blood due to the high parasitemia.
In case the acute phase is overcome, there will be an extended period of chronic disease without clinical symptoms that lasts from 5 to 10 years, characterized by low parasitemia and by the presence of anti-T. cruzi IgG antibodies. About 30% of seropositive individuals reach the chronic phase, and in a span of 10–30 years, clinical manifestations such as heart disease and digestive megasyndromes show up, which may occur separately or coexist in the same patient. The chronic phase progresses slowly with a predominance of tissue damage. Digestive disorders consist in dilatation of viscera (mainly colon and esophagus, and in two-thirds of cases, the progressive myocarditis leads to the development of chronic Chagas disease heart (CChC). The relative prevalence of the various clinical manifestations varies according to geographic regions. In Argentina, as well as in Venezuela and Central America, the main clinical manifestation is the cardiomyopathy. On the contrary, in Chile and in the central region of Brazil, the mega syndromes are more frequent. This heterogeneous incidence of manifestations in different endemic areas could obey both biological and genetic differences of the circulating parasites [16] and host-related factors (age, gender, ethnicity, exposure to infections, family history of Chagas disease heart) [17], in addition to the introduction by migration of infected people from different countries around the world (Figure 3).
The estimated number of cases of Chagas disease in nonendemic countries, driven by constant migration. (ISGlobal, 2015).
In this last Chagas disease’s phase, histological lesions are disseminated in the heart muscle, intestines and nervous system, inflammatory infiltrates composed mainly of CD8+ cells, in addition to nests (pseudocysts) full of parasites in their form of amastigotes [18].
Regarding the treatment, there are currently only two drugs available, benznidazole and nifurtimox. The therapeutic success is closely related to the stage of infection at the time of starting the treatment. Patients in acute phase (regardless of the route of infection), neonates and children, have better therapeutic prognosis [12, 15]. On the other hand, the success of such drugs is discussed in individuals with chronic infection and so far, there is no established therapeutic regimen [19]. The adverse effects are much more important among the adult patients; cases of photosensitivity and skin rashes, nausea, anorexia, weight loss and abdominal pain have been reported.
Recently, a group of biomedical and clinical scientists members of the network NHEPACHA (New Tools for the diagnosis and evaluation of the patient with Chagas disease), based on clinical and immunological evidence, have suggested new paradigms regarding the medicines for the Chagas disease in order to provide better treatment for patients in chronic phase [20].
On the other hand, the study of biochemical and biological characteristics of the hemoflagellate parasite has enabled the identification of new targets for chemotherapeutic agents; an example would be the drug trials with inhibitors of the biosynthesis of Ergosterol, Posaconazole and Ravuconazole, respectively, in patients with chronic Chagas disease.
Parasitological methods for detection of the acute phase have great sensitivity (direct methods) [21].
In the same way, these methods are used for the diagnosis of congenital infection in newborns and in children under the age of 6 months. The lack of maturation of the immune system and the presence of maternal IgG antibodies make, in the latter, the use of the serology for the infection diagnosis impossible [22]. The protozoan Trypanosoma cruzi is a powerful antigen and a few months after the initial inoculation, there is a humoral immune response that is effective is controlling the increase of parasitemia, which is mediated by antibodies and enzymes of the complement system. There are antibodies to various antigens of T. cruzi (surface, somatic and excretion), which belong to different classes (IgG, IgA, IgM) and subclasses [23, 24, 25]. The serologic test for the selection of blood donors must conform to the Official Mexican Standard for Epidemiological Surveillance, Prevention and Control of Vector-borne Diseases [26, 27, 28], citing that it must analyze the serum of each donor with two conventional immunological tests; if one of them is reactive, a third one will be carried on in such a way so as to qualify the donor as either positive or negative, with two reactive or two negative tests. In all cases, the laboratory diagnosis should be accompanied with epidemiological and clinical history of the patient, as the current and past source, the type of housing where it is found, the trips that could have been made to endemic areas and the history of blood transfusions and the infected mother.
The evolutionary history of T. cruzi infection is closely related to its vertebrate host [29]. The mammal fauna of South America in the cretaceous period mainly consisted of marsupials and placentals, the ancestral of the order Xenarthra (armadillos, anteaters and sloths), which were the natural reservoirs of the parasite at the time. The various ecotopes in whom were these two groups of hosts would have made possible the evolution by clonal propagation of two groups of parasites, which gave rise to the ancestral UDTs, TcI and TcII. It has been suggested that 1Cwi, evolved in association with the marsupial mammals of the genus Didelphis (weasels) and T. cruzi II, did in relation to the terrestrial mammals, such as armadillos [30]. Trypanosoma cruzi is a species composed of heterogeneous populations that circulate in nature between human beings, arthropod vectors, domestic animals, and wild reservoirs [31]. Currently, it is generally accepted that T. cruzi is a paradigmatic pattern of clonal evolution with low rate of gene recombination. A constant pattern of T. cruzi, behavior cannot be expected since different strains (subpopulations) circulate in nature. Extensive polymorphism promotes variation in infecting capacity, behavior in different hosts (virulence, histotropism, curves of parasitemia), adaptation to different vectors, immune response, stimulation, susceptibility to different chemical compounds, capacity of replication and differentiation, among others. Subpopulations are currently identified in the laboratory by biochemical, immunological and molecular biology assays [32, 33] (Figure 4).
Geographic distribution of Trypanosoma cruzi, subpopulations disease phases with the corresponding primary clinical manifestations.
Studies in murine experimental models have shown that both the parasite and host genotypes are crucial for tissue distribution and pathophysiology of infection by T. cruzi [34]. It has been previously reported that 81% of the Mexican strains of T. cruzi belong to lineage TcI and have different capabilities of infection, virulence and processing capacity in vitro, when compared to the other lineages [35, 36] (Figure 5).
Distribution of Trypanosoma cruzi strains in México [35, 36].
Animal models are very useful for studying human diseases because there are hundreds of pathogens that affect both humans and animals. The use of experimental animals in biomedical research represents a key element for development of new prevention approaches and treatment of transmissible and nontransmissible diseases. Suffice it to recall the rabies vaccines, smallpox, tetanus, diphtheria, whooping cough and polio, the development of several antibiotics, insulin, and the knowledge of the genetic bases of inheritance [37]. No doubt that mice are the most commonly used animal for in vivo assays among experimental animal models in biology and medicine. The use of mice allows the study of mammal’s reactions against aggressions like poisoning or infection (viral, bacterial, or parasitic), the study of immune responses and disorders and many others in several different fields like oncology, teratology and embryology [38] (Figure 6).
The laboratory animal is “any specie of animal that is kept under certain conditions and is used for scientific purposes” [37, 39].
Herein, we present a comparative cross-sectional study involving four Trypanosoma cruzi strains obtained from three different species of triatomas captured in endemic areas of the states of Jalisco (T. longipennis), Morelos (T. palidipennis), Nayarit(T. longipennis) and Queretaro (T. Mexicana)
Several communities from different States of México were included in the present study: San Pablo, Tolimán in Querétaro State, Milpillas of Talpa de Allende in Jalisco State, Sant Catarina in Morelos State and Jala in Nayarit State (Figure 7).
Map of the Mexican Republic. The black stars indicate the capture zones of the triatomas, used in our investigation.
Cages covered with adhesive tape were used, with the glue facing outward. A live Wistar rat was placed inside the cage. Cages were placed at late night in strategic areas under the loose stones of poultry and farm animal fences, fallen leaves and wooden logs. Cages were collected the next day, early in the morning (Figure 8).
Traps are placed in the collection site (A). Cage with triatomas stuck to the adhesive tape (B) Photos. Villagrán-Herrera.
Triatomas glued to the surface of the gummed paper were carefully detached, with the aid of entomological tweezers and placed in jars covered with mosquito mesh. A piece of filter paper in accordion shape was placed inside the bottle to facilitate the movement of the triatomas and the collection of urine or feces deposited on its surface.
The triatomas are maintained inside the bottles at 25–26°C and 60% humidity (RH) in bacteriological incubator. Triatomas were blood fed directly from a shaved rabbit every 2 weeks allowing them to feed for 20–25 m and then they were placed back in the incubator (Figure 9).
A and B. Transportation and storage of collected triatomas. Photos Villagrán Herrera.
We use two techniques for collecting intestinal content from triatomine after blood feeding. In the first one, the triatomine is introduced in a 10 x 20 mm tube; normally the bug deposits stool or urine in the bottom of the tube and then it is collected with saline solution. The second technique consists in pressing gently the triatomine abdomen, inducing that the rectal blister freely releases the stool (semi-separated blood). Intestinal content is collected in a watch glass and saline solution is added at 37°C. In both techniques, the metacyclic trypomastigote and epimastigote forms are observed fresh, using a microscope with 400 magnifications. The trypomastigotes are counted in a Neubauer chamber. If the count is above 10,000 parasites per cubic centimeter, mice are inoculated as mentioned below.
The same procedure is performed with each one of the strains of species of triatomas captured (Figure 10).
Tube techniques to obtain stool from the Triatoma (10A). Fourth stage Triatoma nymphs feeding on a rabbit. Photos Villagrán-Herrera.
Male mice of CD-1 strain are used since estrogen in females can stimulate the activity of macrophage phagocytes and, the localized immune response [38].
Using an insulin syringe four groups of 10 mice were inoculated intraperitoneally with 3x103 epimastigote and/or trypomastigote forms of Trypanosoma cruzi, isolated from four species of triatomas (T. mexicana, T. pallidipennis, T. longipennis and T. dimidiata). Mice from the control group were inoculated with saline solution.
After the first day of inoculation, the behavior of the infected murine model was observed, comparing it with an uninfected control.
Parasitemia levels are determined in infected mice 5,10,15,20,25 and 30 days post T. cruzi inoculation. Blood is obtained from the distal part of the queue 1:4000 EDTA is used as anticoagulant, in a pipette of leukocyte count. Numbers of parasites per milliliter are calculated from sample observations in Neubauer chamber [37, 38].
Histological sections of 10 microns are obtained from mouse dissected organs (brain, heart, intestines and skeletal muscle) and stained with H/E. Microscope slide preparations are observed at 40X [39]. Tissues from infected mice and the respective control animals are included in the analysis.
Blood is obtained by cardiac puncture and centrifuged at 5000 rpm to separate the clot from the serum and maintained at −20°C until it is used to carry out an ELISA (Accutrack Chagas Microelisa Test) in the search of anti-Trypanosoma cruzi antibodies.
The mice inoculated with all the studied T. cruzi strains showed an altered behavior when compared to control animals. The signs presented 24 h post T. cruzi inoculation, the mice exhibited hyperactivity, the hair was dull and bristled, the hind legs became intertwined, and it began to drag them away, with great difficulty in moving forward.
However, it was possible to observe some differences in the virulence of each strain according to the geographic area geographic area where they came from (Figure 11).
T. cruzi infected mice exhibiting hyperactivity, dull and bristled hair and intertwined hind legs. (11A and 11B). Photos Villagran Herrera.
The inoculant obtained from triatomines from Talpa de Allende in Jalisco state and Santa Catarina in Morelos state generated in the corresponding mice a parasitemia of 3: 4 trypanosomes per field, at 14 and 16 days postinoculation, respectively. In both cases, altered movements and physical shape of the mice began at about the same time. By day 20 and 23, respectively, the parasitemia reached the peak, so it was proceeded to sample fresh blood and dissect organs in order to perform the serological and histopathological assays
Parasitemia in mice inoculated with the Trypanosoma cruzi from triatomines caught in Jala, in Nayarit State reached the peak 30 days post inoculation. It was possible to detect anti-T. cruzi antibodies in 2 mice out of 10 by conventional ELISA test.
Blood parasitemia was undetectable in mice inoculated with T. cruzi strains obtained from triatomines collected in San Pablo and Tolimán in Querétaro State. The animal behavior was completely normal when comparing to control group. Organs looked slightly bigger, mainly the intestines and heart. It was possible to detect anti-T. cruzi antibodies in the serum. Results are summarized in Table 1.
Geogra-phic area | Species of Triatoma | Days in which presents parasitemia | Frizz hair | Difficulty walking | ELISA test | Brain | Heart | Skeletal muscle | Intestine |
---|---|---|---|---|---|---|---|---|---|
Talpa de Allende. Jalisco | T. longi-pennis | 14 | Positive | Positive | Reactive | Negative | Positive | Positive +++ | Negative |
Jala Nayarit | T. dimidiata | 30 | Positive | Negative | Reactive | Negative | Negative | Positive ++ | Negative |
San Pablo Tolimán Qro. | T. mexicana | It was presented in 90 days | Negative | Negative | Reactive | Negative | Negative | Negative | Negative |
Sta. Catarina Morelos | T. pallidipennis | 16 | Positive | Positive | Reactive | Negative | Positive | Positive++ | Negative |
Results of the behavior, parasitemia, serology and histology in the murine model, infected with inoculum of four strains of Trypanosoma cruzi, isolated from triatomas captured in different geographical areas.
Presence of amastigote nests and histopathological damage in heart and intestine muscle showed direct relationship with parasitemia level, which indicates that trypanosomes are installed and recognize different tissues where they reproduce rapidly intracellularly, resulting in a greater number of parasites in blood after they differentiate into trypomastigotes. This sequence is only observed in the most virulent strains such as those from the States of Jalisco, Morelos and Nayarit (Figure 12).
Histopathological analysis of cardiac (A, B) and intestine muscle (C, D) tissues. A and C, control groups. B, cardiac tissue with pseudocysts with high parasitemia and formation of new agglomerations of amastigotes, Jalisco strain. D, intestine muscle tissue with a mild T. cruzi parasitemia, Nayarit strain. Photos Villagran-Herrera.
In the present study, assessment of clinical manifestations, parasitemia levels, histological changes and seropositivity in murine model allowed us to know the behavior of different T. cruzi strains found in triatomas from different geographic areas in Mexico. This confirms the existence of genetically different strains that produce a complex called “cruzi” from the pathognomonic and morphophysiological point of view, as previously reported [40].
T. cruzi infection depends on genotype of both the parasite and the mammalian host, which in turn influences tissue tropism and the pathophysiology of infection.
We were able to identify two different T. cruzi strains (Tc I) from triatomines from two communities from Queretaro State that exhibited mild virulence when compared to other three strains from triatomines from three different States in México. Isozyme characterization waits to be carried out in order to explain if those observed differences might be attributable to the fact that different species of blood-sucking triatomine insects were used [40].
Mitie-Nisimura et al., in 2014, were able to induce acute phase inoculating mice by intraperitoneal injection trypomastigote forms of T. cruzi. Authors observed the microvascular alterations and oxidative stress in the brain and the formation of pseudocysts full of amastigotes in the heart muscle [41]. Espinoza et al., in 2010 inoculated Balb/c mice with two strains of T. cruzi I (Tc I) isolated from patients in Mexico in order to study the immune response [35]. The first case of clinical infection with T. cruzi was reported in a horse in South Texas in 2015, observing forms of amastigotes in the spinal cord and cardiac tissue.
Espinoza et al., in 2010, observed contrasting differences between two T. cruzi strains isolated from Triatoma barberi and Triatoma mexicana. In the first case, virulence was clearly observed while in the second one, productive infection and morphological alterations were not observed, and only the anti-T. cruzi antibodies were detected.
During the past decade, green infrastructure (GI) gradually becomes a favorable concept to be associated with sustainable solutions to manage firstly water then later energy and food nexus in the urban environment. Traditional drainage infrastructure (often referred to as gray infrastructure) makes use of pipelines to rapidly export stormwater out of urban domain and then mitigate the rising flood risk induced by the expansion of impervious surface through urbanization. This water deficit then has to be resolved by importing high-quality potable water back into cities for irrigation and other uses [1]. In contrast to gray infrastructures with dull appearance and often hidden under covers, the visible components and lively forms make GI a more persuasive concept that is easily accepted and appreciated by the public. As a bridge connecting the water and energy cycles, evapotranspiration (ET) affects the overall performance of GI and will only receive more attention in the near future when more sub-disciplines can be taken into consideration.
The term green infrastructure emerged in the United States in the 1990s representing a network of green space stitching together the fragmented urban areas [2]. Its function in the field of stormwater management was widely realized only until the last decade, but the scope of GI quickly expands to involve other urban drainage terms such as Low Impact Development (LID), Best Management Practice (BMP), Stormwater Control Measure (SCM), Water Sensitive Urban Design (WSUD), Sustainable Urban Drainage Systems (SUDS), and Alternative Technique (AT) or Technique Alternative (TA) [3]. Besides the vegetated formats like green roof, bioretention, and vertical greenery systems [4, 5], GI also evolves to include other nonvegetation-based devices such as permeable/porous pavement and rainwater harvesting system designed for places, where vegetated GI is impractical to use due to heavily polluted runoff or the competing drinkable water demand [1]. More broadly, conventional urban green space, e.g. urban lawns, forests, farmlands, parks, and public gardens, has been used as a type of GI [6, 7, 8, 9], owing to their capacity to promote retention and ET, as so-called natural water retention measures [10]. Recently, lakes and surface waters (so-called blue space) have futher been regarded as GI for improve local groundwater recharge, cooling, water purification, dust control, and a esthetics in an urban environment [11, 12, 13].
Evaporation happens directly from the water surface and porous media like soil, gravel, or permeable pavement. Transpiration occurs through the stomata on leaves as a subprocess of plant respiration. As two quantities are difficult to separate during measurement and modeling, they are often counted and treated as a total as referred to ET. As a stormwater management strategy, GI harvests and retains stormwater in the urban landscape [14], and then reuses and drains the captured water partly by ET. Evapotranspiration process also draws heat from surface when converting liquid moisture into vapor. It, therefore, provides a mechanism to mitigate the urban heat island effect [1]. The proportion of ET within urban water and energy budgets usually rises with vegetation coverage [8]. But only taking a small fraction of the urban surface, GI can provide an order of magnitude larger ET compared to the evaporation contribution from impervious surface [15]. Being spatially distributed within the street canyons, GI imports evapotranspiring “cool spots” into the urban ecosystem.
Previous research has given extensive reviews of the overall benefits of GI and listed ET as a process that requires more studies [16, 17, 18]. A critical review centering on ET process in GI, however, is lacking for GI community up to date. Therefore, this work endeavors to summarize the current research progress of ET with regards to GI and the knowledge gaps that restrict the development of the disciplines. Based on a survey of 100+ relevant peer-reviewed journal articles and book chapters in the previous decade, three current research areas are identified, which include the ecosystem service, measurement, and simulation of ET process from GI.
Green infrastructure provides a wide spectrum of ecosystem services far beyond stormwater management as it is being accepted by more disciplines. Ecosystem services are the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfill human life [8]. The ecosystem services of GI can be classified into four types: provisioning, regulating, cultural, and habitat [19]. Most current studies focused on its regulating service, since GI can regulate temperature [20] and air quality [21] as well as remedy stream-related water quantity and quality issues (so-called urban stream syndrome) such as alternations in flow regimes, morphology, water and sediment quality, and associated biological composition [22, 23, 24]. From the cultural perspective, GI creates more green space accessible by the public and adds amenity values to municipal infrastructures [25, 26]. Green infrastructure also can be used as arable space to promote urban agriculture and to supplement the local food chain [27, 28, 29, 30, 31]. A study in Bologna, Italy, found that 82 ha green roofs could provide more than 12,000 tons year−1 vegetables that satisfy 77% of the city’s yearly demand [28]. Lastly, vegetated GI provides habitats to protect biogeographic representativity, ecological coherence, and landscape connectivity [28, 32, 33, 34].
Evapotranspiration is relevant to most of those ecosystem services such as improving urban air quality, carbon sinks, and biodiversity and enhancing the local rain-driven water cycle [35]. But most of the current publications mainly associate ET with three ecosystem services of GI including urban heat island relief, baseflow regulation, and water budget reestablishment. These three perspectives are discussed in detail.
Since dark paint and material of impervious surfaces tend to trap heat, urban environments usually have higher air temperature compared to surrounding suburban areas. This is referred to as the urban heat island (UHI) effect. In urban areas, material heating and anthropogenic heat release warm the near-ground air, maintaining the UHI effect and increasing building’s energy consumption [36]. During drought periods, cities may have to restrict irrigation use, which further facilitates the development of uncomfortable urban climates with intensified heating and drying [1]. Introducing green and blue space in cities is often seen as a cost-effective strategy for mitigating UHI effect, since ET process is able to convert a large portion of incoming solar radiation into latent heat leaving from the urban surface [37, 38, 39]. Such active cooling can be realized by common GI which contains a vegetation layer and a moisture storage. Active cooling can also come from nonvegetated GI such as pervious pavement and water bodies where soil or open water evaporates [11, 12, 13]. Though the cooling effect of water bodies is not widely agreed [40]. Furthermore, GI takes advantage of the space (e.g. rooftop, external wall, and subsurface) that is rarely used otherwise. Therefore, although a single GI only takes a limited space, the network of GI can overall increase the ET strength of a city and contribute to mitigating the UHI effect.
A green roof is a GI type that is commonly adopted and studied to mitigate UHI effect and reduce building energy cost, because it does not take ground area in a dense city. The rooftop usually represents the top elevation of an urban valley and receives the intensive sunshine without much shade, so planting rooftops tends to provide effective cooling benefit. A study based on EnergyPlus simulations found that green roofs could reduce the annual building energy consumption by 3.7% [41]. The cooling effect depends on the green roof coverage and climate zones. An observation has shown that green roof reduced the temperature of the urban boundary layer (from the rooftop level up to a few kilometers in elevation) by 0.3 and 0.2°C per 10% increase of green roof coverage at daytime and nighttime, respectively [42]. The same study also shows that the cooling effect of green roof can be even stronger than the reflective (cool) roof with the same roof coverage. The reduction in highest electricity peak because of green roof implementation ranges from 5.2% in hot-dry climate to 0.3% in temperate climate [43].
The cooling effect of the green roof highly depends on its roof coverage and the substrate moisture content. Irrigation can improve the cooling performance of green roofs by enhancing ET [39]. Under well-watered conditions, the nighttime air above green roof can be even colder than the cool roof, though the reverse may be found during the daytime [42, 44]. With unrestricted irrigation, green roof has a comparable cooling potential as the white roof, but green roof becomes less effective when only sustainable irrigation (harvested roof runoff) or no irrigation is available [45]. During dry summer, mean daytime Bowen ratio (sensible heat flux/latent heat flux) above a green roof could reach 3, as a typical value for the urban environment; while during wet periods, mean daytime Bowen ratio can be as low as 0.3 [46]. The substrate volumetric water content is recommended to be at least 0.11 m3 m−3 to maintain a favorable green roof energy partitioning (Bowen ratio < 1) [46]. In a study in Australia, the daytime Bowen ratio on top of a green roof reduced from above four during dry conditions to less than one after irrigation; however, the sensible heat flux on the green roof was still larger than that on the cool roof [47]. A downside of applying irrigation is that the increased moisture content may build a notable heat sink, which partly offsets the cooling effect; therefore, finer soil mix with fewer mesopores and minimized moisture storage was recommended to reduce the heat-sink effect [36]. Apart from supporting active cooling, irrigation is necessary for establishment, survival, and success of green roof plants in semi-arid and arid climates [48]. Deficit watering strategy (adapting to the vegetation requirement) and alternative sources (gray water, harvested rainwater, or condensed water from air conditioning) can be tested for controlling irrigation demand [48, 49]. So far, the role of irrigated GI for cooling urban areas is still not fully examined yet, while less is known regarding how the optimum type, amount, and arrangement of GI units influence the overall cooling effect [50].
The choice of plant species also affects the cooling effect of a green roof. Sedum, though proposed as the default green roof species, often comes with incomplete plant cover, sluggish transpiration, and limited substrate moisture storage, which altogether result in a weak ET cooling effect or even a downward heat transmission toward indoor space that raises the cooling load [36]. Sedum provided no significant cooling potential over a soil substrate roof alone, so adding a thin cover of white gravel or stones on top of the green roof is recommended to increase the albedo [47]. Furthermore, sedum is also difficult to maintain and subject to the widespread decline caused by high temperature and humidity [36, 49]. Plants with higher transpiration rates and denser foliage have better cooling effect and create a blanket on top of substrate and roof to block heat transmission [36]. A promising option is woodland vegetation, which, with a 1-m substrate, can filter 90% of incoming short-wave radiation during daytime [51]. Although a deeper substrate (>10 cm) was often preferred because of the larger moisture storage [48], shallow-rooted plants like sedum may not able to take this advantage [49].
Urban greening in the street canyon level includes mesic lawns and shade trees. Their cooling effect, limited by the vegetation abundance and moisture content as well, tends to be more effective over desert/xeric than over mesic/oasis landscapes [42]. At a city scale, increasing the ground vegetation has a stronger impact than implementing green roofs on reducing street temperature; whereas green roofs are more cost-effective to reduce a building’s energy consumption [52]. Turfgrass was observed to represent the largest contribution to annual ET in recreational and residential land types (87 and 64%, respectively), followed by trees (10 and 31%, respectively) [53]. Urban ET amount overall relates to the urban forest coverage. Following the increasing ET gradient (464.43–1000.47 mm) through the conterminous United States, urban forest cover and forest volume correspondingly had a doubled and a threefold increase, respectively [7]. Under the shade of tree canopies, the cooling effect of the added lawn will be significantly restrained [42]. Of all types of green and blue space, tree-dominated greenspace offers the greatest heat stress relief [54]. Therefore, xeriscaping trees with drip irrigation system, present a promising UHI mitigation strategy compared to traditional water-demanding urban lawns especially in an arid or semi-arid environment [42]. Stormwater captured from cool roofs can be additional irrigation sources for ground-level GI to promote evaporative cooling [15, 47].
Another major ecosystem service provided by evapotranspiration from green infrastructure is to regulate the regime of urban baseflow in terms of its peak discharge, lag time, recession coefficient, and water yield [46, 55]. Runoff and infiltration determine the upper limit in the volume of surface and subsurface return flows to streams, respectively; while ET, as a sink/loss term in the water balance, determines the lower limit in the volume of the return flow.
The goal of regulating baseflow is ambiguous to define and dependent on each case. Urbanization tends to elevate imperviousness percentage and leads to excessive surface runoff in the postdevelopment condition, which raises flooding risk and causes the urban stream syndrome at the downstream [22]. Reducing the volume of surface runoff is often set as a common goal of all GI applications [6, 10], since GI creates the extra sink near the source of rainfall and effectively reduces the volume of surface runoff traveling downstream [6, 56, 57]. In this case, the ET-focused GI (green roof, lined bioretention) would be recommended, which would transform portions of recharge and baseflow into ET [35, 58, 59, 60].
On the other hand, regulating baseflow can also mean to strengthen the percolation, when the aquifer is heavily tapped by the urban basin [61, 62]. In such case, the percolation-focused GI would be recommended such as drywell, unlined bioretention (sometimes referred as bioinfiltration), retention pond, and permeable pavement, which would transform portions of ET into recharge and eventually baseflow [63]. However, the influence of percolated water on ET is not clearly understood. Conventionally, percolation is assumed to recharge groundwater and contribute to baseflow through subsurface hidden paths [60]. Yet, lateral seepage from the bioretention is not negligible, and it can be comparable to ET amount [64] or even a much more dominant term than both ET and vertical percolation [65]. The fate of the lateral seepage has not been extensively studied yet, which could end up being intercepted by downstream rooting systems and eventually released into the air by ET again, instead of reaching the channels as baseflow. Further, water from shallow water table (<2.5 m deep) can move upwards to the root zone as capillary flow; for example, 1-m capillary upward groundwater can supply 41% of ET [66]. The knowledge gaps regarding the fate of percolation water as well as occasional capillary flow prevents the accurate appraisal of the GI influence on the local or broader scale water balance. The contributing areas to the baseflow of an urban watershed should be identified, and building GI at such locations would be cost-effective.
Connection to storm drainage network is another factor affecting the ratio of rainfall redistribution. Employment of an underdrain underneath bioretention can bypass most infiltration through the drainage network and lead to minimal ET and percolation [67, 68]. From the volume reduction perspective, underdrains make GI more resemble a conventional storm pipeline. Without connecting to a drainage network, GI can manage infiltrated water more through ET or percolation.
Choosing the percolation-focused GI in the urban areas with limited aquifer extraction and ecosystem water demand (humid climates) may overcompensate the groundwater and increase the volume of return flow to the downstream channels due to the increased baseflow. Further, the percolation-focused GI, only designed for managing impervious surfaces, may also drain extra stormwater from pervious surfaces and then unintendedly result in a larger baseflow than the predevelopment condition [60]. Overcompensating groundwater recharge can lead to deleterious effects on downstream waters and ecosystem like in arid regions with intermittent and ephemeral streams [24]. Moreover, excessive recharge from GI may cause groundwater mounds, which, taking a long time to dissipate [69], endanger the foundations of other infrastructures and compromise drought resilience by promoting shallow-rooted plant systems that do not extract water from deep soil [70]. Therefore, determining the appropriate ET amount for an urban watershed is complicated and requires an overview of the complete water budget. This discussion goes beyond the viewpoint of baseflow restoration and gives rise to the emerging trend of using GI to reestablish the urban water budget.
Type and configuration of GI can not only regulate the baseflow but also affect the rest of the water budget for a single site [71, 72]. Designing a GI unit, therefore, needs to be reviewed in a broader sense. The configuration of each GI unit, though possibly having already accomplished the local-scale objectives, can be further tweaked to target the optimum goal of a greater scale such as of an urban watershed or an urban ecosystem. Then, the baseflow regulation by GI implementations eventually turns into the redesign of the water budget, such as the proposals for restoring the near-natural water budget [24, 35, 73].
Targeting water budget, however, may not be so straightforward to develop due to considerations for the integrated ecosystem management for each specific climate. From the ecological perspective, aquifer recharge might be beneficial ecologically only when the recharge amount matches the predevelopment condition [60]. So, the excessive rainwater should be harvested near the rain source [24]. However, in dry environments, ET can be dominant component of the predevelopment water budget before urbanization occurred [35]. Recovering the predevelopment ET ratio will be prohibitive in such urban settings [24]. Therefore, reestablishing a new water budget somewhere between the predevelopment and postdevelopment conditions is most feasible and beneficial for human and ecosystem water demands together. Regional water budget should be determined by the weights assigned between human water demand and ecosystem water demand.
The new equilibrium will need to integrate multiobjectives from different perspectives. For example, for the interests in urban heat island relief, GI is designed to enhance ET process, which requires the ET-focused GI with adequate storage capacity [1, 74]. For the interests in stormwater management in wet and cold regions with excessive return flows, the ET-focused GI is recommended to maximize the runoff reduction. In semi-arid environments with intermittent but intense rain events, high ET rates also guarantee the rapid update of storage capacity between storms, though irrigation supplement may be needed [75]. For regions with low recharge rate and high groundwater exploitation rate, the percolation-focused GI with highly permeable mediums might be a better option [76, 77]. In any case when increasing irrigation demand is most concerned, GI with low ET potential or drought-resistant plant species would be preferred [78].
Depending on the configuration, inflow and irrigation, climate, and the microscale hydraulic, thermal, and aerodynamic contexts, observed evapotranspiration from the same type of green infrastructure can vary case by case. Based on the existing observations (excluding modeling results), ET of a bioretention unit generally varies within the range of 2–9 mm day−1 [79, 80], ET of a green roof unit generally falls within the range of 0.003–11.38 mm day−1 [49, 81, 82, 83, 84], and the evaporation of a permeable pavement unit after rainfall is generally 0.5–1.5 mm day−1 [85, 86, 87]. From the water budget perspective, ET was observed to be able to remove 0.4–70% of inflows from a bioretention unit [67, 68, 80, 88], 58–72% of inflows from a green roof unit [82, 84, 89], and 2.4–30% from a permeable pavement unit [85, 86].
Similar to observation tasks for other landscapes, the ET measurement methods for GI can be divided into mass-balance tracking, meteorological observation, and biological diagnostic. Among them, mass-balance tracking is most often adopted due to its simplicity and cost-effectiveness. Mass balance can be tracked indirectly by interpreting the variations in moisture content or ponding water such as in permeable pavement [85], green roof [90], and bioretention cases [65] or, more often, directly monitored by the weight change via a lysimeter. These methods generally focus on a small piece of GI and by various degrees block moisture, momentum, and energy exchanges between the monitored piece and the unmonitored environment.
Weighing lysimeter has been widely used to measure ET for major GI types, e.g. bioretentions [80, 83], green roofs [75, 78, 83, 84], and permeable pavement [86, 87]. It uses a load cell to monitor the total mass change of the container holding the GI sample. Because only the mass readings are recorded, this technique requires extra observations to distinguish the weight changes caused by ET from the changes caused by the wetting events (rainfall, irrigation) or other possible loss terms (drainage, percolation). Drainage and percolation are often difficult to measure with the matching accuracy and temporal resolution as the load cell readings. Traditional tipping bucket is designed for rainfall measurement. Its funnel collector and tipping container can be easily overwhelmed by the massive flows from the lysimeter’s underdrain. So although a tipping bucket can record the occurrence and possibly the timing of the outflow events, its volumetric readings are usually unreliable. A pressure transducer can be useful for measuring still water with enough depth and open water surface but is not helpful for detecting the shallow drainage water usually collected in a container that needs to be released after each event. For each container with a different shape, the water depth sensor would need a re-calibration. Considering the difficulty of tracking drainage and percolation, the common workaround is only analyzing the lysimeter time series during the dry spells when the water balance only has ET and the change term remaining (without other inflow and loss terms).
Besides the state change, vapor fluxes through a part of a plant, a closed chamber, a building’s footprint, and a neighborhood can be directly monitored and used to estimate ET from GI by the means of sap/leaf flux sensor [17], gas-exchange chamber [47, 78, 81, 89], eddy covariance technique [82], and airborne remote sensing [91], respectively. Both sap/leaf flux sensors and closed chambers provide a decisive way to examine the fundamental theories behind ET models. But they can only examine the flux exchange within a very limited space; the former can only measure a piece of a plant, while the latter can hold a volume up to 0.12 m3 [47, 78, 81, 89]. The observed ET rates by these two methods are also (if not more) hardly to upscale compared to the mass balance methods due to the variations in environmental factors.
Eddy covariance technique quantifies the surface-atmosphere flux exchanges from a certain surface area at the upwind side of the measurement sensor (flux footprint), which should not include a large fraction of unwanted land covers. This requirement poses practical challenges for using it to monitor ET from a single GI unit, which usually only takes a small fraction of a flux footprint and is mixed with other urban land covers with distinct thermal and hydraulic properties. The eddy covariance method can be feasible for a large GI unit that covers the majority of a flux footprint, irrespective of the unsolved energy balance closure issue. A case study using eddy covariance on an 8600 m2 green roof found that an average 70% daytime flux footprint matched the green roof surface [82]. A flux tower may become more useful to measure the total change in ET for a neighborhood scale before and after implementing GI, which will provide a critical dataset that is often lacked for calibrating stormwater and urban atmospheric models.
The challenges of measuring ET from GI were partly caused by the limitations in the current sensoring technology. To help build a database useful for future research and a wider community, field experimenters should start to record a more complete background information for a GI site, such as detailed species information [78], the surrounding impervious and pervious landscapes, and a broader field of temperature, wind, and humidity conditions that can account for advection and roughness. Meanwhile, the uncertainty information including the accuracy of measurement sensors and the selective ranges of parameters is recommended to be provided [49, 92], especially when the purpose of the observation is to improve the simulation of ET from a GI.
Simulation of evapotranspiration from green infrastructure is usually a necessary subtask of modeling a larger system such as the building’s energy and water budgets, a catchment’s drainage network, or a city’s land-surface process. Most current efforts regarding ET simulation for GI centered on establishing a well-calibrated ET model for a single GI unit/type at one site. Such microscale-calibrated models, however, are very difficult to be reused at a different site due to the differences in the configuration of GI, micrometeorological conditions, and data availability. Therefore, most hydrologic and atmospheric models seldom use such locally-calibrated ET modules but directly use more generic equations.
Evapotranspiration simulation usually can be divided into two steps. Potential evapotranspiration (PET) is calculated firstly, which represents the maximum ET amount allowed by the instantaneous meteorological conditions forced by air temperature, solar radiation, wind, air pressure, and humidity [93, 94, 95]. Actual evapotranspiration (ETa) is then achieved by adjusting PET by further limiting factors such as moisture availability and properties of evapotranspiring media (e.g. physiological characteristics of plant species and hydraulic features of a soil type). Since PET and ETa are usually quantified separately, these two terms are discussed separately.
Penman-Monteith (P-M) equation, taking a full account of energy balance, convection, and canopy resistance while well documented by previous agricultural studies, is widely applied to estimate ET from almost all types of GI such as green roof [6, 57, 74, 83, 93, 96, 97, 98, 99], bioretention [64, 80, 100], and permeable pavement [101]. Simpler models, such as Priest-Taylor equation without considering convection [102], or solely temperature-based Thornthwaite Equation [59, 85, 103] and Hargreaves Equation [96, 104], have also applied for GI when fewer inputs and less calibration effort required. Although a simpler method may achieve a better estimate for a unique site, the P-M equation has been framed into the classical protocol [105] to compute reference evapotranspiration (ETo), which represents ET from a standard land cover with fixed vegetation characteristics (resistance, height, etc.). The concept of ETo has been widely accepted and integrated with the adjustments by lists of crop coefficient (Kc) and water stress coefficient (Ks) [105]. Potential evapotranspiration of a plant can be achieved by multiplying ETo by Kc.
Although the P-M equation is physically sound, it is problematic to apply it in the urban environment. Originally, the P-M equation was developed to estimate ET from a uniform surface with a homogenous footprint (like open water or well-watered farmland). Urban environment, however, is composed of heterogeneous surfaces with distinct regimes of reflecting, absorbing, and releasing the incoming radiation, which result in intensive turbulence exchanges within a short period of time. Directly applying the P-M equation in the urban environment essentially breaks its underlying assumption of a homogeneous surface. The P-M equation would need adjustments for such cases after capturing the 3D field of weather variables, especially temperature, wind, and humidity fields. For example, the current practices of implementing the P-M equation only calculate aerodynamic resistance for the neutral stability condition by assuming a logarithmic profile of wind, temperature, and humidity [105, 106]. This assumption is only valid for inertial sublayer well above the building tops but will not hold in the roughness sublayer and urban canopy layer where GI exists [107]. This violation, mostly due to a high degree of vertical mixing (convection) and horizontal transport of air mass (advection), is seldom and hardly addressed during ET estimation for GI. Fundamentally, the P-M equation assumes an equivalent aerodynamic resistance for both sensible heat and momentum transfer under the neutral stability condition and ignores the contribution of advection to the energy supply commonly occurred in an urban environment. Stability correction [108] is cumbersome and may not be influential close to the canopy [109]. The advection tends to be negligible where relatively small differences in surface temperatures exist (like cropland), which is seldom the case in the urban domain [109].
A pioneering study proposed two crop coefficients to separately calibrate radiation and convection terms to improve ET estimation for green roofs [84]. This method implicitly assumes that the nightly convection would have the same magnitude as the daytime convection and also removes the moisture restriction on the convection term because of the weak correlation between convection and substrate moisture at nighttime. The two-round correction was able to improve RMSE by 37% for water-limited conditions when ET is generally low but still suffered by underestimating large ET values during wet conditions [84]. This method still does not resolve the inherited problem of the neglect of horizontal advection in P-M equation, which seems to explain why the ratio of observed ET versus ETo was much higher during nighttime when no solar radiation exists.
Another implicit barrier in using the P-M equation for GI application lies in the complexity of the concept of surface resistance. Stomatal conductance, as the backbone of surface resistance, is highly variable and can be a function of instantaneous levels of temperature, vapor pressure deficit, leaf water potential, and ambient carbon dioxide concentration [110]. Stomatal resistance (the reciprocal of conductance) of green roof species could vary from 13 to 2500 s m−1 [49, 78]. However, in practice, the surface resistance is usually fixed at a constant value in [105, 106]. Therefore, the P-M equation and other common methods tend to struggle to capture both the high and low ET extremes for GI; e.g. for green roofs, the P-M methods often underestimate ET peaks, when moisture supply is adequate to support large ET values (close to PET level) [49, 81, 84, 89, 90]. The average surface resistance adopted by most studies keeps the simulated results approaching the average ET level but missing the higher and lower extremes. Adding a constant crop coefficient will still not improve this situation.
The dilemma is that neither proposing a new framework nor improving the existing one is conceivably easy. Proposing a new PET equation with better representation of convection, advection, and surface resistance will change the ETo standard, and then the existing references of crop coefficient and water stress coefficient will need to be recalibrated. On the other hand, existing references of the current practices of using the P-M equation to estimate PET will require additional correction procedures to take account of those misrepresented terms and perhaps other unrepresented background terms.
Advection-Aridity model [111] can be a different method to estimate ETo for GI ignoring the restrictions in substrate moisture content and plant responses such as stomatal conductance [102]. Essentially, it merges the Penman equation that captures energy balance and vertical convection with the ‘advection-free’ Priest-Taylor equation; however, neither of them takes account of horizontal advection, which can be prevalent due to oasis effect in urban canyons. Artificial neural network provides an alternative workaround that establishes a best ET model for a specific GI unit at the microscale [112]. In the new era of big data, it can be envisioned that machine learning can also have a bright future given regional or global training datasets to be established and shared.
Potential evapotranspiration represents the ET rate limited only by energy supply instead of water supply. In current practices such as stormwater management, it is common to use PET or pan evaporation to represent ETa [100, 104, 113, 114, 115, 116] and calculate other unknowns in the water balance [62]. However, without the adjustment for the substrate moisture content, ETa will be overestimated for unsaturated conditions [89, 117]. Therefore, the water stress coefficient [105] is used to take account of moisture dynamics, and has been used as the benchmark for assessing other predictive ETa models in lieu of physically monitored data [90, 97]. Actual evapotranspiration can be achieved by multiplying ETo by Ks. Simpler equations have been applied to green roof, such as the Thornthwaite-Mather version neglecting the rooting depth and moisture stress [83], or the soil moisture extraction function (SMEF) that further removes the restriction of wilting point [59, 74, 93, 97]. All these methods tend to exaggerate the magnitude of ET reduction during dry periods, since they do not account for processes that could increase the moisture availability such as depression storage, interception, vegetation storage, and ponding water, or factors that alter ET fluxes like the subsurface moisture movement and non-ideal environmental conditions [81]. A fundamental assumption behind these water stress models is that ET from plant and medium should follow a linear response curve with the moisture content. The linear assumption, however, may not well reflect the plant’s real response, since plant’s stomatal activity also depends on other factors as discussed above. This linear trend and becomes much more problematic when representing special species such as succulent plants with distinct metabolism mechanism [49, 78].
A critical review was made to summarize the current research progress with regard to evapotranspiration from green infrastructure in term of the ecosystem services, measurement, and simulation. The related research gaps have been recognized as follows. The optimum combinations of GI units in terms of types, amounts, and configurations for urban cooling are not identified at various scales. The fate of percolation water is unknown, and this knowledge gap prevents the accurate appraisal of the influence of GI on the local or broader scale water balance. The contributing areas to the baseflow of an urban watershed should be recognized, so building GI at such locations would be most cost-effective. Baseflow should not be determined only by the local water budget but should be in line with the goals of regional or watershed strategic planning. Reestablishing a new water budget somewhere between the predevelopment and postdevelopment conditions is most feasible and beneficial for both human and ecosystem water demands in the future. Regional water budget planning should be made according to the weights assigned between human water demand and ecosystem water demand. To help build a ET database that can also be useful for future research and a wider community, field experimenters should start to record a more complete background information for a GI site, such as detailed species information, the surrounding impervious and permeable landscapes, and broader fields of temperature, wind, and humidity. Meanwhile, the uncertainty information regarding sensors and parameters is recommended to be provided, especially when the purpose of the observation is to improve the simulation of ET from a GI. The P-M equation assumes an equivalent aerodynamic resistance for sensible heat and momentum transfer under the neutral stability condition and ignores the contribution of advection to the energy supply in urban environment. A fundamental assumption behind the water stress models is that ET from plant and medium should follow a linear response curve with the medium moisture content. The linear trend, however, is hardly to follow in practice.
Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.
",metaTitle:"IntechOpen Women in Science Program",metaDescription:"Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\\n\\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\\n\\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\\n\\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\\n\\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\\n\\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\\n\\nAdvantages of Publishing with IntechOpen
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\n\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\n\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\n\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\n\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\n\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"289905",title:"Dr.",name:null,middleName:null,surname:"Inamuddin",slug:"inamuddin",fullName:"Inamuddin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289905/images/system/289905.jpeg",biography:"Dr. Inamuddin is currently working as an assistant professor in the Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, and more specifically, renewable energy and the environment. He has published 127 research articles in international journals of repute and 18 book chapters in knowledge-based book editions published by renowned international publishers. He has published 39 edited books with Springer, United Kingdom, Elsevier, Nova Science Publishers, Inc. USA, CRC Press Taylor & Francis, Asia Pacific, Trans Tech Publications Ltd., Switzerland, and Materials Science Forum, USA. He is a member of various editorial boards serving as associate editor for journals such as Environmental Chemistry Letter, Applied Water Science, Euro-Mediterranean Journal for Environmental Integration, Springer-Nature, Scientific Reports-Nature, and the editor of Eurasian Journal of Analytical Chemistry.",institutionString:"King Abdulaziz University",institution:{name:"King Abdulaziz University",country:{name:"Saudi Arabia"}}},{id:"99002",title:"Dr.",name:null,middleName:null,surname:"Koontongkaew",slug:"koontongkaew",fullName:"Koontongkaew",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Thammasat University",country:{name:"Thailand"}}},{id:"156647",title:"Dr.",name:"A K M Mamunur",middleName:null,surname:"Rashid",slug:"a-k-m-mamunur-rashid",fullName:"A K M Mamunur Rashid",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"MBBS, DCH, MD(Paed.), Grad. Cert. P. Rheum.(UWA, Australia), FRCP(Edin.)",institutionString:null,institution:{name:"Khulna Medical College",country:{name:"Bangladesh"}}},{id:"234696",title:"Prof.",name:"A K M Mominul",middleName:null,surname:"Islam",slug:"a-k-m-mominul-islam",fullName:"A K M Mominul Islam",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/a043Y00000cA8dpQAC/Co2_Profile_Picture-1588761796759",biography:"Prof. Dr. A. K. M. Mominul Islam received both of his bachelor's and Master’s degree from Bangladesh Agricultural University. After that, he joined as Lecturer of Agronomy at Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh, and became Professor in the same department of the university. Dr. Islam did his second Master’s in Physical Land Resources from Ghent University, Belgium. He is currently serving as a postdoctoral researcher at the Department of Horticulture & Landscape Architecture at Purdue University, USA. Dr. Islam has obtained his Ph.D. degree in Plant Allelopathy from The United Graduate School of Agricultural Sciences, Ehime University, Japan. The dissertation title of Dr. Islam was “Allelopathy of five Lamiaceae medicinal plant species”. Dr. Islam is the author of 38 articles published in nationally and internationally reputed journals, 1 book chapter, and 3 books. He is a member of the editorial board and referee of several national and international journals. He is supervising the research of MS and Ph.D. students in areas of Agronomy. Prof. Islam is conducting research on crop management, bio-herbicides, and allelopathy.",institutionString:"Bangladesh Agricultural University",institution:{name:"Bangladesh Agricultural University",country:{name:"Bangladesh"}}},{id:"214531",title:"Mr.",name:"A T M Sakiur",middleName:null,surname:"Rahman",slug:"a-t-m-sakiur-rahman",fullName:"A T M Sakiur Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Rajshahi",country:{name:"Bangladesh"}}},{id:"66545",title:"Dr.",name:"A. F.",middleName:null,surname:"Omar",slug:"a.-f.-omar",fullName:"A. F. Omar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Dr. A. F. Omar obtained\nhis Bachelor degree in electrical and\nelectronics engineering from Universiti\nSains Malaysia in 2002, Master of Science in electronics\nengineering from Open University\nMalaysia in 2008 and PhD in optical physics from Universiti\nSains Malaysia in 2012. His research mainly\nfocuses on the development of optical\nand electronics systems for spectroscopy\napplication in environmental monitoring,\nagriculture and dermatology. He has\nmore than 10 years of teaching\nexperience in subjects related to\nelectronics, mathematics and applied optics for\nuniversity students and industrial engineers.",institutionString:null,institution:{name:"Universiti Sains Malaysia",country:{name:"Malaysia"}}},{id:"191072",title:"Prof.",name:"A. K. M. Aminul",middleName:null,surname:"Islam",slug:"a.-k.-m.-aminul-islam",fullName:"A. K. M. Aminul Islam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191072/images/system/191072.jpg",biography:"Prof. Dr. A. K. M. Aminul Islam received both of his bachelor and Master’s degree from Bangladesh Agricultural University. After that he joined as Lecturer of Genetics and Plant Breeding at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh and became Professor in the same department of the university. He is currently serving as Director (Research) of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh. Dr. Islam has obtained his Ph D degree in Chemical and Process Engineering from Universiti Kebangsaan Malaysia. The dissertation title of Dr. Islam was “Improvement of Biodiesel Production through Genetic Studies of Jatropha (Jatropha curcas L.)”. Dr. Islam is the author of 98 articles published in nationally and internationally reputed journals, 11 book chapters and 3 books. He is a member of editorial board and referee of several national and international journals. He is also serving as the General Secretary of Plant Breeding and Genetics Society of Bangladesh, Seminar and research Secretary of JICA Alumni Association of Bangladesh and member of several professional societies. Prof. Islam acted as Principal Breeder in the releasing system of BU Hybrid Lau 1, BU Lau 1, BU Capsicum 1, BU Lalshak 1, BU Baromashi Seem 1, BU Sheem 1, BU Sheem 2, BU Sheem 3 and BU Sheem 4. He supervised 50 MS and 3 Ph D students. Prof. Islam currently supervising research of 5 MS and 3 Ph D students in areas Plant Breeding & Seed Technologies. Conducting research on development of hybrid vegetables, hybrid Brassica napus using CMS system, renewable energy research with Jatropha curcas.",institutionString:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",institution:{name:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",country:{name:"Bangladesh"}}},{id:"322225",title:"Dr.",name:"A. K. M. Aminul",middleName:null,surname:"Islam",slug:"a.-k.-m.-aminul-islam",fullName:"A. K. M. Aminul Islam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:"Prof. Dr. A. K. M. Aminul Islam received both of his bachelor's and Master’s degree from Bangladesh Agricultural University. After that he joined as Lecturer of Genetics and Plant Breeding at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh, and became Professor in the same department of the university. He is currently serving as Director (Research) of Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh. Dr. Islam has obtained his Ph.D. degree in Chemical and Process Engineering from Universiti Kebangsaan Malaysia. The dissertation title of Dr. Islam was 'Improvement of Biodiesel Production through Genetic Studies of Jatropha (Jatropha curcas L.)”. Dr. Islam is the author of 99 articles published in nationally and internationally reputed journals, 11 book chapters, 3 books, and 20 proceedings and conference paper. He is a member of the editorial board and referee of several national and international journals. He is also serving as the General Secretary of Plant Breeding and Genetics Society of Bangladesh, Seminar, and research Secretary of JICA Alumni Association of Bangladesh and a member of several professional societies. Prof. Islam acted as Principal Breeder in the releasing system of BU Hybrid Lau 1, BU Lau 1, BU Capsicum 1, BU Lalshak 1, BU Baromashi Seem 1, BU Sheem 1, BU Sheem 2, BU Sheem 3 and BU Sheem 4. He supervised 50 MS and 3 PhD students. Prof. Islam currently supervising the research of 5 MS and 3 PhD students in areas Plant Breeding & Seed Technologies. Conducting research on the development of hybrid vegetables, hybrid Brassica napus using CMS system, renewable energy research with Jatropha curcas.",institutionString:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",institution:{name:"Bangabandhu Sheikh Mujibur Rahman Agricultural University",country:{name:"Bangladesh"}}},{id:"91977",title:"Dr.",name:"A.B.M. Sharif",middleName:null,surname:"Hossain",slug:"a.b.m.-sharif-hossain",fullName:"A.B.M. Sharif Hossain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"97123",title:"Prof.",name:"A.M.M.",middleName:null,surname:"Sharif Ullah",slug:"a.m.m.-sharif-ullah",fullName:"A.M.M. Sharif Ullah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/97123/images/4209_n.jpg",biography:"AMM Sharif Ullah is currently an Associate Professor of Design and Manufacturing in Department of Mechanical Engineering at Kitami Institute of Technology, Japan. He received the Bachelor of Science Degree in Mechanical Engineering in 1992 from the Bangladesh University of Engineering and Technology, Dhaka, Bangladesh. In 1993, he moved to Japan for graduate studies. He received the Master of Engineering degree in 1996 from the Kansai University Graduate School of Engineering in Mechanical Engineering (Major: Manufacturing Engineering). He also received the Doctor of Engineering degree from the same institute in the same field in 1999. He began his academic career in 2000 as an Assistant Professor in the Industrial Systems Engineering Program at the Asian Institute of Technology, Thailand, as an Assistant Professor in the Industrial Systems Engineering Program. In 2002, he took up the position of Assistant Professor in the Department of Mechanical Engineering at the United Arab Emirates (UAE) University. He was promoted to Associate Professor in 2006 at the UAE University. He moved to his current employer in 2009. His research field is product realization engineering (design, manufacturing, operations, and sustainability). He teaches design and manufacturing related courses at undergraduate and graduate degree programs. He has been mentoring a large number of students for their senior design projects and theses. He has published more than 90 papers in refereed journals, edited books, and international conference proceedings. He made more than 35 oral presentations. Since 2005, he directs the advanced manufacturing engineering research laboratory at Kitami Institute of Technology.",institutionString:null,institution:{name:"Kitami Institute of Technology",country:{name:"Japan"}}},{id:"213441",title:"Dr.",name:"A.R.Kavitha",middleName:null,surname:"Balaji",slug:"a.r.kavitha-balaji",fullName:"A.R.Kavitha Balaji",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Anna University, Chennai",country:{name:"India"}}},{id:"172688",title:"Prof.",name:"A.V.",middleName:null,surname:"Salker",slug:"a.v.-salker",fullName:"A.V. Salker",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Goa University",country:{name:"India"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5684},{group:"region",caption:"Middle and South America",value:2,count:5166},{group:"region",caption:"Africa",value:3,count:1682},{group:"region",caption:"Asia",value:4,count:10211},{group:"region",caption:"Australia and Oceania",value:5,count:887},{group:"region",caption:"Europe",value:6,count:15616}],offset:12,limit:12,total:10241},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"7901",title:"Advances in Germ Cell Biology – New Technologies, Applications and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"4adab31469b82dd5a99eec04dbbe09f2",slug:null,bookSignature:"Ph.D. Sonia Oliveira and Prof. Maria De Lourdes Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/7901.jpg",editedByType:null,editors:[{id:"323848",title:"Ph.D.",name:"Sonia",surname:"Oliveira",slug:"sonia-oliveira",fullName:"Sonia Oliveira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7921",title:"Optogenetics",subtitle:null,isOpenForSubmission:!0,hash:"3ae7e24d8f03ff3932bceee4b8d3e727",slug:null,bookSignature:"Dr. Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/7921.jpg",editedByType:null,editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8575",title:"Animal Regeneration",subtitle:null,isOpenForSubmission:!0,hash:"689b9f46c48cd54a2874b8da7386549d",slug:null,bookSignature:"Dr. Hussein Abdelhay Essayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/8575.jpg",editedByType:null,editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9008",title:"Vitamin K - Recent Advances, New Perspectives and Applications for Human Health",subtitle:null,isOpenForSubmission:!0,hash:"8b43add5389ba85743e0a9491e4b9943",slug:null,bookSignature:"Prof. Hiroyuki Kagechika and Dr. Hitoshi Shirakawa",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",editedByType:null,editors:[{id:"180528",title:"Prof.",name:"Hiroyuki",surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9655",title:"Bioluminescence",subtitle:null,isOpenForSubmission:!0,hash:"26b9e7dade717a5ffdc2dbcfaa1ea43d",slug:null,bookSignature:"Dr. Hirobumi Suzuki and Dr. Katsunori Ogoh",coverURL:"https://cdn.intechopen.com/books/images_new/9655.jpg",editedByType:null,editors:[{id:"185746",title:"Dr.",name:"Hirobumi",surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9734",title:"Chromatin Organization in Health and Disease",subtitle:null,isOpenForSubmission:!0,hash:"ad6935289971d793d26ff2584f57143b",slug:null,bookSignature:"Associate Prof. Jehane Eid",coverURL:"https://cdn.intechopen.com/books/images_new/9734.jpg",editedByType:null,editors:[{id:"325814",title:"Associate Prof.",name:"Jehane",surname:"Eid",slug:"jehane-eid",fullName:"Jehane Eid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9836",title:"KRAS Gene",subtitle:null,isOpenForSubmission:!0,hash:"4fc73beb0e4416a20cc70c8163fe436f",slug:null,bookSignature:"Dr. Pinar Erkekoglu",coverURL:"https://cdn.intechopen.com/books/images_new/9836.jpg",editedByType:null,editors:[{id:"109978",title:"Prof.",name:"Pinar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10213",title:"Secretomics",subtitle:null,isOpenForSubmission:!0,hash:"8f787d92ba862a2c43867b2e62d15c31",slug:null,bookSignature:"Dr. Luiza Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10213.jpg",editedByType:null,editors:[{id:"210679",title:"Dr.",name:"Luiza",surname:"Rusu",slug:"luiza-rusu",fullName:"Luiza Rusu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10219",title:"Fundamentals of Glycosylation",subtitle:null,isOpenForSubmission:!0,hash:"f1f82214d3d5460d3b52c4d8e87e3858",slug:null,bookSignature:"Dr. Alok Raghav and Dr. Jamal Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10219.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10235",title:"Tyrosine",subtitle:null,isOpenForSubmission:!0,hash:"4c53ce7a1ad1e17c15b608ca3f9ee911",slug:null,bookSignature:"Dr. Ken-Ichi Sato",coverURL:"https://cdn.intechopen.com/books/images_new/10235.jpg",editedByType:null,editors:[{id:"104122",title:"Dr.",name:"Ken-Ichi",surname:"Sato",slug:"ken-ichi-sato",fullName:"Ken-Ichi Sato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:27},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5131},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"814",title:"Fluid Dynamics",slug:"mechanical-engineering-fluid-dynamics",parent:{title:"Mechanical Engineering",slug:"mechanical-engineering"},numberOfBooks:8,numberOfAuthorsAndEditors:255,numberOfWosCitations:211,numberOfCrossrefCitations:95,numberOfDimensionsCitations:244,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"mechanical-engineering-fluid-dynamics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"4690",title:"Mass Transfer",subtitle:"Advancement in Process Modelling",isOpenForSubmission:!1,hash:"6a48c13966c5b7c9ecf0af315f87048b",slug:"mass-transfer-advancement-in-process-modelling",bookSignature:"Marek Solecki",coverURL:"https://cdn.intechopen.com/books/images_new/4690.jpg",editedByType:"Edited by",editors:[{id:"43535",title:"Dr.",name:"Marek",middleName:null,surname:"Solecki",slug:"marek-solecki",fullName:"Marek Solecki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1659",title:"The Particle Image Velocimetry",subtitle:"Characteristics, Limits and Possible Applications",isOpenForSubmission:!1,hash:"64321309762b4a1b34529238e32ac638",slug:"the-particle-image-velocimetry-characteristics-limits-and-possible-applications",bookSignature:"Giovanna Cavazzini",coverURL:"https://cdn.intechopen.com/books/images_new/1659.jpg",editedByType:"Edited by",editors:[{id:"111606",title:"PhD.",name:"Giovanna",middleName:null,surname:"Cavazzini",slug:"giovanna-cavazzini",fullName:"Giovanna Cavazzini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"615",title:"Advanced Methods for Practical Applications in Fluid Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"779d768a546af1ba3f0aa171d0c5a9ee",slug:"advanced-methods-for-practical-applications-in-fluid-mechanics",bookSignature:"Steven A. Jones",coverURL:"https://cdn.intechopen.com/books/images_new/615.jpg",editedByType:"Edited by",editors:[{id:"64477",title:"Dr.",name:"Steven",middleName:"A.",surname:"Jones",slug:"steven-jones",fullName:"Steven Jones"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1955",title:"Hydrodynamics",subtitle:"Advanced Topics",isOpenForSubmission:!1,hash:"a2f5fb60944543c693da3c7aa4f07dae",slug:"hydrodynamics-advanced-topics",bookSignature:"Harry Edmar Schulz, André Luiz Andrade Simões and Raquel Jahara Lobosco",coverURL:"https://cdn.intechopen.com/books/images_new/1955.jpg",editedByType:"Edited by",editors:[{id:"20241",title:"Prof.",name:"Harry",middleName:"Edmar",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1954",title:"Hydrodynamics",subtitle:"Optimizing Methods and Tools",isOpenForSubmission:!1,hash:"502818cd3f53e68a788a01c693a29e5d",slug:"hydrodynamics-optimizing-methods-and-tools",bookSignature:"Harry Edmar Schulz, André Luiz Andrade Simões and Raquel Jahara Lobosco",coverURL:"https://cdn.intechopen.com/books/images_new/1954.jpg",editedByType:"Edited by",editors:[{id:"20241",title:"Prof.",name:"Harry",middleName:"Edmar",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"530",title:"Convection and Conduction Heat Transfer",subtitle:null,isOpenForSubmission:!1,hash:"d7473a9763ff4ee9a4f8bb5a1ba9cd5e",slug:"convection-and-conduction-heat-transfer",bookSignature:"Amimul Ahsan",coverURL:"https://cdn.intechopen.com/books/images_new/530.jpg",editedByType:"Edited by",editors:[{id:"36782",title:"Associate Prof.",name:"Amimul",middleName:null,surname:"Ahsan",slug:"amimul-ahsan",fullName:"Amimul Ahsan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"924",title:"Heat and Mass Transfer",subtitle:"Modeling and Simulation",isOpenForSubmission:!1,hash:"671686ebedf504b399b01e0a9f8ecfd3",slug:"heat-and-mass-transfer-modeling-and-simulation",bookSignature:"Monwar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/924.jpg",editedByType:"Edited by",editors:[{id:"18207",title:"Prof.",name:"Md Monwar",middleName:null,surname:"Hossain",slug:"md-monwar-hossain",fullName:"Md Monwar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"228",title:"Waves in Fluids and Solids",subtitle:null,isOpenForSubmission:!1,hash:"91a31715c4cb38a9c947a519163c45fc",slug:"waves-in-fluids-and-solids",bookSignature:"Ruben Pico Vila",coverURL:"https://cdn.intechopen.com/books/images_new/228.jpg",editedByType:"Edited by",editors:[{id:"49934",title:"Prof.",name:"Ruben",middleName:null,surname:"Pico Vila",slug:"ruben-pico-vila",fullName:"Ruben Pico Vila"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,mostCitedChapters:[{id:"22262",doi:"10.5772/19836",title:"Modelling of Heat Transfer and Phase Transformations in the Rapid Manufacturing of Titanium Components",slug:"modelling-of-heat-transfer-and-phase-transformations-in-the-rapid-manufacturing-of-titanium-componen",totalDownloads:2717,totalCrossrefCites:5,totalDimensionsCites:16,book:{slug:"convection-and-conduction-heat-transfer",title:"Convection and Conduction Heat Transfer",fullTitle:"Convection and Conduction Heat Transfer"},signatures:"António Crespo",authors:[{id:"36414",title:"Dr.",name:"Antonio",middleName:null,surname:"Crespo",slug:"antonio-crespo",fullName:"Antonio Crespo"}]},{id:"20087",doi:"10.5772/21503",title:"Soliton-Like Lamb Waves in Layered Media",slug:"soliton-like-lamb-waves-in-layered-media",totalDownloads:1890,totalCrossrefCites:5,totalDimensionsCites:14,book:{slug:"waves-in-fluids-and-solids",title:"Waves in Fluids and Solids",fullTitle:"Waves in Fluids and Solids"},signatures:"I. Djeran-Maigre and S. V. Kuznetsov",authors:[{id:"43397",title:"Dr.",name:"Irini",middleName:null,surname:"Djeran-Maigre",slug:"irini-djeran-maigre",fullName:"Irini Djeran-Maigre"},{id:"43398",title:"Prof.",name:"Sergey",middleName:null,surname:"Kuznetsov",slug:"sergey-kuznetsov",fullName:"Sergey Kuznetsov"}]},{id:"20412",doi:"10.5772/21230",title:"Nonequilibrium Fluctuations in Micro-MHD Effects on Electrodeposition",slug:"nonequilibrium-fluctuations-in-micro-mhd-effects-on-electrodeposition",totalDownloads:1293,totalCrossrefCites:4,totalDimensionsCites:13,book:{slug:"heat-and-mass-transfer-modeling-and-simulation",title:"Heat and Mass Transfer",fullTitle:"Heat and Mass Transfer - Modeling and Simulation"},signatures:"Ryoichi Aogaki and Ryoichi Morimoto",authors:[{id:"42360",title:"Prof.",name:"Ryoichi",middleName:null,surname:"Aogaki",slug:"ryoichi-aogaki",fullName:"Ryoichi Aogaki"},{id:"54508",title:"Mr",name:"Ryoichi",middleName:null,surname:"Morimoto",slug:"ryoichi-morimoto",fullName:"Ryoichi Morimoto"}]}],mostDownloadedChaptersLast30Days:[{id:"25446",title:"Flow Instabilities in Mechanically Agitated Stirred Vessels",slug:"flow-instabilities-in-mechanically-agitated-stirred-vessels",totalDownloads:3148,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"Chiara Galletti and Elisabetta Brunazzi",authors:[{id:"75453",title:"Dr.",name:"Chiara",middleName:null,surname:"Galletti",slug:"chiara-galletti",fullName:"Chiara Galletti"},{id:"75834",title:"Prof.",name:"Elisabetta",middleName:null,surname:"Brunazzi",slug:"elisabetta-brunazzi",fullName:"Elisabetta Brunazzi"}]},{id:"48887",title:"Mass Transfer in Multiphase Systems",slug:"mass-transfer-in-multiphase-systems",totalDownloads:9565,totalCrossrefCites:5,totalDimensionsCites:5,book:{slug:"mass-transfer-advancement-in-process-modelling",title:"Mass Transfer",fullTitle:"Mass Transfer - Advancement in Process Modelling"},signatures:"Badie I. Morsi and Omar M. Basha",authors:[{id:"174420",title:"Prof.",name:"Badie I.",middleName:null,surname:"Morsi",slug:"badie-i.-morsi",fullName:"Badie I. Morsi"},{id:"174770",title:"Dr.",name:"Omar M.",middleName:null,surname:"Basha",slug:"omar-m.-basha",fullName:"Omar M. Basha"}]},{id:"25437",title:"One Dimensional Turbulent Transfer Using Random Square Waves – Scalar/Velocity and Velocity/Velocity Interactions",slug:"one-dimensional-turbulent-transfer-using-random-square-waves-scalar-velocity-and-velocity-velocity-i",totalDownloads:1558,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"H. E. Schulz, G. B. Lopes Júnior, A. L. A. Simões and R. J. Lobosco",authors:[{id:"20241",title:"Prof.",name:"Harry",middleName:"Edmar",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"}]},{id:"37156",title:"Characterization of the Bidirectional Vortex Using Particle Image Velocimetry",slug:"characterization-of-the-bidirectional-vortex-using-particle-image-velocimetry",totalDownloads:2144,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"the-particle-image-velocimetry-characteristics-limits-and-possible-applications",title:"The Particle Image Velocimetry",fullTitle:"The Particle Image Velocimetry - Characteristics, Limits and Possible Applications"},signatures:"Brian A. Maicke and Joseph Majdalani",authors:[{id:"64718",title:"Prof.",name:"Joe",middleName:null,surname:"Majdalani",slug:"joe-majdalani",fullName:"Joe Majdalani"},{id:"111632",title:"Dr.",name:"Brian",middleName:null,surname:"Maicke",slug:"brian-maicke",fullName:"Brian Maicke"}]},{id:"25453",title:"Flow Evolution Mechanisms of Lid-Driven Cavities",slug:"flow-evolution-mechanisms-of-lid-driven-cavities",totalDownloads:2807,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"José Rafael Toro and Sergio Pedraza R.",authors:[{id:"75766",title:"BSc.",name:"Sergio",middleName:null,surname:"Pedraza",slug:"sergio-pedraza",fullName:"Sergio Pedraza"},{id:"81379",title:"MSc.",name:"José Rafael",middleName:null,surname:"Toro",slug:"jose-rafael-toro",fullName:"José Rafael Toro"}]},{id:"37152",title:"Limits in Planar PIV Due to Individual Variations of Particle Image Intensities",slug:"limits-in-planar-piv-due-to-individual-variations-of-particle-image-intensities",totalDownloads:1841,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"the-particle-image-velocimetry-characteristics-limits-and-possible-applications",title:"The Particle Image Velocimetry",fullTitle:"The Particle Image Velocimetry - Characteristics, Limits and Possible Applications"},signatures:"Holger Nobach",authors:[{id:"101177",title:"Dr.",name:"Holger",middleName:null,surname:"Nobach",slug:"holger-nobach",fullName:"Holger Nobach"}]},{id:"22261",title:"Heat Transfer Analysis of Reinforced Concrete Beams Reinforced with GFRP Bars",slug:"heat-transfer-analysis-of-reinforced-concrete-beams-reinforced-with-gfrp-bars",totalDownloads:5694,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"convection-and-conduction-heat-transfer",title:"Convection and Conduction Heat Transfer",fullTitle:"Convection and Conduction Heat Transfer"},signatures:"Rami A. Hawileh",authors:[{id:"46905",title:"Dr.",name:"Rami",middleName:null,surname:"Hawileh",slug:"rami-hawileh",fullName:"Rami Hawileh"}]},{id:"25439",title:"Nonautonomous Solitons: Applications from Nonlinear Optics to BEC and Hydrodynamics",slug:"nonautonomous-solitons-applications-from-nonlinear-optics-to-bec-and-hydrodynamics",totalDownloads:1522,totalCrossrefCites:1,totalDimensionsCites:11,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"T. L. Belyaeva and V. N. Serkin",authors:[{id:"66736",title:"Prof.",name:"Vladimir",middleName:null,surname:"Serkin",slug:"vladimir-serkin",fullName:"Vladimir Serkin"},{id:"66765",title:"Prof.",name:"Tatyana",middleName:"Leonidovna",surname:"Belyaeva",slug:"tatyana-belyaeva",fullName:"Tatyana Belyaeva"}]},{id:"25450",title:"Hydrodynamics on Charged Superparamagnetic Microparticles in Water Suspension: Effects of Low-Confinement Conditions and Electrostatics Interactions",slug:"hydrodynamics-on-charged-superparamagnetic-microparticles-in-water-suspension-effects-of-low-confine",totalDownloads:1845,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"P. Domínguez-García and M.A. Rubio",authors:[{id:"68119",title:"Dr.",name:"Pablo",middleName:null,surname:"Domínguez-García",slug:"pablo-dominguez-garcia",fullName:"Pablo Domínguez-García"},{id:"75303",title:"Dr.",name:"Miguel Ángel",middleName:null,surname:"Rubio",slug:"miguel-angel-rubio",fullName:"Miguel Ángel Rubio"}]},{id:"25438",title:"Generalized Variational Principle for Dissipative Hydrodynamics: Shear Viscosity from Angular Momentum Relaxation in the Hydrodynamical Description of Continuum Mechanics",slug:"generalized-variational-principle-for-dissipative-hydrodynamics-shear-viscosity-from-angular-momentu",totalDownloads:1792,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"hydrodynamics-advanced-topics",title:"Hydrodynamics",fullTitle:"Hydrodynamics - Advanced Topics"},signatures:"German A. Maximov",authors:[{id:"73783",title:"Dr.",name:"German",middleName:null,surname:"Maximov",slug:"german-maximov",fullName:"German Maximov"}]}],onlineFirstChaptersFilter:{topicSlug:"mechanical-engineering-fluid-dynamics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/147399/mike-kent",hash:"",query:{},params:{id:"147399",slug:"mike-kent"},fullPath:"/profiles/147399/mike-kent",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()